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ABSTRACT1

In conditionally automated driving, drivers have difficulty taking over control2

when requested. To address this challenge, we aimed to predict drivers’ takeover3

performance before the issue of a takeover request (TOR) by analyzing drivers’4

physiological data and external environment data. We used data sets from two5

human-in-the-loop experiments, wherein drivers engaged in non-driving-related tasks6

(NDRTs) were requested to take over control from automated driving in various7

situations. Drivers’ physiological data included heart rate indices, galvanic skin8

response indices, and eye-tracking metrics. Driving environment data included scenario9

type, traffic density, and TOR lead time. Drivers’ takeover performance was categorized10

as good or bad according to their driving behaviors during the transition period and11

was treated as the ground truth. Using six machine learning methods, we found that12

the random forest classifier performed the best and was able to predict drivers’ takeover13

performance when they were engaged in NDRTs with different levels of cognitive load.14

We recommended 3 s as the optimal time window to predict takeover performance using15

the random forest classifier, with an accuracy of 84.3% and an F1-score of 64.0%. Our16

findings have implications for the algorithm development of driver state detection and17

the design of adaptive in-vehicle alert systems in conditionally automated driving.18

Keywords: Transition of control, predictive modeling, human-automation19

interaction, human-autonomy interaction, human-robot interaction.20
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1. Introduction1

While automated vehicles are poised to revolutionize surface transportation, they2

introduce new challenges. One of the challenges is takeover transitions in conditionally3

automated driving (Ayoub, Zhou, Bao, & Yang, 2019; Zhou, Yang, & Zhang, 2020). In4

conditionally automated driving, drivers are no longer required to actively monitor the5

driving environment and are allowed to fully engage in non-driving-related tasks6

(NDRTs) (Society of Automotive Engineers, 2018). However, serving as a fallback for7

the automation, drivers are required to take over control of the vehicle whenever the8

automated system reaches its operational limit.9

Previous studies showed that the limited driver-vehicle interaction in conditionally10

automated driving increases the difficulty for drivers to take over control when11

requested (Eriksson & Stanton, 2017; Gold, Körber, Lechner, & Bengler, 2016;12

Petersen, Robert, Yang, & Tilbury, 2019). In response to such difficulty, empirical13

studies have investigated the factors that influence drivers’ takeover performance,14

including drivers’ cognitive and emotional states (Du et al., 2020; Wan & Wu, 2018;15

Zeeb, Härtel, Buchner, & Schrauf, 2017) and driving environments (Gold et al., 2016;16

Li, Blythe, Guo, & Namdeo, 2018).17

These studies shed light on the relationships between certain factors and takeover18

performance; for instance, high traffic density harmed takeover performance (Gold et19

al., 2016). However, with few exceptions (Braunagel, Rosenstiel, & Kasneci, 2017; Gold,20

Happee, & Bengler, 2018), little effort has been made to integrate these findings into21

computational models that are capable of predicting drivers’ takeover performance in22

real time. In the present study, therefore, we aimed to fill the research gap and to23

predict drivers’ takeover performance when they were engaged in NDRTs with different24

levels of cognitive load.25

1.1 Factors influencing takeover performance26

To facilitate takeover transitions, empirical research has been conducted to27

examine factors that influence drivers’ takeover performance. The factors include28
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drivers’ cognitive and emotional states when performing different types of NDRTs (Du1

et al., 2020; Wan & Wu, 2018; Zeeb et al., 2017) in different driving environments (Gold2

et al., 2016; Li et al., 2018). Takeover performance consists of takeover timeliness (i.e.,3

takeover reaction time) and takeover quality (e.g., speed, acceleration and jerk4

statistics, time/distance to collision statistics, lane deviation statistics, and crash rate).5

The types of NDRTs have been found to influence takeover performance. Previous6

studies showed that compared with not performing an NDRT, those engaged in NDRTs7

had longer takeover reaction times, more crashes in high-traffic situations, and shorter8

minimum time to collision (TTC) (Eriksson & Stanton, 2017; Gold et al., 2016; Wan &9

Wu, 2018). The effects of NDRT modality on takeover performance were also explored.10

For example, Radlmayr, Gold, Lorenz, Farid, and Bengler (2014) and Wandtner,11

Schömig, and Schmidt (2018) reported that a visual task with handheld devices12

degraded takeover performance and led to a higher collision rate, while an auditory task13

led to comparable performance to a baseline without any task. Zeeb, Buchner, and14

Schrauf (2016) and Zeeb et al. (2017) explored the effects of manual and cognitive task15

load and found that a high level of manual task load increased reaction time and16

deteriorated takeover quality, while the effect of cognitive task load on takeover ability17

was dependent on the type of driver intervention. A high level of cognitive load18

lengthened the reaction time and deteriorated takeover quality in steering maneuvers19

but not braking maneuvers.20

Driving environment factors include traffic density, road situations, and weather21

conditions. Heavy traffic density in takeover situations led to longer takeover time and22

worse takeover quality in the form of shorter time to collision, more collisions, and23

higher maximum accelerations (Gold et al., 2016; Körber, Gold, Lechner, & Bengler,24

2016; Radlmayr et al., 2014). Li et al. (2018) showed that drivers’ takeover reaction25

time to critical events in adverse weather conditions was longer on the highway26

compared to on city roads. Takeover request (TOR) lead time is the critical event onset27

for automation failures at the time of the TOR (McDonald et al., 2019). According to28

the complexity of driving environment and vehicle sensor capability, commonly used29



5

TOR lead times range from 1 to 30 s (Eriksson et al., 2018). Research has demonstrated1

that shorter TOR lead time degraded takeover quality, as demonstrated by higher crash2

rates, greater maximum accelerations and greater standard deviation of steering wheel3

angle (Mok et al., 2015; van den Beukel & van der Voort, 2013; Wan & Wu, 2018).4

Most of these studies focused on the effects of certain variables on takeover5

performance, providing valuable yet largely relational insights. For instance, heavy6

traffic density led to longer takeover time. However, knowing the relationships between7

certain factors and takeover performance is not enough to accurately predict a driver’s8

takeover performance in the real world because many influential factors could interact9

with one another. Computational models capable of predicting drivers’ takeover10

performance under various takeover conditions in real time are needed.11

1.2 Predicting drivers’ states through physiological measurements12

With advances in wearable technology, it is possible to collect drivers’13

physiological signals, such as gaze behaviors, heart rate activity, and galvanic skin14

responses, for a reliable reflection of their cognitive and emotional states in15

conditionally automated driving.16

Drivers’ gaze behavior is a valid tool for measuring cognitive load (Gold et al.,17

2016; Luo et al., 2019; Solovey, Zec, Garcia Perez, Reimer, & Mehler, 2014; Wang,18

Reimer, Dobres, & Mehler, 2014; Zeeb et al., 2016) and visual scanning patterns have19

been shown to indicate situational awareness (Bertola & Balk, 2011; Ratwani, McCurry,20

& Trafton, 2010; Young, Salmon, & Cornelissen, 2013). For example, Gold et al. (2016)21

found that horizontal gaze dispersion was the most sensitive measure of drivers’22

cognitive demand in NDRTs during conditionally automated driving. Eyes-on-the-road23

percentage was found to be associated with drivers’ situational awareness and attention24

capture of the driving environments (Molnar, 2017; Young et al., 2013).25

Heart rate (HR) and heart rate variability (HRV) have both been used for26

assessing drivers’ workload in real time (Mehler, Reimer, & Coughlin, 2012; Mehler,27

Reimer, Coughlin, & Dusek, 2009; Zhou, Alsaid, et al., 2020). Galvanic skin responses28
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(GSRs) were found to reflect drivers’ mental activities, and their properties (amplitude,1

frequency) were used to indicate drivers’ changes of arousal related to events (Collet,2

Clarion, Morel, Chapon, & Petit, 2009). GSRs have also been linked to drivers’3

workload and stress (Jones, Chapman, & Bailey, 2014; Schmidt, Decke, & Rasshofer,4

2016; Wandtner et al., 2018).5

Physiological data can thus be used to understand drivers’ cognitive and6

emotional states by applying machine learning models to continuously monitored7

physiological data. The data captured via non-intrusive sensors can be used to build8

models that estimate drivers’ states and their interactions with the driving9

environments. Drivers’ physiological signals combined with environment factors are10

promising indicators to predict takeover performance in conditionally automated11

driving in real time (Braunagel et al., 2017).12

1.3 Existing models for takeover performance prediction13

Although a substantial amount of research has identified factors that influence14

drivers’ takeover performance, there is a lack of research on the development of15

computational models for predicting drivers’ takeover performance, with few exceptions16

(Braunagel et al., 2017; Gold et al., 2018).17

To predict takeover performance, Gold et al. (2018) analyzed 753 takeover events18

using data from six driving simulator experiments and developed regression models.19

Their study modeled takeover performance measures (e.g., take-over time, minimum20

TTC, brake application and crash probability) as a function of the time-budget, traffic21

density, non-driving-related task, repetition, the current lane and driver’s age. The22

models were validated using 729 takeover events from five additional experiments. The23

validation results showed that the regression models accurately predicted takeover time,24

time-to-collision and crash probability, and moderately predicted the brake application.25

Braunagel et al. (2017) used machine learning algorithms to predict drivers’26

takeover quality (named as “takeover readiness” in the article). The study categorized27

takeover quality into low and high levels by analyzing driving parameters such as lane28
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deviations. Data were collected from a driving simulator study with 81 participants.1

The first feature input was situation complexity with three levels decided by raters; the2

second set of features was the type of NDRTs performed by drivers; and the third set of3

features was drivers’ gazes at the road. Using machine learning algorithms including4

k-nearest neighbors (kNN), support vector machine (SVM) with radial basis function5

(RBF) and linear kernel, Naive Bayes and linear discriminant, they predicted takeover6

quality with an accuracy of 79% and F1-score of 77%.7

However, the above-mentioned models were developed and tested when drivers8

were engaged in different types of NDRTs (e.g., monitoring vs. reading), where9

apparent contextual cues existed to discriminate drivers’ states. In daily life, even with10

a specific type of NDRTs such as writing an email, drivers’ states can be rather different11

depending on the importance of the email. Also, some factors deliberately manipulated12

in the experiment settings such as emotions are not easily accessible in the real world.13

Although the advanced wearable technology has made it convenient to collect drivers’14

physiological signals to reflect their cognitive and emotional states, only gaze behaviors15

were used in previous studies.16

1.4 The present study17

Our study contributes to the literature in three aspects. First, our study aimed to18

predict drivers’ takeover performance when they were engaged in a specific type of19

NDRTs with different levels of cognitive load. Second, in addition to gaze behaviors, we20

used drivers’ heart rate indices and galvanic skin response indices to indicate their21

interaction with environments, which might improve prediction results. Third, our22

study employed a random forest model in addition to the machine learning models used23

in previous studies to predict takeover performance. Random forests have been proved24

to have great prediction performance for classification problems (Dietterich, 1997;25

McDonald, Lee, Schwarz, & Brown, 2014; Zhou, Alsaid, et al., 2020).26

In this paper, data from two human subject experiments were used for model27

development. We collected drivers’ galvanic skin responses (Collet et al., 2009; Mehler28
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et al., 2012; Wintersberger, Riener, Schartmüller, Frison, & Weigl, 2018), heart rate1

activities (Bashiri & D Mann, 2014; Mehler et al., 2012), and gaze behaviors (Bertola &2

Balk, 2011; Radlmayr et al., 2014; Wang et al., 2014; Young et al., 2013), which have3

been used as valid signals to assess drivers’ cognitive and emotional states and their4

situational awareness of the driving environments. Using drivers’ physiological data and5

environment factors, we developed a random forest model that was able to predict6

drivers’ takeover performance with an accuracy of 84.3% and an F1-score of 64.0%7

using a 3 s time window. Additionally, we identified the most important physiological8

measures for takeover performance prediction, which can be incorporated in practice to9

develop in-vehicle monitoring systems. Furthermore, the model can be used to guide10

the design of adaptive in-vehicle alert systems to improve takeover performance in11

conditionally automated driving.12

2. DATASET13

The data used in the development of algorithms were collected in two studies.14

Both studies complied with the American Psychological Association code of ethics and15

were approved by the institutional review board at the University of Michigan. The16

first study investigated the effects of cognitive load, traffic density, and TOR lead time17

on takeover performance. The second study examined the effects of scenario type and18

vehicle speed on takeover performance. Participants in both experiments wore the same19

set of physiological sensors. The similar experimental settings in both studies make it20

possible to combine the two datasets. At the same time, the varieties of takeover21

conditions from the two studies increase model generalizability.22

2.1 Participants23

A total number of 102 university students (mean age = 22.9; standard deviation24

[SD] = 3.8; range = 18–38; 40 females and 62 males) participated in Study 1 and 4025

university students (mean age = 22.8, SD = 3.9; 20 females and 20 males) participated26

in Study 2. All of the participants had normal or corrected-to-normal vision and a valid27

driver’s license. They received $30 in compensation for an hour of participation.28
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2.2 Apparatus and stimuli1

Both studies were conducted in a fixed-base driving simulator from Realtime2

Technologies Inc. (RTI, MI, USA). The virtual world was projected on three front3

screens 16 ft away (120◦ field of view), one rear screen 12 ft away (40◦ field of view),4

and two side mirror displays (See Figure 1a).5

This simulator was equipped with the Smart Eye four-camera eye-tracking system6

(Smart Eye, Sweden) that provided live head-pose, eye-blink, and gaze data (Figure7

2a). The sampling rate of the eye-tracking system is 120 Hz. The Shimmer3 GSR+ unit8

(Shimmer, MA, USA) including GSR electrodes and photoplethysmogram (PPG) probe9

was used to collect GSR and HR data with a sampling rate of 128 Hz (Figure 2b). The10

iMotions software (iMotions, MA, USA) was used for physiological data synchronization11

and visualization in real time (Figure 2c).12

The simulated vehicle was controlled by a steering wheel and pedal system13

embedded in a Nissan Versa car model. The vehicle was programmed to simulate SAE14

Level 3 automation, which handled the longitudinal and lateral control and navigation,15

and responded to traffic elements. Participants could press the button on the steering16

wheel to activate the automated mode, which was indicated by a green highlight on the17

dashboard and an auditory warning (“Automated mode engaged”). Once the AV18

reached its performance limit, an auditory TOR (“Takeover”) would be issued with the19

green highlight turning to black background on the dashboard. Although the Level 320

automation is considered to continue functioning for a certain period of time after21

issuing the TOR (ISO, ISO/TR 21959-1:2020), we set the automated mode to be22

deactivated at the time of TORs for drivers to take over control of the vehicle.23

The NDRT in both studies was a visual N -back memory task, adapted from the24

study of Jaeggi, Buschkuehl, Jonides, and Perrig (2008). The stimulus consisted of nine25

(3 × 3) squares with two human figures randomly in two of the nine squares. Each26

stimulus was presented for 500 ms in sequence with a 2,500–ms interval (Figure 3).27

Participants were required to press the “Hit” button when the current stimulus was the28

same as the one presented N steps back in the sequence and press the “Reject” button29
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otherwise. With different N values, participants were exposed to different cognitive load1

but the same manual and visual load. The reason for employing a visual task with2

manual input was that it simulated the eyes-off the road and hands-off the wheel3

condition. The task was running on an 11.6-in. touch screen tablet mounted in the4

vehicle (Figure 1b).5

(a) (b)

Figure 1 . RTI driving simulator at the UMTRI.

(a) (b) (c)

Figure 2 . (a) Smart Eye. (b) Shimmer3 GSR+ unit. (c) iMotions software.

Figure 3 . N-back memory task

2.3 Experimental design6

Study 1 employed a within-subjects design with drivers’ cognitive load, traffic7

density, and TOR lead time as independent variables. The cognitive load refers to8

driver cognitive load prior to TORs and was manipulated via the difficulty of the9
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NDRTs (low: 1-back memory task; high: 2-back memory task). The heavy– and1

no–traffic conditions had 15 and 0 oncoming vehicles per kilometer, respectively (Gold2

et al., 2016). The TOR lead time, which refers to the critical event onset for failures at3

the time of the TOR (McDonald et al., 2019), was set at 4 or 7 s (Eriksson & Stanton,4

2017). Based on prior literature (Koo, Shin, Steinert, & Leifer, 2016; Miller et al., 2016;5

Molnar et al., 2018; Rezvani et al., 2016), eight takeover events were designed in urban6

and rural drives with typical roadway features: (1) bicyclists ahead, (2) construction7

zone on the left, (3) construction zone ahead, (4) sensor error on the right curve, (5)8

swerving vehicle ahead, (6) no lane markings on the curve, (7) sensor error on the left9

curve, and (8) police vehicle on shoulder. The order of cognitive load, traffic density10

and TOR lead time was counterbalanced via an 8 × 8 balanced Latin square across11

participants. Considering standard programming practices for the simulator, the order12

of scenario presentations was counterbalanced by having half of the participants drive13

from Events 1 to 8, and the other half from Events 8 to 1.14

Study 2 used a mixed design with scenario type (lane keeping vs. lane changing)15

as the between-subjects variable and vehicle speed (35 mph vs. 60 mph) as the16

within-subjects variable. Similar to the first study, eight scenarios were designed on the17

basis of realistic situations and previous literature (Koo et al., 2016; Miller et al., 2016;18

Naujoks, Mai, & Neukum, 2014; Rezvani et al., 2016; Zeeb et al., 2016). Lane-keeping19

scenarios, which required drivers to keep in the current lane, included (1) sensor error20

on the left curve, (2) construction zone on the left, (3) no lane markings on the curve,21

(4) sensor error on the right curve. Lane-changing scenarios, which required drivers to22

change to the neighboring lane, included (1) stranded vehicle ahead, (2) construction23

zone ahead, (3) construction barrier ahead, and (4) police vehicle on shoulder.24

According to the range of the Velodyne Lidar sensors (Velodyne Lidar, CA, USA), we25

set the distance between obstacle/entrance of the curve and the AV at 100 meters when26

the TOR was issued. Generally, traffic consisted of 15 oncoming vehicles per kilometer27

(Gold et al., 2016). The order of the vehicle speed was counterbalanced among28

participants. The order of scenarios was counterbalanced by having half of the29
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participants drive from Events 1 to 4, and the other half from Events 4 to 1.1

In both studies, drivers started from the right lane, and were asked to stay in the2

right lane before they engaged the automated mode. Thus, the AV was always in the3

right lane prior to the TORs and the objects could be pre-coded to appear in front of4

the vehicle in lane-changing scenarios. With two lanes in lane-changing scenarios,5

drivers could avoid the objects in their lane by changing to the adjacent lane because6

there were no other vehicles in the driver’s direction. The speed of the subject vehicle7

was 35 mph in the urban/rural and 60 mph in the highway environments. The radius of8

curves was 400 meters in the highway and 100 meters in the urban/rural environments.9

Participants were asked to follow the speed limit throughout the drive.10

2.4 Experimental Procedure11

The procedures of the two studies were almost the same. After participants signed12

an informed consent form and completed an online demographics questionnaire, they13

were asked to track six targets on the front screen for eye-tracking calibration. Next,14

two GSR electrodes were attached to their left foot and the PPG probe to their left ear15

lobe. Participants were informed that there was no need to actively monitor the driving16

environments or take over control of the vehicle as long as the vehicle was in automated17

mode.18

Participants had a 2-minute practice for the N -back memory task, followed by a19

5-minute practice drive to get familiar with the simulator environment. Next, each20

participant drove two experimental drives (10–20 minutes each), each containing four21

(Study 1) or two (Study 2) takeover events. At the beginning of the drive, participants22

were asked to activate the AV mode and then start the N -back task when the audio23

command “Please start the NDRT” was issued. After about 90 s of NDRT, a TOR was24

issued unexpectedly, and participants were required to terminate the NDRT manually25

by pressing the “end” button on the tablet screen and take over the control26

immediately. When participants thought they had negotiated the takeover event, they27

were free to re-activate the AV mode. Participants were informed that they would get28
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an additional $20 if their NDRT performance was ranked in the top 10 of all1

participants. The operation of the NDRT, the takeover, and the AV mode activation2

were repeated for each takeover event (Figure 4).3

Figure 4 . Illustration of the experimental procedure for two takeover events

3. TAKEOVER PERFORMANCE MODEL DEVELOPMENT4

We collected drivers’ physiological data, driving behaviors, and5

environment-related data. The physiological measures included heart rate indices,6

galvanic skin response indices and eye-tracking metrics. Because of malfunctions of the7

driving simulator and physiological sensors, data from 13 participants were excluded8

and those of the other 129 participants (i.e., 828 takeover scenarios) were available for9

further analysis.10

To develop the prediction model, we first pre-processed the raw data and then11

extracted 37 features and set the ground truth. Next, we used a 10-fold nested12

cross-validation method to tune hyper-parameters, train models, and predict test13

instances for model comparisons. Particularly, we resampled the training dataset and14

normalized the entire dataset before performing the classification. Figure 5 shows the15

modeling process.16
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Figure 5 . Modeling process (RF = random forest; SVM = support vector machine; NB
= Naive Bayes; kNN = k-nearest neighbors; DA = discriminant analysis; LR = logistic
regression).

3.1 Data pre-processing1

For GSR signals, we used continuous decomposition analysis (CDA) to decompose2

the GSR signal into phasic and tonic components, respectively, via Ledalab in Matlab3

(Benedek & Kaernbach, 2010). Then we used the phasic component for further feature4

extraction because it is responsible for relatively rapid changes in response to specific5

events in the GSR signal (order of seconds). Heart rate measures were extracted from6

the raw RR interval using iMotions software. For eye-tracking data, only data points7

with high gaze quality value (threshold recommended by Smart Eye: .5) were recorded8

and used for analysis.9

3.2 Feature generation and ground truth10

To fit time series data into the supervised learning framework, we aggregated the11

values of physiological data within a sliding “time window” and calculated various12

statistics (Anderson, 2011). The end of the time window is the time of a TOR, and the13

start of the time window is X seconds before the TOR, ranging from 1 to 30 s. Model14

inputs included data on gaze behaviors, galvanic skin response indices, and heart rate15

indices, as well as environment factors. The generated features are listed in Table 1. A16

fixation is defined as “a relatively stable eye-in-head position within some threshold of17

dispersion (typically ~ 2◦) over some minimum duration (typically 100-200 ms), and18
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with a velocity below some threshold (typically 15-100◦ per second)” (Jacob & Karn,1

2003). In the Smart Eye eye-tracking system, all frames with a gaze velocity below the2

fixation threshold (100◦ per second) were treated as a fixation. All frames with the gaze3

velocity above the saccade threshold (100◦ per second) were treated as a saccade. We4

categorized area of interests (AOIs) into driving scenes, the NDRT tablet, and other5

areas. The number and average duration of fixations and saccades were accumulated6

within the certain AOI. The scan pattern is the probability of eyes switching from one7

AOI to another. Traffic density, TOR lead time, and scenario type were used to8

describe the driving environments because they indicated the predictability, criticality,9

and urgency of the takeover scenarios (Gold, Naujoks, Radlmayr, Bellem, & Jarosch,10

2017). To reduce the potential impact of individual differences, we normalized the11

feature values across participants using the min-max normalization approach.12

We used driving behaviors during takeover transitions to assess drivers’ takeover13

performance. As shown in Table 2, for different takeover scenarios, we selected different14

metrics in the assessment. Minimum TTC was calculated only for the lane-changing15

scenarios, and standard deviation of road offset was calculated only for the lane-keeping16

scenarios. All the driving variables were calculated following prior studies (Clark &17

Feng, 2017; Du et al., 2020). If any of the calculated TOR reaction time, maximum18

resulting acceleration, and standard deviation of road offset values were larger than19

µ+ 2σ, we categorized a takeover transition as a bad performance. For minimum TTC,20

because the value of µ− 2σ was negative, we performed a log transformation first and21

categorized a takeover transition as bad if log(minimum TTC) was lower than µ− 2σ22

(Braunagel et al., 2017). For a particular takeover event, as long as one of the driving23

variables in a certain takeover scenario was categorized as a bad performance, we24

labeled the scenario as a bad takeover performance. Scenarios that led to collisions were25

also categorized as bad performances. Eventually, we got an imbalanced dataset with26

109 “bad performance” labels and 719 “good performance” labels. The reasons that we27

used categorical takeover performance rather than individual driving variables as model28

output were that (1) it combines multiple aspects of driving behaviors and (2) it is easy29
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to be explained to drivers and more practical to guide driver behaviors.1

TABLE 1: Descriptions of generated features (HR = heart rate; min = minimum; max
= maximum; GSR = galvanic skin responses; NDRT = non-driving-related task; TOR
= takeover request).
Feature Explanations
HR indices Mean, min, max, and standard deviation of heart rate, inter-beat inter-

val
GSR indices Mean, max, and standard deviation of GSR in phasic component
GSR peak The number of GSR peaks, and peak rise time
Fixation Fixation number and duration in different areas of interests (AOIs) (i.e.,

driving scenes and NDRT tablet)
Saccade Saccade number in different AOIs (i.e., driving scenes and NDRT tablet)
Pupil The mean and standard deviation of pupil diameter in different AOIs

(i.e., driving scenes and NDRT tablet)
Blink The number of blinks
Gaze dispersion Standard deviation of the values for gaze angle from right front (radians)
Eyes-on-the-road The proportion of time that participants’ gazes are on the road
Scan pattern The probability of eyes switching from one AOI to another (i.e., the

probability that drivers transited eyes from driving scenes to NDRT
tablet, from NDRT tablet to driving scenes, or from other areas to driv-
ing scenes)

Traffic density No or heavy oncoming traffic
Scenario type Lane-keeping or lane-changing scenarios
TOR lead time Short (3-4s) or long (6-7s) TOR lead time

TABLE 2: Takeover situations and corresponding driving behavior variables to
determine takeover performance (TOR = takeover request; min = minimum; max =
maximum; TTC = time to collision).

Takeover reactions Driving behavior variables (range for bad performance group)
Lane changing TOR reaction time

(> µ+ 2σ)
Max resulting accel-
eration (> µ+ 2σ)

log(Min TTC) (< µ−
2σ)

Lane keeping TOR reaction time
(> µ+ 2σ)

Max resulting accel-
eration (> µ+ 2σ)

Standard deviation of
road offset (> µ+2σ)

3.3 Model development2

The takeover performance prediction model was trained with a random forest3

model considering the following justifications. First, as an ensemble method, random4

forests are robust for new data generalization and against training data overfitting5

(Quinlan et al., 1996). Second, random forests can give us feature importance and6

makes models interpretable. Five other machine learning approaches mentioned in prior7

literature were applied for comparisons: k-nearest neighbors (kNN), support vector8
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machine (SVM), Naive Bayes (NB), discriminant analysis (DA), and logistic regression1

(LR).2

Considering the challenge of human behavior data collection, we used a 10-fold3

nested cross-validation method to train models and compare test results (J. J. Lee,4

Knox, Baumann, Breazeal, & DeSteno, 2013; Varma & Simon, 2006). As shown in5

Figure 5, the 9-fold training and validation set (N = 116 subjects) was used to tune the6

hyper-parameters with the inner loop and then create classifiers. To handle the7

imbalanced dataset during the training, we employed a hybrid method of8

undersampling and oversampling (Choirunnisa & Lianto, 2018). The elimination9

process was done by deleting 300 good takeover performance scenarios randomly10

(Prusa, Khoshgoftaar, Dittman, & Napolitano, 2015). Then we used Synthetic Minority11

Over-sampling Technique (SMOTE) to create a balanced training and validation12

dataset with 678 data points (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). Table 313

demonstrates the training procedures of six machine learning approaches. The model14

assessment was based on the remaining 1-fold testing set (N = 13 subjects) with the15

outer loop. Notably, the subject data used for testing were not seen in the model16

training and validation stage. The random selection of 1-fold test dataset assumed that17

its distribution of good and bad takeover performance scenarios was similar to the18

whole dataset. With a 10-fold cross-validation, we can make sure all the data points in19

the dataset would appear once in the test dataset. The training and evaluation of the20

algorithm were implemented in Matlab 2018b (MathWorks, MA, USA).21
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TABLE 3: Machine learning techniques and training process
Machine learn-
ing approach

Techniques Hyper-
parameters

Support vector
machine (SVM)

Embed the data in another dimensional
space and find a soft margin that separates
the classes with minimum classification error
(Chen, Wu, Ying, & Zhou, 2004)

Kernel, Regular-
ization parame-
ter

Naive Bayesian
(NB)

Use maximum likelihood estimation to esti-
mate parameters (i.e., prior probability and
likelihood) (Rish et al., 2001)

None

Random forest
(RF)

Fit an algorithm on a set of bootstrapping
samples (bagging) and predictors, i.e., ran-
domly select training samples with replace-
ment and take a random set of predictors
at each node without replacement. Repeat
many times to form an ensemble of trees
(Breiman, 1996, 2001)

Tree number,
Predictor num-
ber per split,
Leaf size

k-nearest neigh-
bor (kNN)

Calculate Euclidean distance between la-
beled and unlabeled points to find the k-
nearest neighbors. Use the majority vote
criteria to decide unlabeled points (Keller,
Gray, & Givens, 1985)

k

Discriminant
analysis (DA)

Find separating hyperplane using parameter
estimation (Friedman, 1989)

Discriminant
type, Reg-
ularization
parameter

Logistic regres-
sion (LR)

Estimate the parameters of a logistic model
(S.-I. Lee, Lee, Abbeel, & Ng, 2006)

Regularization
parameter

3.4 Model evaluation1

In a binary classification problem, there are four possible outcomes: true positive2

(TP), false positive (FP), true negative (TN ), and false negative (FN ). TP is the3

number of positive samples predicted as a positive class, FP is the number of negative4

samples predicted as a positive class, FN is the number of positive class samples5

predicted as a negative class and TN is the number of negative samples predicted as6

negative class. In this paper, we used four classification evaluation indicators, including7

Precision, Recall, Accuracy, and F1-score, to carry out the evaluation of the model8

performance, which were defined as:9

Precision = TP

TP + FP
(1)
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1 Recall = TP

TP + FN
(2)

2
Accuracy = TP + TN

TP + FP + TN + FN
(3)

3
F1 − score = 2 × Precision ×Recall

Precision + Recall
(4)

Precision manifests how well the model predicts (i.e., a measure of exactness) and4

recall manifests how well the model does not miss the target (i.e., a measure of5

completeness). The F1 measure is the weighted harmonic mean of the two and6

represents a realistic measure of model performance.7

The receiver operating characteristic (ROC) curve plots the true positive rate8

(TPR) against the false positive rate (FPR) at different thresholds (i.e., classifier9

boundary). The area under the curve (AUC) ranges from 0 to 1 and represents the10

degree of separability. A higher value of AUC indicates better model performance.11

When AUC is 0.5, it means the model does not have any class separation capability.12

4. RESULTS13

To improve the robustness of machine learning results, we ran the 10-fold14

cross-validation 30 times (i.e., 30 different random seeds) for every machine learning15

method at each time window. We first ran an omnibus analysis of variance (ANOVA)16

to compare the performance of the six machine learning methods. After that, we17

compared the random forest model with the other five methods using the pairwise t-test18

to see whether the random forest model had the best performance. Similarly, we19

compared the prediction results of the random forest model with different feature20

subsets against the full feature model using pairwise t-test. We examined the effects of21

time window and individual feature on random forest prediction performance using22

ANOVA. All post hoc comparisons used a Bonferroni α correction.23

4.1 Model performance comparisons24

Figures 6 and 7 show the average model accuracy and F1-score at different time25

windows. There was a main effect of machine learning approaches on the prediction26
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accuracy (F (5, 5399) = 13550, p < .001) and F1-score (F (5, 5399) = 4705, p < .001).1

Table 4 shows the pairwise t-tests comparing the predictive performance of the random2

forest model with the other five models across different time windows. The results3

indicate that our proposed random forest model outperformed the other five models4

across time windows.5

Figure 6 . Prediction accuracy of six machine learning approaches under different time
windows (SVM = support vector machine; NB = Naive Bayes; DA = discriminant
analysis; kNN = k-nearest neighbors; LR = logistic regression; RF = random forest).

Figure 7 . F1 scores of six machine learning approaches under different time windows
(SVM = support vector machine; NB = Naive Bayes; DA = discriminant analysis; kNN
= k-nearest neighbors; LR = logistic regression; RF = random forest).
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TABLE 4: The mean prediction accuracy and F1-score of machine learning approaches
across time windows and their comparisons to the random forest model.
Algorithm Accuracy F1-score

mean SD t-test
statistic

p-value mean SD t-test
statistic

p-value

Random forest .828 .012 - - .630 .015 - -
Support vector ma-
chine

.796 .013 60.5 p<.001 .580 .019 72.4 p<.001

Naive Bayes .760 .033 49.0 p<.001 .523 .022 107 p<.001
Discriminant analysis .722 .021 134 p<.001 .537 .017 131 p<.001
k-nearest neighbor .692 .020 209 p<.001 .550 .020 111 p<.001
Logistic regression .609 .016 342 p<.001 .588 .009 74.5 p<.001

Figure 8 shows the ROC curves of the random forest and the other five machine1

learning approaches with the optimal hyper-parameters. The curve of the random forest2

is above and to the left of the other five curves at the majority of thresholds. Consistent3

with accuracy and F1-score results, the ROC curve comparisons demonstrated that the4

random forest model outperformed the other five models.5

Figure 8 . Receiver operating characteristic comparison plots for the random forest (RF)
model and the five other models (SVM = support vector machine; LR = logistic
regression; NB = Naive Bayes; DA = discriminant analysis; kNN = k-nearest
neighbors). The bootstrapped (#1,000) confidence intervals are indicated within the
parentheses.
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4.2 Effects of window size on random forest prediction results1

There was a main effect of time window on the random forest model accuracy2

(F (29, 899) = 16, p < .001) and F1-score (F (29, 899) = 9, p < .001). When applying an3

algorithm in real-world driving, a time window with shorter size and better prediction4

performance is preferred. According to Figures 6 and 7, we recommend 3 s as the5

optimal time window to predict takeover performance, with an average F1-score of6

64.0% and accuracy of 84.3% (tuned hyper-parameters: the number of trees = 300;7

minimum leaf size = 2; the number of predictors per decision split = 6). Post hoc8

analysis showed that F1-score at the 3 s time window significantly outperformed the9

rest of the time windows except 5-8 s, 11-20 s, and 28-30 s (see Figure 7). Accuracy at10

the 3 s time window significantly outperformed the rest of the time windows except 4 s,11

6 s, 11 s, and 13-16 s (see Figure 6).12

4.3 The confusion matrix and feature importance13

Figure 9 shows the confusion matrix when the time window was 3 s. The precision14

was 64.5% and the recall was 63.9%, accounting for balanced completeness and15

exactness of prediction.16

Figure 9 . Confusion matrix when time window was 3s

Furthermore, by permuting the out-of-bag data (i.e., 36.8% of the total data that17

were not in the bootstrap samples) randomly across one predictor at a time and by18

measuring how much this permutation reduced the accuracy of the model, we estimated19

the feature importance. The values indicate each feature’s relative importance in20

predicting the takeover performance (the larger values are, the more important features21
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are). Figure 10 illustrates the out-of-bag estimates of feature importance of the 371

predictor variables when the time window was 3 s. Table 5 lists the top 16 important2

predictor variables. As shown in the table, we found that some heart rate indices and3

GSR indices (e.g., maximum and mean phasic GSRs, mean of heart rate) were4

important in predicting takeover performance, but were not included in prior takeover5

performance algorithm development (Braunagel et al., 2017; Gold et al., 2018).6

Figure 10 . Feature importance when time window was 3s

TABLE 5: The top 16 important features when time window was 3s (GSR = galvanic
skin response; NDRT = non-driving-related task).

Feature descriptions Importance
Maximum of GSR in phasic component .492
Mean of GSR in phasic component .491
Standard deviation of GSR in phasic component .441
Vertical gaze dispersion .406
Scenario type .404
Fixation duration .371
Fixation duration on the driving scene .352
Fixation duration on the NDRT .341
Takeover lead time .338
Mean of inter-beat interval .333
Mean of heart rate .330
Eyes-on-the-road percentage .323
Saccade number on the driving scenes .314
Maximum heart rate .295
Fixation number on the driving scenes .282
Standard deviation of inter-beat interval .268
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4.4 Effects of features on random forest prediction results1

The main effect of feature set on the model accuracy (F (3, 119) = 304, p < .001)2

and the F1-score (F (3, 119) = 146, p < .001) were significant at the 3 s time window.3

We found that the accuracy and F1-score of the random forest model using the full4

feature set were significantly higher than the accuracy and F1-score using other5

combinations of feature subsets at the 3 s time window (Figure 11 and Table 6). To be6

specific, if only environment factors were used as the features, the average prediction7

accuracy and F1-score were only .758 and .611, respectively. If only physiological data8

were used as features, the average prediction accuracy was .770 and F1 score was 0.563.9

This suggests that a combination of environment features and features indicating10

drivers’ states are necessary to build a model with high performance. The model using11

environment factors and eye-tracking metrics as features had an average accuracy of12

0.818 and F1-score of 0.615 at the 3 s time window. After adding heart rate and13

galvanic skin response indices as features, the average model accuracy increased to14

0.843 and F1-score increased to 0.640.15

Figure 11 . Prediction accuracy and F1-score of random forests with different feature
subsets at the 3 s time window. Error bar indicates 1 standard deviation.
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TABLE 6: Random forest prediction accuracy and F1-score with different feature
subsets at the 3 s time window and their comparisons to the full feature model.

Feature subsets Accuracy F1-score
mean SD t-test

statistic
p-value mean SD t-test

statistic
p-value

All .843 .010 - - .640 .015 - -
Eye-tracking and
environment

.818 .010 11.2 p<.001 .615 .013 10.9 p<.001

Physiological .770 .020 17.2 p<.001 .563 .019 19.7 p<.001
Environment .758 .005 42.7 p<.001 .611 .008 8.82 p<.001

In addition, we ordered features according to the average feature importance1

values. Next, we built a random forest model with the most important feature, and2

then added features with lower importance one by one to build another 36 models. As3

shown in Figure 12, the model accuracy and F1-score generally increased at the4

beginning when more features were added but reached a plateau when 16 or more5

features were included in the model. There was a main effect of feature numbers on the6

model accuracy (F (36, 1109) = 3718, p < .001) and F1-score7

(F (36, 1109) = 293, p < .001). Post hoc analysis showed that the F1-score of the full8

feature model was significantly higher than that for models with fewer than the top 99

important features, and accuracy of the full feature model was significantly higher than10

that of the models with fewer than the top 16 important features.11

Figure 12 . Model accuracy and F1-score with different numbers of top important
features. Error bar indicates 1 standard deviation.
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5. DISCUSSION1

5.1 Model performance comparisons2

Our study compared the random forest model with the other five machine learning3

approaches used in prior literature for takeover performance prediction. As indicated by4

the results of model accuracy, F1-score, and ROC curve comparisons, the random forest5

approach outperformed the other classification approaches. Consistent with previous6

studies on drivers’ fatigue and drowsiness detection (McDonald et al., 2014; Zhou,7

Alsaid, et al., 2020), the random forest approach also showed its supremacy for takeover8

performance prediction. It might be because random forests aggregate the results of9

many bootstrap aggregated (bagged) decision trees, which reduces the effects of10

overfitting and improves generalization.11

5.2 Effects of window size on random forest prediction results12

As the random forest outperformed other machine learning approaches, we13

examined the prediction performance of random forests under different time window14

sizes. The results showed that the window size significantly influenced random forest15

prediction performance. However, such a relationship was not linear. One of the16

explanations could be that we used a mixture of physiological signals as model inputs.17

Some physiological signals (e.g., pupil diameter) perform better with a shorter window18

size because they change rapidly according to the changes in the driver’s cognitive19

workload (Kramer et al., 2013). Some physiological signals (e.g., heart rate) perform20

better with a longer window size because it can provide an overall understanding of the21

driver’s mental state (Solovey et al., 2014). Future research is needed to explore model22

performance with customized time windows for different physiological signals.23

It was important to find an optimal window size to calculate physiological features24

for model development in this study. Considering the implementation in real-world25

driving, a time window with shorter size and better prediction performance is preferred.26

Thus, we recommend 3 s as the optimal time window to predict takeover performance,27

with an accuracy of 84.3% and an F1-score of 64.0%. The post hoc analysis showed28
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that the selection of time window for such performance is not unique. Time windows1

with a size of 6 s, 11 s, and 13-16 s led to similar prediction performance. Although the2

exact time window might be slightly different in the real world given the differences of3

situational and behavioral parameters, our study provides important insights on4

window size recommendation for the development of driver state detection systems.5

Different from previous studies, our model has a finer granularity and can predict6

drivers’ takeover performance when they are engaged in a specific type of NDRTs with7

different levels of cognitive load. Such application differences make it infeasible to8

compare the exact accuracy and F1-score values with those in previous models. Because9

the test cases in our model prediction are from different participants and are not seen in10

the training set, our model can be used to predict takeover performance of a new driver11

who does not have historical data.12

5.3 Effects of features on random forest prediction results13

Drivers’ galvanic skin responses, heart rate activities, and eye movements with a14

combination of environment factors were used to predict drivers’ takeover performance.15

Compared to Braunagel et al. (2017), we added GSR indices and HR indices for model16

development. Our results showed an improvement of model performance with a full set17

of features compared to other feature subsets (i.e., physiological data only, environment18

data only, eye-tracking and environment data). This aligns with the previous studies19

because all these physiological signals reflected drivers’ states and interactions with20

driving environments (Bertola & Balk, 2011; Mehler et al., 2012; Radlmayr et al., 2014;21

Ratwani et al., 2010; Wang et al., 2014; Young et al., 2013).22

Furthermore, we identified the most important features (e.g., maximum phasic23

GSR, gaze dispersion, scenario type, and mean of inter-beat interval) for model24

development. Although the model performance increased at the beginning as more25

features were added, it reached a plateau when 16 or more features were included. With26

the top 16 important features, we were able to develop a random forest model with27

comparable performance to the full feature model. Notably, the top 16 important28
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features were extracted from galvanic skin responses, heart rate activities, eye1

movements, and environment factors, demonstrating the importance of all these data2

sources. Utilizing the advances of wearable technology and vehicle sensors, these3

features can be collected in a minimally invasive manner to predict drivers’ takeover4

performance in real time.5

5.4 Limitations and future work6

Several limitations should be taken into consideration in the future. First, this7

study used a snapshot of the time-series data as model inputs without considering the8

complexity of sequence dependence among the data. Future study could try a9

convolutional neural network (CNN) combined with long-short-term memory (LSTM)10

to predict drivers’ takeover performance using a larger dataset. Second, the ground11

truth was determined by drivers’ driving behaviors. It is necessary to propose a12

standard set of metrics for measuring takeover performance. An ensemble method13

combining subjective ratings, driving behaviors and video coding can be explored to14

provide a more robust ground truth label of takeover performance. Third, instead of15

using dichotomous classification of takeover performance, we could increase the number16

of classes (e.g., bad, neutral, good; or very bad, bad, neutral, good, very good) or use17

regression to see model prediction power. Fourth, this study only recruited young adult18

participants with few AV experiences and each participant only experienced four or19

eight takeover scenarios in the whole experiment. Future studies could recruit20

participants from different ages, AV experience levels, and training groups. Then the21

individual characteristics and power law of learning could be taken into account as22

model inputs to increase the generalization of models (Forster et al., 2019).23

5.5 Implications24

Our study is a preliminary effort to predict drivers’ takeover performance for25

designing advanced driver monitoring systems. With the advances of technologies in26

connected automated vehicle systems, real-time road environments such as traffic27

situations can be accessed easily in the future. Predictive model performance can be28
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improved when data from various drivers engaging in different NDRTs in diverse1

environments are available for model training. The model outputs can contribute to the2

design of adaptive in-vehicle alert systems in conditionally automated driving.3

Specifically, if the system predicted that a driver would not be able to take over control4

successfully, a multi-modal display could be designed to help the driver realize the5

urgency of the event, augment situational awareness and allocate attention properly.6

Eventually, it could improve drivers’ takeover performance and enhance the safety and7

adoption of automated vehicles.8

6. CONCLUSION9

This study developed a random forest model to predict drivers’ takeover10

performance in conditionally automated driving. In contrast to previous models capable11

of predicting drivers’ takeover performance when they performed different types of12

NDRTs, our model has a finer granularity and is able to predict takeover performance13

when drivers are engaged in a specific type of NDRTs. The results showed that the14

random forest classifier has an accuracy of 84.3% and an F1-score of 64.0% using a 3s15

time window, which outperformed other machine learning models used in prior studies.16

In addition, we identified the most important physiological measures for takeover17

performance prediction, and they can be used for developing in-vehicle monitoring18

systems. Such models can be used to guide the design of adaptive in-vehicle alert19

systems to improve takeover performance in conditionally automated driving in the20

future.21
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