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Abstract

General cognitive ability (GCA) refers to a trait-like ability that contributes to perfor-

mance across diverse cognitive tasks. Identifying brain-based markers of GCA has

been a longstanding goal of cognitive and clinical neuroscience. Recently, predictive

modeling methods have emerged that build whole-brain, distributed neural signa-

tures for phenotypes of interest. In this study, we employ a predictive modeling

approach to predict GCA based on fMRI task activation patterns during the N-back

working memory task as well as six other tasks in the Human Connectome Project

dataset (n = 967), encompassing 15 task contrasts in total. We found tasks are a

highly effective basis for prediction of GCA: The 2-back versus 0-back contrast

achieved a 0.50 correlation with GCA scores in 10-fold cross-validation, and 13 out

of 15 task contrasts afforded statistically significant prediction of GCA. Additionally,

we found that task contrasts that produce greater frontoparietal activation and

default mode network deactivation—a brain activation pattern associated with exec-

utive processing and higher cognitive demand—are more effective in the prediction

of GCA. These results suggest a picture analogous to treadmill testing for cardiac

function: Placing the brain in a more cognitively demanding task state significantly

improves brain-based prediction of GCA.

1 | INTRODUCTION

In addition to particular abilities associated with individual cognitive

tasks, there is substantial evidence for an overarching general ability

involved in performance across a diverse range of tasks (Carroll, 2003;

Horn & Noll, 1997; Mackintosh & Mackintosh, 2011; Neisser

et al., 1996; Spearman, 1904). Test batteries composed of diverse tasks

can yield accurate estimates of this general ability, which we here refer

to as general cognitive ability (GCA) (Carroll, 1993; McGrew, 2009).

GCA is a fundamental dimension of individual differences and is a key

contributor to a number of important academic, occupational, health,

and well-being-related outcomes (Batty, Mortensen, & Osler, 2005;

Gale, Batty, Tynelius, Deary, & Rasmussen, 2010; Gottfredson, 1997;

Ree, Earles, & Teachout, 1994; Strenze, 2007; Whitley et al., 2010).

There is thus substantial interest in understanding the neural basis of

GCA as well as the nature of inter-individual neural differences.

Functional imaging studies of brain activation patterns during

cognitive tasks have yielded important insights into the neural basis of

GCA (Deary, Penke, & Johnson, 2010; Duncan et al., 2000; Gray,

Chabris, & Braver, 2003; Schultz & Cole, 2016). In one key line of

investigation, researchers identified a multiple demand network that

activates across an array of cognitive tasks (Duncan, 2010; Duncan &

Owen, 2000; Fedorenko, Duncan, & Kanwisher, 2013; Shashidhara,

Mitchell, Erez, & Duncan, 2019). This network is hypothesized to

support domain-general functions such as working memory

(Baddeley, 2012; D'Esposito, Postle, & Rypma, 2000) and cognitive
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control (Cole & Schneider, 2007; Miller & Cohen, 2001; Niendam

et al., 2012) that contribute to performance across tasks irrespective

of their specific content. Subsequent work found activation in key

regions of this network, including dorsal lateral prefrontal cortex and

superior parietal cortex, are correlated with measures of GCA or

closely related constructs (DeYoung, Shamosh, Green, Braver, &

Gray, 2009; Duncan et al., 2000; Gray et al., 2003; Lee et al., 2006).

A notable feature of many of these previous task-based studies is

that they are mainly concerned with localization and correlation: they

mainly seek to identify specific brain regions whose activation corre-

lates with GCA. Recently, however, another important goal has

emerged in cognitive neuroscience: prediction (Rosenberg, Casey, &

Holmes, 2018; Varoquaux & Poldrack, 2019; Yarkoni & Westfall, 2017).

Unlike mass univariate approaches that are especially good for localiza-

tion, predictive modeling approaches use multivariate methods that

identify distributed patterns across the brain (“neurosignatures”). These

distributed neurosignatures are often substantially more strongly

related to phenotypes of interest than individual features because the

neurosignatures aggregate information from across the entire brain

(Woo, Chang, Lindquist, & Wager, 2017). However, because multivari-

ate methods for constructing these distributed neurosignatures are

highly parametrized, they are prone to overfitting. Predictive models

are thus typically assessed by how well they predict unseen data, usu-

ally through the use of cross-validation (Poldrack, Huckins, &

Varoquaux, 2019; Scheinost et al., 2019).

Predictive modeling has been employed with a number of imaging

modalities, including structural maps (Cox, Ritchie, Fawns-Ritchie,

Tucker-Drob, & Deary, 2019) and resting-state connectomes (Cui

et al., 2020; Dubois, Galdi, Paul, & Adolphs, 2018; Finn et al., 2015;

Sripada et al., 2019), to predict GCA or closely related constructs. A

notable feature of these studies is that they mainly examined rela-

tively stable, enduring features of the brain—features that are largely

independent of the person's current cognitive state, and in particular

their actual exercise of the cognitive abilities that are relevant to

GCA. An alternative approach for building predictive models of GCA,

which appears to be relatively less utilized (cf. Greene, Gao,

Scheinost, & Constable, 2018; Stern, Gazes, Razlighi, Steffener, &

Habeck, 2018), employs a rationale similar to that for cardiac treadmill

testing. This approach attempts to first place the brain in an activated

state that engages the cognitive abilities associated with GCA. By acti-

vating the brain in this way, individual differences in the neural basis

of GCA may be rendered more “visible” for a predictive model to

detect (see Finn et al. 2017 for a suggestion along these lines).

In the current study, we adopted this second approach. Utilizing

the Human Connectome Project's (HCP) 1200 release, we began by

constructing a highly reliable measure of GCA from 10 measures from

the NIH Toolbox and Penn Neurocognitive Battery (Dubois

et al., 2018). We then used a predictive modeling framework to exam-

ine the prediction of GCA from contrast maps derived from the N-

back working memory task as well as six other fMRI tasks (15 task

contrasts in total). We demonstrate two things. First, task-based brain

activation patterns allow highly reliable prediction of GCA, with per-

formance appreciably higher than that typically reported in other

neuroimaging modalities. Second, tasks that produce greater

frontoparietal activation and default mode network (DMN) deactiva-

tion, which is associated with higher cognitive demand, are more

effective at GCA prediction.

2 | METHODS

2.1 | Subjects and data acquisition

All subjects and data were from the HCP-1200 release (Van Essen

et al., 2013; WU-Minn HCP, 2017) and all research was performed

in accordance with relevant guidelines and regulations. Subjects pro-

vided informed consent, and recruitment procedures and informed

consent forms, including consent to share de-identified data, were

approved by the Washington University institutional review board.

Subjects completed two runs each of seven scanner tasks across

two fMRI sessions, using a 32-channel head coil on a 3T Siemens

Skyra scanner (TR = 720 ms, TE = 33.1 ms, 72 slices, 2 mm isotropic

voxels, multiband acceleration factor = 8) with right-to-left and left-

to-right phase encoding directions. Comprehensive details are avail-

able elsewhere on HCP's overall neuroimaging approach (Glasser

et al., 2013; Van Essen et al., 2013) and HCP's task fMRI dataset

(Barch et al., 2013).

For the construction of a GCA factor, all subjects with available

data were included. This analysis included 1,192 subjects. For the

brain imaging analysis, subjects were eligible to be included if they

had available task data in MSMAll format [information about both

folding as well as function are used for cross-subject alignment

(Glasser et al., 2016)] for both runs of all seven tasks, had full behav-

ioral data, and no more than 25% of their volumes in each run

exceeded a framewise displacement threshold of 0.5 mm. These

exclusions resulted in a sample of 967 subjects.

2.2 | Data preparation

Data were preprocessed through the HCP minimally preprocessed

pipeline, which is presented in detail by Glasser et al. 2016. Briefly,

the pipeline includes gradient unwarping, motion correction, fieldmap

distortion correction, brain-boundary based linear registration of func-

tional to structural images, nonlinear registration to MNI152 space,

and grand-mean intensity normalization. Data then entered a

surfaced-based preprocessing stream, followed by grayordinate-based

processing, which involves data from the cortical ribbon being projec-

ted to surface space and combined with subcortical volumetric data.

2.3 | fMRI tasks

We used contrasts from seven HCP tasks, described in brief in

Table 1 [detailed descriptions are available elsewhere (Barch

et al., 2013; WU-Minn HCP, 2017)].
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At the single subject-level, fixed-effects analyses were conducted

using FSL's FEAT to estimate the average effects across runs within-

participants, using 2 mm surface smoothed data. Some tasks permit-

ted multiple contrasts beyond the standard experimental versus con-

trol condition (e.g., N-back allows additional contrasts based on all

four stimulus types). To reduce the complexity of the analysis and

avoid loss of power from a smaller number of trials, we focused on

the standard contrasts associated with these tasks. The Language

Task and Emotion Task lacked fixation blocks. Thus, we included the

main condition contrasts (e.g., math-story and faces-shapes), but we

did not include each of these conditions versus baseline. A full list of

filenames of the contrast maps used can be found in Table S1.

2.4 | Constructing a GCA factor

We conducted an exploratory factor analysis utilizing the strategy and

associated code made available by Dubois and colleagues (https://

github.com/adolphslab/HCP_MRI-behavior), who recently investi-

gated the prediction of GCA from resting-state fMRI in the HCP

dataset (Dubois et al., 2018). Unadjusted scores from 10 cognitive

tasks for 1,181 HCP subjects were included in the analysis (subjects

with missing data or MMSE <26 were excluded), including seven tasks

from the NIH Toolbox (Dimensional Change Cart Sort, Flanker Task,

List Sort Test, Picture Sequence Test, Picture Vocabulary Test, Pattern

Completion Test, Oral Reading Recognition Test), and three tasks

from the Penn Neurocognitive Battery (Penn Progressive Matrices,

Penn Word Memory Test, Variable Short Penn Line Orientation Test),

with additional details supplied in Dubois et al. (2018).

We applied Dubois and colleagues' code to this data, which uses

the omega function in the psych (v 1.8.4) package (Revelle, 2016) in R

(v3.4.4). In particular, the code performs maximum likelihood-

estimated exploratory factor analysis (specifying a bifactor model),

oblimin factor rotation, followed by a Schmid–Leiman transformation

(Schmid & Leiman, 1957) to find general factor loadings.

To assess reliability, in a separate analysis, we re-ran the factor

analysis excluding 46 subjects that had test/retest sessions available.

We then estimated factor scores for both sessions for these subjects

and calculated test/retest reliability via intraclass correlation [we used

ICC (2,1) in the Shrout and Fleiss scheme (Shrout & Fleiss, 1979)].

We performed the preceding factor analysis on the entire dataset

to characterize the factor structure (see Section 3.1). But importantly,

we in addition repeated the factor analysis multiple times, each time

within a fold of a 10-fold cross-validation analysis (see Section 2.6).

This was to ensure the complete separation of train and test datasets

during cross-validation.

2.5 | Brain basis set modeling

Our aim was to predict each subject's GCA scores from each of the

15 task contrasts. To accomplish this, we used Brain Basis Set (BBS)

modeling, previously described in detail (Sripada, Angstadt, Ruther-

ford, Kessler, et al., 2019; Sripada, Rutherford, Angstadt, Thompson,

et al., 2019) and presented here in brief (Figure 1). Note that BBS was

applied separately to each of the 15 task contrasts, and thus the steps

that follow are performed separately for each contrast.

BBS assumes a train/test split of the dataset (see Section 2.6

below). In the train dataset, each subject's task contrast was vec-

torized and then concatenated yielding an n subjects × m voxels

matrix. This matrix was then submitted to principal components analy-

sis using the pca function in MATLAB (2015b), yielding n-1 compo-

nents ordered by descending eigenvalues, of which we retained the

top 75 components.

We selected 75 as the number of components to retain based on

prior analysis in which we estimated the number of intrinsic dimensions

associated with each task contrast. This was accomplished by submit-

ting each of the task contrast matrices to the dimensionality estimation

procedure of Levina & Bickel (2004). This is a maximum likelihood esti-

mation method based on the distance between close neighbors, which

we previously successfully applied to HCP resting-state data (Sripada,

Angstadt, Rutherford, Kessler, et al., 2019). Dimensionality estimation

found a mean of 72 dimensions across the 15 task contrasts. Because

prior studies by our group (Sripada, Angstadt, Rutherford, Kessler,

et al., 2019) showed small differences in the number of components

make little difference in classifier performance, and to increase com-

parability with recent studies that used 75 components (Sripada,

Angstadt, Rutherford, Kessler, et al., 2019; Sripada, Rutherford,

Angstadt, Thompson, et al., 2019), we chose to use 75 components

for each task.

TABLE 1 Seven human connectome project fMRI tasks

N-back task Participants respond when the picture shown on the

screen is the same as the one two trials back

(=2-back condition) or the same as one shown at

the start of the block (=0-back condition)

Incentive

processing

Participants guess whether the number on a

mystery card will be more or less than 5 and win

or lose money (reward condition = mostly wins;

loss condition = mostly losses)

Motor Participants move fingers, toes, and tongue

Language

task

Participants answer questions about Aesop's fables

(=story condition) or math problems (=math

condition)

Social

cognition

task

Participants watch video clips of objects interacting

in an agentive way (=theory of mind condition) or

random way (=random condition)

Relational

task

Participants identify the dimension along which a

cue pair of objects differs and determine if a

target pair differs along the same dimension

(=relational condition). Or they determine if a cue

object matches a member of a target pair along a

given dimension (=match condition)

Emotion task Participants decide whether one of two presented

faces match one at the top of the screen (=face

condition) or else they perform the same task with

shapes (=shape condition)
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Next, in the training dataset, we calculate the expression scores

for each of the components for each subject by projecting their data

onto the 75 principal components. We then fit a linear regression

model with these expression scores as predictors and the phenotype

of interest (i.e., GCA) as the outcome, saving B, the 75 × 1 vector of

fitted coefficients, for later use. In a test dataset, we again calculate

the expression scores for each of the 75 components for each subject.

Our predicted phenotype for each test subject is the dot product of

B learned from the training dataset with the vector of component

expression scores for that subject.

2.6 | 10-fold cross-validation

To assess the performance of BBS-based prediction models, we used

10-fold cross-validation. Because there is family structure in the HCP

dataset, we ensured that family members always appeared within a

single partition (and thus in no cases was the BBS classifier trained

on a member of a family and tested on another member of that

family).

To ensure complete separation of the train and test datasets, in

each fold of the cross-validation, we did the following in the train

dataset: First, a PCA was performed on the task contrast yielding a

75-component basis set. Second, the exploratory factor analysis

described in Section 2.2 was performed yielding GCA scores for each

train subject. In addition, the betas representing factor loadings for

each behavioral task were applied to the test dataset, yielding GCA

scores for the test subjects.

2.7 | Accounting for covariates in a cross-
validation framework

In each fold of cross-validation, BBS models were trained in the train

partition with the following covariates (similar to Dubois et al., 2018):

age, age squared, handedness, gender, brain size, multiband reconstruc-

tion algorithm version number (HCP variables: Age_In_Yrs, Handedness,

Gender, FS_BrainSeg_Vol, fMRI_3T_ReconVrs), and mean framewise

displacement (mean FD; task-specific values were used) and mean FD

squared. Thus, our generative model for the data had the follow-

ing form:

ytrain =Xtrainβ+Ztrainγ+ ε ð1Þ

where ytrain is the train set response variable, Xtrain is the train set

brain features design matrix, β is the train set brain features regression

coefficients, Ztrain is the train set covariate design matrix, γ is the train

set covariate regression coefficients, and ε is Gaussian mean zero

error.

When this model is estimated, we are particularly interested in

the relationship between the following two terms:

ytrain−Ztrainγ̂ ð2Þ

Xtrainβ̂ ð3Þ

where γ̂ is the estimated train set covariate regression coefficients

and β̂ is the estimated train set brain features regression coefficients.

F IGURE 1 Main steps of brain basis set (BBS) modeling. BBS is a multivariate predictive modeling method. It utilizes dimensionality reduction
with principal components analysis (PCA) to construct a basis set for predicting phenotypes of interest
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Term (2) represents the response variable adjusted for the estimated

effects of the nuisance covariates, while term (3) represents the pre-

diction of this covariate-adjusted response variable based on brain

features. To be clear, Xtrainβ̂ is a prediction of the covariate-adjusted

response because β̂ is learned in a model with covariates.

To assess this same relationship in the test dataset, we compute

quantities analogous to (2) and (3) in the test dataset. But to maintain

the strict separation between train and test datasets needed in cross-

validation, we compute these quantitates using the coefficients

learned in the train dataset. Thus, we examine the relationship

between

ytest−Ztestγ̂ ð4Þ

Xtestβ̂ ð5Þ

where Ztest is the test set design matrix, γ̂ is the covariate regression

coefficients learned from the train dataset, Xtest is the test set brain

features design matrix, and β̂ is the brain features regression coeffi-

cients learned from the train dataset.

2.8 | Evaluation of cross-validation performance

Overall performance across the 10-fold cross-validation was assessed

in three ways. Our primary measure is based on the correlation

between the observed covariate-adjusted outcome variable and

predicted outcome variable:

correlation ~ytest, ŷtestð Þ

where ~ytest is term (4) above, that is, the test set response variable

adjusted for covariates based on coefficients learned in the train

dataset, and ŷtest is term (5) above, that is, the predicted covariate-

adjusted response variable for the test set. Correlations were com-

puted for each fold. To obtain the average correlation across folds,

the per-fold correlations were Fisher r to z transformed, the trans-

formed correlations were averaged across all folds, and then this aver-

age was z to r transformed. Confidence intervals were estimated as

95% at intervals based on the mean and SD over cross-validation

folds.

In addition, we report a cross-validated coefficient of determina-

tion R2
cv and mean square error (MSE), which are calculated as follows:

R2
cv =1−

Pn
i=1 ~yi− ŷið Þ2

Pn
i=1 ~yi−�yð Þ2

MSE=
1

n−1

Xn

i=1
~yi− ŷið Þ2

where ~yi is the covariate-adjusted response variable for the test set

for subject i, ŷi is the predicted covariate-adjusted response variable

for the test set for subject i, �y the mean value of the response variable

for the train set, and n is the number of test set subjects. We calculate

these values for each fold and then average across folds.

2.9 | Permutation tests

To assess the statistical significance of BBS models, we used nonpara-

metric permutation methods. The distribution under chance of corre-

lations between BBS-based predictions of neurocognitive scores and

observed neurocognitive scores was generated by randomly permut-

ing the subjects' neurocognitive scores 10,000 times. At each itera-

tion, we performed the 10-fold cross-validation procedure described

above, which includes refitting BBS models at each fold of the cross-

validation. We then recalculated the average correlation across folds

between predicted versus actual neurocognitive scores. The average

correlation across folds that was actually observed was located in this

null distribution in terms of rank, and statistical significance was set as

this rank value divided by 10,000.

Since the BBS models fit at each iteration of the permutation test

included covariates, the procedure of Freedman and Lane was

followed (Freedman & Lane, 1983). In brief, a BBS model was first

estimated with nuisance covariates alone, residuals were formed and

were permuted. The covariate effect of interest was then included in

the subsequent model, creating an approximate realization of data

under the null hypothesis, and the statistical test of interest was cal-

culated on this data (see FSL Randomise http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/Randomise/Theory for a neuroimaging implementation).

2.10 | Consensus predictive maps for visualization

We used BBS with 75 whole-brain components to make predictions

about GCA. To help convey overall patterns across the entire BBS

predictive model, we constructed “consensus” predictive maps. We

first multiplied each component map with its associated beta from the

fitted BBS model. Next, we summed across all 75 components yield-

ing a single map, and z scored the entries.

2.11 | Analysis of resting-state connectomes

To help contextualize results from predictive modeling applied to task

contrast data, we applied this same predictive modeling stream to

resting-state connectomes. Data used were from the HCP-1200

release (Van Essen et al., 2013; WU-Minn HCP, 2017). Four runs of

resting-state fMRI data (14.4 min each; two runs per day over 2 days)

were acquired using the same acquisition sequence described above

in Section 2.1. Processed volumetric data from the HCP minimal

preprocessing pipeline including ICA-FIX denoising were used. Full

details of these steps can be found in Glasser et al. (2013) and Salimi-

Khorshidi et al. (2014).

Data then went through a number of resting-state processing

steps, including a motion artifact removal steps comparable to the
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type B (i.e., recommended) stream of Siegel et al. (2017). These steps

include linear detrending, CompCor to extract and regress out the top

five principal components of white matter and CSF (Behzadi, Restom,

Liau, & Liu, 2007), bandpass filtering from 0.1 to 0.01 Hz, and motion

scrubbing of frames that exceed a framewise displacement of 0.5 mm.

We next calculated spatially averaged time series for each of

264 4.24 mm radius regions of interest (ROIs) from the parcellation of

Power et al. (2011). We then calculated Pearson's correlation coeffi-

cients between each ROI. These were then transformed using Fisher's

r to z transformation.

Subjects consisted of those subjects included in the main task

contrast analysis who had four complete resting-state fMRI runs

(14 m 24 s each). In addition, subjects with more than 10% of resting-

state frames censored were excluded. This resulted in 903 subjects

who entered a BBS predictive modeling analysis for prediction of

GCA scores using the same BBS approach that is described above.

3 | RESULTS

3.1 | Constructing a GCA factor from 10 HCP
behavioral tasks

We began by fitting a bifactor model to the behavioral data for the

entire dataset. Similar to the findings of Dubois et al. (2018) who

examined a largely overlapping set of subjects, this model fit the data

very well (CFI = 0.989; RMSEA = 0.036; SRMR = 0.0200; BIC = 0.782).

The solution, which included a general factor and four group factors,

is depicted in Figure 2. Similar to Dubois and colleagues, we interpret

the four group factors as: (a) crystallized ability, (b) processing speed,

(c) memory, and (d) visuospatial ability.

The general factor, which we refer to throughout as the GCA fac-

tor and which is the focus of this report, accounts for 58.6% of the

variance [coefficient omega hierarchical ω (Zinbarg, Revelle, Yovel, &

Li, 2005)], while group factors account for 18.0% of the variance.

Based on the 46 subjects in the retest dataset for HCP, test–retest

reliability for GCA was found to be 0.78, which is conventionally clas-

sified as very good [we used ICC (2,1) in the Shrout and Fleiss scheme

(Shrout & Fleiss, 1979)].

3.2 | Contrasts associated with the N-Back task
are highly effective at predicting GCA

Because working memory has been strongly and consistently linked

with GCA (Conway, Kane, & Engle, 2003; Duncan, Schramm, Thomp-

son, & Dumontheil, 2012; Engle et al., 2001; Engle & Kane, 2004,

Kyllonen and Christal, 1990) we first investigated the prediction of

GCA based on the N-back working memory task. We used BBS

modeling with 75 components and a 10-fold cross-validation proce-

dure. The average correlation across folds between predicted GCA

and actual GCA was 0.50, which was highly statistically significant

(permutation-based p < .0001, observed correlation was higher than

all 10,000 in the permutation distribution).

Figure 3 shows the top three components based on statistical sig-

nificance displayed so that greater expression of these components

predicts higher GCA. These components include large activations in

the supplementary motor area (SMA), precuneus, and dlPFC, as well

as deactivations in anterior DMN. To convey “average” patterns

across all 75 components, we constructed consensus predictive maps

(see Section 2) and they are displayed in Figure 3. These show addi-

tional patterns predictive of GCA, including deactivation of the poste-

rior cingulate cortex and frontopolar cortex.

We next trained additional BBS models on the 2-back versus

baseline and 0-back versus baseline contrasts. The correlation across

folds of the 10-fold cross-validation procedure between predicted

GCA and actual GCA was 0.48 and 0.35, respectively. The consensus

predictive maps, shown in Figure 4, revealed an interesting change in

directionality across these contrasts. For example, pre-SMA strongly

predicts higher GCA in the 2-back contrast versus baseline but the

reverse is true in the 0-back versus baseline contrast. Additionally, less

activation (i.e., deactivation) of the anterior DMN predicts higher GCA

in the 2-back versus baseline contrast, but the reverse is true in the 0-

back versus baseline contrast.

3.3 | Looking across all 15 task contrasts, tasks
involving more executive processing and higher
cognitive demand are more effective in
predicting GCA

We next examined the remaining 12 contrasts from the other six HCP

tasks. As with the N-back task, we constructed BBS models predicting

GCA scores from each contrast, and assessed the performance of

these models in 10-fold cross-validation analysis.

F IGURE 2 Bifactor model of general cognitive ability. We
performed the bifactor exploratory factor analysis on 10 behavioral
tasks in the human connectome project (HCP) dataset. The resulting
model consisted of a general factor (“GCA”) and four group factors
and exhibited an excellent fit with the data. C, crystallized cognitive
ability; S, processing speed; M, memory; V, visuospatial ability
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The results are shown in Figure 5 and Table 2. Using permutation-

based statistical testing with 10,000 permutations, we found that

13 out of the 15 task contrasts produced statistically significant predic-

tions of GCA (shown in blue and orange in Figure 5). The 2-back versus,

0-back contrast was the most effective single task contrast for GCA

prediction, achieving a 0.50 correlation with GCA scores in 10-fold

cross-validation. Other tasks involving executive processing were top

performers, including the relational versus match contrast from the rela-

tional processing task and the math versus story contrast from the

language-processing task. Resting-state connectomes yielded prediction

accuracy of r = .26. In comparison, 13 out of 15 task contrasts per-

formed better.

3.4 | Mean activation levels of FPN and DMN
predict which task contrasts are effective for GCA
prediction

A number of studies have observed that tasks that are cognitively

demanding produce activation in regions of frontoparietal network

(FPN) (Cabeza & Nyberg, 2000; Cole & Schneider, 2007; Duncan &

Owen, 2000; Niendam et al., 2012) and deactivation of regions of

DMN (Anticevic et al., 2012; Anticevic, Repovs, Shulman, &

Barch, 2010; Esposito et al., 2006; McKiernan, Kaufman, Kucera-

Thompson, & Binder, 2003). Building on these observations, we

hypothesized that more cognitively demanding task contrasts

(operationalized in terms of activation levels of FPN and DMN) should

be more effective in predicting GCA. We extracted mean activation

across the seven networks in Yeo and colleagues' parcellation (Yeo

et al., 2011) and examined correlations with the accuracy of GCA pre-

diction across the 15 task contrasts (prediction accuracy is measured

with the cross-validated correlation between observed and predicted

GCA scores). We found that FPN activation was indeed strongly and

statistically significantly related to the accuracy of GCA prediction

(r = .68, p = .006). DMN activation was also (inversely) related to the

accuracy of GCA prediction (r = −.20), but the correlation did not

reach statistical significance. We also created a regression model in

which both FPN and DMN activation jointly predict the accuracy of

GCA prediction. The correlation across task contrasts between fitted

predictions from the regression model and actual accuracy in

F IGURE 3 Visualization of the three components from the 2-Back versus 0-Back task contrast most predictive of general cognitive ability
(GCA). We found the 2-back versus 0-back contrast was highly effective for GCA prediction, achieving a 0.50 correlation with GCA scores in
10-fold cross-validation. From a 75-component brain basis set model trained to predict GCA scores, the three most statistically significant
components are shown above

F IGURE 4 Consensus predictive maps for five task contrasts highly predictive of general cognitive ability (GCA). We found 13 out of 15 task
contrast maps yielded highly statistically significant predictions of GCA in 10-fold cross-validation analysis. For the five most predictive task
contrasts, we constructed consensus predictive maps that display brain activation patterns that were most predictive of GCA. Rel, relational
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predicting GCA was r = .82 (p = .001; Figure 6). None of the other five

Yeo networks was statistically significantly related to GCA prediction.

3.5 | Across the 15 task contrasts, activation
signatures of GCA are spatially distributed and task-
specific

We next compared the consensus predictive maps associated with the

15 contrasts (five maps are shown in Figure 4, and the remaining maps

are shown in Figure S1). Signatures for predicting GCA associated with

each task were highly distributed, with notable variation in these signa-

tures across tasks. Prominently represented regions include superior

parietal cortex (reward vs. baseline, punishment vs. baseline), dlPFC (math

vs. story), anterior insula (relational vs. match), frontopolar cortex (math

vs. story), pre-SMA (relational vs. match), and visual cortex (relational

vs. match, reward vs. baseline, punishment vs. baseline).

4 | DISCUSSION

Task-based imaging provides a promising route for constructing brain-

based predictive models of GCA because tasks can potentially selec-

tively activate brain regions responsible for effective cognitive

F IGURE 5 Prediction of general cognitive ability (GCA) across
15 task contrasts. We used the brain basis set (BBS) predictive
modeling approach to predict GCA from each of the 15 human
connectome project (HCP) task contrasts. The y-axes in the figure
refer to the accuracy of these BBS models in predicting GCA, as
measured by the correlation between observed and predicted GCA
scores in 10-fold cross-validation. For comparison, we additionally
plot accuracy of GCA prediction using BBS methods applied to
another modality: resting-state connectomes. Error bars represent the

95% confidence interval; blue = permutation-based p-value <.0001,
observed correlation was higher than all 10,000 in the permutation
distribution; orange = permutation-based p-value <0.05;
red = permutation-based p-value is not significant. TOM, theory of
Mind; Rel, Relational

TABLE 2 Prediction of general cognitive ability (GCA) across 15
task contrasts

Task R2
cv Mean squared error (MSE)

2back-0back 0.280 0.576

2back 0.265 0.604

Math-Story 0.227 0.623

Rel-Match 0.195 0.639

Random 0.172 0.658

0back 0.172 0.659

TOM 0.172 0.654

Reward 0.165 0.662

Rel 0.156 0.664

Match 0.155 0.669

Punish 0.132 0.686

TOM-Random 0.130 0.692

Faces-Shapes 0.127 0.691

Motor 0.049 0.751

Punish-Reward 0.033 0.763

Resting connectome 0.078 0.755

Note: We used the brain basis set (BBS) predictive modeling approach to

predict GCA from each of 15 HCP task contrasts. For comparison, we

additionally include results from predicting GCA with resting-state con-

nectomes. The table shows model performance assessed with

cross-validated r squared (R2
cv) and mean square error (MSE).

Abbreviations: TOM, theory of mind; Rel, relational.

F IGURE 6 Frontoparietal network (FPN) and default mode
network (DMN) activation patterns and effectiveness of task
contrasts in predicting general cognitive ability (GCA). We
hypothesized that placing the brain in an activated, cognitively
demanding state improves the prediction of GCA. We thus calculated
FPN and DMN activation levels, which are thought to index cognitive
demandingness, for each of the 15 task contrasts. We in addition
calculated each of the 15 task contrast's accuracy in predicting GCA,

as measured by the correlation between observed and predicted GCA
scores in 10-fold cross-validation. In multiple regression analysis, we
found that FPN/DMN activation levels for the 15 contrasts (x-axis)
were indeed strongly related to the contrasts' accuracy in predicting
GCA (y-axis). That is, contrasts that activated FPN/deactivated DMN
more afforded higher accuracy in predicting GCA. Red dashed lines
represent the 95% confidence interval
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performance. Thus, we systematically assessed neuroimaging-based

prediction of GCA from 15 fMRI task conditions in the HCP dataset.

Our first main finding is that whole-brain task activation patterns are

a highly effective basis for prediction of GCA, with a model trained on

activation during the N-back working memory task (2-back vs. 0-back

contrast) achieving a 0.50 correlation with GCA scores in 10-fold

cross-validation. Our second main finding is that more cognitively

demanding tasks that more vigorously activate FPN and deactivate

DMN are particularly effective for GCA prediction. These results high-

light the utility of placing the brain in a cognitively demanding, acti-

vated task state for improved brain-based prediction of GCA.

4.1 | Role of executive regions in prediction
of GCA

The importance of FPN, as well as related executive regions

(e.g., dorsal anterior cingulate), for GCA has been highlighted in previ-

ous work, especially in Jung and Haier's influential frontoparietal

integration theory (Jung & Haier, 2007). In a similar vein, Duncan,

Owen, Fedorenko, and colleagues have proposed that “multiple

demand” cortex—regions of the brain that activate across a broad

range of cognitively demanding tasks (Duncan, 2010; Duncan &

Owen, 2000; Fedorenko et al., 2013; Shashidhara et al., 2019)—are a

primary substrate of GCA (Duncan et al., 2000). The present study

extends these findings using a multivariate predictive modeling

framework that identifies distributed neurosignatures across the

brain that are predictive of GCA. We showed that executive regions

are important in these distributed neurosignatures in three

complementary ways.

First, in looking across the set of 15 contrasts derived from

seven HCP tasks, we found that tasks that tap executive processes

were more predictive of GCA (e.g., N-back 2-back vs. 0-back con-

trast, relational reasoning relational vs. match contrast, and math

vs. story contrast). Second, we found that FPN activation and DMN

deactivation, highly associated with the cognitive demandingness

of task conditions (Anticevic et al., 2010; Anticevic et al., 2012;

Cabeza & Nyberg, 2000; Cole & Schneider, 2007; Duncan &

Owen, 2000; Esposito et al., 2006; McKiernan et al., 2003;

Niendam et al., 2012), predicts which task contrasts will be effec-

tive for GCA prediction. Third, within highly predictive contrasts,

such as the 2-back versus 0-back contrast and math versus story

contrast, activation patterns in executive regions were prominent

among regions predictive of GCA.

Overall, the N-back 2-back versus 0-back contrast performed best

in GCA prediction. This is consistent with the finding that working

memory is highly related to GCA (Duncan et al., 2012; Engle

et al., 2001; Engle & Kane, 2004). However, the differences in perfor-

mance between the three main executive task contrasts—that is,

2-back versus 0-back, math versus story, and relational versus match—

were modest. Future studies with larger sample sizes should investi-

gate whether all executive tasks are similarly effective with respect to

GCA prediction, which would align well with the multiple demand

network hypothesis. Or alternatively, there are subtle differences

across executive tasks in affording GCA prediction.

Interestingly, for certain regions, the directionality of prediction

of GCA exhibited some variability across task contrasts in a way sug-

gestive of moderation by task difficulty (e.g., see pre-SMA in 0-back

compared to 2-back and in match compared to relational; we discuss

moderation by the cognitive load in these tasks further in Sripada,

Angstadt, Rutherford, & Taxali 2019). These observations are consis-

tent with a neural efficiency model of GCA proposed by Neubauer &

Fink (2009). They propose that higher GCA is associated with greater

processing efficiency in elementary cognitive tasks (leading to less

activation in higher GCA individuals) but greater processing capacity

in demanding cognitive tasks (leading to greater activation in higher

GCA individuals), thus potentially explaining the flipped directions of

activation observed across the easy and hard conditions of the N-back

and other tasks.

While activation patterns in executive regions clearly play an

important role in explaining the success of our task-based approach to

GCA prediction, there is still clear evidence for discriminative informa-

tion about GCA located outside executive regions. This is apparent in

looking at the consensus predictive maps for each of the 15 task con-

trasts in Figure 4 as well as Figure S1. Non-executive regions, such as

the lateral temporal cortex and temporal pole, are found in several of

these consensus maps, indicating they too are important for the pre-

diction of GCA.

4.2 | Comparison of task-based prediction with
other modalities

Previous studies have examined correlations between GCA and struc-

tural brain imaging features including cortical thickness (Colom

et al., 2009; Shaw et al., 2006) and white matter structure (Turken

et al., 2008), for reviews see Deary et al. (2010), Jung & Haier (2007),

and Luders, Narr, Thompson, & Toga (2009). It is notable that the corre-

lations reported with these modalities tend to be modest. For example,

the correlations with brain volume, one of the most studied variables,

are typically reported to be between 0.1 and 0.3 (McDaniel, 2005;

Pietschnig, Penke, Wicherts, Zeiler, & Voracek, 2015). In terms of func-

tional MRI, recent studies have examined resting-state connectivity pat-

terns (Dubois et al., 2018; Finn et al., 2015; Sripada, Angstadt,

Rutherford, Kessler, et al., 2019; Sripada, Rutherford, Angstadt, Thomp-

son, et al., 2019). In the present study, we found resting-state con-

nectomes, which entered the same BBS prediction pipeline as our task-

based contrast maps, achieved a correlation of 0.26 with GCA [broadly

similar to the results from our recent study using BBS modeling to pre-

dict neurocognition from resting-state connectomes in 2,013 youth

(Sripada, Rutherford, Angstadt, Thompson, et al., 2019)]. These results,

however, are appreciably smaller than the 0.50 correlation we found

when applying BBS predictive modeling to the 2-back versus 0-back

task contrast in the present study.

There are two interrelated reasons why task-based fMRI might

potentially offer a more reliable prediction of GCA than other imaging
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modalities. The first appeals to the “treadmill testing” idea already

mentioned: actively engaging in cognitive tasks has the potential to

unmask critical GCA-relevant features of the brain that are otherwise

invisible in other modalities such as structural or resting-state brain

imaging (Finn et al., 2017; Greene et al., 2018). A second potential

advantage of task-based methods is specificity. Tasks are constructed

by their designers to target specific psychological processes, often

with control conditions that subtract away contributions from auxil-

iary processes of no interest. This will tend to make classification

more accurate as the feature set is culled of a sizable number of uni-

nformative features.

4.3 | Future directions

While we found strong predictivity of GCA from fMRI task contrasts,

even the strongest performing task contrast explained only 28% of

the variance (Rcv) in GCA scores. Thus, the majority of variance in

GCA scores remains to be explained, which raises the question of

how we might improve performance in future studies. In considering

this question, it is notable that we used the set of imaging tasks that

were included in the HCP dataset. These imaging tasks, in turn, were

selected based on diverse considerations (see Barch et al. 2013), but

maximizing the prediction of GCA was not among them. Thus, it is

plausible that one can do still better: It should be possible to inten-

tionally design and optimize an imaging task battery to yield even

more accurate task-based prediction of GCA.

Given our observation that tasks that more vigorously activate

FPN and deactivate DMN afford better prediction of GCA, a natural

approach is to focus on highly demanding tasks that produce this acti-

vation profile. One natural candidate is an N-back task with increased

cognitive load [e.g., a 3-back (Braver et al., 1997; Pochon et al., 2002)

or 4-back task] Other executive function tasks, such as tasks involving

response inhibition, task switching, or higher-order reasoning, are also

plausible. Moreover, it is possible that task contrasts from an execu-

tive task battery, as opposed to a contrast from a single task, could

afford still better GCA prediction.

In sum, this study firmly establishes the effectiveness of task-based

fMRI for prediction of GCA and demonstrates that tasks that are more

cognitively demanding are associated with better prediction accuracy.
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