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Abstract

We develop the idea that renormalization, decoupling of heavy particle

effects from low energy physics and the construction of effective field

theories are intimately linked to the entanglement of the low and high

energy momentum modes. Using unitary transformations to decouple

these modes we show in a scalar field theoretical model, how renor-

malization may be consistently implemented and how the low energy

effective field theory can be constructed.
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Chapter 1

Introduction

We understand many things

about particles and their

interactions, but this and

other mysteries make it very

clear that we are nowhere

close to a full understanding.

Martinus J. G. Veltman

Entanglement is ubiquitous in any quantum theory. In a free field theory the

different momentum modes are not entangled. However, the introduction of inter-

actions causes the entanglement, in particular, of the low momentum modes with

the inaccessible high energy ones. In experiments only the low energy or larger

wavelength modes are accessible and renormalization can be thought of as a pro-

cedure to separate the effects of the high energy modes from those of low energy.

In the usual Wilsonian approach [1][2][3], the high energy modes are integrated

out and in this way we arrive at a low energy effective action. An alternative

viewpoint, that we discuss here, is to directly address the entanglement and by a

series of unitary transformations decouple the low and high energy modes. The

effective low energy Hamiltonian is then obtained by projecting onto the “high

energy vacuum”, i.e., the low energy subspace where there are no modes of heavy

masses or of momenta larger than some cut-off scale which can appear as external

states. In this thesis, we discuss renormalization, decoupling of heavy mass states

[4] and the construction of effective field theories, [5][6] all from this perspective.
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Our results are in agreement with those obtained by the standard methods and

show that such a program can be successfully implemented, thereby providing

another way to construct low energy effective theories.

The thesis is organized as follows.

In chapter 2 we discuss how the Hamiltonian of a theory decouples under a unitary

transformation of the states.

In chapter 3 we consider a scalar field model with heavy and light fields and explic-

itly construct the unitary transformation that shows clearly how renormalization

and decoupling works.

In chapter 4 we extend the previous construction to obtain an effective field the-

ory of the light fields alone and make connection with previous work using the

standard methods.

We conclude with a discussion of these results in chapter 5.
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Chapter 2

Perturbative Decoupling,

Renomalization and Matching of

Hamiltonian Operators

2.1 Decoupling with Unitary Transformations

The subject of decoupling in Effective Field Theory has been studied extensively

for the past many decades. The decoupling theorem states that if the low energy

effective theory is renormalizable, and a physical renormalization scheme has been

applied, then all effects due to heavy particles will appear as changes to couplings

or are suppressed as 1
M

, where M is the mass of the heavy particle. In spite of the

great success that Effective Field Theory has achieved in particle physics, seldom

work has been done in a Hamiltonian framework. As we discussed in introduction,

an alternative way to consider the decoupling is to introduce a series of unitary

transformations to decouple high energy and low energy modes and then look at

the low energy part of the spectrum.

Let’s consider the Hamiltonian H of a full theory, and denote Heff (µ) as the

effective Hamiltonian defined at a scale µ. Heff (µ) will generate the same physical

results i.e. S-matrix elements for all the physical processes that do not involve

momenta greater than µ. We can view Heff (µ) as the projection of the full theory
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2.1 Decoupling with Unitary Transformations

onto the low energy subspace:

Heff (µ) = P (µ)HP (µ), (2.1)

where P(µ) is the projection operator at energy scale µ.

Our claim is that, at least perturbatively we can decouple low energy modes

from high energy modes using a series of unitary transformations and therefore

construct the high energy vacuum and obtain the ”low energy subspace”. Let

Hdecoupled denote the decoupled Hamiltonian at low energy:

Hdecoupled = 〈0high|ω†Hω |0high〉 , (2.2)

where |0high〉 denotes the high energy vacuum:

ahigh |0high〉 = 0, (2.3)

and ahigh is the annihilation operator of high energy modes. The ω here is a prod-

uct series of unitary transformations. Its jobs is to remove the terms in the full

Hamiltonian which change the high energy vacuum structure. Those are terms

containing only high energy creation operators. Since Hamiltonian operator is

Hermitian, ω will inevitably cancel terms containing only high energy annihila-

tion operators as well. Furthermore, we will normal order with respect to high

energy vacuum. It’s worth noting here that the Hdecoupled so calculated out is

not a ”perfectly physical” Hamiltonian operator like H or Heff , rather than is

an intermediate step. However, as we will see later its components have impor-

tant physical meaning regarding renormalization and will also be involved in the

matching process to get the physical Heff .

Let’s break ω into a product series:

ω = ω0ω1ω2...ωn... (2.4)

4



2.1 Decoupling with Unitary Transformations

Each ωi partially diagonalizes the Hamiltonian to given order ∼ 1
Λ

, Λ is the cut-off

energy scale. Decompose the full Hamiltonian as:

H = H1 +H2 +HA +HB, (2.5)

where H1 only contains low energy modes, H2 is the free part for high energy

modes, HA contains terms that only have high energy annihilation or creation

operators and HB is whatever left. For simplicity, we can set H1 to be of energy

order ∼ O(1), and the other three terms of order ∼ O(Λ).

Let’s consider the following:

ω†0 (H1 +H2 +HA +HB)ω0

=e−iΩ0 (H1 +H2 +HA +HB) eiΩ0

=H1 +H2 +HA +HB + i[H1,Ω0] + i[H2,Ω0] + i[HA,Ω0] + i[HB,Ω0]...

(2.6)

We want to eliminate HA by choosing Ω0 such that

i[H2,Ω0] +HA = 0. (2.7)

This is our decoupling condition at order ∼ O(Λ), and since both H2 and HA are

of order ∼ O(Λ), we can deduce that Ω0 ∼ O(1). Although we cancel out HA,

we create a new term i[H1,Ω0] of order ∼ O(1) that contains only annihilation or

creation operators and in order to eliminate this new term, we need to introduce

the next unitary operator ω1 = eiΩ1 at order ∼ O( 1
Λ

). Then the Hamiltonian

becomes

e−iΩ1e−iΩ0 (H1 +H2 +HA +HB) eiΩ0eiΩ1

=H1 +H2 +HB + i[H1,Ω0] + i[HA,Ω0] + i[HB,Ω0] + i[H2,Ω1] + ...
(2.8)

We now choose Ω1 such that

i[H1,Ω0] + i[H2,Ω1] = 0, (2.9)
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2.2 Decoupled Hamiltonian and S-matrix Elements

and it is obvious that Ω1 is of order ∼ O( 1
Λ

). In general our decoupling condition

will become:

i[H1,Ωn] + i[H2,Ωn+1] = 0, (2.10)

where Ωn+1 ∼ 1
Λ

Ωn. Therefore, we can see the decoupling is indeed carried out in

a perturbative fashion.

2.2 Decoupled Hamiltonian and S-matrix Ele-

ments

Going back to the calculation of Hdecoupled and using the decoupling conditions we

have

Hdecoupled = 〈0high|H1 +H2 +HB +
i

2
[HA,Ω0] + i[HB,Ω0]− 1

3
[[HA,Ω0],Ω0]

− 1

2
[[HB,Ω0],Ω0]− 1

2
[[H1,Ω0],Ω0] + i[HB,Ω1] +O(

1

Λ
) |0high〉 .

(2.11)

As we pointed out in the section 2.1, the Hdecoupled is not a ”perfectly physical”

Hamiltonian operator. Hdecoupled has two parts, the first part is 〈0high|H1 |0high〉 =

H1 and the second part is from the normal ordering of HB with respect to high

energy vacuum and commutators in the expansion. As we will see later in the

scalar filed theory example, each element in the second part can be understood as

an S-matrix element in the full theory but expanded in terms of 1
Λ

. For instance,

suppose we have the scattering process represented in Figure 2.1, the S-matrix

element in the full theory is −λ2 i
p2−M2 , and the corresponding term in Hdecoupled

will be −λ2( 1
M2 + p2

M4 +O( 1
M6 ))

Φ4
L

4!
.

The last point to be addressed here is that, due to the connection between de-

coupled Hamiltonian and S-matrix elements, Feynman diagrams in the full theory

will provide useful guidance in practical calculation, and this is the reason why we

organize the calculation in chapter 3 by Feynman diagrams.
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2.3 Renormalization and Matching

Figure 2.1 A two-to-two scattering in a scalar field theory with solid lines repre-
senting light fields ΦL and the dashed line representing a heavy particle ΦH . The
coupling coefficient at the vertex is λ. The heavy particle mass M is much larger
than the momentum p on the propagator.

2.3 Renormalization and Matching

Since the second part of Hdecoupled contains expansion of S-matrix elements, in-

evitably, there are UV divergences emerging from the loop calculation. Because

only low energy modes can appear in Hdecoupled, all the UV divergences should

be canceled by the renormalization of H1. In this way, we can determine the

renormalization Z-factor of light field, light field mass and coupling constants of

pure light interactions. It is shown in Section 3.3 that our results obtained from

Hdecoupled indeed agree with the results from a traditional renormalization in the

Lagrangian framework.

Effective Hamiltonian is obtained by matching order by order. First we decou-

ple the full theory at tree level and match it onto the low energy physics to get

the tree level effective Hamiltonian. Then we decouple, renormalize both full and

effective theories to get Hdecoupled and Heff
decoupled at one loop order respectively. By

matching Hdecoupled and Heff
decoupled, we are able to get the effective Hamiltonian at

one loop order and we can also proceed to higher orders iteratively in this fashion.
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Chapter 3

Decoupling and Renormalization

of A Scalar Field Theory

In this chapter we will work in the weak coupling regime of a scalar field theory

with both heavy and light fields. Because we will be discussing renormalization

in the Hamiltonian framework, we will consider mode expansions at a fixed time

or effectively, we will be working in the Schrodinger picture.

3.1 Preliminaries

Our subsequent analysis will apply to a scalar field theory with heavy and light

fields (ΦH and ΦL respectively) with dynamics given by the following Hamiltonian:

H =

∫
d3x

(
1

2

(
(∂ΦL)2 +m2Φ2

L

)
+

1

2

(
(∂ΦH)2 +M2Φ2

H

)
+
λ0

4!
ΦL(x)4 +

λ1

2
ΦH(x)ΦL(x)2 +

λ2

4
ΦL(x)2ΦH(x)2 +

λ3

4!
ΦH(x)4

)
.

(3.1)

The fields have the usual mode expansions, however, we will need to consider

light fields carefully. This is because the light fields contain two parts, one is the

low frequency mode φ(x) and the other is the high frequency mode χ(x). In order

to correctly project onto the low energy subspace, we want only low frequency

fields φ(x) to appear in external lines. This can be taken into account in the usual

expansion of all the fields (in Schrodinger picture) in the following manner:

8



3.1 Preliminaries

φ(x) =
∑
p<M

1√
2V εp

(
bpe

ipx + b†pe
−ipx) , (3.2a)

χ(x) =
∑
M<p

1√
2V εp

(
bpe

ipx + b†pe
−ipx) , (3.2b)

ΦL(x) =
∑
p

1√
2V εp

(
bpe

ipx + b†pe
−ipx) , (3.2c)

ΦH(x) =
∑
k

1√
2V ωk

(
ake

ikx + a†ke
−ikx

)
. (3.2d)

From the expansion, we see that the φ and the χ fields are orthogonal, i.e.,∫
d3xφ(x)χ(x) = 0. In the following we will not use the mode expansion of φ(x) .

As discussed earlier, we want to split the total Hamiltonian into four parts: H1

only contains low frequency modes of light particles; H2 contains both the free part

of heavy particles and high frequency modes of light particles; HA contains only

creation or annihilation operators, for example terms like aab, a†a†b†, etc; and HB

contains combinations of creation and annihilation operators, for example terms

like, b†aφ(x) and a†abb, etc. Thus,

H = H1 +H2 +HA +HB. (3.3)

For our case,

H1 =

∫
d3x

(
1

2

(
(∂φ)2 +m2φ2

)
+
λ0

4!
φ4(x)

)
, (3.4a)

H2 =

∫
d3x

∑
k

ωka
†
kak +

∑
M<p

εpbpb
†
p. (3.4b)

However, HA and HB are rather involved and will not be explicitly displayed here.

As we proceed with the calculation, we will simply pick out the relevant terms

in these by analyzing the coupling coefficient and the number of low energy light

particles.

We argued earlier that Hdecoupled = 〈0high|ω†Hω |0high〉, where ω denotes a

series of unitary transformations, ω = ω0ω1 . . . ωn . . . . Our calculations will be

limited to the first loop order and for these, we only need the first two terms in
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3.2 Decoupling

(a) (b) (c) (d)

Figure 3.1 One loop two point functions. Dashed lines represent heavy fields
and solid lines represent light fields.

the unitary transformations:

ω†Hω = e−iΩ1e−iΩ0 (H1 +H2 +HA +HB) eiΩ0eiΩ1 (3.5)

The right hand side of the above simplifies to

H1 +H2 +HB +
i

2
[HA,Ω0] + i[HB,Ω0]− 1

3
[[HA,Ω0],Ω0]

− 1

2
[[HB,Ω0],Ω0]− 1

2
[[H1,Ω0],Ω0] + i[HB,Ω1] +O(

1

M
)

(3.6)

In deriving the above we have set the cut-off energy scale to the heavy mass M

and used the condition that the unitary transformations do not take us out of the

high energy vacuum, i.e., i [H2,Ω0] +HA = 0, i [H1,Ω0] + i [H2,Ω1] = 0.

In the next two sections we will study decoupling and renormalization in this

scalar field theory by calculating the decoupled Hamiltonian up to order O( 1
M2 ) at

one loop level for the two and four point functions. The calculational techniques

are far removed from the usual Feynman diagram methods, however, we have

noticed that the Feynman diagrams provide a very good indication of which term in

the expansion, eq.(3.6) contribute to the process of interest. Thus in the following,

even though we are not using the usual Feynman-Dyson perturbative expansion,

we will still refer to the corresponding diagrams in guiding us as to the choice of

the relevant terms in eq.(3.6).
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3.2 Decoupling

3.2 Decoupling

3.2.1 Two Point Function Calculation

There are four contributions to the two point function at one loop order which

we choose to specify through ordinary Feynman diagrams. Consider the Figure

3.1(a) diagram which comes from the λ0
4!

ΦL(x)4 term in the total Hamiltonian and

make the mode expansion for the φ2χ2 piece:

6
λ0

4!

∫
d3x

∑
M<k

∑
M<p

1√
2V εk

1√
2V εp

ei(k−p)xbkb
†
pφ

2(x). (3.7)

Normal ordering this term gives

6
λ0

4!

∫
d3x

∑
M<k

∑
M<p

1√
2V εk

1√
2V εp

ei(k−p)x
([
bk, b

†
p

]
+ b†pbk

)
φ2(x), (3.8)

and keeping the only commutator piece we get

λ0

8

1

(2π)3

∫
d3x

∫
d3k

φ2(x)√
k2 +m2

− λ0

8

∫
d3x

∫
k<M

d3k

(2π)3

φ(x)2

√
k2 +m2

. (3.9)

Using dimensional regularization (d = 3− 2ε), the result is

−
∫
d3x

φ2(x)

2

λ0m
2

32π2

(
1

ε
− ln

m2

µ2
+ 1

)
+
λ0

4
C

∫
d3x

φ(x)2

2
,

1

ε
=

1

ε
− γ + ln 4π,

C = −
∫
k<M

d3k

(2π)3

1√
k2 +m2

.

(3.10)

The term proportional to C is from the restriction imposed on the momentum of

high frequency light field χ(x).

Similarly, the Figure 3.1(b) arises from the term

λ2

4

∫
d3x

∑
k

∑
p

1√
2V ωk

1√
2V ωp

ei(k−p)xaka
†
pφ

2(x). (3.11)

11



3.2 Decoupling

Normal ordering this term gives

λ2

4

∫
d3x

∑
k

∑
p

1√
2V ωk

1√
2V ωp

ei(k−p)x
([
ak, a

†
p

]
+ a†pak

)
φ2(x). (3.12)

Using dimensional regularization, we can get

−
∫
d3x

φ2(x)

2

λ2M
2

32π2

(
1

ε
− ln

M2

µ2
+ 1

)
. (3.13)

Figure 3.1(c) is proportional to λ2
1 and φ2. Since it is second order in coupling

constant, it must come from the term i
2

[HA,Ω0] in eq.(3.6). To find the HA in

this case, call it H2,1
A and consider the mode expansion of λ1

2
ΦHΦ2

L

λ1

2
ΦHΦ2

L =
λ1

2

∫
d3x

∑
k

∑
M<p

∑
M<q

1

(2V )
3
2
√
ωkεpεq

(
ake

ikx + a†ke
−ikx

)
(
bpe

ipx + b†pe
−ipx) (bqeiqx + b†qe

−iqx)+
λ1

2

∫
d3x

∑
k

1√
2V ωk

φ2(x)
(
ake

ikx + a†ke
−ikx

)
+ ...

(3.14)

where dots represent terms proportional to φ(x).

This expansion has a piece proportional to λ1
2

∫
d3x

∑
k

1√
2V ωk

(
ake

ikx + a†ke
−ikx

)
φ(x)2

in the H2,1
A . In addition, there’s another term, which is of the form of HB:

λ1

2

∫
d3x

∑
k

∑
M<p

∑
M<q

1

(2V )
3
2
√
ωkεpεq

(
ake

ikx + a†ke
−ikx

)
bpe

ipxb†qe
−iqx. (3.15)

Normal ordering this gives,

λ1

2

∫
d3x

∑
k

∑
M<p

∑
M<q

1

(2V )
3
2
√
ωkεpεq

(
ake

ikx + a†ke
−ikx

)
ei(k−p)x

([
bp, b

†
q

]
+ b†qbp

)
.

(3.16)

Finally, putting this together we get the net contribution of H2,1
A to be

H2,1
A =

∫
d3x

λ1

2

∑
k

1√
2V ωk

(
ake

ikx + a†ke
−ikx

)(
− m2

16π2

(
1

ε
− ln

m2

µ2
+ 1

)
+
C

2
+ φ(x)2

)
,

(3.17)
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3.2 Decoupling

where again C = −
∫
k<M

d3k
(2π)3

1√
k2+m2 and is from the restriction on χ(x)’s mo-

mentum. Denoting the contribution to Ω0 in this case by Ω2,1
0 we get from the

condition that i
[
H2,Ω

2,1
0

]
+H2,1

A = 0,

Ω2,1
0 =

∫
d3y

λ1

2

∑
p

−i√
2V ωpωp

(
ape

ipy − a†pe−ipy
)(
− m2

16π2

(
1

ε
− ln

m2

µ2
+ 1

)
+
C

2
+ φ(y)2

)
.

(3.18)

Then we get,

i

2

[
H2,1
A ,Ω2,1

0

]
=− i

2

∫ ∫
d3xd3y

λ2
1

4

∑
k

∑
p

−i
2V
√
ωkωpωp

[
ak,−a†p

]
eikxe−ipy(

m2

16π2

(
1

ε
− ln

m2

µ2
+ 1

)
− C

2

)
φ(y)2 + . . .

=

∫ ∫
d3xd3y

λ2
1

16

∑
k

1

ω2
k

eik(x−y)

(
m2

16π2

(
1

ε
− ln

m2

µ2
+ 1

)
− C

2

)
φ(y)2 + . . . ,

(3.19)

where the dots denote three other similar terms arising from the commutator.

Since momentum k is associated with external lines, we have k � M , and ω2
k '

M2. Including all these contributions we get

i

2

[
H2,1
A ,Ω2,1

0

]
=

∫ ∫
d3xd3y

4λ2
1

16

(
m2

16π2

(
1

ε
− ln

m2

µ2
+ 1

)
− C

2

)
φ(y)2

∫
d3k

(2π)3

1

M2
eik(x−y),

=

∫
d3x

λ2
1m

2

32π2M2

(
1

ε
− ln

m2

µ2
+ 1

)
φ(x)2

2
− λ2

1C

4M2

∫
d3x

φ(x)2

2
.

(3.20)

Now let’s consider Figure 3.1(d) which is the last contribution to the two

point function at one loop order. Figure 3.1(d) has both light particle and heavy

particle propagators. It arises also from the expansion of λ1
2

ΦHΦ2
L and is not listed

in eq.(3.14). This contribution is

H2,2
A = 2

∫
d3x

∑
k

∑
M<p

λ1

2

φ(x)

2V
√
ωkεp

(
ake

ikxbpe
ipx + h.c.

)
. (3.21)

Similarly, from i
[
H2,Ω

2,2
0

]
+ H2,2

A = 0, we can get the Ω2,2
0 that corresponds to

H2,2
A ,

13



3.2 Decoupling

Ω2,2
0 = 2

∫
d3y

∑
q

∑
M<r

λ1

2

(
−iφ(x)

2V
√
ωqεr (ωq + εr)

aqe
ikxbre

ipx + h.c.

)
. (3.22)

Thus, we need to calculate i
2

[
H2,2
A ,Ω2,2

0

]
. After a simple calculation, and normal

ordering we can get:

i

2

[
H2,2
A ,Ω2,2

0

]
= −

∫ ∫
d3xd3y

∑
k

∑
p<M

λ2
1

φ(x)φ(y)

4V 2ωkεp (ωk + εp)
ei(k+p)(x−y),

= −
∫ ∫

d3xd3y
∑
k

∑
p<M

λ2
1

φ(x)φ(y)ei(k+p)(x−y)

4V 2
√
k2 +M2

√
p2 +m2

(√
k2 +M2 +

√
p2 +m2

) .
(3.23)

In order to calculate this complicated integral, we need to split the forbidding

fraction into two parts:

1
√
k2 +M2

√
p2 +m2

(√
k2 +M2 +

√
p2 +m2

) ,
=

√
k2 +M2 −

√
p2 +m2

√
k2 +M2

√
p2 +m2 (k2 +M2 − p2 −m2)

,

=
1√

p2 +m2 (k2 +M2 − p2 −m2)
− 1√

k2 +M2 (k2 +M2 − p2 −m2)
.

(3.24)

Let k + p = r. We know r is total external momentum, thus r is much smaller

than M, which means (k2 − p2)�M2. Hence we can write:

1√
p2 +m2 (k2 +M2 − p2 −m2)

,

=
1√

p2 +m2M2
(

1− m2

M2 + k2−p2
M2

) ,
' 1√

p2 +m2M2

(
1 +

m2

M2
− k2 − p2

M2
+

(
k2 − p2

M2

)2
)
.

(3.25)

To the order 1
M2 this gives

∫
d3x

m2λ2
1

16π2M2

(
1

ε
− ln

m2

µ2
+ 1

)
φ(x)2

2
− λ2

1C

2M2

∫
d3x

φ(x)2

2
. (3.26)

14



3.2 Decoupling

Similarly, the second term from eq.(3.24) gives

1√
k2 +M2M2

(
1 +

m2

M2
− k2 − p2

M2
+

(
k2 − p2

M2

)2
)
. (3.27)

Straightforwardly, the first two terms in eq.(3.27) gives

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3k

(2π)3

∫
d3r

(2π)3

1

4
√
k2 +M2M2

eir(x−y)

(
1 +

m2

M2

)
,

= −
∫
d3x

λ2
1

16π2

(
1

ε
− ln

M2

µ2
+ 1

)
φ(x)2

2

(
1 +

m2

M2

)
.

(3.28)

The last two terms are a bit tricky to handle. First, we need to do some modifi-

cation

k2 − p2 = (k + p) (k − p) ,

= 2kr − r2.
(3.29)

Then we have from the k2−p2
M2 term:

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3k

(2π)3

∫
d3r

(2π)3

1

4
√
k2 +M2M2

eir(x−y)

(
−k

2 − p2

M2

)
,

=

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3k

(2π)3

∫
d3r

(2π)3

1

4
√
k2 +M2M2

eir(x−y)

(
−2kr + r2

M2

)
,

=

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3k

(2π)3

∫
d3r

(2π)3

1

4
√
k2 +M2M2

eir(x−y) r
2

M2
,

=

∫ ∫
d3(x)d3(y)

λ2
1

4
φ(x)φ(y)

∫
d3k

(2π)3

1

M2
√
k2 +M2

∫
d3r

(2π)3 r
2eir(x−y),

=

∫ ∫
d3(x)d3(y)

λ2
1

4
φ(x)φ(y)

∫
d3k

(2π)3

1

M2
√
k2 +M2

(
δ3(x− y)∂2

y

)
,

=

∫
d3(x)

λ2
1

4
φ(x)∂2φ(x)

∫
d3k

(2π)3

1

M2
√
k2 +M2

,

=

∫
d3(x)

λ2
1

16π2M2

(
1

ε
− ln

M2

µ2
+ 1

)
1

2
(∂φ(x))2.

(3.30)
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3.2 Decoupling

To the order 2
M2 , we also need to consider the 4(kr)2

M4 term from
(
k2−p2
M2

)2

:

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3k

(2π)3

∫
d3r

(2π)3

1

4
√
k2 +M2M2

eir(x−y) 4 (kr)2

M4
,

=

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3k

(2π)3

1√
k2 +M2M6

∫
d3r

(2π)3 (kr)2 eir(x−y),

=

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3r

(2π)3 r
2eir(x−y)

∫
d3k

(2π)3

k2 cos2 θ√
k2 +M2M6

,

=

∫ ∫
d3xd3y λ2

1φ(x)φ(y)

∫
d3r

(2π)3 r
2eir(x−y) 1

32π2M2

(
1

ε
− ln

M2

µ2
+

3

2

)
,

=

∫ ∫
d3xd3y λ2

1φ(x)δ3(x− y)∂2
yφ(y)

1

32π2M2

(
1

ε
− ln

M2

µ2
+

3

2

)
,

= −
∫
d3x

λ2
1

16π2M2

(
1

ε
− ln

M2

µ2
+

3

2

)
1

2
(∂φ(x))2.

(3.31)

Putting together all the previous results, we can get the total contribution from

Figure 3.1(d) as

m2λ2
1

16π2M2

(
1

ε
− ln

m2

µ2
+ 1

)∫
d3x

φ(x)2

2
− λ2

1C

2M2

∫
d3x

φ(x)2

2

− λ2
1

16π2

(
1

ε
− ln

M2

µ2
+ 1

)(
1 +

m2

M2

)∫
d3x

φ(x)2

2
− λ2

1

32π2M2

∫
d3x

1

2
(∂φ(x))2.

(3.32)

Putting contributions from all the diagrams together and taking µ ≈M to get rid

of log terms ln M2

µ2
, we have the net result of two point functions as

− λ0m
2

32π2

(
1

ε
− ln

m2

M2
+ 1

)∫
d3x

φ(x)2

2
− λ2M

2

32π2

(
1

ε
+ 1

)∫
d3x

φ(x)2

2

+
3λ2

1m
2

32π2M2

(
1

ε
− ln

m2

M2
+ 1

)∫
d3x

φ(x)2

2
− λ2

1

16π2

(
1

ε
+ 1

)(
1 +

m2

M2

)∫
d3x

φ(x)2

2

− λ2
1

32π2M2

∫
d3x

1

2
(∂φ(x))2 +

(
λ0C

4
− 3λ2

1C

2M2

)∫
d3x

φ(x)2

2
.

(3.33)

There are several finite contributions proportional to C = −
∫
k<M

d3k
(2π)3

1√
k2+m2 ,

however they will not affect the renormalization of H1 as we will show in section

3.3. In fact, they will only appear in Hdecoupled and get canceled out in the physical

effective Hamiltonian Heff during the matching which will be shown in chapter 4.

Another way to think about the effects of these finite terms is that whenever we

16



3.2 Decoupling

Figure 3.2 Four point function at tree level.

(a) (b) (c) (d)

Figure 3.3 Four point functions at one loop level.

have a light field in the loop, our calculation will produce these finite terms along

with (in a linear way) the ”troublesome” large log terms ln m2

M2 . Therefore, as long

as the large log terms can be canceled during matching, we can persuade ourselves

that these extra finite terms will get canceled and will not appear in Heff as well.

3.2.2 Four Point Function Calculation

In the calculation of Figure 3.1(c) in section 3.2.1, there is one more term from

the commutator i
2

[
H2,1
A ,Ω2,1

0

]
left undiscussed that contributes to the four point

function at tree level shown in Figure 3.2

i

2

[
H2,1
A ,Ω2,1

0

]
tree

= i

∫
d3x

∫
d3y

λ2
1

4

∑
k

∑
p

−i
2V
√
ωkωpωp

φ(x)2φ(y)2[ak,−a†p]eikx−ipy,

= −
∫
d3x

∫
d3y

∫
d3k

(2π)3

λ2
1

8(k2 +M2)
φ(x)2φ(y)2eik(x−y),

≈ −3λ1

M2

∫
d3x

φ(x)4

4!
,

(3.34)

where we have used the condition that k is associated with external momenta and

therefore k �M .

In the loop calculation we will encounter extra finite terms similar to those

we have discussed in section 3.2.1. However we will omit them in our calculation

17



3.2 Decoupling

and check in chapter 4 that all the large log terms ln m2

M2 produced in four point

function calculation are canceled out, which implies these extra finite terms will

be canceled too. Furthermore, we will set external momenta to 0, an assumption

that will simplify calculation greatly but won’t damage the physical essence of our

theory.

Let’s consider Figure 3.3(a). This diagram is of order λ2
0, and it arises from

the term i
2

[
H4,1
A ,Ω4,1

0

]
where H4,1

A comes from the mode expansion of λ0
4!

ΦL(x)4.

In this expansion we must pick a term of form φ2χ2 which gives

HA =

∫
d3x 6

λ0

4!
φ(x)2

∑
k

∑
p

1

2V
√
εpεk

(
bpbke

i(p+k)x + b†pb
†
ke
−i(p+k)x

)
. (3.35)

From the equation i
[
H2,Ω

4,1
0

]
+ H4,1

A = 0, we can get the corresponding Ω4,1
0 to

be

Ω4,1
0 =

∫
d3y

λ0

4
φ(y)2

∑
k′

∑
p′

 −iei
(
k
′
+p

′)
y

2V
√
εk′ εp′

(
εk′ + εp′

)bk′ bp′ +
ie
−i

(
k
′
+p

′)
y

2V
√
εk′ εp′

(
εk′ + εp′

)b†
k′
b†
p′

 .

(3.36)

Then i
2

[
H4,1
A ,Ω4,1

0

]
yields

− 3λ2
0

32π2

(
1

ε
− ln

m2

µ2

)∫
d3x

φ(x)4

4!
. (3.37)

In this calculation, we have used the approximation that total external momentum

is zero, which means k + p = 0 and εk = εp =
√
k2 +m2.

The next contribution is from Figure 3.3(b). The calculation is similar to the

first one except the corresponding HA is different. In this case we have

H4,2
A =

∫
d3x

λ2

4
φ(x)2

∑
k

∑
p

1

2V
√
ωpωk

(
apake

i(p+k)x + a†pa
†
ke
−i(p+k)x

)
,

(3.38a)

Ω4,2
0 =

∫
d3y

λ2

4
φ(y)2

∑
k′

∑
p′

 −iei
(
k
′
+p

′)
y

2V
√
ωk′ωp′

(
ωk′ + ωp′

)ak′ap′ +
ie
−i

(
k
′
+p

′)
y

2V
√
ωk′ωp′

(
ωk′ + ωp′

)a†
k′
a†
p′

 .

(3.38b)
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3.2 Decoupling

H4,3
A Ω4,3,1

0 Ω4,3,2
0

First combination (a)
λ1aφ

2 λ1a
†b†b† λ0bbφ

2

λ1a
†φ2 λ1abb λ0b

†b†φ2

Second combination (b)
λ1abb λ1a

†φ2 λ0b
†b†φ2

λ1a
†b†b† λ1aφ

2 λ0bbφ
2

Third combination (c)
λ1abb λ0b

†b†φ2 λ1a
†φ2

λ1a
†b†b† λ0bbφ

2 λ1aφ
2

Fourth combination (d)
λ0bbφ

2 λ1a
†b†b† λ1aφ

2

λ0b
†b†φ2 λ1abb λ1a

†φ2

Table 3.1: Combinations of −1
3

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
that contribute to Figure

3.3(c).

Following the similar calculation we are able to get the result:

i

2

[
H4,2
A ,Ω4,2

0

]
= − 3λ2

2

32π2

(
1

ε
− ln

M2

µ2

)∫
d3x

φ(x)4

4!
. (3.39)

Let’s now consider the contributions that correspond to Figure 3.3(c). Notice

that, in this diagram, we have the product of coupling constants as λ0λ
2
1, which

means we need −1
3

[[HA,Ω0] ,Ω0] − 1
2

[[HB,Ω0] ,Ω0] from eq.(3.6). For clarity, we

label HA in the commutator as H4,3
A , the first Ω0 next to H4,3

A as Ω4,3,1
0 , the second

Ω0 as Ω4,3,2
0 and HB as H4,3

B . There are many ways to pick H4,3
A , Ω4,3,1

0 , and Ω4,3,2
0

in −1
3

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
, and we split them into four kinds of combinations

shown in Table 3.1. We will show the explicit calculation of the first combination

Table 3.1(a) and put the calculation of other combinations in the appendix A.

Considering the following terms from the first combination Table 3.1(a):

H4,3
A =

λ1

2

∫
d3x

∑
k

φ(x)2

√
2V ωk

ake
ikx, (3.40a)

Ω4,3,1
0 =

λ1

2

∫
d3y

∑
k′

∑
p

∑
q

ie
−i

(
k
′
+p+q

)
y

(2V )3/2√ωk′ εpεq (ωk′ + εp + εq)
a†
k′
b†pb
†
q, (3.40b)

Ω4,3,2
0 =

λ0

4

∫
d3z

∑
p′

∑
q′

φ(z)2 −iei
(
p
′
+q

′)
z

2V
√
εp′ εq′

(
εp′ + εq′

)bp′ bq′ . (3.40c)
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3.2 Decoupling

We first calculate
[
H4,3
A ,Ω4,3,1

0

]
[
H4.3
A ,Ω4,3,1

0

]
=
λ2

1

4

∫
d3x

∫
d3y φ(x)2

∑
k

∑
k′

∑
p

∑
q

ieikxe
−i

(
k
′
+p+q

)
y

(2V )2√ωkωk′ εpεq (ωk′ + εp + εq)[
ak, a

†
k′
b†pb
†
q

]
,

=
λ2

1

4

∫
d3x

∫
d3y φ(x)2

∑
k

∑
p

∑
q

ieik(x−y)e−i(p+q)y

(2V )2 ωk
√
εpεq (ωk + εp + εq)

b†pb
†
q,

=
iλ2

1

16

∫
d3xφ(x)2

∑
p

∑
q

e−i(p+q)x

VM
√
εpεq (M + εp + εq)

b†pb
†
q.

(3.41)

In the above calculation, we also use the assumption that total external momentum

is 0, which implies the momentum k associated with heavy particle is therefore 0

and wk = M . Then we have

−1

3

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
= −λ

2
1λ0

192

∫
d3x

∫
d3z

∑
p

∑
q

∑
p′

∑
q′

φ(x)2φ(z)2

e
i
(
p
′
+q

′)
z−i(p+q)x

2V 2M
√
εpεqεp′ εq′

(
εp′ + εq′

)
(M + εp + εq)

[
b†pb
†
q, bp′ bq′

]
,

=
λ2

1λ0

192

∫
d3x

∫
d3z

∑
p

∑
q

φ(x)2φ(z)2 ei(p+q)(x−z)

2V 2Mε3p (M + 2εp)
,

=
λ2

1λ0

192

∫
d3xφ(x)4

∫
d3p

(2π)3

1

2V 2Mε3p (M + 2εp)
,

(3.42)

where we have used the fact that p+ q = k = 0, and thus εp = εq. Finally, taking

the Hermitian conjugation into consideration, we have the result of combination

Table 3.1(a) to be

λ2
1λ0

96

∫
d3xφ(x)4

∫
d3p

(2π)3

1

2V 2Mε3p (M + 2εp)
. (3.43)

Combinations Table 3.1(b) and Table 3.1(c) will yield the same result:

λ2
1λ0

96

∫
d3xφ(x)4

∫
d3p

(2π)3

1

2M2ε3p
. (3.44)
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3.2 Decoupling

H4,3
B Ω4,3,1

0 Ω4,3,2
0

λ1b
†b†a λ0bbφ

2 λ1a
†φ

λ1b
†b†a λ1a

†φ2 λ0bbφ
2

λ1a
†bb λ1aφ

2 λ0b
†b†φ2

λ1a
†bb λ0b

†b†φ2 λ1aφ
2

Table 3.2: Combinations of −1
2

[[
H4,3
B ,Ω4,3,1

0

]
,Ω4,3,2

0

]
that contribute to Figure

3.3(c).

Table 3.1(d) will give

λ2
1λ0

96

∫
d3xφ(x)4

∫
d3p

(2π)3

1

M2ε2p(M + 2εp)
. (3.45)

Adding all four kinds of combinations together, we will get

λ2
1λ0

96

∫
d3xφ(x)4

∫
d3p

(2π)3

(
1

M2ε2p (M + 2εp)
+

1

2ε3pM (M + 2εp)
+

1

M2ε3p

)
,

=
λ2

1λ0

64

∫
d3xφ(x)4

∫
d3p

(2π)3

1

M2ε3p
,

=
3λ2

1λ0

32π2M2

∫
d3x

φ(x)4

4!

(
1

ε
− ln

m2

µ2

)
.

(3.46)

The combinations of −1
2

[[
H4,3
B ,Ω4,3,1

0

]
,Ω4,3,2

0

]
are shown in Table 3.2, and the

result is
3λ2

1λ0

32π2M2

∫
d3x

φ(x)4

4!

(
1

ε
− ln

m2

µ2

)
. (3.47)

Therefore, the total contribution from Figure 3.3(c) is

3λ2
1λ0

16π2M2

∫
d3x

φ(x)4

4!

(
1

ε
− ln

m2

µ2

)
. (3.48)

As for the Figure 3.3(d), only the term −1
2

[[
H4,4
B ,Ω4,4,1

0

]
,Ω4,4,2

0

]
will con-

tribute. Similarly, we divide the whole commutator into several kinds of combina-

tions shown in Table 3.3 and calculate them respectively. We will give the resul

of each kind of combination directly and put the explicit calculation in appendix

A.

Table 3.3(a) will give

λ0λ
2
1

16

∫
d3xφ(x)4

∫
d3k

(2π)3

1

ωkε2k (ωk + εk)
2 . (3.49)
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3.2 Decoupling

H4,4
B Ω4,4,1

0 Ω4,4,2
0

First combination (a)
λ0b
†b†φ2 λ1a

†b†φ λ1abφ
λ0b
†bφ2 λ1abφ λ1a

†b†φ
Second combination (b)
λ1b
†aφ λ1a

†b†φ λ0bbφ
2

λ1a
†bφ λ1abφ λ0b

†b†φ2

Third combination (c)
λ1b
†aφ λ0bbφ

2 λ1a
†b†φ

λ1a
†b†φ λ0b

†b†φ2 λ1abφ

Table 3.3: Combinations of −1
2

[[
H4,4
B ,Ω4,4,1

0

]
,Ω4,4,2

0

]
that contribute to Figure

3.3(c).

Since Table 3.3(b) and Table 3.3(c) only differ from an exchange of Ω4,4,1
0 and

Ω4,4,2
0 , they will give the same result:

λ2
1λ0

32

∫
d3xφ(x)4

∫
d3p

(2π)3

1

ωpε3p (ωp + εp)
. (3.50)

Adding all three results together we will have

−1

2

[[
H4,4
B ,Ω4,4,1

0

]
,Ω4,4,2

0

]
=
λ2

1λ0

16

∫
d3xφ(x)4

∫
d3k

(2π)3

[
1

ωkε2k (ωk + εk)
2 +

1

ωkε3k (ωk + εk)

]
.

(3.51)

Let’s consider
∫

d3k
(2π)3

1
ωkε

3
k(ωk+εk)

first,

∫
d3k

(2π)3

1

ωkε3k (ωk + εk)
=

∫
d3k

(2π)3

(
1

ε3k (M2 −m2)
− 1

ωkε2k (ωk + εk) (ωk − εk)

)
,

≈
∫

d3k

(2π)3

(
1

ε3kM
2
− 1

ωkε2k (ωk + εk) (ωk − εk)

)
.

(3.52)

Calculation of
∫

d3k
(2π)3

1
ε3kM

2 is straightforward, and we save it for later. Now con-

sider ∫
d3k

(2π)3

(
1

ωkε2k (ωk + εk)
2 −

1

ωkε2k (ωk + εk) (ωk − εk)

)
,

=

∫
d3k

(2π)3

−2εk

ωkε2k (ωk + εk)
2 (ωk − εk)

,

=

∫
d3k

(2π)3

−2εk (ωk − εk)
ωkε2k (ωk + εk)

2 (ωk − εk)2 ,

≈
∫

d3k

(2π)3

(
−2

εkM4
+

2

ωkM4

)
.

(3.53)
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3.3 Renormlization

To the order O( 1
M2 ), we only need to keep

∫
d3k

(2π)3
−2

ωkM4 . In total we have the

contribution from Figure 3.3(d) to be

λ2
1λ0

16

∫
d3xφ(x)4

∫
d3k

(2π)3

(
2

ωkM4
+

1

ε3kM
2

)
,

= − λ2
1λ0

64π2M2

∫
d3xφ(x)4

((
1

ε
+ 1− ln

M2

µ2

)
−
(

1

ε
− ln

m2

µ2

))
m =,

= − 3λ0λ
2
1

8π2M2

(
1− ln

M2

µ2
+ ln

m2

µ2

)∫
d3x

φ(x)4

4!
.

(3.54)

Taking µ ≈M and summing the contributions from the four diagrams together,

we get the final result of four point functions at one loop level, up to order O( 1
M2 ):

− 3λ2
0

32π2

(
1

ε
− ln

m2

M2

)∫
d3x

φ(x)4

4!
− 3λ2

2

32π2

1

ε

∫
d3x

φ(x)4

4!

+
3λ2

1λ0

16π2M2

(
1

ε
− ln

m2

M2

)∫
d3x

φ(x)4

4!
− 3λ2

1λ0

8π2M2

(
1 + ln

m2

M2

)∫
d3x

φ(x)4

4!
(3.55)

3.3 Renormlization

We argued in section 2.3 that the UV divergences in the calculation of Hdecoupled

contain information regarding the renormalization of H1. Let’s first write H1 as

H1 =

∫
d3x

1

2
(∂φbare(x))2 +

1

2
m2
bareφ

2
bare(x) +

λbare0

4!
φ4
bare(x), (3.56)

and then introduce the renormalization Z factor such that

φbare =
√
Zφφ, (3.57a)

mbare =
√
Zmm, (3.57b)

λbare0 = Zλ0λ0. (3.57c)
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3.3 Renormlization

Expanding these Z factors in terms of 1
ε
, we have

Zφ = 1 + δ1
φ(

1

ε
) +O(

1

ε2
), (3.58a)

Zm = 1 + δ1
m(

1

ε
) +O(

1

ε2
), (3.58b)

Zλ0 = 1 + δ1
λ0

(
1

ε
) +O(

1

ε2
). (3.58c)

Implementing these expansion, we can rewrite H1 as

H1 =

∫
d3x

1

2
(∂φ(x))2 +

1

2
m2φ2(x) +

λ0

4!
φ2(x)

1

2
δ1
φ(∂φ(x))2 +

1

2
(δ1
φ + δ1

m)m2φ2(x) +
λ0

4!
(2δ1

φ + δ1
λ0

)φ4(x) +O(
1

ε2
).

(3.59)

Using MS scheme, we can cancel the UV divergences in Hdecoupled by counterterms

in H1. From two point calculation in section 3.2.1, we have UV divergence:

(
−λ0m

2

32π2
− λ2M

2

32π2
+

λ2
1m

2

32π2M2
− λ2

1

16π2

)
1

ε

∫
d3x

φ2(x)

2
. (3.60)

From four point calculation in section 3.2.2, we have UV divergence:

(
− 3λ2

0

32π2
− 3λ2

2

32π2
+

3λ2
1λ0

16π2M2

)
1

ε

∫
d3x

φ4(x)

4!
. (3.61)

Since, there’s no term proportional to the momentum, we know δ1
φ = 0. Then we

can use the following renormalization conditions:

(
δ1
mm

2 +

(
−λ0m

2

32π2
− λ2M

2

32π2
+

λ2
1m

2

32π2M2
− λ2

1

16π2

)
1

ε

)∫
d3x

φ2(x)

2
= 0, (3.62a)(

δ1
λ0
λ0 +

(
− 3λ2

0

32π2
− 3λ2

2

32π2
+

3λ2
1λ0

16π2M2

)
1

ε

)∫
d3x

φ4(x)

4!
= 0, (3.62b)

to obtain

δ1
φ = 0, (3.63a)

δ1
m =

1

m2

(
λ0m

2

32π2
+
λ2M

2

32π2
− λ2

1m
2

32π2M2
+

λ2
1

16π2

)
1

ε
, (3.63b)

δ1
λ0

=
1

λ0

(
3λ2

0

32π2
+

3λ2
2

32π2
− 3λ2

1λ0

16π2M2

)
1

ε
, (3.63c)
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3.3 Renormlization

which agree with the results from the traditional renormalization in a Lagrangian

framework.
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Chapter 4

Construction of Effective Field

Theories

In this chapter we will use the results from chapter 3 to construct the effective

field theory up to order O( 1
M2 ), and show the extra finite terms in Hdecoupled are

indeed canceled during matching.

In Hdecoupled, at tree level up to order O( 1
M2 ), we have (λ0 − 3λ1

M2 )
∫
d3x φ4(x)

4!

that corresponds to Figure 4.1(a) and Figure 4.1(b). First, matching the decoupled

Hamiltonian at tree level onto the low energy subspace, we have

H tree
eff =

∫
d3x

1

2
(∂φ(x))2 +

1

2
m2φ2(x) + (λ0 −

3λ1

M2
)
φ4(x)

4!
+O(

1

M4
). (4.1)

As we claimed in section 2.3, to proceed to one loop level, we need to decouple and

renormalize H tree
eff as well. To do this, we first change the low frequency modes φ’s

in H tree
eff back to the full light field ΦL. Then we can follow the similar process to

decouple the high frequency and low frequency modes by unitary transformations.

H
′

decoupled = 〈0high|ω
′†H tree

eff ω
′ |0high〉 , (4.2)

where H
′

decoupled is the decoupled Hamiltonian corresponding to H tree
eff and ω

′
is the

corresponding unitary transformation.

First, we have a contribution from a two point function shown in Figure 4.2.

The calculation here is similar to the calculation of Figure 3.1(a), and we only
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(a) (b)

Figure 4.1 Tree level contributions in Hdecoupled.

Figure 4.2 One loop two point function contribution in H
′

decoupled

need to substitute λ0 with λ0 − 3λ21
M2 . Therefore, the result is

− m2

32π2
(λ0 −

3λ2
1

M2
)(

1

ε
− ln

m2

µ2
+ 1)

∫
d3x

φ2(x)

2
+
λ0 − 3λ21

M2

4
C

∫
d3x

φ2(x)

2
, (4.3)

where C = −
∫
k<M

d3k
(2π)3

1√
k2+m2 is the same as in section 3.2.1. Then we do the

renormalization in MS scheme to cancel out the divergent part and take µ ≈M .

The finite terms left are

− m2

32π2
(λ0 −

3λ2
1

M2
)(− ln

m2

M2
+ 1)

∫
d3x

φ2(x)

2
+
λ0 − 3λ21

M2

4
C

∫
d3x

φ2(x)

2
. (4.4)

To do the matching, we use the finite terms in eq.(3.33) from section 3.2.1 to

subtract eq.(4.4) to get the two point interactions to be added in Hone loop
eff :

(
−λ2M

2

32π2
− λ2

1

16π2
− λ2

1m
2

16π2M2

)∫
d3x

φ2(x)

2
− λ2

1

32π2M2

∫
d3x

1

2
(∂φ(x))2. (4.5)

As we expect the extra finite terms are all canceled out along with the large log

terms during matching and will not appear in the effective Hamiltonian.

We can then consider the contribution from the four point function shown in

Figure 4.3. Again the calculation is similar to the one of Figure 3.3(a), and we
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Figure 4.3 One loop four point function contribution in H
′

decoupled

only need to substitute λ0 with λ0 − 3λ21
M2 . Hence, we have

−
3
(
λ0 − 3λ21

M2

)2

32π2

(
1

ε
− ln

m2

M2

)∫
d3x

φ4(x)

4!
. (4.6)

After renormalization, up to order O( 1
M2 ), we are left with

(
3λ2

0

32π2
− 9λ2

1λ0

16π2M2

)
ln
m2

M2

∫
d3x

φ4(x)

4!
. (4.7)

Using the finite terms in eq.(3.55) from section 3.2.2 to subtract eq.(4.7), we get

the four point interactions to be added in Honeloop
eff as

− 3λ0λ
2
1

8π2M2

∫
d3x

φ4(x)

4!
. (4.8)

Large log terms are again canceled during matching as we expect. In conclusion,

up to order O( 1
M2 ), the effective Hamiltonian at one loop level so constructed

based on our theory is

Honeloop
eff =

∫
d3x

1

2
(∂φ(x))2 +

1

2
m2φ2(x)−

(
λ2M

2

32π2
+

λ2
1

16π2
(1 +

m2

M2
)

)
φ2(x)

2

+

(
λ0 −

3λ2
1

M2
− 3λ0λ

2
1

8π2M2

)
φ4(x)

4!
− λ2

1

32π2M2

1

2
(∂φ(x))2.

(4.9)
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Chapter 5

Discussion

In this thesis we have shown the consistency of the approach to Hamiltonian renor-

malization which emphasizes its basic origin as due to the entanglement between

the low and high energy modes of the theory. Using unitary transformations on

states to decouple the high energy modes from the low energy ones and projecting

the transformed Hamiltonian to the low energy subspace, correctly accounts for

renormalization effects and the property of decoupling in quantum field theories.

We have also shown how the same approach can be consistently used in the con-

struction of effective field theories. The next step would be to understand how

different measures of entanglement like entanglement entropy and mutual infor-

mation may be used to analyse the properties of decoupling and to shed light on

another striking property of quantum field theories, namely the insensitivity of

the low energy physics to the details of the short distance structure.
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Appendix A

Appendix for Chapter 3

A.1 Explicit Calculation of Figure 3.3(c)

Since combination Table 3.1(b) and Table 3.1(c) only differ from an exchange of

Ω4,3,1
0 and Ω4,3,2

0 , they will yield the same result. Let’s consider the following from

Table 3.1(b):

H4,3
A =

λ1

2

∫
d3x

∑
k

∑
p

∑
q

ei(k+p+q)x

(2V )3/2√ωkεpεq
akbpbq, (A.1a)

Ω4,3,1
0 =

λ1

2

∫
d3y

∑
k′

iφ(y)2√
2V ωk′ωk′

a†
k′
e−ik

′
y, (A.1b)

Ω4,3,2
0 =

λ0

4

∫
d3z

∑
p′

∑
q′

φ(z)2 ie
−i

(
p
′
+q

′)
z

2V
√
εp′ εq′

(
εp′ + εq′

)b†
p′
b†
q′
. (A.1c)

The first commutator gives

[
H4,3
A ,Ω4,3,1

0

]
=
iλ2

1

4

∫
d3x

∫
d3y

∑
k

∑
k′

∑
p

∑
q

φ(y)2

(2V )2

ei(k+p+q)x−ik
′
y

√
ωkωk′ωqωpωk′

[
akbpbq, a

†
k′

]
,

=
iλ2

1

16

∫
d3x

∫
d3y

∑
p

∑
q

ei(p+q)x

V
√
εpεqM2

∫
d3k

(2π)3 e
ik(x−y)φ(y)2bpbq,

=
iλ2

1

16

∫
d3xφ(x)2

∑
p

∑
q

ei(p+q)x

VM2√εpεq
bpbq.

(A.2)
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A.1 Explicit Calculation of Figure 3.3(c)

The second commutator is

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
= −λ

2
1λ0

64

∫
d3x

∫
d3z φ(x)2φ(z)2,

∑
p

∑
q

∑
p′

∑
q′

e
i(p+q)x−i

(
p
′
+q

′)
z

2V 2M2√εpεqεp′ εq′
(
εp′ + εq′

) [bpbq, b†p′ b†q′] ,
= −λ

2
1λ0

64

∫
d3xφ(x)4

∫
d3p

(2π)3

1

2M2ε3p
.

(A.3)

As a result,

−1

3

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
=
λ2

1λ0

192

∫
d3xφ(x)4

∫
d3p

(2π)3

1

2M2ε3p
(A.4)

and consider the Hermitian conjugation we have the final result for both Table

3.1(b) and Table 3.1(c) to be

λ2
1λ0

96

∫
d3xφ(x)4

∫
d3p

(2π)3

1

2M2ε3p
. (A.5)

For the combination Table 3.1(d), we have

H4,3
A =

∫
d3x

λ0

4
φ(x)2

∑
p

∑
q

ei(p+q)x

2V
√
εpεq

bpbq, (A.6a)

Ω4,3,1
0 =

∫
d3y

λ1

2

∑
k

∑
p′

∑
q′

ie
−i

(
k+p

′
+q

′)
y

(2V )3/2√ωkεp′ εq′
(
ωk + εp′ + εq′

)a†kb†p′ b†q′ , (A.6b)

Ω4,3,2
0 =

∫
d3z

λ1

2
φ(z)2

∑
k′

−iek
′
z√

2V ωk′ωk′
ak′ . (A.6c)
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A.1 Explicit Calculation of Figure 3.3(c)

Following similar steps, we first calculate the commutator inside:

[
H4,3
A ,Ω4,3,1

0

]
=
iλ0λ1

8

∫
d3x

∫
d3y φ(x)2

∑
p

∑
q

∑
k

∑
p′

∑
q′

e
i(p+q)x−i

(
k+p

′
+q

′)
y

(2V )5/2 (ωK + εp′ + εq′
)

[
bpbq, a

†
kb
†
p′
b†
q′

]
,

=
iλ1λ0

8

∫
d3x

∫
d3y φ(x)2

∑
k

∑
p

∑
q

2ei(p+q)(x−y)−iky

(2V )5/2√ωkεpεq (ωk + εp + εq)
a†k,

=
iλ1λ0

8

∫
d3x

∫
d3y φ(x)2

∑
k

∑
p

e−iky

(2V )3/2 ε2p
√
ωk (ωk + 2εp)

a†k∫
d3 (p+ q)

(2π)3 ei(p+q)(x−y),

=
iλ1λ0

8

∫
d3xφ(x)2

∑
k

∑
p

e−ikx

(2V )3/2 ε2p
√
ωk (ωk + 2εp)

a†k.

(A.7)

The total commutator is

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
=
λ2

1λ0

16

∫
d3x

∫
d3z φ(z)2φ(x)2

∑
k

∑
p

∑
k′

eik
′
z−ikx

(2V )2 ε2p
√
ωkωk′ωk′ (ωk + 2εp)[

a†k, ak′
]
,

= −λ
2
1λ0

64

∫
d3xφ(x)4

∫
d3p

(2π)3

1

M2ε2p (M + 2εp)
.

(A.8)

Therefore,

−1

3

[[
H4,3
A ,Ω4,3,1

0

]
,Ω4,3,2

0

]
=
λ2

1λ0

192

∫
d3xφ(x)4

∫
d3p

(2π)3

1

M2ε2p (M + 2εp)
. (A.9)

Considering the Hermitian conjugation, the final result from the combination Ta-

ble 3.1(d) is
λ2

1λ0

96

∫
d3xφ(x)4

∫
d3p

(2π)3

1

M2ε2p (M + 2εp)
. (A.10)

Calculation of the contributions from −1
2

[[
H4,3
B ,Ω4,3,1

0

]
,Ω4,3,2

0

]
is very similar

to the calculation of Table 3.1(b) and Table 3.1(c).
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A.2 Explicit Calculation of Figure 3.3(d)

A.2 Explicit Calculation of Figure 3.3(d)

In terms of Table 3.3(a), let’s consider the following:

H4,4
B =

∫
d3x

λ0

2
φ(x)2

∑
p

∑
q

ei(p−q)x

2V
√
εpεq

b†pbq, (A.11a)

Ω4,4,1
0 =

∫
d3y λ1φ(y)

∑
k

∑
p′

ie
−i

(
k+p

′)
y

2V
√
ωkεp′

(
ωk + εp′

)a†kb†p′ , (A.11b)

Ω4,4,2
0 =

∫
d3z λ1φ(z)

∑
k′

∑
q′

−iei
(
k
′
+q

′)
z

2V
√
ωk′ εq′

(
ωk′ + εq′

)ak′ bq′ . (A.11c)

The first commutator is

[
H4,4
B ,Ω4,4,1

0

]
=
iλ0λ1

2

∫
d3x

∫
d3z φ(x)2φ(y)

∑
p

∑
q

∑
k

∑
p′

e
−i(p−q)x−i

(
k+p

′)
y

4V 2√εpεqωkεp′
(
ωk + εp′

)
[
b†pbq, a

†
kb
†
p′

]
,

=
iλ0λ1

8

∫
d3x

∫
d3y φ(x)2φ(y)

∑
p

∑
q

∑
k

eiq(x−y)−ipx−iky

V 2√εpωkεq (ωk + εq)
b†pa
†
k,

=
iλ0λ1

8

∫
d3x

∫
d3y φ(x)2φ(y)

∑
p

∑
k

e−ipx−iky

V
√
εpωkεp (ωk + εp)

b†pa
†
k

∫
d3q

(2π)3 e
iq(x−y),

=
iλ0λ1

8

∫
d3xφ(x)3

∑
p

∑
k

e−ipx−iky

V
√
εpωkεp (ωk + εp)

b†pa
†
k,

(A.12)

where we have used the condition that external momenta are zero, and therefore

|k| = |p| = |q|, which gives εp = εq. The second commutator is

[[
H4,4
B ,Ω4,4,1

0

]
,Ω4,4,2

0

]
=
λ0λ

2
1

16

∫
d3x

∫
d3z φ(x)3φ(z)

∑
p

∑
k

∑
k′

∑
q′

e
i
(
k
′
+q

′)
z−i(k+p)x

V 2√ωkωk′ εpεq′ (ωk + εp)
(
ωk′ + εq′

)
εp

[
b†pa
†
k, ak′ bq′

]
,

=
−λ0λ

2
1

16

∫
d3x

∫
d3z φ(x)3φ(z)

∑
k

∑
q

ei(k+p)(z−x)

V 2ωkε2p (ωk + εp)
2 ,

=
−λ0λ

2
1

16

∫
d3xφ(x)4

∫
d3k

(2π)3

1

ωkε2k (ωk + εk)
2 .

(A.13)
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A.2 Explicit Calculation of Figure 3.3(d)

Considering the Hermitian conjugation, we will get the final result for Tabel 3.3(a)

as:
λ0λ

2
1

16

∫
d3xφ(x)4

∫
d3k

(2π)3

1

ωkε2k (ωk + εk)
2 . (A.14)

Table 3.3(b) and Table 3.3(c) will give the same result, and we consider the

following:

H4,4
B = λ1

∫
d3xφ(x)

∑
k

∑
p

ei(k−p)x

2V
√
ωkεp

b†pak, (A.15a)

Ω4,4,1
0 = λ1

∫
d3y φ(y)

∑
k′

∑
q

ie
−i

(
k
′
+q

)
y

2V
√
ωk′ εq (ωk′ + εq)

a†
k′
b†q, (A.15b)

Ω4,4,2
0 =

λ0

4

∫
d3z φ(z)2

∑
p′

∑
q′

−iei
(
p
′
+q

′)
z

2V
√
εp′ εq′

(
εp′ + εq′

)bp′ bq′ . (A.15c)

First commutator is

[
H4,4
B ,Ω4,4,1

0

]
= iλ2

1

∫
d3x

∫
d3y φ(x)φ(y)

∑
k

∑
p

∑
k′

∑
q

e
i(k−p)x−i

(
k
′
+q

)
y

4V 2√ωkωk′ εpεq (ωk′ + εq)[
akb
†
p, ak

′†
b†q

]
,

=
iλ2

1

4

∫
d3x

∫
d3y φ(x)φ(y)

∑
k

∑
p

∑
q

ei(x−y)k−ipx−iqy

V 2ωk
√
εpεq (ωk + εq)

b†pb
†
q,

=
iλ2

1

4

∫
d3xφ(x)2

∑
p

∑
q

e−i(p+q)x

V 2ωp
√
εpεq (ωp + εq)

b†pb
†
q.

(A.16)

Again, we use the condition that external momenta are zero, and rewrite ωk as

ωp, since |k| = |p|. The second commutator gives:

[[
H4,4
B ,Ω4,4,1

0

]
,Ω4,4,2

0

]
=
λ2

1λ0

16

∫
d3x

∫
d3z φ(x)2φ(z)2

∑
p

∑
q

∑
p′

∑
q′

e
−i(p+q)x+i

(
p
′
+q

′)
z

2V 2ωp
√
εpεqεp′ εq′

(
εp′ + εq′

)
(ωp + εq)

[
b†pb
†
q, bp′ bq′

]
,

=
−λ2

1λ0

16

∫
d3x

∫
d3z φ(x)2φ(z)2

∑
p

∑
q

ei(p+q)(z−x)

V 2ωpεpεq (εp + εq) (ωp + εq)
,

=
−λ2

1λ0

32

∫
d3xφ(x)4

∫
d3p

(2π)3

1

ωpε3p (ωp + εp)
.

(A.17)
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A.2 Explicit Calculation of Figure 3.3(d)

Considering the Hermitian conjugation, we will get the final result for both Table

3.3(b) and Table 3.3(c):

λ2
1λ0

32

∫
d3xφ(x)4

∫
d3p

(2π)3

1

ωpε3p (ωp + εp)
. (A.18)
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