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39 Abstract

40 1. Generalist species, by definition, exhibit variation in niche attributes that promote 

41 survival in changing environments. Increasingly, phenotypes previously associated with a 

42 species, particularly those with wide or expanding ranges, are dissolving and compelling 

43 greater emphasis on population-level characteristics. 

44 2. In the present study, we assessed spatial variation in diet characteristics, gut microbiome, 

45 and the association between these two ecological traits across populations of coyotes 

46 (Canis latrans). We highlight the influence of the carnivore community in shaping these 
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47 relationships, as the coyote varied from being an apex predator to a subordinate, 

48 mesopredator across sampled populations. 

49 3. We implemented a scat survey across three distinct coyote populations in Michigan, 

50 USA. We used carbon (δ13C) and nitrogen (δ15N) isotopic values to reflect consumption 

51 patterns and trophic level, respectively. Corresponding samples were also paired with 

52 16S rRNA sequencing to describe the microbial community and correlate with isotopic 

53 values. 

54 4.  Though consumption patterns were comparable, we found spatial variation in trophic 

55 level among coyote populations. Specifically, δ15N was highest where coyotes were the 

56 apex predator and lowest where coyotes co-occurred with gray wolves (Canis lupus). 

57 5. The gut microbial community exhibited marked spatial variation across populations with 

58 the lowest OTU diversity found where coyotes occurred at their lowest trophic level. 

59 Bacteriodes and Fusobacterium dominated the microbiome and were positively 

60 correlated across all populations. We found no correlation between δ13C and microbial 

61 community attributes. However, positive associations between δ15N and specific 

62 microbial genera increased as coyotes ascended trophic levels. 

63 6. Coyotes provide a model for exploring implications of niche plasticity because they are a 

64 highly adaptable, wide-ranging omnivore. As coyotes continue to vary in trophic position 

65 and expand their geographic range, we might expect increased divergence within their 

66 microbial community, changes in physiology, and alterations in behavior. 
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82 1       | INTRODUCTION

83 Generalist species, by definition, exhibit variation in niche attributes that promote their survival 

84 in changing environments. In North America, coyotes (Canis latrans) exist across landscapes as 

85 a widespread, generalist carnivore. They have a high tolerance to human disturbance and few 

86 fixed requirements for survival (Gompper 2002).  Furthermore, coyotes and other subordinate 

87 sympatric species have been released from top-down pressures with the extirpation of apex 

88 predators such as gray wolves (Canis lupus) and mountain lions (Puma concolor) across their 

89 range allowing for their trophic ascension via increased carnivory and nitrogen uptake (Prugh et 

90 al. 2009; Thornton & Murray 2014). Consequently, the variation in trophic position of coyotes 

91 within their community results in dynamic ecosystem impacts across their range (Crooks & 

92 Soule 1999; Ripple et al. 2013). For example, coyotes can affect the abundance of small 

93 mammals (Flagel et al. 2017), influence the distribution of zoonotic diseases (Harris & Dunn 

94 2013; Levi et al. 2012), and alter the behavior of sympatric carnivores (Flagel et al. 2017; Miller 

95 et al. 2012; Rich et al. 2018).

96 Traits of coyotes are not static. Certain ecosystem characteristics (e.g., climate, 

97 vegetation) induce a myriad of conditions that require flexibility in behavior, physiology, 

98 demography, and ecology. Heterogeneity in habitat use is evident with coyotes occupying a 

99 gradient ranging from heavily urban to forested landscapes (Ellington & Gehrt 2019; Randa & 

100 Yunger 2006). Coyote populations also differ in other behavioral attributes such as sociality and 

101 spatio-temporal activity patterns, which can minimize their risks of intraguild conflict and 

102 enhance resource exploitation (Gese, Morey & Gehrt 2012; Wang, Allen & Wilmers 2015).  
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103 Because of increasing environmental change and the species’ range expansion, traits previously 

104 associated with coyotes as a whole may dissolve and compel greater emphasis on population-

105 level characteristics. With a wide dietary breadth, consumptive patterns of coyotes vary 

106 seasonally and spatially across populations and habitats (McVey et al. 2013; Newsome et al. 

107 2015).  One method increasingly applied in diet analysis is the use of stable isotopes to assess 

108 trophic structure in food webs, food sources, and niche differentiation (e.g., Brickner et al. 2014; 

109 Galetti et al. 2016; Layman et al. 2007; Manlick et al. 2019). The isotopic niche can be 

110 conceptualized as an area in δ-space that represents the environmental influences experienced by 

111 a species during the development of various tissues through both consumption and interactions 

112 with habitat (Newsome et al. 2007).  Consumption patterns and breadth of sampled tissues are 

113 represented with δ13C that ultimately reflects primary production pathways, while δ15N reflects 

114 nitrogen enrichment indicative of increasing trophic position in an individual (Ben-David & 

115 Flaherty 2012; Peterson & Fry 1987). Therefore, stable isotope analyses provide useful insights 

116 to investigate differences in trophic ecology among populations.

117 Diet composition comprising of vertebrates, invertebrates, plant matter, and human foods 

118 by coyotes results in dynamic roles across populations as well as potential variation in their gut 

119 microbial composition throughout their range.  For example, if each food item uniquely 

120 contributes microbial colonists and nutrients, a more diverse diet would yield a more diverse gut 

121 microbiome, as recorded in numerous taxa. The emergent pattern results in scaling of microbial 

122 diversity based on guild from herbivores harboring the highest than omnivores followed by 

123 carnivores with the lowest (Ley et al. 2008; Youngblut et al. 2019).  As such, the gut 

124 microbiome can adapt to changes in diet in a manner that is conserved across a wide variety of 

125 mammalian species encompassing carnivores, omnivores, hindgut and foregut fermenting 

126 herbivores, and even humans (David et al. 2014; Muegge et al. 2011). In addition to the gut 

127 microbiome being governed by diet, community composition of microbes is shaped by 

128 evolutionary history as well as environmental condition such as habitat degradation (Amato et al. 

129 2013; Ley et al. 2008; Youngblut et al. 2019). Closely related species can also exhibit similar 

130 microbial communities (Anderson et al. 2012; Brucker & Bordenstein 2012). Other studies 

131 postulate the presence of a ‘core’ microbiome for a species, describing intrinsic associations for 

132 essential physiological and health functions (Astudillo-Garcia et al. 2017; Hamady & Knight 

133 2009; Ley et al. 2008). Alternatively, variation in immune competency and infection status can 
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134 induce trophic differentiation among individuals and populations that influence microbial 

135 attributes (Britton & Andreou 2016). Despite the plethora of comparative studies between 

136 species, fewer studies have assessed differences between wild populations of a species across its 

137 range.  Gaining a population-specific understanding of host-microbe associations has 

138 conservation implications for anticipating consequences of environmental change and assessing 

139 vulnerability across a species’ range (Kohl et al. 2018; Trevelline et al. 2019). 

140 Here, we assessed the relationship among diet, trophic level, and the gut microbial 

141 community in a spatially explicit manner for coyotes. First, we used carbon and nitrogen isotopic 

142 values to quantify dietary breadth and trophic level across three distinct coyote populations in 

143 Michigan. Then, we inventoried microbial communities for diversity and composition from 

144 associated scat samples.  Finally, we evaluated whether dietary breadth and trophic level 

145 correlated with microbial diversity and composition.  We expected distinct attributes in both 

146 niche attributes – diet and microbes – among coyote populations. Specifically, we tested the 

147 following predictions in our study: 1) coyote populations will harbor distinct microbial 

148 communities and differ in isotopic signatures from north to south; 2) a more diverse diet and 

149 higher trophic level will correspond to a higher diversity of microbial taxa; and 3) the 

150 relationship between diet and microbes will be maintained despite population-level differences in 

151 the characteristics of each. Because species are nested within complex networks, assessing 

152 population-level variation can have broader implications for understanding drivers of niche 

153 plasticity and evolutionary capacity to assess vulnerabilities to changing environments. 

154

155 2      | MATERIALS AND METHODS

156 2.1    | Study areas 

157 We conducted fieldwork for this study in three different areas throughout the state of Michigan, 

158 USA. From north to south (Figure 1): Huron Mountain Club (HMC) in the Upper Peninsula and 

159 two Lower Peninsula sites - University of Michigan Biological Station (UMBS) and Shiawassee 

160 National Wildlife Refuge (SNWR). We selected these areas based on differences in habitat and 

161 climate conditions using latitude as a proxy, levels of anthropogenic disturbance, and differences 

162 in carnivore communities. At our most pristine site, HMC (46.8486° N, 87.7999° W) comprises 
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163 approximately 5,260 ha of privately-owned mixed secondary and old growth forest. The club is 

164 situated along the southern coast of Lake Superior in Marquette County with ~14 

165 inhabitants/km2. UMBS (45.55984° N, 84.71382° W) encompasses approximately 4,000 ha of 

166 mixed deciduous and coniferous forest surrounding Douglas Lake in the northern tip of 

167 Michigan’s Lower Peninsula. The station is located east of the town of Pellston in Emmett 

168 County with ~ 27 inhabitants/km2. Finally, SNWR (43.3377° N, 84.0273° W), managed by the 

169 U.S. Fish & Wildlife Service, consists of approximately 3,965 ha of marsh, bottomland 

170 hardwood forest, and grasslands. It neighbors the city of Saginaw in Saginaw County with ~ 91 

171 inhabitants/km2, and fringes both urban development and agriculture.

172 2.2   | Sample collection 

173 We conducted systematic scat surveys from May-August 2016, collecting all carnivore feces 

174 found across our three study areas. Surveys occurred monthly for 7-10 days, utilizing hiking 

175 paths and wildlife trails, and usually included all available habitat types within the study area. 

176 We made concerted efforts during fieldwork to collect mostly “fresh” scat and collected from 

177 interior region to reduce contamination with collection tools cleaned with ethanol between 

178 samples. Opportunistic findings by other researchers, volunteers, and park rangers presumed to 

179 be carnivore were also included. Samples were stored in two of three liquid preservation 

180 solutions: DET, RNAlater or EtOH in 10ml sterile plastic vials as well as dry in sterile bags. 

181 However, nearly 3/4 of samples used for analysis were preserved in EtOH. All samples were 

182 stored at -20°C upon returning from the field until processed. Wet samples were used for 

183 molecular host confirmation and microbial community analysis while dry samples were 

184 processed for stable isotope analysis. 

185 2.3    | Molecular confirmation 

186 To make any inferences about niche attributes of the diet or microbiome of coyotes across 

187 populations, we had to first confirm collected scat samples as coyote. We began species 

188 identification by extracting DNA from each potential sample using Qiagen™ QIAamp DNA 

189 stool kits (Qiagen, LaJolla, CA) to yield approximately 200 µl of DNA extract. DNA was then 

190 amplified through PCR using two different primers for mtDNA target regions:  a canid-specific 

191 primer amplifying 533 base pairs (Rashleigh, Krebs & van Keulen 2008); and a Carnivora-

192 specific primer amplifying 126 base pairs (Chaves et al. 2012). Samples selected for gene 
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193 sequencing were submitted to the University of Michigan DNA Sequencing Core for Sanger 

194 sequencing. We analyzed chromatograms for each sequence on the Sequencher and Bioedit 

195 platforms, and high-quality sequences were compared to those of known species submitted to 

196 NCBI Nucleotide BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Samples that matched known 

197 sequences on the NCBI database with 90% or higher query cover and 98% or higher identity 

198 were confirmed as coyote. 

199 2.4    | Stable isotope analysis 

200 Confirmed coyote samples were oven dried at 50°C for 48 hours. Dried scat samples were then 

201 gently broken apart over a 0.355 mm fine-mesh sieve (Hogentogler, Columbia, MD) to obtain 

202 only the scat matrix, excluding poorly digested dietary components (e.g., feathers, bones, fur) 

203 that may disproportionately impact isotope values (Reid & Koch 2017). All samples were then 

204 placed into 1.5 ml tubes with 3 – 5 metal beads and homogenized at 6 m/s for 5 minutes. We 

205 then weighed all samples (3 – 4 mg for scat) and created two replicates of each sample, sealed 

206 samples into 5x9 mm tin capsules, and submitted them to University of New Mexico Center for 

207 Stable Isotopes to be analyzed for δ13C and δ15N values. Carbon and nitrogen isotope ratios were 

208 measured by Elemental Analyzer Continuous Flow Isotope Ratio Mass Spectrometry using a 

209 Costech ECS 4010 Elemental Analyzer coupled to a ThermoFisher Scientific Delta V Advantage 

210 mass spectrometer via a CONFLO IV interface. Isotope ratios are reported using the standard 

211 delta (δ) notation relative to V-AIR and to Vienna Pee Dee Belemnite (V-PDB).  Average 

212 analytical precision was better than 0.1‰ (1s) for both δ13C and δ15N based on routine analysis 

213 of laboratory standards. The laboratory standards were calibrated against IAEA N1, IAEA N2 

214 and USGS 43 for δ15N and NBS 21, NBS 22 and USGS 24 for δ13C.

215 2.5   | Microbial ecology 

216 We investigated variation in the gut microbial community of coyote by submitting extracted 

217 DNA to the Center for Microbial Systems at University of Michigan. The V4 region of the 16s 

218 rRNA gene was amplified using a Dual indexing sequencing strategy on the Illumina MiSeq 

219 platform. Sequence data were analyzed following a modified standard operating procedure 

220 outlined by Kozich et al. (2013).  After trimming and aligning sequences, we screened for 

221 chimeras using UCHIME, and then applied a naïve Bayesian classifier to assign each sequence 

222 taxonomic identity against the Ribosomal Database Project (RDP) 16s rRNA gene training set 
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223 using an 80% pseudo-bootstrap confidence score (https://rdp.cme.msu.edu/). Any sequences that 

224 were classified as chloroplasts, mitochondria, and unknown were culled; sequences that 

225 remained were classified as Archaea, Eukaryota, or Bacteria. For quality control, we compared 

226 sequence data to a mock community to measure the error rate and its effect on our analysis. 

227 Afterwards, we organized remaining sequences into groups based on taxonomy and then 

228 assigned them to operational taxonomic units (OTUs) at a 3% dissimilarity level, which has the 

229 advantage of parallelization and reduced memory usage, while shown to be equivalent to not 

230 splitting sequences by taxonomic order (He et al. 2015; Kozich et al. 2013). 

231 2.6    | Statistical Analysis 

232 We used Kruskal-Wallis tests to examine potential differences in both the average stable carbon 

233 and nitrogen values among populations. We then used Dunn’s test with the Bonferroni correction 

234 to determine which populations of coyotes were statistically different from one another at α = 

235 0.05 significance level. Finally, we applied a Brown-Forsythe test for both stable carbon and 

236 nitrogen values to explore how the variance of our measurements may differ across populations. 

237 We evaluated variation in microbial diversity using inverse Simpson index on total OTUs across 

238 populations. We used the Bray-Curtis measure of dissimilarity to calculate distances of 1073 

239 sequences per sample with a principal coordinate analysis (PCoA) to compare community 

240 structure. We used permutational multivariate analysis of variance (PERMANOVA) tests to 

241 determine whether the coyote microbiome differed significantly in community structure among 

242 the three populations, pooling sequences for every sample by site for comparison. We also 

243 calculated the average distance for samples to within group median and did not find strong 

244 evidence for group dispersion using a 0.05 significance level (F=2.91, P-value = 0.062). We 

245 used a Bonferroni correction to adjust p-values for pairwise population comparisons of 

246 community similarity. We focused our investigation of relative abundance on the most abundant 

247 taxa as OTUs representing at least 25% of reads in at least one sample.  We used Pearson’s R 

248 correlation to assess the relationship between microbial and dietary attributes across populations. 

249 All statistical analyses were performed in Mothur software (v. 1.39.5) as well as ‘vegan’, and 

250 ‘phyloseq’ packages in R (v 3.5.1; R Core Team, 2018). 

251

252 3    | RESULTS
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253 We collected a total of 357 carnivore scat samples across our study areas and confirmed 58 

254 samples through molecular analyses as coyote for subsequent dietary and microbial analysis 

255 (HMC: n=26; UMBS: n=13; SNWR: n=19). 

256 Trophic position was significantly different across populations (Figure 2; Kruskal-Wallis 

257 test; χ2 = 37.68, p < 0.001). Specifically, coyotes ascended in trophic level moving south with the 

258 highest and most divergent δ15N values at SNWR, as predicted. Though UMBS and HMC 

259 average δ15N values were comparable (Dunn’s test: z = -2.132, p = 0.049), these populations 

260 both differed significantly from SNWR (to UMBS: z = 3.061, p = 0.003; to HMC: z = -6.137, p < 

261 0.001). Contrary to expectations, δ13C values were comparable across populations (χ2 = 3.87, p = 

262 0.144). The variance of both measured δ15N and δ13C values were not significantly different 

263 across coyote populations (Brown-Forsythe test; δ15N: t = 0.000, p = 0.999; δ13C: t = 1.919, p = 

264 0.156).

265 We recorded 507 OTUs with on average 79 unique OTUs (range: 29-232) across our 

266 samples. Specifically, we detected on average 6,642 amplicons within each sample (range: 

267 1,073-16,449). Alpha diversity of OTUs varied significantly among populations and was lowest 

268 at HMC, our northern-most site where coyotes occupied their lowest trophic level, as expected 

269 (Figure 3a, χ2 = 6.339, p = 0.043). Of the 373 OTUs identified to the genus level, Bacteroides 

270 and Fusobacteria dominated the microbiota of coyotes and were positively correlated across all 

271 populations (Figure 3b; Figure 4, correlations range: 0.70-0.78). Furthermore, these were the 

272 only two dominant genera that occurred at each site; although, Bacteroides different significantly 

273 across populations and was double to two-thirds more abundant at HMC (χ2 = 8.472, p = 0.015). 

274 We found coyotes from different populations in distinct geographic locations harbored 

275 distinct gut microbial communities based on PCoA clustering, as expected (PERMANOVA: R = 

276 0.094, p = 0.003, Figure 3c). At a finer resolution with pairwise comparisons, HMC clustered 

277 differently from the Lower Peninsula populations (to SNWR: R = 0.07, p = 0.027; to UMBS: R = 

278 0.10, p =0.015). However, a comparison between the two populations in the Lower Peninsula, 

279 SNWR-UMBS, did not indicate a significant difference in clustering from a PCoA (R = 0.04, p 

280 =0.819), contrary to expectations. 
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281 Clear divergence was evident between consumption patterns and trophic level in relation 

282 to microbial communities across coyote populations. Contrary to our predictions, we did not find 

283 evidence of an association between dietary breadth (i.e., δ13C) or C:N ratios and the gut 

284 microbiome of coyotes in any population, as there was no positive or negative correlation 

285 (Figure 4). However, the relative abundance of specific microbial genera was positively 

286 correlated with trophic level, as indexed by δ15N. This association only manifested as coyotes 

287 ascended in trophic position within their respective communities (e.g., Lower Peninsula 

288 populations: UMBS, SNWR). At HMC, where coyotes had significantly lower δ15N values, we 

289 found no correlation to microbial diversity or the relative abundance of specific genera (Figure 

290 4).  Sphingobacterium showed a strong positive association with δ15N in the Lower Peninsula 

291 populations with the relationship strengthening where coyotes were the apex predator in the 

292 system (Correlations: UMBS- 0.60; SNWR- 0.72). Additionally, we observed a significant 

293 positive correlation between δ15N and Flavobacterium (0.59), a genus that only occurred at 

294 SNWR. 

295  

296 4    | DISCUSSION 

297 Understanding spatial variation in niche attributes across a species’ range is fundamental to 

298 understanding community structure and mechanisms of coexistence as well as anticipating 

299 vulnerabilities to changing environments (Manlick et al. 2019; Mazel et al. 2017; Slatyer, Hirst 

300 & Sexton 2013).  We evaluated the population-level variation of diet and the gut microbiome of 

301 coyote across a gradient of landscape use and competitor diversity. We found that the 

302 consumption patterns of these populations, reflected in δ13C values, did not differ meaningfully, 

303 while differences were evident in trophic niche (i.e., differences in δ15N values). δ15N increases 

304 approximately 3 – 4‰ per trophic level (Ben-David & Flaherty 2012; Peterson & Fry 1987) with 

305 omnivores exhibiting higher trophic signatures than herbivores (e.g., Steffan et al. 2019). 

306 Coyotes ascended to a higher trophic level, having enriched nitrogen values, as larger carnivores 

307 such as gray wolves and mountain lions were extirpated along the north-south gradient of our 

308 study.  Consistent with expectation of mesopredator release (Crooks & Soule 1999), we observed 

309 the highest δ15N values at our southern-most site (SNWR), where coyotes serve as apex 

310 predators. Our work presents a novel consideration of how trophic cascades could induce 
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311 ecological shifts that affect the affiliate microbiome to expand our understanding of 

312 mesopredator release (Estes et al. 2011; Ripple et al. 2016). 

313 Variations in trophic position may be attributed to alterations in resource use or habitat 

314 conditions (e.g., Codron et al. 2015; Harris, Garshong & Gray 2018; Resasco et al. 2018), which 

315 may vary due to differences in resource availability across the landscape and the ability of a 

316 consumer to access those resources. Additionally, the presence of dominant competitors can 

317 influence the habitat use and feeding behavior of coyotes, subsequently altering nitrogen uptake 

318 (Flagel et al. 2017; Merkle, Stahler & Smith 2009). We observed the lowest trophic level and 

319 narrowest dietary breadth at HMC, our northern-most site where coyotes co-occur with gray 

320 wolves. Such sympatry may cause the suppression of subordinate coyotes, forcing individuals to 

321 alter their consumption patterns and switch to alternate food sources. Coyote x wolf hybrids are 

322 known to exist in the Lower Peninsula of Michigan at the UMBS site (Wheeldon, Patterson & 

323 Beyer 2012). These individuals may exert similar top-down pressures on resident coyotes and 

324 potentially alter their trophic interactions. 

325 Enrichment along the δ13C axis reflects a shift from C3 to C4 plant biomass in a 

326 consumer’s diet (Ben-David & Flaherty 2012), which can represent a greater reliance on 

327 anthropogenic food sources such as corn and corn-based products (Jahren & Kraft 2008). 

328 Previous works highlight that coyotes in urban areas exhibit wider dietary niche and often exploit 

329 less animal protein (Murray et al. 2015; Newsome et al. 2015). Consumption patterns of all three 

330 coyote populations indicate a comparable primary production base reliant on C3 plant 

331 production, despite our southern-most site (SNWR) having high human disturbance and farming 

332 activity. This may reflect the ability of SNWR coyotes to select preferred prey sources due to the 

333 absence of top-down pressures from larger and more dominant competitor species. The variance 

334 among two of three populations were relatively low, suggesting narrow consumption patterns 

335 that contrast expectations for dietary generalists (Bearhop et al. 2004). 

336 We detected significant variation in the microbial community among coyote populations, 

337 particularly between the populations in the geographically distinct Lower and Upper Peninsula of 

338 Michigan. Observed differences in trophic position correlated with differences within the gut 

339 microbiome across coyote populations. Similarly, other studies report spatial variation of the 

340 microbiome within wild populations for groups separated by as few as 15 km to greater than 
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341 1000 km (Gomez et al. 2015; Kohl et al. 2018). Our findings are particularly notable because 

342 most studies on spatial variation in microbes focus on herbivores, while the omnivorous diet and 

343 trophic variability of coyote represent a greater opportunity for diet-driven microbial plasticity. 

344 The reduction in δ15N values, representing a lower trophic position, do not correlate with 

345 microbial diversity or any other microbial attribute at the HMC site, suggesting a constrained 

346 niche in the presence of large carnivores. We postulate this indicates that a higher trophic 

347 position may promote stronger correlations to microbial attributes (e.g., prevalence, diversity). 

348 Fundamentally, coyotes provide a model for exploring niche plasticity and consequences 

349 of environmental change because they are a highly adaptable, wide-ranging omnivore. With the 

350 continued expansion of urbanization and changing climates, exploring this coupling in a 

351 comparative framework to assess implications for consumption and disease dynamics in coyotes 

352 would yield insights into eco-evolutionary processes (Alberti 2015). As coyotes vary in trophic 

353 position across an expanding geographic range, the distinctiveness of their functional traits may 

354 promote increasingly disparate populations and ecological interactions (Bolnick et al. 2011). We 

355 might expect increased divergence within their microbial community, changes in physiology, 

356 and alterations in behavior. Furthermore, the observed correlations between diet and the 

357 microbial community may help assign a health status across populations (Trevelline et al. 2019).  

358 For example, a high prevalence of Gram-positive Actinobacteria known for its role in producing 

359 biological metabolite could potentially be an immune response to an increase of Proteobacteria 

360 associated with a wide array of pathogens (Ghoul & Mitri 2016). Therefore, identifying 

361 correlations between microbial taxa, driven in part by trophic position and diet, can aid in 

362 assessing vulnerabilities to prioritize conservation efforts and anticipating consequences of 

363 community dynamics induced from anthropogenic pressures at the population level for a species. 

364 Overall, our work elucidating spatial variation in foraging ecology, trophic level, and microbial 

365 affiliates for the coyote further underscores the significance of comparative studies in animal 

366 ecology. 
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553 Figure Legends

554 FIGURE 1 – Study areas across the state of Michigan, USA. from north – south: Huron Mountain 

555 Club (HMC), University of Michigan Biological Station (UMBS), and Shiawassee National 

556 Wildlife Refuge (SNWR). Animal silhouettes depict the competitor species at each site and * 

557 indicates known presence of coyote x wolf hybrids.    

558 FIGURE 2 – Mean values and standard error bars of δ15N and δ13C values from coyote scat 

559 samples across study areas from north to south in Michigan, USA.  

560 FIGURE 3 – Site comparison of microbial community attributes from coyote scat samples across 

561 study areas from north to south in Michigan, USA. a) Boxplot of microbial diversity calculated 

562 from inverse Simpson index (χ2 = 6.271, p = 0.043). b) Community composition of most 

563 abundant genera. c) Principal coordinates analysis of coyote microbiome compositional 

564 differences using Bray-Curtis distances. Populations listed in ascending order in relation to 

565 coyote trophic position within each community (HMC to SNWR)

566 FIGURE 4– Correlation matrix between dietary and microbial attributes assessed across coyote 

567 populations from north to south in Michigan, USA. Cells containing “X” indicate non-significant 

568 relationships based on significance level 0.05 from Pearson’s R.  
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