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Abstract 

Added sugar has become abundant in the modern dietary environment and excessive 

sugar consumption has been linked to obesity, diabetes, and other negative health outcomes. In 

flies, diets high in sugar have been shown to reduce sweet taste sensation, causing an increase in 

feeding behavior and subsequent accumulation of fat. However, the mechanisms through which 

alterations of sensation at the periphery affect a complex behavior such as feeding are  unclear. 

Previous studies have shown that increasing the excitability of sweet taste reward neurons 

expressing the octopaminergic receptor OAMB  prevents the overeating phenotype normally 

displayed on a high sugar diet and that knockdown of OAMB in this neuronal population 

eliminates sweet taste dependent short term memory. 

Here we investigate the role of the neurotransmitter octopamine in the modulation of 

feeding behavior in flies fed a high sugar diet. Through both the activation and inhibition of 

octopaminergic neurons, we found that octopaminergic signaling does indeed play a role in 

mediating changes in behavior as a consequence of the dietary environment. However, 

knockdown of OAMB in the sweet taste reward neurons did not alter feeding behavior. Instead, 

our data suggests that octopamine influences feeding partially through activation of Octβ2R 

expressed in neurons involved in state dependent motivational learning. Our work here points to 

a more detailed understanding of the neural circuit connecting taste with behavior and lays the 

groundwork for further studies characterizing the role of octopamine in feeding behavior 

modification. 
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INTRODUCTION  

Introduction to the Field: Neuroscience in the Modern Dietary Environment 

 In complex organisms, the nervous system serves as the bridge that links the environment 

with behavior, allowing organisms to sense external stimuli at the periphery and respond in an 

appropriate manner. Often, discussion of the environment brings to mind images of climate, 

terrain, and temperature, but a major component of the environment that is sometimes 

overlooked is diet. Characteristic human responses to the dietary environment evolved to ensure 

that we obtain the nutrients and energy necessary for survival. However, the dietary landscape in 

which these behaviors arose has changed radically in recent years, and behaviors which once 

conferred an evolutionary advantage may now be detrimental in​ ​the abundance of modern 

society. Therefore, it is crucial to understand the neuroscientific principles underlying changes in 

behavior to orient human feeding behavior in context of the modern dietary environment.  

 Humans evolved in a setting where resources were scarce and there was no guarantee of 

regular access to food. In contrast, ultra-processed foods have come to dominate the dietary 

terrain of high and middle income countries in recent years and can be defined as cheap, 

ready-to-eat products made from processed substances extracted from whole foods (Monteiro et 

al., 2013). While low in nutrients, ultra-processed foods are energy dense and rich in dietary fats, 

salts, and especially added sugars. According to a nationally representative cross-sectional study, 

ultra-processed foods comprised 57.9% of the total energy intake of survey participants and 

89.7% of the energy intake from added sugars (Steele et al., 2016). The most significant 

contributors to added sugar intake in the United States and the subjects of many studies are sugar 

sweetened beverages (SSBs), beverages that contain added caloric sweeteners such as sucrose 

and high-fructose corn syrup (Guthrie and Morton, 2000;  Hu and Malik, 2010). With such a 

prominent position in the modern dietary environment, it is important to consider the health 

implications of diets high in added sugars. 

 The negative health risks associated with excessive consumption of added sugars are 

numerous. Many studies have specifically related consumption of SSBs to the growing obesity 

epidemic, often citing the low satiety to energy ratio of these drinks (Ludwig et al., 2001; Berkey 

et al., 2012; Luger et al., 2017). Recognized as a worldwide epidemic by the World Health 
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Organization in 1997, obesity affects 35% of the US adult population and about one third  of US 

children (Smith and Smith, 2016). Obesity is the result of the positive energy balance that occurs 

when total energy consumption exceeds energy expenditure. The modern sedentary lifestyle 

combined with the availability of ultra-processed foods has made it very easy to reach such an 

energy surplus (Caballero, 2007). Added sugar has also been associated with type II diabetes. A 

report by Malik et al. found that individuals who regularly consume SSBs have a 26% greater 

risk of developing type 2 diabetes than individuals who did not (Malik et al., 2010). 

Additionally, regular SSB consumption has been linked to cardiovascular diseases, such as 

hypertension and coronary heart disease (Koning et al., 2012; Yang et al., 2014). The increased 

risk of type II diabetes and cardiovascular disease may partially be a consequence of weight gain 

caused by SSBs. However, added sugars also contribute to these conditions independent of 

weight due to their high glycemic load (GL) (Malik et al., 2010). 

 Evidence has also suggested that sugar can be addicting in much of the same way as 

drugs of abuse. Addictive drugs take advantage of the brain’s natural reward circuitry that 

evolved to encourage certain behaviors important for fitness, such as feeding or sex. As one of 

the original activators of this system, it is plausible that sugar and its consumption could give rise 

to addictive behaviors. Indeed, the characteristic addictive behaviors and dependency signs of 

bingeing, withdrawal, craving, and cross-sensitization to amphetamine and alcohol are 

demonstrated in rats with intermittent access to sugar (Avena et al., 2008). Given its negative 

impact on health, the question as to how sugar elicits such behavior is of great interest. Through 

the systematic exploration of the neuronal circuitry of reward, we can begin to develop an 

understanding of this phenomenon on which to base treatments. 

 Before delving into the neuroscience of reward, a brief overview of the physiology of the 

nervous system is useful. In short, the nervous system allows organisms to sense and respond to 

the environment. Sensation begins when an environmental stimulus, like sugar, activates 

receptors on sensory neurons, causing them to fire an electrical pulse called an action potential. 

Action potentials stimulate the release of chemical signaling molecules known as 

neurotransmitters from axon terminals. These neurotransmitters diffuse across the gap between 

two neurons, or synapse, to bind to receptors on partnering neurons, effectively allowing the 
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signal to travel from cell to cell until it reaches the brain for processing. In the brain, neurons are 

organized in networks called neural circuits. These pathways allow specific neurons to respond 

to basic sensory signals and convey the information to other parts of the brain responsible for 

complex functions such as memory or emotion. 

 For example, in humans, the mesolimbic reward pathway is thought to be responsible for 

mediating the pleasurable sensation elicited by sugar or drugs. In this network, dopaminergic 

(DA) neurons from the ventral tegmental area (VTA) project to the nucleus accumbens (NAc) in 

the forebrain. It has also been suggested that the mesolimbic reward pathway is responsible for 

the development of incentive salience: the perception of a reward as a “wanted”, or highly sought 

after goal (Kelley and Berridge, 2002). Regardless of the precise nature of the mesolimbic 

pathway’s role in reward, evidence shows that there is an increase in both dopamine release and 

D​1 ​receptor binding in the NAc in response to sugar consumption (Hajnal and Norgren, 2001; 

Colantuoni et al., 2001). Furthermore, dysfunction of this reward circuit has been linked to 

obesity. Imaging studies reveal decreased D​2​ receptor availability in obese subjects compared to 

controls (Volkow et al., 2011). It is suggested that overeating results from the need to 

compensate for this faulty circuitry.  

 Most of the studies referenced thus far were conducted in either humans or rodent 

models. Experiments conducted in humans are the most clinically relevant, potentially leading to 

influential medical breakthroughs. However, there are serious ethical limitations to using human 

subjects. While a great deal has been learned about the nervous system through non-invasive 

methods and experimental treatments, these are strictly regulated and rightfully so. Fortunately, 

much of the neurochemistry and neuroanatomy of humans has been phylogenetically conserved, 

allowing a wealth of knowledge to be gathered from studies with model organisms. Rats and 

mice are the most popular vertebrate model organisms and the ability of rats to demonstrate 

complex behaviors make them especially useful in behavioral paradigms. Additionally, since 

rodents are mammals, their neuroanatomy is proximal to that of humans. Still, no model 

organism is without its drawbacks, and the slow generation time of rats combined with their 

resistance to some current molecular neuroscience techniques render them difficult to manipulate 

genetically. 
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 In contrast, the fruit fly ​Drosophila melanogaster​ is perhaps the most famous model 

organism for genetic studies and has many qualities that make it optimal for molecular 

neuroscience research. Perhaps the greatest advantage of fruit flies is the high degree of genetic 

tractability conferred by the abundance of transgenic fly lines made available through various 

stock centers throughout the world. By selectively crossing transgenic fly lines, scientists are 

able to alter gene expression in fruit flies with unparalleled flexibility. Additionally, flies are 

small, easy to keep, and have a high reproductive rate and a short generation time of 

approximately ten days. Furthermore, the entire fly genome has been sequenced and consists of 

only four pairs of chromosomes. The online resource, Flybase, is a remarkable database 

cataloging the ​Drosophila​ genome and publications relevant to each gene. Lastly, the relative 

simplicity of the fruit fly neurocircuitry compared to that of vertebrates can be useful in the 

investigation of the effects of the environment on neural pathways.  

The genetic and molecular advantages of ​Drosophila melanogaster ​can be used to study 

their reward neurocircuitry and feeding behavior in response to sugar. The Dus Lab has 

previously demonstrated that flies fed a high sugar diet not only gain weight due to the increased 

caloric content of their food, but also increase feeding, interacting with their food more often and 

for longer periods of time (May et al., 2019).  Many different factors are involved in this change 

of behavior and we have studied this phenomenon on both the genetic and neuroscientific levels. 

Our data has shown that when we use genetic techniques to neurogenetically correct the 

activation of sweet taste reward neurons in the ​Drosophila​ reward pathway, we see a rescue of 

the increased feeding behavior observed on a high sugar diet, suggesting the palatability of sugar 

is responsible for facilitating this change. These neurons express receptors for the 

neurotransmitter octopamine, the insect analogue of norepinephrine long known to be involved 

in reward signaling. Here, I specifically investigate the role of octopamine in this increased 

feeding behavior and whether or not octopaminergic signaling changes on a high sugar diet.  
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Background: A Critical Review of Relevant Literature 

 To begin to investigate the role of octopamine in feeding behavior, an understanding of 

the neurocircuitry of taste and reward is necessary. The chemosensory systems of taste and smell 

evolved to allow animals to navigate the chemical environment and distinguish beneficial food 

sources from potentially harmful substances. In Drosophila, tastants are sensed by gustatory 

receptor neurons (GRNs) housed in taste hairs called sensilla. While a majority of GRNs are 

located in the proboscis, the fly homolog to the human tongue, GRNs are also found in the 

wings, legs and female ovipositor. The external GRNs of the proboscis are found within sensilla 

on the labial palps and are tuned to either sugar, water, high salt, or low salt. Flies also have 

internal GRN’s in the pharynx of the proboscis, allowing them to taste food after ingestion. 

(Vosshall and Stocker, 2007) 

Tastants in the environment bind to gustatory receptors (GRs) expressed in GRNs, 

prompting them to fire action potentials. There are 68 different types of GRs in the fly genome 

with GRNs often coexpressing more than one receptor. A large number of GRNs are labeled by 

either one of two nonoverlapping receptor genes, ​Gr5a​ and ​Gr66a. Gr66a​ is thought to broadly 

label neurons that respond to bitter stimuli, whereas most if not all sweet-responsive neurons are 

Gr5a ​positive (Montell,  2009). Another family of receptors highly relevant to sweet taste are 

those encoded by the Gr64 locus. ​Gr64f​  is often coexpressed with ​Gr5a​ in sweet taste neurons, 

and does not overlap with ​Gr66a​+ neurons (Dahanukar et al., 2007). 

GRNs send their axons to the suboesophageal zone (SEZ), a central brain region located 

below the esophagus consisting of approximately 4,000 neurons. The SEZ is spatially segregated 

by taste organ, with inputs mapping in an anterior to posterior manner by organ (Wang et al., 

2004). Additionally, sweet, bitter, and water neurons project to different cell populations, further 

segregating the SEZ by modality: most SEZ cells respond to only single modalities and these 

segregations are maintained in higher order regions of the brain (Harris et al., 2015). Indeed, fruit 

flies cannot distinguish between tastes of the same modality and are unable to discriminate 

between different sugars or different bitter compounds. Flies conditioned with fructose, were not 

able to distinguish it from glucose in a taste association paradigm (Masek and Scott, 2010). 

Rather, flies discriminate based on palatability or intensity within a modality.  
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Olfaction is the other chemical sense and is often studied in the context of learning. 

Similar to taste, olfactory receptor neurons (ORNs) enable flies to respond to the environment 

when chemical odorants bind to olfactory receptors (ORs) on the cell surface. Unlike GRNs, 

ORNs are restricted to the head and are housed in sensilla on the antennae or the maxillary palp. 

The neurocircuitry of the olfactory system is more characterized than that of taste, providing a 

useful context in which to study learning (Vosshall and Stocker, 2007). 

Like most animals, flies can form sensory associations with both odorants and tastants. 

The site of associative learning in the fly brain is called the mushroom body (MB), a bilateral 

neuropil structure consisting of approximately 2,000 neurons termed Kenyon Cells. The 

dendrites of the Kenyon cells make up a segment of the MB called the calyx. The dendrites of 

Kenyon cells receive input directly from ORNs and much of what is known about the MB 

resulted from studies of its role in olfactory learning (Heisenber, 2003). Meanwhile, the axons of 

Kenyon cells form a bundle that is divided into three lobes: γ, α′/β′, and α/β (Aso et al., 2008). 

The neurons that make up these lobes are differentiated with respect to their morphology, gene 

expression, and function in behavior. 

The lobes of the MBs  are innervated by modulatory dopaminergic neurons (DANs) 

whose activity are necessary for olfactory learning (Liu et al., 2012). The projections of these 

dopaminergic neurons anatomically subdivide the MB lobes into 15 compartments. Different 

subsets of DANs project to different compartments and signal for either reward or punishment 

(Aso et al., 2014). For example, a group of DANs in the protocerebral anterior medial cluster 

(PAM) are responsible for assigning a positive predictive value to odors (Liu et al., 2012). 

The sensory associations of taste are not as well characterized as those of olfaction, 

however, the mushroom body is still implicated in the integration of gustatory learning. While 

sugar stimulation activates the PAM DANs signaling reward, a discrete cluster of DANs in the 

paired posterior lateral (PPL1) region are activated by bitter substances. These PPL1 neurons are 

thought to encode punishment signals and mediate aversive learning in the fruit fly (Kirkhart and 

Scott, 2015). Despite these relations, there is still much to be learned about the relationship 

between taste and learning and the neurocircuitry relating the SEZ, MB, and DANs is far from 

fully understood. While the neural pathways connecting olfaction, taste, and reward presented 
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above may seem complex, it is relatively simple compared to that of a human and makes for a 

useful model to study feeding behavior. 

However, perhaps the greatest advantage of ​Drosophila​ as a model organism is the 

genetic tractability provided by the GAL4/UAS system. The GAL4/UAS system is a binary 

system for conditional expression of transgenes in ​Drosophila. ​Developed in 1993 by Andrea 

Brand and Norbert Perrimon, the GAL4/UAS system makes use of  transcriptional activation 

machinery utilized by yeast (Brand and Perrimon, 1993). By selectively crossing transgenic 

driver fly lines with transgenic responder lines, one can express a variety of different genes in 

almost any cell type.  In one fly line, the gene encoding the yeast transcription factor GAL4 is 

inserted downstream of an endogenous promoter. In another line, GAL4’s corresponding 

promoter, upstream activating sequence (UAS), is inserted in the fly genome along with the 

transgene of interest. When these two lines are crossed, in the resulting offspring GAL4 will be 

able to bind to UAS and drive expression of the transgene exclusively in cells that allow 

transcription to occur from whichever endogenous promoter is controlling GAL4. More nuanced 

expression can be achieved by creating recombinant fly lines that express GAL80 from an 

endogenous promoter which blocks the binding of GAL4 to UAS. Furthermore, temperature 

sensitive variants of these lines give the experimenter conditional temporal control of expression. 

Today, there are over 10,000 different driver lines and 15,000 different responder lines readily 

available from stock centers. Combined with the relative simplicity of their neurocircuitry, the 

GAL4/UAS system makes fruit flies an ideal model organism for the study of the effects of the 

dietary environment on neuronal signaling and behavior. 

Like humans, flies suffer from a variety of negative health consequences when they 

consume a diet high in sugar. Studies have shown that flies fed a chronic sugar diet of 30% 

sucrose lasting several weeks develop both obesity and insulin resistance characteristic of Type 

II Diabetes (Musselman et al., 2011). Furthermore, a diet rich in sugary carbohydrates leads to 

heart disease in flies, causing arrhythmia and accumulation of fibrogen-like collagen (Na et al., 

2013). On the other hand, flies fed a 30% sucrose  high sugar diet (HSD) for only a week show 

fat accumulation without the accompanying insulin dysfunction (May et al., 2019). In addition to 

the direct health risks of a high sugar diet, overconsumption of sugar has been shown to lead to a 

7 



 

reduced sense of sweet taste in both humans and rodents as well as flies (Proserpio et al., 2016; 

Berthoud and Zheng, 2012; May et al., 2019). However, it is important to consider whether this 

loss of sweet taste is a consequence of obesity, or a consequence of the diet itself that contributes 

to the excess food intake and subsequent caloric surplus. 

Flies fed a HSD for a week show a decreased taste response to sucrose stimulation of 

GRNs in both the proboscis and legs. This effect becomes more severe as the number of days on 

HSD increases. This phenotype was shown not to be due to a deficit in motor functioning or 

higher energy stores resulting from the caloric surplus. Importantly, this loss of sweet taste was 

not observed in flies fed a sweet, non-caloric diet or in flies fed a non-sweet, calorie rich lard 

diet, though lard supplemented flies still accumulated fat. This suggests that neither sweetness 

nor nutritional energy alone are sufficient to decrease sweet taste response. Furthermore, both 

genetically lean and genetically obese flies demonstrate sweet taste abilities comparable to 

control flies on both ND and HSD, indicating that obesity is neither necessary or sufficient to 

induce the sweetness insensitivity phenotype. (May et al., 2019) 

On a physiological level, ​Gr64f​+ sensory neurons that mediate sweet taste response 

decrease their activation in flies fed a HSD as measured using GCaMP. In vivo fluorescence of a 

vesicular release sensor in Gr64f+ neurons decreases as well on a HSD, indicating that their 

output is also dysfunctional. These physiological deficits also became more pronounced with 

increased time exposure to sugar, mimicking the pattern observed in taste response (May et al., 

2019).  

These sweet taste deficits on a HSD lead to a change in feeding behavior which can be 

analyzed in flies using the Fly to Liquid-Food Interaction Counter (FLIC) (Ro et al., 2014). The 

FLIC assay consists of an apparatus that houses flies in individual wells and sends an electric 

signal to a computer whenever their proboscis makes contact with a liquid food reservoir. Data 

collected using FLIC shows that flies on a 20% sucrose solution increase their feeding behavior 

over time. This was due to an increase in both the size and duration of their two characteristic 

“meals” a day, with size increasing more in proportion to duration, representing an increase in 

feeding rate. Again, results from genetically lean and obese flies were comparable to those of 
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controls, suggesting that the dietary sugar is responsible for the change in feeding behavior rather 

than obesity. (May et al., 2019) 

Flies demonstrate a loss sweet taste when fed a HSD along with an overeating phenotype, 

but it is critical to consider whether or not these two phenomena are causally linked or simply 

two different ramifications resulting from the same diet. This distinction can be teased apart by 

taking advantage of the genetic tractability of ​Drosophila.​ NaChBac is a voltage gated sodium 

channel derived from bacteria that can be transgenically expressed in specific neurons using the 

UAS/Gal4 system to increase their excitability (Nitabach et al., 2006). Driving UAS-​NaChBac 

with ​Gr64f​-GAL4 resulted in a rescue of sweet taste response of HSD flies as measured by the 

Proboscis Extension Response (PER) assay. It also prevented fat accumulation and corrected 

feeding behavior. Moreover, artificially activating ​Gr64f+​ cells exclusively during feeding using 

a closed loop optogenetic system prevented increased feeding behavior on the FLIC, further 

suggesting that a flaw in taste sensation is responsible for the overeating. (May et al., 2019) 

Still, the mechanism by which a complex behavior such as feeding is modulated by 

alterations in sensation at the periphery is unclear. Insights into experience driven behavioral 

changes and their neural representations can be gained from studying learning and memory in the 

fruit fly. Memory is often studied in flies using two classic training paradigms. Repetitive pairing 

an otherwise neutral odor with an electric shock results in the formation of a long-term aversive 

memory. Likewise, pairing an odor with sugar forms an appetitive memory. After a training 

period, memory is assessed by measuring the avoidance or attraction to the previously 

conditioned odour when given a choice between two odours presented simultaneously. 

Transgenically manipulating different populations of neurons and measuring the result on 

memory using these paradigms have allowed scientists to discover the roles of certain clusters of 

neurons in reinforcement. (Waddel, 2010)  

For example, it was through methods such as these that the MBs were identified as the 

sites of associative learning and then further characterized. Preventing synaptic output from 

different compartments of the MBs has provided evidence that neurons of the α′/β′ compartment 

are required during initial learning and early memory retrieval, while α/β are crucial for long 

term memory retrieval (Krashes and Waddel, 2008). These paradigms also revealed  the function 
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of the aforementioned modulatory DA neurons and their role in reinforcement. It is believed that 

memories are written through activity of these DA neurons, with dopaminergic signaling leading 

to increases in  intracellular cAMP levels and PKA activation, signals classically thought to be 

involved in LTM (Tomchick and Davis, 2009). DA was originally described as the 

neurotransmitter of  aversive signals in the fly brain, with aversive DA clusters projecting to the 

α and α′ regions of the MB (Claridge-Chang et al., 2009). However, several studies have also 

shown DA to mediate motivation and reward (Liu et al. 2012; Yamagata et al., 2015).  

 The motivation to eat  is closely tied to the central perception of the reward value of a 

food. A set of DA neurons in the protocerebral anterior medial (PAM DANs) cluster of the fly 

brain are responsible for signaling sugar reward and have been shown to play a role in olfactory 

appetitive reinforcement. These neurons are activated by sugar ingestion and project to the 

mushroom bodies (Liu et al., 2012). One subset of the PAM DANs represent the sweet tasting 

aspect of sugar reward and are responsible for mediating short term appetitive memory. Such 

neurons are labeled by the promoter R48B04. A distinct subset of PAM DANs signal the 

nutritious and energetic value of sugar reward and mediate long term appetitive memory 

(Yamagata et al., 2015). These two subsets are also spatially segregated in their projections to the 

mushroom body, with sweet taste reward neurons projecting to the β’ lobe and nutrient reward 

neurons projecting to the β lobe. 

Knowing that the R48B04 neurons mediate sweet taste reward and that a high sugar diet 

causes a loss of sweet taste and subsequent overeating, we previously questioned whether 

manipulating these neurons would lead to a modulation of feeding behavior. Indeed when 

R48B04 +​ neurons were activated using ​R48B04​-GAL4>UAS-​NaChBac​, we saw a decrease in 

feeding behavior in flies on both a HSD and ND (unpublished data). Interestingly enough, the 

R48B04 promoter fragment which labels dopaminergic neurons signaling  the sweet taste reward 

value of sugar is part of the promoter for OAMB, a receptor for the neurotransmitter octopamine 

(OA). Knockdown of the OAMB receptor in these neurons using ​R48B04​-GAL4>UAS-​oamb​RNAi 

results in a loss of appetitive olfactory STM (Huetteroth et al., 2015). OAMB is a GPCR that 

prompts an increase in intracellular Ca​2+ ​upon the binding of OA and this result was observed in 
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PAM DANs in response to exogenous octopamine with expression of GCaMP3.0 (Balfanz et al., 

2005; Burke et al., 2015).  

There are approximately 30 known OA receptors, all belonging to the G-protein coupled 

receptor family (Evans and Mequeira, 2005; Blenau and Baldwin, 2001). Like all GPCRs, OA 

receptors have seven transmembrane domains and their activation is coupled to changes in 

intracellular secondary messengers, namely, Ca​2+​ and cAMP. These receptors were originally 

classified based on their pharmacological profiles using chemical agonists and antagonists, as 

well as their effect on changes in secondary messenger levels in tissue preparations. However, 

this method of classification was considered problematic due to different pharmacological results 

reported by different groups as well as the presence of more than one type of OA receptor in a 

given tissue sample. Fortunately, the onset of molecular cloning techniques allowed a new and 

more accurate classification system to emerge (Farooqui, 2012). 

 With the present system, OA receptors are divided into three different subclasses based 

on sequence homology and signaling properties: the α-adrenergic-like octopamine receptors 

(OctαRs), β-adrenergic-like octopamine receptors (OctβRs), and the 

octopaminergic/tyraminergic group. The OctαRs show structural similarities to vertebrate 

α-adrenergic receptors and have been shown to cause an increase in intracellular Ca​2+ ​levels. 

Likewise, the OctβRs resemble the vertebrate β-adrenergic receptors, though their activation 

results in increased intracellular cAMP levels. Lastly, the octopaminergic/tyraminergic receptors 

resemble the OctαRs in sequence, but are preferentially stimulated by tyramine. The downstream 

effects of these receptors are more complicated and depend on the identity of the agonist. (Evans 

and Maqueira, 2005) 

 OA has a prominent role in the insect nervous system and modulates many peripheral 

physiological functions. Like norepinephrine in vertebrates, OA is thought to be a stress 

hormone that mediates the fight or flight response. It is proposed that OA allows peripheral 

insect muscles to adapt to different physiological demands (Roeder, 1999). For example, dorsal 

unpaired median (DUM) neurons in locusts supply OA to flight muscles stimulating glycolytic 

activity during rest and take-off phases, with a decrease in OA signaling a switch to fats as a 

metabolic source of energy for prolonged flights (Mentel et al., 2003). What’s more, OA also 
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increases insect heart rate and ventilation rate, two physiological requisites for high energetic 

demand (Prier et al., 1994; Bellah et al., 1984). Octopamine is also required for ovulation with 

both mutations preventing OA synthesis and knockdown of the OAMB receptor in ovipositor 

muscles resulting in female sterility (Lee et al.,  2003). Interestingly, OA has also been shown to 

play a critical role in the illumination of the firefly light organ (Nathanson, 1979). 

 Focusing more on the central nervous system, OA is involved in many learning and 

behavior processes. Studies in locusts  have shown that OA mediates sensitization to novel 

stimuli  as well as dishabituation (Sombati and Hoyle, 1984). Octopamine also mediates the 

division of labor in honeybee colonies, with increased levels of OA associated with foraging 

behavior (Schulz and Robinson, 2001). Another area of behavior affected by OA is aggression 

and mutant male fruit flies lacking OA show a decrease in aggressive behaviors (Hoyer et al., 

2008). However, an area of particular interest is the role of octopamine in appetitive reward 

learning. 

A series of studies have gone to show octopamine’s involvement in reward conditioning, 

specifically in regards to sugar. Octopamine (OA) is thought to be the insect analog of the human 

neurotransmitter norepinephrine and like norepinephrine, it is synthesized from the amino acid 

tyrosine. Tyrosine is converted to OA in two steps catalyzed by the enzymes tyrosine 

decarboxylase (TDC)  and tyramine β-hydroxylase (Tbh) (Monastirioti et al., 1996; Cole et al., 

2005). There are two TDC genes in ​Drosophila​, with ​Tdc1​ expressed non-neuronally and ​Tdc2 

expressed in neurons (Cole et al. 2005). When the gene encoding Tbh is mutated, flies show no 

detectable levels of OA and accumulate the intermediate tyramine (Monastirioti et al., 1996). 

Tbh mutant flies show impaired performance in a measure of sugar conditioning, however, they 

perform like controls in a measure of electric shock learning (Schwaerzel et al., 2003). These 

results point to OA being specifically involved in reward learning rather than global conditioning 

in general. 

 The role of octopamine in sugar reward has been further characterized, with studies 

suggesting that OA specifically mediates sweet-taste dependent short term memory. When the 

activity of octopaminergic ​Tdc2​+ neurons is blocked, flies show impaired appetitive olfactory 

memory when conditioned with arabinose, a sweet but non-nutritious sugar. However, there is no 
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such impairment when these flies are conditioned with sucrose. These flies also display normal 

olfactory learning in response to conditioning with arabinose plus nutritious sorbitol. Such 

results indicate that the nutrient value alone of sugar is sufficient for appetitive learning and that 

OA mediates the sweet taste component of sugar reinforcement. Furthermore, artificial activation 

of ​Tdc2​+ neurons paired with odor presentation resulted in formation of a robust appetitive 

memory when compared with controls. Increased performance indices were observed in these 

flies 30 minutes later, but the memory had dissipated  after three hours, suggesting ​Tdc2​+ neuron 

activation can only implant memory in the short term. (Burke et al., 2012) 

OA has also been suggested to be involved in state-dependent memory formation in 

hungry flies. Artificial memory formation by ​Tdc2+​ neuron activation is impaired in sated flies 

with mutant Octβ2R octopaminergic receptors. However, this artificial learning is restored when 

flies are in a hungry state (Burke et al., 2012). State dependent learning in hungry flies is 

permitted through elevation of neuropeptide F (dNPF) levels in the hungry state that decreases 

activation of dopaminergic MB-MP1 neurons that project to the MB. Stimulation of the 

MB-MP1 neurons suppresses memory formation in hungry flies, while inhibition of the same 

neurons leads to an artificial memory formation in sated flies (Krashes et al., 2009). Knockdown 

of Octβ2R specifically in the MB-MP1 neurons once again blocked artificial memory formation 

in hungry flies, suggesting that OA input through Octβ2R modulates MB-MP1 activity (Burke et 

al., 2013). The MB-MP1 neurons are a subset of the PPL1 cluster of modulatory DA neurons 

that mediate aversive reinforcement signals and artificial activation of the MB-MP1 neurons 

leads to aversive memory formation (Aso et al., 2010). These findings suggest that the MB-MP1 

neurons have a negative influence on appetitive memory formation, though the exact nature of 

this mechanism is unclear. 

 These studies demonstrate that OA is clearly involved in appetitive learning. However, 

while the MBs are the sites of associative learning, they are only sparsely innervated by OA 

neurons (Busch et al., 2009). Of the few OA neurons that do innervate the MBs, most have been 

shown not to be essential for olfactory conditioning in flies (Burke et al., 2012)​. ​Meanwhile, the 

previously discussed PAM DANs do synapse directly on the MB and can also be artificially 

activated to induce an appetitive memory (Liu et al., 2012). Double labelling of the PAM and 
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OA neurons reveal that their neuronal processes may be in direct contact. In regards to the 

directionality of this relationship, PAM DAN activation in Tbh mutants still results in formation 

of conditioned approach behavior despite the lack of OA (Liu et al., 2012). The ​dumb​1​ mutation 

in flies results in impaired appetitive memory thought to be caused by a deficiency of the dDA1 

dopamine receptor and activation of OA neurons in ​dumb​1​ ​flies does not result in artificial 

memory formation (Kim et al., 2007; Burke et al., 2012). Taken together, these studies suggest 

that dopamine acts downstream of octopamine in the formation of olfactory memory and that OA 

neurons may directly modulate PAM DANs innervating the MBs. 
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Thesis Goals 

 The over-consumption of added sugars has been implicated  in the development of 

obesity, diabetes, and other negative health risks (Ludwig et al., 2001; Berkey et al., 2012: Luger 

et al., 2017, Malik et al. 2010). Studies have shown that such levels of sugar consumption can 

lead to the loss of sweet taste sensation, prompting increased sugar feeding to compensate 

(Berthoud et al., 2012; Proserpio et al., 2016). In fruit flies specifically, the loss of sweet taste is 

mediated by decreased activation of ​Gr64f+​ neurons in response to sweet stimuli, leading to 

increased feeding behavior and fat accumulation on a HSD (May et al., 2019). However, the 

exact  neuroscientific principles allowing deficits in taste to alter behavior is unknown.  

Many studies have suggested that sensation and behavior are linked via reward pathways 

in the central nervous system. In ​Drosophila,​ dopaminergic neurons of the PAM region labeled 

by ​R48B04​ represent the palatable aspect of sugar reward, mediating sweet taste dependent short 

term memory (Yamagata et al., 2015). Artificial activation of these R48B04 neurons using the 

bacterial voltage gated sodium channel NaChBac corrects feeding behavior on a HSD, pointing 

to their involvement in the development of an overeating phenotype. R48B04 neurons express 

the octopaminergic receptor OAMB and knockdown of OAMB in this neuronal population leads 

to a loss of short term memory formation when trained with sweet, but non-nutritious arabinose 

(Huetteroth et al., 2015). The goal of this study is to examine the role OA plays in modulations 

of fruit fly feeding behavior on a HSD to better understand the relationship between taste loss 

and behavioral changes. Specifically, we investigate the possibility that octopaminergic input to 

the R48B04 neurons is altered with exorbitant sugar consumption.  

We hypothesized that knocking down OAMB receptors in the R48B04 neurons would 

cause flies fed a normal diet to behave in a manner comparable to that of flies fed a HSD. This 

reasoning was based on the previous findings that excitation of R48B04 neurons corrects feeding 

behavior and that OA activates these neurons to mediate sweet taste dependent short term 

memory. Here we show through both the activation and inhibition of octopaminergic neurons 

that OA indeed modulates feeding behavior. However, our data does not support the hypothesis 

that these changes are mediated through octopaminergic input to sweet taste reward neurons. 

Instead, our data suggests that octopamine influences feeding on a HSD partially through 
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activation of neurons involved in state dependent motivational learning that express the receptor 

Octβ2R. Still, knocking down Octβ2R in this neuronal population did not completely eliminate 

the overeating phenotype, leading us to conclude that  a parallel octopaminergic pathway also 

influences feeding behavior on a HSD.   
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Materials and Methods 

Fly Husbandry 

All flies were grown on  standard cornmeal-yeast-sucrose medium at 45%-55% humidity on a 

12-hour light:dark cycle. Stock fly lines were kept at 25ºC while temperature sensitive crosses 

were reared at 20ºC with experiments conducted at a permissive 29ºC. Only male flies were used 

for experiments. 

  

Fly Strains 

Line Source 

W​1118​CS A. Simon, UWO 

UAS-NaChBac  ​M. Nitabach​, ​Yale 

R48B04-GAL4  ​Bloomington Stock Center 

UAS-oamb​RNAi Vienna Drosophila Resource 

Center 

Tdc2-GAL4  Bloomington Stock Center 

UAS-Kir2.1, tub-GAL80​ts  ​Bloomington, Bloomington, 

Recombined by Anderson Lab 

UAS-dTrpA1  ​Bloomington Stock Center 

TH-D’-GAL4 Wu Lab, JHU 

UAS-​Octβ2R​RNAi  Bloomington Stock Center 

  

  

 

 

17 



 

Triacylglyceride (TAG) Assay 

The triacylglyceride to protein ratio of flies on control and experimental diets was measured as 

described in Tennessen et al. (2014). Male flies were reared on either ND or HSD for seven days, 

with flies being flipped onto fresh vials every two to three days. At the end of the seven day 

period, flies were anesthetized on CO​2 ​and then frozen at -80ºC. Samples were prepared by 

homogenizing two whole flies in 250µL of lysis buffer with protease inhibitor. Lysis buffer 

consisted of 140mM NaCl, 50mM Tris-HCL pH 7.4, and 0.1% Triton-X and one Pierce Protease 

Inhibitor Mini Tablet, EDTA Free, for every 10mL. Samples were then centrifuged at 13,000 

rpm for 15 minutes. 10µL per sample of diluted standards and supernatants were plated onto 96 

well plates. 

 

Protein concentration was determined using a Pierce BSA Assay Kit (PI-23225, Fisher). 200µL 

of reagent was added to each well and plates were incubated at 37ºC for 30 minutes. Absorbance 

at 562 nm was recorded using a Tecan Plate Reader Infinite 200. 

 

Triacylglyceride concentration was determined using a Stanbio Triglyceride Kit ((2100-430, 

Fisher). 90µL of reagent was added to each well and plates were incubated at 37ºC for 15 

minutes. Absorbance at 500 nm was recorded using a Tecan Plate Reader Infinite 200. 

   

Fly to Liquid-Food Interaction Counter (FLIC) 

Fly feeding behavior was measured using the FLIC as previously described in Ro et al. (2014). 

The FLIC apparatus consists of eight ​Drosophila​ Feeding Monitors (DFMs) signaling to a 

Master Control Unit (MCU). Each DFM houses twelve flies in individual wells where they have 

access to a liquid food reservoir. Data from every food interaction is sent from the DFM to the 

MCU. Normal liquid diet consisted of a 5% sucrose solution, while high sugar liquid diet 

consisted of a 20% sucrose solution. The FLIC was run in an incubator at 25ºC for normal fly 

lines and 29ºC for temperature sensitive lines with a 12 hour light cycle (Lights on from 7AM to 

7PM). All FLIC experiments were done with male flies. 
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FLIC Analysis 

Conversion of raw data files into excel files was done in RStudio using code available in R. 

Further analysis and visualization was done in GraphPad Prism. Data visualization was based on 

the optimal way to demonstrate the  comparison that was made.  

 

Statistics 

GraphPad Prism was used for the creation of all graphs and for statistical analysis. All data are 

shown as Mean ± SEM,**** p < 0.0001, **** p < 0.001, **p < 0.01, *p < 0.05 for all figures.  
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Results 

Preliminary Data: Feeding Behavior Increases  on a HSD and is Corrected by Activation of 

R48B04 Neurons 

Recent data from May et al. (2019) have shown that flies fed a HSD accumulate fat not 

only as a result of the increased caloric content of their food, but also due to an increase in 

feeding behavior (Figure 1A and 1B). That is, flies interact with their food more often and for 

longer periods of time on a HSD. This change of behavior as a consequence of diet was shown to 

be mediated by a loss of sweet taste as indicated by a decrease in activation of the ​Gr64f​+ sweet 

taste neurons in response to sugar stimulus. However, the way alterations in the periphery go on 

to modulate a complex behavior such as feeding is unclear. 

In complex organisms, sensations on the periphery are often centrally processed before a 

non-reflexive behavior is elicited. Naturally, it would follow that a loss of sweet taste would 

interfere with the integration of  sensory information and that alterations of the central processing 

of sweet taste information may lead to a change in feeding behavior. Sweet taste reward in flies 

is mediated by the dopaminergic R48B04 neurons of the protocerebral anterior medial (PAM) 

region of the fly brain (Yamagata et al., 2015). Artificial activation of these neurons using 

UAS-NaChBac decreases the feeding behavior of flies fed a HSD, suggesting that alterations in 

taste sensation lead to deficiencies in reward processing and result in increased feeding behavior 

(Figure 1C and 1D) (unpublished data). 
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Figure 1: Activation of R48B04 Neurons Corrects Feeding on a HSD 
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A) Triglyceride levels normalized to protein in age-matched W​1118​CS ​control flies fed a 30% 

sucrose HSD for different periods of time.  n=8, unpaired t-test 

B) Average licks per day of age-matched W​1118​CS ​control flies fed either a 5% (salmon, 

n=96) or 20% (burgundy, n=72) sucrose diet. two-way ANOVA with Sidak’s multiple 

comparisons test 

C) Triglyceride levels normalized to protein in age-matched ​R48B04>NaChBac ​flies  and 

appropriate genetic controls fed either a ND or HSD for 7 days. n=8, two-way ANOVA 

with Sidak’s multiple comparisons test  

D) Average licks per day of age-matched R48B04>NaChBac flies and appropriate genetic 

controls fed a 20% sucrose diet. n=24, two-way ANOVA with Tukey’s multiple 

comparisons test 

 

Knockdown of Octopamine Receptor OAMB in Sweet Taste Reward Neurons does not 

Increase Feeding on a ND 

R48B04 is a fragment of the promoter for the octopaminergic receptor OAMB. Recently, 

octopamine has been shown to play a complex role in larval feeding motivation (Zhang et al., 

2013). Furthermore, several studies have documented the involvement octopamine (OA) in 

appetitive olfactory short term memory, with a knockdown of the OAMB receptor in R48B04 

neurons leading to a complete loss of STM when flies are trained with sugar (Huetteroth et al., 

2015; Schwaerzel et al., 2003; Burke et al., 2013). 

To investigate the role of OA in sweet taste reward signaling, we first knocked down the 

OAMB receptors in the R48B04 neurons with RNAi by crossing ​R48B04​-GAL4 flies with a 

UAS-​oamb​RNAi​ ​line.  As increasing the excitability of R48B04 neurons with NaChBac decreases 

feeding, we predicted that the OAMB knockdown would decrease the activation of these neurons 

and that ​R48B04>oamb​RNAi ​flies would accumulate increased triacylglyceride levels on both a 

ND and a HSD diet. Additionally, we predicted that the transgenic flies would show an 

overeating phenotype on a 5% sucrose ND similar to WT flies fed a HSD.  However, 

R48B04>oamb​RNAi ​flies demonstrated no difference in fat accumulation as measured by the TAG 
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assay compared to genetic controls(Figure 2A). Feeding behavior as measured by FLIC also did 

not increase as predicted, but rather decreased slightly (Figure 2B).  

 

Figure 2: Knockdown of OAMB in R48B04 Neurons Does Not Increase Feeding  
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A) Triglyceride levels normalized to protein in age-matched ​R48B04>oamb​RNAi  ​flies and the 

appropriate genetic controls fed either a ND or HSD for 7 days. n=9-16, two-way 

ANOVA with Sidak’s multiple comparisons test 

B) Average licks per day of age-matched ​R48B04>oamb​RNAi  ​flies and the appropriate wild 

type and genetic controls fed a 5% sucrose diet. n=30, two-way ANOVA with Tukey’s 

multiple comparisons test 

 

Manipulation of  Octopaminergic Neurons Influences Feeding Behavior on a HSD 

 To further explore the role of OA in feeding behavior, we manipulated octopaminergic 

neurons using GAL4 driven by TDC2, one of the two enzymes necessary for OA production 

(Cole et al., 2005). First, we inhibited ​Tdc2+​ cell activity using K​ir​2.1, an inward rectifying 

potassium channel that stabilizes the resting potential of neurons closer to E​k​ (Fakler et al., 

1994).  This means a greater depolarization is required for cells expressing K​ir​2.1to fire action 

potentials. K​ir​2.1 was expressed by crossing ​Tdc2 ​-GAL4 flies to UAS-​K ​ir​2.1, tub GAL80 ​ts​ flies. 

The temperature sensitive GAL80 transgene allows for conditional expression of K​ir​2.1. At lower 

temperatures (20°C), GAL80 binds to GAL4 and prevents transcription of  K​ir​2.1, while at 

higher temperatures (29°C), GAL80 is no longer functional, permitting K​ir​2.1 to be expressed. 

This allowed us to rear flies at 20°C without interfering with development before keeping them 

at 29°C while conducting experiments. 

 We had predicted that if OA was modifying feeding behavior through input to R48B04 

neurons, decreasing their activation would lead to increased fat levels and feeding behavior 

based on the same reasoning discussed in the previous experiment. However, we observed the 

opposite phenotype, with ​Tdc2> K​ir​2.1, tub GAL80​ts​ flies demonstrating no significant increase 

in triacylglyceride levels on a HSD as compared to a ND (Figure 3A). Also, the characteristic 

increase in feeding behavior over time on a 20% sucrose HSD was not recapitulated  in the 

experimental condition. Instead, the feeding level of flies expressing  K​ir​2.1 remained relatively 

constant over the course of the experiment (Figure 3B). 
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Figure 3: Reduction of Tdc2+ Neuronal Activity Prevents Increased Feeding Behavior on a 

HSD 
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A) Triglyceride levels normalized to protein in age-matched ​Tdc2>Kir2.1, Gal80​ts ​flies and 

the appropriate genetic controls fed either a ND or HSD for 7 days. n=8, two-way 

ANOVA with Sidak’s multiple comparisons test 

B) Average licks per day of age-matched ​Tdc2>​  ​Kir2.1, Gal80​ts ​ flies and the appropriate 

genetic controls fed a 20% sucrose diet. n=24-30, two-way ANOVA with Tukey’s 

multiple comparisons test 

 

We also increased ​Tdc2+​ neuron activity by crossing ​Tdc2​-GAL4 flies with a 

UAS-​dTrpA1​ line. dTRPA1 is a transient receptor potential cation channel that is temperature 

sensitive. While normally used to regulate thermotactic behavior in flies, dTrpA1 can be 

transgenically expressed to activate neurons in a temperature dependent manner (Pulver et al., 

2009). Once again, flies were reared at 20°C with experiments conducted at an activating 29°C. 

 Since dTRPA1 has the opposite effect of K​ir​2.1 on neuronal excitability, we had expected 

to see an increase in fat accumulation of ​Tdc2>dTrpA1​ flies on a ND, as opposed to the 

decreased triacylglyceride levels observed in the ​Tdc2> K​ir​2.1, tub GAL80​ts ​flies on a HSD. 

Instead,  the triacylglyceride-to-protein ratio was down on a HSD once again in the experimental 

condition (Figure 4A). However, when feeding behavior was measured with the FLIC, 

Tdc2>dTrpA1 ​flies showed an elevated number of licks per day relative to genetic controls on 

both 5% and 20% sucrose solution that remained constant over the course of the experiment 

(Figure 4B and 4C). As is normally observed, fly feeding behavior was elevated on a HSD. In 

the 5% FLIC experiment, feeding was slightly elevated across genotypes on the first day, but this 

is likely a result of increased fly activity as they adjust to the increased temperature. Due to 

technical difficulties, reliable data could only be collected for the first three days of the 20% 

sucrose FLIC assay, but despite the short time frame, the increased feeding phenotype is 

apparent. 
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Figure 4: Increase of Tdc2+ Neuronal Activity Modulates Feeding  
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A) Triglyceride levels normalized to protein in age-matched ​Tdc2>dTrpA1 ​flies and the 

appropriate genetic controls fed either a ND or HSD for 7 days. n=8, two-way ANOVA 

with Sidak’s multiple comparisons test 

B) Average licks per day of age-matched ​Tdc2>​  ​dTrpA1​ ​flies and the appropriate genetic 

controls fed a 5% sucrose diet. n=18-24, two-way ANOVA with Tukey’s multiple 

comparisons test 

C) Average licks per day of age-matched ​Tdc2>​  ​dTrpA1​ ​ flies and the appropriate genetic 

controls fed a 20% sucrose diet. n=24-30, two-way ANOVA with Tukey’s multiple 

comparisons test 

 

Knockdown of the Octopamine Receptor Octβ2R in Aversive Neurons Attenuates Feeding 

Behavior on a HSD 

As seen in the two previous experiments, activation and inhibition of octopaminergic 

neurons modulates feeding behavior. However, based on the results of our knockdown of OAMB 

in R48B04 neurons, this effect does not seem to be mediated through the signaling of the sweet 

taste reward neurons. The question then becomes through which pathway is OA acting to bring 

about the changes in feeding behavior observed in ​Tdc2> K​ir​2.1, tub GAL80​ts ​and ​Tdc2>dTrpA1 

flies. In addition to playing a role in sweet taste reward learning, OA has been shown to 

modulate state dependent learning in hungry flies through action on the Octβ2R receptors 

expressed in dopaminergic MB-MP1 neurons of the PPL1 cluster (Burke et al., 2012). MB-MP1 

neurons confer the inhibitory satiety state in state-dependent motivational learning and also 

function in aversive memory conditioning (Krashes et al., 2009; Aso et al., 2010). We therefore 

investigated whether changes in feeding behavior observed due to the activation or inhibition of 

octopaminergic neurons are mediated through Octβ2R in this neuronal population.  

The ​TH-D’​-GAL4 driver line labels a fraction of DANs including the PPL1 cluster that 

houses the MB-MP1 neurons (Galili et al., 2014). We used  ​TH-D’​-GAL4 to drive 

UAS-​Octβ2R​RNAi​ and measured fat accumulation (Figure 5A). Unfortunately, one of the genetic 

control lines, ​TH-D’​/+, did not show increased triacylglyceride levels on a HSD, rendering the 

experiment inconclusive. This experiment was repeated multiple times  with similar results, 
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though all the flies came from the same series of cross bottles. ​TH-D’​/+  control flies had 

repeatedly demonstrated a fat accumulation phenotype in previous experiments conducted with a 

different UAS responder line, suggesting that the failure to display a phenotype in this case was 

not due to the genetic background of the flies, but rather some other external factor, such as a 

pervasive sickness in the cross bottle (Figure S1A and S1B). Interestingly, 

TH-D’​-GAL4>UAS-​Octβ2R​RNAi​ ​flies also did not accumulate excessive fat on a HSD. However, 

without working genetic controls, no conclusions can be drawn from this data.  

Though the triacylglyceride assay failed to yield any usable data, a slight attenuation of 

feeding behavior as measured by FLIC was observed in the experimental condition, with 

TH-D’​>​Octβ2R​RNAi​ ​flies showing a reduced rate of increased feeding on a 20% sucrose diet 

(Figure 5B). This result supports the hypothesis that OA affects feeding behavior through action 

on the aversive MB-MP1 neurons rather than through activation of the R48B04 sweet taste 

reward neurons. However, since the experimental condition still shows some increase in feeding, 

there is likely a parallel mechanism through which behavior is modified. It is worth pointing out 

that in this experiment the feeding of the ​TH-D’/+ ​control flies was not significantly different 

from the other controls, and it should be noted these flies used in this experiment came from a 

different set of cross bottles than the one used in the TAG assay. Had the ​TH-D’/+ ​control 

worked in the TAG assay and we still observed no significant difference between ND and HSD 

in the experimental condition these results together would be consistent with previous studies 

showing that OA acts on Octβ2R in MB-MP1 neurons to modulate negative dopaminergic 

signals in the formation of appetitive reinforcement (Burke et al. 2012).  
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Figure 5: Knockdown of  Octβ2R in MB-MP1 Neurons May Attenuate Feeding 

A) Triglyceride levels normalized to protein in age-matched ​TH-D’>Octβ2R​RNAi​ ​ ​flies and 

the appropriate genetic controls fed either a ND or HSD for 7 days. n=8, two-way 

ANOVA with Sidak’s multiple comparisons test 

B) Average licks per day of age-matched ​TH-D’>Octβ2R​RNAi ​ flies and the appropriate 

genetic controls fed a 20% sucrose diet. n=24-30, two-way ANOVA with Tukey’s 

multiple comparisons test 
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Discussion 

With the rise of the availability of ultra-processed food in modern society, added sugars 

have become a prominent fixture in the modern dietary environment. Overconsumption of added 

sugars has been associated with numerous health risks including obesity, diabetes, and heart 

disease.  It is therefore essential to understand how sugar consumption affects feeding behavior. 

Flies, like humans and rodents, have been shown to lose sweet taste sensation when fed a high 

sugar diet (May et al., 2019; Proserpio et al., 2016;  Berthoud et al., 2012). This loss of the 

ability to taste sugar in flies mediates an increase in feeding behavior, though the neural pathway 

through which changes on the periphery affect this central process is not well understood (May 

et al., 2019). Here we investigate the role of octopamine, a neurotransmitter shown to be 

involved in sweet taste reward, in the modulation of feeding behavior on a high sugar diet 

(Schwaerzel et al., 2003; Burke et al., 2012; Huetteroth et al., 2015). 

We first explored  the role of octopaminergic input to modulatory sweet taste reward 

neurons. Dopaminergic R48B04 sweet taste reward neurons of the PAM cluster express the 

octopamine receptor OAMB and our lab has previously shown that increasing the membrane 

excitability of these neurons prevents the overeating phenotype typically observed on a HSD 

(unpublished data). We  knocked down OAMB in the R48B04 neurons using RNAi, predicting 

that the  resulting decreased activation would lead to increased feeding behavior since  exciting 

these cells  prevents overeating. Instead, no phenotypic difference was observed in fat 

accumulation in ​R48B04>oamb​RNAi ​flies compared to controls (Figure 2A). Feeding behavior also 

did not increase as we had initially predicted, but rather decreased slightly in the experimental 

condition (Figure 2B). However, as the ND TAG levels looked comparable between the different 

genotypes and a downward trend was also seen in feeding was also seen in the UAS-oamb​RNAi​/+ 

control, we did not take this to be due to the genetic background of the flies.  

There are several different ways this data could be interpreted in context of our previous 

findings with the R48B04 neurons. Increasing the excitability of sweet taste reward neurons may 

merely be sufficient to rescue feeding behavior, while the root cause of the overeating phenotype 

is mediated by a different pathway or different neurons entirely. Later on, our lab had gone on to 

show that  a distinct set of PAM DANs, the MB301B neurons, showed a reduced  response to 
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sweet stimuli in flies fed a HSD and that optogenetic stimulation of this neuronal population 

restored normal feeding behavior (May et al., in press). It is also possible that a property of the 

R48B04 neurons other than sweet taste reward that is not dependent on OA is responsible. For 

example, one study demonstrated that R48B04 neurons convey the reinforcing effects of water 

and that OA is not required for water learning (Lin et al., 2014). Lastly, a knock down of the 

OAMB receptor may not impact feeding behavior if the phenotypic effects are caused by 

presynaptic deficiencies in neurotransmitter production or release.  

To further investigate the effects of OA on feeding behavior on a high sugar diet, we both 

stimulated and inhibited octopaminergic cells expressing tyrosine decarboxylase, one of  two 

enzymes required for OA synthesis. We originally hypothesized that inhibiting ​Tdc2+ ​neurons 

with the inward rectifying potassium channel K​ir​2.1 would result in an increase in feeding 

behavior based on the idea that decreased activation of R48B04 neurons by OA leads to 

increased feeding. Once again, our hypothesis was not supported. Instead, we obtained the 

opposite results, with  ​Tdc2> K​ir​2.1, tub GAL80 ​ts  ​ ​flies not accumulating triacylglycerides on a 

HSD (Figure 3A). Additionally,  the experimental condition flies did not increase their feeding 

behavior over time (Figure 3B). This suggests that while OA does affect feeding behavior, it 

does not do so through action on OAMB.  

Curiously enough, stimulating ​Tdc2+​ cells with TrpA1 also resulted in no significant 

change in fat accumulation when flies were fed a HSD (Figure 4A). However, these flies did 

show an increased food interaction level on both 5% and 20% sucrose  that remained constant 

(Figure 4B and 4C). Given that TrpA1 has the opposite effects of K​ir​2.1 on neuronal firing, these 

FLIC results are consistent with our findings in the previous experiment. The combination of 

these results also support the conclusion that OA release serves to increase feeding, rather than 

decrease feeding as was hypothesized based on the R48B04 data. The apparent discrepancy 

between triacylglyceride levels and feeding behavior on a HSD in ​Tdc2>dTrpA1 ​suggests that 

somehow these flies do not accumulate excessive fat despite overeating. One possibility is that 

while stimulation of octopaminergic neurons promotes feeding on a HSD, it also causes flies to 

increase their energy expenditure, preventing excessive weight gain. For example, OA promotes 

wakefulness in ​Drosophila, ​with  excitation of octopaminergic cells leading to sleep loss 
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(Crocker and Sehgal, 2008). If flies burn more calories due to spending more time awake, this 

phenotype might  compensate for the increased energy consumption on a HSD and may be 

sufficient to prevent excessive fat levels.  

Taken together, these results suggest that while OA affects feeding behavior, it does not 

do so through activation of R48B04 neurons. While knockdown of OAMB in the R48B04 

neurons may abolish sweet taste dependent short term memory, OA must affect feeding through 

a separate pathway. However, this result is not entirely surprising. OAMB is a member of the 

OctαR subclass that is preferentially expressed in the ​Drosophila ​MBs and other brain regions 

and has been shown to increase both intracellular Ca​2+ ​and cAMP levels (Han et al., 1998). 

Increased cAMP levels have been suggested to play a critical role in the molecular underpinnings 

of learning and memory (Menzel and Muller, 1996; Mayford and Kandel, 1999).  Given the 

prominent role of the MBs in learning and memory in ​Drosophila​, as well as the role of 

amine-receptors resulting in increases of cAMP in these same processes, it is not unreasonable to 

suggest OAMB may be involved in behavioral plasticity. However, other studies have shown 

that OAMB activation primarily affects Ca​2+ ​levels, with only a small change in intracellular 

cAMP levels as a result of OA binding (Balfanz et al., 2005). Meanwhile, OctβRs are also 

primarily expressed in the brain  and mediate their effects through activation of adenylate cyclase 

leading to increased intracellular cAMP levels (Balfanz et al.,  2005). Therefore, it is possible 

that OA modulates feeding through activation of an OctβR.  

As previously discussed, the beta octopaminergic receptor Octβ2R plays a function in 

state dependent appetitive learning mediated by the dopaminergic MB-MP1 neurons that 

innervate the MBs, similar to the R48B04 population. To research the possibility that OA 

mediates its effects on feeding behavior through influence on the negative dopaminergic 

MB-MP1 neurons, we used RNAi to knock down Octβ2R in this neuronal population.  While no 

conclusions could be drawn from the TAG assay due to the failure of the ​TH-D’-GAL4​/+ genetic 

control to display the expected phenotype, an attenuation of the increased feeding over time on a 

HSD  was demonstrated in ​TH-D’​>​Octβ2R​RNAi ​flies (Figure 5A and 5B). These results suggest 

that octopamine affects feeding behavior through activation of ​Octβ2R ​expressed  in MB-MP1 

neurons involved in appetitive motivation.  
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Current research suggests that the MB-MP1 neurons serve as a gate on appetitive 

memory retrieval, tonically releasing dopamine to inhibit MB neuronal function in the sated 

state. When flies get hungry, dNPF levels rise and inhibit the MB-MP1 neurons allowing 

appetitive memory to form (Krashes et al., 2009). Artificial memory formation through ​Tdc2+ 

stimulation is abolished by the knockdown of Octβ2R. However, the exact mechanism of how 

OA exactly affects learning  is unclear since preventing the output of MB-MP1 neurons during 

Tdc2+​ stimulation also prevents  artificial learning (Burke et al. 2013). This suggests that in this 

pathway, OA leads to appetitive memory through excitation of these cells, even though the 

current model proposes that the MB-MP1 cells are inhibitory. Given these seemingly 

contradictory findings, it becomes apparent that there is much to be learned about the nuances of 

this system. 

 To complicate matters further, stimulation of the MB-MP1 neurons leads to aversive 

memory formation, raising the possibility that OA activation somehow influences 

state-dependent motivation through this functionality (Aso et al., 2010). While the specifics of 

aversive memory formation are beyond the scope of this project, we had previously explored the 

possibility of aversive conditioning playing a role in the changes in feeding behavior in flies 

elicited by a HSD. Various studies have proposed that aversion to withdrawal serves as a major 

motivating factor in drug-taking behavior (Koob and Bloom, 1988; Bechara et al, 1998; Delfs et 

al., 2000). Other evidence has shown that intermittent sugar intake followed by removal of sweet 

stimuli leads to withdrawal-like symptoms (Avena et al., 2008; Mangabeira et al., 2015). To 

investigate whether aversion influences feeding behavior, we expressed both NaChBac and 

K​ir​2.1 in the PPL1 cluster responsible for aversive reinforcement using the previously mentioned 

TH-D’-​Gal4 driver line (Claridge-Chang et al., 2009). While we observed a slight decrease in the 

triacylglyceride levels of the ​TH-D’>K​ir​2.1,Gal80 ​ts​ ​flies, ​TH-D’>NaChBac ​flies accumulated fat 

levels on both diets similar to controls (Figure S1A and S1B). The significant, but not absolute 

prevention of fat accumulation in the ​TH-D’>K​ir​2.1,Gal80 ​ts​ ​flies is consistent with our results 

from the Octβ2R knockdown in these same neurons (Figure 5B).. 

While the data presented here provides some insight into the role of OA in modulations 

of feeding behavior on a HSD, there are many future directions that can be taken to further 
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explore this subject. For one, the driver line used to express Octβ2R RNAi was not specific to 

the MB-MP1 neurons. ​TH-D’​-GAL4 labels the entire PPL1 cluster as well as some other DANs 

in different brain regions (Galili et al., 2014). Considering that the MB-MP1 neurons are only a 

subset of the PPL1 cluster, it would be prudent to repeat the experiment using  a driver line that 

exclusively labels MB-MP1. This would ensure that any phenotypes observed are due to the 

knockdown of Octβ2R in the MB-MP1 neurons and not some off target effects of the 

knockdown in other cells. When these experiments were conducted, ​TH-D’​-GAL4 was the only 

driver line available in the lab that labeled the MB-MP1 neurons, and was used in the interest of 

time.  

It should be pointed out that even though  ​TH-D’​>​Octβ2R​RNAi ​flies ate significantly less 

than controls on days 4 and 5 of the FLIC, they still showed a modest increase in feeding over 

time on a HSD. In contrast, inhibition of octopaminergic neurons prevented the development of 

the increased feeding phenotype on a HSD, with ​Tdc2> K​ir​2.1, tub GAL80​ts  ​flies showing a 

constant number of licks per day over the course of the experiment (Figure 3B). This distinction 

indicates that either the knockdown of ​Octβ2R ​was incomplete or OA acts through a parallel 

pathway to affect feeding. 

Therefore, another valuable follow up experiment would be to screen for the influence of 

other OA receptors on feeding behavior by systematically knocking down different receptors 

using a driver line that labels all neurons and seeing if feeding is affected. One such driver line is 

nsyb-​GAL4, that drives expression from the promoter for neuronal synaptobrevin, a protein 

found in all neurons required for vesicular release of neurotransmitters. These experiments could 

reveal novel pathways involving OA that affect feeding behavior or could also point to existing 

circuits that utilize OA receptors in learning and memory.  

For example, one study looking at larval feeding implicated Octβ3R in appetitive 

motivation (Zhang et al., 2013).  Inhibition of ​Tdc2+​ neurons prevented a typical increase in 

feeding responses as measured by the rate of larval mouth hook contractions (MHC), while 

activation increased MHC rate. The increase in MHC rate due to stimulation of these neurons 

was abolished by knockdown of Octβ3R, but not any other OA receptors. Furthermore, this 

study suggested that larval feeding is differentially regulated by ​Tdc2+​ neurons in different 
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subsets of the ventral unpaired median neurons (VUM), with feeding being promoted by activity 

of the VUM2 neurons who are inhibited  by neurons of the more anterior VUM1 region that acts 

to decrease appetite. It would therefore be reasonable to study Octβ3R and this neuronal 

population in the contexts of feeding on a HSD. (Zhang et al., 2013)  

Our collective data suggests that octopaminergic signaling influences feeding behavior in 

Drosophila​ on a HSD, though not through input to sweet taste reward neurons expressing 

OAMB. Instead, our findings point to the possibility that OA influences feeding behavior 

through activation of MB-MP1 neurons involved in appetitive motivation and aversion. The data 

presented here lays the groundwork for future studies of the neurological path or paths that 

allows OA to affect feeding. Additional studies will lead to a more nuanced understanding of the 

cellular and molecular mechanisms through which modulation in sweet taste at the periphery 

lead to changes in behavior. Such an understanding of how the modern dietary environment can 

influence behavior is especially relevant in context of the obesity epidemic and other negative 

health risks associated with excessive sugar consumption.  
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Supplementary Figure 1: Excitation and Inhibition of Aversion Neurons 

A) Triglyceride levels normalized to protein in age-matched ​TH-D’>K​ir​2.1,Gal80​ts​  ​flies and 

the appropriate genetic controls fed either a ND or HSD for 7 days. n=8, two-way 

ANOVA with Sidak’s multiple comparisons test 
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B) Triglyceride levels normalized to protein in age-matched ​TH-D’>NaChBac  ​flies and the 

appropriate genetic controls fed either a ND or HSD for 7 days. n=8, two-way ANOVA 

with Sidak’s multiple comparisons test 
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