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Abstract

Multi-compartment models have been playing a central role in modeling infectious disease
dynamics since the early 20th century. They are a class of mathematical models widely used for
describing the mechanism of an evolving epidemic. Integrated with certain sampling schemes,
such mechanistic models can be applied to analyze public health surveillance data, such as
assessing the effectiveness of preventive measures (e.g., social distancing and quarantine) and
forecasting disease spread patterns. This review begins with a nationwide macro mechanis-
tic model and related statistical analyses, including model specification, estimation, inference
and prediction. Then, it presents a community-level micro model that enables high-resolution
analyses of regional surveillance data to provide current and future risk information useful for
local government and residents to make decisions on reopenings of local business and personal
travels. R software and scripts are provided whenever appropriate to illustrate the numerical
detail of algorithms and calculations. The COVID-19 pandemic surveillance data from the state
of Michigan are used for the illustration throughout this paper.

Key Words: Antibody; cellular automaton; COVID-19; Markov chain Monte Carlo; risk predic-
tion; spatio-temporal model; state-space model.

1 Introduction

Coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) (World Health Organization, 2020), has become a global
pandemic that has spread swiftly across the world since its original outbreak in Hubei, China in
December 2020. As of June 27, 2020, this pandemic has caused a total of 9,801,572 confirmed cases
and 494,181 fatalities in more than 200 countries. Being one of the most lethal communicable infec-
tious diseases in human history, it is expected that the COVID-19 pandemic will continue spreading
in the world population, causing even higher numbers of infections and deaths in the future. With
no effective medical treatments or vaccines currently available, public health interventions such as
social distancing have been implemented in most of the countries to mitigate the spread of the
pandemic. One of the central tasks of statistical modeling is to provide a suitable risk prediction
model that enables both government and public health workers to evaluate the effectiveness of pub-
lic health policies and predict risk of COVID-19 infection at the national and regional levels. Such
information is valuable for governments to assess the preparedness of medical resources (PPEs and
ICU beds), to adjust various intervention policies, and to enforce the operation of social distancing.
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1.1 Building An Infectious Disease Model

Modeling for infectious diseases has a profound role in informing public health policy across the
world (Heesterbeek et al., 2015; Siettos and Russo, 2013). The outbreak of the COVID-19 pan-
demic in December, 2019 has led to a surge of interest in disease projection that ubiquitously relies
on mathematical and statistical models. A crucial step in modeling disease evolution is to cap-
ture key dynamics of the underlying disease transmission mechanisms from available public health
surveillance data, which enables reliable projection of disease infection into the future. A prediction
model may help us foresee some possible future epidemic/pandemic scenarios and learn consequent
impacts of current economic and personal sacrifices due to various control measures.

Due to both data quality and data limitations from public surveillance data systems, a statistical
model should take the following features into account in its design and development. First, a
statistical model should be able to make predictions and more importantly, to quantify prediction
uncertainties. Forecasting is known to be a notoriously hard task, which depends heavily on the
quality of data at hand and a certain model chosen to summarize the information from observed
data and then to reproduce information beyond the observational time period. The chosen model
is of critical importance to deliver prediction. This paper concerns a review of the family of
classical compartment-based infectious disease models, which have been the most widely used
mechanistic models to capture key features of infection dynamics. We begin with the most basic
Susceptible-Infectious-Removed (SIR) model to build up the framework (Section 2), and this three-
compartment model is then generalized to have more compartments to embrace additional features
of infection dynamics (Section 3), such as the well-known four-compartment model, Susceptible-
Exposed-Infectious-Removed (SEIR) model, which takes the incubation period of contagion into
account. Given many types of factors potentially influencing the evolution of an epidemic, a single
prediction value is insufficient to be trustworthy unless prediction uncertainty is reported as part of
forecast analysis. Quantification of prediction uncertainty is of critical importance, especially when
a forecast is made at an early phase of an epidemic with little data. Building sampling variations
in infectious disease models makes a statistical modeling approach different from a mathematical
modeling approach. A clear advantage of a statistical model is that the model parameters, including
those in the mechanistic model, can be estimated, rather than being specified by certain subjectively
chosen prior information.

Second, the consideration of building sampling uncertainties in the modeling of infectious disease
is a fundamental difference of a statistical modeling approach from a mechanistic modeling approach
known in the mathematical literature of dynamic systems. A mechanistic model is typically gov-
erned by a system of ordinary differential equations, such as the existing three-compartment SIR
model consisting of three differential equations, which explicitly specifies the underlying mecha-
nisms of an epidemic. This model is assumed to govern an operational system of disease contagion
and recovery or death, which, in reality, cannot be directly observed. Most of the time, public
surveillance data are accessible, which represent only a few snapshots of the underlying latent
mechanistic system of an epidemic. Such gaps may be addressed by a statistical model that incor-
porates sampling schemes to explain how observed data are collected from the underlying infection
dynamics. In turn, prediction uncertainty will reflect forms and procedures of the chosen sampling
schemes specified in the statistical model. In this paper (Section 5.1), we will introduce the state-
space model as a natural and effective modeling framework to integrate the mechanistic model and
sampling schemes seamlessly.

Third, given the scarcity of the available data in public health surveillance systems, the com-
plexity of a model used for prediction should be aligned with the issue of parameter identifiability.
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For example, at the beginning of an outbreak, one should consider a simple model, which may
be expanded over the course of an epidemic’s evolution with increased data availability. To make
the specified model useful to answer a certain question of practical importance, a relevant feature
should be included in the model building. For example, in the study of control measures to mitigate
the COVID-19 spread, the model specification should incorporate a structure that is sensitive to
the influence of a preventive policy. In Section 5.2, we will introduce an expansion of the basic
SIR model in that time-varying control measures are allowed to enter. The flexibility of permitting
certain modifications is an important property of a model to be considered in an infectious disease
model. In this field, all models need to be tailored with increased data and more knowledge from
the literature as a disease evolves over time. From this point of view, compartment-based models
are superior to other models because, for example, it is easy to add other compartments, such
as an exposure compartment, a quarantine compartment, or a self-immunization compartment, to
improve the mechanistic model, to answer specific question of practical importance, and to capture
distinctive data features for better prediction.

Fourth, as the epidemic evolves further, surveillance data become abundant and have higher
resolution. For example, in the US, the numbers of confirmed symptomatic COVID-19 cases and
case fatalities are recorded for each county. The average county population size in the US is
approximately 98,000, so a micro infectious model may be built upon county-level surveillance
data to make high-resolution prediction and to assess the effectiveness of control measures at a
community level. This paper (Section 6) will discuss this important extension of the classical
SIR model, essentially a temporal model, to a spatio-temporal model that enables borrowing of
information from different spatially correlated counties in the improvement of risk prediction. This
exemplary model generalization sets up an illustration from a nation-level macro model to a county-
level micro model. The latter is more relevant and useful for local governments to make decisions
of business reopenings and for residents to be aware of local infection risk.

Last, to make research findings transparent and to place resulting toolboxes into the hands
of practitioners, an open source software package must be a deliverable. This is indeed a rather
demanding task, as the ease of implementation and numerical stability impact the choice of statis-
tical models and statistical methods for estimation and prediction. Note that not every statistical
model permits delivery of a user friendly computing package that is general and flexible enough
to handle various types of data. In this paper we focus on the discussion of Markov chain Monte
Carlo methods that have been developed in the literature to perform estimation and prediction for
state-space models (Section 5.3).

In this paper we invite the readers on a journey of surveillance data, modeling, estimation and
prediction, implementation and software development. After reading this paper, one should be able
to use existing compartment-based models or to expand them in a study of an infectious disease
epidemic, to improve estimation and/or prediction methods, or create one’s own software. It is our
hope that this paper may pave the path to learning, practicing, or developing new methodologies
that are useful for a broader range of infectious disease modeling problems.

1.2 Mechanistic Modeling Approach

Multi-compartment models have been the workhorse for modeling infectious diseases since the early
20th century. They are a class of mathematical models used for describing the evolution of masses
(in unit of proportions or counts) among the compartments of a varying system, with broad use
cases in epidemiology, physics, engineering and information science. This is a dynamic system that
is typically represented by a system of ordinary differential equations (ODEs) with respect to time,
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and, given a starting condition, the mass in each of the components is regulated by a function over
time. An ODE is a simple mathematical model to depict a trajectory of a functional trend. One
of such examples used extensively in epidemiology is an exponential growth function, fptq “ et,

which may be viewed as a solution to an ODE of the form: dfptq
dt “ fptq, or dy

dt “ y where y is a
function of time t, which obviously is y “ fptq “ et with an initial condition fp0q “ 1. It is worth
pointing out that this simple ODE explicitly characterizes the rate of change (speed or velocity)
for function y “ fptq, rather than directly specifying a form for the function fptq itself. Such rate-
based characterization is termed as “dynamics” in the mathematical literature. Clearly, this ODE
is not a statistical model as it does not provide a law of data generation; in other words, there is
no randomness in this ODE to reflect sampling uncertainties. A typical multi-compartment model
consists of several ODEs for a vector of rates that are linked each other. This is referred to as a
dynamic system. The forms of ODEs are specified according to relevant scientific knowledge about
the understanding of the underlying dynamic mechanism related to an infectious disease.

In the context of infectious disease modeling, the Susceptible-Infectious-Removed (SIR) model
is the most basic three-compartment dynamic system that describes an epidemiological mechanism
of disease evolution over time; see Figure 1. In brief, the model describes the flow of infection
states or conditions by (i) moving susceptible individuals to the infectious compartment through
a transmission process (the first arrow), and (ii) moving infectious individuals to the removed
compartment (either dead or recovered) through a removal process (the second arrow). At a given
time, the total population N under a study is partitioned into the three compartments, denoted
by S, I,R, and their sizes satisfying S ` I `R “ N . With a slight abuse of notation, this notation
denotes either the type of compartment or the size of compartment, whichever is applicable in
a given context. In other words, S, I,R are used to denote the sizes of the mutually exclusive
subpopulations of susceptible, infectious and removed individuals, respectively. This compositional
constraint, i.e., S ` I ` R “ N , may be interpreted in a term of probability (or proportion) as
follows: at a given time, an individual in the population is either at risk (susceptible), or under
infection by a virus (infectious), or removed from the infectious system due to recovery or death;
that is, θS ` θI ` θR “ 1, where θS , θI , θR are, respectively, the probabilities of being susceptible,
infectious and removed. This presents the primary constraint for a multi-compartment infectious
disease model. More details of the SIR model will be described in Section 2.

Susceptible (S) Infectious (I) Removed (R)

Figure 1: Dynamic system of the basic 3-compartment SIR model.

Often times, the interest for such system lies in the function values over time, but the closed-form
analytical solution for such functions may not exist. For example, to answer the question of how
many individuals will be infected with the COVID-19 by the end of the year, 2020 (or any future
time) requires to know a calculator that computes the cumulative numbers of susceptible, infected
and removed cases over time from the past to the future. Unfortunately, in reality functions rele-
vant to this calculator are usually nonlinear, and their exact forms are difficult to directly specify.
In contrast, a set of ODEs helps better understand the disease transmission dynamics (i.e., traits of
infectious diseases) and more conveniently captures their key features, where each ODE may corre-
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spond to one mode of disease evolution. Such ODEs for disease spread may be regarded as a model
for the expected dynamic mechanism, serving as a systematic component in a statistical model.
Numerical methods such as the Euler discretization method or the Runge–Kutta approximation
method (Stoer and Bulirsch, 2013; Butcher, 2016) can be used to obtain approximate solutions of
such ODEs with given boundary conditions. Regardless of methods used, solutions to a dynamic
system are deterministic functions. We illustrate a basic mechanistic model of disease spread below.
Additional review from deterministic and mathematical perspectives of multi-compartment models
is given by Anderson et al. (1992) and Hethcote (2000).

Example 1. Consider the SIR model for a hypothetical population with a constant population
of N “ 100 residents and an initial condition of 99 susceptible individuals, 1 infectious individual
and 0 individual removed (either died or recovered). Here 100 subjects may be also regarded as
100% if the unit of proportion is used in the interpretation. The transitions between compartments,
written in ODEs as in (1), represent population movement from one compartment to another (see
Figure 1). We consider an example with β “ 0.5 (a rate of moving from S to I) and γ “ 0.2 (a rate
of moving from I to R), leading to R0 “ β{γ “ 2.5. Here R0 is the so-called basic reproduction
number that quantifies an average number of susceptible individuals contracting a virus from one
contagious person in an environment of no preventive measures. This is a quite infectious scenario
as we will see later. The R script below shows a scenario of obtaining the solution to the system
of ODEs by standard ODE solvers (R package deSolve) using the first-order Euler method (not
shown) or the Runge–Kutta fourth order approximation (RK4) method (Figure 2). Details about
the RK4 method can be found in Appendix A.1.

library(deSolve)

initial <- c(S = 99, I = 1, R = 0) # initial conditions

times <- 0:100 # time steps, 100 days

params <- c(beta = 0.5, gamma = 0.2, N = 100) # model parameters

SIR <- function(t, y, params){

with(as.list(c(params, y)), {

dS <- -beta * S * I / N

dI <- beta * S * I / N - gamma * I

dR <- gamma * I

list(c(dS, dI, dR))

})

}

out.rk4 <- rk4(initial, times, SIR, params) # use euler() for Euler method

plot(out.rk4, ylim = c(0, 100), mfrow = NULL)

As shown in Figure 2, on each of these 100 days, the sum of the three values from the three
curves is always equal to 100, presenting a time-varying redistribution of the 100 individuals.
With no control measures in this hypothetical infection dynamics, the susceptible compartment
quickly drops and reaches an equilibrium state after 35 days of the outbreak, and during the period
of first 35 days, the infectious compartment increases to a peak and then decreases to zero (no
contagious individuals in the population) as all currently infected individuals move to the removed
compartment, which is the exit of the system.
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Figure 2: Solution to the ODEs of the basic SIR model by RK4.

Despite relying on a valid infectious diseases mechanism, deterministic approaches have several
drawbacks: (i) the actual population in each compartment at a given time is never accurately
measured since we only get an observation around the mean; (ii) the nature of disease transmis-
sion and recovery is stochastic on the individual-level and thus never certain; (iii) without random
component in the model it is neither possible to learn model parameters (e.g., R0) from available
data nor to assess prediction uncertainty. The latter is of critical importance given many unob-
served and uncontrolled factors in surveillance data collection. In an early stage of the current
COVID-19 pandemic, the daily infection and death counts reported by health agencies are highly
influenced by the availability of testing kits, reporting delays, reporting and attribution schemes,
and under-ascertainment of mild cases in public health surveillance databases (see discussions in
Angelopoulos et al. (2020) and Banerjee et al. (2020)); both disease transmission rate and time to
recovery or death are also highly uncertain and vary by population density, demographic compo-
sition, regional contact network structure, and nonuniform mitigation schemes (Ray et al., 2020).
Hence, statistical extensions are necessary to incorporate sampling uncertainty in estimation and
inference for infectious disease models.

1.3 Organization

The main focus of this paper will be given to a statistical modeling framework based on a class of
state-space models, in which the systematic component is specified by multi-compartment infectious
disease models while the random component is governed by a certain sampling distribution of
surveillance data. Note that multi-compartment infections disease models present a class of classical
mechanistic models widely used in practice, and that incorporating certain sampling distributions
allows to make statistical estimation, inference and prediction with quantification of uncertainties.
We organize the paper as follows.

In the first part of the part, we introduce a class of macro models. We begin with the most
basic SIR mechanistic model in details, followed by some important extensions used to address
representative scenarios of disease spread and infection evolution. Examples include Susceptible-
Exposed-Infectious-Removed (SEIR) model with an additional compartment of exposure accounting
for potential incubation period of infection, and Susceptible-Antibody-Infectious-Removed (SAIR)
model with an additional compartment of antibody accounting for potential self-immunization
after being infected. Then, we formally introduce the framework of state-space models, a powerful
statistical modeling approach that aims to model available surveillance data from public health
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databases with the utility of the underlying latent mechanistic model.
In the second part of paper, we introduce a class of micro models. When an epidemic continues,

data become abundant and of high resolution at community level. For example, the surveillance
data of the COVID-19 pandemic in the US are collected from individual counties. This allows
building county-level micro infectious models in addition to country- or state-level macro models.
Being a certain subgroup analysis, such micro modeling is appealing to address spatial hetero-
geneity across the more than three thousand counties in the US, and consequently improves the
prediction accuracy. As far as the spatial modeling of infection dynamics concerns, we review the
classical cellular automata (CA) that is extensively used to describe person-to-person interacting
rules associated with epidemic spreading patterns in a population via relevant inter-location con-
nectivity functions. This CA may vary spatially and temporally, which presents a principled way
to extend a state-level macro infectious disease model to a stratified micro infectious model. In
addition to the case of geographic subgroups, other types of subgroups by, for example, age, race,
income, political party and economy, are also of interest.

Our main objective of this paper is to introduce to readers the basics of infectious disease models,
underlying modeling assumptions, statistical analyses, and possible extensions. Examples will be
provided for demonstration purposes. This review targets readers who have had some statistical
training but no prior experience in infectious disease modeling.

2 Basic Three-Compartment Models

The first infectious disease model (McKendrick, 1925; Kermack and McKendrick, 1927) is widely
known as the Susceptible-Infectious-Removed model, or in short the SIR model; see Figure 1. It is
a three-compartment model for studying how infectious diseases evolve over time on the population
level. It defines a mechanism of disease transmission and recovery for a population at risk by a
dynamic system of three disjoint states: susceptible, infectious and removed. We note an important
distinction between infectious and infected individuals. Infectious individuals are those who are
currently infected and not yet recovered or dead (currently infected individuals become infectious
immediately in the SIR model, although it may not be true in reality; see the SEIR model in
Section 3 where currently infected individuals become infectious with a delay in time), whereas
infected individuals could mean only currently infected or both currently and previously infected.
For clarity, we will refer to currently infected as infectious so that the three states in the SIR
model are mutually exclusive. Individuals in the susceptible state are not immunized and can
become infected by coming into contact with infectious cases, so they are at risk at a given time.
Individuals in the infectious state contribute to the transmission of the disease until they ultimately
recover or die, so they are contagious. Individuals in the removed state include those who either
recover or die (without distinction). This is an exit from the infection system, meaning that once
an individual leaves this system (recovers or dies) he or she would never return to the system. This
is true for people who die from the virus, but may not be the case for recovered individuals. Thus,
in the SIR model there is a technical assumption that a recovered individual would become self-
immunized to the virus and no longer impact the disease transmission. A possible way to relax this
assumption is to create two separate compartments corresponding to recovery and death states,
respectively, leading to a four-compartment infectious disease model. To make our presentation
focused on the basic three-compartment model, here we make this self-immunization assumption
in this section.

Given what we said above, the current version of SIR is only applicable for diseases where
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long-term immunity can be developed, and does not apply to recurring infectious diseases, such as
the common cold. This is because the disease transmission rate is set as a constant in SIR. In this
section, we introduce the SIR model in its basic deterministic form (Section 2.1), define reproduction
numbers (Section 2.2), elaborate its assumptions (Section 2.3) and properties (Section 2.4), and
some technical extensions to the basic SIR model. Mechanistic extensions, such as modifications
to the three-compartment SIR model to account for additional components or disease mechanism,
are discussed in Section 3.

2.1 Specification of SIR

We use Sptq, Iptq, Rptq to denote the time-course subpopulation sizes (i.e., the number of individuals)
distributed into each of the three compartments at a given time t, where t is continuous. Clearly,
Sptq ` Iptq `Rptq “ N, t ě 0 where N is the total population size, which is a fixed constant. The
starting time is denoted as t “ 0. The rates of change among these subpopulations are represented
by a system of ordinary differential equations (ODEs):

dSptq

dt
“ ´β

SptqIptq

N
,

dIptq

dt
“ β

SptqIptq

N
´ γIptq,

dRptq

dt
“ γIptq,

(1)

with β ě 0 and γ ě 0 and initial conditions Sp0q ą 0, Ip0q ą 0, Rp0q ě 0 and Sp0q`Ip0q`Rp0q “ N .
Because at a given time t, the constraint Sptq ` Iptq ` Rptq “ N implies dSptq{dt ` dIptq{dt `
dRptq{dt “ 0, which is satisfied by the above SIR in equation (1), these three ODEs define a dynamic
system of three deterministic functional trajectories over time, including the susceptible trajectory
Sptq, the infectious trajectory Iptq and the recovered trajectory Rptq for t ě 0. This SIR dynamic
system is well-posed in the sense that nonnegative initial conditions lead to nonnegative solutions
of the three functional trajectories. These trajectories collectively demonstrate the evolutionary
mechanism of an infectious disease.

The SIR dynamic system in (1) may be interpreted as follows. Let us consider events occurring
instantaneously at time t. In the first ODE, the ratio Iptq{N represents the proportion of contagious
individuals in the population, which may be thought of as a chance that a person in the at-risk
population may run into a virus carrier. If each individual at risk has an independent chance to
meet a contagious person, then, according to the binomial distribution, the expected number of
susceptible individuals contracting the virus is SptqIptq{N . In reality, a person at risk may run into
β (say, 2) contagious individuals, leading to a modified chance βIptq{N . Thus, instantaneously at
time t, the system gains an additional number of infected cases equal to βSptqIptq{N , and these
cases will leave the susceptible compartment to enter the infectious compartment. Such loss to
Sptq is attributed to the negative sign in the first equation. In the second ODE, the first term is
the number of new arrivals of contagious individuals and the second term is the loss of contagious
individuals at a rate γ who either recover or die and then enter the removed compartment. The
third ODE is based on an absorbed compartment that always accumulates with new arrivals with
no departure cases. In the literature, the transition rate γ represents the fraction of the infectious
population that exits the infectious system per unit time. For example, γ “ 0.2 means that the
infection compartment will decay (or infectious individuals being recovered or dead) at an average
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rate 20%. In other words, 1{γ describes the expected duration (5 days for γ “ 0.5) over which an
individual stays infectious under the exponential distribution of time for his or her sojourn.

Variations of the form in (1) are often seen in the literature. Among those, the most important
SIR specification is given as follows. Due to the fact that the total population N remains constant
over the duration of infection, by dividing both sides of the ordinary differential equations by
N , the rates of change in terms of population proportions can be derived, without changing the
interpretation of β and γ. That is,

dθSptq

dt
“ ´βθSptqθIptq,

dθIptq

dt
“ βθSptqθIptq ´ γθIptq,

dθRptq

dt
“ γθIptq,

(2)

where θSptq, θIptq, θRptq are the probabilities (or proportions) of being susceptible, infectious and
removed at time t, respectively. Here the probability of being infectious θIptq is also known as the
prevalence of disease in the epidemiology literature. See for example Osthus et al. (2017); Wang
et al. (2020), among others. A clear advantage of this alternative form of the SIR model (2) is that
all quantities in the model are adjusted by the population size (which may be allowed to vary in
this model formulation), so results obtained from the analyses of data from multiple populations
with the SIR model are comparable.

Another formulation of the SIR model is presented as dSptq{dt “ ´βSptqIptq, dIptq{dt “
βSptqIptq ´ γIptq, dRptq{dt “ γIptq, where the population size N is implicitly absorbed into the
parameter of disease transmission rate β, which may be interpreted as a per capita effective con-
tact in proportion to the population. See for example Johnson and McQuarrie (2009). Despite the
differences in notations and presentations, they convey the same infection mechanism, but inter-
pretations need to be given accordingly. Although we use these model specifications exchangeably
in this paper, the form given in (2) is recommended to conduct practical studies.

2.2 Reproduction Numbers

Based on the two parameters β and γ in an SIR model, the ratio R0 “ β{γ is termed as the
basic reproduction number, which captures the expected number of new individuals who directly
contract the virus from one contagious individual in an environment with no preventive measures.
Intuitively, it is a product of the infection rate β and the infectious duration 1{γ. The basic
reproduction number R0 does not depend on the distribution of people over the three compartments,
and presents a key appealing disease characteristic for describing and comparing across infectious
diseases; see for example, Chowell et al. (2004); Ferguson et al. (2006); Khan et al. (2015); Liu
et al. (2020). An epidemic is expected to occur when R0 ą 1, or to disappear when R0 ă 1.
This is because in the SIR model (1), at the condition of Sptq{N « 1 the former is equivalent to
β ą γ, leading to dIptq{dt « pβ ´ γqIptq ą 0, while the latter implies dIptq{dt ă 0. The above
interpretation of R0 relies on an implicit assumption that all contacts with a contagious individual
are susceptible, which contrasts with the effective reproductive number.

The effective reproductive number is defined as Reptq “ R0
Sptq
N . It represents the expected

number of newly infected individuals who contract the virus directly from a contagious individual
at time t, given that each susceptible individual has a chance of Sptq{N to meet this contagious
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individual. This is not to be confused with the notation Rptq, the removed population. In the early
outbreak of an infectious disease in a large population, Reptq « R0 since Sptq{N « 1. In contrast to
R0, which is only descriptive of the disease itself (or the progression of disease near time 0), Reptq
reflects the progression of the infectious disease in a population at any given time because it directs
the sign of dIptq{dt corresponding to acceleration or deceleration of the infection dynamics. This
may be seen by the second order derivative d2Iptq{d2t; a time, say t˚, at which d2Ipt˚q{d2t “ 0
or the rate dIpt˚q{dt reaches a peak, is referred to as a turning point (see the peak in the middle
panel of Figure 2). Hence, R0 is of most interest during the early phase of an epidemic, whereas
Reptq is of most interest later on during the controlling phases of an epidemic. For example, the
so-called “herd immunity” is the natural immunity developed when an epidemic reaches Reptq ă 1.
In other words, without interventions, it requires the proportion of susceptible individuals to be no
more than 1{R0, or the combined proportion of infectious and recovered to be at least 1´ 1{R0 in
order to contain the spread. As another example, if an effective vaccine becomes available at time
t̃ ą 0, knowing Rept̃q allows us to estimate the remaining proportion of population that needs to be
vaccinated in order to control the epidemic (i.e., for achieving Reptq ă 1). Figure 3 shows that the
effective reproductive number Reptq for Example 1 decreases as the group of susceptible individuals,
Sptq, shrinks over time, eventually reaching below the threshold of 1 at time 19. The value at time
0 is R0 “ Rep0q “ 2.5, while Rep19q “ 1. The time of reaching this threshold also marks a special
time of interest – when the number of active contagious individuals starts decreasing at time 19
after reaching its maximum, as shown in the middle panel of Figure 2.
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Figure 3: Effective reproductive number over time for Example 1.

2.3 Assumptions and Constraints in the SIR Model

Like every mathematical model, there are some assumptions and constraints such as boundary
conditions that the SIR model needs to satisfy. These restrictions define the circumstances where
the SIR model may be appropriate to use in practice. Although some of them have been mentioned
above, for the sake of self-contained summarization, we list all key assumptions below.
Assumption 1: The population involved in the infection is closed with no additions or leakage
of individuals, and the size of the population is fixed, say, N . This assumption may be satisfied
by an epidemic that is rapid and short lived, during which disease evolution is not affected or is
minimally affected by vital changes (e.g., natural births or deaths) and migration (i.e., immigration
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and emigration). Technically speaking, the three compartments satisfy the condition of the form:

dSptq

dt
`

dIptq

dt
`

dRptq

dt
“ 0, or

dθSptq

dt
`

dθIptq

dt
`

dθRptq

dt
“ 0, t ě 0.

Assumption 2: Individuals in the population meet each other randomly in that both probability
and degree of interactions with one another remain constant over time, regardless of geographic
and demographic factors. This is a strong assumption of homogeneity for the SIR dynamic system
that is governed by the same transmission and recovery parameters β and γ. In practice, such a
homogeneity assumption may be easily violated. Thus, modeling with heterogeneous dynamics of
infection is an important and active research area in the literature on infectious diseases.
Assumption 3: One susceptible individual can only develop immunity (or self-immunization with
antibody against the virus) through infection (i.e., no vaccination). In other words, as shown in
Figure 1, the infectious compartment is the only exit of the susceptible compartment, and there
is no other state to which an at-risk individual would move next. Once recovered from infection,
one becomes immune to the virus for the remainder of the study period and would not return to
be susceptible again. In effect, this is a rigorous definition of recovered case in the SIR model.
From a view of the graphic representation in Figure 1, this implies that there is no connection
from the removed compartment to the susceptible compartment, or in other words the removed
compartment is the terminal state of the infection dynamics. It is worth pointing out that to date
the validity of this assumption for the COVID-19 pandemic remains unknown. In the literature
this condition is assumed for a certain period of time over which risk prediction is considered.
Assumption 4: The infection has zero latent period in that one becomes infectious once exposed.
This is a key distinction of the SIR model from the SEIR model. Like many infectious diseases,
the COVID-19 has a reported average incubation period of between four and seven days (Li et al.,
2020; Pan et al., 2020), which adds some additional complexity in the modeling of infectious disease
dynamics. As a matter of fact, this latency of contagion is really the timing of being contagious,
and not that of being symptomatic. Some studies have found that COVID-19 carriers are most
contagious in the early phase of illness prior to the occurrence of noticeable clinical symptoms (Ip
et al., 2017; He et al., 2020). Given these findings, it is tricky to see how the compartment of
exposure for incubation would be added to extend the SIR model for the COVID-19 pandemic.
Assumption 5: Since the SIR model has constant transmission and recovery parameters β and γ,
which are not time-varying, the underlying infection is assumed to evolve in fully neutral environ-
ments with no mitigation efforts via external interventions such as a public health policy of social
distancing, effective medication or fast testing kits for diagnosis. As far as the COVID-19 pandemic
is concerned, this is the biggest restriction of the SIR model, which is not reflective of the reality –
almost all countries with reported COVID-19 cases have issued various nonpharmacologic control
measures. Many researchers have proposed solutions to overcome this unrealistic assumption of the
SIR model in the analysis of COVID-19 data; see for example, Wang et al. (2020).
Assumption 6: The population size N is large enough to have enough number of incidences,
including the number of infections, the number of deaths and the number of recovered cases and
so on, so that the SIR model parameters can be stably estimated with high precision. Technically
speaking, this is not a model assumption but a condition of sample size for statistical power.
Because this mechanistic model will ultimately be used for risk projection, a well-trained model
with reliable data is necessary to not only produce an accurate prediction but also to adequately
assess the prediction uncertainty.

Although these six assumptions specifically concern the SIR model, most of these discussions
or associated insights are useful to understand the restrictions of SIR model extensions that will
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be presented in the remaining sections. Knowing possible violations of a certain restriction on a
multi-compartment model in data analyses gives rise to potential new research problems for further
investigation.

2.4 Properties of the SIR Model

To further understand the mechanism of infection governed by the SIR model, we now give a brief
summary of its analytic properties that provide useful guidelines for us to build statistical models
and methods to learn the SIR model from available surveillance data from public health databases.
Property 1: Strictly speaking, the size of each component population of Sptq, Iptq and Rptq is
integer-valued, however they are treated as continuous valued. This slight technical drawback
vanishes when the probabilities θSptq, θIptq and θRptq are used in the SIR model in (2). More
importantly, although the dynamic system defined by the SIR model is continuous over time,
available surveillance data are reported at discretized measurements over discretized time points.
For example, most of the COVID-19 public databases update data on a daily basis, in which “a
day” is the unit of time for measurement. Knowing this discrepancy between the continuous time
underlying mechanistic model and the sampling frequency at discrete times for available data is
essential to create a statistical framework to link the SIR model with the data at hand.
Property 2: The SIR model is deterministic and does not contain any probabilistic components.
It is noteworthy that dynamics and stochasticity are two different mathematical properties; a
dynamic system (e.g., the SIR model) is not necessarily stochastic, while a stochastic system is not
necessarily dynamic. As shown in Figure 2, the compartment sizes Sptq, Iptq and Rptq are time-
varying functions with no random fluctuations, which are completely determined by the model
parameters and the initial conditions of the SIR model. Obviously, this is a limitation of the SIR
model when it is applied for data analysis, where data collection is subject to profuse uncertainties
and random errors.
Property 3: It is easy to show that the number of individuals at risk (in the entry of the system),
Sptq, is monotonically non-increasing, and that the number of removed cases (at the exit of the
system), Rptq, is monotonically non-decreasing; see Figure 2. Hence, the total number of individuals
who have been exposed to a virus is equal to N ´ Sptq “ Iptq ` Rptq, which is monotonically
non-decreasing. Iptq, the number of active contagious cases, or the difference between the two
groups of the exposed cases and the recovered cases, can be either increasing or decreasing. The
middle panel of Figure 2 nicely conveys such directionality of movements, in which the time of
Iptq reaching the peak and the time of Iptq reducing to zero are two important turning points of
interest in epidemiology. The former indicates the turning point of disease mitigation and the latter
corresponds to the turning point of disease containment.
Property 4: It can be shown that Ip8q “ 0 (or equivalently, θIp8q “ 0), meaning that the
disease will eventually die out. This is because when tÑ8, the rate of prevalence θIptq, given by
pβθSptq´γq in (2), will become negative at a certain time and then become more and more negative
until converging to zero since θSptq is a decreasing function and θIptq is bounded below by zero.
However, this property of decaying to zero is conditional on the assumptions listed above. Violation
of Assumptions 1 and 3 are most likely to cause a disease to persist because the monotonicity of
Sptq used in the above argument is no longer valid. An example of such diseases includes seasonal
influenza, where immunity does not last long.
Property 5: The SIR model has a recursive property in that at any given time, disease progression
(i.e., shapes of the three functions) is only dependent on their current values, and not on other
information from the past. This property of recursion should not be confused with the Markov
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property that has exclusively used in the literature of stochastic processes under the conditional
probability law. Here there is no probability law involved in the recursive operation, which is indeed
a fully deterministic recursion. Such conceptual distinction may help understand the differences
between dynamics and stochasticity.

2.5 Extension I: SIR with Time-Varying Transmission Rate

During an epidemic, various control measures are typically issued by governments to mitigate or
contain the spread of the disease. A direct impact of these external interventions is that both the
transmission and recovery rates are no longer constant over time. Thus, an important generaliza-
tion of the SIR model is to accommodate different degrees of mitigation policies, including social
distancing, limiting transportation, mandatory mask wearing, city lockdown, and so on. As ob-
served in the ongoing COVID-19 pandemic, mitigation strategies are changing over time. Limiting
mobility of susceptible individuals and medically isolating contagious individuals in the population
would reduce the rate of contracting virus, leading to a decreasing disease transmission rate βptq.
At the same time, gaining better knowledge on both treatment and self-management of symptoms
and improving medical resources may increase the rate of recovery γptq over the course of an epi-
demic. Incorporating time-varying parameters into the SIR model leads to an important extension
of the basic SIR model (1):

dSptq

dt
“ ´βptq

SptqIptq

N
,

dIptq

dt
“ βptq

SptqIptq

N
´ γptqIptq,

dRptq

dt
“ γptqIptq.

(3)

The form of βptq can be specified mainly in two ways. One is to let βptq be either a parametric
function (e.g., exponential decaying function) or a nonparametric function (Smirnova et al., 2019;
Sun et al., 2020), both of which may be estimated from available data. One useful feature for
the use of a parametric function of βptq is to incorporate seasonality in the transmission rate. It
is well-known that many infectious diseases spread most quickly in some of the winter months.
Especially, respiratory infectious diseases caused by some coronaviruses exhibit seasonal behaviors
that are consistent with the trends of temperature and humidity (Barreca and Shimshack, 2012;
Sajadi et al., 2020). Accounting for such seasonal periodicity in the model would produce a better
long-term prediction of an epidemic. As the public attention for COVID-19 pandemic projection
gradually shifts from the short-term to the long-term, it becomes increasingly important to take
seasonality into account. Following Dietz (1976), a simple way to introduce seasonality is to assume
that the transmission rate β fluctuates over the period of a year:

βptq “ β0

"

1` σ cos

ˆ

2π
t´ ζ

365

˙*

, t “ 1, . . . , 365,

where β0 is the average contact rate, σ P r0, 1s is the degree of seasonality with σ “ 0 reducing
the model to the basic SIR model, and ζ P r0, 365q is the offset in time horizon so that peak
transmission occurs at t “ ζ. Other periodic functions or their combinations can also be used to
model seasonality.

As an alternative to a fully nonparametric function, Wang et al. (2020) assume a form βptq “
βπptq, 0 ă πptq ď 1, where πptq is a known function specified according to given control measures.
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This specification allows us to assess the effectiveness of a target preventive measure, as well as
to compare different preventive strategies. Clearly, the model with πptq ” 1 represents disease
progression in the absence of any mitigation effort, which sets up the baseline situation in the
policy assessment and comparison. The flexibility in specifying πptq allows easy incorporation of
future business reopening events; for example, in the COVID-19 pandemic, this function may be
specified as a U-shaped curve in that control measures (e.g., social distancing) gradually relax after
a certain time point. See more details from Wang et al. (2020) and some numerical results of the
COVID-19 data analysis. More discussions on the time-varying transmission rate are given under
Application I in Section 5.5.

2.6 Extension II: SIR with Vital Dynamics

The assumption of a fixed population size is restrictive, especially when an epidemic remains for
a long period of time before it is contained. In this setting, inclusion of natural birth and death
dynamics is needed to adequately characterize the time-varying size of each compartment in the
SIR model. First, let µ be the natural birth rate and let ν be the natural death rate. So, the
population size will change according to the ODE of the form dNptq

dt “ µNptq´ νNptq. In this case,
there are three exits for natural deaths, each occurring at one compartment. An extension of the
basic SIR model is given as follows:

dSptq

dt
“ µNptq ´ β

SptqIptq

Nptq
´ νSptq,

dIptq

dt
“ β

SptqIptq

Nptq
´ γIptq ´ νIptq,

dRptq

dt
“ γIptq ´ νRptq.

Noting that Sptq`Iptq`Rptq “ Nptq, we obtain that dSptq
dt `

dIptq
dt `

dRptq
dt “ µNptq´νNptq “ dNptq

dt , as
desired. Note that when model (2) is used, Nptq will be automatically absorbed into the proportions,
and thus no longer appears in the model formulation.

3 Multi-Compartment Mechanistic Models

In this section, we review several four-compartment mechanistic models as extensions of the basic
SIR model introduced in Section 2. Being a simple version of a mechanistic model with three
compartments, the SIR model has some limitations in real-world applications. Thus, extensions
of this basic type to account for different disease mechanisms and assumptions have been widely
considered in the literature.

3.1 SEIR: An Extension with Exposure Compartment

The commonly studied Susceptible-Exposed-Infectious-Removed (SEIR) model takes into account
an incubation period by adding an exposed compartment in between susceptible and infectious
compartments; see Figure 4. The underlying assumption here is that individuals in this exposure
subpopulation have contracted the virus but are not yet contagious and are bound to become
contagious. In the current literature, most infectious diseases that are suitable for the SIR model
are believed to fit in the SEIR model. The exposed compartment may be regarded as a waiting
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room for virus carriers who are about to spread the virus in the population. Let δ be the rate
for an exposed individual becoming contagious. Then, the basic SIR model can be extended to a
4-compartment model consisting of the following four ODEs:

dSptq

dt
“ ´β

SptqIptq

N
,

dEptq

dt
“ β

SptqIptq

N
´ δEptq,

dIptq

dt
“ δEptq ´ γIptq,

dRptq

dt
“ γIptq,

(4)

where Eptq is the size of the exposed compartment at time t. In this case, the compositional
constraint becomes Sptq`Eptq`Iptq`Rptq “ N , and with N being fixed over time, it implies that
dSptq
dt `

dEptq
dt `

dIptq
dt `

dRptq
dt “ 0. This constraint is clearly satisfied by the SEIR dynamic system

defined in (4). Let θEptq be the probability (or proportion) of being exposed to the virus. Then,
the rates based SIR model (2) can similarly be extended from the model (4) above.

Exposed (E) Infectious (I) Removed (R)Susceptible (S)

Figure 4: Flow of infection states in the 4-compartment SEIR model.

Technically, the SEIR model often suffers from the issue of parameter identifiability because
determining a correct incubation period of an infectious disease and thus the parameter δ is a rather
difficult task in practice. First, incubation period varies from one person to another; in the case
of COVID-19, the incubation period ranges from 0 to 15 days, with a median of 5.1 days (Lauer
et al., 2020). In another study of COVID-19 patients in China, Guan et al. (2020) have reported
that the estimated incubation period is between 0 to 24 days with a median of 3 days. It is clear
that this quantity is very person-dependent. Second, ascertainment of contagion may be largely
delayed due to shortage of virus testing sources. This length-biased sampling problem is notoriously
challenging for the estimation of the incubation period (Qin et al., 2020). Third, in the literature
(e.g., He et al. (2020)) researchers found that COVID-19 carriers tend to be more contagious right
after contracting the coronavirus than a week later because they are not self-quarantined in the
absence of clinical symptoms. In other words, in the case of the COVID-19, the incubation period
(or sojourn at exposed state) is too short to play a substantial role in the modeling of the pandemic.

3.2 SEIRS: An Extension with Reinfection

Not all infectious diseases will develop long-term immunity. Individuals may develop immunity
after recovery only for some time, and could lose immunity such that they become susceptible
again. Thus recovered individuals rejoin the susceptible compartment after a certain duration of
immunity. This disease evolution is intuitively called the Susceptible-Exposed-Infectious-Removed-
Susceptible (SEIRS) model. We assume no death in the removed compartment. See Figure 5 where
the recovered branch in the removed compartment is connected to the susceptible compartment.
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An example of diseases studied using this model includes the common cold. This SEIRS model is
defined as follows:

dSptq

dt
“ ´β

SptqIptq

N
` ξSptq,

dEptq

dt
“ β

SptqIptq

N
´ δEptq,

dIptq

dt
“ δEptq ´ γIptq,

dRptq

dt
“ γIptq ´ ξRptq,

(5)

where ξ is the rate of losing immunity and becoming susceptible again after recovery.

Exposed (E)

Infectious (I)Removed (R)

Susceptible (S)

Figure 5: Flow of infection states in the SEIRS model.

3.3 SAIR: An Extension with Antibody Compartment

Different from the SEIRS model, there are some infectious diseases where long-term immunity
is yielded by individuals who survive from their infection. To build the self-immunization into
the infection dynamics, Zhou et al. (2020) introduce an Antibody (A) compartment to the SIR
paradigm, shown in the bottom thread of Figure 6. Since individuals who enter the Antibody
compartment will no longer be at risk of infection for a certain period of time, this compartment is
indeed an exit compartment, at least over a certain time window within which immunity is active,
in addition to the removed compartment. In some infectious diseases such as the COVID-19, the
subpopulation of self-immunized individuals is not directly observed or clinically confirmed by the
viral RT-PCR diagnostic tests due to mild or absent clinical symptoms. They are self-cured at home
with no clinical visits. Adding this compartment in the modeling can help to greatly mitigate the
issue of underreporting for the actual number of infected cases in the population. This dynamic
system consists of four compartments, i.e., Susceptible, Self-immunized, Infectious and Removed,
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with the following ODEs:

dSptq

dt
“ ´αSptq ´ β

SptqIptq

N
dAptq

dt
“ αSptq

dIptq

dt
“ β

SptqIptq

N
´ γIptq

dRptq

dt
“ γIptq,

(6)

where α is the rate of self-immunization, which is not identifiable due to the lack of observed data.
An approach to estimating the rate parameter α is to collect data of antibody serological surveys
from the population. Refer to Zhou et al. (2020) for more discussions.

Infected

Infectious (I) Removed (R)

Susceptible (S)

Self-immunized

Antibody (A)

Recorded

Surveyed

Figure 6: Schematic flow of infection states in the SAIR model

4 Statistical Methodology: Frequentist Approaches

4.1 Background

This section mainly focuses on an introduction of statistical models to analyze surveillance data of
an epidemic. Each statistical model consists of two components: a systematic component and a
random component. In the context of infectious disease data analysis, the former may be specified
by a dynamic infectious disease model from Sections 2 and 3. The latter is built upon a random
sampling scheme that enables a stochastic extension of the mechanistic model (e.g., SIR model)
given in the systematic component. Essentially, the notions about disease transmission, recovery,
or other characteristics are used to define key population attributes or parameters in an infection
dynamic system of interest, which will be estimated by available data via a statistical modeling
framework, where some covariates may be incorporated to learn some subgroup-specific risk profiles.

A clear advantage of statistical and stochastic extensions is the ability to quantify uncertainty
in both estimation and prediction in connection to sampling variability. This added uncertainty is
crucial to policy making as models not only generate an average estimation or prediction, but also
present the best and worst possible scenarios for more robust and confident handling of epidemics,
given that surveillance data are subject to various issues in the data collection. An example
presented in Britton (2010) vividly shows the uncertainty in the progression of an infectious disease.
Consider patient zero, who will go on and infect on average R0 number of other individuals, as
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defined by a certain disease mechanism. The number of individuals who contract the virus from
this patient is in fact stochastic, varying around the expected number of infections R0, which could
be described by a distribution (e.g., Poisson or negative binomial) with mean R0 on the support
of nonnegative integers. With a nonzero probability of taking the value zero due to the variability
in human activities, there is a nonnegligible chance that an epidemic is completely averted. The
opposite could be an outbreak with a nonzero probability that infects tens of thousands of people.
Without modeling such uncertainty, we cannot see all these possibilities and associated likelihoods
of their occurrences during the course of an epidemic (Roberts et al., 2015). Infectious disease
systems governed by the class of multi-compartment models, though describing the population
average, are useful to describe individual-based stochastic processes if certain random components
are introduced into the modeling framework. Thus, the resulting statistical models present more
natural approaches to the analysis of surveillance infectious disease data.

Before introducing statistical methodologies that are commonly used for parameter estimation,
we distinguish model parameters into two categories. Those that can be determined a priori with
no need for estimation, which we term as hyperparameters. Those that cannot be fully determined
and need to be estimated using the data at hand, which we term as target parameters. The choices
of which parameter should be a target parameter versus a hyperparameter vary widely across
methods. Intuitively, the more we know about the biological characteristics of a disease, the more
parameters can be held fixed a prior in the analysis. It is however very difficult to determine most
of the model parameters early in an outbreak due to the limited amount of knowledge and data
about the disease. Indeed, many model parameters are not identifiable due to the lack of relevant
data availability. One such example is the rate parameter of immunity α in the SAIR model
(6). As relevant knowledge accumulates, literature reveals increasingly precise characterization of
the disease, such as its latency period, recovery rate, death rate, immunity duration, antibody
acquirement, etc. Such information is typically obtained from surveys of high quality individual-
level data, which may provide much better quantification of these hyperparameters than having to
be re-estimated by epidemic models, which, on the other hand, are largely based on much coarser
surveillance data. In the case of the COVID-19 pandemic, this survey-based approach may be
too costly to carry out in countries with large and heterogeneous populations. In general, target
parameters are mostly those that are location specific, for example, transmission rate and fatality
rate. They vary largely across regions due to nonuniform mitigation effort and hospital resources,
hence data-driven estimations are preferred. In Section 6, we introduce an areal spatial modeling
approach to account for spatial heterogeneity in the analysis of infections disease data.

Due to the issue of parameter identifiability in some mechanistic models, specifying hyperparam-
eters in the model fitting is inevitable. However, holding hyperparameters fixed at certain values
according to some external data sources is indeed controversial, and the validity of consequent
analyses is highly dependent on the appropriateness of these prior values. To relax this technical
weakness, later in Section 5, we introduce a Bayesian framework in which such prior information
(e.g hyperparameters) enters the statistical model via prior distributions rather fixed values, so
that the uncertainty on those hyperparameters is adaptively compensated with the amount and
quality of observed surveillance data. Such flexibility has a great advantage in synthesizing prior
evidence and observed data.

To present this section at a reasonable technical level, most of the discussions below are given
in the setting of the basic SIR model, and generalization to other compartment models should
follow with slight modification. In closing, it is noteworthy that the frequentist statistical methods
discussed below are based on a fundamental assumption of data collection; that is, the population-
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level compartment data Sptq, Iptq, Rptq, and others if relevant, can be directly collected from the
study population. In other words, at given time, every individual in the population can be ob-
served directly for his/her current status of being susceptible, infectious, recovered or died. This
is practically impossible. Thus, the interpretation of the estimation results should be carried out
with caution.

4.2 Least Squares Estimation

In the SIR model (1), the transmission rate β and recovery rate γ are two target parameters of
interest. Estimation of β and γ can be carried out through optimization in search for a model that
best fits to the data. A commonly used minimization criterion is the least squares loss. Given
β and γ, numerical approximations (e.g., Runge-Kutta methods) can be used to solve for the
trajectories, Sptq, Iptq and Rptq. These expected trajectories are then compared to the observed
trajectories to compute a discrepancy score, such as the sum (over time) of the squared errors,
represented as a loss function of target parameters. Now, it remains to find the estimates of these
parameters that give rise to the curve that best fits the data through standard optimizations tools.
In this case, the optimization pertains to a two-dimensional search, which should be computationally
straightforward. Even a greedy search is computationally cheap. We illustrate using both simulated
data and real data below in Examples 2 and 3, respectively.

Example 2. We first generate an observed sequence of cumulative infectious counts following
Example 1, namely the SIR model with the true parameter values β “ 0.5 and γ “ 0.2. For
simplicity, we fix γ “ 0.2 in this example. We then evaluate the sum of squared error (SSE) loss
between the expected cumulative infectious count Iptq and its sample counterpart Iobsptq, and the
value that minimizes this loss gives an estimate of β. Figure 7 plots the SSE loss versus β using the
simulated data Iobsptq, t “ 1, . . . , T , with T “ 10, 20, 50, respectively. It is found that the SSE loss
is minimized at β̂ “ 0.5 as expected. The longer the observed sequence, the more curved around
0.5 the SSE appears, so the better we can identify the minimum of the SSE curve. The R script
shows the example for the case of T “ 10. Note that the sequence we used to define the fit is Iptq,
but Sptq and Rptq can also be used in the estimation. Similarly, a two-dimensional grid search can
be used for estimating β and γ jointly when γ is not fixed in which the data of Rptq must be used
in the estimation. Here we present only one replicate for illustration.

## out.rk4, SIR and initial are from Example 1

times.used <- 1:10 # or 1:20, 1:50

observedI <- round(out.rk4)[times.used, "I"] # 1 1 2 2 3 4 5 7 9 11

loss.sse <- function (beta) {

params <- c(beta = beta, gamma = 0.2, N = sum(initial))

out <- rk4(initial, times.used, SIR, params)

residual <- out[times.used, "I"] - observedI

sum(residual^2)

}

beta <- seq(from = 0.0, to = 2, by = 0.1)

SSE <- sapply(beta, loss.sse)

plot(beta, SSE, type = "l")
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Figure 7: Searching for β in Example 2 using 10, 20 and 50 observations, respectively.

Example 3. We apply the same approach as given in Example 2 for analyzing the daily time
series of the COVID-19 cumulative infectious counts in Michigan during March 11 to May 1, 2020.
Details of the data are described in Appendix A.2, including the Iptq sequence. The already defined
SIR function from Example 1 is used as the dynamic model, and the already defined sse function
from Example 2 is used as the loss function. By fixing γ “ 0.2 (i.e., average contagious period of
five days) the following code computes the solution β̂ “ 0.79 using the first 10 observations (March
11 to 20). We then increase the number of observations in the estimation; as shown in Figure 8,
the value of β̂ decreases when more data are used. This is noticeably different from Example 2
where β̂ remains constant regardless of the number of observations used. The gradual decrease in
our estimate of β indicates a potential reduction in the transmission rate over time in Michigan
due to the enforcement of statewide social distancing. In other words, the assumption of a constant
transmission rate β is inappropriate for the Michigan data. This result suggests a need for using a
more proper modeling technique, which will be demonstrated in Section 5.5.

## SIR is from Example 1

initial.MI <- c(S = 9.99e6 - 2, I = 2, R = 0) # population N = 9.99e6

times.used <- 1:10

observedI <- It[times.used] # It: I(t) of Michigan, see Appendix A.2

loss.sse.MI <- function (beta, N) {

params <- c(beta = beta, gamma = 0.2, N = 9.99e6)

out <- rk4(initial.MI, times, SIR, params)

residual <- out[times.used, "I"] - observedI

sum(residual^2)

}

beta <- seq(from = 0.0, to = 3, by = 0.01)

SSE <- sapply(beta, loss.sse.MI)

beta[which.min(SSE)] # 0.79

Being often used as a classic textbook example, this least squares approach is equivalent to the
maximum likelihood estimation under the assumption that measurement errors are independent
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Figure 8: Estimate of β in Example 3 using different lengths of observed Iptq time series.

and normally distributed with a homogeneous variance. In general, this approach gives consistent
estimation and does not require a distributional assumption for the data generation and thus can be
applicable to nonnormal data. However, the ordinary least squares loss used in the above example
assumes that data are independently sampled over time, which is not true because the observations
are time series and are thus temporally correlated. Because of this, the least squares estimation
is not efficient. Cintrón-Arias et al. (2009) have discussed the use of a generalized least squares
approach to account for more complex error structure, including temporal auto-correlations.

It is not always the best practice to directly use data of Iptq and Rptq in the estimation of
the model parameters. The COVID-19 projection by Gu (https://covid19-projections.com/)
adopts a loss optimization approach based on the SEIR model using only death counts due to
quality concerns with infection counts (e.g., under-reporting issue). The model uses a discrete
state machine with probabilistic transitions to minimize a mixture of loss functions, such as mean
squared error, absolute error and ratio error. In the literature there are many other estimation
procedures (e.g., Wallinga and Teunis (2004); Cori et al. (2013); Thompson et al. (2019)). Some
of these alternatives do not estimate β and γ, but more directly target the effective reproductive
number Reptq in estimation and inference.

4.3 Method of Moments

Here we present the method of moments, another routine estimation approach in the statistical
literature for estimating the model parameters in the SIR model (1). During the early phase of an
epidemic, one may assume Sptq{N « 1 and set dt “ 1 (e.g., a time unit of one day for discretization),
so that the second ODE of (1) leads to the approximate exponential function solution:

Iptq « Ip0q exp tpβ ´ γqtu, t “ 1, . . . , T,

where without loss of generality Ip0q ą 0 (otherwise time 0 may be redefined in the time series),
and T is the last observation time of data collection. Taking the logarithmic transformation, we
obtain ln Iptq « ln Ip0q ` pβ ´ γqt, which provides a linear mean model with intercept parameter
ln Ip0q and slope parameter pβ ´ γq of the covariate time. This slope parameter may be estimated
by the least squares method. Likewise, γ may be estimated through another similar approximated
linear relationship (without intercept) of the form: ∆Rptq “ Rpt`1q´Rptq « γIptq, from the third
ODE of the SIR model (1) at discrete times at which data are actually recorded. After estimate γ̂
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is obtained, we get β̂ immediately. However, the estimation of β is only accurate during the early
phase of disease outbreak since the approximation of Sptq{N « 1 is used.

In the literature, other types of moments are also used to derive parameter estimates. For
instance, using the approximation from the first ODE of the SIR model (1) at discrete times, one
can easily obtain the following expression:

β «
Sptq ´ Spt` 1q

SptqIptq
N, t “ 1, . . . , T.

An estimate of β may be obtained by averaging the quantities given in the right-hand side of
the equation above. In the case when βptq varies over time due to changes of a certain mitigation
measure, the above method of moments estimator may still be applied locally with a possible utility
of a kernel weighting function such as the Nadaraya–Watson estimator (Nadaraya, 1964; Watson,
1964). A very similar approach leads to the following approximation:

Reptq «
Sptq ´ Spt` 1q

γIptq
, t “ 1, . . . , T,

which may give rise to a nonparametric estimator of the effective reproductive number. Although
Reptq can be identified at each time point using data solely from t, for numerical stability, the
same idea of a kernel weighting (e.g., running-bin method) smoother is applied to estimate Reptq
at t. See for example Wallinga and Teunis (2004). Linear approximations are easy to implement,
however, the variances produced from such linear fits are typically inadequate in describing the
true randomness of an infectious disease to allow valid inference and prediction. Alternatively, it is
promising to investigate the local linear fitting method (Cleveland and Devlin, 1988) that produces
nonparametric estimates of the time-varying model parameters to better reflect temporal dynamics
of the infection.

4.4 Probabilistic Transmission and Recovery

In both the least squares estimation and method of moments estimation, there are no explicit
assumptions about probability laws for data sampling. Implicitly both methods are based on the
sampling scheme on the entire population; that is, the current status of every individual in the study
population is recorded. This is certainly not true in practice. To overcome this, some estimation
methods are proposed to account for sampling variability under certain parametric distributions.
Distribution assumptions can be made for many quantities in an infectious disease model. Some
are fully specified based on given knowledge. For example, the distribution of incubation period
of a disease can be represented as a probability mass function by days (Lauer et al., 2020). On
the other hand, some distributions are only specified to be from a family of shapes, with the exact
form to be estimated. We illustrate the latter using a stochastic SIR model.

Stochastic SIR models typically require the same assumptions as a deterministic SIR model
(Section 2.3). To reflect the stochastic nature of disease transmission and recovery, stochastic
processes such as a Poisson process are used to model the accumulation of cases. Following the
earlier definitions of β and γ, the number of effective contacts in the population is a Poisson process
with rate βN . Of these contacts, only those between the contagious and susceptible will lead to
new infections. Hence, the counting process defined by the number of exposed (i.e., Iptq ` Rptq,
or equivalently N ´ Sptq) follows a Poisson process with rate βSptqIptq{N . Hence, the number
of newly exposed in an instantaneous duration of dt follows a Poisson distribution with mean
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βSptqIptq
N dt. On the other hand, the duration of time individuals staying infectious is assumed to be

independent and identically distributed as an exponential distribution with rate γ, and hence the
mean infectious duration is 1{γ. When we jointly consider all Iptq infectious subjects at time t, exit
events occur independently with a rate γIptq, and the gap times between two adjacent exits are
exponentially distributed with mean 1{tγIptqu. In summary, the number of removed individuals
is a counting process following a Poisson process with rate γIptq. Such stochastic formulation is
commonly used, for example, in Bailey (1975) and Andersson and Britton (2000), among others.
Through the above definitions, Sptq, Iptq and Rptq are now random variables that can be directly
sampled. In fact, it suffices to assume only two of the three counting processes in order to define a
stochastic SIR model due to the constant sample size constraint.

For demonstration, at time t, in an instantaneous time interval rt, t ` dtq, we may specify a
stochastic SIR model as follows:

´Spt` dtq ` Sptq
ind
„ Poisson

ˆ

β
SptqIptq

N
dt

˙

,

Rpt` dtq ´Rptq
ind
„ Poisson pγIptqdtq ,

(7)

where Iptq “ N´Sptq´Rptq. As a result of this probabilistic formulation, the effective reproductive
number is now defined as an expectation, i.e., Reptq “ EtβSptqIptq{Nu. The stochastic SIR
model (7) is specified in continuous time, and we would hope that dt is very small. In practice,
approximation to (7) is used by letting dt “ 1 or a unit of day, which is typically the smallest time
unit used in public surveillance data. As a result, Sptq and Rptq at time t are used to approximate
the average in the entire duration of rt, t`1q. This approximation turns a continuous time stochastic
model into a discrete time scholastic model to proceed with statistical analysis. Other distributions,
such as negative binomial or general dispersion family (Song, 2007), may be considered to handle
the issue of overdispersion in the counting processes. With distributions in place, we turn the focus
to estimation and inference by the maximum likelihood approach.

4.5 Maximum Likelihood Estimation and Inference

Maximum likelihood estimation (MLE) is often preferred in a parametric model where the
underlying probability distribution is properly chosen. For convenience, we take day as the time
of unit. By discretizing time based on observed sequences, i.e., t “ 0, 1, . . . , T , observed daily
increments of counts ∆Sptq “ Sptq ´ Spt` 1q in the susceptible compartment and ∆Rptq “ Rpt`
1q´Rptq in the infectious compartment are conditionally independent, given historical accumulated
counts Sptq and Iptq, according to the definition of model (7). The second model in (7) contains
only the removal parameter γ, so the log-likelihood function of γ with respect to the data of daily
increments in the removed compartment, ∆Rptq, and daily cumulative counts of infections, Iptq,
can be written as

`pγ|t∆Rptq, Iptq, t “ 0, 1 . . . , T uq “
T
ÿ

t“0

ln fp∆Rptq; γIptqq,

where fpk;λq is the Poisson probability mass function of variable k with mean parameter λ, and
∆Rp0q “ Rp1q ´ Rp0q with Rp0q “ 0 as well as Ip0q “ 1. An estimate of γ can be obtained
through the conventional maximum likelihood estimation. Likewise, the MLE for β can be ob-
tained from the first Poisson process of model (7). To estimate β and γ jointly, we can write the
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joint log-likelihood of multiple observed sequences of increments. Note that ∆Sptq and ∆Rptq are
conditionally independent Poisson random variables, given Sptq and Iptq. The log-likelihood can
be written as

`pβ, γ|t∆Sptq,∆Rptq, Sptq, Iptq, t “ 0, 1, . . . , T uq “
T
ÿ

t“0

ln fp∆Sptq;βSptqIptq{Nq

`

T
ÿ

t“0

ln fp∆Rptq; γIptqq,

where Sp0q “ N and Ip0q “ 1. However, one caveat in the simplistic likelihood formulations
above is that the cumulative time series Sptq and Iptq are assumed to be directly measured without
errors. In other words, the above likelihood accounts only for the sampling uncertainties in the
increments not those in the cumulative counts, so the resulting statistical inference may suffer from
underestimated standard errors.

There are two types of statistical inference theory considered in this context, namely the infill
asymptotic theory and the outreach asymptotic theory. The former pertains to the situation where
the sampling points increase within a fixed time window (i.e., fixed T ), while the latter is a situation
of practical relevance where the time window of the data collection tends to infinity (i.e., T Ñ

8). Britton et al. (2019) discusses the infill large-sample properties under the assumption that
the complete epidemic data, i.e., continuously observed counting processes pSptq, IptqqtPr0,T s, are
available. Under such setting, the asymptotic distribution of the MLE based on continuously
observed trajectories is established. Obviously, it is really rare in practice to collect infectious
disease data via such infill sampling schemes. Nevertheless, for the sake of theoretical interest, we
refer readers to Britton et al. (2019) and references therein.

The outreach large-sample theory for the MLE with discrete time-series data provides a sta-
tistical inference relevant to most of infectious disease applications. As an epidemic evolves, the
number of equally spaced time points (say, daily) for data collection increases. When sampling
errors in both Iptq and Sptq are allowed, the likelihood above is indeed a kind of conditional com-
posite likelihood (Varin et al., 2011). Thus, the standard theory of composite likelihood estimation
implies that the asymptotic covariance of the estimator is given by the inverse Godambe informa-
tion matrix (or a sandwich estimator). The sensitivity matrix in the Godambe information is hard
to obtain analytically due to the serial dependence in the time series. Instead, one may take a
nonparametric bootstrap approach similar to that considered by Gao and Song (2011) to evaluate
the standard errors in order to conduct a valid statistical inference.

Conditional independence is a strong assumption for mathematical convenience in the MLE.
Relaxing it has drawn some attention in the literature. For example, Lekone and Finkenstädt (2006)
and Allen (2008) construct likelihood-based approaches using discrete time Markov chain SEIR
models; Becker (1977) and Becker and Britton (1999) consider the maximum likelihood estimation
in the SIR model using Martingale methods when all transition events for each individual are
observed. It is however unlikely that such individual-level details are observed in most surveillance
data used for modeling of infectious disease mechanisms. Estimators using less detailed data have
been proposed. See for example, Becker (1979) and Rida (1991).

As part of efforts on further relaxing strong conditions in the above stochastic SIR model (7), in
Section 5.1, we review a state-space modeling approach that generalizes the current likelihood model
and estimation framework, where Sptq, Iptq, Rptq are not directly measured and rather treated as
Markov latent processes. Also, hyperparameters are included via their prior distributions instead
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of fixed values, and a Bayesian estimation similar to the MLE is established through the Markov
chain Monte Carlo (MCMC) approach. This class of state-space models is so far one of the most
flexible statistical modeling frameworks to analyze infectious disease data.

4.6 Software

We highlight several software packages that are publicly available for estimation of parameters in the
multi-compartment models. Overall, additional efforts in this computational domain are needed.
Several packages focus on the estimation and inference for R0 and Reptq. For example, Obadia et al.
(2012), in their R package R0, implements multiple methods, including a method of moments type
approach (Dietz, 1993), a Bayesian method (Bettencourt and Ribeiro, 2008) and likelihood-based
estimation procedures (Forsberg White and Pagano, 2008; Wallinga and Teunis, 2004; Wallinga and
Lipsitch, 2007). Along this line, Cori et al. (2013) and Thompson et al. (2019) develop Bayesian
methods to estimate the effective reproductive number and are made available through the R
package EpiEstim and Microsoft Excel (http://tools.epidemiology.net/EpiEstim.xls). Their
methods use a moving window approach, assuming that the reproduction number Rt,τ in this
window rt ´ τ ` 1, ts is constant. A gamma prior distribution is used to derive the posterior
distribution of the Rt,τ given new infectious counts.

5 Statistical Methodology: Bayesian Approaches

5.1 State-Space Models

State-space models refer to a class of linear or nonlinear hierarchical stochastic models with para-
metric error distributions. The conventional state-space model is not formulated as a Bayesian
model, but later its Bayesian formulation has gained great popularity due to the availability of
Markov chain Monte Carlo (MCMC) methods for the estimation of the model parameters (Carlin
et al., 1992). This class of models primarily attempts to explain the dynamic features of time series
of continuous and discrete variables. In particular, it has been used to model the time series of
proportions associated with multi-compartment models given in (2), see Osthus et al. (2017) for
seasonal influenza and Wang et al. (2020) for the COVID-19 pandemic, among others.

The state-space model framework is advantageous over the stochastic compartment models in-
troduced in Section 4.4 in the following aspects of statistical modeling: (i) State-space model does
not assume that the compartment processes Sptq, Iptq, Rptq are directly observed, which are treated
as latent processes to be estimated from observed data. (ii) State-space model allows an explicit
sampling scheme to be part of the model specification, which enables the quantification of both esti-
mation and prediction uncertainties in the statistical analysis. (iii) State-space model is built upon
the compartment probabilities (or rates or proportions) that automatically adjust for potentially
varying population sizes. This conveniently relaxes the condition of a constant population size in
the basic SIR model. (iv) State-space model provides a flexible statistical modeling framework that
embraces time-varying model parameters and integrates prior knowledge of disease mechanisms
(e.g., R0 value from other studies) via prior distributions of the model parameters. (v) Imple-
mentation of MCMC methods in state-space modeling provides a powerful approach to parameter
estimation and predictions using conditional distributions given the history. This is different from
all estimation methods in Section 4 that are always formulated via marginal distributions under
strong assumptions of sampling rules.

A state-space model consists of two stochastic processes: a d-dimensional observation process
tYtu and a q-dimensional state process tθtu given as follows.
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Figure 9: Graphic representation of a state-space model.

• The state process θ0, θ1, . . . , is a Markov chain with initial condition θ0 „ p0pθq and transition
(conditional) distribution is given by Yt|θt „ ftpy|θtq.

• The observation process tYtu are conditionally independent given the state process tθt, t ě 0u
and each Yt is conditionally independent of θs, s ‰ t; given θt, the conditional distribution is
Yt|θt „ ftpy|θtq.

This model can be graphically presented by a comb structure shown in Figure 9. According to
Cox et al. (1981), the state-space model is a parameter-driven model in that the processes of the
compartment proportions are unknown population parameters to be estimated, while the stochastic
multi-compartment model such as the stochastic SIR model in (7) is a data-driven model where
the compartment proportions are directly observed. As pointed out above, the validity of the latter
is questionable in practice, especially in the analysis of the COVID-19 pandemic data.

Let Y s be the collection of all observations up to time s, namely Y s “ pY1, . . . , Ysq. Let τ be
a generic notation for the set of model parameters. Denote the conditional density of θt, given
Y s “ ys, by ft|spθ|y

s, τq. Then, the prediction, filter, or smoother density is defined, respectively,
according to whether t ą s, t “ s or t ă s. This conditional density ft|spθ|y

s, τq is the key
component of statistical inference in state-space models.

To develop the maximum likelihood inference for model parameters in state-space models, the
one-step prediction densities ft|t´1 are the key components for the computation of the likelihood
function; see Chapter 10 of Song (2007). Given a time series data tYt, t “ 1, . . . , nu, the likelihood
of Y n is

fpY n; τq “

ż

Rq

fpY1, . . . , Yn´1|θn; τqfnpYn|θn; τqgnpθn; τqdθn

“

n
ź

t“1

ż

Rq

ft|t´1
`

θt|Y
t´1; τ

˘

ftpYt|θt; τqdθt, (8)

where f1pY1; τq is expressed as follows:

f1pY1; τq “

ż

Rq

f1pY1|θ1; τqg1pθ1; τqdθ1 “

ż

Rq

f1pY1|θ1; τqf1|0pθ1|Y
0; τqdθ1,

where by convention g1pθ1; τq “ f1|0pθ1|Y0; τq, conditional on an initial observation Y0 at time 0.
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In the above likelihood evaluation, one-step prediction densities, ft|t´1, and filter densities, ft|t,
can be respectively given by the recursions

ft|t´1
`

θt|y
t´1; τ

˘

“

ż

Rq

ft´1|t´1
`

θt´1|y
t´1; τ

˘

gtpθt|θt´1; τqdθt´1, (9)

ft|t
`

θt|y
t; τ

˘

“
ft|t´1

`

θt|y
t´1; τ

˘

ftpyt|θt; τq
ş

Rq ft|t´1 pθt|yt´1; τq ftpyt|θt; τqdθt
, (10)

with the recursion starting with f0|0pθq “ p0pθq. In general, exact evaluation of the integrals in (9)
and (10) is analytically unavailable, unless in some simple situations, such as both processes being
linear and normally distributed. For the linear Gaussian state-space model, all ft|s are Gaussian, so
the first two moments of (9) and (10) can be easily derived from the conventional Kalman filtering
procedure, as discussed in Chapter 9 of Song (2007). However, with some computational costs, all
integrals in the above likelihood and the filter can be evaluated numerically by MCMC methods.

5.2 State-Space Models for Compartment Proportions

Recently, Wang et al. (2020) have developed an extended Susceptible-Infectious-Removed (eSIR)
model that is built upon a state-space model with two (d “ 2) observed time series of daily
proportions of infectious and removed cases, denoted by Y I

t and Y R
t , which are generated from

the q-dimensional underlying infection dynamics tθt, t ě 0u governed by a mechanistic SIR model.
In the case of the SIR model, q “ 3. As shown in Figure 9, the latent process is a time series
of the 3-dimensional latent vector of population probabilities θt “ pθSt , θ

I
t , θ

R
t q
J that satisfies a

three-dimensional Markov process of the following form:

θt|θt´1, τ „ Dirichletpκfpθt´1, β, γqq, (11)

where parameter κ scales the variance. The function fp¨q is a 3-dimensional vector as a solution
to the SIR model (2), which determines the mean of the Dirichlet distribution via the fourth-
order Runge-Kutta (RK4) approximation. In comparison to the stochastic SIR model in (7), here
the compartment proportions θt are unobserved and explicitly modeled by a Markov process to
account for temporal correlations, so the parameter estimation can be carried out with multivariate
likelihood functions. Because the serial dependence is accounted for in the state-space model, the
resulting estimation and prediction are more powerful than those given in Section 4.5.

Two observed time series pY I
t , Y

R
t q

J that are emitted from the underlying latent dynamics of
infection θt are assumed to follow the beta distributions at time t:

Y I
t |θt, λ

I „ BetapλIθIt , λ
Ip1´ θIt qq, (12)

Y R
t |θt, λ

R „ BetapλRθIt , λ
Rp1´ θIt qq, (13)

where θIt and θRt are the respective probabilities of being infectious and removed at time t, and
λI and λR are the parameters controlling the respective variances of the observed proportions.
It is easy to see that Y I

t and Y R
t are conditionally independent given θt, and EpY I

t |θtq “ θIt and
EpY R

t |θtq “ θRt , and τ “ pλI , λR, κ, β, γq. Since Y I
t and Y R

t share a common latent variable θt, their
marginal correlation is modeled. In fact, these two beta distributions define a sampling scheme of
observed data, including daily empirical proportions of infectious cases and removed cases, which
are a collection of daily signals from the underlying latent SIR infection dynamic system.
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Application I - eSIR model. The above state-space model (11), (12) and (13) is useful to assess
the effectiveness of control measures (e.g., social distancing) via the projected epidemic evolution
in the future time. To process, one can replace the constant transmission rate β by a time-varying
transmission rate βπptq where πptq is a given transmission rate modifier. It is specified as a function
in time to reflect different forms and strengths of control measures. This results in an extended
SIR (eSIR) model proposed by Wang et al. (2020):

dθSt
dt

“ ´βπptqθSt θ
I
t ,

dθIt
dt

“ βπptqθSt θ
I
t ´ γθ

I
t , and

dθRt
dt

“ γθIt ,

where πptq ě 0. Obviously, the basic SIR model is a special case with no intervention in place,
πptq ” 1. In general, the πptq may be specified by a practitioner to reflect a particular control
measure. For an example of the COVID-19 in Hubei province, China, a possible choice of πptq
given below is a step function that reflects government-initiated macro isolation measures:

πptq “

$

’

’

&

’

’

%

π01, if t ď Jan 23, no concrete quarantine protocols;
π02, if t P pJan 23,Feb 4s, city lockdown;
π03, if t P pFeb 4,Feb 8s, enhanced quarantine;
π04, if t ą Feb 8, opening of new hospitals.

When π0 “ pπ01, π02, π03, π04q are chosen with different values, as shown in Figure 10 Panels A-C,
we obtain different types of transmission rate modifiers. Alternatively, πptq can be a continuous
function, say, πptq “ expp´λ0tq or πptq “ expt´pλ0tq

ωu, λ0 ą 0, ω ą 0, that reflects steadily
increased community-level surveillance and personal protection (wearing face masks and washing
hands) as shown in Figure 10 Panels D-F. Note that this modifier function does not have to be
a monotonic decreasing function and may take a U-shape to capture the relaxation of control
measures. With such a modeling framework, one can carry out comparisons of different preventive
protocols via the resulting projected infection risk θIptq or other epidemic features such as the time
of the effective reproduction number Reptq ă 1 and the time of a disease recurrence associated with
relaxed control measures.

Application II - SQIR model. A clear advantage of the state-space model is that it enjoys the
resilience of MCMC being a primary method for statistical estimation and prediction. In other
words, the statistical analysis methods can be easily modified to accommodate changes made in
the latent multi-compartment models and/or in the observed time series models. One example of
the COVID-19 pandemic modeling given in Wang et al. (2020) is to extend the three-compartment
eSIR model to a four-compartment model by incorporating stringent quarantine measures issued
by the Hubei government via a new addition of in-home quarantine compartment. This new model
is termed as SQIR model. This quarantine compartment collects in-home isolated individuals who
would have no chance of meeting any infectious individuals in the infection system. So, it is another
exit from the dynamic system in addition to the removed compartment. Let φptq be the chance
of a susceptible person being willing to take in-home isolation at time t. The basic SIR model in
equation (2) is then extended to include a 4-dimensional latent process pθSt , θ

Q
t , θ

I
t , θ

R
t q
J:

dθQt
dt

“ φptqθSt ,
dθSt
dt

“ ´βθSt θ
I
t ´ φptqθ

S
t ,

dθIt
dt

“ βθSt θ
I
t ´ γθ

I
t ,

dθRt
dt

“ γθIt , (14)
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Figure 10: Different types of transmission rate modifiers πptq and the quarantine rate φptq: 1)
Panels A-C depict step functions with π0 “ pπ01, π02, π03, π04q equal to p1, 1, 1, 1q, p1, 0.9, 0.8, 0.5q
and p1, 0.9, 0.5, 0.1q at change points (Jan 23, Feb 4, Feb 8), Panels D-F depict exponential functions
under difference micro quarantine measures over time with λ0 “ 0.01, λ0 “ 0.05 and λ0 “ 0.1,
and 3) Panels G-I depict multi-point instantaneous quarantine rates with φ0 “ p0, 0, 0, 0q, φ0 “
p0.1, 0.4, 0.3q and φ0 “ p0, 0.9, 0q at change points of (Jan 23, Feb 4, Feb 8).
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where θSt ` θ
Q
t ` θ

I
t ` θ

R
t “ 1. The quarantine rate φptq may be specified as a Dirac delta function

with jumps at times when major quarantine policies are issued by the government. For example,
one may specify the time-dependent quarantine rate function φptq for Hubei province as follows:

φptq “

$

’

’

&

’

’

%

φ01, if t “ Jan 23, city blockade;
φ02, if t “ Feb 4, enhanced quarantine;
φ03, if t “ Feb 8, opening of new hospitals;
0, otherwise.

Note that at each jump, the respective proportion of individuals would leave the susceptible com-
partment and enter the quarantine compartment. Panels G-H in Figure 10 show three different
types of in-home quarantine rates during the period of the COVID-19 pandemic in Hubei province.

Application III - SAIR model. In a similar spirit to the SQIR example of Application II
above, Zhou et al. (2020) consider an interesting extension of the basic SIR model in the analysis
of the US COVID-19 data to include an antibody compartment to handle the subpopulation of
self-immunized individuals. This 4-compartment model is termed as SAIR model, which has been
discussed in detail in Section 3.3. Because the antibody compartment is also a second exit from
the infection system, similar to the quarantine compartment, one can turn the SAIR model given
in (6) into a similar form of the SQIR model in (14) where φptq is replaced by αptq, the rate
of self-immunization. It is known that the population immunity rate cannot be estimated from
observed surveillance data, which needs to be figured out by using large-scale serological surveys
in the population. Thus, αptq may be specified as a Dirac delta function (e.g., Figure 10 Panels
G-H) with jumps at times when the surveys are conducted and function values based on the survey
results. It is worth pointing out that although the SQIR and SAIR models have very similar
model structures, their interpretations are very different. The former is applicable to the case of
very stringent self-isolation control measures in Hubei, while the latter is reflective to the situation
of self-immunization due to mild control measures in the US, so that a substantial proportion of
individuals who contracted the virus, recovered and became immunized.

5.3 Estimation and Prediction via MCMC

Markov chain Monte Carlo (MCMC) has been extensively used for the estimation and prediction
in the state-space model; see for example Carlin et al. (1992),Chan and Ledolter (1995), Czado and
Song (2008), De Jong and Shephard (1995), Zhu et al. (2011), among others, for a vast literature
on this topic. Such popularity of MCMC in the state-space model is rooted in its power to handle
the evaluation of high-dimensional integrals involved in the likelihood function (8). The essential
strategy for the calculation of each high-dimensional integral is to approximate it by a sample mean
of the involved integrand. This sample average is obtained from many MCMC sample draws from
posterior distributions of the model parameters, including the time series of the latent probability
vector θt.

Let t0 be the current time up to which we have observed data pY I
0:t0

, Y R
0:t0
q. Performing M draws

of Y I
t , Y

R
t for t P r0, t0s Y rt0 ` 1, T s may produce both the in-sample draws over r0, t0s and the

out-sample draws over rt0`1, T s. The sampling scheme proceeds as follows: for each m “ 1, . . . ,M

(1) draw τ pmq from the posterior rτ |θ
pm´1q
0:t0

, Y
pm´1qI
0:t0

, Y
pm´1qR
0:t0

s;

(2) draw θ
pmq
t from the posterior rθt|θ

pmq
t´1 , τ

pmqs of the q-dimensional latent process, at t “
1, . . . , t0, t0 ` 1, . . . , T ;
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(3) draw pY
Ipmq
t , Y

Rpmq
t q from rY I

t |θ
pmq
t , τ pmqs and rY R

t |θ
pmq
t , τ pmqs according to the observed pro-

cess, at t “ 1, . . . , t0, t0 ` 1, . . . , T , respectively.

Prior distributions are specified for some of the hyperparameters; for example, θ0 „ Dirichletp1 ´
Y I
1 ´Y

R
1 , Y

I
1 , Y

R
1 q, R0 “ β{γ and γ follow some log-normal distributions, and λI , λR, κ follow some

gamma distributions or inverse gamma distributions, respectively.
Convergence diagnostics of the MCMC algorithm may use standard diagnostic tools such as the

Gelman-Rubin statistic based on multiple chains with different initial values, monitoring trace plots
of the model parameters, etc. The R package coda provides a comprehensive toolbox of convergence
diagnostics (Brooks and Gelman, 1998). Using the MCMC draws collected after the burn-in, various
summary statistics may be obtained to estimate model parameters, conduct inference, and make
prediction. The summary statistics (e.g., posterior mean and posterior mode) from the in-sample
draws of the model parameters can provide point estimates and 95% credible intervals with the left
and right limits set respectively at the 2.5-percentile and 97.5-percentile, and those of the observed
processes may be used to check the goodness-of-fit of a proposed model, and to perform model
selection via the deviance information criterion (DIC) (Spiegelhalter et al., 2002; Gelman et al.,
2013). More importantly, the summary statistics from the out-sample draws of the latent process
θt, t ą t0 provide point predictions and their 95% credible prediction intervals. It is interesting to
note that the above MCMC implementation does not depend much on the form of the Runge-Kutta
solution fpθt´1, β, γq in the latent process (11). As long as a mechanistic infectious disease model
has an approximate analytic solution fp¨q, the Bayesian estimation and inference can be carried
out using MCMC. Such flexibility is appealing to develop software applicable for a broad range of
practical studies.

MCMC procedures are well suited for the estimation and inference in the setting of state-space
models due to fast and reliable numerical performances. For the Michigan data analysis example
in Section 5.5, using an average personal computer, we spend 1.5 hours completing all MCMC
calculations of 200,000 draws with thinning bin size of 10 after the burn-in judged by four separate
MCMC chains. This computing speed can be improved by using high performance computing
facilities and/or some recent posterior sampling methods. As suggested by Zhou and Ji (2020) for a
state-space SIR model, one may set a more efficient sampler over highly correlated posterior spaces
by parallel-tempering MCMC algorithm (Geyer, 1991), which provides rapid mixing in MCMC
chains. Also, along the line of online learning, sequential Monte Carlo methods for posterior
sampling (Doucet et al., 2001; Dukic et al., 2012) is promising, as they permit efficient updating
of existing posteriors with sequentially arrived data, in the hope to avoid refitting the model by
running MCMC from scratch using the updated complete data.

5.4 Software

Wang et al. (2020) and Zhou et al. (2020) have developed a series of extended SIR models by
introducing in time-varying transmission rate, quarantine process and asymptomatic immunization
process (details in Section 5.2). The proposed methods have been established in an open-source
R package eSIR, available on GitHub (https://github.com/lilywang1988/eSIR). This package
calls rjags to generate MCMC chains and retains a few MCMC controllers from rjags. The
package also updated weekly with new summarized US state-level count data for the COVID-19
pandemic.

Several robust methods that are developed specifically for the prediction of the COVID-19 are
cited by the Centers for Disease Control and Prevention (https://www.cdc.gov/coronavirus/
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2019-ncov/covid-data/forecasting-us.html). To name a few, the Bayesian approach (Verity
et al., 2020) developed by researchers at Imperial College London (featured in Adam (2020)) and
the hybrid modeling approach (IHME COVID-19 health service utilization forecasting team and
Murray, 2020) adopted by the University of Washington Institute for Health Metrics and Evaluation
(IHME) (discussed by Jewell et al. (2020)) have attracted great public and government attention.
We refer to their original work for modeling details. It is difficult to appreciate the original work
and followed comments without running real COVID-19 data using their software, which is lacking
for the IHME models, among some others. To increase research transparency, releasing software or
computing code used in statistical methods to the public is strongly encouraged.

5.5 Example: Analysis of Michigan State-Level Data

We now illustrate the use of R package eSIR to analyze the COVID-19 surveillance data during
the period of March 11 to June 9, 2020 from Michigan state, USA. The Michigan data used in
this analysis are listed in Appendix A.2, including both Iptq and Rptq. In the data analysis, we
demonstrate the use of both the state-space model described in Application I and the MCMC
method, where the transmission rate modifier πptq is set as exponential functions. From package
eSIR, we can extract many useful statistics related to estimation and forecasting. For example, we
can obtain both mean and median projections of the prevalence curve θIptq, t ą t0 as well as their
95% credible prediction intervals. In addition, this package provides the estimated first and second
turning points of an epidemic. The former is the time when the daily number of new infectious
cases stops increasing, while the latter is the date when the daily number of new infections becomes
zero. Mathematically, the first corresponds to the time t at which :θIt “ 0 or the gradient of 9θIt is
zero, and the second is the time t at which the rate of prevalence is zero 9θIt ptq “ 0. Below is the R
script to perform the data analysis.

library(eSIR) # Load and attach the package

lambda0 <- 0.00982357 # pi(t) = 0.6 on May 2nd

N <- 9.99e6 # Michigan population size

infectious <- It / N # Infectious cases prevalence

removed <- Rt / N # Removed cases prevalence

res <- tvt.eSIR(Y = infectious, R = removed,

begin_str = "03/11/2020", T_fin = 200,

nadapt = 10000, nchain = 4, thn = 10,

M = 5e5, nburnin = 2e5, exponential = TRUE,

lambda0 = lambda0, casename = "Michigan_eSIR",

save_files = TRUE, file_add = "Directory/to/save/results",

save_mcmc = FALSE, save_plot_data = TRUE,

gamma0 = 0.1, R0 = 3.5)

res$plot_infection # Plot for the infectious compartment

res$plot_removed # plot for the removal compartment

In the above program we consider a time-dependent declining transmission rate with the modifier
value πptq “ expp´λ0tq where the parameter λ0 is chosen so that the modifier equals to 0.6 on
May 2nd. This value is determined based on the social distancing scoreboard posted by Unacast,
Inc. (https://www.unacast.com/covid19/social-distancing-scoreboard). One needs to set
exponential = TRUE to activate such setting. Alternatively, as shown in Figure 10 Panels A-C,

32

This article is protected by copyright. All rights reserved.

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/forecasting-us.html
https://www.unacast.com/covid19/social-distancing-scoreboard


one may use a step function by providing a vector of pi0 values and the corresponding vector of
changes dates in change_time. In the main function above, we let the starting date be March 11,
and conduct the estimation and projection of 200 days ahead (T_fin = 200) on June 10 and after.
We run 4 separate MCMC chains with different initial values, each with length of 5 ˆ 105, kept
from every 10 draws (thn = 10) (a thinning operation to reduce autocorrelations) after 2 ˆ 105

draws are dropped. Thus, with a relatively squandering setting, we expect a better performance of
convergence and reliable quantification of prediction uncertainty using sample quantiles.

There are two different prior settings for sensitivity analysis. One follows the example code
above, with the prior mean for the log-normal distribution of the basic reproduction number to
be 3.5, the removal rate 0.1, and thus the mean transmission rate 0.35; and the other with all
these values to be 4, 0.2 and 0.8, respectively. The two distinct settings provide similar estimat-
ing and forecast results as can be seen in Figure 11. Their estimated reproduction numbers are
3.154 (95% CI: [2.162, 4.369]) and 3.143 (95% CI: [2.294, 4.147]), respectively, which are similar
considering their prior settings are quite different. The output Gelman-Rubin statistic developed
by Gelman and Rubin (1992) are close to 1 (data not given). Both pieces of evidence as well as
stationary trace plots warrant the convergence of the MCMC chains. One can further check the
quality of the MCMC draws through the output by setting save_mcmc = TRUE. The estimation
and forecast plots for the rates of infection and removal compartments, diagnostic trace-plots, and
other useful ancillary plots are automatically saved under the directory assigned via file_add by
setting save_plot_data = TRUE. Other statistics for the posterior distributions of the parameters
and dates of turning points can be saved by setting save_files = TRUE.

The Michigan COVID-19 data has been preprocessed to smooth away some unnatural gaps
caused by the clustered reporting issue as discussed in Appendix A.2. Figure 11 shows an adequate
model fitting, where all observed number of confirmed infections fall in the 95% in-sample credible
intervals of prevalence θIt , t ď June 9. In contrast, the 95% out-sample credible intervals of the
projected proportion (Y I

t ) are much wider, reflecting to the significant amount of uncertainty in
the prediction. Such uncertainty elevates as the time moves further away from the present time.
Despite the large uncertainty, the projected mean and median prevalence curves show a decreasing
trend over time, which means that the social distancing works to mitigate the epidemic in Michigan
although the rate of improvement is moderate. Also the fact that the two estimated turning points
have occurred before June 9 is another piece of evidence for the positive effects of the series of
social distancing orders issued by the state governor since March 23, 2020.

Model diagnosis is an important part of a statistical analysis, which is typically conducted
using various residual plots. As illustration, in this Michigan data analysis, let θ̄t be the posterior
means over the period of March 11 to June 9. We consider residuals of the two observed processes,
defined by rIt “ Y I

t ´ θ̄It and rRt “ Y R
t ´ θ̄Rt , noting from (12) and (13) that EpY I

t |θtq “ θIt and
EpY R

t |θtq “ θRt . To check the conditional independence between Y I
t and Y R

t , we make a scatterplot
(the top row of Figure 12) of residuals rRt versus residuals rIt , where two large residuals (not
outliers) are excluded in order to display the detailed patterns of their relationship. Clearly, in this
plot all points are randomly distributed with no clear patterns, which confirms the assumption of
conditional independence of the two observed processes, as well as approximately constant variances.
We also plot partial autocorrelation functions (Partial ACF) of the posterior means of the latent
processes to check if the first-order Markov process is appropriate. The bottom row of Figure 12
shows that there are dominant lag-1 autocorrelation (the three coefficients are about 0.97) and
no any additional significant autocorrelations beyond the lag-1 dependence. This confirms the
assumption that the three latent processes are all the first-order Markov processes.
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Figure 11: Estimation and forecast from two different prior settings. The cyan areas denote the
95% in-sample credible intervals of prevalence θIt , t ď June 9, and the salmon areas denote the 95%
out-sample credible intervals of the projected prevalence Y I

t , t ě June 10, of confirmed infectious
cases. The gray and red curves denote the posterior mean and median of the prevalence θIt , t ě
June 10, respectively. The vertical lines denote the landmark dates with the maximum increasing
rate (green), the maximum prevalence value (purple) and the last observation (blue), respectively.

Figure 12: Top: a scatterplot of the residuals of the two observed processes Y I
t and Y R

t . Bottom:
partial autocorrelation functions of the posterior means of the latent processes, θIt , θ

R
t , and θSt .
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6 Spatio-Temporal Multi-Compartment Models

6.1 Modeling of Infections Disease with Spatial Heterogeneity

All mechanistic models discussed in the previous sections are useful to analyze the infection dynam-
ics for a large population such as a country or a state in which most of model parameters may be
assumed to be homogeneous and representing the entire population. This type of macro modeling
approach is particularly valuable at the early phase of disease outbreak when the national public
health administration aims to come up with nationwide macro intervention protocols with very
limited amounts of relevant data available. Once an epidemic evolves further into its middle phase,
with more and more surveillance data collected from local communities, a macro model is no longer
suitable for an in-depth analysis of micro infection dynamics owing to the existence of substantial
heterogeneity across local communities. This section concerns a review of significant extensions
of infections disease models by incorporating spatial heterogeneity across different geographic lo-
cations into modeling and analysis. The focus will be on the recent development of integrating
the classical spatial cellular automata (CA) (Von Neumann and Burks, 1966) with the previously
discussed temporal multi-compartment models, leading to an important class of spatio-temporal
multi-compartment models. This class of models is useful to predict local infection risk.

Technically speaking, the majority of existing macro mechanistic models to study the spread of
infectious disease are based on the assumption that the system is homogeneous in space. This means
that the spatial characteristics that could potentially play a nontrivial role in the development and
outcome of disease infection are not taken into consideration. This is a valid assumption if the
population vulnerable to the infectious disease is mixed well and the human interventions (e.g.,
vaccination strategies) are homogeneous across different spatial locations. However, in reality there
exists substantial heterogeneity in the urbanization, ethnic distribution, political views, governance,
and economic composition across different subgroups of individuals distributed over geographic
locations, all of which will influence the spread of infectious disease and make the previous macro
mechanistic model not appropriate to address the dynamics spatially. One possible extension is to
utilize partial differential equations (PDEs) (Murray et al., 1986) in spatial homogeneity, which is
relaxed to allow area-specific spread patterns of epidemics. As noted in the literature, one limitation
of PDEs is that this approach ignores the fact that infectious disease is spread through person-to-
person interactions, rather than by a continuous population. Thus, PDEs may lead to impractical
results about the dynamics of an epidemic (Mollison, 1991). A natural strategy is to embrace a
micro model mimicking an interactive particle system, and cellular automata (CA) is one of the
well-studied systems with the strength of modeling spatially-varying infection dynamics. Originated
in the works of (Von Neumann and Burks, 1966) and (Ulam, 1962), the cellular automata paradigm
has been used in many applied fields, including the modeling of infectious diseases.

6.2 Building A General Cellular Automaton

When applied to model spatial variations of epidemic spread, CA has three distinctive features: (i)
It treats individuals as discrete entities in order to study person-level movements in the infection
dynamics. This high-resolution paradigm necessitates the incorporation of individual’s heterogene-
ity such as residential address, age, race, preexisting medical conditions, and others in the modeling.
In surveillance data, geographic information is publicly available (e.g., county that an individual
lives), so it is feasible to utilize this variable in the extension of the macro mechanistic model.
(ii) CA allows to introduce local stochasticity; for example, the CA paradigm may be built upon a
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person-to-person infectious mechanism if individual-level information is available; otherwise, it may
be based on a group-group infection process. (iii) CA is formulated in a network of particles (e.g.,
individuals, groups, villages, counties) with certain rules of connectivity and stochastic laws of dis-
ease transmission. This network topology is well-suited for computations and simulations. Due to
these unique advantages, the CA paradigm has been employed by researches as an efficient method
to study spread patterns of epidemics (Beauchemin et al., 2005; Ahmed and Agiza, 1998; Boccara
et al., 1994; Quan-Xing and Zhen, 2005; Fuks and Lawniczak, 2001; Willox et al., 2003; Rousseau
et al., 1997; Sirakoulis et al., 2000; Fuentes and Kuperman, 1999; Liu et al., 2006; Yakowitz et al.,
1990; Sun et al., 2011).

In the modeling of infectious diseases, the basic CA formulation involves three primary compo-
nents: (i) A two-way array of cells (e.g., a age group or a county) that contain groups of individuals
under study, and each individual belongs to one cell; (ii) a set of discrete states (e.g., susceptible,
self-immunized, contagious, recovered, and death) that describe different conditions of individuals
during an epidemic; and (iii) some specific rules or updating functions that determine spatially
how local interactions with a target cell from its neighboring cells can influence and change the
states of individuals in the target cell; all cells in a CA system achieve a global propagation of
infection status updates instantaneously and continuously. In the application of the CA, determin-
ing neighboring cells is tricky, and different types of neighborhood topology have bee proposed in
the literature, including Von Neumann neighborhood, Moore neighborhood, MvonN neighborhood,
and extended neighborhood (Hasani and Tavakkoli, 2007). See Figure 13 for an example of these
four neighborhood types.

In the modeling of influenza A viral infections, Beauchemin et al. (2005) use a simple 2-
dimensional CA model to investigate the influence of spatial heterogeneity on viral kinetics. Their
study population consists of two types of cell species, the epithelial cells and the immune cells.
The epithelial cells are the target of viral infection, and the immune cells are those fighting the
infection. The CA model is built upon a 2-dimensional square lattice with the Moore neighborhood
(see Figure 13 Panel (b)), where the condition of a certain cell will only be influenced by the 8
closest cells around it. The set of states for the epithelial cells include healthy, infected, expressing,
infectious, or dead, while an immune cell can be in any of two states: virgin or mature. Decision
rules of updating the CA system are governed by parameters, such as INFECT RATE that mod-
els the probability of a healthy epithelial cell being infected by contacting each infectious nearest
neighbour. Detailed updating functions are discussed in Beauchemin et al. (2005). Simulations
show that the proposed CA model is sophisticated enough to reproduce the basic dynamic features
of the cell-to-cell infection.

Different from the modeling of the influenza A viral infection above, Fuks and Lawniczak (2001)
propose a lattice gas cellular automata (LGCA) that is closely connected to an SIR framework of an
epidemic, where the interacting patterns of individuals are modeled. It is assumed that the status
of individuals will change between three types, susceptible, infectious and recovered, denoted as
tS, I,Ru. The space where the epidemic takes place is set as a group of regular hexagonal cells, in
which the individuals are located at the center of each cell and can move through a channel that
is created by connecting two centers of adjacent cells. The evolution of the CA occurs at discrete
time steps under the operation of three basic functions, including contact C, randomization R and
propagation P . With the application of function C, an individual who is susceptible can become
infected with probability 1´ p1´ βqNI , where β is the transmission rate and NI is the number of
infectious individuals within the same cell. Meanwhile, an individual who is infectious can recover
with probability γ, where γ is the recovery rate. The function R randomly assigns individuals
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in each cell to move through the channels, which contributes to modeling the mixing process of
individuals. In the final propagation step, individuals simultaneously move to the cells they are
randomly assigned to by R. In addition to the basic epidemic dynamics modeled by the proposed
LGCA, Fuks and Lawniczak (2001) also study the effect of heterogeneous spatial distribution of
individuals with states S, I, R and the influence of different types of barriers in controlling the
spread of epidemic.

6.3 Building an SIR Cellular Automaton

Although the two applications discussed above in Section 6.3 give a framework of how CA models
the dynamics of epidemic spread, White et al. (2007) provide a more direct incorporation of spa-
tial CA with the temporal SIR compartments at the population level, where each cell stands for
a small population (e.g., a county) with different proportions of susceptible, infectious, or recov-
ered individuals. The resulting CA-SIR given in White et al. (2007) is formulated by four parts
pC,Q, V, fq. First, C “ tpi, jq, 1 ď i ď r, 1 ď j ď cu defines the cellular space, or a collection of
r ˆ c cells on a two-way array, where r ˆ c is referred to the dimension of the cells. Second, Q
represents a finite set that contains all the possible states of a cellular space. In the case of the
SIR model, Q “ tS, I,Ru corresponding to the susceptible, infectious and removed states. Third,
V “ tppk, qkq, 1 ď k ď nu is the finite set of indices defining the neighborhood of each cell, and
consequently Vij “ tpi` p1, j ` q1q, . . . , pi` pn, j ` qnqu denotes the set of neighboring cells for the
central cell pi, jq. Specifically, V ˚ “ V ´tp0, 0qu represents all the neighboring cells without the cell
at the center of consideration. Fourth, function f stands for certain updating rules to govern the
dynamics of interactions between cells in the a CA-SIR system. For each cell at a discrete time t
(say, today), its current status is described by three cell-specific compartments tθSijptq, θ

I
ijptq, θ

R
ijptqu,

where θSijptq, θ
I
ijptq, θ

R
ijptq P r0, 1s represent the cell-specific probabilities of being susceptible, infec-

tious, and recovered, respectively. Clearly, θSijptq ` θIijptq ` θRijptq “ 1 to form a micro cell-level
SIR model. The CA-SIR model is updated based on the following transition functions: For cell
pi, jq P V ,

θSijptq “ θSijpt´ 1q ´ βθSijpt´ 1qθIijpt´ 1q ´ βθSijpt´ 1q
ÿ

pp,qqPV ˚

ωpi,jqpq

Ni`p,j`qθ
I
i`p,j`qpt´ 1q

Nij
,

θIijptq “ p1´ γqθ
I
ijpt´ 1q ` βθSijpt´ 1qθIijpt´ 1q ` βθSijpt´ 1q

ÿ

pp,qqPV ˚

ωpi,jqpq

Ni`p,j`qθ
I
i`p,j`qpt´ 1q

Nij
,

θRijptq “ θRijpt´ 1q ` γθIijpt´ 1q,
(15)

where β is the population macro transmission rate and γ is the population macro recovery rate.
First, when the set V ˚ “ H, i.e., an empty set, the CA-SIR model for cell pi, jq reduces a cell-
level SIR model similar to that given in (2). Second, the numerator Ni`p,j`qθ

I
i`p,j`qpt´ 1q is the

expected number of infectious cases yesterday (time t´1) in a neighboring cell pp, qq P V ˚ whose cell

population is Ni`p,j`q. So, the ratio
Ni`p,j`qθ

I
i`p,j`qpt´1q

Nij
is an empirical probability that a person in

cell pi, jq randomly runs in a contagious person from its neighboring cell pp, qq. Third, this random

chance is weighted by a factor of inter-cell connectivity, denoted by ω
pi,jq
pq ; a stronger tie of cell pi, jq

with cell pp, qq the higher likelihood of a person from cell pi, jq running in contagious individuals
in cell pp, qq. Fourth, summing up all such likelihoods gives a total likelihood that an individual
from cell pi, jq would run in the virus carriers from all the neighboring cells. A typical form of the
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inter-cell connectivity coefficient is given by ω
pi,jq
pq “ c

pi,jq
pq m

pi,jq
pq , where c

pi,jq
pq and m

pi,jq
pq are broadly

defined as a connection factor and a movement factor, respectively. They are used to characterize
the inter-cell mobility or how easily individuals in the cells can move between the center cell and
its neighbouring cells. This CA-SIR system, which is integrated with the SIR model, can serve as
a basis for the development of useful algorithms to emulate real-world epidemic infection spatially.

Example 4. We perform a simulation study to illustrate the one-step ahead evolution of the
infection dynamics in a simple CA-SIR model (15). Assume that there is a 5-by-5 square array
of 25 cells that hold the population under the study of a certain epidemic. Our target cell is the
one at the center; see Figure 13. The prevalence of infection in the central cell is influenced by its
neighboring cells, for which different types are considered, including Von Neumann neighborhood,
Moore neighborhood, MvonN neighborhood, and extended neighborhood (all cells in the array
are neighboring cells). For simplicity, we assume that all the cells have the same population size.
At time t0, the prevalence of being infectious θIc pt0q in each cell c, except for the central one, is
simulated from a Uniform Up0, 0.01q distribution. We intentionally set Icpt0q “ 0 for the central
cell to clearly show the change of infection after a one-step evolution at time t0 ` 1. It is set
that the macro transmission rate β “ 0.5 and the recovery rate γ “ 0.2. For those cells within
the neighborhood of consideration, it is specified that cpq “ 1 and mpq “ 0.5 if a cell is a “near”
neighbor (i.e., if the cell shares a common edge or vertex with the target cell) and cpq “ 0.5 and
mpq “ 0.25 for a “distant” neighbor cell. The prevalence of being infectious in the central cell
is updated using the second model in equation (15). The codes for data simulation are listed as
follows and the infection prevalence updates for the central cell and for all its neighboring cells are
shown in Figure 13.

require(tidyverse) # use tibble to store lattice data

lattice <- as_tibble(x = c(1:25)) %>% # create lattice and initialise prevalences

add_column(s = 0,

i = 0,

r = 0) %>%

rename(POS = value)

target <- 13 # position of target cell when cells are numbered 1-25

set.seed(31496) # for reproducibility

simulate <- function(){ # function to simulate infection prevalences

runif(1, 0, 0.01)

}

#----- for von Neumann neighborhood ----#

nbhd.near <- c(8, 12, 14, 18) # positions of near neighbors

nbhd.far <- NULL ## positions of far neighbors

#----- for Moore neighborhood ----#

#nbhd.near <- c(7, 8, 9, 12 ,14, 17, 18, 19) # positions of near neighbors

#nbhd.far <- NULL # positions of far neighbors
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#---- for MvonN neighborhood ----#

#nbhd.near <- c(7, 8, 9, 12 ,14, 17, 18, 19)

#nbhd.far <- c(3, 11, 15, 23)

#---- for extended neighborhood ----#

#nbhd.near <- c(7, 8, 9, 12 ,14, 17, 18, 19)

#nbhd.far <- c(1, 2, 3, 4, 5, 6, 10, 11, 15, 16, 20, 21, 22, 23, 24, 25)

nbhd <- c(nbhd.near, nbhd.far)

## simulating infection rates for neighbor cells

lattice[lattice$POS %in% nbhd,]$i <- replicate(length(nbhd), simulate())

lattice <- lattice %>%

mutate(x = ceiling(POS/5),

y = POS %% 5) %>%

mutate(y = ifelse(y == 0, 5, y)) # matrix form of lattice created

beta <- 0.5

gamma <- 0.2

omega.near <- 1*0.5*beta # c = 1 and m = 0.5 for near neighbors

omega.far <- 0.5*0.25*beta # c = 0.5 and m = 0.25 for far neighbors

## contribution of near neighbors + contribution of far neighbors

lattice[target, 3] <- sum(lattice[nbhd.near, 3] %>% pull(i))*omega.near +

sum(lattice[nbhd.far, 3] %>% pull(i))*omega.far

6.4 Spatio-Temporal Models for Infectious Diseases

Based on the basic CA-SIR model proposed in White et al. (2007), extensions can be easily applied
to better model the dynamics of infectious diseases using real data. Zhou et al. (2020) propose a
spatio-temporal epidemiological forecast model that combines CA with an extended Susceptible-
Antibody-Infectious-Removed (eSAIR) model to project the county-level COVID-19 prevalence
over 3,109 counties in the continental US. This model is termed as CA-eSAIR model in which
a county is treated as a cell. To carry out cell-level infection prevalence updates, the macro
parameters β and γ need to be estimated from the macro model eSAIR model. In comparison to
the eSIR model discussed in Section 5.2, a new antibody compartment (A) is included in the eSAIR
model to account for the individuals who are self-immunized and have developed antibodies to the
coronavirus. The inclusion of the antibody compartment can address the under-reporting issue
known for available public databases and to build self-immunization into the infection dynamics.
In this way, better estimation of the macro model parameters can be obtained. The eSAIR model
can be described using the following ODEs, which govern the law of interactive movements among
four compartments or states of Susceptible (S), Self-immunized (A), Infectious (I) and Removed
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Figure 13: One-step forward evolution of the infection prevalence (ˆ103) for the central cell in the
simulation study. Four different neighborhood types are illustrated, including (a) Von Neumann
neighborhood, (b) Moore neighborhood, (c) MvonN neighborhood, and (d) extended neighborhood.
The numeric value indicates the proportion of infectious people in each cell. The letter indicates
target (T) or neighbor (N) cells respectively.

(R):

dθAt
dt

“ αptqθSt ,
dθSt
dt

“ ´αptqθSt ´ βπptqθ
S
t θ

I
t ,
dθIt
dt

“ βπptqθSt θ
I
t ´ γθ

I
t , and

dθRt
dt

“ γθIt ,

where αptq is the self-immunization rate, πptq is a time-varying transmission rate modifier, β is
the basic disease transmission rate, and γ is the rate of being removed from the system (either
dead or recovered). The above eSAIR model is an alternative expression of model (6) based on the
compartment probabilities.

In order to apply the CA-eSAIR system to model the epidemic spread in the US, Zhou et al.
(2020) relax the classical CA-eSAIR from spatial lattices (or cells) to areal locations of counties. Let
C be the collection of 3,109 counties. Here we consider the extended neighborhood type (all counties
are neighboring ones given high mobility in the US population). For a county c P C, Nc denotes the
county population size, and C´c denotes the set of all the other counties except county c. For county
c at time t, the county-specific probability vector is denoted by θcptq “ pθ

S
c ptq, θ

A
c ptq, θ

I
c ptq, θ

R
c ptqq

J.
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The CA-eSAIR model at discrete times is expressed by the following form:

θAc ptq “ θAc pt´ 1q ` αcptqθ
S
c pt´ 1q,

θSc ptq “ p1´ αcptqqθ
S
c pt´ 1q ´ βπcptqθ

S
c pt´ 1qθIc pt´ 1q

´ βπcptqθ
S
c pt´ 1q

ÿ

c1PC´c

ωcc1ptqtNc1θ
I
c1pt´ 1q{Ncu,

θIc ptq “ p1´ γqθ
I
c pt´ 1q ` βπcptqθ

S
c pt´ 1qθIc pt´ 1q

` βπcptqθ
S
c pt´ 1q

ÿ

c1PC´c

ωcc1ptqtNc1θ
I
c1pt´ 1q{Ncu,

θRc ptq “ θRc pt´ 1q ` γθIc pt´ 1q,

where αcptq is the county-specific self-immunization rate and πcptq is the county-specific trans-
mission modifier. Same as the parameter mentioned in the CA-SIR model (15) above, ωcc1ptq is
a connectivity coefficient that quantifies the inter-county movements between counties c and c1.
By applying the proposed CA-eSAIR model, Zhou et al. (2020) have proposed a t-day ahead risk
forecast of the COVID-19 as well as a personal risk related to a travel route.

6.5 Example: Analysis of Michigan County-Level Data

We illustrate the predicted risk of infection with the COVID-19 for all the 83 counties in Michigan
state using the state-space model with the mechanistic CA-eSAIR latent process (Zhou et al.,
2020). In the first step, we apply the MCMC method to estimate the model parameters pβ, γq and
the vector of four probabilities θt of being susceptible, self-immunized, infectious and removed by
fitting the eSAIR model with the state-level surveillance data since March 11. This can be done
easily using the R package eSIR, which has been illustrated in Section 5.5. Both the antibody rate
function αptq and the transmission rate modifier πptq are pre-specified using other data sources with
the detail given below. After getting the estimates of the model parameters, we use them as the
initial values to make county-level risk prediction by the CA-eSAIR model (15). In this example,
we consider only a one-day ahead infection rate prediction (i.e., May 3, 2020) for all the counties
in Michigan, namely θIc pt0 ` 1q. Given that the COVID-19 pandemic evolves fast in the state of
Michigan in early May, 2020, this kind of short-term forecast or nowcast is of great interest to the
Michigan government for timely decision-making on either extending an existing Governor’s “Stay-
At-Home” order or relaxing this executive order. To preform the prediction, one important task
is to specify the inter-county connectivity coefficient ωcc1ptq. As discussed in Zhou et al. (2020),
it is challenging to define ωcc1ptq objectively, as it involves many variables. In this illustration,
we specify this coefficient as ωcc1ptq “ µcc1expt´ηrpc, c1qu, where η is a tuning parameter to be
determined. Briefly speaking, the first factor µc,c1 is the inter-county mobility factor characterizing
the decrease of human encounters in terms of their potential movements between counties, which
has been given online (https://www.unacast.com/covid19/social-distancing-scoreboard).
The second factor rpc, c1q is a certain travel distance between two counties c and c1 in terms of both
geodesic distance (Karney, 2013) and “air distance” based on the accessibility to nearby airports.
In addition, the tuning parameter η enables to adjust the scale of the travel distance by minimizing
the sum of (county-level) weighted absolute prediction error (WAPE) for the one-step ahead risk
prediction of the infection rate. In addition to the specification of the connectivity coefficient
ωcc1ptq, the self-immunization rate αcptq is calculated based on the results of the New York statewide
antibody test surveys released by the New York governor Andrew Cuomo on April, 29 (New York

41

This article is protected by copyright. All rights reserved.

https://www.unacast.com/covid19/social-distancing-scoreboard


State Report, 2020) and the transmission modifier function πcptq is specified by the effectiveness
score of state-specific social distancing using cell phone data in the US from the Transportation
Institute at the University of Maryland (https://data.covid.umd.edu/). Additional details of
the determination of µc,c1 , rpc, c

1q, αcptq, πcptq, and the tuning of η can be found in Zhou et al.
(2020). Figure 14 Panel A shows the one-day ahead projected infectious rate for 83 counties in
Michigan on May 3, and Panel B plots the corresponding county-level weighted prediction errors
(WPE), which is at the order of 10´7 for the counties. The R package CA-eSAIR is available on
GitHub (https://github.com/leyaozh/CA-eSAIR).

Figure 14: (A) Statewide one-day ahead county-level predicted infectious prevalences and (B)
statewide one-day ahead weighted (by county population) prediction error (WPE) for all the 83
counties of Michigan, US using data up to May 2.

7 Future Directions

In this paper, we have presented the basics of multi-compartment infectious disease models from
both deterministic and stochastic perspectives. We emphasize on the probabilistic extension of
mechanistic models, which opens the door to a suite of statistical modeling techniques while still
preserving the infectious disease dynamics in multi-compartment models. Within the stochastic
modeling framework, both the frequentist and the Bayesian schools of modeling considerations and
statistical methods are visited, along with high-level review and illustrative examples. Epidemic
models have played a key role in the past century to provide understanding of past and ongoing
infectious diseases, and it is our belief that they will continually be valued and be improved to help
us better understand the current COVID-19 pandemic as well as future infectious diseases. We
conclude with several remarks on future directions of stochastic infectious disease modeling.
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7.1 Data: Sources, Quality and Sharing

Data Quality Although publicly available surveillance data are useful to build preliminary models
for the understanding of spreading patterns of infectious diseases, their data quality in terms of
measurement biases and underreporting has been known an outstanding issue that significantly
impacts the validity of statistical analysis results (Angelopoulos et al., 2020). This is indeed an
open problem to date with no appropriate solutions yet. With no insurance of reliable data,
statistical methods, regardless of macro or micro models, would fail to produce meaningful results.
One potentially promising solution to such a fundamental concern is to build reliable and well-
validated open-source benchmark databases that include not only traditional surveillance data but
also personal clinical data from various sources such as hospital electronic health records, drug trials
and vaccine trials. In addition, data from serological surveys and data from mobile devices or as
such are also useful to increase information resolution and reliability, to remove major measurement
biases, and to calibrate data analytics. This task requires also efforts of data integration and
international collaborations. Research on the COVID-19 pandemic certainly gives rise to a new
opportunity of developing data integration methods to not only address challenges of data multi-
modality but also overcome many data sharing barriers and data confidentiality concerns.

Serological Survey The population of self-immunized individuals is a significant source of bias in
COVID-19 surveillance data; they have never been captured by public health monitoring systems.
According to survey results (New York State Report, 2020), twenty percent of individuals in the
city of New York have been tested antibody positive to the coronavirus. This simply means that a
nationwide serological survey is a must in order to come up with an appropriate assessment for the
underlying epidemiological features of the COVID-19 pandemic in the USA. The design of this na-
tionwide serological survey is a challenging statistical problem. Solving it requires some innovative
ideas and methods; for example, a cost-effective design of pooling several serum samples to perform
a pooled test (e.g., Gollier and Gossner (2020)), and an efficient design of hierarchical stratified
survey sampling schemes. The SAIR model introduced in Section 3.3 presents a basic framework
for statistical models incorporating antibody serologocial surveys into the multi-compartment dy-
namics of infectious diseases.

Mobile Tracking Data Large-scale tracking data have played an important role in evaluating
the effectiveness of social distancing in communities. The precision of intervention efficacy helps
improve both estimation and prediction that directly impact government’s decisions on tightening,
extending or lifting control measures. One emerging data source pertains to the information of
real-time cell phone locations which allow better contact tracing so that individual data sequences
can be recovered and used for modeling of personal risk and regional hotspots. A research group
in the University of Maryland (https://data.covid.umd.edu/) proposes several algorithms to
process the cell phone data in the US to extract key features of personal mobility, including location
identification, trip identification, imputation of missing trip information, multi-level data weighting
scheme, comprehensive trip data validation, and data integration and aggregation (Zhang et al.,
2020; Ghader et al., 2020). However, these types of data are proprietary and subject to the issue
of personal privacy (Ienca and Vayena, 2020). Integrating such data type or its summary statistics
into infectious disease models should be encouraged, but in a cautious and responsible manner. In
this field, statistical learning methods with differential privacy (Dwork, 2008) are of great interest.
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7.2 Statistical Models

Statistical methodologies have been greatly challenged in the modeling and analysis of infectious
diseases; almost every methodological troubling issue known the statistical literature surfaces,
which presents new opportunities to statisticians and data scientists to develop innovative solu-
tions. Among many challenges, we emphasize a few of critical importance, which may be easily
ignored in the new methodology development.

Transparency and Reproducibility We strongly advocate for the urgent need to build models
that are transparent and reproducible (Peng, 2011). As most methods and models for the COVID-
19 pandemic are fairly recent and many have not yet been carefully peer-reviewed, researchers
should document the sources of data used, data preprocessing protocols, source computing code,
and sufficient modeling details to allow external validation from the public. Such details are also
necessary to allow others, who may have better quality data but without sufficient statistical
expertise, to easily adopt new methodologies to obtain high quality results. As mentioned in an
original post by Dr. Nilanjan Chatterjee (http://link.medium.com/hqUQILEAd6), transparency,
reproducibility, and validity are three criteria to assess and assure the quality of prediction models.
His essay also mentioned the difficulty in reproducing the work given by the IHME to obtain
accurate predictions and appropriate confidence intervals. Similar to the IHME method that has
no software available, Gu’s method for the COVID-19 prediction (https://covid19-projections.
com/) that has recently received much attention does not provide software, either, unfortunately.
Without clear guidance and full reproducibility, even models that currently do well might fail in
the future since predictions are relying on certain kinds of extrapolation assumptions that need to
be unveiled to the scientific community with full transparency for validation and comparison.

Nowcasting and Short-Term Projection Given that model projections for the COVID-19
pandemic have been changing dramatically from day to day primarily because the underlying
models are changing, the primary aim may be set at optimizing prediction models for nowcasting
or short-term projections, and be aware of the probable worst case scenarios for longer-term trends.
As shown in the data example in Section 6.5, the optimal tuning parameter is determined by the
minimal short-term one-day ahead prediction error. As pointed out by Huppert and Katriel (2013),
transmission models with different underlying mechanisms may lead to similar outcome in one
context (e.g., short-term) but fail to do so in another (e.g., long-term). The further we project, the
more we are uncertain about the validity of model assumptions. Hence, extra caution is needed
when reporting and interpreting long-term projection results. With the available surveillance data,
making a nowcast of infection risk in next few hours is difficult; but it may become feasible when
certain data sources of local information are accessible, such as electronic health records from local
hospitals, viral testing results from local testing centers, and mobile tracking data from individual
cell phones. This requires a finer resolution prediction machinery that may be established by
generalizing the cellular automata to certain spatial point processes. Despite being challenging,
such prediction paradigm would be very useful and worth a serious exploration.

Bias Correction Due to the potential bias in surveillance data, either delayed reporting of infected
case or inaccurate ascertainment of death caused by a virus, there are many measurement errors
in data. This calls for statistical methods that can directly handle various data collection biases or
are robust to such biases. There is little work done in this important field of statistical modeling
and analyses.
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Model Diagnostics In the current literature, model diagnostics for infectious disease models are
largely lacking. Given that most of the existing mechanistic models are based on certain parametric
distributions (e.g., Poisson processes), checking model assumptions is required. For example, for the
proposed Poisson process, the assumption of incremental independence and overdispersion should
be checked. In addition, procedures of validating prediction accuracy is also important in which
the choice of test data is tricky and needs to be guided by some objective criteria.

Adding Covariates A major weakness noted for the existing mechanistic models is the inflexibility
of adding individual or subgroup covariates (e.g., age, race). The current strategy of handling
these extra variables is via stratification, which would end up with strata with small sample sizes,
so that subsequent statistical analyses lose power in both estimation and prediction of infection
dynamics. An extension from the cellular automata seems promising as the CA presents a system
of particles distributed in different cells (or strata), where individual characterizations on particles
may be added via covariates. The resulting model would assess and predict personal risk, as well as
identify hotspots of new infection. This is worth serious exploration in the future with appropriate
data available (e.g., electronic health records from hospitals).

Meta-Analysis For a global pandemic such as the COVID-19 that affects over 200 countries in
the world, an integrative analysis is appealing to understand common features of the pandemic so
to learn different control measures. Given the fact that a pandemic evolves typically in a certain
time lag, experiences from countries with earlier outbreaks may be shared with countries with later
outbreaks, where statistical methods may borrow relevant information to set up prior distributions
in the model fitting. For example, the estimated reproduction number estimated from the European
COVID-19 data may as a hyperparameter in the statistical analysis of the US COVID-19 data.
There is a clear need of more comprehensive meta-analysis methods to better integrate data from
different countries than using the data to create hyperparameters. Along this line, one of the
earliest attempts is to combine COVID-19 forecasts from various research teams using ensemble
learning (see for example https://github.com/reichlab/covid19-forecast-hub).

7.3 Impacts on Public Health Policy and Economy

Most investigation efforts made by quantitative researchers have been relatively independent in an
academic setting, and it is high time that policy makers and stake holders are involved and play an
active role in such modeling efforts. Long-term projection of the COVID-19 is most sensitive to and
highly dependent on public health policy. A major source of uncertainty is due to the conflicting
demands between public health (disease mitigation) and the need to sustain economic growth
(livelihood), and the balance of the two is a moving target. One way to account for the modeling
uncertainty is to factor in economic planning as a time-varying modifier of projection models.
Although some efforts have been made to incorporate economical data, most are retrospectively
oriented and we believe more efforts should be spent to prospectively incorporate expert inputs and
economic forecasts. This is a research area of great importance worth serious exploration.

7.4 Some Open Questions

We like to close this review paper by casting a few open questions of great interest to the public (at
least to ourselves) that statisticians may help deliver answers with existing or new data to be col-
lected by innovative study designs. We also hope that these questions motivate new methodological
developments.
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Question 1 How would researchers assess both timing and strength of the second wave of the
COVID-19 pandemic? Is the second wave worse than the first one? Answers to these questions
need a relatively accurate long-term prediction of the infection dynamics. Among so many different
statistical models being able to predict future spreading patterns, we need to identify few ones or
their combinations that are particularly useful to make long-term predictions.

Question 2 As many countries and regions started to reopen business, how would government
monitor the likelihood of a recurring surge of COVID-19 caused by business reopenings? Does the
social distancing measure help reduce a potentially rising risk? Answers to these questions require
adequate data that may not be easily collected by routine approaches. Statisticians may work with
practitioners to develop good sampling instruments and schemes for community risk surveillance.

Question 3 Is face mask protective? If so, how to assess the compliance of face mask wearing?
Questions about the causal effect of face mask wearing on disease progression are very challenging.
This is because there is no randomization in the intervention allocation and many confounding
factors are unobserved.

Question 4 Is there evidence that the contagion of the coronavirus decays over time due to an
increasing recovery rate of virus carriers and a decreasing rate of case fatality? Statisticians ought
to work out some thoughtful and convincing answers to the public.
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A Appendix

A.1 The Runge-Kutta Approximation

The Runge-Kutta method is an efficient and widely used approach to solving ordinary differential
equations when analytic closed-form solutions are unavailable. It is typically applied to derive
a numerical functional system of high order accuracy with no need of high order derivatives of
functions. The most well-known Runge-Kutta approximation is the fourth order Runge-Kutta
(RK4) method. For example, in the case of the mechanistic SIR model (1), ecause the three
ordinary differential equations of the SIR model are nonlinear, there exist no closed-form solutions
of Sptq, Iptq, Rptq. These approximate solution can be obtained by the RK4 method.

Assume a general ordinary differential equation problem:

dy

dt
“ fpt, yq, with a boundary condition ypt0q “ y0,

where y is an unknown function in time t, which can be either a scalar or a vector. Then for a
pre-selected (small) step size h ą 0, a fourth order approximate solution of y satisfies at a sequence
of equally spaced grid points yn, n “ 0, 1, . . . , with |yn ´ yn´1| “ h,

yn`1 “ yn `
1

6
hpk1 ` 2k2 ` 2k3 ` k4q, n “ 0, 1, . . . ,
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where

k1 “ fptn, ynq,

k2 “ fptn `
h

2
, yn ` h

k1
2
q,

k3 “ fptn `
h

2
, yn ` h

k2
2
q,

k4 “ fptn ` h, yn ` hk3q.

Due to the fact that four terms k1, k2, k3, k4 are used in the approximation, the above method is
termed as a fourth order Runge-Kutta method (RK4) of the ODE solution to function y. For a
general RK approximation, refer to Stoer and Bulirsch (2013).

A.2 Michigan COVID-19 Data

Below we list Michigan data from March 11 to June 10, 2020. The numbers of daily confirmed
cases and deaths are obtained from the GitHub repository JHU CSSE (https://github.com/
CSSEGISandData/COVID-19), and the daily recovery data are collected from 1Point3Acres (https:
//coronavirus.1point3acres.com). The daily cumulative numbers of deaths and recovered cases
are then summed as the cumulative number of removed cases. In such surveillance data, there are
data reporting gaps shown in Figure 15 that are possibly caused the so-called clustered reporting;
that is, the recovered cases have not been released on the daily basis. To mitigate this data re-
porting artifact, we invoked a simple local polynomial regression procedure (LOESS) to smooth
such unnatural jumps, resulting a smooth fitted curve shown in (Figure 15). To be self-contained,
the calibrated cumulative numbers of removed cases from the fitted curve (rounded to the corre-
sponding integers) are listed in the R statements below (vector Rt). The resulting daily number of
infectious cases is then obtained by the difference of confirmed and removed, shown in the R state-
ment below (vector It). The total population in Michigan is set as 9.99 million. The summarized
US state-level count data, which are weekly updated, can be also be found directly from the eSIR

package introduced in Section 5.4.
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Figure 15: The prevalence of cumulative removed subjects before (points) and after (red curve)
smoothing.
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# total population

N <- 9.99e6

# cumulative removed cases smoothed by LOESS procedure

Rt <- c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 145,

381, 625, 880, 1146, 1425, 1719, 2029, 2356, 2702, 3068, 3457, 3869,

4305, 4769, 5260, 5780, 6331, 6919, 7546, 8208, 8903, 9626, 10373,

11143, 11930, 12731, 13544, 14363, 15186, 16010, 16830, 17643, 18446,

19235, 20024, 20828, 21646, 22479, 23325, 24184, 25055, 25938, 26832,

27736, 28650, 29573, 30505, 31445, 32393, 33347, 34308, 35275, 36247,

37225, 38210, 39203, 40202, 41209, 42224, 43246, 44277, 45317, 46365,

47423, 48490, 49566, 50652, 51749, 52856)

# active cases: cumulative confirmed cases - smoothed cumulative removed cases

It <- c(2, 2, 16, 25, 32, 54, 63, 119, 259, 402, 540, 1035, 1329, 1793, 2296,

2845, 3634, 4650, 5488, 6498, 7615, 9315, 10646, 12363, 13600, 14838,

16075, 17545, 18627, 19475, 20078, 20903, 21176, 22178, 23132, 23754,

24040, 24763, 25011, 25093, 25081, 25121, 25758, 26393, 27040, 26701,

26635, 26280, 26531, 26855, 27016, 27170, 27197, 26971, 26347, 26005,

25944, 25721, 25558, 25169, 24703, 24227, 23837, 23336, 23644, 23247,

22802, 22492, 22342, 21845, 21564, 21117, 20566, 20057, 19404, 18634,

17879, 17398, 16811, 16419, 15760, 15173, 14286, 13454, 12718, 11876,

16354, 15739, 15082, 14292, 13249, 12326)
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