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Purpose: Automated segmentation could improve the efficiency of modeling-based pelvic organ pro-
lapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue bound-
aries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani
muscle segmentation by combining a convolutional neural network (CNN) and a level set method.
Methods: We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal
prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images
were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132
images for validation, and 132 images for testing. A CNN was designed by introducing a multi-reso-
lution features pyramid module (MRFP) into an encoder-decoder model. Depth separable convolu-
tion and pretraining were used to improve model convergence. Multiclass cross entropy loss and
multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average
surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness
of our model, we compared it with advanced segmentation methods including Deeplabv3+, U-Net,
and FCN-8s. The ablation study was designed to quantify the contributions of MRFP, the encoder
network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmen-
tation network by comparing our model with three of its variants. Finally, the level set method was
used to improve the CNN model further.
Results: Dice loss showed better segmentation performance than multiclass cross entropy loss.
MRFP was efficacious for different encoder networks. With MRFP, U-Net and U-Net-X (X represents
Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with
different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest
average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points.
Conclusions: MRFP proved to be effective in addressing the blurry soft tissue boundary problem on
pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic
organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state-of-the-art
results.© 2020 American Association of Physicists in Medicine [https://doi.org/10.1002/mp.14377]
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1. INTRODUCTION

Pelvic organ prolapse (POP) is an abnormal caudal displace-
ment and deformation of one or more female pelvic floor
organs. Pelvic organ prolapse can cause considerable discom-
fort to women both physically and mentally. In the United
States, about 200 000 women undergo POP surgery every year,
at a total cost of more than $1 billion.1,2 The most common
imaging techniques to evaluate POP include magnetic reso-
nance (MR) and ultrasound imaging. Due to the good contrast
of soft tissues, MR imaging has always been the golden

standard for organ segmentation. Organ segmentation is crucial
for three-dimensional (3D) geometric model reconstruction,
finite element simulation of POP, and surgical planning.3,4 Cur-
rently, manual organ segmentation is still the most widely used
technique. However, the manual segmentation is not only time-
consuming but also susceptible to large inconsistencies depend-
ing on the experience and skill of the evaluators and the quality
of MR scans. To speed up the segmentation process, computer-
aided diagnostic techniques may hold promise.

Several difficulties constrain the pelvic organ segmenta-
tion performance. First, MR images do not provide high
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enough contrast at the boundary of each organ, which makes
segmentation particularly challenging for humans. Second,
the occurrence rate is unbalanced between organs, which lim-
its model convergence. For example, organs like the bladder
are present in more MR images, whereas some organs,
including rectum and uterus, may not be seen at all in many
MR images, when viewed laterally. Adding to that challenge,
some patients have undergone hysterectomy and lack a
uterus. Third, large variations exist in these data. For instance,
the shape and size of pelvic organs vary widely between rest-
ing and stressed (Valsalva) states (Fig. 1). Besides, the levator
ani muscle exhibits a large inter-subject variance on MR
images due to its structural complexity.

Computer-aided segmentation techniques include both
deep learning and non-deep learning methods. The non-deep
learning methods, including the deformable model and level
set methods, have played an important role in the segmenta-
tion of the cardiac ventricle and other human body regions.5–
8 One limitation is that those methods often fail to converge
for images with blurry boundaries. Besides, their segmenta-
tion speeds do not fulfill the current needs for rapid segmen-
tation as they require much human interaction. Moreover, the
poor generalization is a typical problem that both automatic
and semi-automatic methods face. Generalization problems
are usually related to generalization in new regions or on new
data. The first generalization problem means that one organ
segmentation algorithm is usually not suitable for another
organ. This hampers POP analysis since we usually want to
obtain a segmentation of the uterus, bladder, levator ani mus-
cle, rectum, vaginal walls, and other tissues simultaneously.
The second generalization problem is even more crucial for
the clinical application of automatic segmentation tools.

Since there are large variations in the structural profiles, it is
challenging to find a solution that can adapt to inter-subject
variability in MR images.

Recently, the convolutional neural network (CNN) has
become the mainstream method for approaching many com-
puter vision and medical imaging analysis problems. These
include cell, lesion, tumor, retinal vessel, cardiac structure,
and brain segmentation.9–13 Compared with non-deep learn-
ing methods, CNN usually does not rely on much prior
knowledge of the data,14,15 and it is trained with MR data
from different subjects. Thus it has good generalization per-
formance. The basic idea of the CNN method is that it uses
several convolution layers to extract features so it can provide
pixelwise segmentation. Some researchers have proved that
the sequentially stacked convolution layers are difficult to
converge, so the residual connection and shortcut connection
were proposed in ResNet16 and U-Net10 respectively, to
smooth the model training process and preserve more
detailed information.

Several CNN models were designed for different seg-
mentation problems. U-Net10 adopted the encoder-decoder
network to accomplish neuronal structures segmentation
and cell tracking tasks. V-net17 used a 3D convolution to
accomplish the volumetric segmentation task. DeepMedic11

employed a dual-path 3D CNN based on dense patch
ideas to deal with the high computational burden when
training 3D CNN for brain lesion segmentation. UNet++18

connected the encoder and decoder networks by a series
of dense skip connections to avoid eliminating the gap
between encoder and decoder networks and obtained better
performance than U-Net and wide U-Net on four segmen-
tation datasets.

(a) (b) (c)

(d) (e) (f)

FIG. 1. Left lateral views of a patient with anterior vaginal wall prolapse. (a) and (d) Midsagittal magnetic resonance images at rest and at maximum Valsalva. (b)
and (e) Similar images of the pelvic floor organs, including the uterus, rectum, bladder, and levator ani muscle, shown at rest and at maximum Valsalva. (c) and
(f) Views of the three-dimensional models of the pelvic floor organs. [Color figure can be viewed at wileyonlinelibrary.com]
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However, these designs could not capture different scales
of semantic information. Segmentation is a task that needs
details at different scales. Coarse segmentation could be
achieved from lower resolution feature maps, while the fine-
grained boundary information must be detected from higher
resolution feature maps. Therefore, different sizes of features
may preserve different scales of context information.19

Inspired by the image pyramid, an ensemble method of using
different scales of features has been proposed to combine
information from different scales of features to preserve dif-
ferent levels of image details. Initially, it was used for image
classification and object detection. For example, spatial pyra-
mid pooling20 was proposed to deal with the variance in
scale, size, and aspect ratio for the image classification prob-
lem. However, it was modified to detect objects with various
scales, sizes, and aspect ratios. Single Shot MultiBox Detec-
tor21 kept six different size feature maps for object detection
and achieved a better detection performance. Feature Pyramid
Networks22 generated predictions at different feature levels
for a single scale input image in order to take advantage of
different levels of semantic information. Pyramid Scene Pars-
ing Network23 has been proposed for the pyramid pooling
module to take advantage of prior global semantics and to
capture different scales of contextual information by a parallel
feature map stacking method. Deeplabv3+24 used the atrous
spatial pyramid pooling to replace the downsampling method
to avoid the risk of potential information loss.

In this study, we present a CNN-based solution for seg-
menting four female pelvic organ structures from MR images
both at rest and at maximal Valsalva. In the deep CNN
model, a Multi-Resolution Feature Pyramid (MRFP)24 mod-
ule was inserted into the U-Net skip connections to capture
the semantic information from different scales to improve
segmentation performance in blurry regions. Depth separable
convolution was used to improve the encoder network conver-
gence. Transfer learning was applied to deal with inadequate
training data. In postprocessing, a level set method was used
to further improve the CNN performance. The novelty of our
work could be summarized in three areas. First, it represents
a novel application for pelvic organ segmentation both at rest
and at maximal Valsalva in women with and without POP,
based on a deep learning method with MR images. Second, it
is a novel design to combine MRFP with U-Net for blurry
region segmentation of medical images. We proved its effec-
tiveness in blurry pelvic organ segmentation of high-variance
MR images in POP. Third, we applied a postprocessing
method to deal with the failure cases and further improve seg-
mentation performance. As a result, compared with existing
segmentation methods, our method achieves the best perfor-
mance.

2. MATERIALS AND METHODS

2.A. Data population and processing

We used 24 sagittal pelvic floor MR series of 12 subjects
from the Michigan Pelvic Floor Research Collection that had

been obtained with the approval of the institutional ethics
review committee in case-control studies of POP. The sub-
jects included six anterior vaginal prolapse and six posterior
vaginal prolapse cases. Three women with and three women
without a uterus were included per group. Supine, multipla-
nar MR imaging was performed in both resting and stressed
states (maximal Valsalva when the patient attempts to
increase the intra-abdominal pressure in order to push the
pelvic organs out through the vaginal canal). All of the stud-
ies were scanned with a 3T superconducting magnet (Philips
Medical Systems Inc, Bothell, WA, USA) with accompany-
ing software (v. 2.5.1.0). In the sagittal plane, at rest, of each
subject 30 slices were taken in a field of view of
200 9 200 mm, with a thickness of 4 mm per slice and a
spacing between slices of 1 mm; at maximal Valsalva, due to
the time limitation for the subjects to hold the stressed status,
of each subject 14 slices were taken of scanning range
360 9 360 mm with a thickness of 6 mm per slice and a
spacing of 1 mm.25 The annotation of uterus, rectum, blad-
der, and levator ani muscle was accomplished based on previ-
ous anatomic work26 using 3D Slicer software (v.3.4.2009-
10-15). The annotation was accomplished by one expert and
reviewed by another senior expert. Some preprocessing steps
were applied to reduce the variance between these data. All
of the slices were interpolated to the same interval in height
and width dimensions. These images were then resampled
into 256 9 256 pixel sizes for CNN model training. As there
were a total of 24 sagittal pelvic floor MR series from 12 sub-
jects and a total of 528 MR images, the different datasets
were assigned as 12 3D MR series (264 images) from six
subjects for training, six 3D MR series (132 images) from
three subjects for validation, and six 3D MR series (132
images) from three subjects for testing. The organ occurrence
rate in the training data is shown in Table I. The uterus had
the lowest occurrence rate, and the bladder had the highest
occurrence rate.

2.B. Convolutional neural network structure

The main conceptual framework for our CNN model is
illustrated in Fig. 2. The model had an encoder-decoder net-
work structure.10,27 When constructing the encoder network,
we adopted the Xception28 structure with residual connec-
tions. To extract different scales’ context information, we
used the MRFP module in the skip connections between the
encoder and decoder, which will be introduced in the follow-
ing subsection.

TABLE I. Organ occurrence rate in training data

Organ Uterus Rectum Bladder Levator

Number of occurrence 103 152 197 112

Number of total images 256 256 256 256

Presence rate 0.40 0.59 0.77 0.44
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2.B.1. Multiresolution feature pyramid

To merge context information at multiple scales, we
needed these operations to have fields of view of different
sizes. Larger kernel size and dilated convolution are two
options. Since the parameter quantity increases drastically
as the increase of kernel sizes, we adopted dilated convolu-
tion. Each MRFP module consists of four dilated convolu-
tional layers and one average pooling layer (Fig. 2). We
used 1 9 1 convolution with dilation 1, 3 9 3 convolution
with dilation 1, 3 9 3 convolution with dilation 2, and
3 9 3 convolution with dilation 3 to perceive context infor-
mation at scales of 1 9 1, 3 9 3, 5 9 5, and 7 9 7. All
feature maps in different branches were concatenated
together for the decoder network. A convolution layer was
used to mix the feature maps from different scales. There-
fore, the MRFP module is capable of capturing multiscale
contextual information. It was applied to all five shortcut
connections in our model.

2.B.2. Encoder network structure

The encoder network (Fig. 3) is essential for feature
extraction as well as for segmentation. Our encoder network
adopted the Xception idea,28 which takes advantage of depth
separable convolution to achieve the decomposition of ordi-
nary convolution into channelwise convolution and pointwise
convolution. Customization of the model structure was pro-
posed with modification on the downsampling operation. To

preserve more detail, we replaced the pooling layers with a
convolution of stride 2. Besides, we used fewer layers in the
Middle Flow to avoid overfitting.

2.C. Postprocessing method

The level set is a partial differential equation (PDE)-based
method. A curve could be defined as /(t,x,y), and after giving
an initialization, the curve evolves based on image-driven
forces. The PDE equation is as follows29:

@/
@t

¼ r/ � F;/ð0; x; yÞ ¼ /0 (1)

where t is the iteration times, x and y are image coordinates,
/0 = 0 defines the initial segmentation, and F is the velocity
field. To be specific, in postprocessing we used the level set
method to improve the segmentation organ by organ. Using
the bladder as an example, before applying the level set
method, we first computed the minimum 3D boundary that
includes the CNN-based bladder segmentation. This 3D
boundary was then used to crop the 3D data including the
bladder from the original 3D MR data. Finally, with CNN-
based bladder segmentation as the initialization, we applied
the level set method to the cropped MR data slice-by-slice for
bladder segmentation. During model testing, compared with
the ground truth, we evaluated our results using Dice Similar-
ity Coefficient (DSC) metric and we kept the results of the
level set method if they are better than the initial results. In
practical applications, since ground truth values are not

FIG. 2. Convolutional neural network model structure. Feature maps of skip connection and upsampling branches were combined using a concatenation method.
[Color figure can be viewed at wileyonlinelibrary.com]
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available, users need to determine whether the CNN model
makes acceptable predictions. When users find the predic-
tions provided by the CNN model to be unacceptable, such
as the MR image segmentation is far beyond the normal
range, the level set method will be applied for postprocessing,
although we will only keep the better final result. For conve-
nience, we used the morphological_chan_vese30 function in
the scikit-image library.31

2.D. Loss function and metrics

We investigated two different loss functions for model
training, that is, pixelwise multiclass cross entropy loss (CE)
and multiclass Dice loss (DL):

DL ¼ 1� 2

PN
l¼1

P
n tlnplnPN

l¼1

P
nðtln þ plnÞ

(2)

CE ¼
XN
l¼1

X
n

ð�tlnlogðplnÞÞ (3)

where N = 5 in our case, representing the background,
uterus, rectum, bladder, and levator ani muscle classes, tln is
the ground truth labeling on the nth pixel position for class l,
and pln is the prediction result on the nth pixel position for
class l.

Four metrics were used for individual organ segmentation
evaluation, that is, the DSC, Average Symmetric Surface Dis-
tance (ASD), Relative Absolute Volume Difference (RAVD),
and Organ Detection Recall (ODR). Following the definition
of DL, the DSC is defined as follows:

DSC ¼ 2

PN
l¼1

P
n tlnplnPN

l¼1

P
nðtln þ plnÞ

� 100 (4)

FIG. 3. Diagram illustrating the structure of the encoder network.
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And the ASD is defined as follows:

ASD¼ 2
1

STj j þ SPj j
X
st2ST

min
sp2SP

st � sp
�� ��

2þ
X
sp2SP

min
st2ST

sp � st
�� ��

2

0
@

1
A

(5)

where ST and SP are the surface of the ground truth and model
prediction, respectively, and st and sp are corresponding
points in them. The RAVD is defined as follows:

RAVD ¼ VT � VPj j
VT

� 100 (6)

where VT and VP are the volume of ground truth and model
prediction, respectively. The ODR is defined as follows:

ODR ¼ TP
TPþ FP

� 100 (7)

where TP is the number of images in which an organ is cor-
rectly detected and FP is the number of images in which the
same organ is not correctly detected.

2.E. Experiments

The experiment setup was summarized as below. Experi-
ments were implemented with Keras (v.2.2.0) using Python
(v.3.5.0). Adam solver was used to minimize the loss func-
tion. Our choice for the learning rate was 0.0001, with a
learning rate decay of 0.98 after each epoch. A total of 800
epochs were used for training. We used an NVIDIA 1080Ti
graphic card to enable the parallel computing process, with a
batch size of 4. To reduce overfitting because of insufficient
data, we used data augmentation. The augmentation tech-
niques included image rotation, shear and shift, sharpening,
blurring, and contrast normalization. Before images were fed
to the CNN model, they were set to zero mean and unit stan-
dard variance. The Xception encoder network was trained on
a cardiac structure segmentation dataset32 for transfer learn-
ing.

Experiments were conducted as follows. First, we com-
pared DL with the CE function. Second, we compared the
proposed method’s performance with three other advanced
segmentation methods, that is, Deeplabv3+,33 U-Net,10 and
FCN-8s.34 Deeplabv3+33 is a state-of-the-art semantic seg-
mentation method, FCN-8s34 has obtained state-of-the-art
results on a PASCAL VOC 2012 Segmentation dataset, and
U-Net10 is a classical biomedical segmentation method which
won a challenge competition in 2015. Third, we quantified
the effectiveness of the Xception encoder network and the
MRFP module using ablation studies. Compared with U-Net
with the Xception (U-Net-X), and U-Net with MRFP (U-Net-
M), our model used U-Net with both the Xception and MRFP
(U-Net-XM). Fourth, we investigated the effects of the MRFP
module among different skip connections between the enco-
der and decoder networks. In our model, as the encoder has
five downsampling stages, there are five corresponding skip

connections, which are the first to fifth skip connection from
top to bottom in Fig. 2. Our model used MRFP in all the five
connections so we called it U-Net-XM12345. We compared
our model with its three variants, that is, U-Net-XM123, U-
Net-XM135, and U-Net-XM345. Finally, we used the level set
method to improve the results of all segmentation methods in
the second experiment.

3. RESULTS

3.A. Loss function comparison

The DL function obtained a much better segmentation
result (Table II), both with and without pretraining. Hence,
in the following training, we compared different methods
using the DL function. The model with pretraining
showed better performance than without pretraining under
both loss function configurations. The pretraining
improved the average DSC from 64.0 to 65.6 when using
DL. However, the pretraining operation exhibited the “but-
terfly effect”, which means the model performance
improved more in the postprocessing step (Table VII), as
discussed in Section 3.E.

3.B. Performance comparison with other advanced
segmentation methods

The proposed method yielded better results with respect to
the DSC than the other three methods (Table III). Our model
without pretraining had an average DSC of 64.0, wining in
three of four individual tasks (uterus, rectum, and bladder).
FCN-8s showed better performance on the rectum, but its aver-
age DSC was only 58.2. Compared with Deeplabv3+ (60.2),
FCN-8s (58.2), and U-Net (54.8), our model achieved an aver-
age DSC that was 3.8, 5.8, and 9.2 points higher than them,
respectively. However, our model with pretraining did not exhi-
bit better bladder segmentation performance than the model
without pretraining because the bladder of one subject was out-
side the normal range [Fig. 5(e)]. Segmentation of this subject
was improved in the postprocessing step (see Section 3.E).

We also compared the model performances using the
ODR and the RAVD (Table IV). Our model obtained the best
RAVD, but did not show a distinct advantage with respect to
the ODR. The ODR is the proportion of images with this
organ that were correctly detected of the total number of
images with this organ. The results indicate our model does
not have a better organ detection ability. However, our model
showed a markedly better segmentation performance
(Table III), which means that for the images that were cor-
rectly detected, our model had results closer to the ground
truth. A comparison of the models’ predictions is shown in
Fig. 4.

3.C. Ablation study

Ablation experiments were performed to quantify the
effectiveness of the MRFP and the encoder network. The
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difference between U-Net-M and U-Net is the use of MRFP.
The difference between U-Net-X and U-Net is the use of
Xception encoder network. Therefore, the difference between
our model (U-Net-XM12345) with U-Net-X or U-Net-M is the
use of MRFP or Xception, respectively. The result is summa-
rized in Table V.

The DSC of U-Net-M, compared with U-Net, increased
from 54.8 to 61.6, an increase of 6.8 points; the DSC of our
model, compared with U-Net-X, increased from 58.7 to 64.0,
an increase of 5.3 points; the DSC of U-Net-X, compared
with U-Net, increased from 54.8 to 58.7, an increase of 3.9
points; the DSC of our model, compared with U-Net-M,
increased from 61.6 to 64.0, an increase of 2.4 points. This
proved the effectiveness of MRFP when used with U-Net or

U-Net-X. Besides, MRFP made a larger contribution to the
final segmentation performance. For each organ, with respect
to the DSC, MRFP made a larger contribution to the uterus
and the bladder than for the rectum and the levator.

3.D. Different multiresolution features pyramid
module combinations comparison

The detailed segmentation results are summarized in
Table VI. For the average DSC, our model (U-Net-XM12345)
obtained almost the same results with U-Net-XM345 and U-Net-
XM135, while it was 2.4 points higher than U-Net-XM123. For
individual organ segmentation, our model achieved almost the
same results with U-Net-XM345 and U-Net-XM135 for the

TABLE II. Model performance comparison using different loss functions

Methods

Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD

DL(+) 55.0 (9.3) 5.2 (1.7) 64.1 (17.6) 2.5 (1.3) 82.7 (16.5) 1.6 (0.5) 60.8 (7.4) 2.3 (1.4) 65.6 2.9

DL(*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6

CE(+) 37.3 (9.8) 7.8 (2.6) 57.7 (21.6) 3.3 (1.7) 84.5 (11.7) 1.6 (0.5) 50.6 (8.3) 10.1 (11.1) 57.6 5.7

CE(*) 40.4 (19.4) 10.8 (5.6) 56.4 (16.7) 3.5 (1.4) 84.4 (10.9) 1.6 (0.3) 45.3 (13.7) 10.1 (13.6) 56.6 6.5

Best performance (mean value) will be highlighted in the use of bold. For DSC, a higher number means the better performance, while for ASD a lower number means the
better performance. Units: Dice similarity coefficient (DSC) in %, and average surface distance (ASD) in mm. (+) means with pretraining, and (*) means without pretrain-
ing. Number in the () is the standard deviation.

TABLE III. Models’ performance comparison with other advanced segmentation methods

Methods

Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD

Proposed (+) 55.0 (9.3) 5.2 (1.7) 64.1 (17.6) 2.5 (1.3) 82.7 (16.5) 1.6 (0.5) 60.8 (7.4) 2.3 (1.4) 65.6 2.9

Proposed (*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6

Deeplabv3+ 45.0 (11.2) 7.3 (3.3) 58.9 (16.8) 3.0 (1.2) 83.3 (10.7) 1.9 (0.5) 53.4 (13.1) 3.8 (2.0) 60.2 4.0

FCN-8s 39.8 (14.9) 6.9 (4.8) 65.6 (11.7) 2.5 (1.0) 80.0 (13.7) 1.9 (0.7) 47.4 (16.9) 9.5 (11.6) 58.2 5.2

U-Net 45.0 (16.0) 14.3 (7.6) 42.0 (27.2) 4.7 (2.6) 77.2 (23.2) 2.9 (2.2) 54.6 (11.0) 5.2 (5.6) 54.8 6.8

Best performance (mean value) will be highlighted in the use of bold. For DSC, a higher number means the better performance, while for ASD a lower number means the
better performance. Units: Dice similarity coefficient (DSC) in %, and average surface distance (ASD) in mm. (+) means with pretraining, and (*) means without pretrain-
ing. Number in the () is the standard deviation.

TABLE IV. Models’ performance comparison using other metrics

Methods

Uterus Rectum Bladder Levator Average

ODR RAVD ODR RAVD ODR RAVD ODR RAVD ODR RAVD

Proposed (+) 84.8 (16.2) 34.5 (14.9) 100 (0.0) 41.0 (31.6) 91.6 (4.6) 10.8 (8.8) 95.1 (5.8) 19.9 (16.0) 92.9 26.6

Proposed (*) 84.5 (14.1) 43.3 (7.0) 94.6 (8.0) 37.6 (21.0) 98.0 (4.4) 8.6 (5.0) 91.6 (8.6) 22.2 (19.4) 92.1 28.0

Deeplabv3+ 87.2 (15.7) 52.7 (35.6) 94.5 (8.0) 27.8 (16.4) 94.7 (5.4) 6.2 (5.4) 80.1 (16.2) 30.4 (16.3) 89.1 29.3

FCN-8s 84.1 (14.9) 61.9 (34.9) 96.7 (7.5) 21.0 (8.2) 98.0 (2.8) 11.9 (17.9) 91.7 (8.6) 52.8 (29.3) 92.6 36.9

U-Net 94.2 (9.9) 47.5 (33.5) 82.5 (21.6) 55.2 (26.7) 90.6 (5.7) 23.6 (24.2) 91.4 (8.9) 20.5 (16.3) 90.0 36.6

Best performance (mean value) will be highlighted in the use of bold. For ODR a higher value means the better performance and for RAVD a lower value means the better
performance. Units: Organ detection recall (ODR) in %, and relative absolute volume difference (RAVD) in %. (+) means with pretraining, and (*) means without pretrain-
ing. Number in the () is the standard deviation.
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uterus and bladder, and slightly worse results for the rectum,
and slightly better results for the levator. The rectum results
improved using the postprocessing technique in Section 3.E
(Table VII). With respect to the ASD, our model obtained the
best results. Besides, U-Net-XM123 obtained better results than
U-Net-XM345 and U-Net-XM135.

3.E. Postprocessing improvement

We improved all CNN methods’ results with the level set
method. A comparison of the models’ predictions is shown in
Fig. 5. We demonstrated the resegmentation results by
organs. Since the levator and rectum were usually connected
and showed no visible edges, it was difficult to segment them
using the level set method. Therefore, the uterus [Figs. 5(a)
and 5(b)], rectum [Figs. 5(c) and 5(d)], and bladder [Figs. 5
(e) and 5(f)] were used for comparison. With the deep learn-
ing model’s prediction as prior knowledge, the level set
method remedied the failure cases to a certain extent [Figs. 5
(a), 5(c), and 5(e)]. However, compared with the deep learn-
ing method, the level set method did not provide better seg-
mentation results in some general cases [Figs. 5(b), 5(d), and
5(f)] even with the deep learning model’s prediction as ini-
tialization.

Final segmentation results of CNN methods after postpro-
cessing are summarized in Table VII. Our model obtained the
best DSC and ASD results for both individual organs and the
overall average. The model without pretraining achieved an aver-
age DSC of 66.1 points, outperforming other methods with 4.0

to 9.7 points. Our model with pretraining obtained the highest
average DSC (69.4 points) and best average ASD (2.9 mm).

4. DISCUSSION

4.A. Convolutional neural network application to
pelvic organ prolapse analysis

Our work represents a novel application for female pelvic
organ segmentation both at rest and at maximal Valsalva in
women with and without POP, using a CNN method with MR
images. In the end, we presented a hybrid solution for simulta-
neous uterus, rectum, bladder, and levator ani muscle segmenta-
tion and showed good results qualitatively and quantitatively.
There are some differences with previous investigations.35–40

Different modalities of medical imaging techniques have their
own advantages. Two groups used ultrasound images to accom-
plish levator hiatus segmentation using the fully CNN (FCN)
and U-Net.37,41 Wang et al.38 and He et al.39 investigated pros-
tate, rectum and bladder segmentation using axial view com-
puted tomography based on a multistage FCN. Techniques
including dilated convolution42 and full-resolution residual net-
work43 were also investigated to deal with the blurry edges of
objects by capturing a larger field of view information. The level
set technique as a shape prior has been considered previously
for natural image segmentation.44

Although MR imaging is the golden standard for analyz-
ing POP, it is quite challenging, even for clinical experts, to
segment pelvic organs in MR images at rest and at maximal

TABLE V. Ablation study results

Methods

Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD

Proposed (*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6

U-Net-M 49.5 (11.3) 9.8 (6.8) 63.6 (16.6) 3.3 (2.2) 79.4 (18.4) 2.0 (0.8) 52.8 (10.0) 6.8 (10.0) 61.6 4.9

U-Net-X 41.2 (13.4) 11.0 (6.5) 63.4 (14.8) 2.9 (1.5) 76.1 (28.3) 2.9 (2.8) 54.2 (8.0) 3.3 (1.8) 58.7 5.0

U-Net 45.0 (16.0) 14.3 (7.6) 42.0 (27.2) 4.7 (2.6) 77.2 (23.2) 2.9 (2.2) 54.6 (11.0) 5.2 (5.6) 54.8 6.8

Best performance (mean value) will be highlighted in the use of bold. For DSC, a higher number means the better performance, while for ASD a lower number means the
better performance. Units: Dice Similarity Coefficient (DSC) in %, and average surface distance (ASD) in mm. Proposed model is the U-Net-XM12345. (*) means without
pretraining. Number in () is the standard deviation.

TABLE VI. Models’ performance comparison for different MRFP configurations

Methods

Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD

Proposed (*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6

U-Net-XM123 50.9 (14.0) 8.3 (6.5) 66.1 (12.4) 2.6 (1.0) 83.7 (12.1) 2.0 (0.7) 45.8 (11.0) 4.7 (3.3) 61.6 4.4

U-Net-XM135 54.1 (10.6) 7.5 (5.6) 65.6 (14.5) 2.8 (1.4) 84.6 (12.5) 1.6 (0.7) 52.3 (9.6) 6.5 (4.3) 64.2 4.6

U-Net-XM345 53.6 (16.2) 10.8 (6.3) 65.5 (12.8) 3.5 (2.2) 84.8 (11.8) 1.6 (0.7) 52.6 (12.1) 3.3 (1.8) 64.1 4.7

U-Net-X 41.2 (13.4) 11.0 (6.5) 63.4 (14.8) 2.9 (1.5) 76.1 (28.3) 2.9 (2.8) 54.2 (8.0) 3.3 (1.8) 58.7 5.0

Best performance (mean value) will be highlighted in the use of bold. For DSC, a higher number means the better performance, while for ASD a lower number means the
better performance. Units: Dice similarity coefficient (DSC) in %, average surface distance (ASD) in mm. Proposed model is the U-Net-XM12345. (*) means without pre-
training. Number in () is the standard deviation.
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Valsalva of women with and without POP. Our deep learning
model’s performance is also limited by the imaging quality,
the stress state, the prolapse status, and the training set size,
etc. For example, the difficulty changes with segmentation
from different views.35 Prolapse is a downward displacement
and deformation of pelvic organs, and thus its analysis is usu-
ally done from sagittal views. However, it might be more dif-
ficult for both humans and computer models to segment the
uterus, levator, and rectum in the sagittal view compared with
the axial view, in which the smaller organs have a higher
occurrence rate. For the MR images in the sagittal view, the
rest images have a thickness of 4 and 1 mm spacing. At max-
imal Valsalva, the stress images have a thickness of 6 and
1 mm spacing. The difficulty increases when segmenting
small or thin organs, such as the levator ani and the rectum.
The organs of women with POP also showed more variance
than those of healthy women at maximal Valsalva compared
to resting state, that is, bladders of prolapsed women might
become longer at maximal Valsalva, which is very different
from the bladder segmentation of men. Besides, we only
included 24 sagittal MR series of 12 subjects, and images of
six subjects were used for model training, limiting the deep
learning model’s performance. Despite these challenges, nev-
ertheless, our deep learning model still obtained the best per-
formance compared with other methods (Table VII).

4.B. Effectiveness analysis of different components

The effectiveness of the MRFP module is illustrated by
the ablation experiments. As shown in Table V, the average
DSC of U-Net-M improved by 6.8 points compared with U-
Net. The average DSC of our model improved by 5.3 points
compared with U-Net-X. These results suggest that MRFP is
efficacious for different encoder networks. Comparing the
DSC for individual organs (Table V), MRFP made larger
improvements for the uterus and bladder than for the rectum
and levator, because no information is obtained on the edge
between the levator and rectum, as shown in Figs. 4 and 5. It
is even tricky for humans to segment the rectum and levator.
Models with different MRFP combinations (Table VI)
revealed that our model U-Net-XM12345) had almost the same
average DSC as U-Net-XM345 and U-Net-XM135, but a better

result on average ASD. U-Net-XM123 achieved a lower aver-
age DSC than U-Net-XM345 and U-Net-XM135, but a better
average ASD. A possible explanation for these observations
is that MRFP on higher-order (fourth and fifth) skip connec-
tions could improve model convergence, while MRFP on
lower-order (first and second) skip connections could smooth
the segmentation results. In the end, our model U-Net-
XM12345, achieved the best results for both average DSC and
ASD, and it is therefore the recommended design.

The effectiveness of the Xception encoder network is
shown in Table V. The average DSC of U-Net-X was 3.9
points higher than that of U-Net. The average DSC of our
model was 2.4 points higher than that of U-Net-M on average
DSC. This proved the importance of an encoder network, and
a better encoder network is useful to improve segmentation.

The effectiveness of pretraining was proved in Tables III
and VII. We can conclude the pretraining made a larger con-
tribution to the uterus and levator segmentation than to the
rectum and bladder segmentation. We used a cardiac MR
dataset for pretraining, but a larger pelvic MR dataset might
give better results. It also means more training data could be
helpful to improve segmentation.

The effectiveness of the postprocessing method is shown
in Tables III and VII. It also proved useful for all the CNN
methods in our experiments. However, these improvements
were based on using the CNN model prediction as prior
knowledge. The level set method made improvements for
some failure cases, such as for the examples in Figs. 5(a),
5(c), and 5(e). However, for general cases, the level set
method did not provide better segmentation than the CNN
method even with the CNN prediction as initialization, such
as for the examples in Figs. 5(b), 5(d), and 5(f). This suggests
that the CNN method has an advantage in blurry region seg-
mentation due to training with “big data.” On the contrary,
since it is often challenging to collect medical imaging data
and to label them, the non-deep learning method could be
useful to improve the model performance to some extent. So
far, whether postprocessing has improved the results needs to
be compared with the ground truth. This means that it is up
to the user to determine whether or not postprocessing is
needed. Fortunately, comparison is a much easier task than
manual segmentation. But it points to the fact that we can

TABLE VII. Model performance comparison after using the level set method

Methods

Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD

Proposed (+) 65.3 (3.8) 5.4 (1.9) 66.3 (15.0) 2.1 (0.9) 85.6 (10.0) 1.6 (0.4) 60.8 (7.4) 2.3 (1.4) 69.4 2.9

Proposed (*) 58.3 (18.6) 6.6 (5.1) 65.8 (14.4) 2.4 (1.1) 84.8 (10.1) 1.7 (0.5) 55.6 (9.4) 3.6 (2.5) 66.1 3.6

Deeplabv3+ 52.0 (14.8) 9.2 (5.5) 59.8 (17.0) 3.3 (2.0) 83.3 (10.7) 1.9 (0.5) 53.4 (13.1) 3.8 (2.0) 62.1 4.5

FCN-8s 46.0 (18.3) 8.3 (6.2) 66.0 (11.8) 2.3 (0.8) 80.7 (12.2) 1.9 (0.5) 47.4 (16.9) 9.5 (11.6) 60.0 5.6

U-Net 47.6 (15.0) 11.8 (16.3) 47.6 (22.8) 7.3 (4.4) 80.8 (15.5) 2.6 (1.2) 54.6 (11.0) 5.2 (5.6) 56.4 5.3

Best performance (mean value) will be highlighted in the use of bold. For DSC, a higher number means the better performance, while for ASD a lower number means the
better performance. Units: Dice similarity coefficient (DSC) in %, and average surface distance (ASD) in mm. (+) means with pretraining, and (*) means without pretrain-
ing. Number in () is the standard deviation.
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integrate the level set method into the CNN workflow to
achieve better and faster segmentation.

4.C. Segmentation performance analysis

We improved the segmentation performance from three
aspects. First, we used the MRFP module to improve the
blurry region segmentation on pelvic MR images. The aver-
age DSC when using MRFP increased from 54.8 to 61.6
points (Table V). Second, we built the encoder network based
on the Xception idea and transfer learning technique. With
the Xception, our model’s performance increased from 61.6
to 64.0 points (Table V). Pretraining process improved the
average DSC from 64.0 to 65.6 points (Table III). However,
the pretraining operation contributed to more improvements
(3.8 points) in the postprocessing step (Table VII). Third, we
introduced the level set method as a postprocessing technique
to deal with the limited training data and high-variance prob-
lems. Using postprocessing, our model with pretraining
improved from 65.6 to 69.4 points on average DSC
(Table VII). With respect to the DSC, our model outper-
formed other methods with 7.3 to 13.0 points. Additionally,

we compared the models’ performances using the ODR and
the RAVD (Table IV). Our model did not show a distinct
advantage with respect to the ODR, which means our model
does not detect more organs than other methods. Neverthe-
less, our model showed better segmentation performance
(Table III), suggesting that with respect to the organs that
were correctly detected, our model’s results are closer to the
ground truth.

The segmentation performance was ordered as follows:
bladder >rectum>uterus>levator. The results of the bladder
were markedly better, because the bladder has larger size, and
clearer boundary than that of other organs. The rectum is easy
to detect since its ODR results were higher compared to the
levator and uterus (Table IV). Half of the subjects did not
have a uterus, which further exacerbated the shortage of train-
ing data and the imbalance of the data, resulting in a low
ODR. However, our model could predict whether there is a
uterus from the subject level evaluation. After postprocess-
ing, the highest DSC for the uterus was 65.3, which exhibited
the largest improvement, as shown in Tables III and VII. The
levator ani had the worst segmentation results, since it has the
smallest size and does not have a clear boundary; identifying

(a)

(b)

(c)

(d)

FIG. 4. A comparison of segmentation results among our model, Deeplabv3+, FCN-8s, and U-Net . (a) Resting example with uterus. (b) Stressed example with
uterus. (c) Resting example without uterus. (d) Stressed example without uterus. Results of different methods were compared with the ground truth labeling.
[Color figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 5. Examples of re-segmentation results using the level set method. (a) and (b) Uterus re-segmentation. (c) and (d) Rectum re-segmentation, (e) and (f) Blad-
der re-segmentation. The composite results were obtained by replacing the models’ predictions with the level set results on the corresponding organ. Results were
compared with the ground truth labeling. [Color figure can be viewed at wileyonlinelibrary.com]
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the levator ani is always a challenge, even for experienced
clinicians.

5. CONCLUSIONS

To segment pelvic organs at rest and at maximum Valsalva
(stress), we proposed a novel CNN design by integrating the
MRFP module into an encoder-decoder model. This proved
useful to address the blurry soft tissue boundary problem on
MR images in POP. Together with the Xception encoder net-
work and model pretraining, our model obtained better seg-
mentation results than Deeplabv3+, FCN-8s, and U-Net.
Moreover, due to the limited training data problem, a level set
method was used to improve the segmentation of failure
cases. Future directions include feature fusion between 2D
and 3D CNNs to exploit spatial context information as dis-
cussed by Isense et al.9 Model pretraining with unlabeled
data using unsupervised or self-supervised methods, which
could take advantage of more data, can also potentially
improve the segmentation quality.
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