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Purpose: T1-weighted dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) is typically 

quantified by least squares (LS) fitting to a pharmacokinetic (PK) model to yield parameters of 

microvasculature and perfusion in normal and disease tissues. Such fitting is both time-consuming as well 

as subject to inaccuracy and instability in parameter estimates. Here, we propose a novel neural network 

approach to estimate the PK parameters by extracting long and short time-dependent features in DCE-

MRI. 

Methods: A Long Short-Term Memory (LSTM) network, widely used for processing sequence data, was 

employed to map DCE-MRI time-series accompanied with an arterial input function to parameters of the 

extended Tofts model. Head and neck DCE-MRI from 103 patients were used for training and testing the 

LSTM model. Arterial input functions (AIFs) from 78 patients were used to generate synthetic DCE-MRI 

time-series for training, during which data augmentation was used to overcome the limited size of in vivo 

data. The model was tested on independent synthesized DCE data using AIFs from 25 patients. The 

LSTM performance was optimized for the numbers of layers and hidden state features.  The performance 

of the LSTM was tested for different temporal resolution, total acquisition time and contrast-to-noise ratio 

(CNR), and compared to the conventional LS fitting and a CNN-based method. 

a) Author to whom correspondence should be addressed. Electronic mail: jiarenz@med.umich.edu; Telephone: +1-734-800-6786.
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Results: Compared to LS fitting, the LSTM model had comparable accuracy in PK parameter estimations 

from fully temporal-sampled DCE-MRI data (~3s per frame), but much better accuracy for the data with 

temporally subsampling (4s or greater per frame), total acquisition time truncation by 48%-16%, or low 

CNR (5 and 10).  The LSTM reduced normalized root mean squared error by 40.4%, 46.9% and 53.0% 

for sampling intervals of 4s, 5s and 6s, respectively, compared to LS fitting. Compared to the CNN 

model, the LSTM model reduced the error in the parameter estimates up to 55.2%.  Also, the LSTM 

improved the inference time by ~14 times on CPU compared to LS fitting. 

Conclusions: Our study suggests that the LSTM model could achieve improved robustness and 

computation speed for PK parameter estimation compared to LS fitting and the CNN based network, 

particularly for suboptimal data. 

Keywords: DCE-MRI, machine learning, contrast agent, long-short-term memory, pharmacokinetic 

model, temporal correlation
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1 Introduction 

Dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI), an imaging technique where a 

time-series of T1 weighted images are obtained before, during, and after a bolus administration of a 

contrast agent (CA), has been widely explored in a wide range of clinical applications for noninvasive 

cancer detection, characterization, radiation target definition and treatment response assessment1–4. The 

change in concentrations of CA in images over time can be derived from the MR signal intensity time-

series. A parametric pharmacokinetic (PK) model is then typically fit to the CA concentration-time curves 

to extract quantitative parameters related to vascular permeability, tissue perfusion, and volume of the 

extravascular extracellular space5.  

Practical implementation of DCE-MRI involves a tradeoff of spatial resolution, volume of coverage and 

temporal resolution. To estimate PK parameters accurately, an adequate temporal resolution of the DCE 

images is required, which often results in a tradeoff of spatial resolution and/or volume coverage. Several 

rapid imaging techniques have been introduced to improve both spatial resolution/volume coverage and 

temporal resolution, e.g., k-space sparse sampling strategies combined with image reconstruction 

techniques of compressed sensing6 and parallel imaging7,8.  After reconstructing image time-series, the 

PK parameter maps are calculated as a second step, refereed as an indirect method. These methods 

include nonlinear least-squares (NLLSQ) fitting, which was reported to be sensitive to sampling interval, 

total acquisition time, and noise9, and requires intensive computation. A more efficient linear least-

squares (LLSQ) method10 was developed and showed improved accuracy for signals with signal-to-noise 

ratio less than 10. More recently, an efficient derivative based LLSQ method with a low-pass filter in time 

domain11 was introduced. However, for the methods developed so far, obvious degradation of 

performance with increasing noise level and decreasing temporal resolution is still observed, and the 

computation time can be further improved. Recently, machine learning methods have been investigated to 

learn a mapping from fully sampled or subsampled image time-series to the parameter maps utilizing 2D 

or 3D convolutional neural networks (CNN)12,13. Despite the short inference time, the CNN is not 

designed to learn long and short-term temporal relationships in the hemodynamics of the CA from the 

image time-series.  Also, the CNN models may suffer from bias in practice since they were trained on 

similar subject arterial input functions (AIFs). In our experiment, where subject AIFs have diverse shapes, 

peaks, and time delays, obvious bias can be observed from the estimation from these models13.  

Recurrent neural networks (RNN), especially long-short-term memory (LSTM)14, have been successfully 

applied to learn temporal relationships in sequence data, such as video description and image 

captioning15. The application of LSTM was also explored in biomedical image analysis. A modified U-net 
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was combined with an LSTM variant to do 3D biomedical volume segmentation16, where the LSTM 

explored the correlation of slices in the cranial-caudal direction. A pre-trained fine-tuned Visual 

Geometry Group (VGG) network was used to extract feature maps from DCE-MRI slices, and then the 

sequence of feature maps was sent into an LSTM to determine whether a breast lesion within a given 

region of interest (ROI) was benign or malignant17. 

Inspired by the recent successes of LSTM and the challenges faced by CNN-based approaches for PK 

parameter estimation, we propose a LSTM-based approach to learn the mapping of temporal dynamics in 

single-voxel signals accompanied, with their corresponding AIFs, to the PK parameters in the extended 

Tofts model18. Our approach is motivated by four factors. First, the signal intensity-time curves of DCE-

MRI describe temporal hemodynamics of a CA passing through microvasculature in tissue. The LSTM 

architecture is able to learn long-term (temporal) dependence of signals15,19 and thus could improve 

performance of PK parameter estimation compared to the CNN-based approaches using this data. Second, 

in practice, the AIF varies from patient to patient20. Inclusion of a subject-specific AIF in the estimation 

process could significantly improve estimation performance. AIFs can be readily incorporated into the 

input of LSTM as another input dimension, removing the bias observed in the reported CNN-based 

approaches. Third, by capturing a low-dimensional manifold where the tissue concentration-time curve 

and AIF reside using LSTM, more robust parameter estimation can be achieved. Fourth, the inference 

time can be reduced because of the small computational burden of the LSTM as compared to DMF. We 

compare the results of LSTM with conventional direct model fitting21 as well as a state-of-the-art CNN-

based method13, including performances on the DCE-MRI at low contrast-to-noise ratio, low temporal 

sampling and short total acquisition time. 

 

2 Materials and Methods 

Our proposed LSTM-based method treats the PK parameter estimation problem as a mapping from a CA 

concentration-time curve accompanying with an AIF to the underlying parameters.  Here, we investigated 

our method in the most commonly used extended Tofts model.  

2.1 Extended Tofts model. 

The extended Tofts model18 has been well described in literature with a few minor variations in 

implementation. The version of the extended Tofts model and direct model fitting used in this study are 

described briefly. In our implementation, a contrast bolus arrival time (BAT), �஻஺�ሺ�ሻ for each tissue 
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voxel is considered for the accurate PK parameter estimation22,23.  The implemented extended Tofts 

model is written as: 

ሺͳ − �ܿ�ሻ�௧ሺ�, �ሻ = �௧௥௔௡௦ሺ�ሻ ∫ �௕(� − �஻஺�ሺ�ሻ)݁−���ሺ�ሻሺ௧−�ሻ݀� + �௣ሺ�ሻ�௕(� − �஻஺�ሺ�ሻ)௧
଴         ሺͳሻ 

where �௧ሺ�, �ሻ  is the CA concentration in the tissue voxel, �௕ is the CA concentration in the arterial 

blood (or AIF), �௧௥௔௡௦ is the transfer rate constant of the CA that diffuses from the blood vessel to the 

interstitial space, �௘௣ is the rate constant of the CA efflux from the interstitial space to the blood plasma, 

and Hct is the small vessel hematocrit. �௘௣ equals to �௧௥௔௡௦/�௘, where �݁ is the fractional interstitial 

volume. 

While equation 1 has been fit using  NLLSQ methods10,11 previously, in this investigation we selected a 

LLSQ method10 that has a better tolerance to low SNR in the DCE data and a more efficient computation 

speed than NLLSQ fitting, as a benchmark to compare with our proposed LSTM method. In this LLSQ 

method, Eq [1] can be re-written as: 

�௧ሺ�, �ሻ = ሺ�௧௥௔௡௦ሺ�ሻ + �௘௣ሺ�ሻ�௣ሺ�ሻሻ ∫ �௣(� − �஻஺�ሺ�ሻ)݀� − �௘௣ሺ�ሻ ∫ �௧ሺ�, �ሻ݀�௧
଴ + �௣ሺ�ሻ�௣(� − �஻஺�ሺ�ሻ)௧

଴                  ሺʹሻ 

where �௧௥௔௡௦, �௘௣, and �௣ are linearly related to integrals of �௧ሺ�, �ሻ and �௣ሺ�ሻ, and �௣ሺ�ሻ.  For given �஻஺�ሺ�ሻ, �௧௥௔௡௦, �௘௣, and �௣ can been rapidly estimated by LLSQ fitting. �஻஺�ሺ�ሻ can be estimated 

iteratively with �௧௥௔௡௦, �௘௣, and �௣.  The �஻஺�ሺ�ሻ range can be determined using priori knowledge, e.g., 

0-10 seconds for the tissue in head and neck regions.  In our implementation, we tested the �஻஺�ሺ�ሻ 

between 0 and 10 s with an incremental step 1s, and Hct as 0.459.  Hereafter, we refer this implementation 

of the LLSQ fitting as direct model fitting (DMF). 

2.2 PK parameter inference via LSTM. 

Formulation. 

We estimate the PK parameters by mapping ሺ�௧ሺ�, �ሻ, �௣ሺ�ሻሻ to the underlying physiological parameters � = ሺ�௧௥௔௡௦ሺ�ሻ, �௘ሺ�ሻ, �௣ሺ�ሻሻ using LSTM, which we denote as � =  ݂(ሺ�௧ሺ�, �ሻ, �௣ሺ�ሻሻሻ|Θ), where ݂ሺ∙ |Θሻ represents the forward mapping of the LSTM network parameterized by Θ.  

Loss function. 

Our loss function seeks to reduce the mean squared error (MSE) between the estimated parameters �௘ and 

the ground truth parameters �௚ corresponding to the training signal series. Given a set of N training 
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samples (ܿ௧೔ሺ�ሻ, ܿ௣೔ሺ�ሻ, �௚೔), i = 1, 2, …, N, we train the LSTM network to minimize the following loss 

function: 

ℒሺΘሻ = ͳܰ ∑ ‖�௚೔ − ݂ (ቀܿ௧೔ሺ�ሻ, ܿ௣೔ሺ�ሻቁ |Θ)‖ଶଶ
�

௜=ଵ                                                 ሺ͵ሻ 

 

LSTM Network Architecture. 

The proposed network (Figure 1) consists of m LSTM layers with n sequentially connected cells in each 

layer. The network takes an input sequence [�௧ , �௣]�, where the AIF is incorporated as another input 

dimension. The first LSTM layer extracts lower level temporal relationships. The output feature sequence 

is then passed through the remaining m-1 LSTM layers each to extract higher-order level temporal 

relationships from the signal and AIF.  

Each LSTM layer captures the changes in the input sequence by maintaining a hidden state ℎሺ௧ሻ and a 

memory cell ܿ ሺ௧ሻ by updating them using gating mechanisms when stepping through the input sequence. 

Specifically, the ݈th LSTM layer takes a sequence of hidden states ℎ�−ଵሺ଴ሻ , ℎ�−ଵሺଵሻ ,…, ℎ�−ଵሺ௡−ଵሻ, ݈ ∈ {ͳ,ʹ, … , ݉}, 
where the superscript and subscript stand for timestep and layer, respectively, and ℎ଴ሺ଴ሻ, ℎ଴ሺଵሻ,…, ℎ଴ሺ௡−ଵሻ 
are defined as �ሺ଴ሻ, �ሺଵሻ,…, �ሺ௡−ଵሻ. The new hidden states ℎ�ሺ଴ሻ, ℎ�ሺଵሻ,…, ℎ�ሺ௡−ଵሻ are then defined by the 

equations shown in (4) below ��ሺ௧ሻ = �ሺ�௜௡,��ℎ�−ଵሺ௧ሻ + �௜௡,ℎ�ℎ�ሺ௧−ଵሻ + ܾ௜�ሻ 

�݂ሺ௧ሻ = �ሺ�௙,��ℎ�−ଵሺ௧ሻ + �௙,ℎ�ℎ�ሺ௧−ଵሻ + ௙ܾ�ሻ 

ሺ௧ሻ�݋ = �ሺ�௢,��ℎ�−ଵሺ௧ሻ + �௢,ℎ�ℎ�ሺ௧−ଵሻ + ܾ௢�ሻ                                                (4) 

ܿ̃�ሺ௧ሻ = tanh ሺ�௖,��ℎ�−ଵሺ௧ሻ + �௖,ℎ�ℎ�ሺ௧−ଵሻ + ܾ௖�ሻ 

ܿ�ሺ௧ሻ = �ሺ �݂ሺ௧ሻ ∘ ܿ�ሺ௧−ଵሻ + ��ሺ௧ሻ ∘ ܿ̃�ሺ௧ሻሻ 

ℎ�ሺ௧ሻ =  ሺ௧ሻtanh ሺܿ�ሺ௧ሻሻ�݋

for � ∈ {Ͳ,ͳ, … , ݊ − ͳ} and ݈ ∈ {ͳ,ʹ, … , ݉}, where �ሺ⋅ሻ is the sigmoid function and “∘” denotes the 

Hadamard product. ��ሺ௧ሻ and ݂�ሺ௧ሻ control which information to “input” to and “forget” from the memory 

cell, respectively. The new memory state ܿ�ሺ௧ሻis then obtained based on the candidate values ܿ̃�ሺ௧ሻ and the 
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gate values ��ሺ௧ሻ and ݂�ሺ௧ሻ. Finally, the new hidden state ℎ�ሺ௧ሻ is generated by the candidate values ݋�ሺ௧ሻ and 

memory state ܿ�ሺ௧ሻ.  
Batch normalization is applied after each LSTM layer except for the last one. A fully connected layer 

with three features is then applied to find the best combination of features to generate an estimation of the 

PK parameters. The parameters are clipped to our targeted range, �௧௥௔௡௦ ∈ [Ͳ, ͵]ሺ݉�݊−ଵሻ, �௘ ∈ [Ͳ, Ͳ.Ͷ], 
and �௣ ∈ [Ͳ, Ͳ.ͷͷ], thus confining the parameters to fall within a physiologically realistic range9, to 

produce the final estimation of the PK parameters. 

 

2.3 Data Preparation. 

DCE MR time series for training and testing were synthesized using AIFs from 103 patients with head 

and neck cancers.  As a brief, the DCE MRI images were acquired using a dynamic scanning sequence 

(TWIST) with an injection of 0.149 cc/kg of gadobenate dimeglumine on a 3 Tesla MRI scanner (Skyra, 

Siemens Healthineers, Erlangen Germany). The protocol was approved by the Institutional Review Board 

of the University of Michigan. The scanning parameters were: flip angle = 10º, echo time (TE) = 0.97ms, 

repetition time (TR) = 2.73ms, 60 time frames, voxel size = 1.5625×1.5625×2.5mm3, matrix = 192×192. 

There were small variations in time step of temporal sampling of the dynamic series (median of 3.34 s) 

and in the numbers of the slices in z-direction between the patients (median of 72). For all cases, the 

subject-specific AIFs were extracted manually by averaging the signal intensity-time curves of 20 voxels 

from the carotid artery, which had maximum intensities at the time frame before the enhancement peak24, 

and then subtracting and dividing by the average pre-contrast signal intensities of the voxels. The targeted 

parameter maps were estimated using DMF9.   

Of 103 patients, 78 cases were randomly selected for training, and 25 for testing. To overcome the limited 

size of the in vivo DCE-MRI dataset, synthetic data were created for network training and testing. The 

synthesized data allow us to obtain a reliable and accurate assessment of the performance of the proposed 

methods by comparing the estimates to the ground truth (the parameters that created the synthetic data).  

Data augmentation was also applied during training data synthesis. Using equations (1)-(5) of the 

extended Tofts model, the training signal intensity time-curves were created from different combinations 

of the AIF, time step (∆t), bolus arrival time (�஻஺�), and the parameters ( � = ሺ�௧௥௔௡௦ሺ�ሻ, �௘ሺ�ሻ, �௣ሺ�ሻሻሻ. 

Particularly, AIFs and time steps of 78 training cases formed a set of 78 60-dimensional vectors and a set 

of 78 scalars respectively, defined as �௧௥௔௜௡ and ܶ ௧௥௔௜௡. This yielded a set of 75,678,643 3-dimensional 

parameter vectors (Ktrans, ve, and vp), which was denoted as �௧௥௔௜௡. For testing, we used the DCE time-
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series synthesized using the AIFs from the 25 cases in the testing data pool as well as acquired empirical 

data. Testing with real data can assure that the model is ‘realistic’ enough. The synthesized testing data 

were generated in the same manner as the training data.  

2.4 Experimental setup. 

Performances of the LSTM networks on DCE-MRI acquired with different total acquisition times and 

temporal sampling rates as well as different CNRs were compared with the DMF method and a CNN 

model13.  The LSTM networks were trained with input of fully temporal-sampled signal time-series as 

well as temporally subsampled time-series. 

Training with synthetic data using acquired temporal sampling 

The training data synthesis was executed on-the-fly during the network training and used the data from 

the training data generation pool consisting of the  �௧௥௔௜௡, �௧௥௔௜௡, and ܶ ௧௥௔௜௡.  Figure 2 shows the data 

generating process during network training. Specifically, at each iteration, 1000 combinations 

of  {�௚೔}௜=ଵଵ଴଴଴
, AIFs, and time steps {∆�}௜=ଵଵ଴଴଴, were selected randomly from the aforementioned training 

data generation pool. For each combination, the AIF was first randomly scaled between 70% and 130% 

(AIF augmentation)25. The concentration time-curve was then generated by randomly time-shifting the 

AIF (between 0 and 10 seconds to simulate the delay of CA arrival) using the extended Tofts model, and 

random Gaussian noise was added to the signal time-series to have contrast-to-noise ratios between 20 

and 30. The resultant signal time-series and the corresponding scaled AIF (without time shifting) were 

concatenated as an input. As a result, this batch data consisted of a vector of dimension 1000×n×2 (where 

n was the number of time points in the series), and was passed to the network.  Each epoch consisted of 

1000 batches of training data and 200 batches of validation data. The network was trained with Adam 

optimizer26 with an initial learning rate of ͳͲ−4. The learning rate was reduced by a factor of 0.9 when the 

validation error was not improved in 30 consecutive epochs. The training was terminated when the 

validation error was not improved in 75 consecutive epochs.  

To evaluate sufficiency of the size of the training data generation pool on performance of the LSTM 

model, two other models with the same architecture as that for the initial model (LSTM3) were trained 

with the same scheme using 60% (LSTM1) and 80% (LSTM2) of the training data generation pool.  

Training with temporally subsampled synthetic data 

The proposed LSTM network was also trained and tested on temporally subsampled synthetic signal 

time-curves, where signal time-curves were generated with sampling time steps of Δt: 3, 4, 5 and 6 

seconds.  Lengths of the time-series were truncated at an integer number of time steps that was close to 
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168 seconds.  The AIF and the PK parameters were drawn from the same data generating pool. The 

LSTM input size was modified accordingly to match the number of time points of the subsampled signal 

time-series, while the other processes and parameters were kept the same, including the targeted PK 

parameters. 

Training with truncated data and data with different CNR levels 

To examine robustness of the proposed network to signal noise and total acquisition time, the proposed 

LSTM network was further trained and tested on: (1) truncated synthetic data with the total acquisition 

times 168s, 141s, 114s, and 87s when keeping the same sampling time step 3 s, and (2) fully temporally 

sampled synthetic data but with CNR variations at 20-30, 10 and 5.  

Performance evaluation and comparison 

First, our proposed LSTM network was optimized for the numbers of LSTM layers and hidden state 

features using fully temporal sampled synthetic data. Particularly, 2, 4, 6 and 8 layers, and 16, 32 and 64 

features were trained and tested. Then, the optimal numbers of layers and features were used to train and 

test the LSTM model, whose performance was compared to both the conventional DMF approach and a 

CNN model.  In testing, both synthetic and actual patient data were used. The synthetic testing data 

allows us to quantitatively assess the performance of PK parameters estimation by calculating the 

structural similarity (SSIM) index and normalized root mean squared error (NRMSE) of the estimated 

parameter maps with respect to the ground truth parameter maps. The NRMSE is defined by ܴܰܵܯ�௜ =
√∑ (�̃೔ೕ−�೔ೕ)మ�ೕ=భ �−ଵ /ሺmax௝{�௜௝} − min௝{�௜௝}ሻ × ͳͲͲሺ%ሻ for a slice, where ܴܰܵܯ�௜, �̃௜௝, �௜௝, and N are the 

NRMSE of the ith parameter, the estimated and ground truth ith parameter for jth voxel, and the number 

of voxels in the slice. To synthesize the testing signal time-curves, the AIF and the PK parameter maps 

were from the same patients, for which no cross-combination of the AIF and the PK parameters nor AIF 

augmentation were used for the training data synthesis.  The SSIM and NRMSE were calculated from 

each of the 2D PK parameter slice maps first, and then averaged over multiple slices and across 25 cases.  

The proposed LSTM model was further evaluated using the empirical data from the same 25 cases. 

The CNN model proposed by Ulas and colleagues13 was implemented for comparison with the LSTM 

model. The CNN was trained on 1500 3D volumes with ℓଶ loss and validated on 300 3D volumes 

generated using the same data generation pool as for LSTM training. The model loss term in the original 

model was dropped since BAT was not considered in the original paper, and enforcing model consistency 

without BAT correction produced worse results in our experiment. The size effect of the training data 
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generation pool on the performance of the CNN-based method was also investigated by training with 60% 

(CNN1), 80% (CNN2), and 100% (CNN3) of the training data generation pool. 

All codes were implemented using Keras library with Tensorflow backend, and the experiments were 

performed on an NVIDIA Tesla K40c GPU with 12 GB RAM. 

 

3. Results. 

Optimization of the LSTM networks 

We investigated the distributions of the PK parameters � = ሺ�௧௥௔௡௦ሺ�ሻ, �௘ሺ�ሻ, �௣ሺ�ሻሻ of the 78 patients, 

which were used as the training data generation pool. The parameter values in the pool covered the whole 

desired ranges of the parameters (Figure S1).  

We trained the LSTM networks with 2, 4, 6 and 8 layers and 32 features, and with 16, 32 and 64 features 

and 6 layers. Figure 3 shows the impact of varying the layers and features on NRMSE% and SSIM. The 

LSTM network with 6 layers and 32 features had average maximal SSIM, presenting a balance of 

overfitting and underfitting of the training data and thus this network configuration was used for training 

under various test conditions. 

Performance of the LSTM networks trained with original temporal-sampling data 

The performance of the LSTM networks trained with synthetic data with original temporal-sampling, as 

well as results using the CNN and DMF models are shown in Table 1. The proposed LSTM network 

achieved high SSIM and low NRMSE% in the whole field of view as well as in the gross tumor volume 

(Table 1), comparable to the DMF approach. LSTM3 had < 1% lower SSIMs for Ktrans and vp, higher 

SSIM for ve, and 13.4%, 19.1%, and 25.4% better NRMSEs for Ktrans, ve and vp, respectively, than the 

DMF approach. LSTM3 outperformed the CNN-based approach by reducing the NRMSE up to 55.2%.  

When evaluating the size effect of the data generation pool, the performance of LSTM1, LSTM2 and 

LSTM3 were similar, and the size effect was insignificant, indicating the training data augmentation is 

effective.  The CNN-based method shows inferior performance compared to the LSTM3 (Table 1).  A 

visual illustration of estimated PK parameters and residuals of the testing data by different methods is 

given in Figure S2. 

Figure 4 shows the performance of the LSTM and CNN-based methods with different amounts of training 

data. The performance of CNN-based method changed little with an increase in the size of the training 

data generation pool, indicating the sufficiency of training data. 
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Figure 5 shows examples of the parameter maps generated by the DMF and LSTM methods on the 

acquired DCE-MRI data from the testing datasets, where the estimations of DMF and LSTM approaches 

were highly consistent. In most cases, DMF and LSTM approaches fit the signal intensity-time curves 

similarly well. Examples of fitted signal intensity-time curves are shown in Figure S3. To quantitatively 

compare the fitting results by LSTM and DMF, the voxel-wise MSE was calculated for both methods. 

The LSTM approach yielded a lower voxel-wise MSE (0.743 ± 0.130) than the DMF (0.808 ± 0.127). 

The parameter inference time of LSTM for fully temporal sampled DCE-MRI volumes was ⁓250s on 

CPU (⁓40s on GPU), while DMF approach required ⁓3600s to generate the PK parameter maps for the 

same data on the same CPU, representing approximately 14.4 times improvement in computation speed.   

Performance of the LSTM networks with temporally subsampled data 

Figure 6 and Table 2 show that the LSTM had significantly better performances for estimating parameters 

than the DMF method (p<3.2×10-6) when increasing temporal sampling intervals from 3s to 4s, 5s and 6s 

(Figure S4).  

Performance of the LSTM networks with low CNR and reduced total acquisition length 

The performance of LSTM on DCE-MRI signals with lower CNRs and reduced total acquisition times is 

presented in Figure 7 and Table S1. As can be seen, LSTM consistently improved the accuracy for lower 

CNR levels and reduced total acquisition times from 168s to 87s. ve estimation had the largest 

improvement when total acquisition time was reduced. 

 

4 Discussion 

We investigated a novel and potentially powerful LSTM-based network for learning a mapping from a 

CA concentration-time curve including the corresponding AIF to the underlying PK parameters. The 

LSTM network is capable of learning long- and short-term dependency of sequence data such as DCE-

MRI. We found that the performance of the LSTM on mapping DCE-MRI time-curves to their 

corresponding PK parameters was superior to a state-of-the-art CNN-based approach, and better than the 

direct model fitting method in terms of NRMSE.  The LSTM was much more robust to temporally 

subsampled DCE data than the direct PK model fitting, which can be utilized to increase spatial resolution 

of DCE images. Higher robustness of LSTM to noise and reduced acquisition time is also demonstrated 

compared with DMF. Our data augmentation strategies, including AIF augmentation and creation of 

synthetic signal time-curves from the data generation pool, overcame the limited size of the in vivo DCE-

MRI training data pool.  The LSTM network trained by the synthesized data was also able to perform 
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well on empirical DCE data. This indicates that the synthetic data simulates real signal intensity-time 

series well and the LSTM network is effectively trained. In addition, our proposed network enables an 

approximately 90 times of computation time acceleration compared with the direct PK model fitting 

approach. The LSTM network has the potential to accelerate DCE-MRI acquisition and parameter 

estimation.   

We attribute the superior performance of the LSTM to its capability to learn long- and short-term 

dependency in sequence data, and to extract dynamic features and temporal correlation in the signal 

intensity-time series of DCE-MRI. In contrast, the CNN extracts “spatial” features from the DCE-MRI 

volumes but has a limited capability to exploit the temporal relationships in the DCE data. For example, a 

2D CNN model treats the x-y-t data as a 3D volume, in which time-dependent features in the dynamic 

data could not be effectively extracted27,28. A 3D CNN model12 attempts to address some of the issues of 

the 2D CNN by leveraging more temporal correlation.  Without incorporating an AIF as input in the 

CNN, the PK parameters could have degeneracy and correspond to multiple signal time-curves, which 

can lead to a mis-mapping between the PK parameters and DCE curves. The small training and testing 

patch sizes limited by the high GPU memory demand of the 3D CNN training may further degrade its 

performance. Our proposed LSTM network structure is straightforward, and there is no PK model 

information required for LSTM training. Also, the AIF is incorporated into input as a second channel, 

which allows use of a patient-specific AIF when processing empirical patient DCE data. The proposed 

network can be easily trained and extended to other PK models, or even other sequence-related medical 

imaging data, e.g., a high-order diffusion model, with a minimum modification of the network 

architecture.  

We used several strategies to overcome the limited size of the in vivo DCE-MRI data.  First, we did not 

use a fixed triad of the AIF, the PK parameters, and the signal time-curves from the in vivo DCE-MRI 

dataset, which limits us to a total of 103 patient datasets. We used synthesized signal time-curves that 

were created by randomly selected and combined PK parameters, AIF (and augmented AIF), and time 

step from a data pool.  In addition, we added random variations of the delay of CA bolus arrival into the 

signal time-curves. Our evaluation shows that the PK parameters from 78 patients sufficiently cover the 

parameter ranges of interest.  The performance of LSTM2, and LSTM3 indicates that the PK parameters 

from 60% of the training data could sufficiently cover the ranges of parameter of interest.  Our overall 

strategy of the training data synthesis seems to yield effective training of the LSTM networks, and 

overcomes the limited size of in vivo datasets.  These strategies seem to reasonably mitigate small amount 

of variation in sampling interval in the in vivo data.  
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For extraction of PK parameters from signal time curves with different time steps (3-6s), the LSTM 

models show robust performance compared to the direct PK model fitting, with the latter showing 

performance degradation with an increase in the time step size. This advantage of the LSTM approach 

can be utilized to improve the spatial resolution of DCE-MRI when decreasing the temporal resolution of 

DCE-MRI.  For example, a modest increase in the spatial resolution from the currently used 1.6x1.6x2.5 

mm3 to 1.4x1.4x1.4 mm3 would prolong the acquisition time of an image volume by a factor of 2. This 

increase in the temporal resolution from 3s to 6s would result in an increase in NRMSE% of the estimates 

by 1.7-2.1 times by the DMF but a very small increase by the LSTM model (Figure 6). 

This work has several limitations. As we can see from Figure 4 and Table 1, the LSTM performs better 

than DMF in terms of NRMSE but not as good in terms of SSIM across the whole parameter range.  

Further analysis of the error distribution reveals that this is mainly due to the minor estimation errors in 

parameter combinations of zero Ktrans and ve but non-zero vp (mainly in the brain region), which caused by 

the small portion of these parameter value combinations in the training datasets. Another concern is the 

accuracy of parameter estimation in the gross tumor volume, which has a different range of the 

parameters from normal tissue and has a small amount of the data weighting in the training dataset.  We 

note similar SSIM values of DMF and LSTM in the gross tumor volume (Table 1).  Further manipulation 

of the training dataset distribution and/or a modification of the loss function or a weighting training data 

in different parameter ranges could improve performance of the algorithm. Another path to improvement 

generalizability is to incorporate temporal sampling intervals into the network input as another channel29.  

The performance of the current vanilla LSTM architecture could be further improved by using a 

bidirectional LSTM with attention at the expense of longer training and inference time. A further 

improved model could use more realistic synthetic data that takes motion artifacts and other factors into 

account to improve the robustness of performance of the LSTM on in vivo DCE-MRI datasets. 

 

5 Conclusions 

In conclusion, our proposed LSTM is a promising approach to estimate PK parameters from DCE-MRI 

time-series. We demonstrate that the proposed approach provides more accurate PK parameter maps 

compared to the CNN-based approach, and is comparable to the DMF method with approximately 90 

times of computation time reduction. The LSTM networks are more robust to low temporal resolution, 

lower CNR levels, and reduced total acquisition time than direct PK model fitting. In the future, a similar 

LSTM network can be applied directly to (k, t) space data to leverage the temporal and spatial sparsity, 

and thus accelerate both the data acquisition and image reconstruction of DCE-MRI. 
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Figure Legends 

Figure 1 Illustration of the network architecture used for PK parameter estimation from an input of a CA 

concentration time-series and an AIF as two separate channels. Each layer has n sequentially connected 

cells.  

Figure 2 Training data generating scheme with BAT simulation and AIF augmentation by random 

scaling.  

Figure 3 SSIM and NRMSE of the parameter map estimation by LSTM networks with (a, c) 2, 4, 6, and 

8 LSTM layers with 32 features, and (b, d) 16, 32, and 64 features with 6 layers. Error bar: standard 

deviation

Figure 4 The performance of the LSTM and CNN-based methods under different amounts of training 

data (60%, 80%, and 100% of the data generation pool). 

Figure 5 Two exemplary slices (left 2 columns for first slice, right 2 columns for second slice) of PK 

parameter estimation by DMF and LSTM3 on an in vivo test dataset. The results obtained from DMF and 

LSTM3 show high similarity in both the tumor volume (depicted by the white contour) and the full FOV. 

Figure 6 Quantitative results of the estimated parameters from the 25 synthesized testing datasets with 

different temporal sampling time intervals (3, 4, 5, and 6s) by the LSTM and DMF approaches. The 

proposed LSTM shows a more stable performance than the DMF when increasing the sampling interval.

Error bar: standard deviation. *: p<0.05; **p<0.005

Figure 7 The performance (NRMSE) of the LSTM and DMF estimations under lower CNRs (first row) 

with full temporal sampling and reduced total acquisitiontimes t (second row) with Δt=3s and CNR=20-

30. Error bar: standard deviation. *: p<0.05; **p<0.005

Figure S1 The distribution of (a) Ktrans, (b) ve, and (c) vp in the training data generation pool. 

Figure S2 An exemplary slice of the ground truth parameter maps (column 1), the estimated maps 

(column 2-4), and the residual maps (last 3 columns) of estimated Ktrans (top row) ve (middle row) and 
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vp (bottom row) by the LSTM3, CNN, and DMF models from a testing case. The white contour depicts 

the gross tumor volume. GT: ground truth. 

Figure S3 Three exemplary in vivo CA concentration-time curve fitting results by DMF and LSTM3 in 

the tumor region indicated by the white contour shown in the left Ktrans parameter map estimation by 

DMF. Results from both methods are in reasonable alignment with observed data. (SE = squared error) 

Figure S4 An exemplary slice of ground truth of parameter maps (column 1), estimated maps (column 2 

and 3), and the residual maps (last 2 columns) by LSTM and DMF using temporal sampling interval Δt = 

6s. The tumor volume is depicted by a white contour. GT: ground truth.  
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Table 1 Quantitative performance of different methods on test DCE-MRI volumes  

 
Method 

SSIM NRMSE (%) 

 K trans ve vp K trans ve vp 

Whole 

Range 

DMF 0.9875 ± 0.0052 0.9960 ± 0.0010 0.9880 ± 0.0046 1.57 ± 0.43 1.41 ± 0.27 1.30 ± 0.38 

LSTM1 0.9853 ± 0.0068 0.9922 ± 0.0027 0.9806 ± 0.0159 1.47 ± 0.36 1.44 ± 0.25 1.15 ± 0.24 

LSTM2 0.9840 ± 0.0078 0.9931 ± 0.0025 0.9850 ± 0.0060 1.39 ± 0.41 1.19 ± 0.14 0.97 ± 0.18 

LSTM3 0.9850 ± 0.0070 0.9962 ± 0.0010 0.9841 ± 0.0078 1.36 ± 0.37 1.14 ± 0.17 0.97 ± 0.22 

CNN1 0.9547 ± 0.0202 0.9534 ± 0.0180 0.8946 ± 0.0267 3.07 ± 1.32 4.04 ± 1.57 3.54 ± 1.37 

CNN2 0.9629 ± 0.0159 0.9594 ± 0.0146 0.9323 ± 0.0237 2.78 ± 0.99 4.17 ± 1.32 3.16 ± 1.44 

CNN3 0.9627 ± 0.0189 0.9556 ± 0.0192 0.9302 ± 0.0352 2.76 ± 1.10 3.95 ± 1.30 2.85 ± 0.94 

p LSTM3 vs DMF <0.05 0.54 <0.005 <0.05 <0.005 <0.005 

p LSTM3 vs CNN3 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

GTV 
DMF 0.9994 ± 0.0006 0.9997 ± 0.0004 0.9994 ± 0.0008 3.85 ± 2.64 0.85 ± 0.35 0.74 ± 0.40 

LSTM3 0.9993 ± 0.0006 0.9998 ± 0.0003 0.9994 ± 0.0007 4.45 ± 2.64 0.85 ± 0.21 0.71 ± 0.24 

p  0.38 <0.05 0.63 <0.05 1.00 0.45 

The LSTM models were trained and tested using synthetic data with original temporal-sampling. The 

SSIM and NRMSE% (mean + std) with respect to the ground truth parameter maps were obtained in the 

whole field of view. The bold numbers indicate significant differences (p<0.05) between LSTM and 

DMF. GTV: gross tumor volume. 
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Table 2 Quantitative performance of different methods on temporally subsampled DCE data  

 
Method 

SSIM NRMSE (%) 

 K trans ve vp K trans ve vp 

Δt=3 
DMF 0.9877 ± 0.0050 0.9934 ± 0.0041 0.9876 ± 0.0052 1.52 ± 0.52 1.73 ± 0.41 1.28 ± 0.46 

LSTM3 0.9909 ± 0.0035 0.9948 ± 0.0034 0.9919 ± 0.0064 1.05 ± 0.24 1.17 ± 0.21 0.84 ± 0.21 

p  <0.005 0.12 <0.005 <0.005 <0.005 <0.005 

Δt=4 
DMF 0.9831 ± 0.0055 0.9885 ± 0.0064 0.9817 ± 0.0073 1.94 ± 0.64 2.32 ± 0.46 1.71 ± 0.56 

LSTM3 0.9877 ± 0.0048 0.9944 ± 0.0022 0.9894 ± 0.0041 1.25 ± 0.27 1.33 ± 0.23 0.98 ± 0.22 

p  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Δt=5 
DMF 0.9783 ± 0.0050 0.9825 ± 0.0075 0.9758 ± 0.0099 2.28 ± 0.76 2.93 ± 0.56 2.06 ± 0.73 

LSTM3 0.9861 ± 0.0044 0.9917 ± 0.0027 0.9877 ± 0.0066 1.34 ± 0.26 1.51 ± 0.27 1.01 ± 0.21 

p  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

Δt=6 
DMF 0.9708 ± 0.0063 0.9738 ± 0.0142 0.9685 ± 0.0115 2.71 ± 0.84 3.65 ± 0.80 2.53 ± 0.82 

LSTM3 0.9840 ± 0.0070 0.9903 ± 0.0037 0.9846 ± 0.0089 1.39 ± 0.33 1.70 ± 0.28 1.09 ± 0.25 

p  <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 

The SSIM and NRMSE% (mean + std) with respect to the ground truth parameter maps were obtained in 

the whole field of view. The bold numbers indicate significant differences (p<0.005) between the two 

methods. 
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