
Optimal Learning Algorithms for Stochastic Inventory
Systems with Random Capacities

Weidong Chen, Cong Shi*
Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA, aschenwd@umich.edu, shicong@umich.edu

Izak Duenyas
Technology and Operations, Ross School of Business, University of Michigan, Ann Arbor, MI 48109, USA, duenyas@umich.edu

W e propose the first learning algorithm for single-product, periodic-review, backlogging inventory systems with ran-
dom production capacity. Different than the existing literature on this class of problems, we assume that the firm

has neither prior information about the demand distribution nor the capacity distribution, and only has access to past
demand and supply realizations. The supply realizations are censored capacity realizations in periods where the policy
need not produce full capacity to reach its target inventory levels. If both the demand and capacity distributions were
known at the beginning of the planning horizon, the well-known target interval policies would be optimal, and the corre-
sponding optimal cost is referred to as the clairvoyant optimal cost. When such distributional information is not available a
priori to the firm, we propose a cyclic stochastic gradient descent type of algorithm whose running average cost asymptot-
ically converges to the clairvoyant optimal cost. We prove that the rate of convergence guarantee of our algorithm is
Oð1= ffiffiffiffi

T
p Þ, which is provably tight for this class of problems. We also conduct numerical experiments to demonstrate the

effectiveness of our proposed algorithms.

Key words: inventory; random capacity; online learning algorithms; regret analysis
History: Received: December 2018; Accepted: January 2020 by Qi Annabelle Feng, after 1 revision.

1. Introduction

Capacity plays an important role in a production–
inventory system (see Zipkin (2000) and Simchi-Levi
et al. (2014)). The amount of capacity and the variabil-
ity associated with this capacity affect the production
plan as well as the amount of inventory that the firm
will carry. As seen from our literature review in sec-
tion 1.2, there has been a rich and growing literature
on capacitated production–inventory systems, and
this literature has demonstrated that capacitated sys-
tems are inherently more difficult to analyze com-
pared to their uncapacitated counterparts, due to the
fact that the capacity constraint makes future costs
heavily dependent on the current decision. For
instance, facing a capacity constraint, a mistake of
under-ordering in one particular period may cause
the system to be unable to produce up to the inven-
tory target level over the next multiple periods.
The prior literature on capacitated inventory sys-

tems assumes that the stochastic future demand that
the firm will face and the stochastic future capacity
that the firm will have access to are given by exoge-
nous random variables (or random processes), and
the inventory decisions are made with full knowl-
edge of future demand and capacity distributions.
However, in most practical settings, the firm does

not know the demand distribution a priori, and has
to deduce the demand distribution based on the
observed demand while it is producing and selling
the product. Similarly, when the firm starts produc-
ing a new product on a manufacturing line, the firm
may have very little idea of the variability associated
with this capacity a priori. The uncertainty of capac-
ity can be much more significant than the uncer-
tainty in demand in some cases. For instance, Tesla
originally stated that it had a line that would be able
to build Model 3s at the rate of 5000 per week by the
end of June 2017. However, Tesla was never able to
reach this production rate at any time in 2017. In
fact, during the entire fourth quarter of 2017, Tesla
was only able to produce 2425 Model 3s according to
Sparks (2018). Tesla was finally able to achieve the
rate of 5000 produced cars the last week of the sec-
ond quarter of 2018. However, even at the end of
August 2018, Tesla was not able to achieve anywhere
near an average 5000 Model 3s production rate per
week. Even if we ignore ramp-up issues and assume
that Tesla has finally (after one year’s delay)
achieved “stability,” according to Bloomberg’s esti-
mate as of September 10, 2018, Tesla was only pro-
ducing an average of 3857 Model 3s per week in
September according to Randall and Halford (2018).
Even though Tesla may have had more problems
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than the average manufacturer, significant uncer-
tainty over what production rate can be achieved at
a factory is not at all uncommon. In fact, some ana-
lysts have questioned whether this line will ever be
able to achieve a consistent production rate of 5000
Model 3s per week displaying the difficulty of esti-
mating the true capacity of a production line.
Another salient example is Apple’s launches of its

iPhone over time. When the iPhone 6 was being intro-
duced, there were a large number of articles (see, e.g.,
Brownlee (2014)) indicating that the radical redesign of
Apple’s smartphone would lead to a short supply of
enough devices when it launched due to the increasing
difficulty of producing the phone with the new design.
In this case, Apple was producing the iPhone already
for about seven years. However, the new generation
product was significantly different so that the esti-
mates that Apple had built of its lines’ production rates
based on the old products were no longer valid. Simi-
larly, as Apple was about to launch its latest iPhone in
October 2018, there were numerous reports about
potential capacity problems. Sohail (2018) discussed
how supply might be constrained at launch due to
capacity problems. However, a month and a half after
launch, Apple found that sales of its XS and XRmodels
were less than predicted and had to resort to increas-
ing what it offers for trade-in of previous generation
iPhone models as an incentive to boost sales. Thus,
even in year 11 of production of its product, Apple still
has to deal with capacity and demand uncertainty and
with each new generation, it has to rediscover its
capacity and demand distributions. This is what has
motivated us to develop a learning algorithm that
helps the firm decide on how many units to produce,
while it is learning about its demand and capacity dis-
tributions.

1.1. Main Results, Contributions, and Connections
to Prior Work
We develop the first learning algorithm, called the
data-driven random capacity algorithm (DRC for short),
for finding the optimal policy in a periodic-review
production–inventory system with random capaci-
ties, where the firm neither knows the demand distri-
bution nor the capacity distribution a priori. Note that
our learning algorithm is nonparametric in the sense
that we do not assume any parametric forms of these
distributions. The performance measure is the stan-
dard notion of regret in online learning algorithms
(see Shalev-Shwartz (2012)), which is defined as the
difference between the cost of the proposed learning
algorithm and the clairvoyant optimal cost, where the
clairvoyant optimal cost corresponds to the hypotheti-
cal case where the firm knew the demand and capac-
ity distributions a priori and applied the optimal
(target interval) policy.

Our main result is to show that the cumulative
T-period regret of the DRC algorithm is bounded by
Oð ffiffiffiffi

T
p Þ, which is also theoretically the best possible

for this class of problems. Our proposed learning
algorithm is connected to Huh and Rusmevichientong
(2009) that studied the classical multi-period stochas-
tic inventory model and Shi et al. (2016) that
considered the multi-product setting under a ware-
house capacity constraint. We point out that both
prior studies hinged on the myopic optimality of the
clairvoyant optimal policy, that is, it suffices to exam-
ine a single-period cost function. However, the ran-
dom production capacity (on how much can be
produced) considered in this work is fundamentally
different than the warehouse capacity (on how much
can be stored) considered in Shi et al. (2016), and our
problem does not enjoy myopic optimality. It is well-
known in the literature that models with random pro-
duction capacities are challenging to analyze, in that
the current decisions will impact the cost over an
extended period of time (rather than a single period).
For example, an under-ordering in one particular per-
iod may cause the system to be unable to produce up
to the inventory target level over the next multiple
periods. Thus, we need to carefully re-examine the
random capacitated problem with demand and
capacity learning.
There are three main innovations in the design and

analysis of our learning algorithm.

1. First, we propose a cyclic updating idea. In our
setting, the “right” cycle is the so-called produc-
tion cycle, first proposed in Ciarallo et al. (1994)
to establish the extended myopic optimality for
the random capacitated inventory systems. The
production cycle is defined as the interval
between successive periods in which the policy
is able to attain a given base-stock level, in
which one can show that the cumulative cost
within a production cycle is convex in the
base-stock level. Naturally, our DRC algorithm
updates base-stock levels in each production
cycle. Note that these production cycles (seen
as renewal processes) are not a priori fixed but
are sequentially triggered as demand and sup-
ply are realized over time. Technically, we
develop explicit upper bounds on moments of
the production cycle length and the associated
stochastic gradient. A major challenge in the
algorithm design is that the algorithm needs to
determine if the current production cycle (with
respect to the clairvoyant optimal system) ends
before making the decision in the current per-
iod. We design for each possible scenario to
gather sufficient information to determine if
the target level should be updated.
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2. Second, the observed capacity realizations are, in
fact, censored. That is, when the plant is able to
complete production (i.e., the capacity was suffi-
cient in the current period to bring inventory up
to the desired level), the actual capacity will not
be revealed. This creates major challenges in the
design and analysis of learning algorithms. For
example, suppose that at the beginning of a per-
iod, the firm decides to produce 100 units. If the
production facility has a random capacity of 80
with 1

3 probability, 120 with 1
3 probability, and

150 with 1
3 probability, then upon producing 100

units, the firm can only confirm that the capacity
in this period is not 80, but cannot decide
between 120 and 150. Therefore, the firm needs
to carry out active explorations, which is to over-
produce when necessary, in order to learn the
capacity correctly. If the firm employs no active
explorations and believes what it observes, the
firm will have an erroneous assumption on the
capacity, leading to a spiral down effect.

3. Third, facing random capacity constraints, the
firmmay not be able to achieve the desired target
inventory level as prescribed by the algorithm,
and hence we keep track of a virtual (infeasible)
bridging system by “temporarily ignoring” the
random capacity constraints, which is used to
update our target level in the next iteration. The
gradient information of this virtual system needs
to be correctly obtained from the demand and
the censored capacity observed in the real imple-
mented system when the random capacity con-
straints are imposed. Also, due to positive
inventory carry-over and capacity constraints,
we need to ensure that the amount of overage
and underage inventory (relative to the desired
target level) is appropriately bounded, to
achieve the desired rate of convergence of regret.

1.2. Relevant Literature
Our work is closely related to two streams of litera-
ture: (i) capacitated stochastic inventory systems and
(ii) learning algorithms for stochastic inventory sys-
tems.
Capacitated stochastic inventory systems. There

has been a substantial body of literature on capacitated
stochastic inventory systems. The dominant paradigm
in most of the existing literature has been to formulate
stochastic inventory control problems using a dynamic
programming framework. This approach is effective in
characterizing the structure of optimal policies. We
first list the papers that consider fixed capacity. Feder-
gruen and Zipkin (1986a, b) showed that a modified
base-stock policy is optimal under both the average
and discounted cost criteria. Tayur (1992), Kapuscinski
and Tayur (1998), and Aviv and Federgruen (1997)

derived the optimal policy under independent cyclical
demands. €Ozer and Wei (2004) showed the optimality
of modified base-stock policies in capacitated models
with advance demand information. Even for these clas-
sical capacitated systems with non-perishable prod-
ucts, the simple structure of their optimal control
policies does not lead to efficient algorithms for com-
puting the optimal control parameters. Tayur (1992)
used the shortfall distribution and the theory of storage
processes to study the optimal policy for the case of
i.i.d. demands. Roundy and Muckstadt (2000) showed
how to obtain approximate base-stock levels by
approximating the distribution of the shortfall process.
Kapuscinski and Tayur (1998) proposed a simulation-
based technique using infinitesimal perturbation anal-
ysis to compute the optimal policy for capacitated sys-
tems with independent cyclical demands. €Ozer and
Wei (2004) used dynamic programming to solve capac-
itated models with advance demand information when
the problem size is small. Levi et al. (2008) gave a 2-
approximation algorithm for this class of problems.
Angelus and Zhu (2017) identified the structure of
optimal policies for capacitated serial inventory sys-
tems. All the papers above assume that the firm knows
the stochastic demand distribution and the determinis-
tic capacity level.
There has also been a growing body of literature on

stochastic inventory systems where both demand and
capacity are uncertain. When capacity is uncertain,
several papers (e.g., Henig and Gerchak (1990), Feder-
gruen and Yang (2011), Huh and Nagarajan (2010))
assumed that the firm has uncertain yield (i.e., if they
start producing a certain number of products, an
uncertain proportion of what they started will become
finished goods). An alternative approach by Ciarallo
et al. (1994) and Duenyas et al. (1997) assumed that
what the firm can produce in a given time interval (e,
g., a week) is stochastic (due to, e.g., unexpected
downtime, unexpected supply shortage, unexpected
absenteeism, etc.) and proved the optimality of
extended myopic policies for uncertain capacity and
stochastic demand under discounted optimal costs
scenario. G€ull€u (1998) established a procedure to com-
pute the optimal base stock level for uncertain capac-
ity production–inventory systems. Wang and
Gerchak (1996) extended the analysis to systems with
both random capacity and random yield. Feng (2010)
addressed a joint pricing and inventory control prob-
lem with random capacity and shows that the optimal
policy is characterized by two critical values: a reor-
der point and a target safety stock. More recently,
Chen et al. (2018) developed a unified transformation
technique which converts a non-convex minimization
problem to an equivalent convex minimization prob-
lem, and such a transformation can be used to prove
the preservation of structural properties for inventory
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control problems with random capacity. Feng and
Shanthikumar (2018) introduced a powerful notion
termed stochastic linearity in mid-point, and trans-
formed several supply chain problems with nonlinear
supply and demand functions into analytically tract-
able convex problems. All the papers above assume
that the firm knows the stochastic demand distribu-
tion and the stochastic capacity distribution.
Learning algorithms for stochastic inventory

systems. There has been a recent and growing interest
in situations where the distribution of demand is not
known a priori. Many prior studies have adopted para-
metric approaches (see, e.g., Lariviere and Porteus
(1999), Chen and Plambeck (2008), Liyanage and Shan-
thikumar (2005), Chu et al. (2008)), and we refer inter-
ested readers to Huh and Rusmevichientong (2009) for
a detailed discussion on the differences between para-
metric and nonparametric approaches.
For nonparametric approaches, Burnetas and

Smith (2000) considered a repeated newsvendor
problem, where they developed an algorithm that
converges to the optimal ordering and pricing policy
but did not give a convergence rate result. Huh and
Rusmevichientong (2009) proposed a gradient des-
cent based algorithm for lost-sales systems with cen-
sored demand. Besbes and Muharremoglu (2013)
examined the discrete demand case and showed that
active exploration is needed. Huh et al. (2011)
applied the concept of Kaplan-Meier estimator to
devise another data-driven algorithm for censored
demand. Shi et al. (2016) proposed an algorithm for
multi-product systems under a warehouse-capacity
constraint. Zhang et al. (2018) proposed an algorithm
for the perishable inventory system. Huh et al.
(2009) and Zhang et al. (2019) and Agrawal and Jia
(2019) developed learning algorithms for the lost-
sales inventory system with positive lead times.
Yuan et al. (2019) and Ban (2019) considered fixed
costs. Chen et al. (2019a, b) proposed algorithms for
the joint pricing and inventory control problem with
backorders and lost-sales, respectively. Chen and Shi
(2020) focused on learning the best Tailored Base-
Surge (TBS) policies in dual-sourcing inventory sys-
tems. Another popular nonparametric approach in
the inventory literature is sample average approxi-
mation (SAA) (e.g., Kleywegt et al. (2002), Levi et al.
(2007, 2015)) which uses the empirical distribution
formed by uncensored samples drawn from the true
distribution. Concave adaptive value estimation (e.g.,
Godfrey and Powell (2001), Powell et al. (2004)) suc-
cessively approximates the objective cost function
with a sequence of piecewise linear functions. None
of the papers surveyed above modeled random
capacity with a priori unknown distribution, and we
therefore need to develop new learning approaches
to address this issue.

1.3. Organization and General Notation
The remainder of the study is organized as follows. In
section 2, we formally describe the capacitated inven-
tory control problem for random capacity. In section 3,
we show that a target interval policy is optimal for
capacitated inventory control problem with salvaging
decisions. In section 4, we introduce the data-driven
algorithm for random capacity under unknown
demand and capacity distribution. In section 5, we
carry out an asymptotic regret analysis, and show that
the average T-period expected cost of our policy differs
from the optimal expected cost by at most Oð ffiffiffiffi

T
p Þ. In

section 6, we compare our policy performance to the
performance of two straw heuristic policies and show
that simple heuristic policies used in practice may not
work very well. In section 7, we conclude our study
and point out plausible future research avenues.
Throughout the study, we often distinguish between

a random variable and its realizations using capital
and lower-case letters, respectively. For any real num-
bers a; b 2 R, aþ ¼ maxfa; 0g, a� ¼ �minfa; 0g; the
join operator a∨b = max{a,b}, and the meet operator
a ^ b ¼ minfa; bg.

2. Stochastic Inventory Control with
Uncertain Capacity

We consider an infinite horizon periodic-review
stochastic inventory planning problem with produc-
tion capacity constraint. We use (time-generic) random
variable D to denote random demand, and U to denote
random production capacity. The random production
capacity may be caused by maintenance or downtime
in the production line, lack of materials, among others
(see Zipkin (2000), Simchi-Levi et al. (2014), Snyder
and Shen (2011)). The demand and the capacity have
distribution functions FDð�Þ and FUð�Þ, respectively,
and density functions fDð�Þ and fUð�Þ, respectively.
At the beginning of our planning horizon, the firm

does not know the underlying distributions of D and
U. In each period t = 1,2,. . ., the sequence of events
are as follows:

1. At the beginning of each period t, the firm
observes the starting inventory level xt before
production. (We assume without loss of general-
ity that the system starts empty, i.e., x1 ¼ 0.) The
firm also observes the past demand and (cen-
sored) capacity realizations up to period t � 1.

2. Then the firm decides the target inventory
level st. If st � xt, then it will try to produce
qt ¼ st � xt to bring its inventory level up to st.
Here, qt is the target production quantity
which may not be achieved due to capacity.
During the period, the firm will realize its ran-
dom production capacity ut, and therefore, its
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final inventory level will be st ^ ðxt þ utÞ. We
emphasize here that the firm will not observe
the actual capacity realization ut if they meet
their inventory target st. Thus, the firm actually
observes the censored capacity ~ut, that is, when
the production plan cannot be fulfilled at per-
iod t, ~ut ¼ ut; otherwise, ~ut ¼ ðst � xtÞþ ^ ut.
In contrast, if st \ xt, then the firm will salvage
�qt ¼ xt � st units. Notice that in our model,
we allow for negative qt, which represents sal-
vaging. We denote the inventory level after
production or salvaging as yt ¼ st ^ ðxt þ utÞ. If
the firm decides to bring its inventory level up,
it incurs a production cost cðyt � xtÞþ and if it
decides to bring its inventory level down, it
receives a salvage value hðxt � ytÞþ, where c is
the per-unit production cost and h is the per-
unit salvage value. We assume that h ≤ c.

3. At the end of the period t, after production is
completed, the demand Dt is realized, and we
denote its realization by dt, which is satisfied
to the maximum extent using on-hand inven-
tory. Unsatisfied demands are backlogged,
which means that the firm can observe full
demand realization dt in period t. The state
transition can be written as xtþ1 ¼ st^
ðxt þ utÞ � dt ¼ yt � dt. The overage and under-
age costs at the end of period t is hðyt � dtÞþþ
bðdt � ytÞþ, where h is the per unit holding cost
and b is the per unit backlogging cost.

Following the system dynamics described above,
we write the single-period cost as a function of st and
xt as follows.

Xðxt;stÞ¼ cðst^ðxtþUtÞ�xtÞþ�hðxt� st^ðxtþUtÞÞþ
þh st^ xtþUtð Þ�Dtð Þþ
þ b Dt� st^ xtþUtð Þð Þþ

¼ cðyt�xtÞþ�hðxt�ytÞþþhðyt�DtÞþ
þ bðDt�ytÞþ:

Let ft denote the cumulative information collected up
to the beginning of period t, which includes all the
realized demands d, observed (censored) capacities u,
and past ordering decisions s up to period t � 1. A
feasible closed-loop control policy p is a sequence of
functions st ¼ ptðxt; ftÞ; t ¼ 1; 2; . . ., mapping the
beginning inventory xt and ft into the ending inven-
tory decision st. The objective is to find an efficient
and effective adaptive inventory control policy p, or a
sequence of inventory targets fstg1t¼1, which mini-
mizes the long-run average expected cost

lim sup
T!1

1

T
� E

XT
t¼1

X xt; stð Þ
" #

: ð1Þ

If there is a discount factor a 2 (0,1), the objective
becomes the total discounted cost, that is,

E
X1
t¼1

at � X xt; stð Þ
" #

: ð2Þ

The major notation used in this paper is summar-
ized in Table 1.

3. Clairvoyant Optimal Policy (with
Salvage Decisions)

To facilitate the design of a learning algorithm, we first
study the clairvoyant scenario by assuming that the
distributions of demand and production capacity were
given a priori. Furthermore, we assume that the actual
production capacity in each period is observed by the
firm, that is, there is no capacity censoring in this clair-
voyant case. The clairvoyant case is useful as it serves
as a lower bound on the cost achievable by the learn-
ing model. For the case where the firm can only raise
its inventory (without any salvage decisions), Ciarallo
et al. (1994) showed that a produce-up-to policy is opti-
mal. A minor contribution of this study is to extend
their policy by enabling the firm to salvage extra goods
with salvage price h at the beginning of each period
before the demand is realized. The firm incurs produc-
tion cost c per-unit good if it decides to produce and
receives a salvage value of h (i.e., incurring a salvage
cost �h) per-unit good if it decides to salvage, and
c ≤ h.
We shall describe a target interval policy, and show

that it is optimal. A target interval policy is character-
ized by two threshold values ðs�l ; s�uÞ such that if the
starting inventory level x\ s�l , we order up to s�l , if
x [ s�u, we salvage down to s�u, and if s�l � x� s�u, we
do nothing. Note that target interval policy has been
introduced in a number of earlier papers. In fact, the

Table 1 Summary of Major Notation

Symbol Type Description

c Parameter Production cost.
h Parameter Salvage cost.
h Parameter Per unit holding cost.
b Parameter Per unit backlogging cost.
Dt ; dt Parameter Random demand and its realization in period t.
FD ; fD Parameter Demand probability and density function.
Ut ; ut Parameter Random production capacity and its realization in

period t.
FU ; fU Parameter Capacity probability and density function.
s�l or s� State Clairvoyant target product-up-to level after ordering.
s�u State Clairvoyant target salvage-down-to level after salvaging.
xt State Beginning inventory level in period t.
yt State Ending inventory level in period t.
st Control Target inventory level after ordering/salvaging in

period t.
qt Control Ordering/salvaging quantity in period t.
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structure of this policy was first identified by Eberly
and Van Mieghem (1997) and the term target interval
policy was first used by Angelus and Porteus (2002).

ASSUMPTION 1. We make the following assumptions on
the demand and capacity distributions.

1. The demands D1; . . .;DT and the capacities U1; . . .;
UT are independently and identically distributed
(i.i.d.) continuous random variables, respectively.
Also, the demand Dt and the capacity Ut are
independent across all time periods t 2 {1,. . .T}.

2. The (time generic) demand and capacity D and U
have a bounded support ½0; �d� and a bounded
support ½0; �u�, respectively. We also assume that
E½U� [ E½D� to ensure the system stability.

3. The (clairvoyant) optimal produce-up-to level s�l lies
in a bounded interval ½0;�s�, that is, s�l 2 ½0;�s�.

Assumption 1(a) assumes the stationarity of the
underlying production–inventory system to be
jointly learned and optimized over time. Assump-
tion 1(b) ensures the stability of the system, that is,
the system can clear all the backorders from time
to time. Assumption 1(c) assumes that the firm
knows an upper bound (potentially a loose one) on
the optimal ordering levels. These assumptions are
mild and standard in inventory learning literature
(see, e.g., Huh and Rusmevichientong (2009), Huh
et al. (2009), Zhang et al. (2019, 2018)). We also
remark here that an important future research
direction is to incorporate non-stationarity of the
demand and capacity processes, which would
require a significant methodological breakthrough.

3.1. Optimal Policy for the Single Period Problem
with Salvaging Decisions
We first use a single-period problem to illustrate the
idea of target interval policy, and then extend it to the
multi-period problem with salvage decisions.

PROPOSITION 1. For the single period problem, a target
interval policy is optimal. More specifically, there exist
two threshold levels s�l and s�u such that the optimal pol-
icy can be described as follows:

1. When s�l � x� s�u, the firm decides to do nothing.
2. When x\ s�l , the firm decides to produce to bring

inventory up to s�l as close as possible.
3. When s�u \ x, the firm decides to salvage and bring

inventory down to s�u.

The three situations discussed above can be readily
illustrated in Figure 1. The two curves are labeled
“q ≥ 0” and “q < 0,” respectively. The solid curve is
the effective cost function Ω(y), which consists of
curve “q ≥ 0” for s ≥ x, and curve “q < 0” for s < x.

3.2. Optimal Policy for the Multi-Period Problem
with Salvaging Decisions
Next, we derive the optimal policy for the multi-per-
iod problem with salvaging decisions.

PROPOSITION 2.

1. For the T-period finite-horizon problem with
salvaging decisions, a target interval policy is
optimal. More specifically, for each period t = 1,. . .,
T, there exist two time-dependent threshold levels s�t;l
and s�t;u such that the optimal target level s�t satisfies

s�t ¼
s�t;l; xt\s�t;l;
xt; s�t;l � xt � s�t;u;
s�t;u; xt [ s�t;u:

8><
>:

2. For both the infinite horizon discounted problem (2)
with salvaging decisions and the average cost
problem (1) with salvaging decisions, a target
interval policy is optimal. More specifically, there
exist two time-invariant threshold levels s�l and s�u
such that the optimal target level s�t satisfies

(a) (b) (c)

Figure 1 Illustration of a Target Interval Policy
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s�t ¼
s�l ; xt\s�l ;
xt; s�l � xt � s�u;
s�u; xt [ s�u:

8<
:

Note that for the finite time horizon case, the optimal
target level depends on a pair of time-dependent thresh-
old levels, whereas for the infinite horizon case, the
optimal interval policy depends on a pair of time-invar-
iant threshold levels. Since the clairvoyant benchmark
is chosen with respect to the infinite horizon problem,
our goal is to find the optimal target interval ðs�l ; s�uÞ.
We have shown that if the firm has the option to sal-
vage extra goods at the beginning of each period, then
it will choose to salvage extra goods if the starting
inventory is high enough. In the full-information pro-
blem, we can immediately conclude that in the infinite
horizon problem, the salvage decision will only be
made in the first period when the initial starting inven-
tory is higher than s�u. This is because after salvaging
down to s�u in the first period, the inventory level will
gradually be consumed down below s�l and after that,
the inventory level will never exceed s�l again, due to
the stationary demand assumption. Thus, the optimal
produce-up-to level s�l is the same as the optimal pro-
duce-up-to level, denoted by s�, in Ciarallo et al. (1994)
without salvaging options, and an extended myopic
policy described therein is also optimal for the infinite
horizon average cost setting. In the remainder of this
study, we will use s�l and s� interchangeably. However,
we must emphasize here that in the learning version of
the problem, since we do not know the demand and
capacity distributions (and of course s�l or s

�), we need
to actively explore the inventory space, and salvaging
decisions will be made in our online learning algorithm
(more frequently in the beginning phase).

4. Nonparametric Learning Algorithms

As discussed in section 1, in many practical scenarios,
the firm neither knows the distribution of demand D
nor the distribution of production capacity U at the
beginning of the planning horizon. Instead, the firm
has to rely on the observable demand and capacity
realizations over time to make adaptive production
decisions. More precisely, in each period t, the firm
can observe the realized demand dt as well as the
observed production capacity ~ut. In our model, while
dt is the true demand realization (since the demands
are backlogged), the observed production capacity ~ut
is, in fact, censored. More explicitly, the censored
capacity ~ut ¼ ðst � xtÞþ ^ ut. That is, suppose the firm
wants to raise the starting inventory level xt to some
target level st. If the true realized production capacity
ut [ ðst � xtÞþ, then the firm cannot observe the
uncensored capacity realization ut. Our objective is to
find an efficient and effective learning production

control policy whose long-run average cost converges
to the clairvoyant optimal cost (had the distributional
information of both the random demand and the ran-
dom capacity been given a priori) at a provably tight
convergence rate.

4.1. The Notion of Production Cycles
It is well-known in the literature that the optimal pol-
icy for a capacitated inventory system cannot be
solved myopically, that is, the control that minimizes
a single-period cost is not optimal. Moreover, when
capacities are random, the per-period cost function is
non-convex, due to the fact that the decision is trun-
cated by a random variable (see Chen et al. (2018) and
Feng and Shanthikumar (2018)). Thus, one cannot run
the stochastic gradient descent algorithms period by
period. To overcome this difficulty, we partition the
set of time periods into carefully designed learning
cycles, and update our production target levels from
cycle to cycle, instead of from period to period.
We now formally define these learning cycles.

Given that we produce up to the target level st in
some period t and then use the same target level st for
all subsequent periods, we define a production cycle as
the set of successive periods starting from period t
until the next period in which we are able to produce
up to st again. Mathematically, let sj denote the start-
ing period of the jth production cycle. Then, for any
given initial target level s1 2 ½0;�s�, we have

s1 ¼ 1;

sj ¼ min t� sj�1 þ 1
��� xt þ ut � ssj�1

n o
; for all j� 2:

For convenience, we call ssj the cycle target level for
production cycle j. We let lj be the cycle length of the
jth production cycle, that is, lj ¼ sjþ1 � sj.
Figure 2 gives a simple graphical example of a pro-

duction cycle. Suppose the target production level
s5 ¼ 30 and the realized capacity levels ut ¼ 15 for
t = 5,. . .,9. In periods 6,7,8, we are not able to attain
the target level s5 even if we produce the full capacity
in these periods, whereas we are able to do so in per-
iod 9. Therefore, this production cycle runs from per-
iod 5 to period 9. Note that in period 9, we could only
observe the censored capacity ~u9 ¼ 11 (instead of the
true realized capacity u9 ¼ 15), because we only need
to produce 11 to attain the target level.
The definition of these production cycles is moti-

vated by the idea of extended myopic policies, which we
shall discuss next. In the full-information (clairvoy-
ant) case with stationary demand, the structural
results in section 3 imply that if the system starts with
initial inventory s� (for simplicity we drop the sub-
script from the optimal produce-up-to level s�l Þ, then
the optimal policy is a modified base-stock policy,
that is, in each period t,
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yt ¼ s�; ifxt þ ut � s�;
xt þ ut; ifxt þ ut\s�:

�

In this case, our definition of production cycles
reduces to

s1 ¼ 1;

sj ¼ min t� sj�1 þ 1
��� yt ¼ s�

n o
; for all j� 2:

In other words, the optimal system forms a
sequence of production cycles whose cycle target
levels are all set to be s�, which is also illustrated at

the top portion of Figure 3. Ciarallo et al. (1994)
showed that the extended myopic policy, which is
obtained by merely minimizing the expected total
cost within a single production cycle, is optimal.
(They also provided a computationally tractable pro-
cedure to compute this s� with known demand and
capacity distributions.)
The above discussion has motivated us to design a

nonparametric learning algorithm that updates the
modified base-stock levels in a cyclic way, in which
the sequence of production cycle costs in our system
will eventually converge to the production cycle cost
of the optimal system. We emphasize again that the
(clairvoyant) optimal system does not need to salvage
since s� is known, whereas our system needs to
actively explore the inventory space to learn the value
of s� and thus salvaging can happen frequently in the
beginning phase of the learning algorithm.

4.2. The Data-Driven Random Capacity Algorithm
With the definition of production cycles, we shall
describe our data-driven random capacity algorithm
(DRC for short). The DRC algorithm keeps track of
two systems in parallel, and also ensures that both
systems share the same production cycles as in the

Figure 2 An Illustration of a Production Cycle

Figure 3 An Illustration of the Algorithmic Design

Chen, Shi, and Duenyas: Inventory Learning with Random Capacity
Production and Operations Management 29(7), pp. 1624–1649, © 2020 Production and Operations Management Society 1631



optimal system (which uses the same optimal base-
stock level s� in every period). The optimal system is
depicted using dash-dot lines shown at the top of Fig-
ure 3. The optimal system starts at optimal base-stock
level s�, and uses s� as target level in every period.
The first system that the DRC algorithm keeps track

of is a virtual (or ideal) system, which starts from an
arbitrary inventory level ŝ1. The DRC algorithm main-
tains a triplet ðŝt; ŷt; x̂tÞ in each period t, where ŝt is the
virtual target level, ŷt is the virtual inventory level,
and x̂t is the virtual starting inventory level. At the
beginning of each production cycle j, namely, in per-
iod sj, the DRC algorithm computes the (desired) vir-
tual cycle target level ŝsj , and artificially adjusts the
virtual inventory level ŷsj ¼ ŝsj by temporarily ignor-
ing the random capacity constraint in that period. For
all subsequent periods t 2 ½sj þ 1; sjþ1 � 1� within pro-
duction cycle j, the DRC algorithm sets the virtual tar-
get production level ŝt ¼ ŝsj and runs the virtual
system as usual (facing the same demands and ran-
dom capacity constraints as in the actual implemented
system), that is, ŷt ¼ ŝt ^ ðx̂t þ utÞ and x̂tþ1 ¼ ŷt � dt.
Figure 3 gives an example of the evolution of a virtual
system, as depicted using dotted lines.
The second system is the actual implemented sys-

tem, which starts from an arbitrary inventory level
s1 ¼ ŝ1. The DRC algorithm maintains a triplet
ðst; yt; xtÞ in each period t, where st is the target produc-
tion level, yt is the actual attained inventory level, and
xt is the actual starting inventory level. Different than
the virtual system described above, at the beginning of
each production cycle j, namely, in period sj, the DRC
algorithm tries to reach the (desired) virtual target
level ŝsj but may fail to do so due to random capacity
constraints. The resulting inventory level ysj may pos-
sibly be lower than ŝsj . Nevertheless, to keep the pro-
duction cycle synchronized with that of the optimal
system, we simply set the cycle target level ssj ¼ ysj ,
and keep the target production level the same within
the production cycle, that is, st ¼ ssj for all
t 2 ½sj; sjþ1 � 1�. Figure 3 gives an example of the evolu-
tion of an actual implemented system (as depicted
using solid lines).
We now present the detailed description of the

DRC algorithm.
TheData−DrivenRandomCapacityAlgorithm

(DRC)
Step 0. (Initialization.) In the first period t = 1, set

the initial inventory x1 2 ½0;�s� arbitrarily. We set both
the target level and the virtual target level the same as
the initial inventory, that is, s1 ¼ ŝ1 ¼ x1. Then we
also have the actual attained inventory level y1 ¼ x1
and the virtual inventory level ŷ1 ¼ x̂1 ¼ x1. Initial-
ize the counter for production cycles j = 1, and set
t ¼ s1 ¼ 1.

Step 1. (Updating the Virtual System.) The algorithm
updates the virtual target level in period t + 1 by

ŝtþ1 ¼
Proj½0;�s� ŝsj � gj �

Pt
k¼sj

GkðŝsjÞ
 !

; if t ¼ sj;

ŝsj ; if t[ sj;

8><
>:

where GkðŝsjÞ

¼ h; if ŝsj ^ ðx̂k þ ukÞ� dk;

�b; otherwise:

�

Note that the projection operator Proj½0;�s�ðxÞ ¼
maxf0;minfx;�sgg. The step-size is chosen to be

gj ¼
cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj
k¼1 lk

q ; where lk ¼ skþ1 � sk;

where c > 0 is a constant (to be optimized later for
the tightest theoretical regret bound).
The evolution of the virtual system is given as fol-

lows,

ŷt ¼
ŝsj �

Pt�1
i¼sj

di þ
Pt

i¼sjþ1 ui; for t[ sj;

ŝsj ; for t ¼ sj;

(
and

x̂tþ1 ¼ ŷt � dt:

Step 2. (Updating the Actual Implemented System.)
We have the following cases when updating the
actual implemented system based on ŝt.

1. If ŝtþ1 � ssj , then we try to produce up to ŝtþ1,
and the actual inventory level ytþ1 will be

ytþ1 ¼ ŝtþ1; if xtþ1 þ utþ1 � ŝtþ1;
xtþ1 þ utþ1; if xtþ1 þ utþ1\ŝtþ1:

�

(i). If ssj � ytþ1 � ŝtþ1, we start a new produc-
tion cycle j + 1, by setting the starting per-
iod of this new cycle sjþ1 ¼ t þ 1.
Correspondingly, we set the virtual cycle
target level ŝsjþ1

¼ ŝtþ1, and the actual
implemented cycle target level ssjþ1

¼ ytþ1.
We then increase the value of j by one.

(ii). If ytþ1 \ ssj , we are still in the same pro-
duction cycle j, and thus we set stþ1 ¼ ssj .

2. If ŝtþ1 \ ssj , then we first try to produce up to
ssj (instead of ŝtþ1) , and the actual inventory
level ytþ1 will be

ytþ1 ¼ ssj ; if xtþ1 þ utþ1 � ssj ;
xtþ1 þ utþ1; if xtþ1 þ utþ1\ssj :

�

(i). If ytþ1 ¼ ssj , we salvage our inventory level
down to ytþ1 ¼ ŝtþ1. We then start a new

Chen, Shi, and Duenyas: Inventory Learning with Random Capacity
1632 Production and Operations Management 29(7), pp. 1624–1649, © 2020 Production and Operations Management Society



production cycle j+1, by setting the starting
period of this new cycle sjþ1 ¼ t þ 1. Cor-
respondingly, we set the virtual cycle target
level ŝsjþ1

¼ ŝtþ1, and the actual imple-
mented cycle target level ssjþ1

¼ ŝtþ1. We
then increase the value of j by one.

(ii) If ytþ1\ssj , we are still in the same produc-
tion cycle j, and thus we set stþ1 ¼ ssj .

We then increase the value of t by one, and go to
Step 1. If t = T, terminate the algorithm.

4.3. Overview of the Data-Driven Random
Capacity Algorithm
In Step 1, we update the virtual system using the
online stochastic gradient descent method. In each
period t of any given cycle j, the DRC algorithm
tries to minimize the total expected cost associated
with production cycle j by updating the virtual tar-

get level using a gradient estimator
Pt

k¼sj
GkðŝsjÞ of

the total cost accrued from period sj to period t.

We shall show in Lemma 4 below that

GjðŝsjÞ ¼ Psjþ1�1

k¼sj
GkðŝsjÞ is the sample-path cycle cost

gradient of production cycle j. Note that GjðŝsjÞ is

the sample-path cycle cost gradient for the virtual
system. However, we could only observe the
demand and censored capacity information in the
actual implemented system, and the key question is
whether this information is sufficient to evaluate
this GjðŝsjÞ correctly.

LEMMA 1. The sample-path cycle cost gradient of the
virtual system GjðŝsjÞ ¼ Psjþ1�1

k¼sj
GkðŝsjÞ for every cycle

j≥1 can be evaluated correctly by only using the observed
demand and censored capacity information of the actual
implemented system.

PROOF OF LEMMA 1. It suffices to show that for each
period k ¼ sj; . . .; sjþ1 � 1, the cost gradient estima-
tor GkðŝsjÞ can be evaluated correctly. We have the
following two cases.

1. If k ¼ sj, that is, the production cycle j starts
in period k, we must have xk þ ~uk � ssj�1 by
our definition of production cycle. In addition,
we observe the full capacity ~ui ¼ ui in period
i ¼ sj�1 þ 1; . . .; k� 1 but only observe the cen-
sored capacity ~uk � uk in period k.
(i) if sk ¼ ŝk, by the system dynamics we have

ŝk ¼ sk ¼ xk þ ~uk � x̂k þ ~uk � x̂k þ uk;

where the first inequality holds because by our algo-
rithm design, we always have ssj�1

� ŝsj�1
for all

j = 2,3,. . ., and then

xk ¼ ssj�1
�
Xsj�1

i¼sj�1

di þ
Xsj�1

i¼sj�1þ1

ui � ŝsj�1

�
Xsj�1

i¼sj�1

di þ
Xsj�1

i¼sj�1þ1

ui ¼ x̂k:

Hence, the event fŝsj ^ ðx̂k þ ukÞ� dkg is equivalent
to fŝsj � dkg; and therefore, we can evaluate GkðŝsjÞ
correctly.

(ii). if sk \ ŝk, we have produced full capacity
and therefore observe the full capacity
~uk ¼ uk. Then the event fŝsj ^ ðx̂kþ
ukÞ� dkg is equivalent to fŝsj ^ ðx̂k þ ~ukÞ
� dkg; and therefore we can evaluate
Gkð̂ssjÞ correctly.

2. In contrast, if k 2 ½sj þ 1; sjþ1 � 1�, that is, then
we are still in the current production cycle j. In
this case, we always produce at full capacity,
and therefore, we observe the full capacity
~uk ¼ uk. Then the event fŝsj ^ ðx̂k þ ukÞ� dkg is
equivalent to fŝsj ^ ðx̂k þ ~ukÞ� dkg; and there-
fore, we can evaluate GkðŝsjÞ correctly. h

Combining the above two cases yields the desired
the result.
In Step 2, we compare ŝtþ1 and ssj to decide how to

update the actual implemented system. We have two
cases. The first case is when ŝtþ1 � ssj . We want to pro-
duce up to the new target level ŝtþ1 instead of ssj . If
the actual implemented inventory level ytþ1 � ssj , we
know that the current production cycle ends because
we have achieved at least ssj , and then we shall start
the next production cycle. In order to perfectly align
the production cycle with that of the optimal system
when ŝtþ1 � ytþ1 � ssj , we should set the next cycle tar-
get level ssjþ1

¼ ytþ1. Otherwise, we produce at full
capacity, and stay in the same production cycle,
which is also synchronized with the optimal produc-
tion cycle. The second case is when ŝtþ1 \ ssj . We first
produce up to the current cycle target level ssj to check
whether we can start the next production cycle. If ssj
is achieved, we shall start the next production cycle
and salvage the inventory level down to ytþ1 ¼ ŝtþ1

and also set the new cycle target level ssjþ1
¼ ŝtþ1.

Otherwise, we produce at full capacity, and stay in
the same production cycle, which is also synchro-
nized with the optimal production cycle.
The central idea here is to align the production

cycles of the actual implemented system (as well as
the virtual bridging system) with those of the
(clairvoyant) optimal system, even while updating
our cycle target level at the beginning of each pro-
duction cycle. As illustrated in Figure 3, the opti-
mal system knows s� a priori and keeps using the
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target level s� (i.e., the optimal modified base-stock
level) in every period t. Whenever the target level
s� is achieved, we start the next production cycle.
However, in the learning problem, the firm does
not know s� and needs to constantly update the
cycle target level at the beginning of each produc-
tion cycle. Due to the discrepancy between the new
and the previous target levels, it is crucial to
design an algorithm that can determine whether
the current production cycle ends, and whether we
should adopt the new target level in the very same
period. Figure 4 shows the possible scenarios. The
scenarios 1(a), 1(b), and 1(c) show the case when
ŝtþ1 � ssj . In this case, we always raise the inventory
to ŝtþ1 as much as possible. If ŝtþ1 is achieved, we
know that the production cycle ends. Even if ŝtþ1 is
not achieved, we know that we produce at full
capacity and then can readily determine whether
the production cycle ends (by checking if we reach
at least ssj). The scenarios 2(a), 2(b), and 2(c) show
the case when ŝtþ1 \ ssj . In this case, we always
raise the inventory to ssj as much as possible to
determine whether the production cycle ends (by
checking if we reach exactly ssj). We salvage the
inventory level down to ŝtþ1 only if the production
cycle ends. Note that active explorations are needed
in the sense that sometimes the learning algorithm
will have to produce up and then salvage down in
the same period, so as to obtain unbiased capacity
information. Technically, doing so ensures that the
production cycles are perfectly aligned between the
actual implemented system and the clairvoyant
optimal system.

4.4. Discussion of the Data-Driven Random
Capacity Algorithm without Censoring
We have elaborated the challenges of facing censored
capacity in the previous sections. The censored capac-
ity comes from the fact that the production is termi-
nated once the inventory level reaches the target level,
and as a result, the true capacity will not be revealed.
Now, we shall discuss the setting in which the firm

has access to the uncensored capacity information.
There are the following two cases: (1) If the firm
knows the true capacity before making the production
decision, then the firm knows if a production cycle
ends in the current period. In this case, the firm only
needs to update the virtual target level at the end of
the production cycle. The firm will always produce
up to the virtual target level, without the need of any
salvaging options. This case leads to a simplified DRC
algorithm. (2) In contrast, if the firm knows the true
capacity only after making the production decision,
then the firm does not know if a production cycle
ends in the current period. In this case, the firm still
requires the use of the full-fledged DRC algorithm (as
designed for the setting with censored capacity
information).

5. Performance Analysis of the Data-
Driven Random Capacity Algorithm

We carry out a performance analysis of our proposed
DRC algorithm. The performance measure is the nat-
ural notion of regret, which is defined as the differ-
ence between the cost incurred by our nonparametric
learning algorithm DRC and the clairvoyant optimal

1(a) 1(b) 1(c)

2(a) 2(b) 2(c)

Figure 4 A Schematic Illustration of All Possible Scenarios
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cost (where the demand and production capacity dis-
tribution are both known a priori). That is, for any
T ≥ 1,

RT ¼ E
XT
t¼1

Xðxt; stÞ � Xðxt; s�Þð Þ
" #

;

where st is the target level prescribed by the DRC
algorithm for period t, and s� is the clairvoyant opti-
mal target level. We note that our clairvoyant bench-
mark is chosen with respect to the infinite horizon
problem, and the regret quantifies the cumulative
loss of running our learning algorithm for any T ≥ 1
periods, compared to this stationary benchmark.
Theorem 1 below states the main result of this study.

THEOREM 1. For stochastic inventory systems with
demand and capacity learning, the cumulative regret RT

of the data-driven random capacity algorithm (DRC) is
upper bounded by Oð ffiffiffiffi

T
p Þ. In other words, the average

regret RT=T approaches to 0 at the rate of Oð1= ffiffiffiffi
T

p Þ.

REMARK 1. Let l ¼ E½U� � E½D�, the difference
between expected capacity and expected demand.
We define t ¼ 2l2=ð�uþ �dÞ2 and X1 ¼ ðh _ bÞl1�Ps2

t¼s1 þ 1 Ut þ
Ps2�1

t¼s1
Dt, and then further define

a ¼ �E½X1� and r2 ¼ Var½X1� and b ¼ E½X3
1�. The

optimal constant c in the step size (that gives rise to
the tightest theoretical regret bound) is given by

c ¼ �sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh _ bÞ2 1

t þ 2
t2 þ 2

t3
� �þ 2ðh _ bÞ2 �s

l
r
a e

6b

r3
þa

r

þ2ðcþ hÞðh _ bÞ ra e
6b

r3
þa

r

vuut
;

and the associated constant K in the regret bound of
Theorem 1 is given by

K ¼ �s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh _ bÞ2 1

t þ 2
t2 þ 2

t3
� �þ 2ðh _ bÞ2 �s

l
r
a e

6b

r3
þa

r

þ2ðcþ hÞðh _ bÞ ra e
6b

r3
þa

r

vuuut :

The proposed DRC algorithm is the first learning
algorithm for random capacitated inventory systems,
which achieves a square-root regret rate. Moreover,
this square-root regret rate is unimprovable, even for
the repeated newsvendor problem without inventory
carryover and with infinite capacity, which is a spe-
cial case of our problem.

PROPOSITION 3. Even in the case of uncensored demand,
the square-root regret rate is tight.

PROOF OF PROPOSITION 3. The proof follows Proposition
1 in Zhang et al. (2019) for the repeated newsvendor
problem (without inventory carryover and with infi-
nite capacity). h

The remainder of this study is to establish the
regret upper bound in Theorem 1. For each j ≥ 1,
if we adopt the cycle target level ssj and also arti-
ficially set the initial inventory level xsj ¼ ssj , we
can then express the cost associated with the pro-
duction cycle j as

HðssjÞ ¼
Xsjþ1

t¼sjþ1

c ssj ^ xt þUtð Þ � xt
� �þ

þ
Xsjþ1�1

t¼sj

h ssj ^ xt þUtð Þ �Dt

� �þ	

þ b Dt � ssj ^ xt þUtð Þ
� �þ

�

¼
Xsjþ1�1

t¼sjþ1

cUt þ cðssj � xsjþ1
Þ

þ
Xsjþ1�1

t¼sj

h ssj ^ xt þUtð Þ �Dt

� �þ	

þ b Dt � ssj ^ xt þUtð Þ
� �þ

�

¼
Xsjþ1�1

t¼sjþ1

cUt þ c
Xsjþ1�1

t¼sj

Dt �
Xsjþ1�1

t¼sjþ1

Ut

0
@

1
A

þ
Xsjþ1�1

t¼sj

h ssj ^ xt þUtð Þ �Dt

� �þ	

þ b Dt � ssj ^ xt þUtð Þ
� �þ

�;

ð3Þ

where the second equality comes from the fact that
we always produce at full capacity within a produc-
tion cycle, except for the last period in which we are
able to reach the target level. The third equality
follows from expressing

xsjþ1
¼ xsj þ

Xsjþ1�1

t¼sjþ1

Ut �
Xsjþ1�1

t¼sj

Dt

¼ ssj þ
Xsjþ1�1

t¼sjþ1

Ut �
Xsjþ1�1

t¼sj

Dt:

Now, we use J to denote the total number of pro-
duction cycles before period T, including possibly
the last incomplete cycle. (If the last cycle is not
completed at T, then we truncate the cycle and also
let sJþ1 � 1 ¼ T, that is, ssJþ1

¼ ssJ .) By the construc-
tion of the DRC algorithm, we can write the cumu-
lative regret as
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RT ¼ E
XT
t¼1

Xðxt; stÞ � Xðxt; s�Þ
" #

¼ E
XJ
j¼1

HðssjÞ þ
XJ
j¼1

c ssjþ1
� ssj

� �þ
2
4

þh ssj � ssjþ1

� �þ�
�
XJ
j¼1

Xsjþ1�1

t¼sj

Xðxt; s�Þ
3
5

¼ E
XJ
j¼1

HðssjÞ �
XJ
j¼1

Xsjþ1�1

t¼sj

Xðxt; s�Þ
2
4

3
5

þ E
XJ
j¼1

c ssjþ1
� ssj

� �þ
þh ssj � ssjþ1

� �þ
 �2
4

3
5

¼ E
XJ
j¼1

HðŝsjÞ �
XJ
j¼1

Xsjþ1�1

t¼sj

Xðxt; s�Þ
2
4

3
5

þ E
XJ
j¼1

HðssjÞ �
XJ
j¼1

HðŝsjÞ
2
4

3
5

þ E
XJ
j¼1

c ssjþ1
� ssj

� �þ
þh ssj � ssjþ1

� �þ
 �2
4

3
5;

where on the right-hand side of the fourth equality,
the first term is the production cycle cost difference
between using the virtual target level ŝsj and using
the clairvoyant optimal target level s�. The second
term is the production cycle cost difference between
using the actual implemented target level ssj and
using the virtual target level ŝsj . The third term is
the cumulative production and salvaging costs
incurred by adjusting the production cycle target
levels.
To prove Theorem 1, it is clear that it suffices to

establish the following set of results.

PROPOSITION 4. For any J ≥ 1, there exists a constant
K1 2 Rþ such that

E
XJ
j¼1

HðŝsjÞ �
XJ
j¼1

Xsjþ1�1

t¼sj

Xðxt; s�Þ
2
4

3
5�K1

ffiffiffiffi
T

p
:

PROPOSITION 5. For any J ≥ 1, there exists a constant
K2 2 Rþ such that

E
XJ
j¼1

HðssjÞ �
XJ
j¼1

Hð̂ssjÞ
2
4

3
5�K2

ffiffiffiffi
T

p
:

PROPOSITION 6. For any J ≥ 1, there exists a constant
K3 2 Rþ such that

E
XJ
j¼1

c ssjþ1
� ssj

� �þ
þ h ssj � ssjþ1

� �þ
 �2
4

3
5�K3

ffiffiffiffi
T

p
:

5.1. Several Key Building Blocks for the Proof of
Theorem 1
Before proving Propositions 4– 6, we first establish
some key preliminary results.
Recall that the production cycle defined in section

4.1 is the interval between successive periods in
which the policy is able to attain a given base-stock
level. We first show that the cumulative cost within a
production cycle is convex in the base-stock level.

LEMMA 2. The production cycle cost Θ(s) is convex in s
along every sample path.

PROOF OF LEMMA 2. It suffices to analyze the first
production cycle cost (with x1 ¼ s1)

Hðs1Þ ¼
Xs2�1

t¼2

cUt þ c
Xs2�1

t¼1

Dt �
Xs2�1

t¼2

Ut

 !

þ
Xs2�1

t¼1

h s1 ^ xt þUtð Þ �Dtð Þþ�
þ b Dt � s1 ^ xt þUtð Þð Þþ�:

Taking the first derivative of Hðs1Þ with respect to
s1, we have

H0 s1ð Þ ¼
Xs2�1

t¼1

hðnþt ðs1ÞÞ � bðn�t ðs1ÞÞ
� �

; ð4Þ

where nþt ðs1Þ ¼ 1 s1 �
Xt
t0¼1

Dt0 þ
Xt
t0¼2

Ut0 � 0

( )
and

n�t ðs1Þ ¼ 1 s1 �
Xt
t0¼1

Dt0 þ
Xt
t0¼2

Ut0\0

( )

are indicator functions of the positive inventory left-
over and the unsatisfied demand at the end of per-
iod t, respectively. h

For any given d > 0, we have

H0ðs1 þ dÞ ¼
Xs2�1

t¼1

h nþðs1 þ dÞ� �� b n�ðs1 þ dÞð Þ� 

:

It is clear that when the target level increases, the
positive inventory left-over will also increase, i.e,

nþðs1 þ dÞ� nþðs1Þ: Similarly, we also have n�ðs1 þ dÞ
� n�ðs1Þ: Therefore, we have H0ðs1 þ dÞ � H0ðs1Þ for
any value of s1, and thus Θ(�) is convex.
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Given the convexity result, our DRC algorithm
updates base-stock levels in each production cycle.
Note that these production cycles (as renewal pro-
cesses) are not a priori fixed but are sequentially trig-
gered as demand and capacity realize over time.
Therefore, we need to develop an upper bound on the
moments of a random production cycle. The proof of
Lemma 3 relies on building an upward drifting ran-
dom walk with Ut as upward step and Dt as down-
ward step, wherein the chance of hitting a level below
zero is exponentially small due to concentration
inequalities. Since the ending of a production cycle
corresponds to the situation where the random walk
hits zero, the second moment of its length of the cur-
rent production cycle can be bounded.

LEMMA 3. The second moment of the length of a produc-
tion cycle E½l2j � is bounded for all cycle j.

PROOF OF LEMMA 3. By the definition of a produc-
tion cycle in section 4.1, we have

Pflj ¼ lg

¼ P Usjþ1 �Dsj\0; . . .;
Xsjþl�1

t¼sjþ1

Ut �
Xsjþl�2

t¼sj

Dt\0;

8<
:
Xsjþl

t¼sjþ1

Ut �
Xsjþl�1

t¼sj

Dt � 0

9=
;:

Since Dt and Ut are both i.i.d., so is lj. Let Mk be an
upward drifting random walk, more precisely,

Mk ¼
Pk
t¼1

ðUt �DtÞ: Then we have, by letting l ¼

E½Ut �Dt� and t ¼ 2l2=ð�u þ �dÞ2,

E l2j

h i
¼
X1
k¼1

k2P M1\0; ;Mk�1\0;Mk � 0ð Þ

�
X1
k¼1

k2P Mk�1 � ðk� 1Þl\� ðk� 1Þlð Þ

�
X1
k¼1

k2 exp � 2ðk� 1Þl2
�uþ �d
� �2

 !

�
Z 1

0

ðkþ 1Þ2 exp � 2kl2

�uþ �d
� �2

 !

dk ¼ 1

t
þ 2

t2
þ 2

t3
\1;

where the second inequality follows from the
Hoeffding’s inequality.

We also need to develop an upper bound on the
cycle cost gradient.

LEMMA 4. For any j ≥ 1, the function GjðsÞ ¼Psjþ1�1
t¼sj GtðsÞ is the sample-path cycle cost gradient of

production cycle j, where s is the cycle target level.
Moreover, Gjð�Þ has a bounded second moment, that is,
E½G2

j ðsÞ�\1 for any s.

PROOF OF LEMMA 4. From the definition of GjðsÞ and
(4), it is clear that

GjðsÞ ¼
Xsjþ1�1

t¼sj

GtðsÞ ¼
Xsjþ1�1

t¼sj

hðnþt ðsÞÞ � bðn�t ðsÞÞ
� 
 ¼ H0ðsÞ:

Moreover, we have

E G2
j ðsÞ

h i
¼ E

Xs2�1

t¼1

hðnþt ðs1ÞÞ � bðn�t ðs1ÞÞ
� � !2

2
4

3
5

� E h _ bð Þ2l2j
h i

¼ h _ bð Þ2E l2j

h i
\1;

where the last inequality follows from Lemma 3. h

5.2. Proof of Proposition 4
Proposition 4 provides an upper bound on the pro-
duction cycle cost difference between using the vir-
tual target level ŝsj and using the clairvoyant optimal
target level s�. The proof follows a similar argument
used in the general stochastic approximation litera-
ture (see Nemirovski et al. (2009)) as well as the
online convex optimization literature (see Hazan
(2016)). The main point of departure is due to the a
priori random cycles, and therefore the proof relies
crucially on Lemmas 3 and 4 previously established.
By optimality of s�, we have E½Xðs�; s�Þ� ¼

infxfE½Xðx; s�Þ�g, that is, s� minimizes the expected sin-
gle period cost. Also notice that the length of a pro-
duction cycle is independent of the cycle target level
being implemented. Thus, we have

E
XJ
j¼1

HðŝsjÞ �
XJ
j¼1

Xsjþ1�1

t¼sj

Xðxt; s�Þ
2
4

3
5

� E
XJ
j¼1

HðŝsjÞ �
XJ
j¼1

Xsjþ1�1

t¼sj

Xðs�; s�Þ
2
4

3
5

¼ E
XJ
j¼1

Hð̂ssjÞ �Hðs�Þ
� �2

4
3
5:

ð5Þ

By the sample path convexity of Θ(�) shown in
Lemma 2, we have

E
XJ
j¼1

Hð̂ssjÞ �Hðs�Þ
� �2

4
3
5�

XJ
j¼1

E rHðŝsjÞðŝsj � s�Þ
h i

¼
XJ
j¼1

E Gjð̂ssjÞð̂ssj � s�Þ
h i

: ð6Þ
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By the definition of ŝsjþ1
in the DRC algorithm,

E ŝsjþ1
� s�

� �2
� E ŝsj � gjGjð̂ssjÞ � s�
� �2

¼E ŝsj � s�
� �2

þE gjGjðŝsjÞ
� �2

� E 2gjGjð̂ssjÞðŝsj � s�Þ
h i

¼E ŝsj � s�
� �2

þE½gj�E GjðŝsjÞ
� �2

� 2E½gj�E GjðŝsjÞðŝsj � s�Þ
h i

;

where the second equality holds because the step-
size gj is independent of ŝsj and GjðŝsjÞ. Thus,

E GjðŝsjÞð̂ssj � s�Þ
h i

� 1

2E½gj�
E ŝsj � s�
� �2

�E ŝsjþ1
� s�

� �2
 �

þ1

2
E gj Gjð̂ssjÞ

� �2	 �
: ð6Þ

Combining (6) and (7), we have

XJ
j¼1

E rHðŝsjÞðŝsj � s�Þ
h i

�
XJ
j¼1

1

2E½gj�
E ŝsj � s�
� �2

�E ŝsjþ1
� s�

� �2
 � 

þ 1

2
E gj Gjð̂ssjÞ

� �2	 ��

¼ 1

2E½g1�
E ŝs1 � s�ð Þ2� 1

2E½gj�
E ŝsjþ1

� s�
� �2

þ 1

2

XJ
j¼2

1

E½gj�
� 1

E½gj�1�

 !
E ŝsj � s�
� �2

þ
XJ
j¼1

E gj GjðŝsjÞ
� �2	 �

2

� 2�s2
1

2E½g1�
þ 1

2

XJ
j¼2

1

E½gj�
� 1

E½gj�1�

 !0
@

1
A

þ
E½ Gjð̂ssjÞ
� �2

�
2

XJ
j¼1

E½gj�

¼ �s2

E½gJ�
þ
E½ Gjð̂ssjÞ
� �2

�
2

XJ
j¼1

E½gj�K1

ffiffiffiffi
T

p
;

where the last inequality holds due to Lemma 4
(the bounded second moment of G(�)) and

XJ
j¼1

E½gj� ¼ c
XJ
j¼1

E 1=

ffiffiffiffiffiffiffiffiffiffiffiXj
i¼1

li

vuut
2
4

3
5� c

XT
t¼1

1=
ffiffi
t

p
� 2c

ffiffiffiffi
T

p
:

5.3. Proof of Proposition 5
Proposition 5 provides an upper bound on the pro-
duction cycle cost difference between using the
actual implemented target level ssj and using the
virtual target level ŝsj . The main idea of this proof
on a high level is to set up an upper bounding
stochastic process that resembles the waiting time
process of a GI/GI/1 queue. A similar argument
appeared Huh and Rusmevichientong (2009) and
Shi et al. (2016). There are two differences. First,
the mapping to the waiting time process is more
involved in the presence of random capacities. In
the above two papers, the resulting level is always
higher than the target level, whereas the resulting
level could be either higher or lower than the tar-
get level in our setting. Second, this study needs to
bound the difference in cycle target levels (relying
on Lemmas 3 and 4), rather than per-period target
levels.
By the definition of production cycle cost (3), we

have

E HðssjÞ �HðŝsjÞ
h i

¼E
Xsjþ1�1

t¼sj

h ssj ^ xt þUtð Þ �Dt

� �þ	2
4

þb Dt � ssj ^ xt þUtð Þ
� �þ

�

�
Xsjþ1�1

t¼sj

h ŝsj ^ xt þUtð Þ �Dt

� �þ	

þb Dt � ŝsj ^ xt þUtð Þ
� �þ��

� E
Xlj�1

t¼1

ðh _ bÞjssj � ŝsj j
" #

� E½lj�ðh _ bÞjssj � ŝsj j;

where the second inequality holds due to the
Wald’s Theorem using the fact that lj is indepen-
dent of ssj and ŝsj , and the first inequality follows
from the fact that for any t 2 ½sj; sjþ1 � 1�, we
have

E h ssj ^ xt þUtð Þ �Dt

� �þ
þb Dt � ssj ^ xt þUtð Þ
� �þ	 �	

� h ŝsj ^ xt þUtð Þ �Dt

� �þ
þb Dt � ŝsj ^ xt þUtð Þ
� �þ	 ��

� E h ssj ^ xt þUtð Þ � ŝsj ^ xt þUtð Þ
� �þ	

þb ŝsj ^ xt þUtð Þ � ssj ^ xt þUtð Þ
� �þ�

�ðh _ bÞ ssj � ŝsj

��� ���:
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Thus, to prove Proposition 5, it suffices to prove

E
XJ
j¼1

HðssjÞ �
XJ
j¼1

HðŝsjÞ
2
4

3
5� E½lj�ðh

_ bÞE
XJ
j¼1

jssj � ŝsj j
2
4

3
5�Oð

ffiffiffiffi
T

p
Þ:

Next, we consider an auxiliary stochastic process
ðZj j j� 0Þ defined by

Zjþ1 ¼ Zj þ
c�jffiffiffiffiffiffiffiffiffiPj
t¼1

lt

s � mj

2
66664

3
77775

þ

; ð8Þ

where the random variables �j ¼ ðh _ bÞlj, and

mj ¼
Psjþ1

t¼sjþ1 Ut �
Psjþ1�1

t¼sj Dt, and Z0 ¼ 0. Moreover,

since we know that in period sjþ1, the production

cycle ends, we must have

mj ¼
Xsjþ1

t¼sjþ1

Ut �
Xsjþ1�1

t¼sj

Dt � 0:

Now we want to relate ĵssj � ssj j to the stochastic
process defined above. We can see from the DRC
algorithm that the only situation when the virtual
target level cannot be achieved is when ŝsj [ ssj .
When ŝsj � ssj , we can salvage extra inventory and
achieve the virtual target level. Therefore, we relate
ĵssj � ssj j with the stochastic process Zj.

LEMMA 5. For any j≥1,

E
XJ
j¼1

jssj � ŝsj j
2
4

3
5� E

XJ
j¼1

Zj

2
4

3
5;

where fZj; j� 1g is the stochastic process we define
above.

PROOF OF LEMMA 5. All the stochastic comparisons
within this proof are with probability one. When
ŝsjþ1

\ xsjþ1
þUsjþ1

, we have ŝsjþ1
� ssjþ1

¼ 0�Zjþ1.

When ŝsjþ1
[ xsjþ1

þUsjþ1
, we have ssjþ1

¼ xsjþ1

þUsjþ1
¼ ssj �

Psjþ1�1
t¼sj Dt þ

Psjþ1�1
t¼sjþ1 Ut þUsjþ1. There-

fore, we have

ŝsjþ1
� ssjþ1

��� ��� ¼ ŝsjþ1
� ssjþ1

¼ Proj½0;�s� ŝsj � gjGjðŝsjÞ
� �

� ssjþ1
� Proj½0;�s� ŝsj � gjGjðŝsjÞ

� ���� ���� ssjþ1

ŝsj � gjGjðŝsjÞ
��� ���� ssj þ

Xsjþ1�1

t¼sj

Dt �
Xsjþ1�1

t¼sjþ1

Ut

0
@

1
A�Usjþ1

� ŝsj � ssj � gjGjðŝsjÞ
��� ���þ Xsjþ1�1

t¼sj

Dt �
Xsjþ1�1

t¼sjþ1

Ut

0
@

1
A�Usjþ1

� ŝsj � ssj

��� ���þ gjGjð̂ssjÞ
��� ���� Xsjþ1�1

t¼sjþ1

Ut �
Xsjþ1�1

t¼sj

Dt

0
@

1
A

� ŝsj � ssj

��� ���þ gjðh _ bÞ � lj �
Xsjþ1�1

t¼sjþ1

Ut �
Xsjþ1�1

t¼sj

Dt

0
@

1
A;

where the first equality holds because following the
DRC algorithm, we always have ssj � ŝsj . The third
inequality holds because ssj is always nonnegative.
This is because the virtual target level is truncated
to be nonnegative all the time, and we update the
actual implemented target level when the produc-
tion cycle ends, which means after the previous
actual implemented target level is achieved. Since
s1 � 0, ssj � 0 for all j. The fourth inequality holds
because of the triangular inequality and the last
inequality holds because jGjðŝsjÞj � ðh _ bÞ � lj. h

Therefore, from the above claim, we have

ssjþ1
� ŝsjþ1

��� ���� jssj � ŝsj j þ gjðh _ bÞlj
h

�
Xsjþ1�1

t¼sjþ1

Ut �
Xsjþ1�1

t¼sj

Dt

0
@

1
A
3
5
þ

:

Comparing to (8), we have

gjðh _ bÞlj �
c�jffiffiffiffiffiffiffiffiffiPj
t¼1

lt

s ;

and since s1 � ŝ1 ¼ 0, it follows, from the recursive
definition of Zj, that jssjþ1

� ŝsjþ1
j �Zjþ1 holds with

probability one. Summing up both sides of the
inequality completes the proof.
We observe that the stochastic process Zj is very

similar to the waiting time in a GI/GI/1 queue, except

that the service time is scaled by c=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj

i¼1 li

q
in each

production cycle j. Now consider a GI/GI/1 queue
ðWjjj� 0Þ defined by the following Lindley’s equa-

tion:W0 ¼ 0, and

Wjþ1 ¼ Wj þ �j � mj
� 
þ

; ð9Þ

where the sequences �j and mj consist of indepen-
dent and identically distributed random variables
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(only dependent upon the distributions of D and U).
Let u0 ¼ 0, u1 ¼ infft� 1 : Wj ¼ 0g and for t ≥ 1,
utþ1 ¼ infft [ ut : Wj ¼ 0g. Let Bt ¼ ut � ut�1.
The random variable Wj is the waiting time of the
jth customer in the GI/GI/1 queue, where the inter-
arrival time between the jth and jþ 1th customers is
distributed as mj, and the service time is distributed
as �j. Then, Bt is the length of the tth busy period.
Let q ¼ E½�1�=E½m1� represent the system utilization.
Note that if q < 1, then the queue is stable, and the
random variable Bt is independent and identically
distributed.
We invoke the following result from Loulou (1978)

to bound E½Bt�, the expected busy period of a GI/GI/1
queue with inter-arrival distribution m and service
time k.

LEMMA 6. (Loulou (1978)) Let Xj ¼ �j � mj, and
a ¼ �E½X1�. Let r2 be the variance of X1. If E½X1�3 ¼
b\1, and q < 1,

E½B1� � r
a
exp

6b3

r3
þ a
r


 �
:

For each n ≥ 1, let the random variable i(n) denote
the index t such that Bt contains n. This means that
the nth customer is within the BiðnÞ busy period. Since
Bt is i.i.d., we know that E½BiðnÞ� ¼ E½Bt� ¼ E½B1�:

LEMMA 7. For any period t≥1, we have

E
XJ
j¼1

Zj

2
4

3
5� 2cðh _ bÞE½B1�

ffiffiffiffi
T

p
:

PROOF OF LEMMA 7. As defined above, the stochastic

process Zjþ1 ¼
"
Zj þ c�jffiffiffiffiffiffiffiffiffiffiffiffiPj

i¼1
li

q � mj

#þ
. Since Zj can be

interpreted as the waiting time in the GI/GI/1
queueing system, we can rewrite Zj as

Zj ¼
Xj
j0¼1

c�j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q � mj0

0
B@

1
CA1 j0 2 BiðjÞ
� 


�
Xj
j0¼1

c�j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q 1 j0 2 BiðjÞ
� 


:

ð10Þ

We then bound the total waiting time of sequence
Zj by only considering the cumulative service times
as follows:

E
XJ
j¼1

Zj

2
4

3
5 ¼E

XJ
j¼1

Xj
j0¼1

c�j0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q 1½j0 2 BiðjÞ�

2
64

3
75

� E
XJ
j¼1

XJ
j0¼1

cðh _ bÞlj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q 1½j0 2 BiðjÞ�

2
64

3
75

� E
XJ
j0¼1

cðh _ bÞlj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q XJ
j¼1

1½j0 2 BiðjÞ�

2
64

3
75

¼ E
XJ
j0¼1

cðh _ bÞlj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q Biðj0Þ

2
64

3
75

� E
XT
t¼1

cðh _ bÞffiffi
t

p BiðtÞ

" #
;

where the last inequality holds because

XJ
j0¼1

lj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPj0
i¼1 li

q �
XT
t¼1

1ffiffi
t

p ; where T ¼
XJ
j0¼1

lj0 :

Thus, we have

E
XJ
j¼1

Zj

2
4

3
5� E

XT
t¼1

cðh _ bÞffiffi
t

p BiðtÞ

" #

¼ cðh _ bÞE
XT
t¼1

1ffiffi
t

p
" #

E½BiðtÞ� � 2cðh _ bÞ
ffiffiffiffi
T

p
E½B1�;

ð11Þ

where the last inequality follows from the fact thatPT
t¼1

1ffiffi
t

p � 2
ffiffiffiffi
T

p � 1: Combining 10 and 11 completes
the proof. h

Combining Lemmas 5 and 7, we have

E
XJ
j¼1

HðssjÞ �
XJ
j¼1

HðŝsjÞ
2
4

3
5� E

XJ
j¼1

cðh _ bÞð̂ssj � ssjÞ
2
4

3
5

� cðh _ bÞE½l1�E
XJ
j¼1

Zj

2
4

3
5

� 2cðh _ bÞ2E½l1�E½B�
ffiffiffiffi
T

p
;

where both E½B� and E½l1� are bounded constants.
This completes the proof for Proposition 5.

5.4. Proof of Proposition 6
Proposition 6 provides an upper bound on the cumu-
lative production and salvaging costs incurred by
adjusting the production cycle target levels.
The main idea of this proof on a high level is to use

the fact that the cycle target levels of the actual
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implemented system are getting closer to the ones of
the virtual system over time, and each change in the
cycle target level can be sufficiently bounded, result-
ing in an upper bound on the cumulative production
and salvaging costs.
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��� ���

2
4
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5�K4

ffiffiffiffi
T

p
;

where K4 is some positive constant. The result trivi-
ally holds if ssjþ1

� ssj . Now, consider the case where

ssjþ1
[ ssj , that is, the firm produces. The first ine-

quality holds because if the firm produces, we must
have ssjþ1

� ŝsjþ1
by the construction of DRC. The sec-

ond inequality holds because ssj � 0. The third

inequality holds by the triangular inequality. The

last inequality is due to the fact that
PJ

j¼1 ŝsj � ssj

��� ���
�Oð ffiffiffiffi

T
p Þ from Proposition 5, and

XJ
j¼1

c gj � GjðŝsjÞ
��� ���� ccðh _ bÞ

XJ
j¼1

ljffiffiffiffiffiffiffiffiffiPj
i¼1

li

s � 2ccðh _ bÞ
ffiffiffiffi
T

p
:

Similarly,

E
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ffiffiffiffi
T

p
;

where K5 is some positive constant. The result trivi-
ally holds if ssj � ssjþ1

. Now, consider the case where
ssj [ ssjþ1

, that is, the firm salvages. The first equal-
ity holds because if the firm salvages, we must have
ssjþ1

¼ ŝsjþ1
by the construction of DRC. The first

inequality holds because �s � ssj . The second inequal-
ity holds by the triangular inequality. The last
inequality follows the same idea as in the first part
of this section.
Combing the above two parts completes the proof

of Proposition 6.
Finally, Theorem 1 is a direct consequence of

Propositions 4–6, which gives us the desired regret
upper bound.

6. Numerical Experiments

We conduct numerical experiments to demonstrate
the efficacy of our proposed DRC algorithm. To the
best of our knowledge, we are not aware of any exist-
ing learning algorithms that are applicable to random
capacitated inventory systems. Thus, we have
designed two simple heuristic learning algorithms
(that are intuitively sound and practical), and use
them as benchmarks to validate the performance of
the DRC algorithm. Our results show that the perfor-
mance of the DRC algorithms is superior to these two
benchmarking heuristics both in terms of consistency
and convergence rate. All the simulations were imple-
mented on an Intel Xeon 3.50GHz PC.

6.1. Design of Experiments
We conduct our numerical experiments using a nor-
mal distribution for the random demand and a mix-
ture of two normal distributions for the random
capacity. More specifically, we set the demand to be
Nð10; 32Þ. We test four different capacity distribu-
tions, namely, a mixture of 20% Nð5; 12Þ and 80%
Nð14; 42Þ, a mixture of 20% Nð5; 12Þ and 80% Nð17;
52Þ, a mixture of 20% Nð5; 12Þ and 80% Nð20; 62Þ, and
also a mixture of 20% Nð5; 32Þ and 80% Nð17; 52Þ. The
distributions correspond to environments where the
product capacity is subject to downtime. Clearly, in a
production environment, capacity may be random even
if no significant downtime occurs (e.g., due to varia-
tions in operator speed). However, machine downtime
can significantly impact capacity. These examples cor-
respond to situations where the production system
experiences downtime that affects capacity with 20%
probability. (We have experimented with other exam-
ples of downtime and obtained similar results.)
The production cost c = 10, and the salvaging value

is set to be half of the production cost, that is, h = 5.
The backlogging cost is linear in backorder quantity,
with per-unit cost b = 10, and the holding cost is 2%
per period of the production cost, that is, h = 0.2. We
set the time horizon T = 1000, and compare the aver-
age cost of our DRC algorithm with that of the two
benchmarking heuristic algorithms (described below)
as well as the clairvoyant optimal cost over 1000
periods.
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Clairvoyant Optimal Policy: The clairvoyant opti-
mal policy is a stationary policy, given that the firm
knows both the demand and capacity distributions at
the beginning of the planning horizon. The average
cost is calculated by averaging 1000 runs over 1000
periods.
Benchmarking Heuristic 1: We start with an arbi-

trary inventory level s1 and start the first production
cycle. For t ≥ 1, we keep the target level st ¼ sj the
same during one production cycle j ≥ 1. If the inven-
tory level yt reaches sj, we claim that the jth produc-
tion cycle ends and then we collect all the past
observed demand data to form an empirical demand
distribution and all the past observed capacity data
(except the capacity data obtained at the end of each
production cycle) to form an empirical capacity

distribution. We omit the capacity data obtained at
the end of each production cycle because we might
not produce at full capacity (when the previous target
level is achieved). Then we treat the updated empiri-
cal demand and capacity distributions as true distri-
butions, and derive the long-run optimal target level
sjþ1 for the subsequent cycle j + 1. Note that the long-
run optimal target level (with well-defined input
demand and capacity distributions) can be computed
using the detailed computational procedure
described in Ciarallo et al. (1994). The average cost is
calculated by averaging 1000 runs over 1000 periods.
Benchmarking Heuristic 2: We start with an arbi-

trary inventory level s1, and keep the target level
st ¼ sj the same during one production cycle j≥1. We
still update the empirical demand distribution at the
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Figure 5 Computational Performance of the Data-Driven Random Capacity Algorithm (the average cost Case) [Color figure can be viewed at wileyon
linelibrary.com]
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end of each production cycle using all past observed
demand data. However, in the first N = 10 periods,
we always try to produce up to the maximum capac-
ity �u, and we form the empirical capacity distribution
using only these N full capacity sample points, and
treat the empirical capacity distribution as the true
capacity distribution for the rest of decision horizon.
At the end of each production cycle, we still collect all
the past observed demand data to form an empirical
demand distribution, and similar to heuristic 1, derive
the long-run optimal target level for the subsequent
cycle together with the empirical capacity distribu-
tion. In other words, in the first N periods, we always
produce up to the full capacity instead of the target
level to get true information of the capacity, and after
N periods, we carry out a regular modified base-stock
policy. The average cost is calculated by averaging
1000 runs over 1000 periods. We have experimented
with N values different than 10 and our results are
similar to those we report below.

6.2. Numerical Results and Findings
The numerical results are presented in Figure 5. We
observe that Heuristic 1 is inconsistent, that is, it fails
to converge to the clairvoyant optimal cost. This is
because even if we collect all the capacity data only
when we produce at full capacity, the empirical distri-
bution formed by these data is still biased (as the
capacity data we observe is smaller than the true
capacity). Heuristic 2 performs better than Heuristic
1, but still suffers from inconsistency.
Comparing to the benchmarking heuristic algo-

rithms, the DRC algorithm converges to the clairvoy-
ant optimal cost consistently and also at a much faster
rate. We can also observe that when the capacity uti-
lization (defined as the mean demand over the mean
capacity) increases, the convergence rate slows down.
This is because when the capacity utilization is high,
it generally takes more periods for the system to reach
the previous target level, resulting in longer produc-
tion cycle length and slower updating frequency.
Finally, we find that increasing the variability of dis-
tributions does not affect the performance of the DRC
algorithm.

6.3. Extension to the Discounted Cost Case
We also conduct numerical experiments for the dis-
counted cost case. More specifically, we choose the
demand to be Nð10; 32Þ and the production capacity
to be a mixture of 20%Nð5; 12Þ and 80%Nð14; 42Þ. The
total cost can be written as

PT
t¼1 a

tXðxt; stÞ where
0 < a < 1 is the discount factor and Xðxt; stÞ is the sin-
gle period cost. We compare our DRC algorithm with
the optimal policy and two benchmarking heuristics
under a = 0.995,0.99,0.97,0.95. The production, sal-
vaging, backlogging, and holding costs are kept the

same as the previous numerical experiment, that is,
c = 10, h = 5, b = 10, h = 0.2. We compare the total
cost up to T = 1000 periods. To adapt our DRC algo-
rithm to the discounted cost case, we slightly modify
our updating strategy in Step 1 as follows:

GkðŝsjÞ ¼
at�sj h; if ŝsj ^ ðx̂k þ ukÞ� dk;

�at�sj b; otherwise:

�

where t� sj is the time elapsed counting from the
beginning of the current production cycle. The
numerical results are presented in Figure 6. We
observe that the DRC algorithm clearly outperforms
the two benchmarking heuristics in terms of the
total discounted cost.

7. Concluding Remark

In this study, we have proposed a stochastic gradient
descent type of algorithm for the stochastic inventory
systems with random production capacity con-
straints, where the capacity is censored. Our algo-
rithm utilizes the fact that the clairvoyant optimal
policy is the extended myopic policy and updates the
target inventory level in a cyclic manner. We have
shown that the average T-period cost of our algorithm
converges to the optimal cost at the rate of Oð1= ffiffiffiffi

T
p Þ,

which is the best achievable convergence rate. To the
best of our knowledge, our study is the first paper to
study learning algorithms for stochastic inventory
systems under uncertain capacity constraints. We
have also compared our algorithm with two straw
heuristic algorithms that are easy to use, and we have
shown that our proposed algorithm performs signifi-
cantly better than the heuristics in both consistency
and efficiency. Indeed, our numerical experiments
have shown that with censored capacity information,
the heuristics may not converge to the optimal policy.
We leave an important open question on how to

design an efficient and effective learning algorithm
for the capacitated inventory systems with lost-sales
and censored demand. In this study, with backlogged
demand, the length of the production cycle is inde-
pendent of the target level, and therefore, the produc-
tion cycles in our proposed algorithm and the optimal
system are perfectly aligned. With lost-sales and cen-
sored demand, the length of the production cycle
becomes dependent on the target level, and compar-
ing any two feasible policies becomes much more
challenging, which would require significantly new
ideas and techniques.
Finally, we would also like to remark the connec-

tion between our online learning algorithm and deep
reinforcement learning (DRL) algorithms. Needless to
say, DRL is very popular nowadays and can be used
to solve stochastic problems involving learning. We
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refer interested readers to the recent work by Gijs-
brechts et al. (2019) that employed DRL in various
inventory control settings. The major differences of
DRL and our online learning algorithms are as fol-
lows: (1) DRL requires a vast amount of data at the
beginning to build the deep neural network, and
therefore is suitable for inventory system which has
substantial amount of history data. On the other hand,
our online learning algorithm assumes very limited
information at the beginning, and learns to optimize
from scratch. Second, DRL uses the stochastic gradi-
ent descent method to carry out backprorogation, but
it is almost impossible to interpret how the decisions
are made in each period. By contrast, our online learn-
ing algorithm is highly interpretable. Third, the effi-
ciency and accuracy of DRL highly rely on the
structure of deep neural network and the choice of

hyper-parameters, which requires much crafting and
fine-tuning. It is harder to obtain theoretical conver-
gence results. Overall, we think that DRL is a very
powerful method to solve complex problems where
there is a substantial amount of data and the decision
makers can accept the results from a black-box proce-
dure.
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Figure 6 Computational Performance of the Data-Driven Random Capacity Algorithm (the discounted cost case) [Color figure can be viewed at wile
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Appendix: Technical Proofs for Section 3

PROOF OF PROPOSITION 1. To prove the target interval
policy, we write the optimal single-period cost func-
tion as follows.

E Xðx; sÞ½ � ¼ min min
s� x

E Xþðx; sÞ½ �;min
s\x

E X�ðx; sÞ½ �
� �

;

ðA1Þ

where

E Xþðx; sÞ½ � ¼ c � ð1� FUðs� xÞÞðs� xÞ

þ c �
Z s�x

0

rfUðrÞdrþ ð1� FUðs� xÞÞZ 1

s
bðz� sÞfDðzÞdzþ

Z s

0

hðs� zÞfDðzÞdz
	 �

þ
Z s�x

0

Z 1

xþr
bðz� x� rÞfDðzÞdzfUðrÞdr

þ
Z s�x

0

Z xþr

0

hðxþ r� zÞfDðzÞdzfUðrÞdr;
ðA2Þ

E X�ðx; sÞ½ � ¼ h � ðs� xÞ þ
Z 1

s
bðz� sÞfDðzÞdz

	

þ
Z s

0

hðs� zÞ fDðzÞ dz�: ðA3Þ

Notice that we produce up to s when s ≥ x, and
salvage down to s when s < x.
We shall explain that in (A2) we condition on the

event s ≤ (x+U), which has a probability of ð1�
FUðs� xÞÞ, we have s ^ ðxþUÞ ¼ s and apply the
standard newsvendor integral E½s�D�þ þ E½D� s�þ
¼ R s

0 ðs� zÞdzþ R1s ðz� sÞdz. Similarly conditioning
on the event s > (x+U), which has a probability of
FUðs� xÞ ¼ R s�x

0 fUðrÞdr, we have s ^ ðxþUÞ ¼
xþU and also apply the standard newsvendor inte-
gral. Allowing for salvaging, the target level s can
always be achieved in (A3).
To show a target interval policy is optimal, we first

show that (A2) and (A3) have global minimizers s�l
and s�u, respectively. Then, we show that 0� s�l
� s�u \1. Finally, we discuss different strategies
based on different starting inventory levels to imply
that a target interval policy is optimal.
By applying the Leibniz integral rule, the first par-

tial derivative of (A2) with respect to s is

@

@s
E Xþðx; sÞ½ � ¼ ð1� FUðs� xÞÞ

cþ
Z 1

s

@

@s
bðz� sÞ fDðzÞ dzþ

Z s

0

@

@s
hðs� zÞfDðzÞdz

	 �
:

It can be easily solved that the solution to the first-
order optimality, denoted by s�l , is

s�l ¼ F�1
D

b� c

hþ b


 �

and

cþ
Z 1

s�
l

@

@s
bðz� sÞfDðzÞdzþ

Z s�
l

0

@

@s
hðs� zÞfDðzÞdz ¼ 0:

ðA4Þ

ðx; sÞ�=@s\ 0 for s\ s�l , and @E½Xþðx; qÞ�= @q [ 0 for
s [ s�l . Thus, we conclude that s�l is the global mini-
mum of E½Xþðx; sÞ�.
Moreover, the second partial derivative of (A2)

with respect to s is

@2

@2s
E Xþðx; sÞ½ �

¼ cfUðs� xÞ þ ð1� FUðs� xÞÞ
Z 1

s

@2

@2s
bðz� sÞfDðzÞdz

	

þ
Z s

0

@2

@2s
hðs� zÞ fDðzÞ dzþ fDðsÞðhþ bÞ

Z 0

0

�

�fUðs� xÞ
Z 1

s

@

@s
bðz� sÞ fDðzÞ dz

	

þ
Z s

0

@

@s
hðs� zÞ fDðzÞ dz

�
¼ð1� FUðs� xÞÞ ðhþ bÞfDðsÞ½ � � fUðs� xÞ

ðhþ bÞFDðsÞ � bþ c½ �:

It is easy to see when s� s�l ,

ð1� FUðs� xÞÞ ðhþ bÞfDðsÞ½ �[ 0 and
fUðs� xÞ ðhþ bÞFDðsÞ � bþ c½ � � 0:

Therefore, when s� s�l , @2E½Xþðx; sÞ�=@s2 � 0, which
suggests that E½Xþðx; sÞ� is convex in s� s�l .
Similarly, the first partial derivative of (A3) with

respect to s is

@

@s
E X�ðx; sÞ½ � ¼ hþ

Z 1

s
�bfDðzÞdzþ

Z s

0

hfDðzÞdz
ðA5Þ

and it is straightforward to check

@2

@2s
E X�ðx; sÞ½ � � 0;

be the solution to the first-order condition
@E½X�ðx; sÞ�=@s ¼ 0, and then the solution s�u is the
global minimum of E½X�ðx; sÞ�.
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Since h ≤ c, by comparing (A4) and (A5), we have
s�l � s�u. The optimal strategy is as follows.

1. When s�l � x� s�u, the firm decides to do noth-
ing.

2. When x\ s�l , the firm decides to produce up to
s�l (as much as possible).

3. When s�u \ x, the firm decides to salvage down
to s�u.

The three cases discussed above can be readily
illustrated in Figure 1. We sketch (A2) and (A3) as
functions of s = x + q. The two curves are labeled
“q ≥ 0” and “q < 0,” respectively. We note that (A2)
and (A3) intersect at q = 0, as discussed earlier. The
solid curve is the effective cost function Ω(s), which
consists of the curve “q ≥ 0” for s ≥ x, and the curve
“q < 0” for s < x.

PROOF OF PROPOSITION 2. We first prove Proposition
2(a). Define G�

t ðxtÞ be the optimal cost from period t to
period T with starting inventory xt, then the optimal-
ity equation for the system can be written as follows.

G�
t ðxtÞ � min min

st � xt
Gtþðxt; stÞ;min

st\xt
Gt�ðxt; stÞ

� �
; ðA6Þ

where

Gtþðxt; stÞ ¼ E Xþðxt; stÞ½ �

þ
Z 1

0

Z st�xt

0

G�
tþ1ðxt þ r� zÞfUðrÞdrfDðzÞdz

þ ð1� FUðst � xtÞÞ
Z 1

0

G�
tþ1ðst � zÞfDðzÞdz;

ðA7Þ

Gt�ðxt; stÞ ¼ E X�ðxt; stÞ½ � þ
Z 1

0

G�
tþ1ðst � zÞfDðzÞdz;

ðA8Þ

where E½Xþðxt; stÞ� and E½X�ðxt; stÞ� represent the cost
functions of period t with the produce-up-to deci-
sion and the salvage-down-to decision, respectively,
as in Proposition 1.

Our goal is to prove that a target interval policy is
optimal for any period t, that is, there exist two
threshold levels s�t;l and s�t;u such that the optimal tar-
get level s�t satisfies

s�t ¼
s�t;l; xt\s�t;l;
xt; s�t;l � xt � s�t;u;
s�t;u; xt [ s�t;u:

8<
:

LEMMA 8. If G�
tþ1ð�Þ is convex, then G�

t ð�Þ is also con-
vex. Also, a target interval policy is optimal in period t.

PROOF. We first show that a target interval policy
is optimal in period t. The cost function for period
t consists of (A7) and (A8). When st � xt, the cost
function is (A7), and when st \ xt, the cost func-
tion is (A8). Since G�

tþ1ð�Þ and E½X�ðxt; stÞ� are con-
vex in st, then we have that (A8) is convex in st
and we let s�t;u be the global minimum for (A8).
For (A7), the first-order condition is

@

@st
Gtþðxt; stÞ ¼ @

@st
E Xþðxt; stÞ½ � þ ð1� FUðst

� xtÞÞ
Z 1

0

G�0
tþ1ðst � zÞfDðzÞdz

¼ 0: ðA9Þ

Let s�t;l be the solution to (A9). Following the same
arguments as in Proposition 1 and the convexity
of G�

tþ1ð�Þ and E½Xþðxt; stÞ� for st � s�t;l, we conclude
that s�t;l is the global minimum for (A7). Also,
since h ≤ c, we have that s�t;l � s�t;u. Thus, a target
interval policy is optimal by following the three
cases discussed in the single-period problem in
Proposition 1.
Next, we show that G�

t ðxtÞ is convex in xt. Given
s�t;l and s�t;u, we can readily write G�

t ðxtÞ with respect
to the starting inventory xt as follows.

where s�t;l and s�t;u are the global minima defined
earlier.
By the Leibniz integral rule, the second deriva-

tives of (A10) with respect to xt are

G�
t ðxtÞ¼min min

st�xt
Gtþðxt;stÞ;min

st\xt
Gt�ðxt;stÞ

� �
¼

E Xþðxt;s�t;lÞ
h i

þR10 R s�t;l�xt
0 G�

tþ1ðxtþ r� zÞ fUðrÞdrfDðzÞdzþð1�Fðs�t;l�xtÞÞ
R1
0 G�

tþ1ðs�t;l� ztÞ fDðzÞdz; xt\s�t;l;R1
xt
bðz�xtÞ fDðzÞdzþ

R xt
0 hðxt� zÞ fDðzÞdzþ

R1
0 G�

tþ1ðxt� zÞ fDðzÞdz; s�t;l�xt�s�t;u;

E X�ðxt;s�t;uÞ
h i

þR10 G�
tþ1ðs�t;u� zÞ fDðzÞdz; s�t;u\xt;

8>>><
>>>:

ðA10Þ
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Because E½Xþðxt; s�t;lÞ� and E½X�ðxt; s�t;uÞ� are convex
(which has been derived in Proposition 1), and
G�00

tþ1ð�Þ is positive (by the inductive assumption), we
have that (A11) are all positive. This means that
G�

t ðxtÞ is convex on these three intervals separately.
It remains to show that G�

t ðxtÞ is convex on the
entire domain by carefully checking the connecting
points between these intervals. We have

lim
d!0�

G�
t ðs�t;lÞ � G�

t ðs�t;l � dÞ
d

¼ ðhþ bÞFDðs�t;lÞ � b

þ
Z 1

0

G�0
tþ1ðs�t;l � zÞfDðzÞdz;

lim
d!0þ

G�
t ðs�t;l þ dÞ � G�

t ðs�t;lÞ
d

¼ ðhþ bÞFDðs�t;lÞ � b

þ
Z 1

0

G�0
tþ1ðs�t;l � zÞfDðzÞdz;

lim
d!0�

G�
t ðs�t;uÞ � G�

t ðs�t;u � dÞ
d

¼ ðhþ bÞFDðs�t;uÞ � b

þ
Z 1

0

G�0
tþ1ðs�t;u � zÞfDðzÞdz;

lim
d!0þ

G�
t ðs�t;u þ dÞ � G�

t ðs�t;uÞ
d

¼ ðhþ bÞFDðs�t;uÞ � b

þ
Z 1

0

G�0
tþ1ðs�t;u � zÞfDðzÞdz:

Thus, we can see that the first derivatives at the
connecting points are the same, and therefore G�

t ð�Þ
is continuously differentiable and convex on the
entire domain.
By definition, we know that G�

Tþ1ðxTþ1Þ ¼
�hðxTþ1Þ is convex. Thus, by Lemma 8 and induc-
tion, we conclude that the target interval policy is
optimal for any period t = 1,. . .,T. This proves
Proposition 2(a).
We then prove Proposition 2(b). The single-period

cost and derivative are exactly the same for both the
produce-up-to and salvage-down-to cases. The optimal-
ity equation for infinite horizon case can be written as

JðxÞ ¼ min min
s� x

Gþðx; sÞ;min
s\x

G�ðx; sÞ
� �

:

where

Gþðx; sÞ ¼ E Xþðx; sÞ½ �
þ að1� Fðs� xÞÞ

Z 1

0

Jðs� zÞ fDðzÞ dz;
ðA12Þ

G�ðx; sÞ ¼ E X�ðx; sÞ½ � þ a
Z 1

0

Jðs� zÞ fDðzÞ dz; ðA13Þ

where 0 ≤ a < 1 is the discount factor. Our goal is
to prove that a target interval policy is optimal, that
is, there are two threshold levels s�l and s�u such that
the optimal target level is s�l when x\ s�l and s�u
when x [ s�u and x otherwise. Similar to Lemma 8,
we can show that J(x) is convex in the starting
inventory x. The remainder argument is identical to
that of Proposition 2(a). For the infinite horizon
average cost problem, it suffices to verify the set of
conditions in Sch€al (1993), ensuring the limit of the
discounted cost optimal policy is the average opti-
mal policy as the discount factor a?1 from the
below. Verifying these conditions is a standard exer-
cise in the literature, and thus we omit the details
for brevity. This completes the proof.

References
Agrawal, S., R. Jia. 2019. Learning in Structured MDPS with Con-

vex Cost Functions: Improved Regret Bounds for Inventory
Management. Proceedings of the 2019 ACM Conference on
Economics and Computation, EC ’19, : ACM, New York, NY,
USA, pp. 743–744.

Angelus, A., E. L. Porteus. 2002. Simultaneous capacity and produc-
tion management of short-life-cycle, produce-to-stock goods
under stochastic demand.Management Sci. 48(3): 399–413.

Angelus, A., W. Zhu. 2017. Looking upstream: Optimal policies
for a class of capacitated multi-stage inventory systems. Prod.
Oper. Manag. 26(11): 2071–2088.

Aviv, Y., A. Federgruen. 1997. Stochastic inventory models with
limited production capacity and periodically varying parame-
ters. Probab. Engrg. Inform. Sci. 11: 107–135.

Ban, G. Y. 2020. Confidence intervals for data-driven inventory policies
with demand censoring. Working paper, London Business School,
London, UK.

Besbes, O., A. Muharremoglu. 2013. On implications of demand
censoring in the newsvendor problem. Management Sci. 59(6):
1407–1424.

@2

@2xt
G�

t ðxtÞ ¼
@2

@2xt
E Xþðxt; s�t;lÞ
h i

þ R10 R s�
t;l
�xt

0 G�00
tþ1ðxt þ r� zÞfUðrÞdrfDðzÞdz; xt\s�t;l;

ðhþ bÞfDðxtÞ þ R10 G�00
tþ1ðxt � zÞfDðzÞdz; s�t;l � xt � s�t;u;

@2

@2xt
E X�ðxt; s�t;uÞ
h i

þ R10 G�00
tþ1ðs�t;u � zÞfDðzÞdz; s�t;u\xt:

8>>><
>>>:

ðA11Þ

Chen, Shi, and Duenyas: Inventory Learning with Random Capacity
Production and Operations Management 29(7), pp. 1624–1649, © 2020 Production and Operations Management Society 1647



Brownlee, J. 2014. Manufacturing Problems could Make the
iPhone 6 Hard to Find at Launch. Available at #https://
www.cultofmac. #com/285046/manufacturing-problems-
make-iphone-6-hard-find-launch/ (accessed date October 29,
2018).

Burnetas, A. N., C. E. Smith. 2000. Adaptive ordering and pricing
for perishable products. Oper. Res. 48(3): 436–443.

Chen, L., E. L. Plambeck. 2008. Dynamic inventory management
with learning about the demand distribution and substitution
probability. Manuf. Serv. Oper. Manag. 10(2): 236–256.

Chen, B., C. Shi. 2020. Tailored base-surge policies in dual-sour-
cing inventory systems with demand learning. Working
paper, University of Michigan, Ann Arbor, MI.

Chen, X., Gao, X., Z. Pang. 2018. Preservation of structural prop-
erties in optimization with decisions truncated by random
variables and its applications. Oper. Res. 66(2): 340–357.

Chen, B., Chao, X., H. S. Ahn (2019a). Coordinating pricing and
inventory replenishment with nonparametric demand learn-
ing. Oper. Res. 67(4): 1035–1052.

Chen, B., Chao, X., C. Shi. (2019b). Nonparametric algorithms for
joint pricing and inventory control with lost-sales and cen-
sored demand. Working paper, University of Michigan, Ann
Arbor, MI.

Chu, L. Y., Shanthikumar, J. G, Z. J. M. Shen. 2008. Solving opera-
tional statistics via a bayesian analysis. Oper. Res. Lett. 36(1):
110–116.

Ciarallo, F. W., Akella, R., T. E. Morton. 1994. A periodic review,
production planning model with uncertain capacity and
uncertain demand — optimality of extended myopic policies.
Management Sci. 40(3): 320–332.

Duenyas I., Hopp, W. J., Y. Bassok. 1997. Production quotas as
bounds on interplant JIT contracts. Management Sci. 43(10):
1372–1386.

Eberly, J. C., J. A Van Mieghem. 1997. Multi-factor dynamic
investment under uncertainty. J. Econ. Theory 75(2): 345–387.

Federgruen, A., N. Yang. 2011. Procurement strategies with unre-
liable suppliers. Oper. Res. 59(4): 1033–1039.

Federgruen, A., P. Zipkin (1986a). An inventory model with lim-
ited production capacity and uncertain demands I: The aver-
age-cost criterion. Math. Oper. Res. 11(2): 193–207.

Federgruen, A., P. Zipkin (1986b). An inventory model with lim-
ited production capacity and uncertain demands II: The dis-
counted cost criterion. Math. Oper. Res. 11(2): 208–215.

Feng, Q. 2010. Integrating dynamic pricing and replenishment
decisions under supply capacity uncertainty. Management Sci.
56(12): 2154–2172.

Feng, Q., J. G. Shanthikumar. 2018. Supply and demand functions
in inventory models. Oper. Res. 66(1): 77–91.

Gijsbrechts, J., Boute, R. N., Van Mieghem, J. A., D. J. Zhang.
2019. Can deep reinforcement learning improve inventory
management? performance on dual sourcing, lost sales and
multi-echelon problems. Working paper, Northwestern
University, Evanston, IL.

Godfrey, G. A., W. B. Powell. 2001. An adaptive, distribution-free
algorithm for the newsvendor problem with censored
demands, with applications to inventory and distribution.
Management Sci. 47(8): 1101–1112.

G€ull€u, R. 1998. Base stock policies for production/inventory prob-
lems with uncertain capacity levels. Eur. J. Oper. Res. 105(1):
43–51.

Hazan, E. 2016. Introduction to online convex optimization.
Found. Trends R Optimiz. 2(3-4): 157–325.

Henig, M., Y. Gerchak. 1990. The structure of periodic review
policies in the presence of random yield. Oper. Res. 38(4):
634–643.

Huh, W. T., M. Nagarajan. 2010. Linear inflation rules for the ran-
dom yield problem: Analysis and computations. Oper. Res. 58
(1): 244–251.

Huh, W. H., P. Rusmevichientong. 2009. A non-parametric
asymptotic analysis of inventory planning with censored
demand. Math. Oper. Res. 34(1): 103–123.

Huh, W.T., Janakiraman, G., Muckstadt, J.A., P. Rusmevichien-
tong. 2009. An adaptive algorithm for finding the optimal
base-stock policy in lost sales inventory systems with cen-
sored demand. Math. Oper. Res. 34(2): 397–416.

Huh, W. H., Rusmevichientong, P., Levi R., J. Orlin. 2011. Adap-
tive data-driven inventory control with censored demand
based on Kaplan–Meier estimator. Oper. Res. 59(4): 929–941.

Kapuscinski, R., S. Tayur. 1998. A capacitated production-inven-
tory model with periodic demand. Oper. Res. 46(6): 899–911.

Kleywegt, A. J., Shapiro, A., T. Homem-de Mello. 2002. The sam-
ple average approximation method for stochastic discrete
optimization. SIAM J. Optimiz. 12(2): 479–502.

Lariviere, M. A., E. L. Porteus. 1999. Stalking information: Baye-
sian inventory management with unobserved lost sales. Man-
agement Sci. 45(3): 346–363.

Levi R., Roundy R. O., D. B. Shmoys. 2007. Provably near-optimal
sampling-based policies for stochastic inventory control mod-
els. Math. Oper. Res. 32(4): 821–839.

Levi, R., Roundy, R. O., Shmoys, D. B., V. A. Truong. 2008.
Approximation algorithms for capacitated stochastic inven-
tory models. Oper. Res. 56:1184–1199.

Levi, R., Perakis, G., J. Uichanco. 2015. The data-driven newsven-
dor problem: New bounds and insights. Oper. Res. 63(6):
1294–1306.

Liyanage, L. H., J. G. Shanthikumar. 2005. A practical inventory control
policy using operational statistics.Oper. Res. Lett. 33(4): 341–348.

Loulou, R. 1978. An explicit upper bound for the mean busy per-
iod in a GI/G/1 queue. J. Appl. Probab. 15(2): 452–455.

Nemirovski, A., Juditsky, A., Lan, G., A. Shapiro. 2009. Robust
stochastic approximation approach to stochastic program-
ming. SIAM J. Optimiz. 19(4): 1574–1609.

€Ozer O.W. Wei. 2004. Inventory control with limited capacity and
advance demand information. Oper. Res. 52(6): 988–1000.

Powell, W., A., Ruszczy�nski, H., Topaloglu. 2004. Learning algo-
rithms for separable approximations of discrete stochastic
optimization problems. Math. Oper. Res. 29(4): 814–836.

Randall, T., D. Halford. 2018. Tesla model 3 tracker. Available
at https://www.bloomberg.com/graphics/2018-tesla-tracker/
(accessed date October 29, 2018).

Roundy, R. O., J. A. Muckstadt. 2000. Heuristic computation of
periodic-review base stock inventory policies. Management Sci.
46(1): 104–109.

Sch€al, M. 1993. Average optimality in dynamic programming with
general state space. Math. Oper. Res. 18(1): 163–172.

Shalev-Shwartz, S. 2012. Online learning and online convex opti-
mization. Found. Trends Mach. Learn. 4(2): 107–194.

Shi, C., Chen, W., I. Duenyas. 2016. Nonparametric data-driven
algorithms for multiproduct inventory systems with censored
demand. Oper. Res. 64(2): 362–370.

Simchi-Levi, D., Chen, X., J. Bramel. 2014. The Logic of Logistics:
Theory, Algorithms, and Applications for Logistics and Supply
Chain Management, Springer, New York, NY.

Snyder, L. V., Z. J. M. Shen. 2011. Fundamentals of Supply Chain
Theory, John Wiley & Sons, Hoboken, NJ.

Sohail, O. 2018. Production Problems Might Delay lcd iPhone 9
Model to Launch in November - Notch Said to be the Culprit.
Available at https://wccftech.com/iphone-9-lcd-model-
delayed-till-november/ (accessed October 29, 2018).

Chen, Shi, and Duenyas: Inventory Learning with Random Capacity
1648 Production and Operations Management 29(7), pp. 1624–1649, © 2020 Production and Operations Management Society



Sparks, D. 2018. Tesla model 3 production rate: 3000 units per
week. Available at #https://finance.yahoo.com/news/ #tble-
sla-model-3-production-rate-184600194.html (accessed October
29, 2018).

Tayur, S. 1992. Computing the optimal policy for capacitated
inventory models. Stoch. Models 9: 585–598.

Wang, Y., Y. Gerchak. 1996. Periodic review production models
with variable capacity, random yield, and uncertain demand.
Management Sci. 42(1): 130–137.

Yuan, H., Luo, Q., C. Shi. 2019. Marrying stochastic gradient des-
cent with bandits: Learning algorithms for inventory systems

with fixed costs. Working paper, University of Michigan, Ann
Arbor, MI.

Zhang, H., Chao, X., C. Shi. 2018. Perishable inventory sys-
tems: Convexity results for base-stock policies and learning
algorithms under censored demand. Oper. Res. 66(5): 1276–
1286.

Zhang, H., Chao, X., C. Shi. 2020. Closing the gap: A learning
algorithm for the lost-sales inventory system with lead times.
Working paper, University of Michigan, Ann Arbor, MI.

Zipkin, P. 2000. Foundations of Inventory Management, McGraw-
Hill, New York, NY.

Chen, Shi, and Duenyas: Inventory Learning with Random Capacity
Production and Operations Management 29(7), pp. 1624–1649, © 2020 Production and Operations Management Society 1649


