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Abstract
Consider an eigenvector of the adjacency matrix of a G(n, p)
graph. A nodal domain is a connected component of the set

of vertices where this eigenvector has a constant sign. It is

known that with high probability, there are exactly two nodal

domains for each eigenvector corresponding to a nonleading

eigenvalue. We prove that with high probability, the sizes of

these nodal domains are approximately equal to each other.
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1 INTRODUCTION

Nodal domains of the eigenfunctions of the Laplacian on smooth manifolds have been studied for

more than a century. We refer the readers to the book [26] for the details. If f ∶ M → R is such an

eigenfunction on a manifold M, then the nodal domain is a connected component of the set M where the

function f has a constant sign. The number and the geometry of nodal domains provide an important

insight into the geometric structure of the manifold itself. A classical theorem of Courant states that

the number of nodal domains of the eigenfunction corresponding to the kth smallest eigenvalue is

upper bounded by k, and this number typically grows as k increases [8]. In [9] Dekel, Lee, and Linial

pioneered the study of the nodal domains for graphs. This study was motivated by the usefulness of the

eigenvectors of graphs in a number of partitioning and clustering algorithms, see [9] and the references

therein. In the last 10 years, these eigenvectors have played a crucial role in many other computer

science problems, including, for example, community detection [24, Section 5.5]. As the Laplacian of

a graph is closely related to the adjacency matrix, Dekel, Lee, and Linial considered the eigenvectors

of the latter matrix as an analog of the eigenfunctions of the Laplacian on a manifold. We will arrange

the eigenvectors of the adjacency matrix in the order corresponding to the decreasing order of the

eigenvalues. An easy variational argument shows that that the first, that is, the leading eigenvector has

only one domain, so the study of nodal domains become nontrivial for the nonleading eigenvectors. In
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general, one has to distinguish between the strict and the nonstrict domains, where the former do not

include vertices with zero coordinates.

The main result of [9] pertains to the G(n, p) random graphs in the case when p ∈ (0, 1) is a con-

stant. Recall that an Erdős-Rényi Graph G(n, p) is a random graph with n vertices and any two vertices

are connected by an edge with probability p independently. In this case, the authors discovered a new

phenomenon showing that the behavior of the number of nodal domains for a G(n, p) graph is essen-

tially different from that for a manifold. More precisely, they proved that with probability 1− o(1), the

two largest nonstrict nodal domains of any nonleading eigenvector contain all but Op(1) vertices, where

the last quantity is uniform over the eigenvectors. Besides proving this striking result, [9] emphasized

that the main approach to the study of nodal domains is through establishing delocalization properties

of the eigenvectors of random matrices. At the time [9] was written, the study of delocalization was in

its infancy. Indeed, their theorem relies on a partial case of [17, Theorem 3.3], which was the only result

available at that time. As the information on the delocalization of the eigenvectors grew, so did the

knowledge about the finer properties of the nodal domains. In [18], Nguyen, Tao, and Vu proved that,

with probability 1 − o(1), any eigenvector does not have zero coordinates, which mean that the strong

and the weak nodal domains of a G(n, p) graph are the same with high probability. Also, Arora and

Bhaskara [2] improved the main theorem of [9] by showing that if p ≥ n−1∕19+o(1) then with probability

1 − o(1), any nonleading eigenvector has exactly two nodal domains. We refer readers to the articles

[10, 12, 13, 16, 23] on other recent developments of local statistics of eigenvalues or delocalization of

eigenvectors for sparse Erdős-Rényi Graph G(n, p).
After these results became available, Linial put forward a program of studying the geometry of

nodal domains. Considering one of the domains as earth, and another one as water, one can investigate

the length of the shoreline, which is the boundary of the domains, the distribution of heights and depths

measured as distances to the shoreline, and so on. Unfortunately, this geometry turned out to be trivial

in the case when p ≥ n−c for some absolute constant c ∈ (0, 1). More precisely, it was proved in [19]

that with probability 1 − o(1), any vertex in the positive nodal domain is connected to the negative

one, and the same is true for the vertices in the negative domain. Note that the case of very sparse

graphs p ≤ n−c is still open and may lead to a nontrivial geometry. The proof of this result relied on the

combination of the no-gaps delocalization [21], and a more classical 𝓁∞ delocalization established by

Erdős, Knowles, Yau, and Yin [12]. The no-gaps delocalization discussed in more detail below means

that with high probability, any set S of vertices carries a nonnegligible proportion of the Euclidean

norm of the eigenvector, and this proportion is bounded below by a function of |S| ∕n only. The 𝓁∞
delocalization means that the maximal coordinate of any unit eigenvector does not exceed n−1∕2+o(1)

with high probability.

In this paper, we establish another natural property of nodal domains. Namely, we will show that

with high probability, the nodal domains are balanced, that is, each one of them contains close to n∕2

vertices with high probability. Unlike the previous ones, this property does not follow from the com-

bination of the no-gaps and the 𝓁∞ delocalization. Indeed, the vector u ∈ Sn−1 with n∕3 coordinates

equal to
√

2∕
√

n and the rest n∕3 coordinates equal to −1∕
√

2n satisfies both properties. Moreover,

for such vector,
∑n

j=1 u(j) = 0, so it is orthogonal to the vector (1∕
√

n,… , 1∕
√

n) which is close to the

leading eigenvector with high probability.

We prove that the nodal domains are roughly of the same size both for the bulk and for the

edge eigenvectors. However, the methods of proof in these cases are different. Let us consider

the bulk case first as the proof in this case is shorter. Let A be the adjacency matrix of G (n, p).
We denote eigenvalues of A by 𝜆1 ≥ · · · ≥ 𝜆n and the corresponding unit eigenvectors by

u1, … , un. With a slight abuse of terminology, we will call them the eigenvectors of the graph

G (n, p).
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Theorem 1.1 (Bulk case). There is c ∈ (0, 1) such that the following holds. Let 𝜀, 𝜅 ∈ (0, 1).
Let G (n, p) be an Erdős-Rényi Graph with p ∈

[
n−c, 1

2

]
. Let u𝛼 be an eigenvector of G (n, p) with

𝛼 ∈ [𝜅n, n − 𝜅n]. Denote by P and N the nodal domains of this eigenvector. Then there exists 𝜂 =
𝜂 (𝜀, 𝜅) > 0 such that, for a sufficiently large n,

P

(|P| ∨ |N| ≥ (
1

2
+ 𝜀

)
n
) ≤ n−𝜂.

The proof relies on quantum unique ergodicity theorem for random matrices [6, Theorem 1.1]

claiming that the distribution of the inner product of an eigenvector of A and any vector orthogonal to

(1, … , 1) is asymptotically normal. Readers interested in quantum unique ergodicity are also referred

to the articles [3,5,7]. For the edge case, that is, for the eigenvalues close to the edges of the spectrum,

the bound similar to [6, Theorem 1.1] has been established only for the nonsparse regime, that is, for

p ∈ (0, 1)which does not depend of n, see [5]. On the other hand, the gaps between the eigenvalues near

the edges of the spectrum are much larger. The eigenvalue gap is at least n−2∕3−o(1) for edge eigenvalues

while it is of order n−1−o(1) for bulk eigenvalues. Also, the edge eigenvalues enjoy stronger rigidity

properties than the bulk ones. These facts allow to provide a stronger bound for the size of the nodal

domains of an edge eigenvector.

Theorem 1.2 (Edge case). Let G (n, p) be an Erdős-Rényi Graph with p ∈ (0, 1). There exists
𝜌 = 𝜌(p) > 0 such that the following holds. Let u𝛼 be a n on-leading eigenvector of G (n, p) with
min {𝛼, n − 𝛼} ≤ (log n)𝜌 log log n. Denote by P and N the nodal domains of this eigenvector. Then, for
any 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) > 0 independent of n and p such that

P

(|P| ∨ |N| ≥ (
1

2
+ n− 1

6
+𝜀
)

n
) ≤ n−𝛿.

for a sufficiently large n.

For a vector u ∈ Rn, let u(i) denote its ith component. Our goal in both Theorem 1.1 and 1.2 is to

show that with high probability,

n∑
i=1

sign (u(i)) = o (n)

for an eigenvector u of A. This can be derived by Markov inequality if

E

( n∑
i=1

sign (u (i))

)2

= o
(
n2
)
.

The latter equation can be derived if for i ≠ j,

Esign (u (i) u (j)) = o (1) . (1.1)

The proof in both the bulk and the edge case is aiming to show (1.1). Yet, the approaches are

completely different. The proof in the bulk case relies on
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Theorem 1.3 ([21, Theorem 1.5]). Fix arbitrary constants 𝛿, 𝜅 > 0 Let A be an n×n be the adjacency
matrix of a G(n, p) graph with n−c ≤ p ≤ 1∕2 for some constant c > 0. For 𝜖 > c1n−1∕7, every
eigenvector v of A satisfies (∑

i∈I
|v(i)|2)1∕2

≥ (c2𝜖)6 ‖v‖ .
for all I ⊂ [n] with |I| ≥ 𝜖n.

and

Theorem 1.4 ([6, Theorem 1.1]). Fix arbitrary constants 𝛿, 𝜅 > 0 Let A be an n×n be the adjacency
matrix of a G(n, p) graph with n−1+𝛿 ≤ p ≤ 1∕2. Let v1, … , vn be its eigenvectors corresponding to
the eigenvalues 𝜆1 ≥ · · · ≥ 𝜆n. For any polynomial f ∶ R → R for any n ≥ n(f ), 𝛼 ∈ [𝜅n ∶ n − 𝜅n]
and any q ∈ Sn−1, q ⟂ (1, … , 1), there exists an 𝜈 > 0 such that

|Ef (n⟨q, v𝛼⟩2) − Ef (g2)| ≤ n−𝜈.

The last theorem allows to estimate Esign (u (i) u (j)) by replacing u (i) and u (j) by independent

normal random variables. Yet, this replacement is not straightforward. First, we have to transform the

statement of Theorem 1.4 involving ⟨q, u⟩2 into a one involving u(i) and u(j). Second, and more impor-

tantly, we have to approximate the function sign(⋅) by a polynomial. Since the polynomial function is

unbounded on R, we have to find an approximation which is close to the function sign(⋅) point-wise

on the set [−R,R] ⧵ (−𝛿, 𝛿) with some 0 < 𝛿 < 1 < R, and at the same time has a controlled growth

at infinity. The latter property is needed to guarantee that the contribution of the values u(i) ∉ [−R,R]
does not affect quality of the approximation. The contribution of the values u(i) ∈ (−𝛿, 𝛿) can be made

small by choosing an appropriate 𝛿 due to the no-gaps delocalization.

For the edge case, we represent the adjacency matrix A in block form:[
D W⊤

W B

]
where B is n− 2 by n− 2, D is 2 by 2, and W is n− 2 by 2. These matrices are independent. Moreover,

using the results of [4, 11, 14], we show that with high probability, the matrix B has “typical“ spec-

tral properties. Relying on the independence of the blocks, it is possible to bound the expectation of

sign (u (1) u (2)) conditioned on the event that B is typical. To use this approach for other pairs of coor-

dinates, we have to show that with high probability, all (n− 2) × (n− 2) principal submatrices of A are

typical. This cannot be derived from the union bound since one of the typical properties, namely the

level repulsion, holds with probability 1−O(n−𝛿) for some 𝛿 > 0. To overcome this problem, we con-

dition on the event that the matrix A itself is typical, and show that on this event, with high probability,

all (n − 2) × (n − 2) blocks are typical as well.

1.1 Notation

First, c, c′,C,C′ will denote constants which may change from line to line. For a positive integer n,

denote [n] ∶= {1, 2, 3,… , n}. For vectors u, v ∈ Rn, let ‖u‖2 denote the Euclidean norm of u, ‖u‖∞
denote the l∞ norm of u, and ⟨u, v⟩ denote the standard inner product of u and v. The cardinality of a
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set S will be denoted by |S|. For a, b ∈ R, the notation a∧ b and a∨ b stands for the minimum and the

maximum of a and b respectively.

For a random variable Z, we denote its 𝜓2 norm by ‖Z‖𝜓2
. The 𝜓2 norm is defined by the equation

E exp

(( |Z|‖Z‖𝜓2

)2
)

= 2.

We say Z is subgaussian if ‖Z‖𝜓2
exists. By subgaussian vector we mean a random vector with

independent components whose 𝜓2 norms are uniformly bounded.

Let Matsym(n) be the collection of all symmetric n × n matrices. For a symmetric n × n matrix

H = {hij}n
i,j=1

, let ‖H‖ denote its operater norm, ‖H‖HS denotes its Hilbert-Schmidt norm. Precisely,

‖H‖2
HS =

n∑
i,j=1

h2
ij =

n∑
i=1

𝜆2
i ,

where {𝜆i}n
i=1

are eigenvalues of H. Furthermore, for z ∈ C with Im z > 0,

G(z) = 1

H − z

denote the Green function of H, and define the Stieltjes Transform of H by

m(z) = 1

n
Tr(G(z)) = 1

n

n∑
i=1

1

𝜆i − z

where {𝜆i}n
i=1

are eigenvalues of H.

Recall the semicircle-law

𝜌sc(x) =
1

2𝜋

√(
4 − x2

)
+,

where
(
4 − x2

)
+ = max{4− x2, 0}. The semicircle law proved in the classical paper of Wigner [25] is

the limit distribution of the empirical distribution of eigenvalues of Wigner matrices, see for example,

[1] for the precise formulation and extensions. The Stieltjes transform of 𝜌sc is

msc(z) = ∫
R

𝜌sc(x)
x − z

dx.

For a fixed n, let 𝛾i be the expected location of i−th eigenvalue (rearranged in a nonincreasing order)

according to the semicircle law. That is, 𝛾i satisfies

∫
2

𝛾i

𝜌sc(x) dx = i
n
.

Furthermore, it is easy to check that for i = o(n), we have

(
𝜋

i
n

)2∕3 ≤ 2 − 𝛾i ≤
(

3𝜋
i
n

)2∕3

. (1.2)
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2 BULK EIGENVECTOR

Consider a graph G with n vertices, and denote by A its adjacency matrix. Let 𝜆1 ≥ 𝜆2 ≥ · · · 𝜆n
be the eigenvalues of A and let v𝛼 be the unit eigenvector corresponding to 𝜆𝛼 . In order to show that∑n

i=1 sign
(
v𝛼(i)

)
= o(n), consider a random pair (i, j) ⊂ [n] of distinct indices which is uniformly

chosen among all such pairs. We will check below that if Esign(v𝛼(i)⋅v𝛼(j)) = o(1), then this inequality

holds, and the nodal domains are of the size close to n∕2. We are going to establish this bound for

the adjacency matrix of a typical G(n, p) graph. Since sign is not a continuous function, it is hard to

approach this task directly. Instead, we will approximate the function sign by a suitable polynomial f
and show that E

[
f (v𝛼(i) ⋅ v𝛼(j)) ∣ A

]
= o(1) where the expectation is taken with respect to the random

pair (k, l) and A is the adjacency matrix of a typical G(n, p) graph, that is, it is chosen from some set of

adjacency matrices whose probability is 1 − o(1). After that, we will have to estimate the error of this

approximation. To implement the first step, we will use Theorem 1.4 to derive a similar bound for the

expectation of an even polynomial of four random coordinates of the eigenvector. This will lead to a

stronger bound for an even polynomial of two random coordinates. Finally, applying the latter bound

to a one-variable polynomial of the product of two coordinates, we will get the desired estimate.

Let us formulate this statement precisely. Let v𝛼 ∈ Sn−1 be a bulk eigenvector of the G(n, p) graph,

and let g1, … , gn ∼ N(0, 1) be independent standard normal random variables. Denote by E(i,j) the

expectation with respect to the random pair of coordinates (k, l), where the matrix A is regarded as

fixed.

Lemma 2.1. Let A, v𝛼 be as in Theorem 1.4. Let (k, l) be a uniformly chosen random pair of elements
of [n]. For any even polynomial F ∶ R2 → R, there exists a 𝜈 > 0 and a set F ∈ Matsym(n) such that
for all sufficiently large n,

P(A ∈ F) ≥ 1 − n−𝜈,

and for any A ∈ F,

|E(k,l)F(n1∕2v𝛼(k), n1∕2v𝛼(l)) − EF(g1, g2)| ≤ n−𝜈.

Proof. The proof breaks in two parts. First, we will show that the statement of Theorem 1.4 holds

for any q ∈ Sn−1 such that |supp(q)| ≤ 4. It is enough to prove the statement for f (x) = x𝑑 . Without

loss of generality, assume that q =
∑4

j=1 𝛼ej with
∑4

j=1 𝛼
2
j = 1. Set 𝛽 ∶= ⟨−→1 , q⟩ = n−1∕2

∑4

j=1 𝛼j. Then

|𝛽| ≤ 4√
n
, q0 ∶= q − 𝛽

−→
1 ⟂

−→
1 and ‖q0‖2 = 1 + O(n−1∕2). (2.1)

Recall that w ∶=
−→
1 − v1 satisfies

‖w‖2 ≤ 2
log n√

n
, (2.2)

see [21, Theorem 3].

Let us check that for any 𝑑 ∈ N,

E(n⟨q, v𝛼⟩2)𝑑 ≤ C(𝑑)
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for some function C(𝑑) > 0. Indeed, since
⟨−→

1 , v𝛼
⟩
= ⟨w, v𝛼⟩,

E(n⟨q, v𝛼⟩2)𝑑 = E(n⟨q0 + 𝛽
√

nw, v𝛼⟩2)𝑑 ≤ 22𝑑
(
E(n⟨q0, v𝛼⟩2)𝑑 + 𝛽2𝑑n𝑑 ‖w‖2𝑑

2

)
≤ 22𝑑

(
E(2g2

1
)𝑑 +

(
16

log2 n
n

)𝑑
)

≤ C(𝑑).

where we used (2.1), (2.2) and Theorem 1.4 in the second inequality. By Cauchy-Schwarz inequality,

this means that for any k ∈ N,

E|√n ⟨q, v𝛼⟩ |k ≤ C′(k). (2.3)

Therefore, for any 𝑑 ∈ N,

|||E(n⟨q, v𝛼⟩2)𝑑 − Eg2𝑑||| ≤ ||||E(n⟨q, v𝛼⟩2)𝑑 − E(n⟨ q0‖q0‖2

, v𝛼⟩2)𝑑
|||| + ||||E(n⟨ q0‖q0‖2

, v𝛼⟩2)𝑑 − Eg2𝑑
||||

≤ |||||E(n⟨q, v𝛼⟩2)𝑑 − 1‖q0‖2𝑑
2

E(n⟨q − 𝛽
−→
1 , v𝛼⟩2)𝑑

||||| + n−𝜈

≤ |||E(n⟨q, v𝛼⟩2)𝑑 − E(n⟨q − 𝛽w, v𝛼⟩2)𝑑||| + 2n−𝜈

≤
n∑

j=1

(
2𝑑

j

)
E|√n⟨q, v𝛼⟩|2𝑑−j ⋅

(
8

log n√
n

)j

+ 2n−𝜈 ≤ n−𝜈′

for large n. Here, the third inequality follows from Theorem 1.4, the fourth one from (2.1) and (2.2),

and the last one from (2.3). This shows that the conclusion of Theorem 1.4 holds for any q ∈ Sn−1

supported on four coordinates. The same argument can be used to prove this statement for any fixed

number of coordinates, but we would not need it here.

Let us extend the conclusion of Theorem 1.4 to even polynomials of four variables. Consider an

even monomial G(x1, … , x4) ∶= x𝑑1

1
⋅ x𝑑2

2
⋅ x𝑑3

3
⋅ x𝑑4

4
with 𝑑 = 𝑑1 + 𝑑2 + 𝑑3 + 𝑑4 ∈ 2N. Note that

for this monomial, G(
√

nv𝛼(k1), … ,
√

nv𝛼(k4)) can be represented as a finite linear combination of

(
√

n ⟨q, v𝛼⟩)𝑑 for different values of q ∈ Sn−1, supp(q) ⊂ {k1, … , k4}. Hence,

|||EG(
√

nv𝛼(k1), … ,
√

nv𝛼(k4)) − EG(g1, … , g4)
||| ≤ n−𝜈 (2.4)

and this inequality can be extended to all even polynomials of four variables.

Now, let F ∶ R2 → R be an even polynomial. Let s ∈ [𝜅n ∶ n−𝜅n]. For a pair (i, j) ∈
([n]

2

)
, define

a random variable

Y(i,j) = F(
√

nv𝛼(i),
√

nv𝛼(j)) − EF(gi, gj),

where g1, … , gn are independent N(0, 1) random variables. Then for any distinct i, j, k, l,∈ [n],

|EY(i,j)Y(k,l)| = |EF(
√

nv𝛼(i),
√

nv𝛼(j))F(
√

nv𝛼(k),
√

nv𝛼(l))

− EF(
√

nv𝛼(i),
√

nv𝛼(j))EF(gk, gl) − EF(gi, gj)EF(
√

nv𝛼(k),
√

nv𝛼(l))
+ EF(gi, gj)EF(gk, gl)|

≤ |EF(gi, gj)F(gk, gl) − 2EF(gi, gj) ⋅ EF(gk, gl) + EF(gi, gj)F(gk, gl)| + n−𝜈

= n−𝜈,
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where we used (2.4) with G1(x1, x2, x3, x4) = F(x1, x2)F(x3, x4), G2(x1, x2, x3, x4) = F(x1, x2), and

G3(x1, x2, x3, x4) = F(x3, x4) to derive the inequality. A similar calculation shows that |EY(i,j)Y(k,l)| =
O(1) when i, j, k, l are not necessarily distinct. Hence,

E

⎛⎜⎜⎝ 1(n
2

) ∑
(i,j)∈([n]

2
)
Y(i,j)

⎞⎟⎟⎠
2

≤ 1(n
2

)2

∑
(i,j,k,l)∈([n]

4
)
EY(i,j)Y(k,l) + O(n−1) ≤ n−𝜈.

The Markov inequality implies that there exists a set ′
F ∈ Matsym(n) such that for all sufficiently

large n,

P(A ∈ ′
F) ≥ 1 − n−𝜈∕2,

and for any A ∈ ′
F,

|||||||
1(n
2

) ∑
(i,j)∈([n]

2
)
F(

√
nv𝛼(i),

√
nv𝛼(j)) − EF(g1, g2)

||||||| =
|||||||

1(n
2

) ∑
(i,j)∈([n]

2
)

Y(i,j)

||||||| ≤ n−𝜈∕4.

The lemma is proved. ▪

Applying the previous lemma to a polynomial F(x, y) = f (x ⋅ y) for a one-variable polynomial f ,

we derive the following corollary.

Corollary 2.2. Let A, v𝛼 be as in Theorem 1.4. Let (k, l) be a uniformly chosen random pair of ele-
ments of [n]. For any polynomial f ∶ R → R, there exists a 𝜈 > 0 and a set f ⊂ Matsym(n) such that
for all sufficiently large n,

P(A ∈ f ) ≥ 1 − n−𝜈,

and for any A ∈ f , |E(k,l)f (nv𝛼(k) ⋅ v𝛼(l)) − Ef (g1g2)| ≤ n−𝜈.

To prove that the nodal domains are balanced, we will use Corollary 2.2 with f being an odd poly-

nomial approximating sign(x) on some interval [r,R]. Since f is odd, Ef (g1g2) = 0. Hence, assuming

that the nodal domains are unbalanced, it would be enough to show that |E(k,l)f (nv𝛼(k) ⋅ v𝛼(l))| is non-

negligible to get a contradiction. The values of r and R will be chosen so that the absolute values of

most of the coordinates will fall into this interval. A simple combinatorial calculation will show that

if the nodal domains are unbalanced, then E(k,l)sign(v𝛼(k) ⋅ v𝛼(l)) = Ω(1). Indeed, assume that for a

given matrix A and vector vj,

|P| ∨ |N| ≥ (
1

2
+ 𝜀

)
.

Then

E(k,l)sign(v𝛼(k) ⋅ v𝛼(l)) =
(

n
2

)−1

⋅
[(|P|

2

)
+

(|N|
2

)
− |P| ⋅ |N|] ≥ 4𝜀2 + O(n−1).
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This reduces our task to the comparison between this quantity and |E(k,l)f (nv𝛼(k) ⋅ v𝛼(l))|. To achieve

it, we construct f approximating sign(x) pointwise on the set [−R,−r] ∪ [r,R] and show that the con-

tribution of the coordinates falling outside of this set is negligible. For the interval (−r, r), this will be

done using the no-gaps delocalization. Handling the set (−∞,−R) ∪ (R,∞) is more delicate. Since the

polynomial is unbounded on this set, we will control the L2 norm of f and use the Markov inequal-

ity. This argument requires constructing the polynomial f which approximates sign(x) in two metrics

simultaneously: uniformly on the set [−R,−r] ∪ [r,R] and in L2(𝜇) norm on R. The measure 𝜇 here

will be the probability measure on R defined by

𝜇(B) = P(g1g2 ∈ B).

Denote the density of the measure 𝜇 by 𝜙. Instead of controlling two metrics at the same time, we

will introduce one Sobolev norm which will be stronger than both metrics. Such norm can be chosen

in many different ways. We will chose a particular way which makes the argument shorter.

Let 𝜂 ∶ R ⧵ {0} → (0,∞) and 𝜓 ∶ R → (0,∞) be even functions such that

• 𝜂 ∈ C1((0,∞)), 𝜓 ∈ C1(R);
• 𝜂(x), 𝜓(x) = exp(−x∕2) for all x ≥ 2;

• 𝜂(x) ≥ 𝜙(x) for all x > 0, and 𝜂 ∈ L1(R).

Consider a weighted Sobolev space H defined as the completion of the space of C1(R) functions for

which the norm

‖f‖2
H ∶= ∫

R

f 2(x)𝜂(x) 𝑑x + ∫
R

(f ′(x))2𝜓(x) 𝑑x

is finite. Note that H ⊂ C (R). Indeed, for any M > 0, a < b, a, b ∈ [−M,M] and any f ∈ C1 (R),

|f (b) − f (a)| = |||||∫
b

a
f ′(a) 𝑑x

||||| ≤
(

min
x∈[−M,M]

𝜓(x)
)−1

⋅ ∫
b

a
|f ′(x)|𝜓(x) 𝑑x

≤
(

min
x∈[−M,M]

𝜓(x)
)−1

⋅
(
∫

b

a
(f ′(x))2𝜓(x) 𝑑x

)1∕2 (
∫

b

a
𝜓(x) 𝑑x

)1∕2

(2.5)

≤
(

min
x∈[−M,M]

𝜓(x)
)−1

⋅ ‖f‖H ⋅
(

max
x∈[−M,M]

𝜓(x)
)1∕2

⋅ (b − a)1∕2,

and the same inequality holds for the completion.

We will need the following lemma.

Lemma 2.3. Let h ∈ C1(R) be an odd function such that ‖h‖∞ + ‖h′‖∞ < ∞. Then for any 𝛿 > 0,
there exists an odd polynomial Q satisfying ‖Q − h‖H < 𝛿.

Proof. Denote by 𝒫 the set of all polynomials. Let Eo𝑑𝑑 be the set of all odd functions h ∈ C1(R)
such that ‖h‖∞+‖h′‖∞ <∞. It is enough to prove that Eo𝑑𝑑 ⊂ ClH(𝒫 ). Indeed, if this is proved, then

for any 𝛿 > 0 there exists q ∈ 𝒫 such that ‖h − q‖H < 𝛿. Setting Q(x) = 1

2
(q(x) − q(−x)) to make the

polynomial odd would finish the proof.

Assume to the contrary that Eo𝑑𝑑 ⊄ ClH(𝒫 ). Then there exists h ∈ ClH(Eo𝑑𝑑) ⧵ {0} such that⟨h, xn⟩H = 0 for any n ∈ {0} ∪N. We will prove that this assumption leads to a contradiction. To this
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end, set

F(z) = ∫
R

h(x)ezx𝜂(x) 𝑑x + ∫
R

h′(x)zezx𝜓(x) 𝑑x.

Using the Cauchy-Schwarz inequality, one can check that the function F is analytic in {z ∶ |Re(z)| <
1∕2} and

F(n)(0) = ∫
R

h(x)xn𝜂(x) 𝑑x + ∫
R

h′(x)nxn−1𝜓(x) 𝑑x = ⟨h, xn⟩H = 0.

Hence, F(z) = 0, and applying this conclusion to z = it, t ∈ R, we see that h satisfies the equality(
h𝜂 − (h′𝜓)′

)∧ = 0 and thus h𝜂 − (h′𝜓)′ = 0

in the sense of distributions where (⋅)∧ denotes the Fourier Transform. Since the function h𝜂 is

continuous on (0,∞), h satisfies the differential equation

h(x)𝜂(x) − (h′(x)𝜓(x))′ = 0 (2.6)

pointwise for all x ∈ (0,∞). This in turn means that h′′ is well-defined on (0,∞). Actually, with a little

effort, one can prove that this differential equation is satisfied for all x ∈ R, but we would not need it

for our proof.

Since h ∈ ClH(Eo𝑑𝑑), h is an odd continuous function. For x ≥ 2, (2.6) reads

h(x) + 1

2
h′(x) − h′′(x) = 0,

and so h(x) = C1 exp(𝜆1x) + C2 exp(𝜆2x) with

𝜆1 =
1 −

√
17

4
, 𝜆2 =

1 +
√

17

4

for all x ≥ 2. Since 𝜆2 > 1∕2 and h ∈ H, C2 = 0. Without loss of generality, assume that h(2) > 0,

that is, C1 > 0. Then h′(2) < 0 and since h(0) = 0, h(2) > 0, there exists x ∈ (0, 2) such that h′(x) > 0.

Denote

x0 = sup{x ∈ (0, 2) ∶ h′(x) > 0}.

Then h′(x0) = 0 and since h′(x) ≤ 0 for x > x0, we have h(x0) > 0. Hence, (2.6) implies that h′′(x0) > 0.

Therefore h′(x) > 0 for some x > x0, which contradicts the definition of x0. This contradiction finishes

the proof of the lemma. ▪

We are now ready to prove the main result of this section.

Proof of Theorem 1.1. Fix an 𝜀 > 0, and let Ω be the event that |P| ∨ |N| ≥ (1∕2 + 𝜀)n. Let (k, l) be

a uniformly chosen random pair of distinct elements of [n]. Assume that Ω occurs. Then

P(v(k)v(l) > 0 ∣ A) ≥
((1∕2+𝜀)n

2

)
+

((1∕2−𝜀)n
2

)(n
2

) = 1

2
+ 2𝜀2 + O(n−1) (2.7)
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and

P(v(k)v(l) < 0 ∣ A) ≤
(

1

4
− 𝜀2

)
n2(n

2

) = 1

2
− 2𝜀2 + O(n−1). (2.8)

By the no-gap delocalization theorem [21, Theorem 1.5], for r = c𝜀22,

P
(|{j ∈ [n] ∶ |v(j)| ≤ r1∕2n−1∕2}| ≥ (𝜀2∕8)n

) ≤ exp(−c𝜀n).

Let Ωlarge be the event that |{j ∈ [n] ∶ |v(j)| ≤ r1∕2n−1∕2}| ≤ (𝜀2∕8)n, and assume that Ω ∩ Ωlarge
occurs. Then

P(n|v(k)| ⋅ |v(l)| ≤ r ∣ A) ≤ P(|v(k)| ∧ |v(l)| < r1∕2n−1∕2 ∣ A) ≤ 1 −

((1−(𝜀2∕8))n
2

)(n
2

) ≤ 𝜀2

4
. (2.9)

Let R ≥ (c0𝜀)−4, where the constant c0 > 0 will be chosen later. Since ‖v‖2 = 1,

|{j ∈ [n] ∶ |v(j)| ≥ R1∕2n−1∕2} ≤ n
R

≤ (c0𝜀)4n,

so

P(n|v(k)| ⋅ |v(l)| ≥ R ∣ A) ≤ P(|v(k)| ≥ R1∕2n−1∕2 or |v(l)| ≥ R1∕2n−1∕2 ∣ A) ≤ 2(c0𝜀)4. (2.10)

Summarizing (2.7), (2.8), (2.9), and (2.10), and choosing c0 small enough, we conclude that on the

event Ω ∩ Ωlarge,

P(nv(k)v(l) ∈ [r,R] ∣ A) ≥ 1

2
+ 3

2
𝜀2 + O(n−1)

and

P(nv(k)v(l) ∈ [−r,−R] ∣ A) ≤ 1

2
− 3

2
𝜀2 + O(n−1).

Let h ∈ C∞(R) be an odd function such that h(x) = sign(x) for any x ∉ (−r, r). Lemma 2.3 and

inequality (2.5) imply that there exists an odd polynomial Q such that ‖h − Q‖L2(𝜙𝑑x) < 𝜀 and

max
x∈[−R,R]

|h(x) − Q(x)| ≤ 𝜀2

2
.

By Corollary 2.2, there exists Q with P(A ∈ Q) ≥ 1 − n−𝜈 such that for any A ∈ Q,

E(k,l)Q(nv(k)v(l)) ≤ EQ(g1g2) + n−𝜈 = n−𝜈,

for sufficiently large n, since the polynomial Q is odd. We will provide a lower estimate of this

expectation in terms of P(Ω). We have

E(k,l)Q(v(k)v(l)) = E(k,l)Q(nv(k)v(l)) ⋅ 1n|v(k)v(l)|≤R + E(k,l)Q(nv(k)v(l)) ⋅ 1n|v(k)v(l)|>R.
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Let us estimate these terms separately. On the event Ω ∩ Ωlarge,

E[Q(nv(k)v(l)) ⋅ 1n|v(k)v(l)|≤R ∣ A] ≥
(

1 − 𝜀2

2

)
P(nv(k)v(l) ∈ [r,R] ∣ A)

−
(

1 + 𝜀2

2

)
P(nv(k)v(l) ∈ [−R,−r] ∣ A)

−
(

1 + 𝜀2

2

)
P(nv(k)v(l) ∈ [−r, r] ∣ A)

≥ 2𝜀2 + O(n−1).

If A ∈ Q2 , then

E[Q2(nv(k)v(l)) ∣ A] ≤ EQ2(g1g2) + n−𝜈 ≤ (‖h‖L2(𝜙𝑑x) + 𝜀
)2 + n−𝜈 ≤ C.

Hence, by (2.10) and Cauchy-Schwarz inequality, for any A ∈ Q2 ,

E
[
Q(nv(k)v(l)) ⋅ 1n|v(k)v(l)|>R ∣ A

] ≤ (P[n|v(k)v(l)| ≥ R ∣ A])1∕2 ⋅
(
E[Q2(nv(k)v(l)) ∣ A]

)1∕2

≤ C(c0𝜀)2 ≤ 𝜀2

2

if c0 is chosen sufficiently small. Thus, if A ∈ Q2 and the event Ω∩Ωlarge occurs and n is sufficiently

large to absorb the O(n−1) term, then

E [Q(nv(k)v(l)) ∣ A] ≥ 𝜀2

4
,

and so, A ∉ Q. This means that Ω ∩ Ωlarge ∩ {A ∈ Q2 ∩Q} = ∅, and so

P(Ω) ≤ P(Ωc
large) + P(A ∈ c

Q2) + P(A ∈ c
Q) ≤ n−𝜈.

The theorem is proved. ▪

3 EDGE EIGENVECTOR

Let A be the adjacency matrix of a G (n, p) graph with a fixed p ∈ (0, 1). Denote by u a nonleading

edge eigenvector. We are aiming to show that

E (sign (u (1) u (2))) ≤ n−1∕3+𝜀 (3.1)

for a sufficiently small 𝜀 > 0. If proved, it leads to

E

(∑
i

signu (i)

)2

= n +
∑
i≠j

Esign (u (i) u (j)) ≤ n +
(

n
2

)
n−1∕3+𝜀 ≤ n5∕3+𝜀,

because u(i)u(j) has the same distribution as u(1)u(2) for all i ≠ j due to the i.i.d. property of the entries

the matrix.
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Then, by Markov’s inequality, we can derive a bound for P
(||∑i signu (i)|| ≥ n5∕6+𝜀) and thus prove

Theorem 1.2. Due to technical difficulties, we would not derive (3.1) directly. Instead, we find an event

𝒜 so that

E (sign (u (1) u (2)) |𝒜 ) ≤ n−1∕3+𝜀. (3.2)

The event 𝒜 will be constructed so that P (𝒜 c) ≤ n−𝛿 where 𝛿 > 0 may depend on 𝜀. In view of

the estimate above, we have

P

(|||||
∑

i
signu (i)

||||| ≥ n5∕6+𝜀∕2

)
≤ P (𝒜 c) + P

(|||||
∑

i
signu (i)

||||| ≥ n5∕6+𝜀 |𝒜)
≤ n−𝛿 + n−𝜀 ≤ n−𝛿′ ,

which finishes the proof of Theorem (1.2).

Up to a scaling, A is a Wigner matrix with two deterministic shifts:√
1

p(1 − p)n
A = H +

√
pn

1 − p
−→
1
−→
1 ⊤ −

√
p

(1 − p)n
In (3.3)

where Hij =
(
hij

)
is a symmetric matrix with 0 diagonal, i.i.d entries hij with mean 0 and variance 1∕n

above the diagonal:

hij =
⎧⎪⎨⎪⎩
√

1−p
p

1√
n

with probability p,

−
√

p
1−p

1√
n

with probability 1 − p,
(3.4)

and
−→
1 ∈ Sn−1 is the vector such that every component equals

1√
n
. Notice that the last term in (3.3)

does not affect the eigenvectors and the order of eigenvalues of
√

1

p(1−p)n
A. Therefore, it is sufficient

to prove (3.2) for the nonleading edge eigenvectors of

Ã ∶= H +
√

pn
1 − p

−→
1
−→
1 ⊤. (3.5)

Furthermore, we will only prove the theorem for the eigenvectors belonging to the positive edge {u𝛼 ∶
𝛼 ≤ 𝜑𝜌n}. The proof for eigenvectors {u𝛼 ∶ n − 𝛼 ≤ 𝜑𝜌n} is essentially the same.

3.1 Outline of the proof

To lighten the notation, assume that A is an (n + 2) × (n + 2) matrix.

It is convenient to break the matrix Ã into the blocks:

Ã =
[

D W⊤

W B

]
, (3.6)

where B is of size n × n and D is of size 2 × 2. Let G (z) ∶= 1

B−z
be the Green function of B. We will

write the eigenvalues of Ã in terms of B, W and D:
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Proposition 3.1. Any 𝜆 ∈ R satisfying

det
(
W⊤G (𝜆)W − D + 𝜆I2

)
= 0 (3.7)

is an eigenvalue of Ã. Furthermore, let q ∈ R2 be a nontrivial null vector of W⊤G (𝜆)W − D + 𝜆I2.

Then,
[

q
−G (𝜆)Wq

]
is an eigenvector corresponding to 𝜆.

Proof. Assume that

det
(
W⊤G (𝜆)W − D + 𝜆I2

)
= 0.

Let q ∈ R2 be a nontrivial null vector of W⊤G (𝜆)W − D + 𝜆I2. Then, we have[
D − 𝜆 W⊤

W B − 𝜆

] [
q

−G (𝜆)Wq

]
= 0⃗.

Therefore, 𝜆 is an eigenvalue of Ã and u =
(

q
−G (𝜆)Wq

)
is the corresponding eigenvector. ▪

Up to a scaling, we have q =

[
1

−w⊤
1

G(𝜆)w1−𝑑11+𝜆
w⊤

1
G(𝜆)w2−𝑑12

]
where w1, w2 are the column vectors of W and

D =
[
𝑑11 𝑑12

𝑑12 𝑑22

]
. Therefore,

sign (u (1) u (2)) = sign

(
−

w⊤
1

G (𝜆)w1 − 𝑑11 + 𝜆
w⊤

1
G (𝜆)w2 − 𝑑12

)
. (3.8)

Our goal is to estimate Esign
(
−w⊤

1
G(𝜆)w1−𝑑11+𝜆

w⊤
1

G(𝜆)w2−𝑑12

)
. To this end, we would like to take advantage of

independence of B,W, and D. However, the fact that 𝜆 depends on all these random quantities precludes

us from using this independence straightforwardly. This forces us to consider

s (E) ∶= sign

(
−

w⊤
1

G (E)w1 − 𝑑11 + E

w⊤
1

G (E)w2 − 𝑑12

)

for a constant E instead on dealing with 𝜆 directly. To analyze the behavior of the function s, it is

necessary to know what the matrix B looks like.

Let {𝜇𝛼}n
𝛼=1

be the eigenvalues of B arranged in a nonincreasing order and let {u𝛼}n
𝛼=1

be the

corresponding unit eigenvectors. Observe that, up to a scaling factor

√
n+2

n
, B is a Wigner matrix with

a rank 1 shift:

B = M +

√
p (n + 2)
(1 − p)

ll⊤,

where M is the lower right n by n minor of H (from (3.3) and (3.4)), and l ∈ Rn is the vector with

all its components equal to
1√
n+2

. Here,

√
n+2

n
M is a generalized Wigner matrix having nice spectral

properties with high probability.
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The proof of Theorem 1.2 breaks into 4 steps:

1. Typical spectral properties of M.
Here we are encountering the first obstacle. We want to fix a typical sample M to compute s(E). In

particular, we want this sample to have gaps between the eigenvalues close to the edge of order at least

n−2∕3−𝜀. Such property is called level repulsion in the edge:

Condition 3.2 (Level repulsion on edge). A random Hermitian matrix H is said to satisfy level
repulsion at the edge, if for any CLR > 0, and 𝜀LR > 0, there exists 𝛿LR > 0, with probability at least
1 − n−𝛿LR

max
E⊆

[
2−n−2∕3𝜑

CLR
n , 2+n−2∕3𝜑

CLR
n

]𝒩 (
E − n−2∕3−𝜀LR , E + n−2∕3−𝜀LR

)
< 2. (3.9)

We remark that it is known that a GOE (Gaussian orthogonal ensemble) matrix model satisfy this

condition, and we will show in Appendix that our matrices H and M satisfy this condition as well.

Notice that such level repulsion is achievable with high probability for a single n × n principal

minor M, but we need it for all minors simultaneously, and the probability estimate too weak to be

combined with the union bound. Instead, we define 𝒜 as the event that the (n + 2) × (n + 2) matrix

H has the desired spectral properties. In this case, 𝒜 is likely in a sense that P(𝒜 c) < n−𝛿 for some

𝛿 > 0. However, we cannot condition on 𝒜 directly as in this way we will lose the independence of B,

W, and D while estimating s(E). Therefore, in the first step we will define the event 𝒜 and show that

E
(|1H is typical − 1M is typical|) is small enough.

This would allow us to use independence while conditioning on the event that M is typical and avoid

invoking the union bound while applying this argument to all n × n principal minors.

2. From spectral properties of M to spectral properties of B.
In the second step, we fix a typical M, and consider the spectral properties of its rank one perturbation B.

We expect B to behave like M with an exceptional eigenvector almost parallel to l and the corresponding

eigenvalue close to
√

p(n+2)
1−p

. We will quantify these properties in Definition 3.10 in Section 3.3.

3. Concentration of w⊤
i G (E)wj − 𝑑ij + E.

The expression above is a key quantity in analyzing s(E). To bound s(𝜆) for 𝜆 being an edge eigen-

value of Ãp, we have to understand the behavior of s(E) for different E. To this end, we derive the

concentration of w⊤
i G (E)wj for i, j ∈ {1, 2}. By definition,

w⊤
i G (E)wj =

∑
𝛼∈[n]

1

𝜇𝛼 − E
⟨wi, u𝛼⟩⟨wj, u𝛼⟩.

If E is much closer to an eigenvalue 𝜇𝛼E than any other eigenvalues, then, we expect w⊤
i G (E)wj to be

dominated by the term
1

𝜇𝛼E−E
⟨wi, u𝛼E⟩⟨wj, u𝛼E⟩. We will show that after conditioning on a typical B,

with high probability in W and D we have

∀i, j ∈ {1, 2} w⊤
i G (E)wj ≃ −𝛿ij +

⟨wi, u𝛼E⟩⟨wj, u𝛼E⟩
𝜇𝛼E − E

(3.10)

4. Completion of the proof.
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We combine the results obtained at previous steps to show that

E
(
s (𝜆𝛼) 1H is typical

)
= n−1∕3+C𝜀LR .

Once this estimate is proved, the main theorem follows immediately.

3.2 A typical sample of M

Let M be an n × n principal submatrix of H. Let {𝜈𝛼}n
𝛼=1

be the eigenvalues of M arranged in a non-

increasing order and let {v𝛼}n
𝛼=1

be the corresponding unit eigenvectors. Let GM (z) ∶= (M − z)−1 be

the Green function of M and

mM (z) ∶= 1

n
Tr (G(z)) = 1

n

n∑
𝛼=1

1

𝜈𝛼 − z

be the Stieltjes transform of M.

A special role in the proof will be played by the level repulsion property, and the strength of the

level repulsion has to be carefully chosen for matrices of different sizes. Let t > 0. We will say that an

m×m symmetric matrix B satisfies the level repulsion property with parameter t if for any two distinct

eigenvalues 𝜈, 𝜈′ of A in
[
2 − n−2∕3𝜑3𝜌

n , 2 + n−2∕3𝜑3𝜌
n

]
, we have

||𝜈 − 𝜈′|| > t.

In the argument below, m takes values from n − 4 to n. Denote the set of such matrices by ℒℛ(n, t).
Lemma 3.3 asserts that

P(M ∈ ℒℛ(n, n−2∕3−𝜀LR)) ≥ 1 − n−𝛿LR

for some 𝛿LR > 0. We start with a lemma showing that the parameter t in the definition of level repulsion

can be adjusted without significantly changing this probability.

Lemma 3.3. Let C > 0. Let M be an n × n symmetric random matrix. There exists 𝜃 ∈ (1∕2, 1)
which depends on the distribution of M such that

P

(
M ∈ ℒℛ

(
n, 𝜃n−2∕3−𝜀LR − 4

𝜑C
n

n

))
− P

(
M ∈ ℒℛ(n, 𝜃n−2∕3−𝜀LR)

) ≤ n−1∕3+2𝜀LR .

Proof. For k ≥ 0, denote

Pk ∶= P

(
M ∈ ℒℛ

(
n, n−2∕3−𝜀LR − k

𝜑C
n

n

))
.

Then Pk ∈ (0, 1) form an increasing sequence. Hence, there exists k ≤ 4n1∕3−2𝜀LR such that

Pk+4 − Pk ≤ n−1∕3+2𝜀LR .

This implies the lemma if we choose 𝜃 so that 𝜃n−2∕3−𝜀LR = n−2∕3−𝜀LR − k𝜑
C
n

n
and note that 𝜃 > 1∕2. ▪
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We will fix this value of 𝜃 for matrices H whose entries are distributed as in (3.4) for the rest of

the proof.

Let us collect the properties of the n× n submatrices of H which we will use throughout the proof.

Definition 3.4. Fix 𝜀LR > 0 and 𝜌 > 1, set

𝜂 = n−2∕3−2𝜀LR . (3.11)

Denote by 𝒜(n,k) the set of symmetric n × n matrices M having the following properties:

• Isotropic local semicircular law:

sup|E−2|≤n−2∕3+3𝜀LR

sup
x,y∈{ei}n

i=1
∪{l}

|⟨x, GM (E + i𝜂) y⟩ − ⟨x, y⟩msc (E + i𝜂)| < 3n− 1

3
+3𝜀LR , (3.12)

• Rigidity of eigenvalues:

|𝜈𝛼 − 𝛾𝛼| ≤ 𝜑
Cre
n [min (𝛼, n − 𝛼 + 1)]−1∕3 n−2∕3, (3.13)

where Cre > 1 is a universal constant, and 𝛾𝛼 satisfies ∫ 2

𝛾𝛼

2

𝜋

√
4 − x2𝑑x = 𝛼

n
.

• l∞-delocalization of eigenvectors:

∀𝛼, ‖v𝛼‖∞ ≤ 𝜑C
n√
n
, (3.14)

• Isotropic delocalization of eigenvectors:

max
𝛼∈[n]

|⟨v𝛼, l⟩|2 < n𝜀LR−1, (3.15)

• Level repulsion at the edge: M ∈ ℒℛ
(

n, 𝜃n−2∕3−𝜀LR − k𝜑
C
n

n

)
, that is,

for any two distinct eigenvalues 𝜈, 𝜈′ of M in
[
2 − n−2∕3𝜑3𝜌

n , 2 + n−2∕3𝜑3𝜌
n

]
, we have

||𝜈 − 𝜈′|| > 𝜃n−2∕3−𝜀LR − k
𝜑C

n

n
. (3.16)

The value of 𝜃 is chosen to satisfy the condition of Lemma 3.3.

A typical Wigner matrix belongs to the set 𝒜(n,0), see [11], [4]. However, we need this fact not for

a single matrix M, but for all n × n principal submatrices of the (n + 2) × (n + 2) matrix H. Denote

by H(k) the (n + 1) × (n + 1) principal submatrix of H with row and column k removed. Similarly,

denote by H(i,j) the n× n principal submatrix of H with rows and columns i, j removed. The properties

(3.12)-(3.14) hold with an overwhelming probability, which allows to use a union bound while estab-

lishing them. In contrast to it, property (3.16) holds only with probability 1 − n−𝛿LR for some 𝛿LR > 0,

which is too weak to be combined with the union bound. To guarantee that the level repulsion holds

with high probability for all principal submatrices, we show that the eigenvalues of these submatri-

ces are located closely to the eigenvalues of the original matrix. To this end, we need the following

lemma.
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Lemma 3.5. Let J be an n×n symmetric matrix satisfying conditions (3.13) and (3.14). Let k ∈ [n],
and let J(k) be the (n − 1) × (n − 1) principal submatrix of J with row and column k removed. Let
𝜇 ∈

[
2 − n−2∕3𝜑3𝜌

n , 2 + n−2∕3𝜑3𝜌
n

]
be an eigenvalue of J(k). If J or J(k) satisfies (3.16), then there exists

an eigenvalue 𝜆 of J such that

0 ≤ 𝜆 − 𝜇 ≤ 𝜑C
n

n
. (3.17)

Consequently, if one of the matrices J or J(k) satisfies condition (3.16), then the other one satisfies
the same condition with a extra loss of 𝜑C

n

n
.

Proof. Note that 𝜇 is an eigenvalue of the matrix J − eke⊤k J as well since the kth row of this matrix

is 0. We will start with showing that there exists an eigenvalue 𝜆 of J satisfying (3.17). Let GJ be the

Green function of J. By Sylvester’s determinant identity, we have

0 = det
(
J − 𝜇 − eke⊤k J

)
= det (J − 𝜇) det

(
In − eke⊤k JGJ (𝜇)

)
= det (J − 𝜇)

(
1 − e⊤k JGJ (𝜇) ek

)
.

If det (J − 𝜇) = 0, then we are done. Otherwise, 1 − e⊤k JGJ (𝜆) ek = 0, which can be rewritten as

∑
𝛼

𝜆𝛼
𝜆𝛼 − 𝜇

⟨ek, u𝛼⟩2 = 1,

where 𝜆1 ≥ · · · ≥ 𝜆m are the eigenvalues of J, and u1,… , um are the corresponding unit eigenvectors.

For 𝜆𝛼 < 0, we have 0 <
𝜆𝛼
𝜆𝛼−𝜇

< 2

3
where the upper bound is due to 𝜆𝛼 > −3 by (3.13). Then,

∑
𝛼,𝜆𝛼<0

𝜆𝛼
𝜆𝛼 − 𝜇

⟨ek, u𝛼⟩2 ≤ ∑
𝛼,𝜆𝛼<0

2

3
⟨ek, u𝛼⟩2 ≤ 2

3
.

Hence, ∑
𝛼,𝜆𝛼>𝜇

𝜆𝛼
𝜆𝛼 − 𝜇

⟨ek, u𝛼⟩2 ≥ ∑
𝛼,𝜆𝛼≥0

𝜆𝛼
𝜆𝛼 − 𝜇

⟨ek, u𝛼⟩2 ≥ 1

3

as
𝜆𝛼
𝜆𝛼−𝜇

≤ 0 for all 𝜆𝛼 ∈ [0, 𝜇).
Let 𝛽 be the largest positive integer so that 𝜆𝛽 > 𝜇. Together with (3.13), we have

2 − n−2∕3𝜑3𝜌
n ≤ 𝜇 ≤ 𝜆𝛽 ≤ 𝛾1 + n−2∕3𝜑3𝜌

n ≤ 2 + n−2∕3𝜑3𝜌
n

and hence |2 − 𝛾𝛽| ≤ |2 − 𝜆𝛽| + |𝜆𝛽 − 𝛾𝛽| ≤ 2n−2∕3𝜑3𝜌
n .

With the estimate of 𝛾𝛽 in (1.2), we conclude that

𝛽 ≤ 𝜑C𝜌
n . (3.18)
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Assume that 𝛽 > 1, and let 𝛼 < 𝛽. If J satisfies (3.16), then

𝜆𝛼 − 𝜇 ≥ 𝜆𝛽−1 − 𝜆𝛽 ≥ n−2∕3−𝜀LR .

On the other hand, assume that J(k) satisfies (3.16), and let 𝜇′ be the smallest eigenvalue of J(k) which

is greater than 𝜇. Due to the Cauchy interlacing theorem, we know that

𝜇 < 𝜆𝛽 < 𝜇
′ < 𝜆𝛼.

Then,

𝜆𝛼 − 𝜇 ≥ 𝜇′ − 𝜇 ≥ n−2∕3−𝜀LR .

In both cases, (3.18), (3.14) and (3.13) applied with 𝛼 = 1 imply∑
𝛼<𝛽

𝜆𝛼
𝜆𝛼 − 𝜇

⟨ek, u𝛼⟩2 ≤ 𝛽
𝜆1

n−2∕3−𝜀LR
max
𝛼

‖u𝛼‖2
∞ = O

(
n−1∕3+C𝜀LR

)
.

If 𝛽 = 1, the inequality above is vacuous. Thus, in both cases,

𝜆𝛽

𝜆𝛽 − 𝜇
⟨ek, u𝛼⟩2 ≥ 1

3
+ O

(
n−1∕3+C𝜀LR

)
which in combination with (3.13), (3.14) leads to

𝜑C
n

n
≥ 𝜆𝛽 − 𝜇 > 0

establishing (3.17). Since (3.17) holds for all 𝜇 ∈
[
2 − n−2∕3𝜑3𝜌

n , 2 + n−2∕3𝜑3𝜌
n

]
, the second part of the

lemma follows from (3.16) for one of the matrices J or J(k) and interlacing of their eigenvalues. ▪

Equipped with Lemma 3.5, we derive the desired result about the typical behavior of the principal

submatrices. We remind the reader that for convenience, we consider graphs with n + 2 vertices.

Theorem 3.6. Let A be the adjacency matrix of a G(n + 2, p) graph, and let

H = 1√
p (1 − p) (n + 2)

A −

√
p(n + 2)

1 − p
−→
1
−→
1 ⊤ −

√
p

(1 − p)(n + 2)
In,

where
−→
1 ∈ Sn+1 is the vector such that every component equals 1√

n+2
. Let𝒜 be the set of (n+2)×(n+2)

symmetric matrices H such that the matrix itself belongs to 𝒜(n+2,2), all its principal (n + 1) × (n + 1)
submatrices belong to 𝒜(n+1,3), and all its principal n × n submatrices belong to 𝒜(n,4).

Then

P(H ∈ 𝒜 ) ≥ 1 − n−𝛿

for some 𝛿 = 𝛿(p, 𝜌, 𝜀LR) > 0. Moreover, for any i, j ∈ [n],

E
|||1𝒜(n,0) (H

(i,j)) − 1𝒜 (H)||| ≤ n−1∕3+2𝜀LR .
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Proof. For (3.12) and (3.15), we use the probability estimate in [4, Theorem 2.12, 2.16]. For (3.13)

and (3.14), we use the probability estimate in [11, Theorem 2.1, 2.2]. Combining them, we conclude

that (3.12)-(3.15) hold for the matrix H itself, as well as for all its (n+ 1) × (n+ 1) and n× n principal

submatrices with probability at least 1 − n−1.

In addition to it, (3.16) holds for H with k = 2 with probability at least 1 − n−𝛿 . Then Lemma 3.5,

together with the properties (3.12)–(3.15) allow us to extend (3.16) with k = 3 to all its (n+1)×(n+1)
principal minors. As these minors possess the same properties, (3.16) further extends with k = 4 to all

n× n principal minors. Let us prove the second inequality. Denote by ℬ the set of all (n+ 2) × (n+ 2)
symmetric matrices satisfying conditions (3.12)-(3.15). Then

P
(
H(i,j) ∈ 𝒜(n,0) and H ∉ 𝒜

) ≤ P
(
H(i,j) ∈ 𝒜(n,0) and H ∉ 𝒜 and H ∈ ℬ

)
+ P(H ∉ ℬ) ≤ n−1

since by Lemma 3.5, 𝒜(n,0) ∩𝒜 c ∩ℬ ⊂ 𝒜(n,0) ∩𝒜 c
(n+2,2) ∩ℬ = ∅. Also, notice that all the minors

H(i,j) have the same distribution, so the value of 𝜃 is the same for all i, j. Hence,

P
(
H(i,j) ∉ 𝒜(n,0) and H ∈ 𝒜

) ≤ P
(
H(i,j) ∉ 𝒜(n,0) and H(i,j) ∈ 𝒜(n,4)

) ≤ n−1∕3+2𝜀LR

by Lemma 3.3. The result follows. ▪

3.3 Introduction of the shift

In this section, we will derive the typical properties of all n× n principal submatrices of Ã. Recall that

we denoted such submatrix by B, and

B = M +

√
p (n + 2)
(1 − p)

ll⊤ (3.19)

where M is an n × n principal submatrix of H, and l =
(

1√
n+2
,… , 1√

n+2

)
is almost a unit vector.

We expect B to behave close to M in a sense that its nonleading eigenvalues and eigenvectors possess

similar properties. The argument at this stage is deterministic. We fix the matrix M ∈ 𝒜(n,0) and treat

B as its rank one perturbation.

We start with showing that the nonleading edge eigenvalues of B are very close to that of M.

Lemma 3.7. Let M ∈ 𝒜(n,0) be an n× n symmetric matrix with eigenvalues 𝜈1 ≥ · · · ≥ 𝜈n, and let B
be as in (3.19). Let 𝜇1 ≥ · · · ≥ 𝜇n be the eigenvalues of B. If 𝛽 is such that ||𝜈𝛽 − 2|| ≤ n−2∕3𝜑2𝜌

n , then

||𝜈𝛽 − 𝜇𝛽+1
|| ≤ n−1+C𝜀LR (3.20)

for some universal constant C > 0. Furthermore, 𝜇𝛽+1 is an eigenvalue of M if and only if ⟨l, v𝛽⟩ = 0,
where v𝛽 is a unit eigenvector of M corresponding to 𝜈𝛽 . In the case 𝜇𝛽+1 is not an eigenvalue of M,
we have ⟨l, v𝛽+1⟩2

𝜈𝛽 − 𝜇𝛽+1

≥ 1 − o (1) (3.21)

We remark that (3.20) is a simple case of [15, Theorem 2.7], which deals with a deterministic finite

rank shift.
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Proof. Suppose that 𝜇 is an eigenvalue of B. By Sylvester’s determinant identity we have

0 = det

⎛⎜⎜⎝M − 𝜇In +

√
p (n + 2)

1 − p
ll⊤

⎞⎟⎟⎠
= det (M − 𝜇In) det

⎛⎜⎜⎝In + GM (𝜇)

√
p (n + 2)

1 − p
ll⊤

⎞⎟⎟⎠
= det (M − 𝜇In)

⎛⎜⎜⎝1 + l⊤GM (𝜇)

√
p (n + 2)

1 − p
l
⎞⎟⎟⎠ ,

and
(

1 + l⊤GM (𝜇)
√

p(n+2)
1−p

l
)
= 0 if

∑
𝛼∈[n]

⟨l, v𝛼⟩2

𝜈𝛼 − 𝜇
= − 1√

p(n+2)
1−p

. (3.22)

The matrix B is a rank one positive semidefinite perturbation of M, so the eigenvalues of M and B are

interlacing:

𝜇1 ≥ 𝜈1 ≥ 𝜇2 ≥ · · · ≥ 𝜇n ≥ 𝜈n. (3.23)

For the leading eigenvalue, 𝜇1 ≥ 1

2

√
p(n+2)

1−p
due to the fact that ‖M‖ = O(1) by (3.13).

Let 𝛽 be such that |𝜈𝛽 − 2| < n−2∕3𝜑2𝜌
n . We consider two cases. First, assume that ⟨l, v𝛼⟩ ≠ 0 for

𝛼 ∈ {𝛽, 𝛽 + 1}. Then 𝜇𝛽+1 ∉ {𝜈𝛽, 𝜈𝛽+1}, so det
(
M − 𝜇𝛽+1In

) ≠ 0, and (3.22) holds.

We claim that ∑
𝛼≠𝛽

⟨l, v𝛼⟩2

𝜈𝛼 − E
≤ −1 + o (1) . (3.24)

for all E ∈
(
𝜈𝛽+1, 𝜈𝛽

)
.

If the claim is proved, then, by (3.22),

⟨l, v𝛽+1⟩2

𝜈𝛽 − 𝜇𝛽+1

= − 1√
p(n+2)

1−p

−
∑
𝛼≠𝛽

⟨l, v𝛼⟩2

𝜈𝛼 − 𝜇𝛽+1

≥ 1 − o (1)

By (3.15), we have ⟨l, v𝛽+1⟩2 < n𝜀LR−1, which allows to conclude that

0 < 𝜈𝛽 − 𝜇𝛽+1 ≤ n2𝜀LR−1

as required.

Assume now that ⟨l, v𝛼⟩ = 0 for some 𝛼 ∈ {𝛽, 𝛽 + 1}. Considering an infinitesimally small

perturbation M(𝜀) =
√

1 − 𝜀2M + 𝜀G with a GOE matrix G, we can guarantee that ⟨l, v𝛼⟩ ≠ 0 a.s. In

this case, the perturbed eigenvalue 𝜇(𝜀)
𝛽+1

of M(𝜀) satisfies the inequality above. Letting 𝜀→ 0 and using

the stability of eigenvalues, we conclude that 𝜇𝛽+1 = 𝜈𝛽 completing the proof of (3.20). This argument

also shows that 𝜇𝛽+1 is an eigenvalue of M if and only if ⟨l, v𝛽⟩ = 0.
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It remains to verify (3.24). This will be done by comparing the right hand side of (3.24) with

Re ⟨l, GM (E + i𝜂) l⟩ = ∑
𝛼∈[n]

𝜈𝛼 − E
(𝜈𝛼 − E)2 + 𝜂2

⟨l, v𝛼⟩2.

Assume first that
1

2
𝜈𝛽 + 1

2
𝜈𝛽+1 ≤ E ≤ 𝜈𝛽 . In view of (3.16),

𝜈𝛽+1 +
1

2
n−2∕3−𝜀LR <

𝜈𝛽+1 + 𝜈𝛽
2

< E < 𝜈𝛽 < 𝜈𝛽−1 − n−2∕3−𝜀LR .

(we omit the last inequality if 𝛽 = 1.) Hence, for 𝛼 ≠ 𝛽, we have

|E − 𝜈𝛼| > 1

2
n−2∕3−𝜀LR = 1

2
𝜂n𝜀LR

(recall that 𝜂 = n−2∕3−2𝜀LR ) and so

1

𝜈𝛼 − E
=

(
1 + O

(
n−2𝜀LR

)) 𝜈𝛼 − E
(𝜈𝛼 − E)2 + 𝜂2

.

Therefore,

∑
𝛼>𝛽

1

𝜈𝛼 − E
⟨l, v𝛼⟩2 =

(
1 + O

(
n−2𝜀LR

))∑
𝛼>𝛽

𝜈𝛼 − E
(𝜈𝛼 − E)2 + 𝜂2

⟨l, v𝛼⟩2

=
(
1 + O

(
n−2𝜀LR

))(
Re ⟨l, GM (E + i𝜂) l⟩ −∑

𝛼≤𝛽
𝜈𝛼 − E

(𝜈𝛼 − E)2 + 𝜂2
⟨l, v𝛼⟩2

)
.

since all the summands have the same sign. Now we will evaluate the two terms in the brackets. The first

one can be approximated using the local semicircular law, and the second one is negligible, because

the sum consists of a few terms, and each term is small. Indeed, using (3.13) and (1.2), we have

𝛽 ≤ 𝜑C𝜌
n .

(The argument is the same as that for (3.18).)

With the trivial bound |𝜈𝛼 − E| < 2n−2∕3𝜑2𝜌
n , we get

||||||
∑
𝛼≤𝛽

𝜈𝛼 − E
(𝜈𝛼 − E)2 + 𝜂2

⟨l, v𝛼⟩2

|||||| ≤ 𝛽
n−2∕3𝜑3𝜌

n

𝜂2
n−1+𝜀LR ≤ n−1∕3+6𝜀LR

if n is sufficiently large. The isotropic local semicircular law (3.12) yields

Re ⟨l, GM (E + i𝜂) l⟩ = ⟨l, l⟩Re msc (E + i𝜂) + O
(
n−1∕3+3𝜀LR

)
.

Using the fact that msc (z) = −z+
√

z2−4

2
with the branch cut at [−2, 2], for |z − 2| < s < 1 we have

msc (z) = −1 + O(
√

s).
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Thus,

Re ⟨l, GM (E + i𝜂) l⟩ = −1 + O
(
n−1∕3+3𝜀LR

)
and we conclude that ∑

𝛼>𝛽

1

𝜈𝛼 − E
⟨l, v𝛼⟩2 ≤ −1 + o (1)

for all E ∈
(

1

2
𝜈𝛽 + 1

2
𝜈𝛽+1, 𝜈𝛽

)
. Since E →

∑
𝛼>𝛽

1

𝜈𝛼−E
⟨l, v𝛼⟩2 is increasing for E > 𝜈𝛽+1, the inequality

above extends to all E ∈
(
𝜈𝛽+1, 𝜈𝛽

)
. Together with∑

𝛼<𝛽

1

𝜈𝛼 − E
⟨l, v𝛼⟩2 ≤ 𝛽

1

n−2∕3−𝜀LR
n−1+𝜀LR = o (1)

for E ∈
(
𝜈𝛽+1, 𝜈𝛽

)
, we conclude that all E ∈

(
𝜈𝛽+1, 𝜈𝛽

)
satisfy∑

𝛼≠𝛽
1

𝜈𝛼 − E
⟨l, v𝛼⟩2 ≤ −1 + o (1) ,

completing the proof of the lemma. ▪

Our next aim is comparing the Stieltjes transform of B to that of the semicircular law. This will be

done via the comparison of the former to the Stieltjes transform of M.

Lemma 3.8. Let M ∈ 𝒜(n,0) be an n × n symmetric matrix, and let B be as in (3.19). Then

sup
E∶ |E−2|≤𝜑2𝜌

n

|mB (E + i𝜂) − msc (E + i𝜂)| ≤ n−1∕3+C𝜀LR ,

where

mB (z) ∶=
1

n

n∑
𝛼=1

1

𝜇𝛼 − z

is the Stieltjes transform of B and 𝜂 = n−2∕3−2𝜀LR .

Proof. Fix E such that |E − 2| ≤ 𝜑2𝜌
n . We estimate the real part and imaginary of the Stieltjes

transform part separately. Let us start with the real part.

Re mB (E + i𝜂) = 1

n
∑
𝛼

𝜇𝛼 − E
(𝜇𝛼 − E)2 + 𝜂2

.

Let 𝛽 be the smallest integer such that 𝜈𝛽 < E − 𝜂. Recall that we have the interlacing property:

E − 𝜂 > 𝜈𝛽 ≥ 𝜇𝛽+1 ≥ 𝜈𝛽+1 ≥ 𝜇𝛽+2 · · · ≥ 𝜇n ≥ 𝜈n.

The function x → x
x2+𝜂2

is decreasing when |x| > 𝜂. Based on this fact, we obtain

n−1∑
𝛼=𝛽

𝜈𝛼 − E
(𝜈𝛼 − E)2 + 𝜂2

≤
n∑

𝛼=𝛽+1

𝜇𝛼 − E
(𝜇𝛼 − E)2 + 𝜂2

≤
n∑

𝛼=𝛽+1

𝜈𝛼 − E
(𝜈𝛼 − E)2 + 𝜂2

.
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Furthermore, as
x

x2+𝜂2
lies in

[
− 1

2𝜂
, 1

2𝜂

]
for all x ∈ R, we have

Re mM (E + i𝜂) − 𝛽

n𝜂
≤ Re mB (E + i𝜂) ≤ Re mM (E + i𝜂) + 𝛽

n𝜂
,

and the bound for the real part follows.

For the imaginary part we have

Im mB (E + i𝜂) = 1

n
∑
𝛼

𝜂

(𝜆B − E)2 + 𝜂2
.

The function x → 𝜂

x2+𝜂2
is increasing if x < 0, hence

n−1∑
𝛼=𝛽+1

𝜂

(𝜈𝛼 − E)2 + 𝜂2
≤

n∑
𝛼=𝛽+1

𝜂

(𝜇𝛼 − E)2 + 𝜂2
≤

n∑
𝛼=𝛽

𝜂

(𝜈𝛼 − E)2 + 𝜂2
.

Since
𝜂

x2+𝜂2
∈

[
0, 1

𝜂

]
for all x, we conclude that

Im mM (E + i𝜂) − 2𝛽

n𝜂
≤ Im mB (E + i𝜂) ≥ Im mM (E + i𝜂) + 2𝛽

n𝜂
.

Similar to how we derive (3.18), using (3.13) and (1.2), we have

𝛽 ≤ 𝜑C𝜌
n .

We conclude that |mM (E + i𝜂) − mB (E + i𝜂)| ≤ 𝜑C𝜌
n n−1∕3+2𝜀LR .

In view of (3.12),

|mM (E + i𝜂) − msc (E + i𝜂)| = |||||1

n
∑

i
⟨ei, G (E + i𝜂) ei⟩ − msc (E + i𝜂)

||||| ≤ 3n− 1

3
+3𝜀LR

which in combination with the previous inequality finishes the proof. ▪

Next, we will derive the delocalization properties of edge eigenvectors of B.

Lemma 3.9. Let M ∈ 𝒜(n,0) be an n×n symmetric matrix, and let B be as in (3.19). Let 𝜇1 ≥ · · · ≥ 𝜇n
be the eigenvalues of B, and let u1,… , un be the corresponding unit eigenvectors. If 𝛽 is such that||𝜇𝛽+1 − 2|| ≤ n−2∕3𝜑2𝜌

n , then

||⟨u𝛽+1, l⟩|| ≤ n−1+C𝜀LR . (3.25)

and

‖‖u𝛽+1
‖‖∞ ≤ n1∕6+6𝜀LR√

n
. (3.26)
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Proof. As pointed out in Lemma 3.7, 𝜇𝛽+1 is an eigenvalue of M if and only if ⟨l, v𝛽⟩ = 0. In this

case, we have v𝛽 = u𝛽+1 so the statement follows trivially.

Now we assume𝜇𝛽+1 is not an eigenvalue of M, in which case, it satisfies (3.22). Using this equality,

one can directly check that

u =
∑
𝛼∈[n]

⟨l, v𝛼⟩
𝜈𝛼 − 𝜇𝛽+1

v𝛼

is an eigenvector of B corresponding to eigenvalue 𝜇𝛽+1.

First, we provide a lower bound for ‖u‖2. By Lemma 3.7, we have
⟨l, v𝛽+1⟩2|𝜈𝛽−𝜇𝛽+1| ≥ 1

2
and ||𝜈𝛽 − 𝜇𝛽+1

|| ≤
n−1+C𝜀LR . This allows to bound the norm of u by one of the coefficients:

‖u‖2
2 ≥ ⟨l, v𝛽+1⟩2||𝜈𝛽 − 𝜇𝛽+1

||2 ≥ 1

4
n1−C𝜀LR . (3.27)

Recall that by (3.22),

⟨u, l⟩ = ∑
𝛼∈[n]

⟨l, v𝛼⟩2

𝜈𝛼 − 𝜇𝛽+1

= − 1√
p(n+2)

1−p

.

This yields

||⟨u𝛽+1, l⟩|| = |⟨u, l⟩|‖u‖2

≤ n−1+C𝜀LR

if n is sufficiently large.

Now we will estimate ‖u‖∞ = maxi∈[n]
||||∑𝛼∈[n]

⟨l, v𝛼⟩⟨ei, v𝛼⟩
𝜈𝛼−𝜇𝛽+1

||||. We break the sum isolating the main

term:

|⟨u, ei⟩| ≤ ||||| ⟨l, v𝛽⟩
𝜈𝛽 − 𝜇𝛽+1

||||| ‖‖v𝛽‖‖∞ +
||||||
∑
𝛼≠𝛽

⟨l, v𝛼⟩⟨ei, v𝛼⟩
𝜈𝛼 − 𝜇𝛽+1

||||||
≤ ||||| ⟨l, v𝛽⟩

𝜈𝛽 − 𝜇𝛽+1

||||| ‖‖v𝛽‖‖∞ +

√√√√∑
𝛼≠𝛽

⟨l, v𝛼⟩2(
𝜈𝛼 − 𝜇𝛽+1

)2

√∑
𝛼≠𝛽

⟨ei, v𝛼⟩2

≤ ||||| ⟨l, v𝛽⟩
𝜈𝛽 − 𝜇𝛽+1

||||| ‖‖v𝛽‖‖∞ +

√√√√∑
𝛼≠𝛽

⟨l, v𝛼⟩2(
𝜈𝛼 − 𝜇𝛽+1

)2
.

We will show below that √√√√∑
𝛼≠𝛽

⟨l, v𝛼⟩2(
𝜈𝛼 − 𝜇𝛽+1

)2
≤ n1∕6+2𝜀LR . (3.28)
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If this inequality holds, (3.27) implies

‖‖u𝛽+1
‖‖∞ =

‖u‖∞‖u‖2

≤
|||| ⟨l, v𝛽⟩
𝜈𝛽−𝜇𝛽+1

|||| ‖‖v𝛽‖‖∞‖u‖2

+ n1∕6+2𝜀LR‖u‖2

≤
|||| ⟨l, v𝛽⟩
𝜈𝛽−𝜇𝛽+1

|||| ‖‖v𝛽‖‖∞|||| ⟨l, v𝛽⟩
𝜈𝛽−𝜇𝛽+1

||||
+ 4n1∕6−1∕2+3𝜀LR ≤ n−1∕3+4𝜀LR ,

where we used ‖‖v𝛽‖‖∞ ≤ 𝜑C
n√
n

from (3.14) in the last inequality. This completes the proof of the lemma

modulus (3.28).

In the rest of the proof, we focus on establishing (3.28) by comparing
∑
𝛼≠𝛽

⟨l, v𝛼⟩2

(𝜈𝛼−E)2 with

1

𝜂
Im ⟨l, GM (E + i𝜂) l⟩ = 1

𝜂
Im

∑
𝛼∈[n]

⟨l, v𝛼⟩2

𝜈𝛼 − E − i𝜂
=

∑
𝛼∈[n]

⟨l, v𝛼⟩2

(𝜈𝛼 − E)2 + 𝜂2

for any E ∈
(
𝜈𝛽+𝜈𝛽+1

2
, 𝜈𝛽

)
which includes 𝜇𝛽+1. The approach is basically the same as in approximation

of
∑
𝛼≠𝛽

⟨l, v𝛼⟩2

v𝛼−E
by Re ⟨l, G (E + i𝜂) l⟩ in Lemma 3.7. As in this lemma, we use |𝜈𝛼 − E| > 1

2
𝜂n𝜀LR for

𝛼 ≠ 𝛽 to derive

𝜂

(𝜈𝛼 − E)2
=

(
1 + O

(
n−2𝜀LR

)) 𝜂

(𝜈𝛼 − E)2 + 𝜂2
.

Thus,

∑
𝛼≠𝛽

⟨l, v𝛼⟩2(
𝜈𝛼 − 𝜇𝛽+1

)2
=

(
1 + O

(
n−2𝜀LR

))[1

𝜂
Im ⟨l, GM (E + i𝜂) l⟩ − ⟨l, v𝛽⟩2(

𝜈𝛽 − 𝜇𝛽+1

)2 + 𝜂2

]
≤ (

1 + O
(
n−2𝜀LR

)) 1

𝜂
Im ⟨l, GM (E + i𝜂) l⟩.

By (3.12) we have

Im ⟨l, G (E + i𝜂) l⟩ = Im msc (E + i𝜂) + O
(
n−1∕3+3𝜀LR

)
.

As |E − 2| < n−2∕3𝜑3𝜌
n and 𝜂 = n−2∕3−2𝜀LR , a direct estimate yields Im msc (E + i𝜂) =

O
(

n−1∕3𝜑3𝜌
n

)
. Therefore,

∑
𝛼≠𝛽

⟨l, v𝛼⟩2(
𝜈𝛼 − 𝜇𝛽+1

)2
≤ n1∕3+4𝜀LR

proving (3.28) and finishing the proof of the lemma. ▪

We have shown that if M ∈ 𝒜(n,0), then the matrix B shares the spectral properties of M. Let us

summarize these properties.
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Definition 3.10. Denote by𝒯(n,k) the set of n×n symmetric matrix B with eigenvalues 𝜇1 ≥ · · · ≥ 𝜇n
and unit eigenvectors u1,… , un possessing the following properties.

• Eigenvalue properties:

– Local semicircular law:

sup
E∶ |E−2|≤𝜑2𝜌

n

|mB (E + i𝜂) − msc (E + i𝜂)| ≤ n−1∕3+C𝜀LR , (3.29)

where mB (z) ∶= 1

n

∑n
𝛼=1

1

u𝛼−z
is the Stieltjes transform of B and 𝜂 = n−2∕3−2𝜀LR .

– Rigidity of the eigenvalues:

∀𝛼 = 1,… , n − 1 |𝜇𝛼+1 − 𝛾𝛼| ≤ 𝜑
2Cre
n [min (𝛼, n − 𝛼 + 1)]−1∕3 n−2∕3, (3.30)

– Leading eigenvalue:

𝜇1 ≥ 1

2

√
p

1 − p
n. (3.31)

• Edge eigenvector properties:

– Isotropic delocalization:

for 𝛽 such that ||𝜇𝛽 − 2|| ≤ n−2∕3𝜑2𝜌
n , we have

⟨u𝛽 , l⟩ = O
(
n−1+c𝜀LR

)
. (3.32)

– 𝓁∞ delocalization:

for 𝛽 such that ||𝜇𝛽 − 2|| ≤ n−2∕3𝜑2𝜌
n ,

‖‖u𝛽‖‖∞ ≤ n1∕6+4𝜀LR√
n

. (3.33)

• Level repulsion at the edge: B ∈ ℒℛ
(

n, 𝜃n−2∕3−𝜀LR − k𝜑
C
n

n

)
, that is,

for any two distinct eigenvalues 𝜈, 𝜈′ of B in
[
2 − n−2∕3𝜑3𝜌

n , 2 + n−2∕3𝜑3𝜌
n

]
, we have

||𝜈 − 𝜈′|| > 𝜃n−2∕3−𝜀LR − k
𝜑C

n

n
. (3.34)

The matrices B ∈ 𝒯(n,1) will be called typical below. In particular, we’ve shown that M ∈ 𝒜(n,0)
implies B ∈ 𝒯(n,1).

Theorem 3.6 implies that probability close to 1, the normalized adjacency matrix of a G(n, p) graph

is typical along with its principal submatrices. We will formulate it as a corollary.

Corollary 3.11. Let A be the adjacency matrix of a G(n + 2, p) graph, and let

Ã = 1√
p (1 − p) (n + 2)

A −
√

p
(1 − p)(n + 2)

In+2
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and

H = Ã −

√
p(n + 2)

1 − p
−→
1
−→
1 ⊤.

Let 𝒯 be the set of all matrices Ã such that H ∈ 𝒜 . Then

P(Ã ∈ 𝒯 ) ≥ 1 − n−𝛿

for some 𝛿 = 𝛿(p, 𝜌, 𝜀LR) > 0. Moreover, for any i, j ∈ [n],

E
|||1𝒯(n,1) (Ã

(i,j)) − 1𝒯 (Ã)||| ≤ n−1∕3+2𝜀LR .

Proof. Except for (3.30) and (3.31), these conditions have been derived from the corresponding

conditions on H above. Condition (3.30) follows from the interlacing of the eigenvalues of Ãp and its

principal submatrices. Finally, (3.31), follows from (3.13) for 𝛼 = 1 since

𝜇1 ≥ ⟨l, Bl⟩ ≥ √
p (n + 2)

1 − p
‖l‖4

2 − 𝜆1(M) ‖l‖2
2 ≥ 1

2

√
p

1 − p
n.

Both probability estimates follow now from Theorem 3.6. ▪

3.4 Concentration of w⊤
i G (E)wj − 𝑑ij + E

In this section, we fix an n×n matrix B ∈ 𝒯(n,1). Let E be a constant such that |E − 2| ≤ n−2∕3𝜑2𝜌
n . Let

{𝜇𝛼}n
𝛼=1

be eigenvalues of B arranged in the nonincreasing order and let {u𝛼}n
𝛼=1

be the corresponding

unit eigenvectors. Let G (E) =
∑
𝛼

1

𝜇𝛼−E
u𝛼u⊤𝛼 be the Green function of B.

Denote by 𝛼E the integer such that

||𝜇𝛼E − E|| = min
𝛼

|𝜇𝛼 − E| .
In this section we will prove the following lemma:

Lemma 3.12. Let B ∈ 𝒯(n,1). With probability greater than 1−exp (−c (p)𝜑n) (𝜑n ∶= (log n)log log n)
in w1 and w2, we have

∀i, j ∈ {1, 2} w⊤
i G (E)wj = −

(
1 + O

(
n−2𝜀LR

))
𝛿ij +

⟨wi, u𝛼E⟩⟨wj, u𝛼E⟩
𝜇𝛼E − E

+ O
(
n−1∕3+C𝜀LR

)
(3.35)

for all E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
and 𝛼E ∈ [n] is the integer so that ||𝜇𝛼E − E|| ≤

min𝛼∈[n] |𝜇𝛼 − E|.
By level repulsion (3.34), we have

|𝜇𝛼 − E| > 1

8
n−2∕3−𝜀LR (3.36)
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for 𝛼 ≠ 𝛼E. Decompose G to separate the main term:

G (E) =
∑
𝛼∈[n]

1

𝜇𝛼 − E
u𝛼u⊤𝛼 =

∑
𝛼≠𝛼E

1

𝜇𝛼 − E
u𝛼u⊤𝛼 + 1

𝜇𝛼E − E
u𝛼E u⊤𝛼E

∶= L (E) + 1

𝜇𝛼E − E
u𝛼E u⊤𝛼E

.

For i = 1, 2, we express wi as

wi = w̃i +
√

p
1 − p

l,

where w̃i has i.i.d. components with the same distribution as in (3.4). In particular, one can treat√
n + 2w̃i as an isotropic subgaussian vector whose entries have 𝜓2-norms bounded by K (p).

Our goal is to show that w⊤
i L (E)wj is concentrated about −𝛿i,j. To achieve that, we represent it as

w⊤
i L (E)wj = w̃⊤

i L (E) w̃j +
√

p
1 − p

l⊤L (E) w̃j +
√

p
1 − p

w̃⊤
i L (E) l +

p
1 − p

l⊤L (E) l (3.37)

and estimate each summand separately. We start with the bilinear term.

Lemma 3.13. Fix an n × n matrix B ∈ 𝒯(n,1). With probability greater than 1 − exp (−c (p)𝜑n)
(𝜑n ∶= (log n)log log n) in w1 and w2, we have

w̃⊤
i L (E) w̃j = −

(
1 + O

(
n−2𝜀LR

))
𝛿ij + O

(
n−1∕3+C𝜀LR

)
(3.38)

for E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
. Here, O

(
n−2𝜀LR

)
and O

(
n−1∕3+C𝜀LR

)
mean some deterministic

functions of n with the prescribed asymptotic, and c (p) is a constant that depends only on p.

Proof of Lemma 3.13. Fix E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
. We will first estimate the expectation

of w̃⊤
1

L (E) w̃1 and then use the Hanson-Wright inequality to derive the concentration.

First, we will estimate the expectation.

Since Ew̃1,w̃2
w̃⊤

1
L (E) w̃2 = 0 by independence of w̃1 and w̃2, and since Ew̃2

w̃⊤
2

L (E) w̃2 =
Ew̃1

w̃⊤
1

L (E) w̃1, we have to evaluate only the last quantity. Using the fact that w̃1 has independent

entries with mean 0 and variance
1

n+2
, we obtain

Ew̃1
w̃⊤

1
L (E) w̃1 = Ew̃1

∑
𝛼≠𝛼E

1

𝜇𝛼 − E
⟨u𝛼, w̃1⟩2 =

∑
𝛼≠𝛼E

1

𝜇𝛼 − E

∑
i∈[n] u2

𝛼 (i)
n + 2

= 1

n + 2

∑
𝛼≠𝛼E

1

𝜇𝛼 − E
.

Recall that for all 𝛼 ∈ [n − 1], we have rigidity of eigenvalues (3.30):

|𝜇𝛼+1 − 𝛾𝛼| ≤ 2𝜑
Asls
n [min (𝛼, n − 𝛼 + 1)]−1∕3 n−2∕3.

Hence, |{𝛼 ∶ 𝜇𝛼 > E, & 𝛼 ≠ 𝛼E}| ≤ 𝜑C𝜌
n , and

∑
𝛼∶𝜇𝛼>E & 𝛼≠𝛼E

1

𝜇𝛼 − E
≤ |{𝛼 ∶ 𝜇𝛼 > E, & 𝛼 ≠ 𝛼E}| ⋅ 1

4
n2∕3+𝜀LR ≤ n2∕3+2𝜀LR (3.39)
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We write

1

𝜇𝛼 − E
=

(
1 + 𝜂2

(𝜇𝛼 − E)2

)
𝜇𝛼 − E

(𝜇𝛼 − E)2 + 𝜂2
,

and set 𝜂 ∶= n−2∕3−2𝜀LR . With this choice of 𝜂, we have |𝜇𝛼 − E| > 1

4
n𝜀LR𝜂 from (3.36), and so(

1 + 𝜂2

(𝜇𝛼−E)2

)
= 1 + O

(
n−2𝜀LR

)
. Therefore,

1

n
∑

𝛼∶𝜇𝛼<E & 𝛼≠𝛼E

1

𝜇𝛼 − E
=
(
1 + O

(
n−2𝜀LR

)) ∑
𝛼∶ 𝜆𝛼<E & 𝛼≠𝛼E

1

n
𝜇𝛼 − E

(𝜇𝛼 − E)2 + 𝜂2

=
(
1 + O

(
n−2𝜀LR

))[
Re mB (E + i𝜂) − 1

n
∑

𝛼∶𝜇𝛼>E or 𝛼=𝛼E

𝜇𝛼 − E
(𝜇𝛼 − E)2 + 𝜂2

]
=
(
1 + O

(
n−2𝜀LR

))
Re mB (E + i𝜂) + O

(
n−1∕3+3𝜀LR

)
, (3.40)

where the last equality relies on (3.39). Combining (3.39) and (3.40), we get

1

n
∑
𝛼≠𝛼E

1

𝜇𝛼 − E
=

(
1 + O

(
n−2𝜀LR

))
Re mB (E + i𝜂) + O

(
n−1∕3+3𝜀LR

)
.

We have Re mB (E + i𝜂) = Re msc (E + i𝜂) +O
(
n−1∕3+C𝜀LR

)
= −1 +O

(
n−1∕3+C𝜀LR

)
by (3.29). Thus, if

𝜀LR is small enough, then

1

n
∑
𝛼≠𝛼E

1

𝜇𝛼 − E
= −1 + O

(
n−C𝜀LR

)
.

We conclude that

Ew̃1
w̃⊤

1
L (E) w̃1 = −1 + O

(
n−C𝜀LR

)
.

Now we are ready to derive concentration via Hanson-Wright inequality [20] by the second author

and Vershynin.

Theorem 3.14 ([20]). Let X = (X1,… ,Xn) ∈ Rn be a random vector with independent components
Xi with satisfy EXi = 0, and ‖Xi‖𝜓2

≤ K. Let A be an n × n matrix. Then, for every t ≥ 0,

P

(|||X⊤AX − EX⊤AX||| > t
) ≤ 2 exp

(
−c min

(
t2

K4 ‖A‖2
HS

,
t

K2 ‖A‖
))

(3.41)

To this end, we need to estimate the operator norm and Hilbert Schmidt norm of L (E). The operator

norm can be estimated directly:

‖L (E)‖ ≤ max
𝛼≠𝛼E

1

𝜇𝛼 − E
≤ 1

4
n2∕3+𝜀LR .

For the Hilbert Schmidt norm, a derivation similar to (3.40) yields

‖L (E)‖2
HS =

∑
𝛼≠𝛼E

1

(𝜇𝛼 − E)2
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= (1 + o (1))
∑
𝛼≠𝛼E

1

(𝜇𝛼 − E)2 + 𝜂2
= (1 + o (1)) n

𝜂

∑
𝛼≠𝛼E

𝜂

n
1

(𝜇𝛼 − E)2 + 𝜂2

= (1 + o (1)) n
𝜂

[
Im mB (E + i𝜂) − 𝜂

n
1(

𝜇𝛼E − E
)2 + 𝜂2

]

= (1 + o (1)) n
𝜂

(
Im msc (E + i𝜂) + O

(
n−1∕3+C𝜀LR

)
− 𝜂

n
1(

𝜇𝛼E − E
)2 + 𝜂2

)
, (3.42)

where we used |msc (E + i𝜂) − m (E + i𝜂)| ≤ O
(
n−1∕3+C𝜀LR

)
from (3.29). A direct computation shows

that Im (msc (E + i𝜂)) = O
(
n−1∕3+C𝜀LR

)
and

𝜂

n
1(

𝜇𝛼E−E
)2

+𝜂2

= O
(

1

n𝜂

)
= O

(
n−1∕3+2𝜀LR

)
. Hence,

‖L (E)‖2
HS =

∑
𝛼≠𝛼E

1

(𝜇𝛼 − E)2
= (1 + o (1)) n

𝜂
O
(
n−1∕3+C𝜀LR

)
= O

(
n4∕3+C𝜀LR

)
.

One can easily show that
‖‖‖√n + 2w̃1 (i)

‖‖‖𝜓2

≤ C
√

1−p
p

. An application Hanson-Wright inequality

with X =
√

n + 2w̃1 and A = L (E) yields

P

(|||w̃⊤
1

L (E) w̃1 − Ew1
w̃⊤

1
L (E) w̃1

||| ≥ t
n + 2

) ≤ 2 exp
(
−c (p) t

n2∕3+C𝜀LR

)
for any t > 1. Taking t = n2∕3+2C𝜀LR , we get

w̃⊤
1

L (E) w̃1 = −1 + O
(
n−2𝜀LR

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Ew̃⊤
1

L(E)w̃1

+O
(
n−1∕3+2C𝜀LR

)

with probability at least 1 − exp (−c (p)𝜑n). (Recall that 𝜑n = log nlog log n. )

Notice that, the same estimate works for w̃2 and w̃1 + w̃2 as well: with probability at least 1 −
exp (−c (p)𝜑n),

(w̃1 + w̃2)⊤ L (E) (w̃1 + w̃2) = Ew̃⊤
1

L (E) w̃1 + Ew̃⊤
2

L (E) w̃2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

E(w̃1+w̃2)⊤L(E)(w̃1+w̃2)

+O
(
n−1∕3+2C𝜀LR

)
.

Therefore, by the linearity, adjusting the constant C appropriately we have

w̃⊤
1

L (E) w̃2 = O
(
n−1∕3+C𝜀LR

)
,

with probability at least 1 − exp (−c (p)𝜑n), thus obtaining (3.38) for a fixed E.

To extend this to all E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
, we will use a net argument. Let 𝒩 be a

𝜅-net in
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
with 𝜅 = n−100 and assume that (3.38) holds for all E ∈ 𝒩 .

Since |𝒩 | is polynomial in n, this event has probability bounded by exp (−c (p)𝜑n).
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Recall that the coordinates of
√

n + 2w̃i are independent, centered, subgaussian random variables

with
‖‖‖√n + 2w̃1 (k)

‖‖‖𝜓2

≤ C
√

1−p
p

. By Hoeffding’s inequality,

√
n + 2⟨w̃i, u𝛼⟩ = n∑

k=1

√
n + 2w̃i (k) u𝛼 (k)

is also subgaussian since ‖u𝛼‖2 = 1. Similarly, (n + 2) ‖w̃i‖2
2, being a sum of subexponential random

variables, satisfies Bernstein’s inequality. Together with a union bound, these two facts imply

P

(
∃𝛼 ∈ [n] , i ∈ {1, 2} |⟨w̃i, u𝛼⟩| ≥ 𝜑n√

n + 2
& ‖wi‖2 ≤ 𝜑n

)
≤ exp (−c (p) n) .

Assume that these two events occur in addition to the assumption that (3.38) holds for all E ∈ 𝒩 which

we already made. Let E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
, and choose E′ ∈ 𝒩 such that |E − E′| < 𝜅.

Suppose that 𝛼E ≠ 𝛼E′ , then|||w̃⊤
i L (E) w̃j − w̃⊤

i L
(
E′) w̃j

|||
≤ ‖w̃i‖2

‖‖w̃j‖‖2

∑
𝛼≠𝛼E , 𝛼E′

|||| 1

𝜇𝛼 − E
− 1

𝜇𝛼 − E′

|||| + ||||| ⟨w̃i, u𝛼E′ ⟩⟨w̃j, u𝛼E′ ⟩
𝜇𝛼E′ − E

||||| +
||||| ⟨w̃i, u𝛼E⟩⟨w̃j, u𝛼E⟩

𝜇𝛼E − E′

|||||
≤ ‖w̃i‖2

‖‖w̃j‖‖2

∑
𝛼≠𝛼E , 𝛼E′

4𝜅

𝜂2
+

||||| ⟨w̃i, u𝛼E′ ⟩⟨w̃j, u𝛼E′ ⟩
𝜇𝛼E′ − E

||||| +
||||| ⟨w̃i, u𝛼E⟩⟨w̃j, u𝛼E⟩

𝜇𝛼E − E′

|||||
≤ ‖w̃i‖2

‖‖w̃j‖‖2

4n
𝜂2
𝜅 +

||||| ⟨w̃i, u𝛼E′ ⟩⟨w̃j, u𝛼E′ ⟩
𝜇𝛼E′ − E

||||| +
||||| ⟨w̃i, u𝛼E⟩⟨w̃j, u𝛼E⟩

𝜇𝛼E − E′

|||||
Since 𝛼E ≠ 𝛼E′ , we have min

{||𝜇𝛼E′ − E|| , ||𝜇𝛼E − E′||} ≥ 1

8
n−2∕3−𝜀LR . Together with |⟨w̃i, u𝛼⟩| ≤ 𝜑n√

n+2
,

this yields ||||| ⟨w̃i, u𝛼E′ ⟩⟨w̃j, u𝛼E′ ⟩
𝜇𝛼E′ − E

||||| +
||||| ⟨w̃i, u𝛼E⟩⟨w̃j, u𝛼E⟩

𝜇𝛼E − E′

||||| = O
(
n−1∕3+2𝜀LR

)
.

Thus,

|||w̃⊤
i L (E) w̃j − w̃⊤

i L
(
E′) w̃j

||| ≤ ‖w̃i‖2
‖‖w̃j‖‖2

4n
𝜂2
𝜅 + O

(
n−1∕3+2𝜀LR

)
As 𝜅 = n−100, the difference is bounded by O

(
n−1∕3+2𝜀LR

)
. The same bound holds for the case

𝛼E = 𝛼E′ , and the proof is simpler, since the last two terms do not appear. Therefore, (3.38) holds for

E as well if constant C is appropriately adjusted. ▪

Next, we bound the linear and constant terms in (3.37).

Lemma 3.15. Fix an n× n matrix B ∈ 𝒯(n,1). With probability greater than 1− exp
(
c (p)𝜑C

n n
)
, for

any E such that |E − 2| ≤ n−2∕3𝜑2𝜌
n ,

l⊤L (E) l = O
(
n−1∕3+C𝜀LR

)
, and w̃⊤

1
L (E) l = O

(
n−1∕3+C𝜀LR

)
. (3.43)

Here, c (p) is a constant that depends only on p.
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Proof. Application of Hoeffding’s inequality to ⟨w̃i, u𝛼⟩ yields

P

(⟨w̃i, u𝛼⟩2 ≥ 𝜑n

n + 2

) ≤ exp (−c (p)𝜑n) ,

and so

max
𝛼, i

⟨w̃i, u𝛼⟩2 ≤ 𝜑n

n

with probability greater than 1 − exp (−c (p)𝜑n). In view of this inequality and the fact that(∑
𝛼≠1⟨l, u𝛼⟩2

) 1

2 = |||Pu⟂
1
l||| = O

(
n−1∕2+c𝜀LR

)
,

||||||
∑

𝛼≠1, 𝛼E

⟨w̃i, u𝛼⟩⟨l, u𝛼⟩
𝜇𝛼 − E

|||||| ≤
( ∑
𝛼≠1, 𝛼E

⟨l, u𝛼⟩2

) 1

2
( ∑
𝛼≠1, 𝛼E

⟨w̃i, u𝛼⟩2

(𝜇𝛼 − E)2

) 1

2

= O
(
n−1+c′𝜀LR

)√ ∑
𝛼≠1, 𝛼E

1

(𝜇𝛼 − E)2
.

Again, one can approximate
∑
𝛼≠1, 𝛼E

1

(𝜇𝛼−E)2 by
n
𝜂
Im msc (E + i𝜂) as before and obtain

∑
𝛼≠1, 𝛼E

1

(𝜇𝛼 − E)2
= O

(
n4∕3+C𝜀LR

)
.

This shows that ||||||
∑

𝛼≠1, 𝛼E

⟨w̃i, u𝛼⟩⟨l, u𝛼⟩
𝜇𝛼 − E

|||||| = O
(
n−1∕3+C𝜀LR

)
.

with probability greater than 1 − exp (−c (p)𝜑n).

Furthermore, recall that by (3.31), 𝜇1 ≥ 1

2

√
p(n+2)

1−p
. Thus

||| ⟨w̃i, u1⟩⟨l, u1⟩
𝜇1−E

||| = o
(

1√
pn

)
, and

|l⊤L (E) l| = ||||||
∑
𝛼≠𝛼E

⟨l, u𝛼⟩2

𝜇𝛼 − E

|||||| ≤
(

1

4
n2∕3+𝜀LR

∑
𝛼≠1, 𝛼E

⟨l, ũ𝛼⟩2

)
+ 1

𝜇1 − E
≤ n−1∕3+C𝜀LR .

Again, this result can extend easily for all E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
by a net argument.

We omit the proof here since it is the same as the net argument in Lemma 3.13. ▪

Combining Lemmas 3.13 and 3.15, we obtain Lemma 3.12.

3.5 Estimate of s (𝜆)

Recall that in Corollary 3.11, we denoted by 𝒯 be the set of (n + 2) × (n + 2) symmetric matrices

all whose n × n principal submatrices are typical in a sense that they satisfy the conditions in 𝒯(n,5).

Suppose that 𝜆𝛼 is an eigenvalue of Ã and v𝛼 ∈ Rn+2 is the corresponding unit corresponding

eigenvector. As in (3.8),
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sign (v𝛼 (1) v𝛼 (2)) = s (𝜆𝛼) = sign

(
−

w⊤
1

G (𝜆𝛼)w1 − 𝑑11 + 𝜆𝛼
w⊤

1
G (𝜆𝛼)w2 − 𝑑12

)
.

In this section, we will prove the following:

Lemma 3.16. Let A be the adjacency matrix of a G(n, p) graph, and let 𝜆1 ≥ · · · ≥ 𝜆n be the
eigenvalues of the matrix

Ã = 1√
p (1 − p) (n + 2)

A −
√

p
(1 − p)(n + 2)

In+2

Fix 2 ≤ 𝛼 ≤ 𝜑𝜌n. Then

E (s (𝜆𝛼) ⋅ 1𝒯 (A)) = O
(
n−1∕3+C𝜀LR

)
.

As 𝒯 pertains to all n × n principal submatrices, the same bound holds for

E
(
sign (v𝛼 (i) v𝛼 (j)) ⋅ 1𝒯 ( Ã)

)
for any i ≠ j.

Once this lemma is proved, Theorem 1.2 follows easily:

Proof. For 2 ≤ 𝛼 ≤ 𝜑𝜌n, we have E(sign(u𝛼(i)u𝛼(j) ∣ 𝒯 ) = O
(
n−1∕3+C𝜀LR

)
for all i ≠ j. Hence,

E

⎛⎜⎜⎝
(n+2∑

i=1

sign(u𝛼(i))

)2 |𝒯 ⎞⎟⎟⎠ = O(n5∕3+C𝜀LR).

Applying Markov’s inequality we get

P

(||||||
n+2∑
i=1

sign(u𝛼(i))
|||||| > n5∕3+C′𝜀

)
< n−𝛿LR + n−𝜀LR .

▪

The proof of this lemma will be based on the concentration we get from Lemma 3.12. Let B be the

n × n principal submatrix containing the last n rows and columns. If Ã ∈ 𝒯 , then B ∈ 𝒯(n,1).

Consider 𝛼 = 2 first. Let 𝜇′
1
≥ 𝜇′

n+1
be the eigenvalues of the (n+1)×(n+1) matrix containing the

last (n+1) rows and columns of Ã. Per (3.30) for Ã, 𝜆2 ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
, so interlacing

and Lemma 3.5 imply that

𝜇′
2
≤ 𝜆2 ≤ 𝜇′

2
+
𝜑C

n

n
< 𝜇′

1

where 𝜇′
1

satisfies (3.31). Repeating this argument for B, in view of (3.34) and (3.31), we conclude that

𝜆2 ∈ [𝜇2, 𝜇1]. For 2 < 𝛼 ≤ 𝜑𝜌n, (3.34) similarly yields 𝜆𝛼 ∈ [𝜇𝛼, 𝜇𝛼−1].
Condition on the submatrix B. Since 𝛼 ≤ 𝜑𝜌n, by the estimate that ∫ 2

2−t
1

2𝜋

√
4 − x2 dx ≥ 1

2𝜋
t3∕2, we

have 2 − 𝛾𝛼 ≤ n−2∕3𝜑𝜌n and thus 2 − 𝜇𝛼 ≤ n−2∕3𝜑2𝜌
n due to rigidity of eigenvalues (3.30).

Let 𝒜wGw be the set of n× 2 matrices W such that (3.35) in Lemma 3.12 holds. Specifically, 𝒜wGw
is defined by the condition

∀i, j ∈ {1, 2} w⊤
i G (E)wj = −

(
1 + O

(
n−2𝜀LR

))
𝛿ij +

⟨wi, u𝛼E⟩⟨wj, u𝛼E⟩
𝜇𝛼E − E

+ O
(
n−1∕3+C1𝜀LR

)
(3.44)
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for all E ∈
[
2 − n−2∕3𝜑2𝜌

n , 2 + n−2∕3𝜑2𝜌
n

]
and a universal constant C1 > 0. Here, 𝛼E ∈ [n] is the integer

so that ||𝜇𝛼E − E|| ≤ min𝛼∈[n] |𝜇𝛼 − E|.
Before we move on to the proof directly, let us introduce another set. Let 𝒜W be a set of W such

that for i ∈ {1, 2}

n−1∕3+𝜅𝜀LR ≤ √
n |⟨w̃i, u𝛼⟩| ≤ log2 n (3.45)

where 𝜅 ≥ max {2C1, 8} and

w̃i = wi −
√

p
1 − p

l.

Lemma 3.17. Let the W be the n×2 block W of Ã defined in (3.6). With the notation above, we have

P (W ∈ 𝒜W ) ≥ 1 − n−1∕3+2𝜅𝜀LR ,

and

P (⟨w̃i, u𝛼⟩ > 0) = 1

2
+ O

(
n−1∕3+5𝜀LR

)
for i = 1, 2. (3.46)

Proof. The upper bound in (3.45) holds with the desired probability due to Hoeffding’s inequality.

We will estimate the probability that the lower bound holds and prove (3.46) at the same time. Let

Xk ∶=
√

n + 2w̃1 (k) u𝛼 (k). Since w̃1 (k) has mean 0 and variance
1

n+2
, we set

Sn =
∑

k∈[n] Xk∑
k∈[n] EX2

k

=
√

n + 2⟨w̃1, u𝛼⟩
Observe that EX2

k = u𝛼 (k)2 and EX3
k ≤ c (p) |u𝛼 (k)|3 where c (p) > 0 is a constant depends

on p. Let Fn and Φ be the cumulative distributions of Sn and the standard normal random variable

respectively. By the Berry-Esseen Theorem (see, e.g., [22, Theorem 2.2.17]) we have

sup
x∈R

|Fn (x) − Φ (x)| ≤ C

( n∑
i=1

EX2
i

)−1∕2

⋅ max
i

E |Xi|3
EX2

i

≤ c (p)
‖u𝛼‖∞‖u𝛼‖2

.

Recall that from (3.26) in the definition of 𝒯(n,1), we have the l∞-norm bound: ‖u𝛼‖∞ ≤ n−1∕3+4𝜀LR .

Together with ‖u𝛼‖2 = 1 it yields

sup
x∈R

|Fn (x) − Φ (x)| ≤ n−1∕3+5𝜀LR

if n is large enough. Thus,

P

(√
n |⟨w̃1, u𝛼⟩| ≤ n−1∕3+𝜅𝜀LR

) ≤ P

(√
n |g| ≤ n−1∕3+𝜅𝜀LR

)
+ 2n−1∕3+5𝜀LR ≤ n−1∕3+1.5𝜅𝜀LR ,

where g ∼ N (0, 1) is a normal random variable. Furthermore, we also obtain (3.46) by comparing Φ
and Fn. ▪
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Proof of Lemma 3.16. By (3.7), if 𝜆 ∈ R is an eigenvalue of Ã, then det
(
W⊤G (𝜆)W − D + 𝜆I2

)
=

0. Let

f (E) ∶=
(
w⊤

1
G (E)w1 − 𝑑11 + E

) (
w⊤

2
G (E)w2 − 𝑑22 + E

)(
w⊤

1
G (E)w2 − 𝑑12

)2
.

Thus, 𝜆 is an eigenvalue whenever f (𝜆) = 1. We will use the function f (E) to determine the location

of the eigenvalues.

Let 𝒜D be the set of all 2 × 2 symmetric matrices D such that maxi,j∈{1,2} ||𝑑ij|| = O
(
c (p) n−1∕2

)
.

Recall the definitions of AwGw and AW from (3.44) and (3.45), respectively. Assume that W ∈ AwGw∩AW
and D ∈ 𝒜D. We will see below that this is a likely event.

Under these conditions, the argument becomes deterministic. By (3.26) from the definition of

𝒯(n,1), we have |⟨u𝛼, l⟩| ≤ n−1+2𝜀LR . Hence,

⟨wi, u𝛼⟩ = (1 + o (1)) ⟨w̃i, u𝛼⟩
and in particular ⟨wi, u𝛼⟩ and ⟨w̃i, u𝛼⟩ have the same sign.

Observe that E → w⊤
1

G (E)w1 − 𝑑11 + E is a strictly increasing function on (𝜇𝛼, 𝜇𝛼−1). It tends to

−∞ as E → 𝜇+
𝛼 and +∞ as E → 𝜇−

𝛼−1
. Thus, it crosses 0 only once. Let E0 be maximum of the roots of

w⊤
1

G (E)w1−𝑑11+E and w⊤
2

G (E)w2−𝑑22+E on (𝜇𝛼, 𝜇𝛼−1). Then by (3.44) and ||𝑑ij|| = O
(
c (p) n−1∕2

)
,

−
(
1 + O

(
n−2𝜀LR

))
+

⟨wi, u𝛼E0
⟩2

𝜇𝛼E0
− E0

+ E0 = 0

for some i ∈ {1, 2}. As 𝜇𝛼−1 > E0 > 𝜇𝛼 ≥ 2− n−2∕3𝜑2𝜌
n , this implies that E0 > 𝜇𝛼E0

, and thus 𝛼E0
= 𝛼.

Moreover, E0 − 1 = 1 + O
(
n−2𝜀LR

)
, and so

E0 =
(
1 + O

(
n−2𝜀LR

))
max

{⟨w1, u𝛼⟩2, ⟨w2, u𝛼⟩2
}
+ 𝜇𝛼.

For E > E0, both w⊤
1

G (E)w1 − 𝑑11 + E and w⊤
2

G (E)w2 − 𝑑22 + E are positive. Setting

E1 = 2 max
{⟨w1, u𝛼⟩2, ⟨w2, u𝛼⟩2

}
+ 𝜇𝛼,

for E ∈ [𝜇𝛼, E1], we also have 𝛼E = 𝛼, and

|||| ⟨w1, u𝛼⟩⟨w2, u𝛼⟩
𝜇𝛼 − E

|||| ≥ |||| ⟨w1, u𝛼⟩⟨w2, u𝛼⟩
𝜇𝛼 − E1

|||| = 1

2
min

{||||| ⟨w1, u𝛼E⟩⟨w2, u𝛼⟩ ||||| , |||| ⟨w2, u𝛼⟩⟨w1, u𝛼⟩ ||||
}

(3.47)

> log−2 n ⋅ n−1∕3+𝜅𝜀LR .

by (3.45). Hence, w⊤
1

G (E)w2 − 𝑑12 has no zeros in the interval [𝜆𝛼, E1]. Furthermore, because

min

{|||| ⟨w1, u𝛼⟩⟨w2, u𝛼⟩ |||| , |||| ⟨w2, u𝛼⟩⟨w1, u𝛼⟩ ||||
}

≤ 1,

using (3.44) and ||𝑑ij|| = O
(
c (p) n−1∕2

)
again, we get

(
w⊤

1
G (E1)w2 − 𝑑12

)2 =
(⟨w1, u𝛼⟩⟨w2, u𝛼⟩

𝜇𝛼 − E1

+O
(
n−1∕3+C1𝜀

))2
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=
(

1

2
min

{|||| ⟨w1, u𝛼⟩⟨w2, u𝛼⟩ |||| , |||| ⟨w2, u𝛼⟩⟨w1, u𝛼⟩ ||||
}

+ O
(
n−1∕3+C1𝜀LR

))2

≤ 1

4
+ o (1) ≤ 1

2
.

Together with (
w⊤

1
G (E1)w1 − 𝑑11 + E1

) (
w⊤

2
G (E1)w2 − 𝑑22 + E1

)
= 1 + o (1)

this yields f (E1) > 1. Since f (E0) = 0, there exists 𝜆 ∈ (E0, E1) such that f (𝜆) = 1, which shows that

𝜆𝛼 ∈ (E0, E1).
Now we will focus on s (𝜆𝛼). Since 𝜆𝛼 > E0 , the w⊤

1
G (𝜆𝛼)w1 − 𝑑11 + 𝜆𝛼 is positive. Also,

w⊤
1

G (𝜆𝛼)w2 − 𝑑12 =
⟨w1, u𝛼⟩⟨w2, u𝛼⟩

𝜇𝛼 − 𝜆𝛼
+ O

(
n−1∕3+C𝜀LR

)
,

and the magnitude of the leading term is significantly greater than O
(
n−1∕3+C𝜀LR

)
by (3.47). Since

𝜇𝛼−𝜆𝛼 < 0, the expression above has the same sign as −⟨w1, u𝛼⟩⟨w2, u𝛼⟩. Therefore, we conclude that

s (𝜆𝛼) = sign

(
−

w⊤
1

G (𝜆𝛼)w1 − 𝑑11 + 𝜆
w⊤

1
G (𝜆𝛼)w2 − 𝑑12

)
= sign (⟨w1, u𝛼⟩⟨w2, u𝛼⟩) = sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩)

for any Ã ∈ 𝒯 , W ∈ 𝒜wGw ∩𝒜W , and D ∈ 𝒜D.

It remains to estimate the expectation of s (𝜆𝛼). Recall that we conditioned on the block B, and W
and D are independent of B. Denote this conditional expectation and probability by EW,D and PW,D.

We have

||EW,D (s (𝜆𝛼) 1𝒯 (A))|| ≤ |||EW,D
(
s (𝜆𝛼) 1𝒯 (A)1𝒜W (W)1𝒜wGw(W)1𝒜D(D)

)|||
+ PW,D (W ∉ 𝒜wGw ∪𝒜W ) + PW,D (D ∉ 𝒜D)

= |||EW,D
(
sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩) 1𝒯 (A)1𝒜W (W)1𝒜wGw(W)1𝒜D(D)

)|||
+ O

(
n−1∕3+C′𝜀LR

)
.

We can get rid of the indicators in the leading term in a similar way:

|||EW,D
(
sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩) 1𝒯 (A)1𝒜W (W)1𝒜wGw(W)1𝒜D(D)

)|||
≤ ||EW,D (sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩) 1𝒯 (A))|| + PW,D (W ∉ 𝒜wGw ∪𝒜W ) + PW,D (D ∉ 𝒜D)

≤ ||EW,D (sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩) 1𝒯 (A))|| + O
(
n−1∕3+C′𝜀LR

)
.

Removing the conditioning over B, we get

|||E (
s (𝜆𝛼) 1𝒯 (Ã)

)|||
≤ |E (sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩) 1𝒯 (A))| + O

(
n−1∕3+C′𝜀LR

)
≤ |||E (

sign (⟨w̃1, u𝛼⟩⟨w̃2, u𝛼⟩) 1𝒯(n,1) (A
(1,2))

)||| + E
|||1𝒯 (A) − 1𝒯(n,1) (Ã

(1,2))||| + O
(
n−1∕3+C′𝜀LR

)
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In view of Corollary 3.11, the second term does not exceed n−1∕3+2𝜀LR . To bound the first term, we

condition again on the block B = Ã(1,2) such that Ã(1,2) ∈ 𝒯(n,1) and apply (3.46). By this inequality,

Pi ∶= P
[⟨w̃1, ua⟩ ≥ 0 ∣ Ã(1,2)] ∶= 1

2
+ pi

where pi = O
(
n−1∕3+5𝜀LR

)
. Using the independence of w̃1 and w̃2, we get

E
[
sign (⟨w̃1, ua⟩⟨w̃2, u𝛼⟩) ∣ Ã(1,2)] = P1P2 + (1 − P1)(1 − P2) − P1(1 − P2) − (1 − P1)P2

= 4p1p2 = O
(
n−2∕3+10𝜀LR

)
.

Removing the conditioning completes the proof of Lemma 3.16. ▪
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A APPENDIX

In this section we establish the spectral properties of symmetric random matrices appearing in

Definition 3.4. Namely, we prove the following lemma:

Lemma A.1. Fix p ∈ (0, 1), D > 0. Let Hp be a symmetric n× n matrix with zero diagonal and i.i.d
entries above the diagonal. The nondiagonal entries have the distribution:

hij =
⎧⎪⎨⎪⎩
√

1−p
p

1√
n

with probability p,

−
√

p
1−p

1√
n

with probability 1 − p.

Then, Hp satisfies (3.12) – (3.14) with probability greater than 1−n−D. Furthermore, for a sufficiently
small 𝜀 > 0, there exists 𝛿 > 0 such that Hp ∈ ℒℛ

(
n, n−2∕3−𝜀) with probability greater than 1−n−𝛿 .

Note that condition (3.16) involving 𝜃 and k can be derived from the second part of this lemma by

appropriately adjusting 𝜀.
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Conditions (3.12) and (3.14) were derived in [11, Theorem 2.1, 2.2] and Conditions (3.13) and

(3.14) were proved in [4, Theorem 2.12, 2.16].

Condition (3.16) was proved in [14]. However, the matrix model is slighly different from ours. To

show that Hp satisfies level repulsion at the edge, we rely on the fact that GOE satisfies this condition

and apply Green Function Comparison Theorem. This strategy is stated as Proposition 2.4 in [14]:

Proposition A.2. Let Hv and Hw be n × n symmetric random matrices with independent entries hv
ij

and hw
ij such that the Ehv

ij = Ehw
ij = 0 and E(hv

ij)
2 = E(hw

ij )
2 = 𝜎2

ij . Assume that Σ = (𝜎ij) satisfies the
following conditions

1. For j ∈ [n],
∑n

i=1 𝜎
2
ij = 1.

2. There exists 𝛿W > 0 such that 1 is a simple eigenvalue of Σ and Spec(˝) ⊆ [−1+ffiW, 1−ffiW]∪{1}.
3. There is a constant CW, independent of n, such that maxij{𝜎2

ij} ≤ CW

n
.

Also, assume that hij have a uniformly subexponential decay. Namely, there exists a constant 𝜈 > 0,
independent of n, such that for any x ≥ 1 and 1 ≤ i, j ≤ n we have

P
(|hij| > x𝜎ij

) ≤ 𝜈−1 exp(−x𝜈).

Assume that Hv satisfies the Level Repulsion Condition, that is, for a sufficiently small 𝜀 > 0, there
exists 𝛿 > 0 such that Hv ∈ ℒℛ

(
n, n−2∕3−𝜀) with probability greater than 1 − n−𝛿 . Then the same

holds for Hw with a different 𝛿 = 𝛿(𝜀).

The level repulsion condition has been proved for the GOE ensemble, see, for example, [1]. By

GOE we mean that a n×n symmetric random matrix W with independent centered gaussian entries (up

to symmetry) where the off-diagonal entries have variance 1∕n and the diagonal entries have variance

2∕n. We would like to apply Proposition A.2 with Hv = W and Hw = Hp. The first two moments of the

off-diagonal entries of these two ensembles are the same. The variances of the diagonal entries differ,

but since there are only n of them, it will be possible to show that they do not affect the level repulsion

significantly.

We proceed in two steps. First, we prove the level repulsion condition for a n × n matrix W̃ whose

off diagonal entries are the same as for W and the diagonal entries are 0. Then, we apply Proposition

A.2 to Hv = W̃ and Hw = Hp.

Thus, it is sufficient to prove

Proposition A.3. The level repulsion estimates hold for W̃.

The proof of this proposition is standard and is included it for the reader’s convenience. It follows

the proof of A.2 which relies on Lemma 2.6 (Green Function Comparison Theorem) and Lemma 2.7

in [14].

Since the second moments of the diagonal entries of W and W̃ differ, we need a substitute for Green

Function Comparison Theorem. The rest of the proof will be exactly the same as of Proposition A.2.

Before stating the result precisely, we will sketch the idea behind the comparison. Consider the

Stieltjes Transform of a symmetric matrix H is m (z) = 1

n
Tr

(
1

H−z

)
. Suppose 𝜆1,… , 𝜆n are eigenvalues

of H. Then,

n
𝜋

Im m (E + i𝜂) =
∑
i∈[n]

1

𝜋

𝜂

(𝜆i − E)2 + 𝜂2
.
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If we choose 𝜂 to be sufficiently small, then each summand is an approximation of the delta function

at each eigenvalue. On one hand, this provides a way to estimate number of eigenvalues in an interval.

Taking 𝜂 to be sufficiently small, we should have

n∑
𝛼

1(a,b)(𝜆𝛼) ≃ n∫
b

a

1

𝜋
Im m (E + i𝜂) dE.

On the other hand, Im m (E + i𝜂) can be expressed in terms of the Green Function G (z) ∶= 1

H−z
.

Im m (E + i𝜂) = 1

n
∑

i
Im Gii (E + i𝜂) .

We will use Lindeberg’s method to replace the diagonal entries of W by those of W̃ one by one and

estimate the expectation of the difference of Green functions.

Now we state the substitute for Lemma 2.6 in [14]:

Lemma A.4 (Green Function Comparison Theorem). Let F ∶ R → R be a bounded smooth function
whose first and second derivatives are bounded as well. There exists a constant 𝜀0 > 0 and for such
𝜀 < 𝜀0 and for any real numbers E1, E2 ∈

[
2 − n−2∕3+𝜀, 2 + n2∕3+𝜀], setting 𝜂 = n−2∕3−𝜀 we have

|||||
(
E

W − E
W̃
)

F
(

n∫
E2

E1

Im m (y + i𝜂) dy
)||||| ≤ cn−1∕3+c𝜀.

Lindeberg’s method is based on replacing the entries one by one. Yet, our proof uses the strong local

semicircle law, see Theorem A.6 below. Application of this law requires scaling of the matrix so that

the variance matrix will be doubly stochastic. However, replacing diagonal entries of W by 0 appearing

in W̃ results in two essentially different scalings of the variance matrix to the doubly stochastic form.

To deal with this obstacle, we perform replacement in smaller steps which will require n2 steps instead

of n.

Define n2 symmetric random matrices
{

W𝛽, 𝛾

}n
𝛽, 𝛾=0

whose off-diagonal entries are the same as of

W and W̃. Let
{

hi,j
}n

i,j=1
be i.i.d N

(
0, 2

n2

)
random variables. The diagonal entries of W𝛽,0 are

(
W𝛽,0

)
i,i =

𝛽∑
j=1

hj,i.

In particular, the diagonal entries of W𝛽,0 are centered gaussian variables with variance
2𝛽

n2
. Thus, the

variance matrix of W𝛽,0 is doubly stochastic if we scale it by a factor 1+O(n−1). Furthermore, W0,0 = W̃
and Wn,0 = W.

Now we define the diagonal entries of W𝛽,𝛾 :

(
W𝛽,𝛾

)
ii =

{∑𝛽
j=1

hj,i if i > 𝛾,∑𝛽
j=1

hj,i + h𝛽+1,i if i ≤ 𝛾.

In other words, we have

W𝛽,𝛾+1 = W𝛽,𝛾 + h𝛽+1,𝛾+1e𝛾+1e⊤𝛾+1
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and

W𝛽,n = W𝛽+1,0.

Our goal is to show that

|||||(EW𝛽,𝛾 − E
W𝛽,𝛾+1

)
F
(

n∫
E2

E1

Im m (y + i𝜂) dy
)||||| ≤ n−2n−1∕3+c𝜀

for each k = 0,… , n−1 and 𝛾 = 0,… , n−1. Then the statement of the theorem will follow immediately.

Before we move on to the proof, we need the following proposition.

Proposition A.5. Fix a sufficiently small 𝜀 > 0. Let ℐ ∶=
{

E + i𝜂 ∶ |E − 2| < n−2∕3+𝜀} and
𝜂 = n−2∕3−2𝜀.Then, for any D > 0, if n is sufficiently large, we have

P

(
max
𝛽,𝛾

sup
z∈ℐ

|||(G𝛽,𝛾 (z)
)

ij − 𝛿ij
||| > n−1∕3+4𝜀

)
< n−D

where G𝛽,𝛾 (z) = 1

W𝛽,𝛾−z
is the Green function of W𝛽, 𝛾 .

Let’s recall a theorem in [11, Theorem 2.1].

Theorem A.6 (Strong local semicircular law). Suppose that H satisfies the assumption of Proposi-
tion A.2. Then, for every s, D > 0 and 0 < 𝜀 < 1∕3, we have

P

(
sup|E−2|≤n−2∕3+𝜀

max
i,j∈[n]

|||(G (E + i𝜂))ij − 1
||| < 4n− 1

3
+s+𝜀

)
≥ 1 − n−D (A1)

where 𝜂 = n−2∕3−𝜀 and n ≥ n (s, D, 𝜀).

This theorem implies that max𝛽 supz∈ℐ
|||(G𝛽,0 (z)

)
ij − 𝛿ij

||| ≤ 4n− 1

3
+3𝜀

with probability at least 1 −
n−D. We extend this properties to W𝛽,𝛾 by comparison.

Proof of Proposition A.5. Fix 𝛽. Fix a sample of W𝛽, 0 such that

sup|E−2|≤n−2∕3+𝜀
max
i,j∈[n]

|||(G (E + i𝜂))ij − 1
||| < 4n− 1

3
+3𝜀

for |E − 2| ≤ n−2∕3+𝜀 and the samples of
{

h𝛽+1,𝛾

}n
𝛾=1

such that max𝛾 ||h𝛽+1, 𝛾
|| ≤ 𝜑n

n
where 𝜑n =

(log n)log log n. Notice that both conditions hold with probability at least 1 − n−D.

Define s0 = 4n− 1

3
+3𝜀

and s𝛾+1 = s𝛾
(

1 + 1

𝜑nn

)
. We claim that

|||(G𝛽,𝛾 (E + i𝜂)
)

i,j − 𝛿ij
||| ≤ 𝜙 (i, j, 𝛾)s𝛾 (A.2)

where

𝜙 (i, j, 𝛾) ∶= 1 + 1i≥𝛾 + 1j≥𝛾 .



HUANG AND RUDELSON 435

If it is true, then we have

max
𝛽,𝛾

sup
z∈ℐ

|||(G𝛽,𝛾 (E + i𝜂)
)

ij − 𝛿ij
||| ≤ 3sn ≤ 3s0(1 + 1

𝜑nn
)n ≤ n−1∕3+4𝜀.

If the matrices A and A + B are invertible, then the following resolvent identity holds:

1

A + B
= 1

A
− 1

A
B 1

A + B
.

Applying the equality repeatedly we get

1

A + B
= 1

A
− 1

A
B 1

A
+ 1

A
B 1

A
B 1

A
−

(
1

A
B
)3 1

A
· · · ±

(
1

A
B
)k 1

A + B
.

Suppose that (A.2) holds up to 𝛾 − 1. Let A = W𝛽, 𝛾−1 − (E + i𝜂) In and B = h𝛽+1,𝛾e𝛾e⊤𝛾 . For

simplicity, we write

h = h𝛽+1,𝛾 , P = e𝛾e⊤𝛾 , R = 1

A
= G𝛽,𝛾−1 (E + i𝜂) , and S = 1

A + B
= G𝛽,𝛾 (E + i𝜂) .

The equality above can be written as

S = 1

A + B
= R − hRPR + h2 (RP)2 R +… hk (RP)k S.

Entry-wise, we have

Sij =Rij − hRi𝛾R𝛾j + h2Ri𝛾R𝛾𝛾R𝛾j …(−1)khkRi𝛾Rk−1
𝛾𝛾 S𝛾j

=Rij − hRi𝛾R𝛾j

( k∑
l=0

(
−hR𝛾𝛾

)l
)

+ (−1)khkRi𝛾Rk−1
𝛾𝛾 S𝛾j (A.3)

We will use the following uniform bound of the entries of S:

|S𝛾j| ≤ ‖S‖ =
‖‖‖‖‖ 1

W𝛽,𝛾 (E + i𝜂)

‖‖‖‖‖ ≤ 1

𝜂
≤ n2∕3+𝜀.

Together with |h| < 𝜑n

n
and max

{|Ri𝛾 |, |R𝛾j|} ≤ 1+ s𝛾 ≤ 2, this means that the last summand in (A.3)

is less than
1

n3
if we pick k = 5. From now on we will fix k = 5. Then,

||||||
k∑

l=0

(
−hR𝛾𝛾

)l
|||||| ≤ C.

for some absolute constant C > 0. Therefore,

||Sij − 𝛿ij|| ≤ ||Rij − 𝛿ij|| + C ||hRi𝛾Rj𝛾 || + 1

n3

≤ 𝜙 (i, j, 𝛾 − 1) s𝛾−1 + C ||hRi𝛾R𝛾j|| + 1

n3
.
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It remains to show

𝜙 (i, j, 𝛾 − 1) s𝛾−1 + C ||hRi𝛾Rj𝛾 || + 1

n3
≤ 𝜙 (i, j, 𝛾) s𝛾 .

Consider 𝛾 ∉ {i, j}. We use the bound ||Ri𝛾 || ≤ 3s𝛾−1 and ||R𝛾j|| ≤ 3s𝛾−1 <
1

𝜑3
n

to get

C ||hRi𝛾Rj𝛾 || + 1

n3
≤ s𝛾−1

C
n𝜑2

n
+ 1

n3
≤ s𝛾−1

1

n𝜑n
.

Therefore, we have

||Sij − 𝛿ij|| ≤𝜙 (i, j, 𝛾 − 1) s𝛾−1 +
1

n𝜑n
s𝛾−1

≤𝜙 (i, j, 𝛾 − 1) s𝛾−1

(
1 + 1

𝜑nn

)
≤𝜙 (i, j, 𝛾) s𝛾

In the case 𝛾 ∈ {i, j}, we use the trivial bounds that max
{||Ri𝛾 || , ||Rj𝛾 ||} ≤ 1 + 3s𝛾−1 ≤ 2. Thus, we

have

C ||hRi𝛾Rj𝛾 || + 1

n3
≤ 4𝜑n

n
+ 1

n3
≤ s0.

Notice that 𝜙 (i, j, 𝛾) − 𝜙 (i, j, 𝛾 − 1) ≥ 1 since 𝛾 ∈ {i, j}.

||Sij − 𝛿ij|| ≤ 𝜙 (i, j, 𝛾 − 1) s𝛾−1 + s0 ≤ 𝜙 (i, j, 𝛾) s𝛾 .

The result follows. ▪

Now we are ready to prove Lemma A.4.

Proof. Recall that our goal is to show that

|||||(EW𝛽,𝛾 − E
W𝛽,𝛾+1

)
F
(

n∫
E2

E1

Im m (y + i𝜂) dy
)||||| ≤ n−2n−1∕3+c𝜀

With probability greater than 1 − n−D, we have

sup|E−2|≤n−2∕3+𝜀

|||(G𝛽,𝛾 (E + i𝜂)
)

ij − 𝛿ij
||| ≤ n−1∕3+𝜀.

for 𝛽 = 0,… , n − 1 and 𝛾 = 0,… , n − 1. Now, we fix 𝛽 and 𝛾 . Fix a sample of W𝛽,𝛾−1 such that the

above inequality holds.

We recycle the notation from the proof of Proposition A.5. Let A = W𝛽, 𝛾−1 − (E + i𝜂) In and

B = h𝛽+1,𝛾e𝛾e⊤𝛾 . For simplicity, we write

h = h𝛽+1,𝛾 , P = e𝛾e⊤𝛾 , R = 1

A
= G𝛽,𝛾−1 (E + i𝜂) , and S = 1

A + B
= G𝛽,𝛾 (E + i𝜂) .
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Then,

Sij = Rij + hRi𝛾Rj𝛾 + h2Ri𝛾R𝛾𝛾Rj𝛾 + h3Ri𝛾R2
𝛾𝛾Sj𝛾 ,

where, as before, |Sj𝛾 | ≤ ‖S‖ ≤ n2∕3+𝜀. Taking expectation with respect to h and using |Ri𝛾 | ≤ n−1∕3+𝜀+
𝛿i𝛾 , we get

|EhSii − Rii| ≤ 2

n2
n−2∕3+2𝜀 + C

n3
n1∕3+2𝜀 + 𝛿i𝛾

C
n2
.

Furthermore, if |h| ≤ 𝜑n

n
, then by (A.3)

|Sii − Rii| ≤ C ||hRi𝛾R𝛾i|| + 1

n3
≤ 𝜑nn−5∕3+3𝜀 + 𝛿i𝛾

𝜑n

n
.

Therefore,

|||||
n∑

i=1

(Sii − Rii)
||||| ≤ n−2∕3+4𝜀 when |h| ≤ 𝜑n

n
, (A.4)

and

|||||Eh

n∑
i=1

(Sii − Rii)
||||| ≤ n−5∕3+3𝜀. (A.5)

Now we examine the difference:

F

(
∫

E2

E1

∑
i

Sii (y + i𝜂) dy

)
− F

(
∫

E2

E1

∑
i

Rii (y + i𝜂) dy

)

= F′

(
∫

E2

E1

∑
i

Rii (y + i𝜂) dy

)(
∫

E2

E1

∑
i
(Sii(y + i𝜂) − Rii(y + i𝜂)) dy

)

+ O
⎛⎜⎜⎝
(
∫

E2

E1

∑
i
(Sii(y + i𝜂) − Rii(y + i𝜂)) dy

)2⎞⎟⎟⎠
where we rely on the fact that F′′ is bounded. Since |E2 − E1| ≤ 2n−2∕3+𝜀, by (A.4) we have

(
∫

E2

E1

∑
i
(Sii(y + i𝜂) − Rii(y + i𝜂)) dy

)2

≤ (
2n−2∕3+𝜀n−2∕3+4𝜀

)2 ≤ n−8∕3+C𝜀

if |h| ≤ 𝜑n

n
. Furthermore, if we take the expectation with respect to h and W𝛽,𝛾 , the same bound still

holds. Indeed, we can apply this bound conditioning on |h| ≤ 𝜑n

n
, and use a trivial bound

(
∫

E2

E1

∑
i

Sii(y + i𝜂) − Rii(y + i𝜂) dy

)2

≤ nC
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valid with some fixed constant C > 0 for other h. Similarly, (A.5) yields

||||||EW𝛽, 𝛾−1
Eh

(
∫

E2

E1

∑
i
(Sii(y + i𝜂) − Rii(y + i𝜂)) dy

)|||||| ≤ n−7∕3+C𝜀.

Therefore, we conclude that(
E

W𝛽,𝛾−1 − E
W𝛽,𝛾

)
Im m (E + i𝜂) ≤ n−2n−1∕3+c𝜀

finishing the proof. ▪


