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33 Abstract

34 Objective: 

35 The objective of this review is to discuss the therapeutic use and differential treatment 

36 response to Levo-carnitine (L-carnitine) treatment in septic shock, and to demonstrate 

37 common lessons learned that are important to the advancement of precision medicine 

38 approaches to sepsis. We propose that significant interpatient variability in the 

39 metabolic response to L-carnitine and clinical outcomes can be used to elucidate the 

40 mechanistic underpinnings that contribute to sepsis heterogeneity. 

41 Methods:

42 A narrative review was conducted that focused on explaining interpatient variability in L-

43 carnitine treatment response. Relevant biological and patient-level characteristics 

44 considered include genetic, metabolic, and morphomic phenotypes; potential drug 

45 interactions; and pharmacokinetics. 

46 Main Results:

47 Despite promising results in a phase I study, a recent phase II clinical trial of L-carnitine 

48 treatment in septic shock showed a non-significant reduction in mortality. However, L-

49 carnitine treatment induces significant interpatient variability in L-carnitine and 

50 acylcarnitine concentrations over time. In particular, administration of L-carnitine 

51 induces a broad, dynamic range of serum concentrations and measured peak 

52 concentrations are associated with mortality. Applied systems pharmacology may 

53 explain variability in drug responsiveness by using patient characteristics to identify pre-

54 treatment phenotypes most likely to derive benefit from L-carnitine. Moreover, 

55 provocation of sepsis metabolism with L-carnitine offers a unique opportunity to identify 

56 metabolic response signatures associated with patient outcomes. These approaches 

57 can unmask latent metabolic pathways deranged in the sepsis syndrome and offer 

58 insight into the pathophysiology, progression, and heterogeneity of the disease. 
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59 Conclusion:

60 The compiled evidence suggests there are several potential explanations for the 

61 variability in carnitine concentrations and clinical response to L-carnitine in septic shock. 

62 These serve as important confounders that should be considered in interpretation of L-

63 carnitine clinical studies and broadly holds lessons for future clinical trial design in 

64 sepsis. Consideration of these factors are needed if precision medicine in sepsis is to 

65 be achieved.

66

67 Keywords: critical care, septic shock, pharmacometabolomics, systems pharmacology

68 Epidemiology and Heterogeneity of Sepsis

69 Sepsis is a life threatening, dysregulated host response to infection, which is 

70 characterized by systemic organ dysfunction.1 One in three Americans who die in the 

71 hospital have sepsis, and in 2017 there were an estimated 48.9 million cases 

72 worldwide.2 

73 The sepsis syndrome is a highly heterogeneous, with patients presenting along a 

74 continuum of clinical signs, symptoms, and severity of illness.3 The mechanism and 

75 pathophysiology underlying highly variable clinical trajectories in sepsis are complex, 

76 and the precise reason(s) some patients exhibit severe dysregulated responses while 

77 others recover from their initial infection in an uncomplicated fashion remains poorly 

78 understood. Such host-response heterogeneity muddies the interpretation of treatment 

79 response and is a major reason why novel pharmacotherapy often fails. Absence of 

80 adequate stratification of patients based on their underlying pathophysiology may 

81 contribute to this.4 The need to advance mechanistic understanding of sepsis 

82 heterogeneity has led to calls from the National Institute of General Medical Sciences 

83 for studies that seek to determine the effect of patient characteristics on differential 

84 treatment response (NOT-GM-19-054). Teasing out this variability is necessary to bring 

85 about a precision medicine approach to sepsis.

86 Ample evidence suggests a hypermetabolic component and derangement of host 

87 metabolism that is central to sepsis pathophysiology.5 Recently revised consensus 

88 guidelines define the most severe manifestation, septic shock, as infection with 

89 sustained hypotension despite recommended evidence-based treatment interventions 
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90 (e.g., fluid resuscitation), and pertinent to this discussion, metabolic dysfunction and/or 

91 tissue hypoperfusion as evidenced by an elevated blood lactate concentration.1 

92 Hyperglycemia, protein catabolism, and lipolysis are similarly known to occur in sepsis 

93 and contribute to poor patient outcomes.6 While several studies have targeted lactate as 

94 a resuscitation goal7-9, these trials have typically utilized fluids, vasopressors, or other 

95 agents designed to improve organ perfusion under the assumption that lactate 

96 elevations are predominantly explained by ongoing tissue ischemia, which may not 

97 necessarily be true.10 Current pharmacotherapy neither targets nor corrects these 

98 metabolic perturbations, although restoration of host bioenergetics offers a promising 

99 therapeutic target. Moreover, given the prevalence, persistent mortality, and lack of 

100 specific treatment paradigms, there is a critical need to advance understanding of the 

101 range and extent of the metabolic consequences of sepsis beyond observational 

102 studies. 

103 Herein, we discuss clinical trials of L-carnitine, an important regulator of 

104 mitochondrial and metabolic homeostasis, for the treatment of septic shock. We 

105 consider how patient-level biological variables impact response to treatment and 

106 propose that provocation with L-carnitine offers a novel and unique opportunity to 

107 improve mechanistic understanding of the heterogeneity and metabolic consequences 

108 of sepsis.

109 Physiological Role of Carnitine and Treatment in Sepsis Patients

110 Carnitine is an endogenous, polar small-molecule derived from lysine and 

111 methionine, which plays a well-established, crucial role in transport of long-chain fatty 

112 acids into the mitochondria for β-oxidation. Other key roles during times of metabolic 

113 stress include maintenance of coenzyme A homeostasis, metabolic flexibility and 

114 promotion of normal tricarboxylic acid cycle (TCA cycle) function, and further oxidation 

115 of fatty acids by peroxisomes.11 A full, in-depth review of carnitine and acylcarnitine 

116 homeostasis and biochemistry is outside the scope of this paper, and it has been 

117 extensively reviewed elsewhere.11, 12 Briefly, the carnitine shuttle allows for fatty acid 

118 entrance to the mitochondria for oxidation and subsequent energy production through 

119 transfer of acyl groups and conversion into acylcarnitines (Figure 1).
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120 In sepsis, mitochondrial dysfunction has been increasingly reported as a critical 

121 factor in persistent organ failure and altered peripheral cell mitochondrial function is 

122 known to be associated with sepsis mortality.13, 14 Further evidence of mitochondrial 

123 dysfunction includes elevations of systemic acylcarnitines, indicating incomplete β-

124 oxidation of fatty acids, and the presence of mitochondrial deoxyribonucleic acid (DNA) 

125 in plasma.15, 16 Sepsis alterations in mitochondrial function and lipid metabolism are 

126 associated with kidney and liver function that are driven in part through inhibition of the 

127 pyruvate dehydrogenase complex and decreased activity of carnitine 

128 palmitoyltransferase I.17, 18 Prior clinical studies of intravenous (IV) L-carnitine and 

129 acetylcarnitine given to patients in cardiogenic and circulatory shock found an overall 

130 positive effect on hemodynamic parameters and patient survival.19-21 

131 These principles served as the basis for two recent clinical trials of L-carnitine in 

132 septic shock. The first was a phase I, randomized, double-blind clinical trial of L-

133 carnitine (12 g IV) vs. saline placebo conducted in 31 patients with septic shock enrolled 

134 within 16 hours of diagnosis.22 Study drug was given as an IV bolus (33% of total dose), 

135 followed by a 12-hour infusion that delivered the remaining drug. This study found no 

136 difference in the reduction of Sequential Organ Failure Assessment (SOFA) score at 24 

137 hours, but there was an improvement in mortality at 28 days (4/16 vs. 9/15, p=0.048) 

138 and 1-year (8/16 vs. 12/15, p = 0.081) in L-carnitine treated patients. Adverse events 

139 sometimes attributable to L-carnitine, including gastrointestinal distress, body odor, and 

140 an decreased seizure threshold were not observed in the study. In addition, serious 

141 adverse events were not significantly different between the L-carnitine and placebo 

142 treatment arms. A follow-up phase II multicenter, double-blind, adaptive dose-finding 

143 trial randomized 250 patients within 24 hours of identified septic shock to IV L-carnitine 

144 (6 g, 12 g, or 18 g) vs. placebo.23 In the primary analysis, the highest dose (18 g) of L-

145 carnitine was not found to be superior to placebo in reducing the total SOFA score at 48 

146 hours, and the predicted probability of success of a subsequent phase III trial in 

147 reducing mortality at 28 days did not exceed the a priori threshold of 90%. The 6 g and 

148 12 g L-carnitine doses underperformed in the trial and were adaptively dropped from the 

149 randomization scheme as the trial progressed. Three, interim, pre-planned safety and 

150 futility analyses were completed by an independent data safety monitoring board.  
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151 However, the primary endpoints of both clinical studies do not describe a critical 

152 component of drug response to supplemental L-carnitine in patients with septic shock. 

153 The pharmacometabolomics data from the Phase I trial reveal substantial interpatient 

154 variability in serum carnitine and acetylcarnitine concentrations post-infusion.24, 25 

155 Patients receiving L-carnitine in the phase I study had 24-hour post infusion (T24) 

156 serum carnitine levels ranging from 30 µM to over 1600 µM (median = 368 µM). The 

157 temporal changes in carnitine and acetylcarnitine for the treatment and placebo arms 

158 are shown in Figure 2. Critically, L-carnitine treated non-survivors (based on 1-year 

159 mortality) had elevated carnitine and acetylcarnitine (C2), short chain acylcarnitines (C3, 

160 C4, and C5), and long chain acylcarnitines (C14 and C16) compared to L-carnitine 

161 treated survivors. This suggests the observed variability in measured peak 

162 concentrations and metabolic response profiles are associated with clinical outcomes. 

163 As such, identification of the patient-level factors associated with peak 

164 carnitine/acylcarnitine concentrations may help identify patients most likely to derive a 

165 mortality benefit from L-carnitine and inform the design of future clinical studies.

166

167 Candidate Mechanisms of Interpatient Variability of Drug Response in Sepsis

168 Pharmacogenomics: 

169 Pharmacogenomics seeks to explain variability in drug exposure and response 

170 based on genetic differences between individuals. Genetic variation in drug 

171 metabolizing enzymes, transporters, and targets impact an individual’s exposure and/or 

172 response to a given pharmacologic therapy, which can manifest as distinct drug-

173 response phenotypes. Genetic variability is also known to alter patient response across 

174 disease states and medications commonly seen in the intensive care unit (ICU).26 

175 Treatment and dosing paradigms, which incorporate patient-specific pharmacogenomic 

176 data, hold promise in decreasing adverse drug events (ADEs) and improving efficacy.27 

177 Moreover, rationale clinical trial enrollment based on pharmacogenomic phenotypes can 

178 foster a more homogenous patient cohort and target patient populations most likely to 

179 benefit from therapy (Table 1). 

180 Genetic variability in a number of enzymes and transporters could contribute to 

181 L-carnitine drug response including those highlighted in the carnitine shuttle (Figure 1). 
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182 Carnitine acts intracellularly and is highly sequestered in skeletal muscle and other 

183 tissues of the body.11 Given the polar structure of carnitine, active sodium-dependent 

184 transport by organic cation/carnitine transporters (OCTNs) is required for entry from the 

185 blood into the cell and subsequent facilitation of fatty acid β-oxidation. The primary 

186 carnitine transporter, OCTN2, thus represents the focus of this section.

187 The OCTN2 transporter is encoded by the SLC22A5 gene located on 

188 chromosome 5q31.1. Spanning 25 kb, the 10 exons of this gene encode the full length 

189 557 amino acid protein. Numerous autosomal recessive mutations in the SLC22A5 

190 gene are responsible for primary carnitine deficiency and results in low serum carnitine 

191 levels due to the kidney’s impaired ability to reabsorb the molecule.28 Missense 

192 mutations are exceedingly rare, result in severe metabolic and mitochondrial 

193 dysfunction, and manifest clinically as a primary carnitine deficiency at a young age. As 

194 such, loss of function mutations are unlikely to play a role in explaining variability in L-

195 carnitine concentrations or response in clinical studies of adults with septic shock. 

196 Nonetheless, given the vital role of OCTN2 in carnitine uptake into the cell, and 

197 considering the large doses administered in these trials, more common genetic 

198 polymorphisms in OCTN2 resulting in reduced function and / or expression may 

199 improve understanding of the mechanisms that explain the broad dynamic range of 

200 carnitine concentrations following supplementation. 

201 Common polymorphisms (i.e., minor allele frequency greater than 1%) in the 

202 OCTN2 gene and their impact on carnitine transport outside the context of primary 

203 carnitine deficiency are rare.29-31 Three SNPs (Phe17Leu, Tyr449Asp, Val481Asp) were 

204 associated with reduced OCTN2 function compared to wild-type, and a SNP in the 

205 promoter region of the gene (-207C>G) was associated with increased carnitine 

206 transport capacity and trended toward increase mRNA expression in cell lines.29 Out of 

207 these, only the promoter region variant (-207C>G, rs2631367) could be considered 

208 common according to the National Center for Biotechnology Information database of 

209 genetic variation (dbSNP).32 Further studies have observed a tissue-specificity to the -

210 207C>G variant’s effect on mRNA expression levels.30, 31

211 To supplement the limited literature regarding common polymorphisms effecting 

212 OCTN2, we conducted a systematic bioinformatics search for potentially relevant SNPs. 
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213 We queried the Genotype-Tissue Expression (GTEx) Project (available at 

214 https://gtexportal.org/home/), which seeks to explain variability in mRNA expression 

215 levels from previously healthy human cadavers with whole genome sequencing.33 The 

216 goal of this query was to determine common genetic variants (i.e., SNPs) that 

217 significantly alter gene expression of the OCTN2 transporter. Using expression 

218 quantitative trait loci (eQTL) analysis, approximately 1500 variants were found to be 

219 associated with altered gene expression at the tissue level. Summing across more than 

220 6,000 SNP/tissue pairs, the variant with the largest effect on net OCTN2 gene 

221 expression was the promoter region variant (-207C>G, rs2631367). 

222 In previously unpublished data from our group, patients treated with L-carnitine in 

223 the phase I trial22 were genotyped for the OCTN2 (-207C>G) SNP. In this preliminary 

224 study, fourteen patients had both genomic and serum carnitine concentrations 

225 measured at 24 hours (T24). Among these, four patients were wild-type (CC), while ten 

226 carried one or two copies of the G allele. Patients with the C/G or G/G genotype trended 

227 toward lower T24 plasma levels of L-carnitine (p=0.11), suggesting that genetic variation 

228 in the OCTN2 transporter may contribute to variability and persistent elevations in L-

229 carnitine following supplementation during septic shock. More pharmacogenetic studies 

230 are needed and are underway in the phase II trial23 to determine if variation in OCTN2 

231 and other carnitine-specific enzymes and / or transporters explain interpatient variability 

232 in L-carnitine drug response. 

233

234 Drug Interactions: 

235 Drug interactions occur when the activity, exposure, or effectiveness of a drug is 

236 impacted by the presence of another drug. Co-administered drugs may inhibit or induce 

237 expression of important enzymes or transporters, compete at target binding sites, or act 

238 in a synergistic or antagonistic fashion. Different combinations of drugs and their 

239 interactions introduces variability in the pharmacokinetics (PK) and pharmacodynamic 

240 response (PD) to pharmacologic therapy, which may put patients at increased risk of 

241 ADEs and either mitigate or enhance therapeutic efficacy. Critically ill patients are at 

242 increased risk of drug interactions and subsequent complications given comorbidities 

243 and disease complications that are often present (e.g., renal failure) and the requisite 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

244 complex treatments regimens prescribed.34, 35 In other disease states such as cancer, 

245 there is a high prevalence of drug interactions in patients enrolled in clinical trials.36 

246 Drug interactions in critically ill patients may pose a similar threat to trial validity and 

247 patient health and should be systematically screened and considered (Table 1). 

248 For L-carnitine, several drugs are reported to inhibit the OCTN2 transporter and 

249 therefore could contribute to interpatient variability in exposure. These drugs can also 

250 cause secondary carnitine deficiency through inhibition of the OCTN2 transporter in the 

251 kidneys leading to decreased efficiency of reabsorption.37 Of particular interest, in the 

252 setting of sepsis, are two widely used classes of medications, namely antibiotics and 

253 vasopressors. Previous reports have demonstrated that cefepime and levofloxacin 

254 inhibit OCTN2 in vitro.38, 39 While the choice of antibiotic therapy in sepsis depends on a 

255 number of patient specific factors, cefepime and levofloxacin are two commonly used 

256 antibiotics in the United States and are both recommended options in evidence-based 

257 best practices. Vasopressors such as norepinephrine and other catecholamines, used 

258 to maintain blood pressure support, and other commonly used medications including 

259 omeprazole and valproic acid inhibit OCTN2 and could similarly impact L-carnitine drug 

260 response.37 In addition to omeprazole, other proton-pump inhibitors, including 

261 pantoprazole and lansoprazole, have been shown to inhibit similar organic ion 

262 transporters but whether they interfere with the function of OCTN2 and carnitine 

263 transport has not been reported.40  

264 Propofol, a short-acting hypnotic and sedative that is widely used in the ICU, may 

265 also play a critical role in understanding variable drug response to L-carnitine. Propofol 

266 is known to inhibit carnitine palmitoyltransferase I and the mitochondrial electron 

267 transport chain, which leads to incomplete β-oxidation of fatty acids.41 The induced 

268 metabolic disruptions have been linked to propofol infusion syndrome or PRIS, a severe 

269 adverse effect of propofol that includes bradycardia, arrhythmias, rhabdomyolysis, 

270 metabolic acidosis, hepatomegaly, hyperlipidemia, and organ failure. Moreover, animal 

271 and in-vitro experiments have suggested a role for L-carnitine and acetylcarnitine in 

272 restoring propofol inhibition of fatty acid metabolism.42, 43 

273 Variable exposure to one or more of these drugs could influence resulting blood 

274 concentrations and subsequent metabolic response to supplemental L-carnitine. Other 
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275 mechanisms are certainly possible such that other concomitant medications and 

276 variable patient feeding may further confound the clinical studies discussed above. 

277 Presently, the clinical relevance of such interactions and how they should be managed 

278 is currently unknown. Further investigation into the use of these drug inhibitors and the 

279 effect on L-carnitine concentrations in the phase II study is underway. 

280

281 Pharmacometabolomics: 

282 Metabolomics seeks to identify and quantify small molecules, the full collection of 

283 which define the metabolome, in a given biofluid.44 The metabolome constitutes a read-

284 out of underlying cellular and biochemical events that reflect the genetic makeup of the 

285 host, transcriptomic and proteomic influence, as well as variability in the microbiome 

286 and environmental exposure. As such, metabolomics represents the culmination of 

287 these important regulators on the host. In addition, given that metabolism is dynamic on 

288 a practical and physiological time-scale, this sensitivity can inform heterogeneity in 

289 disease trajectory and treatment response. Pharmacometabolomics exploits this 

290 paradigm and is aimed at understanding and predicting response to drug treatment. In 

291 short, clinical application of metabolomics holds great promise in improving the 

292 diagnosis and risk stratification of critically ill patients, furthering drug discovery through 

293 metabolic signatures of drug response and/or ADEs, and elucidating biochemical 

294 pathways involved in the pathophysiology of critical illness (Table 1).  

295 A pharmacometabolomic approach was utilized to understand baseline metabolic 

296 differences in patients treated in the Phase I study of L-carnitine.25 Patients treated with 

297 L-carnitine who had low baseline levels of the ketone levels,3-hydroxybutyrate, also had 

298 lower post-treatment carnitine levels at 24 hours. The L-carnitine treated, low-ketone 

299 patients also had better clinical outcomes as evidenced by a timelier reduction in 

300 vasopressor requirement and decreased 1-year mortality. An untargeted metabolomics 

301 approach was then conducted in male patients from the Phase I study.45 L-carnitine 

302 treated non-survivors were found to have post-treatment elevations in metabolites 

303 related to vascular inflammation including histamine, allysine, and fibrinopeptide A. 

304 Along with the differential metabolic response of survivors and non-survivors highlighted 
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305 in Figure 2, these data suggest both baseline metabolic signatures and metabolic 

306 profiles over time may be predictive of L-carnitine treatment responsiveness.  

307

308 Morphomics: 

309 Analytic morphomics is a new and rapidly growing scientific discipline within 

310 precision pharmacotherapy that studies how variation in body size, composition and 

311 structure are associated with drug and disease response.46 In sepsis, two recent meta-

312 analyses have observed a paradox between body composition and survival, whereby 

313 particularly overweight (body mass index [BMI] between 25 kg/m2 and 29.9 kg/m2), and 

314 to a lesser extent obese (BMI between 30 kg/m2 and 40 kg/m2), patients tend to have 

315 better mortality outcomes compared to normal weight individuals (BMI between 18.5 

316 kg/m2 and 24.9 kg/m2).47, 48 Notably, underweight (BMI less than 18.5 kg/m2) and 

317 morbidly obese (BMI greater than 40 kg/m2) patients were found to have similar risk of 

318 mortality relative to normal weight individuals. Neither measured peak concentrations of 

319 L-carnitine nor mortality were significantly associated with BMI in patients who received 

320 study drug in the phase I study. However, the observed “obesity paradox” reinforces the 

321 concept of a metabolic and energy-driven component to sepsis pathophysiology and 

322 has a number of possible pathophysiological explanations including increased energy 

323 stores, anti-inflammatory mediator release from adipose tissue, and lipoprotein binding 

324 of bacterial cellular components.49 

325 Another possible explanation is that increased muscle mass offers energetic and 

326 metabolic adaptability to patients within a window of the BMI spectrum. Protein 

327 catabolism and subsequent myopathy is observed in critically ill patients, and skeletal 

328 muscle, an important energetic source to the host, experiences mitochondrial injury over 

329 the course of sepsis.50 Indeed, recent studies have found an association between low 

330 muscle mass and increased risk of mortality for patients with sepsis. In 74 patients with 

331 liver cirrhosis and sepsis, patients with low muscle mass (defined as mid-arm muscle 

332 circumference lower than the 5th percentile of the population) had increased mortality 

333 compared to patients with normal muscle mass (47% compared to 26%, p=0.06).51 In a 

334 separate retrospective review of 627 patients with a diagnosis of sepsis and an 

335 available abdominal computed tomography scan of the psoas muscle, muscle mass 
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336 depletion was associated with 28-day mortality in both univariate and multivariate 

337 logistic regression (OR 2.79, p=0.01).52 Given the extent of protein catabolism, the 

338 sepsis-obesity paradox, and the known sequestering of carnitine into muscle tissue, 

339 morphomics and variability in body composition offers a currently untapped field that 

340 could aid in explaining the observed variability in response to supplemental L-carnitine 

341 and patient mortality in sepsis broadly (Table 1).   

342

343  Pharmacokinetics and Renal Function:

344 Pharmacokinetics (PK) as a science seeks to understand what the body does 

345 with and to drugs. More specifically, it is the study of how drugs are absorbed, 

346 distributed, metabolized, and eliminated from the body. Previous studies have 

347 highlighted that there is profound sepsis-induced variation in drug PK. The reasons for 

348 this are likely multifaceted but include altered protein binding, perturbed vascular and 

349 tissue permeability, decreased hepatic and renal blood flow, and lower activity of drug 

350 metabolizing enzymes.53 High interpatient variability in drug PK in sepsis clinical trials 

351 contributes to overall heterogeneity of the patient cohort and may confound trial results 

352 unless careful analysis of drug exposure is considered (Table 1). 

353  The PK of L-carnitine has been explored, however no studies have determined the 

354 precise PK of L-carnitine in sepsis or at such high intravenous doses. As discussed 

355 above, OCTN2 is a critical carnitine transporter that is responsible for carnitine uptake 

356 into cells/tissues, however it is also responsible for reabsorption of carnitine in the 

357 kidney proximal tubule. As such, kidney function may play a vital role in the interpatient 

358 variability in serum carnitine concentrations that result following supplementation. 

359 Previous reviews report an average renal clearance of endogenous carnitine of 1-3 

360 mL/min, indicating that at physiologically relevant concentrations up to 99% of carnitine 

361 is reabsorbed by the kidney.54 Exogenous carnitine administered to healthy volunteers, 

362 increased renal clearance of carnitine and acetylcarnitine, indicating saturation of the 

363 OCTN2 transporter and the reabsorption process, which may be relevant for 

364 supraphysiologic doses of intravenous carnitine like those given in septic shock trials.54 

365 Unfortunately, urine samples were not collected in these studies, which prevents us 

366 from estimating renal clearance of relevant carnitine species in these patients. Both 
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367 studies reported similar serum creatinine levels among survivors and non-survivors 

368 indicating renal function alone does not explain heterogeneity in L-carnitine and 

369 acylcarnitine concentrations among patients. However, the reliability of creatinine as a 

370 biomarker in the setting of acute kidney injury (AKI), sepsis and other critical illness, and 

371 in drug development broadly been called into question.55, 56 New investigations of 

372 biomarkers of kidney injury and function are underway, but have yet to be widely 

373 adapted or clinically validated. Further investigations of the variability in L-carnitine drug 

374 response stratified by the presence of AKI and acute liver injury, and among other 

375 measures of organ dysfunction are warranted before precise clinical recommendation 

376 can be made in these patient groups. Moreover, modeling the impact of patient-level 

377 biological variables such as sex, age, and race is critical to understand the observed 

378 heterogeneity in L-carnitine drug response. 

379

380 Metabolic provocation with supplemental L-carnitine: 

381 While the approaches outlined above offer an opportunity to identify septic 

382 patients most likely to respond to L-carnitine, understanding the metabolic response 

383 signature of L-carnitine treated patients holds value beyond a potential therapeutic 

384 benefit. Outside of sepsis, the concept of provoked metabolic testing is used to uncover 

385 latent disease phenotypes. For example, a glucose tolerance test is used to diagnosis a 

386 previously undetectable pre-diabetic phenotype in pregnant women. As seen in Figure 

387 2, the metabolic response profiles of the placebo arm did not differentiate patient 

388 mortality at one-year, as they did for L-carnitine treated patients. Critically, this finding 

389 suggests the possibility that treatment with L-carnitine amplifies or incites a phenotype 

390 of sepsis mortality and underlying derangement in carnitine homeostasis. Indeed, 

391 elevations in plasma acylcarnitines are understood to be a measure of mitochondrial 

392 dysfunction and altered coenzyme A homeostasis in other metabolic diseases, and 

393 elevated acetylcarnitine was recently found to be predictive of plasma cytokine levels, 

394 blood culture positivity, multi-organ dysfunction, and mortality in patients with sepsis.57 

395 Others have shown that short chain acylcarnitines levels are related to plasma 

396 mitochondrial DNA, an indicator of cellular damage, and that acylcarnitines are 

397 predictive of mortality in critically ill patients.15, 16 Together, these data suggest 
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398 derangements of the carnitine/acylcarnitine pool may be indicative of metabolic 

399 dysfunction and/or worsening sepsis that is predictive of mortality.

400 A metabolic test with supplemental L-carnitine can provoke biochemical 

401 pathways in sepsis and amplify signals of underlying mitochondrial dysfunction and 

402 perturbed energy pathways. A more complete investigation of other metabolite profiles 

403 that are disrupted upon treatment may also lead to new insights into underlying disease 

404 mechanism and pathophysiology. While there are a number of sepsis metabolomics 

405 studies that confirm the substantial metabolic disturbances of the disease, they do not 

406 inform distinct sepsis phenotypes in the way that a metabolic provocation test could. 

407 The substantial variability in response to L-carnitine exposure and subsequent mortality 

408 differences indicate phenotypic differences between groups. In aggregate, this 

409 observation introduces the principle that even in the presence of a disease like sepsis, 

410 which is known to induce a substantial metabolic perturbation, provocation of 

411 metabolism is required to bring the full dynamic range into view.

412

413 Conclusion and Future Directions

414 L-carnitine and acylcarnitine concentrations are highly variable following L-

415 carnitine supplementation in septic shock, and the observed interpatient variability is 

416 associated with patient mortality. The heterogeneity of sepsis and drug response 

417 complicates the interpretation of a therapeutic value of L-carnitine and other potential 

418 sepsis pharmacotherapies. Currently, a careful analysis of the phase II clinical trial to 

419 inform the design of, and the results from, a phase III trial are needed before L-carnitine 

420 treatment can be recommended for a specific sepsis patient population. However, even 

421 though more work needs to be done, a strategy using the patient-level factors and 

422 biological variables that impact L-carnitine drug response could be used in the a priori 

423 identification of patients who are most likely to derive the greatest benefit from 

424 treatment. Well defined phenotypes of drug response could serve as inclusion-exclusion 

425 criteria and aid in the design and interpretation of future phase III clinical studies of L-

426 carnitine. Such information will need to be balanced with threats to clinical and external 

427 validity, as well as consideration to the ability to recruit a sufficient patient population.

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

428 The approach outlined here is applicable to other emerging sepsis therapeutics 

429 and could aid in developing a precision medicine approach to sepsis and the design of 

430 early-phase clinical trials in critical illness. Moreover, provoking metabolism in septic 

431 shock with L-carnitine supplementation offers a unique opportunity to define metabolic 

432 signatures of survival and elucidate biochemical pathways deranged in the sepsis 

433 syndrome. Such an approach offers a novel mechanism to further the understanding of 

434 sepsis pathophysiology and progression, as well as elucidate drug response 

435 phenotypes. 

436

437 Tables: 

438 Table 1: Impact of patient-level variables that could influence the outcome of future 

439 clinical trials of sepsis therapeutics. 

Candidate mechanisms of 

interpatient variability of 

drug response in sepsis

Impact on L-Carnitine trial 

design and interpretation

Influence on improving 

precision medicine in sepsis

Pharmacogenomics Genetic variance in the transport 

receptor of L-Carnitine (OCTN2) 

may influence drug 

concentration at site of action

Stratify patients by genotype 

at the time clinical trial 

enrollment

Drug Interactions Co-administration of OCTN2 

inhibitors, including commonly 

used antibiotics and 

vasopressors, may influence 

drug concentrations 

Thorough screening for 

potential drug interactions by 

clinical pharmacists at time of 

trial enrollment and post-hoc 

Pharmacometabolomics Baseline and dynamic metabolic 

signatures are associated with 

elevated drug concentrations 

and patient mortality 

Target metabolic subgroups 

for trial enrollment and 

measure metabolic response 

signatures post drug 
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440

441 Figure Legends:

442 Figure 1: Overview of carnitine transport and enzymatic conversions in the cell. 

443 Carnitine enters the cell from the blood through an organic cation transporter (OCTN2), 

444 after which carnitine palmitoyl transferase I (CPT-1) facilitates the conversion of 

445 carnitine and long chain fatty acid-CoAs to acylcarnitines and coenzyme A (CoA). The 

446 transporter carnitine-acylcarnitine translocase (CACT) moves the newly formed long-

447 chain acylcarnitines into the mitochondrial matrix in exchange for free carnitine. Here, 

448 long chain acyl groups are transferred back to CoA by carnitine palmitoyl transferase II 

449 (CPT-II). The newly regenerated acyl-CoA undergoes β-oxidation into Acetyl-CoA, 

450 which feeds into the TCA cycle. Alternatively, carnitine acetyl-transferase (CAT) 

451 converts free carnitine and Acetyl-CoA to acetylcarnitine, which can freely diffuse 

452 through CACT and OCTN2 back into the bloodstream. This latter process may be 

453 enhanced during sepsis and times of metabolic stress, serving as a crucial sink for 

454 excess acetyl groups that may be toxic to the cell. The ladder cartoon represents the 

455 plasma membrane separating the blood and the cytosol of the cell, while grey boxes 

456 represent the outer and inner membranes of the mitochondria. (Open-source through 

457 the Creative Commons Attribution, obtained with permission from 

458 https://doi.org/10.1016/j.ebiom.2017.01.026).58

administration 

Morphomics Patient muscle mass and body 

composition may influence 

metabolic adaptability, energetic 

stores, and drug distribution

  

Consider variation in body size 

and composition when testing 

targeted metabolic 

therapeutics

Renal function and 

Pharmacokinetics (PK)

Altered renal clearance and 

reabsorption of drug and acyl-

metabolites may influence drug 

concentrations and patient 

outcomes

Embedded clinical 

pharmacology studies to 

quantify sepsis-

pathophysiology induced 

alterations in drug PK
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459 Figure 2: Carnitine treatment induces a metabolic phenotype whereby serum 

460 carnitine and acetylcarnitine concentrations are elevated in sepsis non-survivors. 

461 Serum concentrations of carnitine and acetylcarnitine are plotted over time for patients 

462 treated with either L-carnitine (panels A and C) or saline placebo (panels B and D). Data 

463 plotted are the median, 25th, and 75th percentile of observed serum concentrations, and 

464 the Mann-Whitney U test was used to determine significant differences between non-

465 survivors and survivors at each time point. All p-values are corrected for multiple 

466 comparison using a false discovery rate method according to Storey and colleagues59 

467 and are reported as q-values. L-carnitine treated non-survivors (N=7-8) at 1-year had 

468 significantly higher concentrations of carnitine relative to survivors (N=8) at baseline 

469 (BL, q=0.02); 24-hours (T24, q=0.004); and 48-hours (T48, q=0.02) post-treatment. 

470 Similar trends were observed for acetylcarnitine (BL, q=0.01; T24, q=0.003; and T48, 

471 q=0.02). No significant differences in carnitine or acetylcarnitine concentrations were 

472 observed between placebo treated non-survivors (N=8-12) and survivors (n=3). 
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