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Abstract
1. Many aquatic ecosystems are experiencing multiple anthropogenic stressors that 

threaten their ability to support ecologically and economically important fish 
species. Two of the most ubiquitous stressors are climate change and non-point 
source nutrient pollution.

2. Agricultural conservation practices (ACPs, i.e. farming practices that reduce run-
off, prevent erosion, and curb excessive nutrient loading) offer a potential means 
to mitigate the negative effects of non-point source pollution on fish populations. 
However, our understanding of how ACP implementation amidst a changing cli-
mate will affect fish production in large ecosystems that receive substantial up-
stream sediment and nutrient inputs remains incomplete.

3. Towards this end, we explored how anticipated climate change and the imple-
mentation of realistic ACPs might alter the recruitment dynamics of three fish 
populations (native walleye Sander vitreus and yellow perch Perca flavescens and 
invasive white perch Morone americana) in the highly productive, dynamic west 
basin of Lake Erie. We projected future (2020–2065) recruitment under different 
combinations of anticipated climate change (n = 2 levels) and ACP implementation 
(n = 4 levels) in the western Lake Erie catchment using predictive biological models 
driven by forecasted winter severity, spring warming rate, and Maumee River total 
phosphorus loads that were generated from linked climate, catchment-hydrology, 
and agricultural-practice-simulation models.

4. In general, our models projected reduced walleye and yellow perch recruitment 
whereas invasive white perch recruitment was projected to remain stable or in-
crease relative to the recent past. Our modelling also suggests the potential for 
trade-offs, as ACP implementation was projected to reduce yellow perch recruit-
ment with anticipated climate change.
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1  | INTRODUC TION

Many aquatic ecosystems are experiencing multiple anthropogenic 
stressors that threaten their ability to support fish populations. One 
of the most ubiquitous stressors is climate change, which has caused 
distributional shifts (Comte, Buisson, Daufresne, & Grenouillet, 
2013; Filipe et al., 2013; Hansen, Read, Hansen, & Winslow, 2017; 
Van Zuiden, Chen, Stefanoff, Lopez, & Sharma, 2016), increased the 
spread of invasive fish species (Rahel & Olden, 2008; Van Zuiden et al., 
2016), altered fish community composition (Alofs, Jackson, & Lester, 
2014), affected reproductive dynamics (Farmer, Marschall, Dabrowski, 
& Ludsin, 2015; Hansen et al., 2017; Krabbenhoft, Platania, & Turner, 
2014), and changed fish production (Blanchard et al., 2012). Seemingly 
as pervasive has been non-point source (NPS) nutrient and sediment 
pollution, which can negatively affect fish populations by causing bot-
tom hypoxia, harmful algal blooms, reduced water clarity, and altered 
food-web interactions (Breitburg, Hondorp, Davias, & Diaz, 2009; 
Caddy, 2000; Diaz & Rosenberg, 2008; Ludsin, Kershner, Blocksom, 
Knight, & Stein, 2001; Scavia et al., 2014). Although the observed 
and projected individual effects of climate change (e.g. Comte et al., 
2013; Lynch et al., 2016) and NPS pollution (e.g. Leach & Nepszy, 1976; 
Ludsin et al., 2001) are well-documented and can be substantial, many 
fish populations are experiencing climate change and NPS pollution 
simultaneously, which could magnify or mitigate their independent ef-
fects. However, the effects of climate change combined with NPS pol-
lution on fish populations remain largely unstudied, especially in lake 
ecosystems. Understanding the combined effects of multiple stress-
ors is especially critical in ecosystems that support economically and 
ecologically important fisheries as it can help guide management and 
conservation strategies (DeVanna Collingsworth et al., 2017; Fussell 
et al., 2016; Lynch et al., 2016; Paukert et al., 2016).

Highly productive coastal and large-lake ecosystems that receive 
substantial river-transported runoff from agricultural catchments 
are typically negatively affected by the combined impacts of climate 
change and NPS pollution (Buchheister, Bonzek, Gartland, & Latour, 
2013). Because these ecosystems (e.g. Chesapeake Bay: Breitburg, 

2002; Kemp et al., 2005; Buchheister et al., 2013; northern Gulf of 
Mexico: de Mutsert, Steenbeek, Lewis, Buszowski, & Cowan, 2016; 
Lake Erie: Ludsin et al., 2001) often support valuable commercial and 
recreational fisheries, which can be adversely affected by eutrophi-
cation, regulatory agencies and policy-makers have typically sought 
to improve habitat conditions (e.g. water quality) by altering farming 
practices in the catchment (Hagy, Boynton, Keefe, & Wood, 2004; 
Keitzer et al., 2016; Ohio EPA, 2013; Scavia et al., 2014; Wilson et al., 
2019). Agricultural conservation practices (ACPs), which are farming 
practices that reduce runoff, prevent erosion, curb excessive nutri-
ent loading, and mitigate ecosystem degradation, offer one potential 
means to reduce the negative effects of NPS pollution on fish produc-
tion while, ideally, not compromising agricultural production (USDA 
Keitzer et al., 2016; NRCS, 2011). The benefits of such practices are 
well-documented and have been shown to limit in-stream nutrient and 
sediment loading, improve water quality, promote diverse stream-fish 
assemblages, and even reduce nutrient inputs into downstream recipi-
ent water bodies (Bosch, Allan, Selegean, & Scavia, 2013; Keitzer et al., 
2016; Richards, Baker, & Crumrine, 2009). Even so, how ACP imple-
mentation amidst a changing climate would affect fish production in 
large ecosystems that receive substantial upstream nutrient and sed-
iment loads remains a conspicuous information gap. Such information 
could help managers design more resilient and adaptive management 
strategies (Hansen et al., 2017; Lynch et al., 2016; Paukert et al., 2016).

Climate change and nutrient loading can directly and indirectly 
drive fishery dynamics by affecting the recruitment of individuals 
to the fishable population (Farmer et al., 2015; Hansen et al., 2017). 
Recruitment (herein, defined as the contribution of individuals to 
older ages that can be targeted by a fishery) responses can be com-
plex—positive or negative, species-specific, variable across spatial 
and temporal scales, and life-stage dependent (Drinkwater et al., 
2010; Ludsin, DeVanna, & Smith, 2014; Radinger et al., 2016). For 
example, climate change and NPS pollution can alter key habitat 
characteristics that affect early life growth and survival (Brochier 
et al., 2013; Brunel & Boucher, 2007; Lindegren et al., 2010; Mueter, 
Bond, Ianelli, & Hollowed, 2011). In many cases, the magnitude 
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5. Overall, our study presents a useful modelling framework to forecast fish recruit-
ment in Lake Erie and elsewhere, as well as offering projections and new avenues 
of research that could help resource management agencies and policy-makers 
develop adaptive and resilient management strategies in the face of anticipated 
climate and land-management change.
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and direction of response to increasing temperature is linked to a 
species’ thermal guild, with cool- and cold-water species showing 
negative responses to warming and warm-water species showing 
positive ones (Comte et al., 2013; Hansen et al., 2017; Lynch et al., 
2016). Similarly, a species’ tolerance, or lack thereof, of eutrophic, 
nutrient-rich waters can affect recruitment positively or negatively 
through top-down or bottom-up processes (Briland, 2018; Ludsin 
et al., 2001). Thus, understanding the response of fish recruitment, 
and ultimately fishery production, to climate change and the imple-
mentation of ACPs is a key component to future management and 
conservation (Pritt, Roseman, & O'Brien, 2014).

Towards this end, we explored how anticipated climate change 
and the implementation of realistic ACP scenarios might alter the 
recruitment dynamics of three ecologically and economically im-
portant fish populations (walleye Sander vitreus, yellow perch 
Perca flavescens, and white perch Morone americana) in the highly 
productive and dynamic west basin of Lake Erie (Figure 1). The 
recruitment dynamics of these species have been shown to re-
spond to climate-related factors (e.g. winter and spring tempera-
tures: Busch, Scholl, & Hartman, 1975; Clady, 1976; Farmer et al., 
2015; Hokanson, 1977; Johnson & Evans, 1990) and factors asso-
ciated with NPS inputs from rivers (Carreon-Martinez, Wellband, 
Johnson, Ludsin, & Heath, 2014; Jones, Shuter, Zhao, & Stockwell, 
2006; Ludsin et al., 2011; Mion, Stein, & Marschall, 1998; Reichert 
et al., 2010). We focused on western Lake Erie for several reasons. 
First, ACPs designed to reduce phosphorus loading are being pro-
posed and implemented in the surrounding western Lake Erie basin 
(WLEB) catchment to mitigate Lake Erie's eutrophication problem 
and its potentially harmful effects (e.g. bottom hypoxia, harmful 
algal blooms, reduced water clarity; Kane, Conroy, Richards, Baker, 
& Culver, 2014; Ohio EPA, 2013; Scavia et al., 2014; Watson et al., 
2016). Second, projected climate change, which is characterised by 
short, warm winters (Farmer et al., 2015; Jones et al., 2006) and 
frequent, high-magnitude precipitation events in temperate eco-
systems (Bartolai et al., 2015; Hayhoe, VanDorn, Croley, Schlegal, 
& Wuebbles, 2010; Maghrebi, Nalley, Laurent, & Atkinson, 2015), 
has occurred in the WLEB and has been linked to the recruitment 

dynamics of important Lake Erie species such as yellow perch and 
walleye (e.g. Farmer et al., 2015; Fedor, 2008). Finally, the west 
basin of Lake Erie provides spawning and nursery areas for many 
of Lake Erie's ecologically and economically important species, 
including walleye (Jones, Netto, Stockwell, & Mion, 2003; Zhao, 
Jones, Shuter, & Roseman, 2009), yellow perch (Carreon-Martinez 
et al., 2014; Ludsin et al., 2011; Reichert et al., 2010), and white 
perch (Boileau, 1985; Schaeffer & Margraf, 1986).

We forecasted walleye, yellow perch, and white perch age-0 (ju-
venile) abundance, which has been shown to be a strong predictor of 
future recruitment to the fishery at age-2 (Farmer et al., 2015; WTG, 
2017), under different combinations of anticipated (2020–2065) 
climate change and varying levels of ACP implementation in the 
WLEB catchment. Our specific research goals were to: (1) quantify 
the independent and combined effects of climate change and ACP 
implementation on walleye, yellow perch, and white perch recruit-
ment; (2) explore whether climate change and ACP implementation 
might alter western Lake Erie's fish community by differentially 
affecting native cool-water fish species (walleye and yellow perch) 
versus nonnative warm-water ones (white perch); and (3) provide 
insights to Lake Erie management agencies regarding the poten-
tial future of their fisheries. We hypothesised that, in general, cli-
mate warming would negatively affect walleye and yellow perch 
recruitment, owing to their seeming dependence on long winters 
for successful reproductive output and strict thermal requirements 
during the spring (Busch et al., 1975; Farmer et al., 2015; Hokanson, 
1977). However, depending on their magnitude, reductions in total 
phosphorus (TP) inputs from ACP implementation could offset or 
exacerbate anticipated climate-driven declines in yellow perch re-
cruitment. For example, reduced NPS TP loading could offset warm-
ing-induced recruitment declines by alleviating the adverse effects 
of eutrophic conditions (e.g. bottom hypoxia; Caddy, 1993; Roberts 
et al., 2009; Scavia et al., 2014). By contrast, reduced NPS inputs 
of phosphorus (and associated sediments) could exacerbate declines 
in recruitment by reducing the extent and productivity of turbid 
Maumee River plumes during the spring, which appear to offer pro-
tection to larval yellow perch from predators such as invasive white 

F I G U R E  1   Map of the western Lake 
Erie basin catchment (MI, IN, OH, U.S.A.) 
and the west basin of Lake Erie (U.S.A.–
Canada). Trawling stations are denoted 
by solid black circles, weather stations 
by black triangles, and the Maumee River 
gauge station used to validate the Soil and 
Water Assessment Tool model by a gold 
star
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perch (Carreon-Martinez et al., 2014; Ludsin et al., 2011) and may 
also enhance foraging through bottom-up effects (Barbiero, Balcer, 
Rockwell, & Tuchman, 2009; Grimes & Finucane, 1991). In this way, 
the relationship between yellow perch recruitment and TP inputs 
from the Maumee River could be expected to be dome-shaped (un-
imodal), a notion supported by previous studies that have quanti-
fied the relationship between ecosystem productivity metrics and 
fish(eries) yield (e.g. Caddy, 1993, 2000; Oglesby, Leach, & Forney, 
1987). By contrast, we hypothesised that white perch recruitment 
would be positively affected by climate warming and negatively af-
fected by increased ACP implementation because of this species’ 
higher thermal optimum compared to walleye and yellow perch 
(Johnson & Evans, 1990) and its tolerance of eutrophic conditions 
(Briland, 2018).

2  | METHODS

2.1 | Study system

2.1.1 | West basin of Lake Erie

Lake Erie is the smallest of the Laurentian Great Lakes (by volume), 
but is the most biologically productive, supporting numerous com-
mercial and recreational fisheries (Bunnell et al., 2013; Ludsin et al., 
2014). The lake has three distinct basins (west, central, and east), 
each having unique chemical and physical properties. The focal 
area of this study, the west basin (Figure 1), is the warmest, shal-
lowest, and most biologically productive of the three (Bolsenga & 
Herdendorf, 1993; Leach & Nepszy, 1976; Ludsin et al., 2001). Owing 
to these properties, the west basin has historically provided spawn-
ing and nursery habitat for a diversity of fishes including walleye, 
yellow perch, and white perch (DuFour et al., 2015; Farmer et al., 
2015; Jones et al., 2003; Ludsin et al., 2001, 2011; Mion et al., 1998; 
ODW, 2017). A major driver of the biologically productive west 

basin is nutrient inputs from the WLEB catchment and specifically, 
the Maumee River, which drains the largest catchment in the en-
tire Great Lakes basin (Bolsenga & Herdendorf, 1993). The Maumee 
River catchment is composed of primarily agricultural land (>70%, 
USDA NRCS, 2011) and delivers substantial nutrient and sediment 
inputs to the west basin (Baker & Richards, 2002; Keitzer et al., 
2016; Scavia et al., 2014). Excessive phosphorus loading from agri-
cultural runoff in the Maumee River catchment has been identified 
as the primary driver of Lake Erie's recent re-eutrophication (Scavia 
et al., 2014; Watson et al., 2016), resulting in efforts to reduce load-
ing via the implementation of ACPs (Ohio EPA, 2013). Given that the 
Maumee River contributes a substantial portion of the TP load from 
the WLEB into the west basin of Lake Erie (Maccoux, Dove, Backus, 
& Dolan, 2016; Scavia et al., 2014), the need exists to understand 
how ACP implementation in this catchment will impact the resident 
fish community, especially amidst a changing climate (Keitzer et al., 
2016).

2.1.2 | Study species

The three focal species in this study are: (1) walleye, which supports 
Lake Erie's largest recreational fishery and second largest commer-
cial fishery (Kayle, Oldenburg, Murray, Francis, & Markham, 2015; 
Markham & Knight, 2017; ODW, 2017, 2018); (2) yellow perch, which 
supports Lake Erie's largest commercial fishery and second largest rec-
reational fishery (Belore et al., 2014; ODW, 2018); and (3) white perch, 
an invasive species that is of minor commercial importance but has be-
come the most abundant prey-fish in Lake Erie (FTG, 2013; ODW, 2017) 
and is a known predator of walleye and yellow perch during their early 
life stages (Carreon-Martinez et al., 2014; Ludsin et al., 2011; Schaeffer 
& Margraf, 1987). In addition to their economic and ecological roles 
in Lake Erie, walleye, yellow perch, and white perch are common and 
widespread across North America, and support recreational fisheries 
across their ranges. These three species also span a gradient of thermal 

F I G U R E  2   Conceptual modelling framework for forecasting Lake Erie walleye, yellow perch, and white perch recruitment under two 
greenhouse gas emission scenarios (RCP4.5 and RCP8.5) crossed by four levels of agricultural conservation practice (ACP) implementation in 
the western Lake Erie basin (WLEB) catchment. Predictive models of fish recruitment were built using generalised additive models (GAMs). 
Predictor variables included winter severity, spring warming rate, and Maumee River total phosphorus (TP) from Heidelberg University's 
National Center for Water Quality Research (NCWQR). Age-0 (juvenile) abundance data from bottom trawl surveys by the Ohio Department 
of Natural Resources—Division of Wildlife (ODNR-DOW) and the Ontario Ministry of Natural Resources and Forestry (OMNRF, 1987–2015) 
was our recruitment proxy. Future recruitment was projected using ensemble climate forecasts and linked Soil and Water Assessment Tool 
(SWAT) and Agricultural Policy/Environmental eXtender (APEX) models

Fish recruitment
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guilds. Although walleye and yellow perch are both considered cool-
water species, walleye has a lower optimal temperature range for both 
spawning and embryo hatching compared to yellow perch (Hokanson, 
1977). In Lake Erie, walleye typically spawn during March–mid-May at 
temperatures of 3–12°C (May, 2015; Roseman et al., 1996) and yel-
low perch typically spawn during mid-April to May at temperatures of 
8–14°C (Belore et al., 2014; Collingsworth & Marschall, 2011; Farmer 
et al., 2015). Both walleye and yellow perch age-0 (juvenile) abundance 
indices during August (c. 3–4 months post-hatch) are excellent pre-
dictors of age-2 abundance when recruitment to the fishery occurs 
(Belore et al., 2014; Farmer et al., 2015; Kayle et al., 2015), highlighting 
the importance of early life processes in determining fishery produc-
tion. Because white perch prefer warmer temperatures compared to 
walleye and yellow perch, the west basin of Lake Erie is a favorable re-
cruitment environment for this species. White perch spawn in its tribu-
taries (e.g. Maumee River) and shallow (<1.5 m) waters during spring at 
temperatures of 11–15°C (Boileau, 1985; Hartman, 1972).

2.2 | Modelling overview

Our modelling approach involved two primary steps (Figure 2). 
First, we built species-specific predictive recruitment models using 
historical age-0 (juvenile) abundance data and indices of winter se-
verity, spring warming rate, and Maumee River TP loads. Second, 
we projected future (2020–2065) recruitment under different 
combinations of anticipated climate change and four levels of ACP 
implementation in the WLEB catchment, using our predictive mod-
els and forecasted values of winter severity, spring warming rate, 
and Maumee River TP loads that were generated from linked cli-
mate, catchment-hydrology, and agricultural-practice-simulation 
models.

2.3 | Predictive fish recruitment models

2.3.1 | Fish recruitment indices

We used annual indices of age-0 abundance generated from bot-
tom trawl surveys (typically 10 min duration) conducted by the Ohio 
Department of Natural Resources-Ohio Division of Wildlife (ODNR-
DOW) and the Ontario Ministry of Natural Resources and Forestry 
(OMNRF) during 1987–2015 (walleye and yellow perch) and 1992–
2015 (white perch). The white perch time-series was truncated to 
avoid the confounding effects of early establishment dynamics (i.e. 
large boom–bust cycles) during which environmental drivers were 
probably not the main drivers of population dynamics (Simberloff & 
Gibbons, 2004; Williamson, 1996). Surveys were conducted during the 
last 2 weeks of August, sometimes extending into early September. 
The agencies used a stratified-random design to sample 56–70 stations 
annually across the west basin of Lake Erie. To correct for catchability 
differences, vessel-specific and species-specific fishing power cor-
rections were applied to standardise trawl catches (Tyson, Johnson, 

Knight, & Bur, 2006). Catches were averaged within each year to gen-
erate a basin-wide mean. Herein, we report annual catch per unit effort 
(CPUE) as the number of individuals per minute of trawling.

2.3.2 | Abiotic predictors

We assessed winter severity, spring warming rate, and total spring-
time (March–May) Maumee River TP loads as potential environmen-
tal predictors of walleye, yellow perch, and white perch recruitment. 
We chose these metrics based on previous research indicating their 
influence on recruitment for at least one of the three species (Busch 
et al., 1975; Carreon-Martinez et al., 2014; Clady, 1976; Farmer 
et al., 2015; Hokanson, 1977; Johnson & Evans, 1990; Jones et al., 
2006; Ludsin et al., 2011; Mion et al., 1998; Reichert et al., 2010). We 
calculated historical winter severity and spring warming rate from 
observed maximum daily air temperatures during 1987–2015 from 
stations (n = 29) located throughout the WLEB catchment (National 
Oceanic and Atmospheric Administration's Daily Global Historical 
Climatology Network, Menne, Durre, Vose, Gleason, & Houston, 
2012). Our use of air temperature is justified, as it has often been 
used as a proxy for water-related thermal metrics (Sharma, Jackson, 
Minns, & Shuter, 2007; Van Zuiden et al., 2016) and has been used to 
successfully predict the effects of climate change on fisheries (Van 
Zuiden et al., 2016). Furthermore, previous research has shown that 
local air temperature is correlated to Lake Erie water temperature 
in western Lake Erie (Farmer, 2013). We defined winter severity as 
the total number of days that the mean daily maximum temperature 
across the WLEB catchment was ≤6°C during January–April of each 
year. Our inclusion of winter severity as a recruitment predictor was 
based on previous research identifying optimal spawning conditions 
for percids, which showed that at colder water temperatures, matu-
ration is more likely to result in a spawning event as compared to 
warmer water temperatures (Hokanson, 1977). Our winter index is 
also strongly correlated with ice cover indices used in previous stud-
ies (e.g. Farmer et al., 2015) that have been shown to explain varia-
tion in Lake Erie recruitment success, and it is easily projected using 
existing climate change models. To calculate spring warming rate (°C/
day), we fit a linear regression model to the basin-wide mean daily 
maximum temperature during April–May (the approximate larval 
production period for all three species) for each year and defined the 
annual spring warming rate (°C/day) as the slope of the least-squares 
regression line (Busch et al., 1975). Finally, we calculated total annual 
springtime TP loading (metric tons) as the sum of the recorded daily 
(March–May) Maumee River TP loads obtained from the National 
Center for Water Quality Research housed by Heidelberg University 
(https://ncwqr.org/monit oring /).

2.3.3 | Predictive models of fish recruitment

Because environmental driver–biological response relationships are 
often nonlinear (Hunsicker et al., 2016), we used generalised additive 

https://ncwqr.org/monitoring/
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models (GAMs, Hastie & Tibshirani, 1987) to examine the relation-
ship between fish recruitment and winter severity, spring warming 
rate, and Maumee River TP loads. Generalised additive models are 
an ideal tool because of their flexibility in fitting nonlinear relation-
ships that need not be defined a priori, and they have previously 
been used to model fish recruitment (Cardinale & Arrhenius, 2000; 
Daskalov, 1999). We built species-specific GAMs using thin-plate 
regression splines (Adams, Leaf, Wu, & Hernandez, 2018) and a 
γ-distribution with a log-link function. The γ-distribution is a flex-
ible, continuous distribution, appropriate for skewed data, which 
has commonly been used in fisheries applications (Maunder & Punt, 
2004). Smoothness parameters were estimated with generalised 
cross validation. Because fewer years of data were available for 
white perch, as compared to walleye and yellow perch, we restricted 
the basis dimension, k (controls the degree of smoothness in the 
model), to 6 in all white perch models to avoid overfitting (Decker 
et al., 2013; Quiñones et al., 2015). To avoid the confounding ef-
fects of multicollinearity, prior to model construction, we used pair-
wise correlations to confirm that no substantial (r > 0.6, Zuur, Ieno, 
Walker, Saveliev, & Smith, 2009) multicollinearity between predictor 
variables was present.

Once we determined that the predictor variables were not 
strongly correlated, a global model with the form:

was constructed and fit for each species where s represents the 
smoothing function. Model fit and temporal autocorrelation were 
assessed using standard diagnostics (Anderson & Burnham, 2002). 
To determine the most supported predictive model for each species, 
we constructed model formulations with all possible combinations 
of predictor variables (Burnham & Anderson, 2003) and consid-
ered the most supported model for each species as the one with 
the lowest sample size-corrected Akaike information criteria (AICc) 
value. If models were equally supported (ΔAICc < 2), we chose the 
model with the greatest predictive ability. All GAM analyses were 
conducted using the mgcv package in R 3.3.0 (Wood & Wood, 2015; 
R Core Team, 2019).

We used a resampling technique to visualise the partial effects 
of each predictor variable on the response variable (recruitment). 
First, we generated a separate, simulated uniform sequence 
(n = 250) of each predictor variable using its observed range as 
bounds. Next, using the original data, we resampled the other 
two predictor variables (with replacement) to generate a new re-
sampled dataset. We repeated this process with each predictor 
to generate three new resampled datasets, each with a simulated 
sequence of one variable and a resampled sequence for the oth-
er(s). Finally, we predicted recruitment values using the most sup-
ported candidate model for each species for each new dataset. 
We then plotted the predicted recruitment values as a function 
of the simulated predictor sequence for each of the predictors 
included in the most supported model (maximum of three possible 
predictors).

2.4 | Future projections

2.4.1 | Climate change scenarios: thermal metrics

We projected future (2020–2065) winter severity and spring warming 
rate using daily maximum air temperature values from global circula-
tion models (GCMs) used in the IPCC’s Fifth Assessment Report (IPCC, 
2014). We included two greenhouse gas emission (representative con-
centration pathway, RCP) scenarios: a moderate-reductions scenario 
(RCP4.5, 18 GCMs) and a business-as-usual scenario (i.e. status quo, 
RCP8.5, 17 GCMs). For each GCM, multiple ensembles (slightly differ-
ent versions of a GCM model) were run to generate a range of future 
climate conditions. (RCP4.5, n = 38; RCP8.5, n = 37, Table S1; Ohio 
Supercomputer Center, 1987). The use of multiple GCMs and ensem-
bles is a common way to incorporate uncertainty in future climate 
conditions and to better reflect the range of possible future outcomes 
(Sharma, Vander Zanden, Magnuson, & Lyons, 2011; Van Zuiden et al., 
2016). The GCM data spatially overlapped the 29 stations that were 
used to calculate historical winter severity and spring warming rate.

Although the GCM outputs were bias-corrected and downscaled 
(both temporally and spatially) using standard approaches (Bureau of 
Reclamation, 2013; Maurer, Brekke, Pruitt, & Duffy, 2007), we fur-
ther adjusted the forecasted data to account for any remaining bias, 
given that the climate data were generated at different temporal and 
spatial scales than those used in this study. For our winter severity 
and spring warming metrics, we employed a multi-step approach. 
First, we built scenario-specific linear models between hindcasted 
(1987–2015) temperature data from each climate scenario and his-
torical observed temperature data during the same period. We then 
applied the linear coefficients to future forecasted temperature 
data. Next, we used the bias-corrected temperature data to calculate 
winter severity and spring warming rate with the same methods de-
scribed above. We then calculated the magnitude of change between 
the forecasted value and hindcasted (1987–2015) median value for 
that specific scenario. Finally, we added this difference to the his-
torical median. We used the resulting forecasted values to predict 
recruitment, which mitigated potential bias in our modelling efforts. 
We removed a small subset (n = 11) of scenarios in which the pro-
jected spring warming rate was ≤0 for the remainder of our analyses. 
These scenarios only represented c. 0.3% of our total projections.

2.4.2 | Agricultural conservation practice scenarios

To generate future TP loads that resulted from different levels 
of implementation of nutrient and sediment reduction strate-
gies in the catchment, we applied a set of previously developed 
catchment-hydrology and agricultural-simulation models (Arnold, 
Srinivasan, Muttiah, & Williams, 1998; Gassman et al., 2009; 
USDA NRCS, 2011; Wang et al., 2011; Daggupati et al., 2015; Yen 
et al., 2016). Briefly, we used conservation scenarios developed 
by U.S. Department of Agriculture (USDA) Conservation Effects 
Assessment Program (CEAP, USDA NRCS, 2011), which represent 

CPUE∼ s
(

TP
)

+s (spring warming rate)+s (winter severity)



     |  1493DIPPOLD et aL.

different levels of ACP implementation in the WLEB catchment. 
Each scenario consists of implementing ACPs on varying numbers 
of farm acres, depending on their perceived level of need (USDA 
NRCS, 2011). A farm acre's level of need was based on its vulner-
ability to sediment and nutrient loss and its current level of ACP 
treatment (USDA NRCS, 2011). The four levels of ACP implemen-
tation in this study were: (1) a baseline scenario, where historical 
(1990–2015) levels of nutrient and erosion control practices in the 
WLEB were carried into the future; (2) a scenario where only WLEB 
farm acres deemed in critical need were treated (ENMC, 8% of the 
catchment, 384,160 acres); (3) a scenario where WLEB farm acres 
deemed in critical or moderate need were treated (ENMA, 48% of 
the catchment, 2,304,960 acres); and (4) a scenario where all farm 
acres were treated, regardless of their level of need (ENM) (USDA 
NRCS, 2011). The implementation of ACPs was simulated using 
the Agricultural Policy/Environmental eXtender (APEX) model 
(Gassman et al., 2009; Wang et al., 2011; Williams, Izaurralde, & 
Steglich, 2008) and the output from this model was ultimately used 
as input into a previously developed, calibrated, and validated Soil 
and Water Assessment Tool (SWAT) model (1:100,000 resolution), 
which reliably simulates TP input into the west basin of Lake Erie 
via the Maumee River (Daggupati et al., 2015; Yen et al., 2016).

The SWAT is a commonly used catchment-hydrology model and 
has been used in multiple WLEB studies to explore the impact of 
climate change and ACP implementation on river flow and agricul-
tural runoff (e.g. Bosch et al., 2013; Keitzer et al., 2016). In our study, 
SWAT inputs were nutrient loads from cultivated fields simulated by 
APEX (under each level of ACP implementation) and meteorological 
data from each climate change model. We used an approach similar 
to that used for our thermal metrics to bias-correct the TP forecasts 
from the SWAT, with some notable differences. In this case, we built 
scenario-specific and month-specific (March–May) linear models be-
cause the observed biases were month-specific. After forecasting 
springtime TP loads, we calculated the proportional change between 
the forecasted value and the hindcasted (1987–2015) median value 
for that specific scenario. Regardless of the level of ACP implemen-
tation, we used the baseline ACP median in each emission scenario, 
which simulated historical nutrient and erosion control practices. 
Finally, we multiplied the proportional change by the historical me-
dian to obtain the forecasts that were used to predict recruitment. 
We chose to use proportional change for TP to account for precipi-
tation-driven changes in TP loading in the climate models, as simply 
adding or subtracting load differences would not make sense. The 
results of this modelling effort were projections of Maumee River TP 
loads for each combination of climate change and ACP implementa-
tion scenario, analogous to the historical Maumee River TP loads in 
regards to timing (spring) and spatial scale.

2.4.3 | Forecasting fish recruitment

We used our predictive recruitment models to forecast walleye, yel-
low perch, and white perch recruitment under both RCP scenarios 

and the four ACP implementation scenarios. Under each combi-
nation of climate and ACP implementation scenario (total n = 8), 
species-specific recruitment values were projected from winter se-
verity, spring warming rate, and/or Maumee River TP loads annually 
and subsequently summarised by decade.

We evaluated the effects of future climate change and ACP 
implementation on fish recruitment at the decadal scale using two 
approaches. First, we compared the median decadal recruitment 
trends, relative to the past (1987–2015). Second, because walleye 
and yellow perch fisheries in Lake Erie are supported by sporadic 
strong recruitment events (i.e. year-classes; Farmer et al., 2015; 
Vandergoot, Cook, Thomas, Einhouse, & Murray, 2010), we calcu-
lated the frequency of annual forecasts in a decade that would con-
stitute a strong recruitment event, defined as greater than or equal 
to the historical 75th percentile. The 75th percentile has commonly 
been used as a metric to define a strong recruitment event in Lake 
Erie (Vandergoot et al., 2010). We calculated the median proportion 
of strong recruitment events in each decade under each climate and 
ACP implementation scenario. If no differences in the frequency of 
strong recruitment events in the future existed relative to the past, 
we would expect the proportion of strong recruitment events within 
a decade to be centered on 25%, indicating that strong recruitment 
events occurred at the same frequency compared to the past.

3  | RESULTS

3.1 | Predictive models of fish recruitment

3.1.1 | Fish recruitment indices

Lake Erie walleye, yellow perch, and white perch recruitment, as in-
dexed by age-0 abundance (i.e. year-class strength), varied by up to 
an order of magnitude during the historical time period (Figure 3a–c). 
Annual age-0 walleye trawl CPUE ranged from 0.09 to 5.2 individu-
als/min, with a median CPUE of 0.5. The strongest walleye recruit-
ment events occurred in 1993, 1996, 2003, and 2015 (Figure 3a). 
Age-0 yellow perch CPUEs ranged from 0.7 to 66.4 individuals/min, 
with a median value of 7.4 individuals/min (Figure 3b). The three 
strongest recruitment events occurred during years similar to wall-
eye (1996, 2003, and 2015; Figure 3b). Age-0 white perch CPUE also 
varied by an order of magnitude with annual CPUEs ranging from 
9.5 to 117.0 individuals/min, with a median value of 46.3 individu-
als/min. White perch recruitment was highest during the 2000s 
with the strongest recruitment events occurring in 2004 and 2012 
(Figure 3c).

3.1.2 | Abiotic predictors

Winter severity, spring warming rate, and Maumee River TP loads 
also varied throughout the historical period (Figure 3d-f). Winter 
severity (number of days with a maximum temperature ≤ 6°C) 
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ranged from 43 to 76 days, with a median winter severity of 62 days 
(Figure 3e). Extremely mild winters occurred in 2002 and 2012, 
whereas severe winters occurred in 1993, 2003, and during 2013–
2015. Spring warming rate varied throughout the period, ranging 
from 0.06 to 0.31°C/day (Figure 3d). Generally, warming rates were 
lower in the middle of the time-series (1996–2006) compared to the 
early and late periods (Figure 3d). The median springtime Maumee 
River TP load was 807.0 MT and ranged from 172.1 to 2,208.8 MT 
(Figure 3f). Notably, the 2011 TP load was very high, approximately 
double the next highest load. Because no substantial collinearity 

between these environmental variables existed (r < 0.4), all were in-
cluded as potential predictors of recruitment in our species-specific 
models.

3.1.3 | Predictive models of fish recruitment

Based on standard, qualitative diagnostics (Anderson & Burnham, 
2002) all three final models of fish recruitment displayed good 
fit with no obvious patterns in the residuals (Figure S1) and no 

F I G U R E  3   Indices of historical (1987–2015) age-0 (juvenile) (a) walleye, (b) yellow perch, and (c) white perch trawl catch per unit effort 
(CPUE, individuals/min) in western Lake Erie and (d) spring warming rate (°C/day, during April–May), (e) winter severity (number of days 
with a maximum temperature ≥ 6°C during January–May), and (f) Maumee River total phosphorus load (TP, metric tons, March–May). Age-0 
recruitment indices were generated from annual trawl surveys conducted by the Ohio Department of Natural Resources—Ohio Division of 
Wildlife and that Ontario Department of Natural Resources and Forestry during August. Horizontal lines indicate the historical median

TA B L E  1   Summary of final generalised additive models used to predict walleye, yellow perch, and white perch recruitment in western 
Lake Erie. Possible predictors included winter severity (the total number of days that the mean daily maximum temperature across 
the western Lake Erie catchment was ≤ 6°C during January–May of each year), spring warming rate (°C/day), and Maumee River total 
phosphorus (TP) load (metric tons). Reported are the effective degrees of freedom (EDF) for each smooth term. NA indicates that the 
predictor variable was not included in the final species-specific model based on AICc model selection. All included smooth terms have 
p < 0.05

Species

EDF

Winter severity Spring warming rate Maumee River TP
Overall deviance 
explained (%)

Walleye 1.00 NA NA 31.3

Yellow Perch 1.00 NA 2.587 51.1

White Perch NA 1.00 4.523 55.4
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significant temporal autocorrelation based on autocorrelation 
function plots (Figure S2, Zuur et al., 2009). Based on our defined 
AICc and predictive ability criteria, the most supported predic-
tive model of walleye recruitment included only winter severity 
(Table S2). Our resampling analysis revealed that, as winter se-
verity increased, so did walleye recruitment, with exponentially 
higher walleye recruitment occurring after severe winters (Figure 
S3). The final walleye model explained 31.3% overall deviance 
in walleye recruitment (Table 1). The most supported predictive 
model of yellow perch recruitment included winter severity and 
Maumee River TP as predictors (Table S2). The partial response 
of yellow perch recruitment to winter severity was similar to the 
walleye partial response; as winter severity increased, so did yel-
low perch recruitment (Figure S4). The partial response of yel-
low perch recruitment to TP was dome-shaped (unimodal) with 
the greatest positive effect occurring at intermediate TP loads 
(Figure S4). The final yellow perch predictive model explained 
51.1% of the overall deviance in yellow perch recruitment 
(Table 1). The most supported predictive model of white perch 
recruitment included spring warming rate and Maumee River 
TP as predictor variables (Table S2). In general, white perch re-
cruitment increased with increasing spring warming rate (Figure 
S5). Although the partial response of white perch recruitment 
to Maumee River TP was nonlinear, as TP increased white perch 
recruitment generally decreased (Figure S5), a finding that ran 
counter to our expectations. The final white perch recruitment 
model explained 55.4% of the variation in observed recruitment 
(Table 1).

3.2 | Future projections

3.2.1 | Forecasts of winter severity and spring 
warming rate

As expected, winter severity decreased through time in both the 
RCP4.5 and RCP8.5 emission scenarios, although the declines var-
ied in their magnitude, especially during later decades (Figure 4a). 
Median winter severity decreased by 5 days during the 2020s and 
7 days during the 2030s relative to the median historical winter 
severity (62 days) in the RCP4.5 emission scenario. Similarly, it 
decreased 4 days during the 2020s and 8 days during the 2030s 
relative to the median historical winter severity (62 days) in the 
RCP8.5 emission scenario. After the 2030s, however, the two emis-
sion scenarios diverged, with winter severity decreasing more in 
the RCP8.5 scenario compared to the RCP4.5 emission scenario 
(Figure 4a). By the 2060s, projected median winter severity de-
creased by 13 days in the RCP4.5 emission scenario and 18 days 
in the RCP8.5 emission scenario, representing a 21% and 29% re-
duction, respectively, relative to the historical period. In contrast 
to winter severity, no obvious temporal trends in projected spring 
warming rate were apparent, with differences between emission 
scenarios also being negligible (Figure 4b). Median spring warming 

rates under the RCP4.5 emission scenario were slightly higher than 
the historical median, although the projected rates were variable 
(Figure 4b).

3.2.2 | Forecasts of TP loading

Three general patterns emerged from our projected Maumee River TP 
loads (Figure 5). First, as expected, increased levels of ACP implemen-
tation (i.e. more farm acres treated with nutrient and erosion control 
practices) resulted in lower TP loads. For example, implementing ACPs 
in all farm acres (ENM) resulted in a 45.4% reduction in TP loading 
during the 2020s under the RCP4.5 emission scenario and a reduction 

F I G U R E  4   Violin plots of projected (2020–2065) (a) winter 
severity and (b) spring warming rate in the western Lake Erie 
basin under the RCP4.5 (moderate reductions, grey), and RCP8.5 
(business-as-usual, white) greenhouse gas emission scenarios by 
decade. The violin plot shows the distribution of the unsummarized 
(all years, all ensembles) data with the black lines in each plot 
representing the projected median winter severity (number of days 
with a maximum temperature ≥ 6°C during January–May) or median 
spring warming rate (°C/day, during April–May). The horizontal line 
represents the historical (1987–2015) median
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of 39.2% under the RCP8.5 emission scenario, relative to the historical 
period. Second, TP loads increased through time, within each level of 
ACP implementation, indicating that anticipated climate change can 
be expected to reduce the effect of ACP implementation during later 
decades. Finally, during most decades and ACP implementation sce-
narios, the RCP8.5 emission scenario had greater median expected 
TP loads compared to the corresponding RCP4.5 emission scenario, 
probably because of greater projected increases in springtime pre-
cipitation, and subsequent TP loading, under the RCP8.5 emission 
scenario (N. Aloysius, unpublished data). However, the differences in 
median forecasted TP loads between emissions scenarios were mod-
est, especially when compared to the differences that we observed 
among ACP implementation scenarios. The implementation of ACPs 
influenced TP loading more than the projected changes in climate in 
the two highest levels of ACP implementation (ENMA and ENM). For 
example, substantial reductions (e.g. 27.6% during the 2060s, RCP4.5, 
ENM scenario) in TP loading could still be achieved in the far term, de-
spite the overall upward trends in climate-driven TP loading through 
time (Figure 5). However, in the ACP implementation scenarios where 
current levels of implementation were carried into the future or only 
acres in critical need were treated, TP loads were forecast to increase 
above the historical median levels (Figure 5).

3.2.3 | Forecasts of fish recruitment

Walleye
The final walleye recruitment model only included winter severity 
as a predictor. Thus, walleye recruitment was not projected under 
different levels of ACP implementation, only under different green-
house gas emission (RCP) scenarios. In general, median annual 
projections of recruitment decreased through time in both the mod-
erate reductions (RCP4.5) and business-as-usual (RCP8.5) scenarios 
(Figure 6). Interestingly, the projected median annual recruitment 

values during earlier decades (2020s–2040s for RCP4.5, 2020s and 
2030s for RCP8.5) were 3–50% higher than the historical median, 
owing to more variable forecasts that resulted in projected severe 
winters during earlier decades. However, during subsequent dec-
ades (2040s–2060s), both emission scenarios had projected me-
dian annual recruitment values lower than the historical median 
(Figure 6). During the 2060s under the RCP8.5 emission scenario, 
which represents the worst-case scenario in our projections, median 
annual recruitment decreased by 38% relative to the historical me-
dian. By contrast, the frequency of a projected strong (≥ historical 
75th percentile) annual walleye recruitment event (year-class) during 
a decade was lower than 25% (the expected frequency) during all 
decades, under both emission scenarios (Figure 7), except under the 
RCP8.5 emission scenario during the 2020s. Under the RCP4.5 emis-
sion scenario, the median frequency of a projected annual strong 
recruitment event decreased from 18% during the 2020s to 5% dur-
ing the 2060s. The decline was more severe under the RCP8.5 emis-
sion scenario during which the median value was only 5 and 4% in 
the 2050s and 2060s, respectively. The median frequency of strong 
recruitment events was slightly higher early in the projected period 
under the RCP8.5 emission scenario compared to the RCP4.5 one, 
owing to a slightly higher occurrence of projected severe winters 
during early decades. Overall, under both future greenhouse gas 
emission scenarios, the projected frequency of strong walleye re-
cruitment events decreased substantially compared to the past.

Yellow perch
Our analysis of yellow perch recruitment yielded four major findings. 
First, median annual recruitment was projected to be lower than the 
historical median across all decades under all climate change × ACP 
implementation scenarios, except for one (RCP8.5, ENMC, 2020s; 
Figure 8). These reductions ranged from 3.3% (RCP8.5, Baseline, 
2020s) to 61% (RCP8.5, ENM, 2060s) relative to the historical median. 
Second, projected median annual yellow perch recruitment declined 

F I G U R E  5   Violin plot of projected (2020–2065) Maumee River total phosphorus (TP) load under the RCP4.5 (moderate reductions, 
grey), and RCP8.5 (business-as-usual, white) emission scenarios by decade and agricultural conservation practice implementation scenario. 
The number of acres treated with nutrient and erosion control practices increases from left to right: (1) baseline scenario, where current 
(1990–2010) levels of nutrient and erosion control practices were carried into the future; (2) a scenario where only farm acres in critical 
need were treated (ENMC); (3) a scenario where farm acres in critical and moderate need were treated (ENMA); and (4) a scenario where all 
farm acres were treated (ENM). The violin plot shows the distribution of the unsummarised (all years, all ensembles) data with the black lines 
representing the median springtime TP load (total March–May TP load, MT)
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through time in all future climate and ACP implementation scenarios 
(Figure 8). Generally, the reductions were greater under the RCP8.5 
emission scenario during any decade at any level of ACP implemen-
tation relative to the RCP4.5 emission scenario; however, some ex-
ceptions to this pattern existed (e.g. ENMC, 2020s). The greatest 
reductions in median annual yellow perch recruitment (56.5–60%) 
occurred during the 2060s under the RCP8.5 emissions scenario. 
Third, increasing the level of ACP implementation (i.e. reducing TP 
loads) exacerbated the climate-driven decline in median annual yellow 
perch recruitment. For example, during the 2020s, we documented 
a 4.6% decline in median annual yellow perch recruitment under the 
RCP4.5-Baseline scenario. By contrast, we observed a 27.3% reduc-
tion in median annual yellow perch recruitment in the 2020s under 
the RCP4.5-ENM (all acres treated) scenario. This trend was similar 
across all decades and combinations of climate and ACP implementa-
tion scenarios (Figure 8). Fourth, similar trends emerged for the pro-
jected frequency of strong (≥ historical 75th percentile) yellow perch 

recruitment events (Figure 9). Projected strong yellow perch recruit-
ment events decreased through time, decreased with increasing levels 
of ACP implementation, and were lower than expected (a frequency 
of 25%, based on the historical frequency) across all decades during 
all future scenarios (Figure 9). In contrast to the projected median lev-
els of yellow perch recruitment, the highest projected frequency of 
strong recruitment events (23%) occurred under the RCP8.5-ENMC 
scenario, in part, owing to a greater proportion of projected severe 
winters relative to the RCP4.5 emissions scenario (Figure 9).

White perch
Unlike walleye and yellow perch, recruitment of invasive white 
perch was projected to be near or above the historical median 
across all climate and ACP implementation scenarios (Figure 10). 
The projected increases in the median annual recruitment values 
were typically greatest during the near-term (2020s and 2030s) at 
the two highest levels of ACP implementation (ENMA and ENM; 
Figure 10). Although temporal trends in median white perch re-
cruitment were less apparent relative to yellow perch and wall-
eye, white perch recruitment was projected to be slightly higher 
during the 2020s relative to the 2060s under any given climate 
and ACP implementation scenario (Figure 10). Even so, during all 
decades, under all future scenarios, annual median recruitment 
was projected to be greater than the historical median at the 
two highest levels of ACP implementation. Unlike yellow perch, 
median white perch recruitment was projected to increase with 
increasing levels of ACP implementation under both emission sce-
narios, a finding that ran counter to our expectations. However, 
the projected trends in the frequency of strong (≥ historical 75th 
percentile) annual recruitment events differed from the trends in 
median recruitment. At the two lowest levels of ACP implementa-
tion, the proportion of strong recruitment events was lower than 
the expected frequency across all decades. However, during all 
decades under both emission scenarios, at the highest level of ACP 

F I G U R E  6   Boxplot of projected (2020–2065) median annual 
walleye recruitment (year-class strength, CPUE, individuals/min) 
in western Lake Erie under the RCP4.5 (grey) and RCP8.5 (white) 
emission scenarios by decade

F I G U R E  7   Boxplot of the proportion 
of projected forecasts of annual western 
Lake Erie walleye recruitment events 
(year-classes) that were greater than or 
equal to the historical (1987–2015) 75th 
percentile by decade, under the RCP4.5 
(grey) and RCP8.5 (white) emission 
scenarios by decade. The horizontal 
line represents the expected proportion 
of strong recruitment events, if the 
frequency were not to change in the 
future relative to the past
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implementation, the frequency of strong white perch recruitment 
events was projected to be above the expected frequency (25% 
based on the historical occurrence of strong recruitment events), 
ranging from 27 to 54% (Figure 11).

4  | DISCUSSION

Predicting the effects of anthropogenic stressors such as climate change 
and agricultural-derived NPS pollution has been identified as a critical 
research need that could benefit fisheries management in the face of 
future ecosystem change (Arvai et al., 2006; DeVanna Fussell et al., 
2016; Pritt et al., 2014). The Great Lakes, and specifically Lake Erie, is 
an ideal study system for such work because it has experienced these 
anthropogenic stressors, supports valuable fisheries, and is data-rich 
(Farmer et al., 2015; Ludsin et al., 2014; Pritt et al., 2014; Scavia et al., 
2014). In this study, we forecasted how the recruitment of three eco-
logically and/or economically important western Lake Erie fish popula-
tions, which span a gradient of thermal preferences, might vary under 
future scenarios of climate change and ACP implementation in the 

WLEB catchment. Our modelling showed that, in general, walleye and 
yellow perch recruitment can be expected to decrease and that white 
perch recruitment can be expected to remain stable or increase during 
the next several decades, relative to the recent past. Interestingly, our 
modelling also revealed offsetting effects between climate change and 
ACP implementation, highlighting the potential for trade-offs between 
improving water quality, maintaining fisheries production, and control-
ling invasive species in the face of potential climate change. Although 
attaining a complete understanding of future recruitment dynamics is 
impossible (Schindler & Hilborn, 2015), and more research is encouraged 
to verify some of our suggested mechanistic linkages and recruitment 
projections, our study presents a useful modelling framework to fore-
cast fish population dynamics, specifically recruitment, and provides a 
range of potential outcomes for resource management agencies and 
policy-makers that can help them develop adaptive and resilient man-
agement strategies in the face of continued ecosystem change (Heller & 
Zavaleta, 2009; Lynch et al., 2016; Paukert et al., 2016).

Our results support previous studies, which have predicted that 
climate warming will differentially affect species with varying thermal 
preferences. Similar to other studies (Chu, Mandrak, & Minns, 2005; 

F I G U R E  8   Boxplot of projected (2020–2065) median annual yellow perch recruitment (year-class strength, catch per unit effort, 
individuals/min) in western Lake Erie under the RCP4.5 (grey) and RCP8.5 (white) emission scenarios by decade and agricultural conservation 
practice implementation scenario. See Figure 5 legend for a description of each agricultural conservation practice scenario
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Farmer, 2013; Hansen et al., 2017; Van Zuiden et al., 2016), we pro-
jected declines in recruitment for walleye and yellow perch, which are 
considered cool-water species, and increased or stable recruitment 
in white perch, an invasive warm-water species. Although previous 
research has suggested that habitat conditions for adult, cool-water 
fishes, such as walleye, would increase with continued warming, es-
pecially in northern latitudes (e.g. Chu et al., 2005; Wiley et al., 2010), 
our research demonstrates the importance of considering other life 
stages (e.g. juvenile) and specific biological processes (e.g. reproduc-
tion and ovary development) that require cold temperatures, and 
therefore, are more likely to be affected by warming. Understanding 
the influence of warming is especially critical for populations such 

as Lake Erie walleye and yellow perch, the recruitment dynamics of 
which have been shown to be influenced by temperature, which in 
turn drives variability in the fishery (Farmer et al., 2015; Shuter & 
Koonce, 1977; WTG, 2017). In fact, species that are sensitive to win-
ter conditions (such as walleye and yellow perch) may be the first to be 
affected by climate change (Shuter, Minns, & Lester, 2002).

4.1 | Walleye recruitment

Based on our findings, western Lake Erie walleye recruitment, 
especially episodically strong recruitment events that keep the 

F I G U R E  9   Boxplot of the proportion of projected (2020–2065) forecasts of annual western Lake Erie yellow perch recruitment events 
(year-classes) that were greater than or equal to the historical (1987–2015) 75th percentile by decade and agricultural conservation practice 
implementation scenario. Projections were made for two greenhouse gas emission scenarios: RCP4.5 (grey) and RCP8.5 (white). The 
horizontal line represents the expected proportion of strong recruitment events, if the frequency were not to change in the future relative to 
the past. See the Figure 5 legend for a description of each agricultural conservation practice scenario
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recreational and commercial fisheries viable (Vandergoot et al., 
2010), were predicted to decline, owing to a projected reduction 
in winter severity. Recruitment declines were greatest further into 
the 21st century and in the business-as-usual greenhouse gas emis-
sion scenario (RCP8.5), relative to the moderate-reduction (RCP4.5) 
scenario. Although we documented an overall downward trend in 
projected walleye recruitment in the future, median walleye recruit-
ment was generally projected to be at or above the historical median 
during the 2020s–2040s. Even so, the projected frequency of strong 
walleye recruitment events was below the expected proportion 
(25%) during these and subsequent decades, under both greenhouse 
gas emission scenarios.

Our modelling results are consistent with other modelling stud-
ies that have forecasted walleye recruitment under a changing cli-
mate. For example, Hansen et al. (2017) showed that the projected 
number of Wisconsin (U.S.A.) lakes likely to support walleye recruit-
ment decreased in the future, owing to increases in the number of 
annual degree days under future warming scenarios. Likewise, Van 
Zuiden et al. (2016) concluded that projected warming should lead 
to an increase in unsuitable habitat at the southern range of walleye, 

resulting in a general northward shift in their distribution. While 
we fully expect western Lake Erie to continue to support walleye 
fisheries, our modelling suggests that the strong recruitment events 
(year-classes) that drive order of magnitude differences in the fish-
able population (Vandergoot et al., 2010) may decline with contin-
ued climate warming.

Our predictive model explained 31.3% of the variation in wall-
eye recruitment, which is similar to or better than studies that have 
correlated walleye recruitment to abiotic and/or biotic factors (e.g. 
Madenjian, Tyson, Knight, Kershner, & Hansen, 1996; Shaw, Sass, 
& VanDeHey, 2018; Shuter & Koonce, 1977; Zhao, Kocovsky, & 
Madenjian, 2013). Historically, explaining walleye recruitment 
variability using various measures of spawning-stock biomass has 
yielded poor results (Madenjian et al., 1996; Shaw et al., 2018), and 
considering environmental drivers of recruitment has consistently 
yielded better results (Busch et al., 1975; Madenjian et al., 1996; 
Roseman et al., 1999; Shuter & Koonce, 1977; Zhao et al., 2009). 
Much work on Lake Erie walleye recruitment has suggested the rate 
of spring warming is significantly and positively related to walleye 
recruitment (Busch et al., 1975; Madenjian et al., 1996; Roseman 

F I G U R E  1 0   Boxplot of projected (2020–2065) median annual western Lake Erie white perch recruitment (year-class strength, 
CPUE, individuals/min) under the RCP4.5 (grey) and RCP8.5 (white) emission scenarios by decade and agricultural conservation practice 
implementation scenario. See the Figure 5 legend for a description of each agricultural conservation practice scenario
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et al., 1999; Zhao et al., 2013). Although we considered spring warm-
ing rate, it was not included in our final predictive model of walleye 
recruitment. The lack of inclusion of spring warming rate as a re-
cruitment driver is not, however, inconsistent with all previous Lake 
Erie walleye recruitment work. For example, Zhao et al. (2009) used 
a three-dimensional hydrodynamic model to demonstrate that wall-
eye recruitment was more strongly associated with wind speed and 
direction than it was with spring warming rate. Data such as wind 
speed, however, are not available from climate models and were 
therefore not considered in this study.

In addition to abiotic factors, biotic factors are also likely to affect 
walleye recruitment, which we did not consider. For example, prey 
abundance, specifically, age-0 gizzard shad (Dorosoma cepedianum) 
abundance has been correlated to Lake Erie walleye recruitment 
(Madenjian et al., 1996), but not with consistent, replicable results 
(Zhao et al., 2013). It is also possible that climate change could have 
indirect effects on walleye recruitment that is mediated by biotic 
factors such as zooplankton prey availability to larvae (Ludsin et al., 

2014). Ultimately, our understanding of walleye recruitment in Lake 
Erie remains largely speculative and is based primarily on correla-
tive work. While the use of winter severity to predict walleye re-
cruitment is partially supported by mechanistic evidence, as walleye 
prefer cooler incubation and fertilisation temperatures (Koenst & 
Smith, 1976), exactly why the relationship between winter sever-
ity and walleye recruitment exists remains unknown (Fedor, 2008). 
More research into this linkage is warranted, as well as into how cli-
mate change might affect walleye through other direct and indirect 
pathways.

4.2 | Yellow perch recruitment

Similar to walleye, our modelling projected that Lake Erie yellow 
perch recruitment will decline under future climate warming sce-
narios. Furthermore, it suggests that this decline would be exacer-
bated by efforts to reduce nutrient inputs (i.e. TP) into Lake Erie via 

F I G U R E  11   Boxplot of the 
proportion of projected (2020–2065) 
forecasts of annual western Lake Erie 
white perch recruitment events (year-
classes) that were greater than or equal 
to the historical (1992–2015) 75th 
percentile by decade and agricultural 
conservation practice implementation 
scenario. Projections were made for 
two greenhouse gas emission scenarios: 
RCP4.5 (grey) and RCP8.5 (white). The 
horizontal line represents the expected 
proportion of strong recruitment events, 
if the frequency were not to change in 
the future relative to the past. See the 
Figure 5 legend for a description of each 
agricultural conservation practice scenario
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the implementation of ACPs in the WLEB catchment. The promi-
nent driver of the projected yellow perch recruitment decline was 
reduced winter severity, with the level of ACP implementation hav-
ing a secondary negative effect. Although yellow perch recruitment 
displayed a unimodal, dome-shaped response to Maumee River 
TP inputs, future anticipated ACP implementation led to TP loads 
that were lower than the optimum for strong recruitment events to 
occur. Previous studies of yellow perch recruitment have suggested 
that rapid warming during the spring can positively (Eshenroder, 
1977) and negatively (Zhang, Reid, & Nudds, 2016) influence yellow 
perch recruitment, whereas it was not identified as a useful predic-
tor in our final model.

Median annual yellow perch recruitment was projected to be less 
than the historical median during all decades considered, under all 
climate and ACP implementation scenarios. Similarly, the projected 
frequency of a strong annual recruitment event occurring was lower 
than the expected 25% across all scenarios and decades with the 
lowest projected frequency occurring at the highest level of ACP im-
plementation, during the 2050s–2060s under the business-as-usual 
emission scenario (RCP8.5). These results are generally consistent 
with other studies, which have demonstrated that short, warm 
winters can reduce yellow perch recruitment (Farmer et al., 2015; 
Hokanson, 1977). Additionally, our modelling suggests that ACP im-
plementation efforts designed to improve water quality by reducing 
NPS nutrient loading could inadvertently reduce fisheries produc-
tion, a notion that was espoused earlier when Lake Erie was under-
going oligotrophication (Ludsin, 2000; Ludsin et al., 2001). In this 
way, ACP implementation could potentially magnify the anticipated 
negative effects of climate warming on yellow perch recruitment. 
The need to consider these kinds of trade-offs is paramount as they 
could help fishery managers and policy-makers identify nutrient mit-
igation strategies that improve water quality without compromising 
fisheries production.

Our yellow perch model explained 51.1% of the variation in 
recruitment and included both winter severity and Maumee River 
TP as environmental predictors. Similar to walleye, various mea-
sures of spawning-stock size have not consistently explained yel-
low perch recruitment variation (Henderson, 1985; Henderson & 
Nepszy, 1988; Zhang et al., 2016) and yellow perch recruitment 
synchrony throughout the Great Lakes region indicate that re-
gional-scale environmental factors, such as those included in this 
study, are more likely than stock size to drive recruitment (Honsey 
et al., 2016). The two environmental drivers of yellow perch re-
cruitment that we identified are consistent with findings from pre-
vious correlative and mechanistic studies (Carreon-Martinez et al., 
2014; Farmer et al., 2015; Hall & Rudstam, 1999; Hokanson, 1977; 
Ludsin et al., 2011; Reichert et al., 2010). For example, a greater 
percentage of yellow perch successfully spawn at colder water 
temperatures and after long chill durations (Hokanson, 1977) 
compared to warmer temperatures, indicating a benefit of long, 
cold winters for yellow perch. This finding is supported by experi-
mental research, which has demonstrated that short warm winters 
cause reduced egg hatching success and reduced egg and larvae 

size and quality (Farmer et al., 2015). Declines in yellow perch 
abundance have also previously been correlated with reduced TP 
availability (Hall & Rudstam, 1999).

The possibility exists, however, that Maumee River TP is only a 
proxy for a more complex suite of ecological responses associated 
with Maumee River discharge and nutrient and sediment load-
ing, all of which are highly correlated (D.A.D., unpublished data). 
Turbid, nutrient-rich river plumes, which are created by Maumee 
River inflow during the spring, have been shown to lead to greater 
yellow perch recruitment in western Lake Erie (Carreon-Martinez 
et al., 2014; Ludsin et al., 2011; Reichert et al., 2010). Survival 
of larvae inside the Maumee River plume has been shown to be 
greater than larval survival outside the plume (Carreon-Martinez 
et al., 2014; Reichert et al., 2010), and this difference appears due 
to reduced predation inside the plume (Carreon-Martinez et al., 
2014; Ludsin et al., 2011; Reichert et al., 2010). Although the exact 
causal mechanism(s) remain incomplete, sediment and/or nutrient 
loading from the Maumee River seem(s) to have a positive effect 
on yellow perch survival to the age-0 stage. Thus, reduced nutri-
ent loading in the future via ACP implementation could have neg-
ative effects on yellow perch recruitment. Given the high degree 
of covariation among TP loading, sediment loading, and Maumee 
River inflows, as well as a possible trade-off between water quality 
and yellow perch production with ACP implementation under a 
changing climate, we advocate for more research aimed at identi-
fying the mechanism(s) underlying the unimodal relationship that 
we found between Maumee River TP loading and yellow perch 
recruitment.

4.3 | White perch recruitment

White perch recruitment (both median levels and the frequency of 
strong recruitment events) was forecasted to be close to or greater 
than the historical median across all scenarios during all decades, and 
increased levels of ACP implementation (i.e. reduced TP loading) re-
sulted in generally higher white perch recruitment. Substantially less 
information exists on the drivers of white perch recruitment relative 
to walleye or yellow perch, especially in ecosystems where this spe-
cies is invasive (e.g. Lake Erie). However, our finding that climate warm-
ing may lead to higher white perch recruitment is generally consistent 
with the literature that does exist. For example, Johnson and Evans 
(1990) speculated that climate warming would cause higher recruit-
ment and ultimately expansion of white perch in the Great Lakes by 
reducing overwinter mortality. Although winter severity was not in-
cluded in the final predictive model of white perch recruitment, climate 
warming could possibly result in a longer growing season and improve 
overwinter survival (Johnson & Evans, 1990). The generally negative 
(although nonlinear) relationship between Maumee River TP and white 
perch recruitment was the opposite of our expectation, as white perch 
generally prefer eutrophic over oligotrophic waters (Boileau, 1985). 
Adult white perch abundance has also previously been shown to be 
positively associated with high turbidity and eutrophic conditions in 
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other ecosystems (Hawes & Parrish, 2003), indicating a need for more 
research to understand our observed association.

Similar to yellow perch, the possibility exists that our TP metric 
is only a proxy for another correlated abiotic factor, such as river 
discharge, which could actually be the driver of our observed as-
sociation. For example, because white perch spawn in west basin 
tributaries (Boileau, 1985; Schaeffer & Margraf, 1986, 1987), high 
river discharge events (strongly correlated with TP loading) could 
potentially dislodge or flush white perch eggs out of the Maumee 
River prematurely, thus reducing their survival potential. This hy-
pothesis is consistent with previous research that found significant 
negative correlations between Maumee River discharge and age-0 
white perch abundance in the west basin of Lake Erie (Briland, 
2018). Maumee River TP could also be a proxy for a complex biotic 
mechanism. For example, another plausible hypothesis is that high 
levels of TP, which results in high yellow perch recruitment, could 
reduce white perch recruitment through interspecific competition. 
Such interactions between age-0 white perch and yellow perch 
have been observed in other ecosystems (Prout, Mills, & Forney, 
1990). Ultimately, this surprising relationship between Maumee 
River TP loading and white perch recruitment leads to more ques-
tions than it provides answers, pointing to the need for additional 
research.

Regardless of the ultimate mechanism, increases in white perch re-
cruitment could have serious ecological effects that warrant further 
study. For example, white perch are known predators of walleye eggs 
(Schaeffer & Margraf, 1987), and increased white perch abundance 
could potentially negatively affect walleye recruitment. Also, year-
ling and adult white perch are known predators of yellow perch lar-
vae (Carreon-Martinez et al., 2014; Ludsin et al., 2011), and increased 
predation from an even more abundant white perch population in the 
future could further exacerbate the projected negative effects of cli-
mate warming and ACP implementation on western Lake Erie's yellow 
perch population. Although we did not account for biotic interactions 
in our study, collectively, our results highlight the need to understand 
how warm-water invasive species, such as white perch, which are likely 
to thrive in a warmer future climate, might impact native cool-water 
fishes in temperate ecosystems such as Lake Erie.

4.4 | Study limitations

As with all forecasting studies, our approach has several limitations. 
Although the proportions of variance in recruitment that our predic-
tive models explained were similar to or better than those reported 
in the literature (see species-specific examples above), they certainly 
did not explain all, or in some cases the majority of recruitment 
variation. Still, such models can be useful in assessing the impacts 
of climate change (Guisan & Thuiller, 2005), although we strongly 
encourage managers to consider the breadth of information avail-
able when making future management and conservation decisions. 
Furthermore, care should be taken when extrapolating recruit-
ment responses to environmental conditions outside the range of 

observed historical conditions, as species-environment relationships 
may not be stationary (Schindler & Hilborn, 2015; Zhang, Reid, & 
Nudds, 2018). We also caution against interpreting the exact mag-
nitude of our future recruitment values in a predict and prescribe ap-
proach (Schindler & Hilborn, 2015), given mechanistic uncertainties 
associated our predictive models. Even so, we feel comfortable in-
terpreting the general trends and drivers apparent in our results and 
their use as guidance for future management.

Forecasting future population dynamics will always be incom-
plete, uncertain, and a simplification of reality, regardless of the 
ecosystem. However, studies like ours provide a range of possible 
outcomes that can be used as tools for resource managers (Schindler 
& Hilborn, 2015). While we do not know the true magnitude or 
extent of future warming, by modelling multiple greenhouse gas 
emission scenarios, using a suite of climate ensembles, we could 
propagate some of that future uncertainty into our recruitment fore-
casts (Hansen et al., 2017). This ensemble approach to forecasting 
future dynamics is ubiquitous and is an accepted way of acknowl-
edging the uncertainty in future predictions (Bartolino et al., 2014; 
Hollowed et al., 2009; Lindegren et al., 2010), although we recognise 
this approach does not account for all of the uncertainty associated 
with forecasting future recruitment.

Another limitation to our study is that our methods were correl-
ative and did not verify the underlying mechanisms by which winter 
severity, spring warming rate, and TP loads can alter recruitment 
dynamics. Thus, while we provided mechanistic support for their 
inclusion in our predictive models, which strengthens the confi-
dence in our results (Hilborn, 2016), the possibility exists that the 
metrics included in this study encompass several underlying mech-
anisms (Hansen et al., 2017) or are actually proxies for other cor-
related environmental drivers. For example, because Maumee River 
TP loads into Lake Erie are highly correlated with Maumee River in-
flows and total suspended sediment loads, TP itself may not be the 
exact mechanistic driver of yellow perch or white perch recruitment. 
Owing to the difficulty in implementing and designing rigorous, ex-
perimental approaches to determine causal relationships over large 
spatial and temporal extents (Hilborn, 2016), correlative studies such 
as ours remain the most reasonable approach to forecasting recruit-
ment on large spatial and temporal scales (Guisan & Thuiller, 2005; 
Hansen et al., 2017).

Because of the inherent difficulty in forecasting future biotic 
conditions, we restricted our analysis to include only abiotic pre-
dictors. However, biotic factors such as competition and preda-
tion probably also contribute to current recruitment dynamics of 
these species, and will probably affect future recruitment dynam-
ics (Forsythe, Doll, & Lauer, 2012; Guisan & Thuiller, 2005; Hall & 
Rudstam, 1999; Hartman & Margraf, 1993). Thus, we encourage 
continued investigations into the drivers of recruitment for all three 
species, especially those that consider other factors, use alternative 
modelling approaches, and occur at different spatiotemporal scales 
(Hilborn, 2016). This need is especially critical because the mecha-
nisms underlying our observed correlations are unlikely to remain 
stationary in the future (Schindler & Hilborn, 2015).
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5  | CONCLUSIONS

Our modelling allowed us to explore how anticipated climate change 
and ACP implementation designed to reduce NPS nutrient loading 
might interact to affect the recruitment dynamics of ecologically 
and economically important fish populations in Lake Erie. By includ-
ing two emission scenarios, four levels of ACP implementation, and 
numerous GCMs and ensembles, we forecasted a range of future 
outcomes to better equip resource managers to make decisions that 
can promote sustainable and resilient fisheries in the future (Lynch 
et al., 2016; Paukert et al., 2016). Our findings highlight the impor-
tance of climate as a driver of fish recruitment dynamics and indicate 
that, in the future, native cool-water species such as walleye and yel-
low perch may be detrimentally affected by climate change, whereas 
nonnative warm-water species such as white perch might benefit. 
Our modelling also suggests that reducing nutrient inputs to improve 
water quality (though ACP implementation) may lead to inadvert-
ent trade-offs that could negatively affect the production of valued 
fisheries (Kao, Rogers, & Bunnell, 2018; Ludsin, 2000; Ludsin et al., 
2001; Ney, 1996). For example, our modelling provided evidence to 
suggest that reduced nutrient (or possibly sediment) runoff from the 
WLEB catchment—resultant of ACP implementation—could exacer-
bate anticipated climate-driven reductions in western Lake Erie yel-
low perch recruitment. Simultaneously, these same conditions were 
projected to promote invasive white perch, which is a known preda-
tor on walleye and yellow perch early life stages (Carreon-Martinez 
et al., 2014; Ludsin et al., 2011; Schaeffer & Margraf, 1987).

In addition to identifying a need for more research into the 
mechanistic relationships among climate, catchment runoff, and yel-
low perch and white perch recruitment, we recommend that future 
studies seeking to quantify the independent and combined effects 
of human-driven perturbations (e.g. climate change, altered nutrient 
inputs) assess both the costs and benefits associated with changing 
conditions, in both upstream and downstream ecosystem services. 
Such information would allow for the development of improved 
forecasting models, as well as allow resource management agencies 
and policy-makers to better anticipate trade-offs and avoid ecologi-
cal surprises. For example, decision-makers could learn whether any 
likely combination of climate and land use conditions provide a win-
win scenario (sensu Keitzer et al., 2016) for upstream (catchment) 
fish production, downstream (recipient ecosystem) water quality 
(e.g. reduced bottom hypoxia and harmful algal blooms), and down-
stream fisheries production. Armed with this knowledge, informed 
decisions can be made to keep fisheries productive and sustainable 
in the face of continued ecosystem change.
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