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Abstract:​ During the last decade, rideshare companies such as Uber and Lyft entered New York 

City. At the same time, taxi medallion sales prices significantly declined. This paper studies the 

effect of rideshare on various aspects of the taxi industry and also looks at how weather interacts 

with taxi revenue. By analyzing data from taxi rides, and using multiple linear regressions, it 

becomes evident that the introduction of rideshare reduced profitability in the taxi industry. 

While cab revenues have decreased, they have also become more unevenly distributed across the 

day. Via the Gordon Growth Model, it is apparent that the changes in profitability significantly 

influenced medallion values. Overall, the price-to-earnings ratio (PER) for medallions declined 

substantially in recent years, thus indicating a negative future outlook for the taxi industry. 

Nonetheless, the city’s ride market as a whole — taxi plus rideshare — has expanded 

tremendously. 
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Introduction 

In the 1930s, the New York City taxi industry experienced a significant change. In years 

prior, the industry had been relatively unregulated. There was a licensing system but no limit to 

the number of taxis. As a result, there was a high supply of taxis that created competition among 

drivers to get passengers. Additionally, there were unlicensed taxis — known as wildcat taxis — 

that often lowered fares to capture the demand. This situation led to unrest among drivers. With 

the Great Depression, further decreases in the demand for taxis heightened the tension. To ease 

the tension, New York City Mayor Fiorello H. La Guardia passed the Haas Act in 1937. This law 

created the medallion licensing system that exists today. Basically, in order to operate a taxi one 

was required to own a government-issued medallion, and these medallions were tradable. The 

number of medallions was capped at 16,900 to reduce competition for passengers, thus 

improving economic conditions for drivers who had medallions. The city also increasingly used 

the police to enforce regulations and industry standards. More than 70 years after the creation of 

the medallion system, the taxi industry faced another monumental change — the introduction of 

rideshare companies, predominantly Uber and Lyft. This added competition for taxis, tapping 

into their exclusivity and potentially crumbling medallion investments. 

This paper serves a few purposes that stem from two fundamental questions. First, to 

what extent do medallion sales prices respond to profitability in the taxi industry? And second, 

how severely has growth in the rideshare industry impacted taxi profits? I incorporate medallion 

prices from 2011 to 2018 into the Gordon Growth Model to quantify the link between the value 

of a medallion and taxi profitability. To study the holistic effect from rideshare, I use rideshare 

data starting in 2015. After delving into the first two questions, though, I strive to further 

decompose taxi earnings. It is likely that rideshare transforms earnings in the taxi industry 

through multiple paths. I pose two potential channels — the daily distribution of taxi revenue and 

also linkage between temperature and precipitation — and I analyze the evolution of these 

channels from 2009 to 2018 to identify changes stemming from rideshare. Essentially, I use Gini 

coefficients and also quantify hourly effects to investigate how revenue is distributed across 

hours of the day, and whether that distribution becomes more or less even after rideshare enters 

the city. To inspect how the role of weather has changed, I incorporate quadratic and quartic 
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approximations. This paper also looks at interesting correlations that help pinpoint different ways 

rideshare has impacted the taxi industry, such as to what extent rideshare acts as a substitute for 

medallion taxis. Finally, this study serves the broader goal of articulating who benefits and who 

is harmed with rideshare. 

Literature Review 

My paper investigates medallion prices, revenue distribution, weather’s impact on hourly 

earnings, and how the growth of rideshare affects all of those topics. Given the recency to the 

boom in rideshare, closely related studies are still forthcoming. There’s vast related economic 

literature on the taxi industry, with much attention to the supply side. These studies focus on 

much narrower time periods than mine, which looks at a 10 year span. Studying a larger time 

interval adds validity to results and also sheds light on long-term trends. Regardless, analyzing 

the established literature helps in understanding the inner-workings of the market and decisions 

drivers make each day. Camerer et al. (1997) dive into taxi drivers’ allocative planning of when 

to drive versus when to choose leisure. Per neoclassical theory, in maximizing income and 

leisure drivers should display positive wage elasticity; they should work longer hours on good, 

busy days and fewer on slow days. The taxi industry is a suitable environment for testing 

neoclassical theory, as there is wage correlation across the hours of a particular day but not for 

multiple days. But the results indicate negative wage elasticities. Drivers appear to set a target 

income for each day and then stop working once they reach said target. On busy days, drivers 

reach their income targets quicker. As a result drivers end up working fewer hours on busy days 

and more on slow days, showing irrationality in behavior. Farber (2015) follows that line of 

thinking but uses data from 2009 to 2013, compared to older more limited data used in the earlier 

research. He coins the income targeting behavior with the behavioral economic concept of 

reference dependence, then once again tests how it fares against neoclassical theory. By contrast, 

the new data yields positive labor supply elasticities and favors neoclassical optimization over 

reference dependence. A further extension also showed that a driver’s experience is positively 

correlated with elasticity, meaning that drivers more optimally manage income and leisure as 

time goes on. 
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On that topic of driver experience, Haggag et al. (2017) dive further in. A driver’s 

revenue depends on his or her skill of finding customers, so their research studies the magnitude 

of learning by doing for NYC cab drivers. Their analysis shows a seven percent productivity 

uptick between a driver’s first and 100th shift. They also show evidence that 

neighborhood-specific driving experience — as opposed to just general city experience — has a 

statistically significant impact on a driver’s efficiency in finding passengers following a trip 

completion. Frechette et al. (2015) offer additional prominent supply-side research of the taxi 

industry. They note the industry differs from the efficient market hypothesis because of 

government restrictions on entry and also since demand and supply must look for each other. 

They analyze the impact of these distinctions by running simulations allowing for market entry 

and improved driver-passenger matching techniques. The simulations incorporate 2011-2012 taxi 

ride data, and the study concludes entry and improved matching could bring substantial gains. 

Looking back now shows a level of foresight in those conclusions; rideshare surpassed entry 

limits, bringing superior matching technology compared to taxis that helped capture those gains 

— and perhaps more. 

Supply-side research stretches into the rideshare market, too, but is more constrained due 

to limitations in accessing proprietary rideshare data. Hall and Krueger (2016) try to better 

understand the on-demand economy via Uber. They look at inner-company surveys for a 

demographic snapshot of drivers. In the surveys, drivers predominantly note schedule flexibility 

as a reason for driving Uber. The study then confirms through Uber ride data that drivers do 

indeed use the flexibility. The key finding, though, is that earnings per hour and hours worked 

are independent for Uber drivers. This suggests a sort of equilibrium in the Uber market, perhaps 

created by pricing mechanisms. Brodeur and Nield (2017) follow a related path, showing such 

mechanisms — in particular surge pricing — help churn an 18 percent increase in volume of 

Uber rides when it is raining. They identify an uptick in volume for taxis during rain, too, but it 

is not as substantial. They offer an explanation based on the following principles: Demand for 

ride services is greater during rain. Surge pricing offers Uber’s labor pool an incentive to start 

driving, in turn shifting the supply curve. The taxi industry lacks such a mechanism. Cab drivers 

may be able to pick up more customers while it’s raining, but fare rates don’t increase. Thus, the 
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incentive is often lesser in magnitude than with surge pricing, so taxi drivers must determine 

whether it’s worth it to stay on the road during harsh conditions. 

Zhang et al. (2017) take a closer look at Uber surge pricing. They mine spring 2017 ride 

request data — such as location of request, distance of request, time of day and Uber vehicles 

nearby — from the Uber app to distinguish patterns in pricing. They look at how surge pricing 

varies with different parts of the day and week, and find the multiplier is highest (2X) on 

Tuesday and Wednesday mornings as well as late Sunday nights. For different initial conditions, 

the analysis also calculates probabilities of an Uber ride costing more than a cab ride. Finally, 

Cramer and Krueger (2016) compare capacity utilization rates for Uber and taxis in New York, 

LA, Boston, San Francisco and Seattle. Utilization refers to the proportion of time a passenger is 

in the vehicle out of the total time a driver spends working, and I incorporate related utilization 

metrics for my study. They find Uber has significantly higher utilization rates in all the cities 

except for New York, where it’s roughly the same. However, the study uses 2013 cab data with 

2014 and 2015 Uber data. The authors purport New York City could likely have the same 

utilization disparity as other cities after accounting for the lag in the data. The paper tries to 

explain the utilization difference between Uber and cabs. Cab drivers work longer hours on 

average, so one theory is these excess hours naturally lead to lower utilization rates. The study 

rejects this hypothesis, though, since utilization rates for Uber drivers prove to be independent of 

how many hours a driver works. This indicates a natural utilization balance in the Uber market. 

These results tie into other studies mentioned above. The matching technology helps raise 

utilization, thus creating a competitive edge; Uber can charge lower fares and still churn the 

same hourly revenue. For instance, the paper mentions it could often charge 28% lower fares 

than taxis and still match earnings. And Uber’s advanced pricing mechanism helps it change 

prices exactly so, thus luring in customers. With such an advantage, rideshare has grown 

tremendously. I will look at how this advancement has impacted the New York City taxi market. 

Institutional Background 

New York City made some adjustments to the medallion system after creating it. Early 

on, the number of medallions shrunk down to 11,787 because some owners didn’t pay renewal 

fees due to the turbulent economy. The count stayed steady until 1996. Since then, it has 
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increased in small increments and is now at 13,587. There are two key types of medallions — 

independent and corporate. The former are meant for individuals while the latter are for 

companies looking to own big fleets of taxis. Within these two main categories there are further 

distinctions; some medallions require the owner to operate a vehicle that is wheelchair 

accessible, while others entail alternative-fuel vehicles. Medallions that are free from these 

specifications are called “unrestricted.” When the city creates new medallions it auctions them 

off, but since the number of medallions has been relatively fixed most transactions happen 

among owners at mutually-agreed-upon prices. These licenses are essentially assets. Owners 

have the right to make money through driving the vehicle, but can also lease the vehicle out and 

collect rents. These assets were once seen as sound investments. Prices skyrocketed from $10 in 

1937 to an average of $5,000 in 1950. They kept growing, and both categories of medallions 

have crossed the million-dollar mark in the last decade. 

Aside from traditional medallion taxis, other means of transportation — called for-hire 

vehicles — entered the city later. The traditional yellow medallion taxis still get preferential 

treatment. They can pick up passengers anywhere in New York City, through both street-hails 

and prearranged rides. There are now also green, non-medallion cabs. They can pick up both 

types of rides, but are geographically restricted to outer boroughs and the northern region of 

Manhattan. They were created to help meet demand in less central areas where customers had 

trouble catching street-hails. Black Cars, luxury limousines and liveries also play a role but can 

only take prearranged rides. Uber launched in the city in 2011 while Lyft entered in 2014. These 

rideshare companies make up another category of for-hire vehicles, called High Volume, since 

they deal with more than 10,000 rides a day. These companies can only take prearranged rides, 

yet have changed the landscape. They’ve enabled a multitude of individuals to offer rides with 

their own personal vehicles, whenever desired. 

Method/Model 

Since medallions enable one to operate a taxi and make profits, they essentially offer a 

stream of future payments. Therefore, the price of a medallion should gauge the present 

discounted value of that flow. To capture this aspect, this paper relies on the Gordon Growth 

Model, which states the following: 
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In this equation, ​P​t​ represents the price of an asset and ​E ​t​ stands for earnings or dividends 

associated with said asset. In the denominator, ​r​t​ is the cost of equity — the minimum rate of 

return an investor would need to invest in the asset. It is linked to the underlying risk, because 

investors require a higher rate of return when investing in riskier assets. For a risk-free 

investment, ​r​t​ ​would be the real interest rate. Finally, ​g ​t​  ​is the expected growth rate of earnings. 

Together, ​r​t ​ ​and ​g​t​ ​ act to discount future earnings and thus appropriately value the asset. Using 

this framework, I will take a close look at how taxi profitability influences medallion prices by 

estimating the following model:  

(1)  

Here, ​P​t  ​represents the average medallion price and ​E ​t  ​is the average profitability of a taxi, both 

in month t. The slope estimate is essentially a measure of the inverse of ​r​t​ — ​g ​t ​. The Gordon rule 

is also linked to the price-to-earnings ratio (PER). Treating the cost of equity as a constant and 

moving earnings to the left hand side derives the following: 

 

The ratio on the left side represents the PER. This ratio indicates perceived future growth in the 

value of an asset. For instance in the stock market, the belief that a company will excel in the 

future coincides with a higher expected earnings growth rate  (​ g​t​ ​). In the above equation, as the 

expected growth rate ( ​g​t ​) rises, the PER will also increase. Put differently, if investors believe a 

company will grow, they are willing to pay a higher multiple of earnings for the stock in the 

present. Similarly, the PER in the medallion market illustrates the market’s future outlook on the 

taxi industry. I will analyze changes in the PER of medallions over time. 

Model (1) does not look directly at the effect of rideshare, so I will use the following 

model as well to see how rideshare changes the taxi industry: 

(2)  

where ​HighVolume​t  ​represents the average number of daily rides, in 1000s, conducted through 

High Volume for-hire vehicle services in New York City, for a given month. Note, rideshare 
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companies fall into this category. Here, estimating the ​β​1​ ​coefficient shows how the volume of 

rideshare trips impacts the profitability of medallion taxis, on average. 
I will also estimate a third model that decomposes a taxi’s profitability as follows: 

(3)  

The ​util​t  ​term represents the average daily utilization hours per cab for a given month. The 

faredensity​t  ​term is a measure of a cab’s hourly efficiency for a given month; essentially, it is 

how much fare the average cab generates in an hour. These variables are included because the 

revenue a cab makes will depend both on how many hours it is driven and how much it can make 

in an hour. The ​mpg​t  ​term shows the average fuel economy of taxis, while  ​fuelprice ​t  ​is the 

average monthly fuel price. These two variables help represent the cost side. Estimating model 

(3) essentially gives a breakdown of how these different variables determine profitability. 

A key part of this paper will be to look at correlation coefficients between various 

variables. This will allow me to analyze industry trends and see how the volume of rideshare 

potentially impacts the taxi industry. I will look at changes in the volume of total rides and taxi 

rides, as well as hourly efficiency, total daily industry fare, the number of drivers and vehicles, 

driver shifts, monthly and daily vehicle utilization, trip durations and payment types that 

correspond with the introduction of rideshare. 

Model (1) estimates how medallion prices depend on taxi profits, and model (2) 

quantifies how those profits change with growth in rideshare. As an extension, this paper will 

look at specific channels that fold into taxi earnings and the evolution of those channels before 

and after the introduction of rideshare. The first channel I study is time of day. The data indicates 

significant reductions in the taxi industry, but this paper also serves to identify where the losses 

are occuring. The cab industry is one of peaks and troughs. Certain hours of the day tend to be 

significantly busier than others, and drivers generate most of their revenue in these peak hours. I 

analyse whether shrinkage in the market occurs consistently across all hours of the day, or 

whether the curtailment is predominantly during peak periods. The principle behind the latter 

scenario is that perhaps with rideshare, taxi drivers make considerably less money in the hours 

they used to rely on, while the other slower hours remain relatively untouched. If the latter turns 

out to be true, the revenue should become more evenly distributed across hours of the day 
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following the introduction of rideshare. To test this idea I use Lorenz curves, because they are 

practical for representing a distribution. I construct 120 curves — one for every month — by 

sorting all the hours of a month based on revenue. Then I link the hours with what share of that 

month’s total revenue they generate, as shown in Figure 1 using January 2009 as an example. I 

find Gini coefficients by calculating the area between the black and orange curves and then 

dividing by the total area under the black curve. The Gini coefficient is a measure of inequality, 

so by studying coefficient changes I can better understand how revenue is spread across the 

hours and how that spread changes over time. 

Figure 1 

 
Notes: ​This Lorenz Curve example shows how all the hours in the month of January 2009 cumulatively contribute to the total 
revenue of that month. Basically, this helps display the degree of evenness in that month’s distribution of earnings and the curve 
is later used to calculate Gini coefficients. 
I also run the following regression to further analyze distribution changes: 

(4)  
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I use hourly observations, so ​totalfare​t​ ​refers to the sum of industry revenue generated in 

a particular hour. The specification controls for month, weekend, temperature and precipitation 

effects. I create 25 different temperature ranges, with narrower ranges at the low and high end of 

the temperature spectrum. The ​precip1​t ​ variable is a dummy for non-zero precipitation that is 

under .125 inches. The other subsequent precipitation dummies refer to increments that grow in 

size, with ​precip5​t​ referring to at least one inch of precipitation. The ​hour ​ dummies categorize 

the data by time of day, with ​hour1​ referring to 1-2am. Finally, I interact the first 11 temperature 

dummies with the precipitation dummies. The first 11 reach up to the freezing point of water, 

and I am assuming the interaction between temperature and precipitation is more relevant for 

snow. The purpose of all these controls is to account for some natural variation in the data, 

before fully focusing on the hourly effects. I run this regression individually for all 10 years. 

Next, I plot estimates of the hourly coefficients (​β​32​ — ​β​54​) ​from each year to see how hourly 

effects vary across time. Additionally, this will allow me to understand shift changes for cab 

drivers. It’s often said that finding a taxi in New York City during the late afternoon is more 

difficult. Drivers are known to be switching off shifts, so during these hours there seem to be less 

cabs on the road. I will take a look at the shift change hours to see if the magnitude of the dead 

period varies across the years.  

The second channel I analyze is how weather impacts cab revenue, through using the 

following quadratic and quartic regression models: 

(5) 
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(6) 

 

 

 

 

 

 

 

 

Specification (5) is the quadratic model. It uses the same month, weekend and hourly controls as 

model (4) but introduces some new variables. ​Post​t​ characterizes each observation as either 

before or after the rise of rideshare, defining 2015-2018 as the post period as this is when 

rideshare grew substantially in the city. I add a dummy for precipitation and use a continuous 

temperature variable rather than temperature bins. I add a quadratic temperature variable, too. 

The specification includes multiple interactions to see how temperature and precipitation 

together impact a particular hour’s total fare, under a quadratic relationship, and how the effect 

changes with rideshare on the rise. Model (6) follows suit, adding cubic and quartic temperature 

terms plus related interactions to approximate a quartic relationship. To interpret regression 

results from the quadratic and quartic models, I plot partial fitted value functions. For each 

model, I plot the four combinations of pre versus post and precipitation versus no precipitation 

functions. The eight total functions are all solely dependent on temperature. The following is an 

example of the quartic relationship plotted in the post period with precipitation, and the simple 

steps to derive it: 

Starting with (6), assume post = 1 and precip = 1 to yield: 
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Then simplify by grouping: 

 

 

 

Data 

Most of the data comes from the New York City Taxi and Limousine Commission 

(TLC). The TLC regulates the various types of vehicles discussed in this paper, as well as 

medallion sales. Additionally, CPI data from the Federal Reserve Bank of St. Louis is used to 

adjust medallion prices, taxi fares and fuel prices for inflation.  

As mentioned before, there are different types of medallions. For medallion prices this 

paper focuses solely on the independent unrestricted category, as opposed to corporate and or 

restricted medallions, because records for this type are recorded most consistently and are thus 

most easily interpretable. Also medallions are sometimes sold in bundles or fractions; however, 

this paper sticks to sales of single medallions. This avoids the effect of discounting or markups 

and helps yield the true price of an individual medallion. The records contain notes depicting 

some sales as “Estate” or “Family,” and the corresponding prices are often $0.00 or significantly 

lower than the bulk of other sales prices. These may inaccurately reflect the true price, so they 

are ignored. Some other price outliers are dropped. As an illustration, eight independent 

unrestricted medallions were transacted in October 2013, none of which contained notes. Four of 

them had prices listed as $0.00, thus were likely just transfers, so I ignore them. Three were sold 

around $1,000,000, and that had been close to the trend in prior and latter months. One of them 

had a price of $500,000. This was dropped, because it is considerably less than the trend; it was 

likely a sale of a fractional medallion but was not recorded properly. After following this process 

for each record, I calculated average sales prices for each month. For medallions, this paper 

studies the period from January 2011 through November 2018. Reports are missing for 

December 2011 and June 2014. Also, seven months didn’t have relevant medallion sales. Thus 

overall, I calculate average medallion prices for 86 months. Figure 2 tracks individual 

unrestricted medallion prices. Prices peaked in mid 2013, at over $1,000,000, and have 

significantly declined since. 
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Figure 2 

Notes:​ The figure shows the recent decline in sales prices of individual unrestricted taxi medallions. Gaps represent missing data.  

Much of my analysis of medallion taxis dates from January 2009 through the end of 

2018. Green cab data is recorded beginning in August 2013, while Black Cars, Luxury 

Limousines, Liveries and High Volume services join the dataset in January 2015 — accounting 

for 47 observations. It should be noted that these different categories existed for some time 

before being added to the dataset. For instance, as mentioned earlier, Uber and Lyft entered the 

city before 2015. They were fairly small though, and weren’t accounted for until later. It is 

important to specify that since the High Volume category applies to all companies that offer 

more than 10,000 rides a day, it is not certain that all of them are rideshare firms. However, this 

group is predominantly rideshare companies — such as Uber, Lyft, Gett and Via — thus 

studying this category provides a fair representation of the rideshare industry. Figure 3 shows 

ride volumes for the different services in New York City. For a while, the market size stayed 

quite constant. Over the last four years the High Volume sector took off, spurring a significant 

expansion in the market as a whole. Simultaneously, the yellow cab industry has declined from 

around 500,000 rides a day to just over 250,000. 
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Figure 3 

Notes:​ The figure shows the evolution of different ride services in New York City and the composition of the total industry. 
 

The TLC dataset contains a monthly measure of how many hours a taxi operates in a day, 

on average. This data is used for the ​util​t ​ ​variable. It also records the average daily total fare 

amount the yellow cab industry makes each month, as well as the average amount of unique 

vehicles on the road each day. Dividing the fare variable by both hours of operation and amount 

of unique vehicles yields the total hourly fare each medallion cab generates, on average, for each 

month. This is used for the ​faredensity​t​  ​term. Figure 4 plots utilization and fare density across 

time; both have been declining in recent years. 

The monthly profit numbers, used for ​E​t ​, are composed of data from a few different 

sources. To calculate these figures, I first find the average amount of revenue a taxi generates, 

for each month. I start with the TLC monthly data on how much the yellow cab industry makes 

on the average day. Multiplying by the amount of days in the respective month and dividing by 

the number of cabs yields the revenue a cab makes, on average, for a particular month.  
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Figure 4 

 
Notes:​ The blue line indicates how many hours a cab drives in a day, on average, for a specific month. The red line shows how 

much money a cab makes in an hour of driving, on average, for a given month.  

Owning a taxi presents a variety of costs — such as labor and depreciation costs. 

However, this paper solely incorporates fuel costs, as data for this is most accessible. Ignoring 

these other costs entails that my total costs are understated and profit figures are overstated. But 

this is fine; an estimate for the magnitude of the total costs and profits is sufficient, because it is 

the change in these figures that really matters. Also, fuel costs are likely much more volatile than 

labor and depreciation. Thus focusing on fuel captures adequate variability in costs and profits. 

To calculate monthly fuel costs, I first find how many miles the average cab drives in a 

given month. The TLC provides average taxi trip duration figures for each month, in minutes. 

Multiplying these by the amount of trips a taxi takes yields total driving time. To get mileage, I 

assume taxis drive 30 mph, on average. The Bureau of Transportation Statistics (BTS) provides 

the average new vehicle fuel efficiency for each year. My analysis is monthly, though. Also, it is 

more realistic that these fuel economy improvements spill into the taxi industry in smaller 

increments, rather than just big steps once every year. Thus I use linear regression on the yearly 

data to get fuel economy projections for each month. TLC documents indicate the average taxi is 
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around four years old, so I use fuel economy data with a four year lag. For instance, for 

September 2013 I use the fuel economy fitted value from September 2009. The Energy 

Information Administration offers average monthly regular fuel prices for New York City. 

Combining these with fuel economy and miles driven generates a taxi’s monthly fuel costs. The 

earnings data for ​E​t  ​is simply monthly revenue minus fuel costs. Figure 5 shows these 

profitability numbers across time, which have been decreasing recently. I also calculate PER 

from January 2011 to November 2018. Data is missing for nine months, so overall I have PER 

for 86 months. Figure 6 shows that PER peaked in 2014 and has been on a downward trend 

since. This indicates the perceptions about the industry’s future are worsening. 

Figure 5 

 
Notes:​ This figure shows the monthly profitability of owning a cab. 
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Figure 6 

 
Notes:​ This figure shows the monthly price-to-earnings ratio (PER) in the market for taxi medallions. Gaps indicate missing data. 

The TLC publishes monthly aggregate ride data. This works well for the medallion 

analysis, as I calculated the average price of medallion transactions each month. But since much 

of my analysis focuses on hourly effects, I composed hourly data too. Through the TLC, ride 

statistics of every individual cab ride from 2009 to 2018 are publicly available. These data sets 

are massive, though, as each monthly file may contain more than 15 million ride observations. 

And since my research uses a vast range of months, conducting analysis at the individual ride 

level becomes impractical from a data management standpoint. So, I summarized the data at the 

hourly level by calculating the number of rides and total fare collected for each particular hour of 

the 10 year span. Figure 7 arranges each month’s hours by revenue, and then plots what 

percentage of that month's total revenue each hour generated. Merely looking at the figure, it’s 

hard to distinguish the distribution changes across time. The purpose of the figure is to illustrate 

that the cab industry is indeed one of peaks and troughs, and my look at the Gini coefficients will 

help quantify movement. A preliminary look at the hourly ride data shows an interesting trend 

related to shift changes, as displayed in Figure 8. The percentage of yearly fare generated in shift 

change hours decreases for the first few years of my analysis. In the latter half, though, it 

increases substantially and reaches levels higher than the starting point. Finally, regressions four 

through six incorporate weather, and I obtained weather data from the Network for Environment 
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and Weather Applications via the Cornell University division. I use hourly weather observations 

taken at Central Park. 

Figure 7 — Revenue Distribution by Month 

 
Notes:​ For each month of the 10 years, this chart arranges hours based on revenue generated then shows what percent of the 
month’s total revenue each hour generated. It’s evident that there are peaks and troughs; revenue is not distributed evenly. 
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Figure 8 

 
Notes: ​This figure shows how much of each year’s taxi revenue is generated during the afternoon shift change.  

Results 

A. Gordon Growth Model & Baseline Findings  

The regression results from model (1), which regressed average monthly medallion prices 

on monthly taxi profitability, are woven into Figure 9. Shapes categorize the data by pre and post 

2015, synonymous with before and after vast growth in rideshare. Color further classifies the 

data by individual year. Evaluating the first model yields a slope estimate of 153.57 that is 

statistically significant at the one percent level, and I accordingly construct a regression line plus 

a 95 percent confidence interval. The interpretation of the slope estimate is that, on average, 

every $1000 increase in taxi profitability spurs a $153,570 increase in medallion value, holding 

all else constant. The chart indicates that the model fits the data quite well in both the pre and 

post periods. Because of the close fit, it appears the Gordon Growth Model holds up well in this 

setting. A medallion’s market value responds heavily to taxi profitability, which is a 

consequential result considering the substantial variation in profits over time. 
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Figure 9 

 
Notes:​ This chart incorporates regression results from model (1) for a sample size of 86 months. Shape and color organize the 

data by a pre and post period as well as by individual year. The regression line plus a 95% confidence interval are shown in 

black, and the slope estimate of 153.57 was significant at the one percent level. Finally, the model yielded an R​2​ of 0.7939  

Table 1 shows the regression results for model (2), which helps explain the profitability 

variation by regressing profitability on the amount of High Volume rides (in 1000s). The results 

are statistically significant at the one percent level, and can be interpreted as follows: if the 

number of daily trips through High Volume services increases by 100,000, the monthly 

profitability of a taxi falls by $563.86, on average. This appears economically significant, 

because the number of High Volume daily trips increased from just over 60,000 in January 2015 

to nearly 700,000 in November 2018.  
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Table 1: Profitability regressed on amount of High Volume rides 

 Model (2) 

constant 13548.89*** 

(183.9) 

HighVolume​t -5.6386*** 

(0.0004287) 

R​2 0.7790 

Sample size 47 

Notes:​ This table shows estimation results from model (2). *** Significant at the one percent level. Heteroskedasticity robust 
standard errors reported in parentheses. 

Figure 10 — Plotting profitability fitted values from model (2) 

 
Notes: ​The blue line shows monthly cab profits while the orange line shows predictions based on estimating model (2). 
 

Figure 10 plots actual monthly profitability figures as well as profitability fitted values 

derived from estimating model (2). The orange regression line is constant for many years 

because there were very few High Volume rides and thus this sector was not even part of the data 

set yet. The orange line accurately depicts the changes in profitability — including the 
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downward trend beginning in 2015 and the slight leveling off in profitability after 2018. So, it 

appears model (2) holds up very well.  

Table 2 shows the results from model (3), which regressed the log of profitability on 

utilization, fare density, fuel efficiency and fuel price. The slope estimates are statistically 

significant at the one percent level for all explanatory variables except for fuel efficiency (​mpg​t ​). 

The results indicate that if daily utilization falls by one hour, profits decline by 6.8% on average, 

holding other factors fixed. If the fare density falls by $1, profits fall by 3.6%. Finally, a $1 

increase in the price of fuel results in a 1.2% fall in profitability. The purpose of this is to 

illustrate how these various factors impact profitability, because they have changed considerably 

over the years. 

Table 2: Log(profitability) regressed on utilization, fare density, fuel efficiency & fuel price 

  Model (3) 

constant  7.386*** 

(.00756) 

util​t   .068011*** 

(.0047817) 

faredensity​t .035664*** 

(.0017502) 

mpg​t .0007042 

(.0017477) 

fuelprice​t -0.0124709*** 

(.0024404) 

R​2 0.9963 

Sample size 101 

Notes:​ This table shows the results from estimating model (3). *** Significant at the one percent level. Heteroskedasticity robust 

standard errors reported in parentheses. 
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I calculated correlation coefficients between the number of High Volume rides and many 

other variables. The results are shown in Table 3. It’s possible that some of the correlation is 

grasping a common trend, but the results are still pertinent. As one might expect, the amount of 

High Volume rides is negatively correlated with many variables, thus showing an overall 

contraction in the yellow cab industry. For instance, there is strong negative correlation between 

High Volume rides and the number of taxi rides. There is negative correlation between High 

Volume rides and the three variables relating to cab drivers; the increase in High Volume 

coincides with less taxi drivers, less working days each month for the drivers and also shorter 

shifts. There is strong positive correlation between High Volume and the total rides per day, 

indicating that rideshare spurred a market expansion. This is crucial to note. Rideshare does not 

solely steal rides from the taxi industry, but it also creates new rides.  

Figure 11 

 
Notes: ​This figure shows that rideshare trips are longer than taxi trips, on average. 
 

There is also a strong positive correlation between High Volume and the percentage of 

yellow cab rides paid with credit cards, and this is quite interesting. One explanation is that 

general credit card use likely increased in this time. One could also make the following 
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argument: there were barriers to using credit cards in medallion cabs in the past, and part of the 

reason customers like rideshare is that it is hassle-free since it does not use cash. The growth of 

rideshare, in turn, could have created pressure on the cab industry to be more open to credit 

cards. At the start of 2010, credit cards accounted for roughly one third of the transactions. By 

the end of 2018 though, it was up to 70%. Finally, the negative correlation between High 

Volume rides and the duration of yellow cab trips is also peculiar. It shows that rideshare 

services may be stealing some of the longer rides. This coincides with Figure 11, which shows 

that High Volume rides are significantly longer, on average, than taxi rides. Yes, rideshare 

services take away rides from the taxi industry; there is some substitution, and this harms 

medallion owners. But they also induce people to take longer rides that they simply weren’t 

taking before. In part, they are offering a new product (longer rides) and this benefits consumers.  

Table 3: Correlation between number of High Volume rides and other variables 

 High Volume Rides Per Day 

Yellow Cab Rides Per Day -0.9018 

Fare Density -0.8257 

Avg Hours Per Day Per Yellow Cab -0.8768 

Total Rides Per Day 0.9726 

Total Yellow Cab Industry Fare Per Day -0.9122 

Avg Days Yellow Cabs On Road Per Month -0.4460 

Yellow Cab Driver Count -0.9674 

Avg Days Driver On Road Per Month -0.1505 

Avg Hours Per Day Per Driver -0.4468 

Avg Minutes Per Trip -0.6164 

Percent Of Yellow Cab Trips Paid Through Credit Cards 0.8890 

Notes:​ This table displays correlation coefficients between the average amount of High Volume rides per day, for a given month, 

and various variables from the taxi industry. The numerous negative correlations indicate a contraction in the taxi industry 
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B. Distributional Changes and Hourly Effects 

The main takeaway from the results discussed above is that rideshare impacts taxi 

profitability, which heavily influences medallion prices. I now shift focus to the specific 

channels through which profitability has changed, starting with changes in the distribution of 

profits. Figure 12 displays Gini coefficients for each month and how those coefficients changed 

over time. In all 12 of the subplots, there appear to be ‘U’ shapes. The underlying trend is that 

the Gini coefficients decrease for the first few years and then begin to increase. This indicates 

that revenue had been becoming more evenly distributed, but then as rideshare started growing 

the distribution became more unequal. The most recent Gini coefficients are relatively high, 

hinting that peak periods are becoming relatively more extreme. Results from model (4) further 

support this finding. Figure 13 plots estimates of that model’s hourly coefficients (​β​32​ — ​β​54​). The 

chart can be understood as follows: looking at a specific year’s trend line, each data point shows 

hourly effects on total fare relative to the first hour of the day (midnight to 1 am). For example, 

the first six observations on the pink line (2018) are below zero, which means that each of the 

hours between 1 am and 7 am generate less revenue than the first hour of the day — on average, 

for 2018. The pink line is above zero for the rest of the observations, showing that in 2018 hours 

between 7 am and midnight churn more total revenue than the first hour of the day, on average. 

A key pattern is that the most recent trend lines are the lowest for the first three observations — 

the slow period. And then in the busier period from 7 am to midnight, the recent trend lines are 

the highest. This confirms that the peakedness in earnings becomes more prominent while 

rideshare grows. Looking at the trend lines between 3-6 pm (hours 15 through 18 on the figure) 

reveals the evolution of the afternoon shift change. Earlier years show substantial drops during 

those hours, while recently the drop has become less and less prominent. This is in agreement 

with the initial takeaway from Figure 8. There are plenty of potential explanations for the 

lessening magnitude of the shift change. The taxi market faced shrinkage starting in 2014 around 

the advent of rideshare. Perhaps as revenues shrunk, cab drivers were forced to adapt and 

became more efficient when changing shifts. Maybe now, drivers need to capitalize on those 

hours more than they’ve needed to in the past, thus leading to a less eminent dead period. 
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Figure 12 — Gini Coefficients, by Month 

 
Notes: ​These charts track Gini coefficients for monthly distribution of taxi revenue. Numbers 1 through 12 indicate the month. 
 

Figure 13 — Hourly Coefficient Estimates from Model (4) 

 
Notes:​ This chart displays estimated hourly effects on log(total fare) for each of the 10 years. Increased peakedness is evident in 
recent years, and there’s also less of a slow period during the shift change (the period between the two vertical lines). 
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C. Weather 

Figure 14 

 
Notes:​ This chart displays partially fitted values based on the quadratic specification from model (5). The orange and black 

curves are the non-precipitation functions from the pre and post periods, respectively. The blue and green curves are the functions 

with precipitation from the pre and post periods, respectively. Dotted lines indicate 95% confidence intervals. 
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Figure 15 

 
Notes:​  This chart displays partially fitted values based on the quartic specification from model (6). The orange and blue curves 

are the non-precipitation and precipitation functions from the pre 2015 period, respectively. Dotted lines indicate 95% confidence 

intervals. 
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Figure 16 

 
Notes:​ This chart displays partially fitted values based on the quartic specification from model (6). The orange and blue curves 

are the non-precipitation and precipitation functions from the post 2015 period, respectively. Dotted lines indicate 95% 

confidence intervals.  
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Figure 17 

 
Notes:​ This chart displays partially fitted values based on the quartic specification from model (6). The blue and green curves are 

the precipitation functions from the pre and post 2015 periods, respectively. Dotted lines indicate 95% confidence intervals.  

Results from the quadratic (5) and quartic (6) weather approximations are exhibited on 

pages 27 through 30 via partial fitted value functions. There is a link between weather and taxi 

profitability, and through examining the charts it’s more clear how rideshare has impacted this 

channel. The dotted lines represent 95 percent confidence intervals. Due to some of the 

significant overlapping of confidence intervals in the figures at high temperatures — especially 

evident in Figure 15 — I focus more on the model results for the low to mid temperature range. 

Figure 14 shows that under the quadratic model, hourly fare is substantially more sensitive to 

temperature changes when there is precipitation. This is evident through the more limited 

variation in the orange and black curves compared to the blue and green. This increased 

temperature sensitivity with precipitation is apparent under the quartic model, too, in Figures 15 

and 16. A key finding from all three charts is that at the low end of the temperature spectrum, 

precipitation correlates with a decrease in hourly taxi fare. At more moderate temperatures, 

though, precipitation can actually slightly increase revenue. The following is a possible 
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justification: with precipitation there is more demand for rides, regardless of the temperature. But 

the combination of precipitation and low temperatures creates harsh driving conditions, so the 

taxi drivers may not have enough of an incentive to look for passengers. This is especially 

prevalent since the taxi industry lacks the surge pricing necessary to promote driving during 

rough conditions. As temperature increases, though, conditions improve and drivers seize the 

excess demand.  

One final observation, from Figure 14, is that the gap between pre and post precipitation 

curves (blue and green) is wider under low temperatures compared to the middle range. Figure 

17 compares the quartic functions with precipitation for the pre and post periods. The blue and 

green curves represent pre and post 2015, respectively. The confidence intervals overlap at the 

far left side, so one shouldn’t focus on the extreme low temperatures. But comparing the 15 to 45 

degree range with the 45 to 75 degree range, the gap between the blue and green curves is larger 

with the colder temperatures. This coincides with takeaways from Figure 14. One potential 

explanation is as follows: rideshare services have surge pricing, so they can encourage driving 

under bad weather. Perhaps the cab drivers who are still willing to drive in tough conditions thus 

face more competition. This leads to an even larger reduction in fare under precipitation and cold 

weather, compared to just precipitation and moderate temperatures, and this is consistent with 

the changing size of the gaps between curves. 

Conclusion 

All of this analysis is pertinent because New York City created the medallion system to 

reduce tensions in the industry. Many invested life savings into medallions because they seemed 

like sound investments. There was truth to that for a while, as the taxi industry was successful for 

generations. This study shows that with rideshare though, taxi revenues and medallion values 

have plummeted. The industry outlook has become bleak. Thus, the tensions are front and center 

again. Broader implications of this paper pertain to government regulations on the supply 

dynamics of an industry. The New York City taxi industry is a prime example of the delicate 

balance between market regulation and innovation. In a sense, the medallion system warped the 

supply-demand dynamics in the city’s ride service industry, leading to a somewhat artificial 

increase in medallion value. Rideshare companies demonstrated that such long-standing market 
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regulations often create untapped opportunities. They used technological change to circumvent 

supply regulations and the implications were tremendous. Consumers appear to have benefitted, 

due to overall increased availability of rides via market expansion. But medallion owners were 

drastically harmed, and multiple taxi drivers reportedly committed suicide due to decimated 

investments. One can only wonder how events may have unfolded differently if the medallion 

system never existed. Change was necessary to calm the tides in the 1930s, but perhaps less 

stringent regulations would’ve been more ideal. 

Overall, this paper showed a range of things. I presented weather and time of day as 

critical components in the taxi industry. Then, I examined changes in the relationship between 

those channels and taxi revenue while rideshare grew. My analysis showed growth in rideshare 

has led to significant reductions in taxi profits, which is pivotal since I revealed — via the 

Gordon Growth Model — that medallion prices are very sensitive to taxi profitability. Further 

research could focus on specific ride locations to see if medallion cabs are losing rides in a 

particular part of the city. Subject to availability of Uber and Lyft data, one might also extend my 

revenue distribution and weather analyses to the Uber and Lyft markets. Finally, how New York 

City responds to the changing industry is a stimulating topic for future study. For instance, the 

city tried placing a cap on the amount of rideshare vehicles allowed. Time will tell how this — 

and potential other actions — will play out. One thing is certain: the history of the medallion 

system provides a special lens for designing better regulations. 
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