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Abstract 

 Telomerase, a ribonucleoprotein enzyme, is important for maintaining telomere length 

at chromosome ends. Telomerase is recruited to telomere ends through its interaction with the 

shelterin protein TPP1. While the TPP1 interface of this interaction is well characterized, little is 

known about the telomerase surface. To identify important residues, a site-directed 

mutagenesis screen was designed based off sequence homology and the currently available 

structure of Tetrahymena telomerase. We performed telomerase recruitment to the telomeres 

using an approach that combines immunofluorescence (IF) and fluorescence in situ 

hybridization (FISH). Overall, eight novel amino acids in TERT were found to be important for 

telomerase recruitment to telomeres, providing critical insights into how telomerase is brought 

to the ends of chromosomes by TPP1.  
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Introduction 

Telomeres are protein-DNA complexes that exist at the ends of chromosomes to serve a 

protective function for our cells (Palm and de Lange, 2008). Telomeres are characterized by a 

repetitive DNA sequence (GGTTAG in humans) that does not contain any genetic information, 

but is bound tightly by a six-membered protein complex known as shelterin in humans. Due to 

the end replication problem during the cellular process of DNA replication, telomeres become 

shorter. Once telomere length reaches a critically short length, regulatory mechanisms in the 

cells prevent further mitosis. This serves as a natural mechanism to thwart unregulated cell 

division that can result in cancer. However, certain cells, such as stem cells, need to keep 

dividing over time. Thus, telomeres in these cells need to be elongated as part of DNA 

replication during each cell cycle. 

Telomerase, a reverse transcriptase, is responsible for solving this end-replication 

problem. As a ribonucleoprotein complex, telomerase contains the TR (telomerase RNA that 

contains the template for telomere DNA) subunit and TERT protein (catalytic enzyme subunit) 

to perform its function in the cell to extend telomeres ((Blackburn et al., 2015; Greider and 

Blackburn, 1989; Lingner et al., 1997). Normally, telomerase is only activated in cells that need 

to divide many times such as germline and somatic stem cells. It is therefore not surprising that 

mutations in telomerase or other genes that help with telomerase function result in diseases 

associated with severely short telomeres together known as telomeropathies. However, 

overexpression of telomerase provides cells of a large percentage of cancers (~90%) the ability 

to divide indefinitely, making telomerase a target for developing anti-cancer drugs (Kim et al., 

1994).  
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 The shelterin complex, which includes TPP1, TRF1, TRF2, Rap1, TIN2, and POT1 at 

chromosome ends serves to protect them from the DNA damage response complexes in the 

cell (Palm and de Lange, 2008). The shelterin component TPP1 specifically recruits telomerase 

to the telomere (Wang et al., 2007; Xin et al., 2007). The surface amino acids on TPP1 that are 

responsible for bringing telomerase to telomeres are well characterized. TPP1 has two 

identified regions of amino acids that are important for telomerase recruitment, the TEL patch 

and the NOB region (Figure 1B)(Grill et al., 2018; Nandakumar et al., 2012). Defects in these 

regions have been associated with telomeropathies. Two unrelated patients with aplastic 

anemia or Hoyeraal-Hreidarsson Syndrome suffer from a telomerase recruitment defect due to 

an in-frame deletion of K170, impacting the structure of the TEL patch (Bisht et al., 2016; Guo et 

al., 2014; Kocak et al., 2014). Some patients with dyskeratosis congenita-like features inhabit 

V94I and L95Q mutations in the NOB region of TPP1 (Tummala et al., 2018). 

 However, the interface on telomerase that interacts with TPP1 is not well characterized. 

There are three regions in the TERT protein that have been linked to telomerase recruitment 

(S). They are the telomerase essential N-terminal (TEN) domain, the insertion of fingers domain 

(IFD), and the C-terminal extension (CTE)(Figure 1A)(Chu et al., 2016; Schmidt et al., 2014; 

Sexton et al., 2012; Zaug et al., 2010; Zhong et al., 2012). One telomerase amino acid residue 

that was found to be important for recruitment through a charge swap experiment was K78 (in 

the TEN domain) and it interacts directly with E215 within the TEL patch (Schmidt et al., 2014; 

Zaug et al., 2010). Furthermore, structural data from Tetrahymena telomerase had indicated 

that the TEN domain and the IFD are positioned well to interact with TPP1 (Jiang et al., 2015). 

However recent studies suggest that the CTE is probably playing a role in catalysis and not 
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binding to TPP1 (Hoffman et al., 2017; Jiang et al., 2018). Therefore, in this study, we focused 

on the TEN domain and the IFD to determine the telomerase residues important for interaction 

with TPP1 based on sequence conservation between animal, ciliates, and yeast TERT homologs.   

The scope of our experiments was to provide more information about the telomerase 

surface amino acids that are responsible for telomerase recruitment. We identify specific amino 

acids within the TEN domain and the IFD that are important for telomerase recruitment to 

telomeres. This data may help better resolve the structure of telomerase and further 

characterize the telomerase-TPP1 interaction directly.  
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Methods 

Site-Directed Mutagenesis 

The QuickChange® Site-Directed Mutagenesis Kit from Agilent Technologies was used 

along with complementary primers from Integrated DNA Technologies. Mutations in TERT were 

made in the p3X-FLAG-TERT-cDNA/myc-HIsC and the pTERT-cDNA6/myc-HisC vectors. To 

confirm the presence of the desired mutation and the lack of other errors made during the PCR 

reaction process, the obtained plasmids were sequenced.   

Cell Culture 

IF-FISH experiments used HeLA-EM2-11ht cells. For the experiments that used stably 

expressed FLAG-TPP1, a derived doxycycline-inducible strain was used. To induce FLAG-TPP1, 

200ng/ml of doxycycline was used to active the tetracycline-inducible promoter located in the 

p6x-FLAG-B14 plasmid. Cells were grown in media that contained modified DMEM (Gibco; 

Dulbecco’s Modified Eagle Medium; 11995-065), 100U/ml penicillin, 100 µg/mL of 

streptomycin, and 10% FBS. Cells were kept at 37°C in the presence of 5% CO2.  

Immunoblots 

 Immunoblotting was performed with the following antibodies: mouse monoclonal anti-

FLAG M2-HRP conjugate (Sigma; A8592; 1:10,000), Myc Antibody (1:5,000), mouse monoclonal 

anti-FLAG M2 (Sigma; F3165; 1:10,000). To reveal the primary antibodies by using 

chemiluminescence detection by ECL along with reagents (Pierce ECL Western Blotting 

Substrate; Thermo Scientific), secondary horseradish peroxidase-conjugated goat antibodies 

against mouse IG was used (Santa Cruz Biotechnology; 1:10,000). Previously published 
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protocols for the above antibodies were used. The data was visualized using a gel 

documentation system (ChemiDoc MP System; Bio-Rad or Odyssey Fc; LiCor).  

IF-FISH 

 IF-FISH for telomerase recruitment was completed using a previously used protocol in 

the lab with Hela-EM2-11ht FLAG-Tpp1 stable cell lines (Bisht et al., 2016). IF-FISH for 

telomerase assembly used a slightly modified version of the Bisht et. al. protocol (change in 

antibodies used and cell line). Approximately 1.2 million cells of Hela-EM2-11ht cells (with no 

FLAG-TPP1) in a 6-well dish were transiently transfected with 1 µg of p3X-FLAG-TERT-

cDNA6/myc-HisC and 3 µg of phTRmut-Bluescript II SK (+) plasmids using Lipofectamine 2000 

(Fischer; 11668019), following the manufacture provided protocol. Twenty-four hours after 

transfection, cells were fixed onto coverslips at room temperature with PBS containing 4% 

formaldehyde for 10 minutes and then washed with PBS three times. Then cells were 

permeabilized with 0.3% Triton X-100 in PBS for five minutes. After this, cells were blocked in 

0.1% Triton X-100 and 3% BSA in PBS for a half hour. To probe for FLAG signal, cells were 

incubated in blocking buffer (0.1% Triton X-100 and 3% BSA in PBS) containing mouse 

monoclonal anti-FLAG M2 (Sigma; F1804; 1:500). The cells were washed for five minutes in PBS 

three times. They were then incubated with Alexa Fluor 568-conguated anti-mouse IgG (Life 

Technologies). The cells were washed 3 times and fixed with 4% formaldehyde in PBS for ten 

minutes. Then, the cells were washed again three times with PBS. After, they were dehydrated 

with 70%, 95%, and 100% ethanol consecutively, for five minutes each. Cells were then air-

dried for three minutes and rehydrated with 2X SSC 50% formamide for five minutes. To begin 

probing for the telomerase RNA, cells were pre-hybridized for one hour with hybridization 
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buffer. Hybridization buffer contains 100mg/ml dextran sulfate, 0.125mg.ml yeast tRNA, 

1mg/ml BSA, 0.5 mg/ml salmon sperm DNA, 1mM vanadyl ribonuclesoide complexes (VRC), and 

50% formamide in 2X SSC. The cells were then transferred to hybridization buffer containing 

three Cy5-conjugated probes against TR for sixteen hours at 37°C. Then, the incubated cells 

were washed twice for 30 minutes per wash with 2X SSC 50% formamide. The cover slides 

containing the cells were then mounted on microscope slides with ProLong Gold mounting 

medium with DAPI (Life Technologies). A laser scanning confocal microscope with a 100X oil 

objective (SP5; Leica, Germany) was used to image the cells. Images were then processed using 

ImageJ and Adobe.  

 To quantify the data from the IF-FISH experiments, individual spots of FLAG-tagged 

protein and individual spots of TR signal were counted for each sample. The number of 

overlapping spots within each cell was also counted. The percentage of TR foci that had 

overlapping FLAG signal was then calculated. Over 100 TR foci were counted for each sample in 

the recruitment IF-FISH assay and over 500 TR foci were counted for each sample in the 

assembly IF-FISH assay.  

Co-Immunoprecipitation Assay 

 The Co-IP used HEK 293T cells grown at 37°C, with 5% CO2, and grown in modified 

DMEM (Gibco; Dulbecco’s Modified Eagle Medium; 11995-065). Cells in 6-well plates were 

transiently transfected with 2 µg of DNA per sample, 1ug of each desired construct: Myc-TEN 

with an empty vector, Myc-TEN with FLAG-IFD, Myc-TPP1 with an empty control vector, Myc-

TPP1 with FLAG-IFD, Myc-RAP1 with FLAG-IFD. Transfection was done using Lipofectamine 2000 
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(Fischer; 11668019), following the manufacture provided protocol. Twenty-four hours after 

transfection, cells were washed once with PBS. The cells were then incubated with Trypsin-

EDTA (Gibco; 25300054) for five minutes at 37°C. Cells were then harvested with 500 µl of 

DMEM (Gibco; Dulbecco’s Modified Eagle Medium; 11995-065) and 700 µl of FBS (Gibco; 

26140079). Cells were then pelleted by centrifuging at 1000 rpm for ten minutes. The 

media/FBS mixture was decanted and the cells were washed with PBS. Cells were then again 

spun down as above. The PBS was decanted and cells were resuspended in 2X IP lysis buffer. 

The 2X IP lysis buffer contained 50mM Tris pH 7.4, 20% glycerol, 1mM EDTA, 150mM NaCl, 

0.5% Triton X-100, 0.02% SDS, 1mM DTT, 100mM PMSF, and one protease inhibitor cocktail 

tablet (Sigma-Aldrich, cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail; 4693159001) 

and is kept on ice. Then 33 µl of ice-cold 4M NaCl was added to each sample. After inversion of 

the tubes, 433 ul of ice-cold water was added and then the sample was inverted again to mix. 

The samples were then centrifuged for ten minutes at 4°C at 13,000 g. The 2X IP lysis buffer was 

then diluted with water to make 1X IP lysis buffer. ANTI-FLAG beads (Sigma-Aldrich ANTI-FLAG 

M2 Affinity Gel; A2220) were used in the Co-IP. 30 µl of beads were used for each sample. The 

FLAG beads were washed three times with 1X IP lysis buffer and then resuspended in 100 µl of 

1X IP lysis buffer for each sample. The tubes with the beads were then spun down and the 

supernatant was pulled off. The supernatant off the samples that were spun down were then 

separated into two tubes, one for the inputs (40 µl of sample) and one for the pull-down (760 µl 

of sample). An equal amount of 800 µl of supernatant was pulled off for each sample. The 

extract what was saved for the pull down was then incubated with the ANTI-FLAG beads. The 

samples were left nutating with the ANTI-FLAG beads in 4°C for about 16 hours. After this, the 



12 
 

cell samples were pelleted at 1000 rpm and the supernatant was discarded. The samples were 

then washed three times with 1X IP lysis buffer. 30 µl of 2X SDS dye with BME was then added 

to the sample and mixed. The cell extracts where then boiled for 10 minutes, spun down at 

13,000 rpm for ten minutes, and then loaded and run on an SDS-PAGE gel for immunoblotting 

analysis. 20 µl of SDS dye with BME was also added to the input samples. Those samples were 

then boiled for ten minutes and then loaded onto an SDS-PAGE gel for immunoblotting analysis.  
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Results 

A site-directed mutagenesis screen was designed to determine important amino acid 

residues on the hTERT surface. These residues were located in the TEN domain and the IFD 

region. Using sequence homology and the cryo-EM structure of Tetrahymena telomerase as a 

homology model of human TEN domain and IFD, we chose to mutate residues that were 

predicted to be on the surface of these domains (Figure 1C, 2A, 2B). In the screen, we selected 

twelve mutations in the IFD, three of which were single mutants and twelve of which were 

double mutants (Figure 2B). The TEN domain screen contained nineteen mutations, three of 

which were double mutations and sixteen of which were single mutations (Figure 2A). 

Throughout the experiments, we used the K78 TEN domain mutation as a positive control as it 

was previously shown to be defective in the telomerase-TPP1 interaction (Schmidt et al., 2014).  

 We first wished to determine if the hTERT mutants disrupted the ability of TPP1 to 

recruit telomerase to telomeres. To determine if the telomerase-TPP1 interaction was 

disrupted, we used immunofluorescence (IF) and fluorescence in situ hybridization (FISH) in the 

Hela-EM2-11ht derived cell line which stability expressed Flag-TPP1. Untagged WT or mutant 

hTERT was transiently transfected into our cell line, as well as telomerase RNA, hTR. We utilized 

IF to detect our FLAG TPP1 and the FISH to detect the hTR. If the signals for the two overlapped, 

then we assumed that telomerase was recruited to the telomere by TPP1. In our wildtype 

condition, we saw a high percentage (77%) of TR foci located to telomeres (Figure 3, Figure 5, 

Table 1, and Table 2). Our positive control, K78E, indicated a defect in recruitment as it showed 

only 10% of TR colocalizing with telomeres (Figure 3, Table 1). The mutants in the TEN domain 

that did show defects in recruitment were N125A, T128I, L139A, L140A, and R143A (Figure 3A, 
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Table 1). The mutants in the IFD that showed defects in recruitment were V790A/I792A, 

E793A/Q794A, L805A/F806A, and V818A/R819A (Figure 5A, Table 2).  To note, the percentage 

of recruitment for all of our defective mutants were much lower than that of K78E. In summary, 

we identified five residues in the TEN domain and four double mutants in the IFD that all 

showed a reduced ability for telomerase to localize to telomeres.  

 It is known that when telomerase is not recruited to telomeres, it exists within Cajal 

bodies in cells (can be identified as the large non-recruited dots in our experiments) 

(Nandakumar and Cech, 2013). However, hTR without its hTERT component can locate to Cajal 

bodies as well. So, we next wanted to examine whether the defects we observed (through the 

visualization of Cajal bodies) in some of our mutants was due to a defect in the assembly of hTR 

with its protein hTERT unit or instead due to a true interruption of the TPP1-telomerase 

interaction. We used a Hela-EM2-11ht derived cell line (no FLAG TPP1) and transiently 

transfected in FLAG-TERT WT or FLAG-TERT mutants and hTR. Again, we utilized the IF to detect 

FLAG-TERT and the FISH to detect hTR signals and considered 50% co-localization between TERT 

and TR to be assembled. Our WT TERT showed high levels of assembly, along with our previous 

positive control K78E. Within the TEN domain, we saw that TERT colocalized with TR in Cajal 

bodies for N125A, T128I, L136A, and L140A, indicating that the ribonucleic protein was 

probably properly assembled (Figure 4, Table 1). We saw this occur within the following IFD 

mutants: V790A/I792A and E793A/Q794A (Figure 6, Table 2). These results suggest that the 

above-mentioned mutations have a true impact on the recruitment interaction of telomerase 

and TPP1. The remaining two mutations, R143A in the TEN domain and V818A/R819A, show a 

lack of co-localization between the protein subunit and RNA subunit of telomerase (Figure 4, 
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Figure 6, Table 1, and Table 2). This indicates that the defect in recruitment that was seen was 

not due to an interruption of the TPP1-telomease interaction but rather due to the upstream 

effect of poor protein assembly. While it is still possible that these residues are important for 

telomerase recruitment, that cannot be determined at this time.  

 To complement the above experiments, I decided to use co-immunoprecipitation 

experiments to directly assess binding between regions within TERT and binding with TPP1. 

Based off the cryo-EM structure of the Tetrahymena telomerase, the TEN and IFD domains 

interact closely with each other within the TERT subunit (Figure 1C). Some of our mutants 

appear to fall on TEN-IFD interface, so it is possible that the defects we observed were due to 

disruption of the TEN-IFD interaction. To tease this complexity out, I choose to use co-

immunoprecipitation to test if the isolated TEN domain would precipitate with the IFD domain 

in the absence and presence of the identified mutations. However, I was not able to get the 

control WT TEN domain and WT IFD domain co-immunoprecipitation experiment to work. The 

domains were expressed in our Hela cell line, where the TEN domain expressed better than the 

IFD domain (Figure 7C, commonly seen in other experiments we have performed as well). I 

found that there was expression of all of our FLAG constructs in this framework (Figure 7A, 

right), as well as the Myc-tagged constructs (Figure 7B, left). The experiment also indicated that 

the FLAG-tagged constructs were being enriched in the immunoprecipitation (Figure 7A, left). 

However, it does not appear that the FLAG tagged IFD was able to pull down the MYC-tagged 

TEN domain in our immunoreaction system (Figure 7B). Surprisingly, FLAG-TEN domain was also 

not able to down TPP1, even though the TEN domain directly interacts with TPP1 (Schmidt et 
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al., 2014) (Figure 7B, left). This most likely indicates that a co-immunoprecipitation with the 

individual domains may not be a suitable avenue to assay this interaction.   
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Figures and Tables 
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Figure 1: Important domains in the telomerase-TPP1 interaction 

 (A) Domain diagram of TPP1 and TERT. (B) A visual representation of the solved crystal 

structure of the OB domain of TPP1 (PDB 2146), illustrating the TEL Patch in red and NOB in 

orange. K170 is in yellow. (C) A visual representation of the solved Cryo-EM structure of the 

Tetrahymena telomerase (PDB ID: 6D6V) indicating the TEN domain in teal, the IFD in purple 

and p50 (a TPP1 homolog) in green. Figures A, B, and C were adapted from Eric M. Smith, 2018.  
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Figure 2: Sequence Homology Mutagenesis Screen 

(A) A sequence alignment of the TEN domain with eukaryotic TERT homologs. Alignment wa 

completed by ClustalW and further refined. Red indicated mutated residues and brackets 

indicate double mutants. (B) A sequence alignment of the IFD domain with eukaryotic TERT 

homologs. Alignment was completed by MUSCLE and further refined. Red indicated mutated 

residues and brackets indicate double mutants. Figures A and B were adapted from Eric M. 

Smith, 2018. 
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Figure 3: IF-FISH used to determine telomerase recruitment in the TEN Domain mutants 

Telomerase recruitment to telomeres was analyzed using immunofluorescence-fluorescence in 

situ hybridization using stable HeLa cells overexpressing FLAG TPP1. Untagged TERT mutants 

and telomerase RNA (TR) was transiently transfected as indicated. The green spots indicated 
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FLAG-TPP1 and the red indicated TR foci. Yellow foci in the merge signify recruitment of TR to 

the telomeres. Quantification is found in Table 1. (A) These TEN domain mutants indicated 

recruitment defects. (B) These TEN domain mutants indicated wild type recruitment.  Figure 

was adapted from Eric M. Smith, 2018.  
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Figure 4: IF-FISH to determine telomerase assembly in TEN domain mutants that are defective 

in recruitment 

Telomerase assembly was analyzed in for telomerase TEN domain recruitment mutants using 

immunofluorescence-fluorescence in situ hybridization in HeLa cells. FLAG-TERT mutants and 

telomerase RNA (TR) were transiently transfected as indicated. The green spots indicate FLAG-
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TERT and the red indicate TR foci. Yellow foci in the merge signify the colocalization of the 

protein and RNA subunit of telomerase. Figure was adapted from Eric M. Smith, 2018. 
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Mutation % Recruited %Assembled 
Wild Type 77 91 
A46I/F47Y 91 N/A 
R48A 80 N/A 
Q73A/S75A 75 N/A 
K78E 10 84 
E79A 41 N/A 
R83A 66 N/A 
Q86A/R87A 70 N/A 
F115A 80 N/A 
V119A 72 N/A 
R120A 75 N/A 
N125A 1 73 
T128I 2 75 
L139A 3 61 
L140A 2 71 
L141A 47 N/A 
R143A 0.4 0 
V162A 36 N/A 

 

Table 1: Summary of telomerase recruitment and assembly quantification in the TEN domain. 

This table presents quantification of the data represented by the images in Figures 3 and 4.  
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Figure 5: IF-FISH used to determine telomerase recruitment in the IFD mutants 

Telomerase recruitment to telomeres was analyzed using immunofluorescence-fluorescence in 

situ hybridization using stable HeLa cells overexpressing FLAG TPP1. Untagged TERT mutants 

and telomerase RNA (TR) was transiently transfected as indicated. The green spots indicated 

FLAG-TPP1 and the red indicated TR foci. Yellow foci in the merge signify recruitment of TR to 

the telomeres. Quantification is found in Table 1. (A) These IFD domain mutants indicated 
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recruitment defects. (B) These IFD domain mutants indicated wild type recruitment.  Figure was 

adapted from Eric M. Smith, 2018. 
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Figure 6: IF-FISH to determine telomerase assembly in IFD mutants that are defective in 

recruitment 

Telomerase assembly was analyzed in for telomerase TEN domain recruitment mutants using 

immunofluorescence-fluorescence in situ hybridization in HeLa cells. FLAG-TERT mutants and 
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telomerase RNA (TR) were transiently transfected as indicated. The green spots indicate FLAG-

TERT and the red indicate TR foci. Yellow foci in the merge signify the colocalization of the 

protein and RNA subunit of telomerase. Two panels were shown for S802A/S803A and 

L805A/F806A to illustrate how the mutant demonstrated both proper assembly and an 

assembly defect. Figure was adapted from Eric M. Smith, 2018. 
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Mutation % Recruited %Assembled 
WT 77 91 
Q722A/R724A 52 N/A 
L725A/E727A 74 N/A 
V747A 42 N/A 
L757A 69 N/A 
Q781A 58 N/A 
R787A 40 N/A 
V790A/I792A 0.7 71 
E793AQ794A 1.5 85 
L805A/F806A 1.5 49 
F809A/R811A 78 56 
V818A/R819A 7 34 

 

Table 2: Summary of telomerase recruitment and assembly quantification in the IFD domain. 

This table presents quantification of the data represented by the images in Figure 5 and 6.  
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Figure 7: Co-Immunoprecipitation of the TEN domain and IFD in telomerase 

(A) The inputs and output of the Co-IP probed with Anti-Flag antibodies. The data indicates that 

all FLAG-tagged constructs were expressed and then enriched on the anti-FLAG beads. (B) The 

inputs and outputs of the Co-IP probed with Anti-Myc antibodies. The data indicates that all 

Myc tagged constructs expressed but were not co-immunoprecipitated with the FLAG 

constructs. A non-specific band is seen in the Myc blot, potentially due to non-specific binding 

of the antibody. (C) Expression levels of the TEN domain, IFD, and the TEN-IFD constructs. 

Figure C was adapted from Eric M. Smith, 2018 
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Discussion and Future Directions 

 Our study identifies important residues on telomerase that are important for 

recruitment to telomeres.  We mapped these residues through the use of a site-directed 

mutagenesis screen based off sequence homology and the structure of the Tetrahymena 

telomerase. We used IF-FISH assays to first determine which of our mutations led to defects in 

the recruitment of telomerase to telomeres by measuring if our TR foci localized with TPP1 in 

Hela cells. To further examine the recruitment defects, IF-FISH was again used to determine if 

telomerase was properly assembled. With these two assays, nine resides were found to be 

important in the recruitment of telomerase to telomeres. Due to the loss of recruitment to 

TPP1, it seems that these residues on telomerase are important for the telomerase-TPP1 

interaction. It may even be possible that they are interacting with the NOB or TEL patch of 

TPP1.  

However, these experiments alone do not determine if the amino acids residues are 

important for a direct interaction with TPP1 or rather instead a stabilizing interaction between 

the TEN domain and the IFD within telomerase. To better tease out if the defects were due to 

interactions between the TEN domain and the IFD or the interaction with TPP1, it may still be 

useful to optimize the use co-immunoprecipitation experiments. One reason this experiment 

may have failed is due to the hydrophobicity of the IFD. This may lead to misfolding of the 

domain, making it difficult to see the interaction. I had used RAP1 protein as a control in this 

experiment as it does not directly interact with telomerase and could therefore serve to detect 

any non-specific interactions. So, if the IFD had been misfolded in a way that made it bind non-

specifically to other proteins via hydrophobic interactions, then that would be seen through the 
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immunoprecipitation of RAP1 with the IFD. Based on the results, it does not seem that the IFD 

is misfolded to the point of being grossly non-specific in its interactions as it does not immune-

precipitate any protein we tested (Figure 7B, left, lanes 4 and 5). So, if the IFD is misfolded, this 

misfolding does not make it more likely to bind other cognate or non-cognate protein partners. 

Interestingly, when the IFD is linked to the TEN domain, there is strong expression of this 

construct (Figure 7C). It is possible that the IFD needs to be in close proximity to the TEN to fold 

correctly but this relationship is not necessary reciprocally (data not shown).  

While the co-immunoprecipitation experiment has not worked yet, it still might be 

possible to optimize the conditions in the future. One potential approach may be to change the 

boundaries of the TEN and IFD domains and see if this impacts the expression and stability of 

the constructs. Another potential approach would be to link the TEN domain and IFD with a 

linker that is cleavable. This way, the expression of both domains would be higher due to the 

increased stability we saw but the domains could potentially be separated from each other, and 

purified individually to be used in a pull-down experiment.  

In addition, many of the important residues found in the IFD were double mutants we 

created. I would be especially be interested in separating these double mutants that were 

found to be defective in recruitment, such as V790A and I792A, even if they had an assembly 

defect to look at this interaction between the TEN domain and the IFD. It may be possible 

(though potentially unlikely due to the structure of the IFD and TEN domain) that one of the 

residues may be more important than the other or even that only one of the residues is truly 

responsible for the defect. Currently, I am in the process of separating the E793A/Q794A 

mutant.  
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 Overall, this project identified important residues for telomerase recruitment on the 

surface of telomerase. This provides more insight into the surface of the TERT protein, as well 

as how it may be interacting with the NOB and TEL patch of TPP1. This information may be 

useful in the future, when looking for a way to inhibit overzealous telomerase activation in 

cancer cells, for example.  
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