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Abstract14

Agricultural activity is a significant source of greenhouse gas emissions. The fertilizer15

production process emits N2O, CO2, and CH4, and fertilized croplands emit N2O. We16

present continuous airborne observations of these trace gases in the Lower Mississippi17

River Basin to quantify emissions from both fertilizer plants and croplands during the18

early growing season. Observed hourly emission rates from two fertilizer plants are com-19

pared with reported inventory values, showing agreement for N2O and CO2 emissions20

but large underestimation in reported CH4 emissions by up to a factor of 100. These CH421

emissions are consistent with loss rates of 0.6–1.2%. We quantify regional emissions fluxes22

(100 km) of N2O using the airborne mass balance technique, a first application for N2O,23

and explore linkages to controlling processes. Finally, we demonstrate the ability to use24

airborne measurements to distinguish N2O emission differences between neighboring fields,25

determining we can distinguish different emission behaviors of regions on the order of26

2.5 km2 with emissions differences of approximately 0.026 µmol m−2 s−1. This suggests27

airborne approaches such as outlined here could be used to evaluate the impact of dif-28

ferent agricultural practices at critical field-size spatial scales.29

1 Introduction30

Nitrous oxide (N2O) is the third most important long-lived anthropogenic green-31

house gas (Myhre et al., 2013). It is also currently the most significant anthropogeni-32

cally emitted gas that depletes stratospheric ozone (Ravishankara et al., 2009). An es-33

timated 16 Tg N2O-N yr−1 was emitted globally in the 1990s, with about half coming34

from anthropogenic sources including agricultural land management, sewage, and biomass35

burning (Reay et al., 2012). The estimated magnitude of agricultural emissions ranges36

from 4–7 Tg N yr−1 and is predicted to rise in the next decade as developing nations in-37

crease agricultural productivity (FAO, 2017). The large uncertainty in emissions esti-38

mates is a result of both infrequent measurements with limited coverage being insuffi-39

cient to characterize emissions that exhibit high spatial and temporal variability (Monni40

et al., 2007) and the lack of direct measurements to get accurate emission factors from41

all sources (Brown et al., 2001).42

A dominant source of anthropogenic N2O has been the mass production and ap-43

plication of fertilizer. Since 1908 the Haber-Bosch process of synthesizing ammonia and44

producing nitric acid, ammonium nitrate, and other compounds has allowed for mass pro-45
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duction of synthetic fertilizer, with current global production levels near 100 Tg N yr−146

(Erisman et al., 2008; Smil, 2011). Between 1961–2013 global N fertilizer consumption47

increased by a factor of nearly 10, with 5 countries accounting for over 60% of the con-48

sumption (Lu & Tian, 2017). In the United States the current fertilizer application rate49

is 11.4 Tg N yr−1, a ∼40 times increase since 1940 (Cao et al., 2018). Fertilizers pro-50

vide essential nutrients to plants that enhance their growth and yield but soils have a51

limited nutrient uptake capacity, and over-application of nitrogen fertilizer can cause a52

nonlinear increase in N2O emissions (Grant et al., 2006).53

Fertilizer production itself also emits greenhouse gases and differences in produc-54

tion type and efficiency affect the total footprint of synthetic fertilizer (Fossum, 2014).55

Ammonia production is energy-intensive, requiring the combustion of natural gas or other56

fuels to synthesize nitrogen and hydrogen (Gellings & Parmenter, 2016). Facilities may57

then oxidize ammonia to produce nitric acid, which is used to manufacture ammonium58

nitrate fertilizer (EFMA, 2000). Ammonia oxidation emits waste gases, including N2O59

(EFMA, 2000). In 2017 fertilizer plants accounting for 73% of total US nitrogen produc-60

tion capacity emitted 23 Tg of CO2 equivalent (CO2e) greenhouse gas emissions (TFI,61

2017). N2O and CH4 emissions are converted to CO2e values by multiplying by global62

warming potential values of 298 and 25, respectively. Though facilities report emissions,63

independent objective observations of production sources have been limited.64

While fertilizer is arguably the strongest driver of N2O soil emissions, various fac-65

tors including climate, soil conditions, planted crop type, and management practices can66

impact N2O emissions, leading to large spatial and temporal heterogeneity in emissions.67

Increased N2O emissions can positively correlate with higher soil temperature and mois-68

ture, particularly after precipitation (Dobbie et al., 1999; Griffis et al., 2017). The pos-69

itive relationship between N2O emissions and soil moisture has been observed in vari-70

ous environments and soil conditions (K. A. Smith et al., 1998, 2003; Marinho et al., 2004;71

Schindlbacher et al., 2004; Pattey et al., 2008). Crop species and type of residue crop72

cover can also affect emissions (T. B. Parkin & Kaspar, 2006; Lemke et al., 2018).73

Flux chambers are a commonly-used method to quantify N2O emissions from soils.74

They are relatively inexpensive and easy to deploy, but measure small areas (1 m2), can75

perturb the area of study, and are constrained by manpower (Rapson & Dacres, 2014).76

Scaling up singular chamber measurements for greater representation of emissions is ham-77
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pered by soil diversity and spatial variability (T. Parkin et al., 2012; Scaroni et al., 2014),78

necessitating data at larger regional spatial resolution. Studies at larger scales can also79

capture indirect emissions from nitrogen runoff and leaching. Process-based models work80

at a range of scales (Del Grosso et al., 2006; Tian et al., 2012) but have uncertainty in81

their representation, demand high computational power and often have large input un-82

certainties. This increases the need to use observational data at a range of scales to re-83

duce uncertainty (Butterbach-Bahl et al., 2013; Ehrhardt et al., 2017). Improved obser-84

vational quantification of emissions on varying spatial scales will be critical to improve85

our understanding of the heterogeneous processes controlling N2O emissions.86

Many studies of US N2O emissions have investigated the Corn Belt region of the87

Upper Mississippi River Basin (T. B. Parkin & Kaspar, 2006; Chen et al., 2016; Nevi-88

son et al., 2018). Relatively less attention has been paid to the Lower Mississippi River89

Basin (LMRB) downstream in the southeast US, which was only recently added in 201490

to the USDA’s Long-Term Agroecosystem Research (LTAR) network (USDA ARS, 2014).91

With ∼20 million acres—∼30% of total area—as cropland, much of it intensely devel-92

oped and irrigated, the LMRB is a highly-productive agricultural region responsible for93

a quarter of the US’s corn production and two-thirds of its rice (USDA ARS, 2012; Lund94

et al., 2013).95

Here we analyze continuous airborne observations of N2O, CO2, and CH4 from re-96

search flights in the LMRB in May 2017 during the early growing season (Padgitt et al.,97

2000; Snipes et al., 2004). The campaign took place immediately following a heavy rain-98

fall and flooding event in the northern part of the region (Heimann et al., 2018). We quan-99

tify emissions of N2O, CO2, and CH4 from two large fertilizer plant point sources and100

compare to reported emissions from the Greenhouse Gas Reporting Program (GHGRP).101

We apply the airborne mass balance technique to N2O to quantify emission fluxes on scales102

on the order of 100 km2, and evaluate relationship with crop type, applied fertilizer, soil103

moisture, and soil temperature. We further use a Bayesian inversion method to deter-104

mine the potential of this type of airborne data to distinguish emission differences from105

neighboring agricultural fields.106
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2 Methods107

2.1 Flights108

Research flights were conducted on a Mooney M20R single-engine aircraft (Scien-109

tific Aviation, Inc.) as part of the Fertilizer Emissions Airborne STudy (FEAST) (Gvakharia110

et al., 2018; E. Kort et al., 2018). Six research flights took place from May 2–10, 2017,111

based out of West Memphis, Arkansas. Each flight typically lasted ∼6 hours from 12:00–112

18:00 local time (17:00–23:00 UTC), sampling once a well-mixed boundary layer devel-113

oped. Combined, the flights covered most of the LMRB region, from 31◦ to 38◦N and114

88◦ to 93◦W. The plane flew at an average altitude of 550 meters above ground level (magl),115

with multiple crosswind transects designed to capture emissions plumes from agricultural116

activity in the river valley. During each flight at least one vertical profile was completed,117

circling the plane up past the mixing layer and back down while tracking atmospheric118

conditions and trace gases to determine the mixed layer depth. On two flights, two high-119

production fertilizer plants were circled to quantify point source emissions. Figure 1 shows120

the region of study with flight paths, along with land use for four major crops: soybean,121

corn, cotton, and rice.122

2.2 Instrumentation123

An Aerodyne laser absorption spectrometer measured N2O, CO2, CO, and H2O124

mole fractions at 1 Hz frequency with an in-flight high-frequency, flow-controlled cali-125

bration method (Frequent Calibration High-performance Airborne Observation System126

(FCHAOS)) as described in Gvakharia et al. (2018). In-flight 1 s precisions were ±0.05127

ppb, ±0.10 ppm, ±1.00 ppb, and ±10 ppm respectively for N2O, CO2, CO, and H2O.128

Water vapor corrections were applied to the data in post-processing to eliminate the ef-129

fect of dilution and water line broadening—all measurements reported herein are dry mo-130

lar fractions.131

Additional payload on the aircraft, listed in S. A. Conley et al. (2014); S. Conley132

et al. (2017), included a Picarro G2301-f cavity ringdown spectrometer to measure CH4,133

CO2, and H2O (with in-flight precision of ±0.3 ppb and ±0.04 ppm for CH4 and CO2,134

respectively(Karion et al., 2013)), a Vaisala HMP60 probe to measure temperature and135

relative humidity, and a 2B Technologies 202 ozone monitor. The Picarro measurements136

were sampled at 0.5 Hz and interpolated to acquire 1 Hz data. The Picarro was calibrated137
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Figure 1. Map of the LMRB. FEAST research flights paths are traced with different colors

for each flight. Green, yellow, red, and blue pixels respectively indicate cropland for soybean,

corn, cotton, and rice at 30 m by 30 m resolution (USDA, 2017).
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on the ground by sequentially sampling two gravimetrically-prepared NOAA WMO stan-138

dards (Dlugokencky et al., 2005). Wind speed and direction were calculated using a dif-139

ferential GPS system as described in S. A. Conley et al. (2014). Ambient air was sam-140

pled from an inlet installed underneath the aircraft wing, and traveled through ∼5 m141

of tubing to the instruments. Lag time between when air enters the inlet line and when142

it is sampled by the instruments was determined by breathing near the inlet and observ-143

ing spikes in CO2 and H2O, resulting in lag times of 3 and 5 s for the Aerodyne and Pi-144

carro instruments respectively. These lag times were confirmed in flight by comparing145

peaks in CO2 and H2O from both instruments. The lag times are used in post-processing146

to align all instruments and sensors on a unified time basis.147

2.3 Point Source Quantification148

Emission rates from point sources are quantified following the methodology first149

described in S. Conley et al. (2017) and used by Mehrotra et al. (2017); Vaughn et al.150

(2017). Figure 2 illustrates the technique. The plane circles a source at constant radius151

and at discrete altitudes, starting near 200 magl and ascending until the plume is no longer152

detectable, then descending back down. By measuring the atmospheric concentration153

upwind and downwind of the source simultaneously with the wind, an emission rate is154

calculated for a given trace gas. As described in S. Conley et al. (2017) , the method in-155

tegrates sources and sinks of a gas species within a cylindrical volume V around an emis-156

sion source. Using Gauss’s theorem the volume integral can be converted into a surface157

integral decomposing the cylinder into three surfaces: bounded vertically at the bottom158

by the ground and at the top by the altitude where the plume is no longer detected (zmax),159

and horizontally by the radius of the flight loops. The basis for the methodology is given160

by Equation 1161

Qc =

〈
∂m

∂t

〉
+

zmax∫
0

∮
c′uh · n̂dldz (1)

where
〈
∂m
∂t

〉
is the average rate of change of mass in the volume, c′ is the devia-162

tion of the gas species of interest from the loop average, uh is the horizontal wind vec-163

tors, and n̂ is an outward pointing unit vector normal to the surface. Large-eddy sim-164

ulations results from S. Conley et al. (2017) show that the flux divergence changes quick-165

est closer to the source, making it more difficult to measure, while further away from the166
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Figure 2. Flight pattern during point source quantification. The blue square shows the lo-

cation of the emitting source, in this case a fertilizer plant, and the black arrow indicates wind

direction. N2O molar fraction is given both by the color bar and the point size. The plane circles

the source upwind and downwind at several altitudes, capturing the emissions plume, and the

data is then processed to quantify an emissions flux.

source the plume is weaker and susceptible to entrainment fluxes. An appropriate sam-167

pling radius is determined in-flight based on the boundary layer height and horizontal168

wind speeds to ensure that the plane is far enough so the plume has time to loft verti-169

cally, minimizing change in flux divergence, but not too far that the plume signal is dif-170

ficult to detect against background. The loops are then divided into bins, with the low-171

est bin extending to the ground. Individual bin uncertainty is given by the standard de-172

viation of horizontal flux uncertainty, which is higher at lower altitudes where the flux173

divergence has a higher rate of change. The total uncertainty is then obtained by sum-174

ming all bin uncertainties in quadrature (along with uncertainty from the time rate of175

change term from Equation 1, which is determined using a least squares fit on the gas176

density with time and altitude).177
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Table 1. CO2 emission rates based on both FCHAOS and Picarro observations from two

fertilizer facilities

Plant FCHAOS CO2 (Mg hr−1) Picarro CO2 (Mg hr−1)

Plant 1 98.3±24 94.6±21.4

Plant 1 94.4±17.6 109.1±24.7

Plant 2 73.6±15.7 88.1±19.3

Due to the FCHAOS system’s frequent calibrations to on-board gas standards, 15178

s of data were not sampled every 120 s. When quantifying N2O and CO2 emission rates,179

the FCHAOS data are interpolated to fill in gaps throughout the loops. As seen in Ta-180

ble 1, CO2 estimates agree between the FCHAOS and the Picarro (which has no data181

gaps), suggesting this interpolation does not significantly impact this analysis.182

2.4 Mass Balance Technique183

Using the mass balance method (White et al., 1976), atmospheric N2O fluxes are184

quantified for regions in the LMRB. The usefulness of this approach has been well-documented185

in estimates of methane (Karion et al., 2015; Peischl et al., 2015; M. L. Smith et al., 2017),186

ethane (M. L. Smith et al., 2015; E. A. Kort et al., 2016), and black carbon (Schwarz187

et al., 2015) emissions from oil and natural gas activity. The flux during a flight tran-188

sect is given by Equation 2189

fluxN2O = ν cosθ

∫ xf

xi

XN2O dx

∫ z1

zg

nair dz. (2)

where ν cosθ is the horizontal wind component perpendicular to the airplane’s heading,190

xi and xf define the width of the flight transect over ground, XN2O is the N2O molar191

fraction enhancement over background during the transect, and zg is the terrain height192

above sea level. z1 is the adjusted mixed layer height as defined in Peischl et al. (2015),193

z1 = (3zPBL + ze)/4 where zPBL is the planetary boundary layer depth and ze is the194

entrainment height at which mixing below the boundary layer finally reaches free tro-195

posphere levels (always ≥ zPBL). nair is the molar density of air. Background N2O is196

determined by averaging 30 s of data at the start and end of a plume, i.e. the times defin-197

ing the width of the transect with enhancement over background. Uncertainty for mix-198

ing layer height is defined as ∆z = z1-zPBL, while for the other components it is defined199
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by the 1σ value. All uncertainties are then propagated by summing in quadrature for200

the total flux uncertainty, assuming independent and normally-distributed errors.201

For each flight mass balance transects are identified and an N2O flux is calculated202

using Equation 2. Emissions are then quantified from a subregion bounded by two tran-203

sects by subtracting the flux of the upwind transect (or “flux in”) from the flux of the204

downwind transect (or “flux out”). Transects are chosen such that a transect with length205

li and mean angle of wind normal to the aircraft θi has a similar li cosθi value as another206

transect with lj cosθj . The air mass passes through two planes with equal areas defined207

by l cosθ z1, allowing comparison of fluxes from different transects.208

We compare regional mass balance fluxes with crop type, applied fertilizer, soil mois-209

ture, and soil temperature. Crop land cover for 2017 is provided by the Cropland Data210

Layer (CDL) at 30 m resolution (USDA, 2017). A 5 km resolution gridded dataset of211

annual applied nitrogen fertilizer provides nitrogen input information (Cao et al., 2017).212

The data used is from 2015, the most recent year available in the dataset. As of writ-213

ing, gridded U.S. fertilizer application data with high spatial resolution for 2017 had not214

been identified. Two soil moisture data sets are used in this analysis. The first is the SMAP215

Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 2 data216

product from the Soil Moisture Active Passive (SMAP) satellite (ONeill et al., 2018).217

While the satellite provides good spatial resolution, the area it scans on each pass of the218

earth does not always coincide with the flight path. In order to estimate regional soil mois-219

ture during a flight, the SMAP products from May 1–10, 2017 are averaged over the LMRB220

region. The second soil moisture data set is the North American Regional Reanalysis (NARR)221

product which combines model output and assimilated precipitation data at 0.3◦ reso-222

lution (Mesinger et al., 2006). To complement volumetric water content, water-filled pore223

space (WFPS) is also calculated to better relate soil properties. WFPS is defined by Linn224

and Doran (1984) in Equation 3225

WFPS =
Θv

1 − PB

PP

(3)

where Θv is volumetric water content, PP is soil particle density, and PB is soil bulk den-226

sity. A common PP value of 2.65 g cm−3 is used (Soane, 1990). For PB , an average value227

of 1.385 g cm−3 is used based on measurements of soil density in the LMRB (Römkens228

et al., 1986; Selim et al., 1987; Scott et al., 1998). NARR is also used for soil temper-229

ature data (Mesinger et al., 2006). The mass balance fluxes are correlated with environ-230
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mental drivers using observed hourly flux values and comparing with environmental data231

averaged over the spatial region defined by the mass balance transect.232

2.5 Bayesian Inversion and STILT233

To evaluate the spatial scales and flux magnitudes we can associate with small scale234

observed airborne variability, we use a simple inversion approach. First we selectively235

focus on small-scale features (plumes, ∼10s) observed in the aircraft data. By isolating236

this portion of our data set we can than use an inversion method to determine areal ex-237

tent and flux magnitudes that explain the observed signals. We calculate posterior fluxes238

of N2O in the LMRB using the Bayesian solution to the inverse problem given by Equa-239

tion 4 (Rodgers, 2000)240

ŝ = s0 + (Q−1 +HTR−1H)−1HTR−1(z −Hs0) (4)

where ŝ is a vectorized gridding of posterior fluxes with length m and units µmol241

m−2 s−1, s0 is the vectorized gridding of prior flux with length m and units µmol m−2242

s−1, z is a vector of N2O enhancements from flight observations with length n and units243

ppm, H is the Jacobian matrix of sensitivity in the transport model with size n×m and244

units ppm/(µmol m−2 s−1), Q is the prior error covariance matrix with size m×m and245

units (µmol m−2 s−1)2, R is the model-data mismatch covariance matrix with size n×246

n and units ppm2.247

We assume model-data mismatch errors are uncorrelated and construct R as a di-248

agonal matrix with σ2
R as its components, with σR = 0.01 ppb, the 1 s precision for our249

N2O observations. Similarly, for Q we construct a diagonal matrix with σ2
Q components,250

with the value of σQ = 0.01 µmol m−2 s−1 based on optimizing predicted enhancements.251

We used a flat prior of 0.0001 µmol m−2 s−1 based on typical values from flux chamber252

studies such as Marinho et al. (2004) and T. B. Parkin and Kaspar (2006). Our input253

parameters for the Bayesian inversion are not optimized to provide true absolute esti-254

mates of fluxes in the entire region, rather we are interested in quantifying relative fluxes255

and spatial extents at a spatial scale between that of the point source quantification and256

the regional mass balance. Instead of performing a full campaign inversion to calculate257

gridded optimized fluxes, we are evaluating the spatial scales and magnitudes of fluxes258

from local enhancements to assess the airborne measurement system’s performance and259

ability to resolve individual field-scale emissions.260
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We construct the Jacobian H using footprints obtained from running the Stochas-261

tic Time-Inverted Lagrangian Transport (STILT) model (Gerbig et al., 2003; Lin et al.,262

2003) using the High-Resolution Rapid Refresh (HRRR) meteorology data (Benjamin263

et al., 2016). We run STILT for 102 receptors from the May 2 research flight, sending264

333 particles back in time for 4 hours (sufficient for the trajectories to clear the LMRB265

cropland) for each receptor at 1 minute resolution. All the receptors come from two east-266

ern transects in the flight that experienced a large regional N2O enhancement. The re-267

ceptors were chosen by identifying local N2O features (coherent enhancements, or plumes),268

and were organized into 13 distinct enhancements for individual evaluation to determine269

what upwind area and emissions produced these observed signals. The lowest observed270

N2O concentration in each group was used as a local background value and subtracted271

from the group to obtain enhancements used in the z vectors in Equation 4. Footprints272

were calculated from the particle trajectories as in Lin et al. (2003) with a 0.005◦ res-273

olution in latitude and longitude, or about 500 m.274

3 Results275

3.1 Fertilizer Plant Emissions276

Two large fertilizer plants with significant greenhouse gas emissions are investigated.277

These are 2 of 19 facilities in the US with reported N2O emissions greater than 100 Gg278

CO2e (EPA, 2017). Plant 1 was responsible for 5% of all US emissions of N2O in 2017,279

and Plant 2 contributed 1% (EPA, 2017). In terms of ammonia production, 32 plants280

in the US accounted for 10500 Gg N (USGS, 2018). Plant 1’s ammonia production ca-281

pacity is equal to 4% of the total US ammonia production, while Plant 2’s capacity is282

3.5% (Nutrien, 2018). Figure 3 shows N2O and CO2 quantified emission rates from the283

FCHAOS system, CO2 and CH4 emission rates from the Picarro, and reported GHGRP284

emissions for both plants. The GHGRP emissions are scaled down from Tg yr−1 to kg285

hr−1 accounting for 340 days of effective production capability (USGS, 2019), as fertil-286

izer production facilities typically operate non-stop throughout the year with some pe-287

riodic maintenance, resulting in low temporal variability (TFI, 2017). Plant 1 was ob-288

served on both May 9 and May 10, while Plant 2 was observed only on May 10. Esti-289

mates for N2O and CO2 agree well within uncertainty with emissions reported in the GH-290

GRP. For Plant 1, there is also consistency in emissions from one day to the next.291
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Figure 3. Observed emissions for N2O, CO2, and CH4 (FHCAOS in orange, Picarro in blue)

along with 2017 GHGRP data (gray) for two fertilizer plants from EPA (2017). Black error bars

indicate 1σ uncertainty.
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CH4 estimates are underestimated in the reported values compared to our obser-292

vations, by a factor of 100 for Plant 1 and 20 for Plant 2. According to the GHGRP, 100%293

of the CH4 emissions from both plants is a result of stationary fuel combustion (EPA,294

2017). Using the amount of gas combusted, a leakage rate is calculated to account for295

the discrepancy in observed and reported emissions. Plant 1 directly reports the amount296

of natural gas consumed while Plant 2 does not, but the value is calculated using reported297

emissions and GHGRP-defined emission factors. Using a typical natural gas composi-298

tion range of 70–90% CH4 (Speight, 2007) results in a range in leakage rates of 0.6–0.8%299

for Plant 1 and 0.9–1.2% for Plant 2. However, CH4 accounts for ∼0.01% of total GHGRP-300

reported CO2e emissions for both plants, with N2O and CO2 contributing essentially all301

of the GHG emissions. Adding in observed CH4 emissions changes the contribution of302

methane to 0.9% for Plant 1, a factor of 90 increase, and 1.8% for Plant 2, a factor of303

180 increase. This finding is in agreement with observations of CH4 from six different304

fertilizer plants by Zhou et al. (2019). Their study found CH4 to be underestimated rel-305

ative to the GHGRP by factors of 50–175 for five of the plants and by 3250 for the sixth,306

resulting in a worst-case leakage rates of 1.22% and a nominal-case rate of 0.34%.307

3.2 Regional N2O Fluxes308

N2O fluxes are calculated from mass balance transects for 26 regions, ranging from309

the northern end of the LMRB near the Missouri/Kentucky border down to the south-310

ern end of the valley in northern Louisiana. Figure 4 illustrates an example flight path311

and N2O enhancement from May 9. The typical background approach is to use the edges312

of the enhancement, as shown in Figure 4. For some enhancements the aircraft did not313

fully exit the area of enhancement in the valley. In these situations, background values314

from upwind transects are used to account for passive enhancement captured in the down-315

wind transect.316

For all regions, the mean emission flux is 1.0±0.7 g N2O-N ha−1 hr−1. Marinho317

et al. (2004) observed emissions from Mississippi Alluvial Plain soils of 1.5 g N2O-N ha−1318

hr−1 following rainfall in mid-June during the growing season, while Scaroni et al. (2014)319

reported emissions of 0.1 g N2O-N ha−1 hr−1 from soils in the Louisiana river basin in320

June and July. From a flux chamber study in Iowa, T. B. Parkin and Kaspar (2006) re-321

ported soybean crop emissions of ∼2500 g N2O-N ha−1 yr−1, with typical hourly fluxes322

on the order of 1.5–2.4 g N2O-N ha−1 hr−1 from soybean, consistent with the results of323
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Figure 4. a) Flight path for May 9, 2017, colored by N2O mole fraction. Black arrows indi-

cate wind direction and relative magnitude. The black box highlights a transect used for mass

balance. b) The N2O mole fraction along the transect indicated by the black box in a). The first

and last 30 s of the transect are used to find the mean background and its 1σ uncertainty (solid

black line and dashed lines, respectively).

this analysis. T. B. Parkin and Kaspar (2006) report fertilizer application in Iowa oc-324

curring on day 155 of the year, while the FEAST campaign took place from day 122 to325

130. However, crop planting in the LMRB typically occurs earlier than the Corn Belt326

according to the USDA’s Crop Progress Reports (USDA NASS, 2017b). By May 7, 2017,327

based on fraction of state crop acreage for a particular crop, Arkansas, Kentucky, Louisiana,328

Mississippi, Missouri, and Tennessee had planted 50–76% of soybean, 50–77% of corn,329

7–68% of cotton, and 67–92% of rice (USDA NASS, 2017b, 2017a).330

The regional mass balance fluxes are compared with crop type, applied fertilizer,331

soil moisture, and soil temperature. When we consider environmental drivers individ-332

ually, we do not find strong empirical linkages to emissions at this scale. For crop type333

and fertilizer application, there is no evident relationship. A weak linear dependence is334

observed for soil moisture (R2 = 0.19) from SMAP, in line with literature (K. A. Smith335

et al., 1998; Dobbie et al., 1999; Schindlbacher et al., 2004), and a WFPS relationship336

similar to that observed by K. A. Smith et al. (1998), but not for NARR data. With soil337

temperature, we observed a temporal gradient, with higher temperatures during later338

flights, but temperature alone does not appear to be a strong predictor of N2O flux com-339

pared with exponential relationships in literature (K. A. Smith et al., 1998). The WFPS340
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analysis would potentially be improved using a gridded soil product to provide more re-341

fined values of PP and PB .342

To assess the relative emergent role of these driving variables, we perform a mul-343

tiple linear regression analysis with crop type, applied fertilizer, soil moisture, and soil344

temperature to predict N2O flux. The resultant fit has R2 = 0.64, p = 0.01. By consid-345

ering multiple environmental driver simultaneously, we find significant empirical relation-346

ships between drivers and emissions. The strongest predictors that emerge from this anal-347

ysis are soil moisture from SMAP, and total planted area of soybean, cotton, and rice.348

A multiple linear regression model with only those four variables has R2 = 0.54, p = 0.001.349

Although fertilizer is expected to be a strong driver of N2O emissions, the temporal el-350

ements of its application are not represented by annual data. Since this analysis relates351

hourly N2O emissions to annual fertilizer application, it is understandable that the fer-352

tilizer does not significantly predict N2O. The crop type may be acting as a proxy for353

the actual applied fertilizer amount, capturing fertilizer timing and variation in manage-354

ment practice. While previous studies have observed a positive relationship between emis-355

sions and soil temperature, it is possible that the soil temperature effect is being dwarfed356

by other factors such as soil moisture.357

3.3 Discriminating Field-scale emission differences358

Whereas the mass balance approach enables robust quantification of large regional359

areas, a different approach is warranted to evaluate if specific agricultural fields (or clus-360

ters of fields) exhibit different emissions. We consider a feature in the airborne measure-361

ments such as illustrated in Figure 5. Using the STILT inversion approach described ear-362

lier, we then derive optimized emission fields that produce the observed N2O enhance-363

ment in this small time window.364

To evaluate what area most contributed to the observed peak, we consider a 50%365

threshold value, identifying the highest-enhancement grid cells which contributes 50%366

of the predicted enhancement. These are the most intense local sources responsible for367

the observed N2O concentration. We then use the boundaries defined by these grid cells368

to quantify the magnitude of fluxes and the areas which contribute the most to the en-369

hancement - determining the area responsible for the observed feature. Finally, we can370

compare the average flux of the peak enhancement to the fluxes of the shoulders, defin-371
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Figure 5. a) Observed (blue points) and predicted (orange points) N2O enhancements for a

group of three receptors in a feature. b) Predicted enhancement grid for the peak enhancement

(middle receptor from a)), with a contour around the grid cells that contribute 50% of the total

enhancement.

ing the relative flux responsible for the observed local feature. Figure 5 illustrates the372

observed and predicted enhancements for one group of receptors. We perform this ex-373

ercise for 13 different cases.374

We find an average relative flux of 0.026±0.01 µmol m−2 s−1 in the 50% thresh-375

old grid cells when comparing the peak enhancement from each group to the local back-376

ground. The average observed peak enhancement linked to these fluxes is 0.79±0.26 ppb377

N2O. Our airborne instrument precision is 0.05 ppb with traceability to standards of 0.28378

ppb. In conditions experienced in these flights, we thus can robustly detect these sig-379

nals associated with emissions of this magnitude. The linkage between observed enhance-380

ments and emissions depends on atmospheric conditions, so this detection threshold could381

be larger or smaller with variability in the atmosphere.382

The average area of the grid cells contributing 50% of enhancement for the peaks383

in the features is 2.5±1 km2. Comparatively, the average total flux field for the recep-384

tors is 614±243 km2, and setting the threshold value to just the top 90% of the enhance-385

ment results in an average area of 35±21 km2. Comparing the Cropland Data Layer to386

satellite imagery of the LMRB, the typical field size is ∼0.25 km2, so peak enhancements387

can be attributed to an area equal to approximately 10 fields. Halving our grid resolu-388

tion to 0.01◦ in latitude and longitude, we find the result is consistent, with an average389

area of 2.5±1.5 km2 and average flux of 0.023±0.015 µmol m−2 s−1 from the 50% thresh-390

old cells. Further reducing the resolution to 0.02◦, the average area is 5.9±5.6 km2 and391
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average flux is 0.019±0.017 µmol m−2 s−1, as each grid cell is roughly 4.2 km2, larger392

than the 2.5 km2 threshold area from the finer resolutions. The winds during the 05/02393

transects were relatively steady and stable, resulting in narrow cones of particle trajec-394

tories from the west, resulting in spatial extents of 7±2.5 km in longitude and 1.3±0.4395

km in latitude for the peak enhancements. This inversion approach is intended to high-396

light near-field local enhancements, and is not evaluating fluxes for the entire region. In397

the a-posteriori grids, typically 70% of the grid cells were below the mean flux value, and398

∼2% of the grid cells had negative fluxes. These fluxes are not designed to be represen-399

tative of absolute values, but by comparing the shoulders of the plume to points above400

the background we can attribute and identify the spatial scales and magnitudes of the401

local enhancements.402

4 Implications403

Observed N2O and CO2 emissions from two productive fertilizer plants agree with404

reported emissions, showing no evidence that emissions of these greenhouse gases are under-405

or over-estimated in self-reporting. Our observed emissions of CH4 from the two plants,406

however, are greatly in excess of reported emissions, a phenomenon observed in other407

fertilizer plants in the country (Zhou et al., 2019). Though emissions exceeding expec-408

tation by multiple orders of magnitude may appear to be unrealistic, these emissions im-409

ply a fugitive emission rate of ∼1%, a leakage rate consistent with observations from other410

parts of the natural gas supply chain (Schwietzke et al., 2014). Although the observed411

emissions are orders of magnitude higher than expected, the increased CH4 emissions412

do not significantly impact the overall footprint of the fertilizer plants, corresponding413

to a 0.9% increase in total CO2e emissions for Plant 1 and a 0.2% increase for Plant 2.414

The large emissions of CO2 and N2O dominate any additional fugitive CH4 emissions.415

The fugitive CH4 emissions may be modest in this case, but it is an addressable emis-416

sions source and is under-estimated in current CH4 inventories, thus representing another417

discrepancy in inventory representation of CH4 emissions.418

Regional sampling of the LMRB enabled the investigation of emissions at a unique419

spatial scale. We observed significant variability in N2O emissions in the various sub-420

regions sampled. Though the emissions magnitude and variability we observed is con-421

sistent with flux chamber measurements, we might have expected less variability in the422

regional flights that integrate over many fields with different crops and farming practices.423

–18–This article is protected by copyright. All rights reserved.



manuscript submitted to JGR: Atmospheres

Considering the variability observed, soil moisture and crop type proved to be the strongest424

emergent predictors of emissions. This suggests knowing the crop (and inherently thus425

the soil type and fertilizer practice) combined with soil moisture can predict N2O vari-426

ability at 100 km scales, and highlights the role of soil moisture in predicting N2O flux.427

Future work evaluating how process-based models predict N2O emissions to vary in this428

domain will enable evaluation of process representations on regional spatial scales. Com-429

paring emissions from plants to those from cropped soils, we observe 521.4±92.8 kg/hr430

of N2O from the two fertilizer plants (averaging the two days for Plant 1). From soils431

we observe around 15000±7000 kg/hr of N2O from a combined 92000 km2 of area. This432

value provides a snapshot of our domain at time of measurement, given how important433

seasonality and spatial variability are to N2O emissions from soil, and is not represen-434

tative of larger trends, while the hourly plant emissions can be reasonably extrapolated.435

We also assess our observed N2O concentrations to define the ability of this type436

of sampling to distinguish field-scale emissions, a critical spatial extent in-between the437

facility-level analysis provided by the point-source quantification and the regional fluxes438

from the mass balance calculations. We find that 50% of the total peak enhancement439

in local features comes from areas with an average size of 2.5±1 km2 and average flux440

magnitude of 0.026±0.01 µmol m−2 s−1. These suggests this method can potentially be441

used to compare crop-management practices occurring on those spatial-scales, such as442

no-till farming and/or different cover crops, to better assess the atmospheric impact from443

different practices.444

5 Conclusions445

This work highlights the capability of continuous airborne observations to quan-446

tify atmospheric greenhouse gas emissions from agricultural activity. We report green-447

house gas emissions from two productive fertilizer plants with large production capac-448

ity of ammonia and nitric acid and find good agreement with GHGRP-reported emis-449

sions and observed N2O and CO2 emission rates. Observed CH4 emissions are several450

orders of magnitude higher, and suggest a natural gas leakage rate of ∼1%. Replacing451

GHGRP-reported values with the observed emissions raises the CH4 fractional contri-452

bution to total plant emissions by a factor of 100, but the overall footprint of the facil-453

ities is not substantially increased as the total footprint is dominated by reported N2O454

and CO2 emissions.455
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We quantify regional N2O fluxes using the mass balance technique, the first exam-456

ple of this approach to agricultural N2O emissions, demonstrating proof-of-concept. We457

find fluxes on the order of 1.0±0.7 g N2O-N ha−1 hr−1, with large variability between458

regions. We investigate relationships between emissions and several factors known to im-459

pact N2O: crop type, nitrogen from fertilizer application, soil moisture, and soil temper-460

ature. For our flights we find the strongest predictors of N2O emissions are soil mois-461

ture, soybean area, cotton area, and rice area. Soil temperature and annual applied fer-462

tilizer appear less predictive. The emission fluxes are broadly consistent with fluxes re-463

ported in literature. Our method encompasses all emissions from the agricultural regions,464

with total areas ranging from 5000 to 37000 km2.465

We estimate relative flux magnitudes and areas at local farm-level spatial scales466

using a Bayesian inversion approach and the STILT model. We find an average flux of467

0.026±0.01 µmol m−2 s−1 (26±10 g N2O-N ha−1 hr−1) from an average area of 2.5±1468

km2 is responsible for 50% of the total peak enhancement in a local N2O feature. This469

highlights the possibility to use airborne sampling to distinguish emission differences at470

these spatial scales.471

Future studies would benefit from observations of more fertilizer plants. Direct knowl-472

edge of a facility’s production rate would help reduce variability in scaling from annual473

to hourly emissions, though that information may not be easily available. Comparing474

the results of these flights with output from a process-based model for May 2017 in the475

region of interest would allow direct comparison with expected N2O fluxes as well as eval-476

uation of the model’s predicted sensitivity to underlying variables such as applied fer-477

tilizer, soil moisture, or soil temperature. Another potential analysis would be compar-478

ing the fluxes with measurements from an eddy covariance tower with appropriate foot-479

print sizes. The type of airborne observations presented here could potentially be used480

to assess the efficiency of various management practices by farms, evaluating if whole481

field emissions vary depending on specific practices.482
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