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Abstract 33 

A new model validation and performance assessment tool is introduced, the sliding threshold of 34 

observation for numeric evaluation (STONE) curve. It is based on the relative operating 35 

characteristic (ROC) curve technique, but instead of sorting all observations in a categorical 36 

classification, the STONE tool uses the continuous nature of the observations. Rather than 37 

defining events in the observations and then sliding the threshold only in the classifier/model 38 

data set, the threshold is changed simultaneously for both the observational and model values, 39 

with the same threshold value for both data and model. This is only possible if the observations 40 

are continuous and the model output is in the same units and scale as the observations, i.e., the 41 

model is trying to exactly reproduce the data. The STONE curve has several similarities with the 42 

ROC curve – plotting probability of detection against probability of false detection, ranging from 43 

the (1,1) corner for low thresholds to the (0,0) corner for high thresholds, and values above the 44 

zero-intercept unity-slope line indicating better than random predictive ability. The main 45 

difference is that the STONE curve can be nonmonotonic, doubling back in both the x and y 46 

directions. These ripples reveal asymmetries in the data-model value pairs. This new technique is 47 

applied to modeling output of a common geomagnetic activity index as well as energetic electron 48 

fluxes in the Earth’s inner magnetosphere. It is not limited to space physics applications but can 49 

be used for any scientific or engineering field where numerical models are used to reproduce 50 

observations. 51 

 52 

Plain Language Summary 53 

Scientists often try to reproduce observations with a model, helping them explain the 54 

observations by adjusting known and controllable features within the model. They then use a 55 

large variety of metrics for assessing the ability of a model to reproduce the observations. One 56 

such metric is called the relative operating characteristic (ROC) curve, a tool that assesses a 57 

model’s ability to predict events within the data. The ROC curve is made by sliding the event-58 

definition threshold in the model output, calculating certain metrics and making a graph of the 59 

results. Here, a new model assessment tool is introduced, called the sliding threshold of 60 

observation for numeric evaluation (STONE) curve. The STONE curve is created by sliding the 61 

event definition threshold not only for the model output but also simultaneously for the data 62 

values. This is applicable when the model output is trying to reproduce the exact values of a 63 

particular data set. While the ROC curve is still a highly valuable tool for optimizing the 64 

prediction of known and pre-classified events, it is argued here that the STONE curve is better 65 

for assessing model prediction of a continuous-valued data set. 66 

  67 
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 68 

1. Introduction 69 

Numerical models are a fundamental feature of research in the natural sciences. Models 70 

are often used to explain strange and interesting features in an archival data set in order to assess 71 

the physical processes responsible for that observational signature. They are also used for 72 

prediction, using some estimate of future initial and boundary conditions to determine the state 73 

of the system, or even a particular observational quantity, ahead of time. These are typical uses 74 

of models in every discipline of Earth and space sciences. 75 

There exists a large collection of metrics to assess the goodness of fit for these models to 76 

a particular data set. These metrics, for the most part, can be sorted into several major groupings, 77 

two of which are fit performance metrics and event detection metrics (e.g., Wilks, 2019; Joliffe 78 

and Stephenson et al., 2012; Liemohn, McCollough, et al., 2018). The former group, also called 79 

continuous metrics, is usually based on differencing each data-model value pair and includes 80 

many well-known assessment equations such as root mean square error, correlation coefficient, 81 

mean error, and prediction efficiency (e.g., Hogan and Mason, 2012; Morley et al., 2018). The 82 

second group, also called categorical metrics, is based on categorizing the observations into 83 

events and non-events and then assessing a model’s ability to reproduce this classification. This 84 

is done through a contingency table (also commonly called a confusion matrix) in which each 85 

data-model pair gets two designations: determining if the observation is in the event state or not 86 

and similarly if the model value is in the event state or not. The similarity or difference of the 87 

data and model values is irrelevant, only the event/non-event designation matters. This second 88 

group includes other well-known assessment equations such as the probability of detection, false 89 

alarm rate, frequency bias, and Heidke skill score (see, e.g., Muller et al., 1944; Wilks, 2019). 90 

Continuous metrics are sometimes defined as comparisons that assess model parameters on a 91 

continuous scale. This is broader than the definition above and can include any event-based 92 

categorical metric by sweeping the model event identification threshold from low to high values. 93 

A feature of the event detection metrics is that the model does not have to cover the same 94 

range or even have the same units as the observations. The model could be anything that might 95 

predict the event state of the observations. Furthermore, the observations do not have to be a 96 

continuous-valued real number set, but could be pre-categorized into events and non-events (or a 97 

multi-level classification). The model could be a continuous-valued real number set or a discrete-98 

valued categorized set. When the data or model happens to be a continuous-valued real number 99 

set, then a threshold value for event identification is chosen, a threshold value that could be 100 

different between the observational events and the modeled events.  101 

An event detection metric that is often used for weather prediction (e.g., Mason, 1982), 102 

psychology (e.g., Swets, 1973), medical clinical trials (e.g., Ekelund, 2011), and machine 103 

learning (e.g., Fawcett et al., 2006) is the relative (or, originally, receiver) operating 104 

characteristic (ROC) curve (see review by Carter et al., 2016). This is an assessment tool that can 105 

be applied when the model values are continuous-valued real numbers, using not just one event 106 

identification threshold but many. The method is to sweep the event definition threshold for the 107 

model values from low to high, calculating two specific metrics, the probability of detection 108 

(POD) and the probability of false detection (POFD), and plotting these two arrays against each 109 

other. The threshold that yields the location on the ROC curve closest to the upper left corner 110 

(high POD and low POFD) can be considered a possible “best setting” for event prediction by 111 
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this model. This is not the only location for an optimum pick of a final threshold along a ROC 112 

curve. Often the final choice will depend on the application and problem specific details. For 113 

example, recent developments have discussed the use of skill scores for different solar and space 114 

physics applications (e.g., Bobra & Couvidat 2015) and their location on ROC diagrams (e.g., 115 

Manzato, 2007; Azari et al., 2018). A further detailed discussion on skill scores and their relation 116 

to ROC diagrams can be found within Manzato (2005). An integral quantity sometimes used 117 

from the ROC curve is the area under the curve (AUC), which is an overall measure of goodness 118 

of fit for the model to the observational events across all of the possible model value event 119 

identification thresholds. 120 

The ROC curve has recently been used quite often in the Earth and space sciences to 121 

assess model performance at detecting events in an observational data set. It is used regularly in 122 

the atmospheric sciences, such as for regional ozone ensemble forecasting (e.g., Delle Monache 123 

et al., 2006), deciphering the microphysical properties of clouds (e.g., Gabriel et al., 2009), and 124 

forecasting summer monsoons over India (e.g., Borah et al., 2013). Earth scientists also employ 125 

the ROC curve for a diverse set of modeling activities, including the distribution of rock glaciers 126 

(e.g., Brenning et al., 2007), assessing triggering mechanisms of earthquake aftershocks (e.g., 127 

Meade et al., 2017), and snow slab instability physics (e.g., Reuter & Schweizer, 2018). This 128 

also includes land-air interactions, such as mapping of expected ash cloud locations after 129 

eruptions (e.g., Stefanescu et al., 2014), modeling rainfall-induced landslides (e.g., 130 

Anagnostopoulos et al., 2015), and statistically forecasting extreme corn losses in the eastern 131 

United States (Mathieu & Aires, 2018). The fields of space and planetary science have also 132 

started to employ this technique, such as for oblique ionogram retrieval algorithm assessment 133 

(Ippolito et al., 2016), identifying energetic particle flux injections at Saturn (e.g., Azari et al., 134 

2018), magnetic activity prediction (e.g., Liemohn, McCollough, et al., 2018), and identifying 135 

solar flare precursors (e.g., Chen et al., 2019). In short, the ROC curve has become an essential 136 

tool, among many that can and should be applied, for model assessment across many natural 137 

science disciplines. 138 

The ROC curve, however, only assesses the model’s ability to predict a single 139 

observational event identification threshold. While this is desirable if the data were pre-classified 140 

as events or non-events, this imposes a simplification of the data set when the observations are 141 

also continuous-valued real numbers. That is, the ROC curve does not test the model’s ability to 142 

predict events across the full range of the data. A family of ROC curves can be produced using 143 

different data-value event identification thresholds (and sweeping the model-value event 144 

identification threshold to produce each ROC curve), which is acceptable if the model is only 145 

being used to maximize the prediction of events. If the model, however, is trying to reproduce 146 

the exact values of the observations, then it is useful to conduct an assessment for which the data 147 

and model have the same threshold setting. The ROC curve, unfortunately, cannot easily test the 148 

model’s ability to reproduce the observed events at the same threshold setting, sweeping through 149 

all possible event identification thresholds. 150 

One could argue the need for a new metric that provides a more complete evaluation 151 

across multiple observation thresholds. Like the ROC curve, this new metric should test a 152 

model’s ability to predict observed events across the full range of possible model-value event 153 

identification settings, but rather than using a single observational event categorization, it should 154 

sweep through the same range of event identification thresholds as used for the model. Such a 155 

metric is proposed below, called the sliding threshold of observation numeric evaluation, or 156 
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STONE, curve. This is based on the ROC curve but includes the desirable features described 157 

above. The work then presents an application of the STONE curve to two space physics data 158 

sets, the prediction of a geomagnetic activity index and energetic electron fluxes in near-Earth 159 

space. Similarities and differences between the ROC and STONE curves are discussed, as well 160 

as the interpretive meaning of features in the STONE curve.  161 

2. Method of Calculation 162 

The calculation of a STONE curve is rather similar to that of a ROC curve, with one 163 

major exception – both thresholds slide together, incrementing the two event identification 164 

thresholds simultaneously so that the same threshold value is used for both the data and the 165 

model at each setting from low to high across the range. Because this tool is for continuous-166 

valued observations and model results, for which an “event” is an arbitrary designation, there 167 

does not have to be a pre-defined event threshold in the observations. In fact, it is desired that the 168 

model match the observations for all levels of “event” definition. Therefore, in the STONE tool, 169 

the two thresholds move together. This is illustrated in Figure 1, showing an arbitrary data set 170 

plotted against a model output that is trying to reproduce these values.  171 

 172 

 173 

Figure 1. Idealized examples of how to calculate (a) the ROC curve and (b) the STONE curve. 174 

In (a), only the blue curve shifts while the red curve is fixed at some level. In (b), both the red 175 

and blue thresholds shift together. As these lines shift, data points are converted from one 176 

quadrant to another. The purple dashed curve is the zero-intercept unity-slope line, for reference. 177 

 178 

Figure 1a shows the calculation scenario for the ROC curve, with the event identification 179 

threshold for the observations set to a fixed value and the threshold for the model results 180 

sweeping from low to high values. Annotations label the four quadrants of the chart, as defined 181 

by these two thresholds. As the model threshold changes, the points in the chart change quadrant. 182 

Specifically, two shifts occur: points in the “hits” quadrant (variable a) move to the “misses” 183 
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quadrant (c) and points in the “false alarms” quadrant (b) move to the “correct negatives” 184 

quadrant (d).  185 

The ROC curve is defined from two metrics in the “discrimination” category (Murphy & 186 

Winkler, 1987) of data-model comparison techniques. Discrimination metrics are assessments 187 

that only use a portion of the data values within a specified range (and the corresponding model 188 

values). For event detection metrics, the usual practice is to use the event state of the 189 

observations to define the subsets of the data. In particular, the ROC curve uses POD and POFD, 190 

which have the following formulas: 191 

 𝑃𝑂𝐷 =
𝑎

𝑎+𝑐
 (1) 192 

 𝑃𝑂𝐹𝐷 =
𝑏

𝑏+𝑑
 (2) 193 

Where a, b, c, and d are point counts from the quadrants in the scatter plot. It is seen that these 194 

two formulas are mutually exclusive, POD only uses the hits and misses quadrants while POFD 195 

only uses the false alarms and correct negatives quadrants. Because the data threshold remains 196 

fixed for the ROC curve, the points either contribute to POD or POFD, regardless of the model 197 

threshold designation. For a very low model threshold setting, all of the points are in either the 198 

hits or false alarms quadrants, which sets both POD and POFD to one. As the model threshold is 199 

increased, points are converted from hits to misses and from false alarms to correct negatives, 200 

which monotonically decreases POD and POFD. For a very high model threshold, all of the 201 

points will then be misses or correct negatives, and both POD and POFD will be zero.  202 

Figure 1b shows the calculation scenario for the STONE curve. In this situation, both 203 

event identification thresholds move simultaneously. The four quadrants are still defined as with 204 

the ROC curve, but with both thresholds changing, the shift of points from one quadrant to 205 

another is not so simple. For a very low threshold setting, nearly all points will be hits and 206 

perhaps a few will be false alarms. Thus, like the ROC curve, the STONE curve also begins in 207 

the (1,1) corner of POFD-POD space (assuming a “low” starting threshold value). Also similarly, 208 

for a very large threshold setting, nearly all points will be correct negatives and perhaps a few 209 

will be misses, with the STONE curve ending in the (0,0) corner of POFD-POD space. Another 210 

similarity is that false alarms are converted into correct negatives as the threshold setting 211 

increases.  212 

The choice of POD and POFD for the STONE curve calculation is purely for 213 

convenience and direct comparison with the ROC curve. Because the STONE curve assumes that 214 

the data are continuous rather than categorical, with event status being defined by a sweeping 215 

threshold, other metrics could have been chosen. For example, rather than basing its calculation 216 

on discrimination, the equations for reliability could have been used. These are defined using the 217 

quadrants on either side of the model threshold rather than either side of the data event threshold. 218 

In this case, metrics such as the correct alarm ratio and the miss ratio would provide similar 219 

information to the proposed usage of POD and POFD.  220 

The big difference between the ROC and STONE curve calculations, however, is that as 221 

the event identification threshold increases, a hit event can shift to any of the other three 222 

quadrants. If it is far above the data threshold but close to the model threshold, then the threshold 223 

increase will cause the point to shift from being a hit to a miss. If it is close to the data threshold 224 

but far away from the model threshold, then it will shift from being a hit to being a false alarm. If 225 
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it is close to both thresholds, then there is a chance it will cross both lines during the incremental 226 

shift and jump from the hits regions to the correct negatives zone. Only the first of these three 227 

moves (hits to misses) occurs with the ROC curve calculation. In addition, misses are shifting to 228 

become correct negatives as the observational threshold is incremented to higher values, another 229 

move that is not part of the ROC curve calculation. The behavior of the POD and POFD values 230 

as a function of threshold, therefore, are not intuitively known and the STONE curve does not 231 

have to be monotonic between its (1,1) and (0,0) endpoints. 232 

There are case where the ROC and STONE curves require special handling. For the 233 

limiting case of no observed events, then POD is undefined (zero divided by zero). The converse 234 

– when there are no non-events in the observation set – leaves POFD undefined. When 235 

calculating a ROC curve it is necessary, therefore, to check the comparison interval to ensure 236 

that both events and non-events occur in the data. As long as there is at least one data value in 237 

each of these event status categories, then the ROC curve will monotonically vary from (0,0) to 238 

(1,1). For the STONE curve, the issue is slightly different. If the event identification threshold, 239 

the same for both data and model, is set to a value below the smallest value, then all points are in 240 

the hits quadrant (POD = 1) but POFD is undefined. In this extreme threshold choice, POFD 241 

should be set to 1. Similarly, if the theshold is above the highest value, then all points are correct 242 

negatives (POFD = 0) and POD is undefined. The remedy is to set POD to zero when the 243 

threshold is swept beyond the end of the values. These corrections yield a STONE curve that 244 

extends to the two corners of (0,0) and (1,1), like the ROC curve. 245 

3. Application of the STONE tool 246 

With this definition for the STONE curve, it can be used on a few example data-model 247 

comparisons to illustrate the similarities and differences with the ROC curve. Here, two 248 

comparisons will be shown. The first is for a model prediction of a geomagnetic activity index, 249 

originally presented by Liemohn, Ganushkina, et al. (2018), and the second is for energetic 250 

electrons in near-Earth space, originally presented by Ganushkina et al. (2019). 251 

3.1. Predicting a geomagnetic activity index 252 

Liemohn, Ganushkina, et al. (2018) compared the output from experimental real-time 253 

simulations of the Space Weather Modeling Framework (SWMF) against the disturbance storm-254 

time index, Dst (Rostoker et al., 1972). The SWMF is a collection of space physics numerical 255 

models simulating the Sun-Earth space environment (Toth et al., 2012), and in many other 256 

planetary environments (e.g., Jia et al., 2012; Ma et al., 2013; Dong et al., 2014; Liemohn et al., 257 

2017). This geospace environment simulation has a very similar setup to that of Pulkkinen et al. 258 

(2013), using the Block Adaptive Tree Roe-type Upwind Scheme (BATS-R-US) 259 

magnetohydrodynamic model coupled to the Rice Convection Model (RCM) and the Ridley 260 

Ionosphere Model (RIM). Real-time solar wind and interplanetary magnetic field input was 261 

taken from the Advanced Composition Explorer (ACE) satellite. The simulated Dst time series 262 

from the SWMF was calculated with the method from Yu et al. (2010) and compared against the 263 

real-time version of the Dst index as produced by the Kyoto World Data Center for 264 

Geomagnetism. The interval of comparison spans from 19 April 2015 until 17 July 2017, which 265 

is 27 months of 1-hour resolution measurements and corresponding model output values (just 266 

under 300,000 data-model pairs). 267 
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Figure 2a shows a scatter plot of the SWMF Dst values against the observed Dst values. 268 

While the individual points are analyzed as unique contributions, they are binned to produce the 269 

colored curves on the plot, demarking contours of 50 points within a 5-by-5 nT grid. Note that, 270 

because Dst is near zero for quiet times and shifts to negative values during storm times, events 271 

are defined as values below (i.e., more negative) a chosen threshold. As defined by Gonzalez et 272 

al. (1994), a typical designation for the Dst index measuring a storm situation is -30 nT or below 273 

for a weak storm and -50 nT or below for a moderate storm, so these two settings are used for the 274 

ROC curve observational threshold setting. These two thresholds are indicated in Figure 2a as 275 

horizontal dashed lines. 276 

 277 

 278 

Figure 2.  (a) Scatter plot of the observed real-time Dst time series (y-axis values) against a 279 

prediction Dst time series from the SWMF (x-axis values). The contours are drawn every 50 280 

points per 5x5 nT bin. Also drawn are horizontal dashed lines at the ROC event thresholds of -30 281 

and -50 nT, with events defined as the points below these lines. A purple dashed zero intercept 282 

unity slope line is also drawn, for reference. (b) STONE (red) and ROC curves (blue for -50 nT, 283 

orange for -30 nT observed event threshold) calculated from the scatter plot. Symbols are shown 284 

along all three curves at every 5 nT threshold increment. The diagonal dotted line with zero 285 

intercept and unity slope is shown for reference. 286 

 287 

The ROC and STONE curves are calculated as follows and shown in Figure 2b. To create 288 

a ROC curve, the model threshold setting is initially set to +10 nT and then swept in 1 nT 289 

increments to -120 nT.  The data threshold for events is held fixed, at -50 nT for the blue curve 290 
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and -30 for the orange curve. To create STONE curve (red line), this same model threshold 291 

variation is followed, but the data threshold is also swept from +10 to -120 nT. Symbols are 292 

shown along each of the plots every 5 nT of threshold increment. 293 

Some features of Figure 2b should be noted. It is seen that the ROC curves monotonically 294 

increase from (0,0) to (1,1). The ROC curve with a -50 nT event threshold is well above the 295 

zero-intercept, unity-slope line (the diagonal purple dotted line on Figure 2b), indicating that the 296 

model is reasonably good at reproducing moderate and stronger storm events recorded by the 297 

real-time Dst index. The closest approach to the upper left corner occurs at a threshold of -37 nT 298 

for the -50 nT threshold ROC curve and -17 nT for the -30 nT ROC curve, which indicates that 299 

the model somewhat underpredicts the strength of such storms.  300 

The STONE curve lies both above and below these two ROC curves, depending on the 301 

threshold. The STONE curve is coincident with each ROC curve at the locations where the ROC 302 

curve model threshold setting is equal to the observational threshold setting (-30 nT for the 303 

orange curve, -50 nT for the blue curve). They cross elsewhere, too, such as in the low-threshold 304 

(i.e., a threshold of near and above zero) region in the upper right region of the plot. It is seen 305 

that the STONE curve is not monotonic but includes a local maximum and local minimum at the 306 

“high threshold” settings (minimum at -28 nT threshold and maximum at -52 nT threshold). The 307 

nonmonotonicity is because POD increases at these threshold values. An increase in POD is 308 

achieved by more points leaving the misses quadrant than leaving from the hits quadrant.  309 

This is better understood by considering the distribution of points beyond a few threshold 310 

choices. Figure 3 shows histograms of the points above a particular data or model threshold 311 

setting. In particular, three threshold settings are displayed –  -30 nT, -40 nT, and -50 nT – 312 

showing the points at “higher” (more negative) Dst values in both the data and model (left and 313 

right columns, respectively). For Figure 3a, the counts are for all points below some horizontal 314 

line of an event identification threshold setting of the observations. For Figure 3b, the counts are 315 

for all points to the left of some event identification threshold setting for the model values. The 316 

calculated skew for these distributions is listed in each panel. 317 

In Figure 3a, it is evident, both qualitatively from the histograms and quantitatively from 318 

the skew values, that the distribution of model output values is significantly changing across 319 

these three observational threshold settings. For the more negative threshold, there are far fewer 320 

model values between zero and -50 nT. That is, across these threshold settings, many of the 321 

points in the misses quadrant were converted into correct negatives. In Figure 3b, the three 322 

distributions have essentially the same shape, with a large negative skew. These distributions do 323 

not undergo the same systematic alteration in their shape the way that the distributions in Figure 324 

3a did. Putting these two features together, it means that more misses were removed than hits, 325 

and so POD increased as the STONE threshold was swept to more negative values between -30 326 

nT and -50 nT. This resulted in a nonmonotonic wiggle in the STONE curve at these thresholds. 327 

 328 
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 329 

Figure 3.  (a) Histogram of model values for all data values below three different thresholds: -30 330 

nT (orange curve), -40 nT (green curve), and -50 nT (blue curve). (b) Histogram of data values 331 

for all model values below the same three thresholds. The bin sizes for each histogram is 10 nT. 332 

The calculated skew for each distribution is listed in each plot. 333 

 334 

3.2. Predicting energetic electrons in near-Earth space 335 

Ganushkina et al. (2019) compared real-time output from the inner magnetosphere 336 

particle transport and acceleration model (IMPTAM) with measurements from the 337 

magnetosphere electron detector (MAGED) on the geosynchronus orbiting environmental 338 

satellites (GOES) in geostationary orbit at 6.62 Earth radii geocentric distance over the American 339 

sector (Rowland & Weigel, 2012; Sillanpaa et al., 2017), specifically, with data from GOES-13, 340 

-14, and -15. IMPTAM, initially developed by Ganushkina et al. (2001) and used regularly for 341 

investigating the physics of plasma sheet electron transport (e.g., Ganushkina et al., 2013, 2014), 342 

has been running in a real-time operational mode since February 2013, first in Europe and then a 343 

mirror site at the University of Michigan. Ganushkina et al. (2015) made an initial comparison of 344 

these model output values against a few months of GOES data, while Ganushkina et al. (2019) 345 

provided a far more robust validation analysis of the model, covering over 18 months 346 

(September 20, 2013 through March 31, 2015). It is this second interval that will be used again 347 

for this study. 348 

Figures 4a and 4b show two scatter plots comparing the IMPTAM and GOES electron 349 

differential number fluxes at 40 keV. The colored contours show the point density, with a new 350 

curve every 50 points within a bin (defined, for these contours, with 10 bins per decade in both 351 

the data and model values). Figure 4a presents the full data set while Figure 4b only shows the 352 

comparison for those values in the 03 to 09 magnetic local time (MLT) range, the region found 353 

by Ganushkina et al. (2019) to have a “good comparison” between the data and model values. On 354 

each of these plots, two observational event thresholds are shown as the horizontal dashed lines, 355 

drawn at 5x104 and 2x105 electrons cm-2 s-1 sr-1 keV-1 in green and blue, respectively. 356 

 357 
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 358 

Figure 4. Scatter plot comparing GOES and IMPTAM 40 keV electron differential number 359 

fluxes (log base 10 of electrons cm-2 s-1 sr-1 keV-1) for (a) all MLTs and (b) the 03-09 MLT 360 

range. Color contours are shown every 50 points per bin (10 bins per decade in both data and 361 

model). The horizontal dashed lines show the ROC thresholds of 3x104 and 2x105. A purple 362 

dashed zero intercept and unity slope line is shown for reference. The lower panels show STONE 363 

curves (red) and ROC curves (blue for 2x105 and orange for 3x104) for (c) the full MLT 364 

comparison and (d) the 03-09 MLT range. Symbols are shown every factor of 2 increase in 365 

threshold value. The diagonal dotted line with zero intercept and unity slope is shown for 366 

reference. 367 

 368 

Figures 4c and 4d show the ROC and STONE curves for these two data-model 369 

comparisons, the full set with values at all MLTs and the subset from 03 to 09 MLT, 370 

respectively. In both Figures 4c and 4d, the STONE curve again has a nonmonotonic shape at 371 

high threshold settings (above 4x105). Like the similar case for the Dst STONE curve in Figure 372 

2b, this shows that, for these thresholds, more points are being removed from the misses 373 

quadrant than being removed from the hits quadrant. 374 

Figure 4d has another unusual feature in the STONE curve, seen as a nonmonotonicity in 375 

the x-axis values. This is from the POFD values increasing with increasing threshold (rather than 376 

decreasing, as they always do with a ROC curve). This is occurring for thresholds between 1x104 377 

and 4x104, just as the STONE curve crosses the orange ROC curve. Considering equation (2) 378 

above, the correct negatives in the denominator are always increasing with increasing threshold, 379 

as points convert to this quadrant from any of the other three quadrants. For POFD to increase, 380 

the false alarms had to increase faster than the correct negative point count. This is seen in Figure 381 

4b as the points have a horizontal peak (highlighted by the flat, elongated color contours). Many 382 
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points are being converted from the hits quadrant into the false alarms quadrant and, for these 383 

threshold settings, this conversion to false alarms outpaces the conversion of points into the 384 

correct negatives quadrant. This results in a ripple in the STONE curve at these thresholds. 385 

Figures 4c and 4d, the STONE curve is quite close to the two ROC curves, which are 386 

very similar to each other. This can be understood from the “flatness” of the cloud of points in 387 

the scatter plots in Figures 4a and 4b. The points are not well aligned with the zero intercept and 388 

unity slope line, revealing less than perfect agreement between the observations and model 389 

output. However, in terms of physics-based real-time modeling of near-Earth magnetospheric 390 

electron fluxes, this is actually quite good, arguably the best that is currently available. This 391 

means that all ROC curves will be close to each other, as any observational event identification 392 

threshold will have a relatively similar transfer of points between the quadrants. However, 393 

because the model is trying to exactly reproduce the observed flux values, the STONE curve can 394 

be calculated, and this new curve includes several nonmonotonicities. The wiggles and ripples in 395 

the STONE curve reveal thresholds where the distribution of points, in either the vertical or 396 

horizontal direction, are asymmetric, bi-modal, or otherwise non-Gaussian. The ROC curves 397 

cannot reveal this kind of information about the distribution of points in the scatter plot the way 398 

that the STONE curve can. 399 

4. Discussion 400 

The STONE curve introduced above is a new tool for assessing the ability of a model 401 

with a continuous-valued output to exactly match a continuous-valued data set. As illustrative 402 

example usages, it was applied to two recently-published data-model comparisons, a prediction 403 

of the disturbance storm-time index Dst and a prediction of energetic electron fluxes in near-404 

Earth space. 405 

The STONE curve is quite similar to the ROC curve. It is based on the same contingency 406 

table calculations of POD and POFD, plotting these two values against each other for a range of 407 

event threshold settings. Like the ROC curve, it starts at (1,1) for low threshold settings and 408 

moves to (0,0) for high threshold settings. Also like the ROC curve, being above the zero-409 

intercept, unity-slope line indicates a prediction that is better than random chance. Curves are 410 

better when they are closer to the upper left corner in POFD-POD space, and a common choice 411 

for the best optimization point along a ROC or STONE curve is that closest to this corner as this 412 

point reveals the best model threshold setting for optimizing discrimination performance. That is, 413 

both curves reveal a possible best model threshold setting for event prediction, the ROC curve 414 

revealing the best settings for a specified observational event identification threshold and the 415 

STONE curve revealing the best setting against the an identically defined observational event. Of 416 

course, this is “best” only if discrimination is what should be optimized for the particular 417 

application. A different threshold settings might be most favorable if other considerations 418 

outweigh discrimination, such as minimizing false alarms or maximizing a particular skill score. 419 

Focusing on user needs during the validation of a model is a foundational element of Application 420 

Usability Levels (Halford et al., 2019) and should always be considered when assessing a 421 

model’s performance. If the user is most concerned about optimizing one of these other features 422 

of the data-model comparison for their particular decision-making needs, then a model event 423 

identification threshold should be chosen that best addresses that need. 424 

Another similarity is that the integral area of the ROC curve, AUC, is equally applicable 425 

to the STONE curve. AUC, a synthesis of the entire threshold-setting range into a single number, 426 
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indicates the quality of the chosen model to predict the events identified in the observational data 427 

(see the detailed explanation of AUC in Fawcett (2006) or Ekelund (2011)). Being an integrated 428 

quantity, AUC is a complementary metric to the “best” model threshold setting for event 429 

prediction mentioned in the preceding paragraph because AUC uses information from all model 430 

threshold settings, even those with POFD-POD coordinates far from the “best setting” upper-left 431 

corner of the graph. Comparing AUCs for several STONE curves (i.e., using different models 432 

against the same data set) will provide a quantitative assessment of which of the models has the 433 

best system-level predictive capability against that data set. It could be that the model with the 434 

highest AUC is not the model with a point along its STONE curve closest to (0,1) in POFD-POD 435 

space. Such a case reveals that the first model, with the higher AUC, has the best model physics 436 

for reproducing the data set as a whole, but that the second model is actually best at predicting 437 

events with a particular threshold setting. Because it is calculated the same way, AUC can be 438 

used to compare STONE curves just like it is for ROC curves. 439 

A key difference between the STONE and ROC curves is that the STONE curve can have 440 

nonmonotonicities. These features, which can be wiggles with respect to either POD or POFD, 441 

reveal features of the model prediction of events that are not easily extracted from a ROC curve. 442 

This makes the STONE curve somewhat like a fit performance metric, even though it is an 443 

event-detection metric that disregards the difference between the data-model pairs.  444 

The nonmonotonicities in the STONE curve reveal information about the distribution of 445 

points in the data-model comparison. Specifically, they show the existence of an asymmetry, 446 

perhaps a non-Gaussian point spread like a skewed or bimodal distribution, for the pairs above 447 

that threshold setting. The nonmonotonicities might also prove useful in assessing changes in 448 

model bias; if the model is unbiased in part of the value range but biased in another, this shift 449 

relative to the observations could be revealed in the nonmonotonic features of the STONE curve. 450 

Combined with a histogram or even fit-performance data-model comparison formulas for this 451 

subset of either the data or model values, the nature of this distribution can be explored.  452 

Why not just start out by calculating fit performance metrics on these subsets? The 453 

answer is because the subset of interest would not have been known; the STONE curve revealed 454 

the thresholds where the distribution had a changing or non-Gaussian distribution. That is, it 455 

could be used to optimize the fit performance analysis by identifying the subset of the data or 456 

model that should be considered in more detail. Also, the STONE curve includes information not 457 

just within a subset of the data (discrimination) or a subset of the model (reliability), but includes 458 

information about the entire data-model comparison set, because POD and POFD use all data-459 

model pairs in the point counting in the quadrants. For one of the specific examples in the 460 

manuscript: continuous metrics will tell the user very little about the SWMF’s ability to predict 461 

magnetic storms of -50 nT or less. A ROC curve is far more suited to this, and a STONE curve 462 

one step farther, revealing the ability of the model to predict Dst levels below any threshold 463 

(which could be accomplished by a large family of ROC curves). No continuous metric that does 464 

this type of assessment. If the detection of events is desired, then the STONE curve is an 465 

advantageous assessment tool in addition to standard continuous fit performance metrics. 466 

A useful follow-on study to this would be a detailed analysis of the features of the 467 

STONE curve to the underlying distribution of points in the data-model scatter plot. That is, by 468 

assuming known two-dimensional distributions of points of several different shapes and 469 

parameter settings, the connection between the distribution and the resulting features in the 470 

STONE curve can be isolated. The STONE curve features could also be put into perspective 471 
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relative to other event detection and fit performance metrics. Such an in-depth assessment of the 472 

STONE curve is beyond this initial description and illustrative usage of this metrics tool but is 473 

planned as a future project. 474 

A key feature of the STONE curve is that it reveals the threshold (or range of thresholds) 475 

for which the model does well at reproducing similarly-defined events in the data. A single ROC 476 

curve cannot do this because it uses a fixed threshold for identifying events in the observations. 477 

When the data are continuously-varying values and the model is seeking to reproduce these exact 478 

values, then it is useful to examine the event detection capability of the model at the same 479 

threshold settings between data and model. A single ROC curve doesn’t do this, except at one 480 

threshold setting. The STONE curve, therefore, is a better assessment tool for models that are 481 

trying to predict the exact value of a data set. 482 

The ROC is still a highly useful tool for event prediction and this study does not seek to 483 

replace it with the STONE curve. Indeed, the ROC curve is optimal for categorical data sets 484 

where the observations have been pre-classified as events and non-events. In this case, the 485 

STONE curve cannot be used because the data and model are on different scales, the former 486 

being a binary yes-no designation and the latter being either a real number range or its own 487 

categorical designation. The ROC curve can handle this difference in units while the STONE 488 

curve cannot. 489 

The two example data-model comparisons to which the STONE curve was applied are 490 

both from space physics. The first was an evaluation between a physics-based model of 491 

geospace, running in real time, with the real-time version of the Dst index, a measure of 492 

geospace activity (see its comparison with other similar indices in Katus & Liemohn (2013)). 493 

Many models exist for the prediction of Dst (see the review by Liemohn, McCollough, et al., 494 

2018), with some models doing exceptionally well at reproducing the observed time series. 495 

While this chosen model for this comparison is arguably the best physics-based model for 496 

reproducing Dst (see, for comparison, the solar cycle storm-interval Dst comparison of Liemohn 497 

& Jakowski (2008)), it is not the best model available at predicting this index. In fact, many 498 

empirical models are substantially better at capturing the storm intervals of Dst. The second 499 

example was a comparison of a physics-based model of energetic electron fluxes in the near-500 

Earth magnetosphere, running in real time, with real-time observations from a geosynchronous 501 

spacecraft. Magnetospheric charged particle fluxes are notoriously difficult to reproduce with 502 

physics-based modeling approaches (see, e.g., Morley et al., 2018), and even empirical models 503 

reduce the problem to remove the fast temporal dynamics, averaging over a day (e.g., Li, 2004) 504 

or an hour (e.g., Boynton et al., 2019). That is, these two examples represent state-of-the-art 505 

physics-based approaches to space weather nowcasting, but are not the best predictions of these 506 

two quantities across the field.  507 

It is worth stating here that there are many other metrics in existence for evaluating a 508 

scatter plot of data-model values like that shown in Figure 1. No one metric equation or 509 

technique does everything; each was designed to assess only a specific aspect of the relationship. 510 

That is, neither the ROC curve nor the STONE curve should be used as the sole assessment tool 511 

for a model against a particular data set. In practice, many metrics, from both the continuous fit-512 

performance grouping and from the categorical event-detection grouping, should be applied to 513 

examine the quality of the model from a number of perspectives. 514 
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It should be mentioned that this is not the first application of sliding both the 515 

observational and model event identification threshold. As one example of this, in their 516 

presentation and initial usage of the extreme dependency score (EDS), Stephenson et al. (2008) 517 

simultaneously moved both thresholds. Events become rarer with increasing threshold and that 518 

study examined the relationship of EDS as a function of this rarity – moving both thresholds 519 

together, as is done here for the STONE curve. 520 

A final note to make here is that this is not the first usage of the STONE curve. Both 521 

Liemohn, Ganushkina, et al. (2018) and Liemohn, McCollough, et al. (2018) used STONE 522 

curves in the plots labeled as ROC curves. It is clear that these panels are mislabeled because 523 

nonmonotonicities are seen in these lines. 524 

5. Conclusions 525 

A new data-model comparison assessment tool has been introduced, described, used, and 526 

interpreted – the sliding threshold of observations for numeric evaluation curve. Based on the 527 

relative operating characteristic curve, the STONE curve is created by plotting POD against 528 

POFD for a wide range of threshold settings. The main difference with the ROC curve is that the 529 

STONE curve requires the data to be continuous-valued real numbers and the model to be 530 

attempting to reproduce these exact values. The threshold is moved not only for the model, as is 531 

done for the ROC curve, but also for the observational event identification threshold setting, 532 

which is moved simultaneously with the model threshold setting. 533 

The STONE curve has many features in common with the ROC curve with one large 534 

exception – it can have nonmonotonicities in both the POD and POFD values. For the ROC 535 

curve, the points shift within the quadrants defining POD or within the quadrants used to define 536 

POFD, but not between these two mutually exclusive regions. The ROC curve is, therefore, 537 

always monotonic, sweeping from (1,1) to (0,0) in POFD-POD space. For the STONE curve, the 538 

motion of the observational threshold moves points from the POD regions to the POFD regions, 539 

allowing for these nonmonotonic features in the STONE curve. 540 

These wiggles and ripples, however, reveal information about the underlying distribution 541 

of points in the data-model scatter plot. Specifically, if the distribution is shifted, asymmetric, or 542 

bi-modal, the STONE curve will have a nonmonotonicity. Further investigation of the 543 

distribution, through a histogram, skew calculation, or other metric assessment, can reveal the 544 

true nature of the data-model comparison for this threshold setting. 545 

It is hoped that the STONE curve becomes a useful data-model comparison tool. It has 546 

been used with two space weather applications in this study but these are purely illustrative 547 

examples. A dozen studies using ROC curves across the Earth and space sciences were given in 548 

the Introduction above. Some of these studies were based on observations that were pre-549 

classified yes/no as events or not, and so the ROC curve is the proper tool for assessing the 550 

model’s ability to predict those events. Some of these studies, however, and others like them, are 551 

based on models trying to exactly predict the observed data values, in which case the STONE 552 

curve might be a useful assessment tool. For any continuous-valued model trying to reproduce 553 

the exact numbers of a continuous-valued data set, the STONE curve can be calculated, perhaps, 554 

as shown for the two examples here, revealing additional information about the data-model 555 

comparison than can be obtained from the ROC curve alone. The STONE curve is a general 556 

purpose metric for use whenever a model is trying to exactly reproduce a continuous-valued data 557 
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set. It can be used with both archival observations as well as for assessment of real-time 558 

nowcasting across the full breadth of science and engineering disciplines. 559 
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