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Abstract
Causal mediation analysis aims to examine the role of a mediator or a group of medi-

ators that lie in the pathway between an exposure and an outcome. Recent biomedical

studies often involve a large number of potential mediators based on high-throughput

technologies. Most of the current analytic methods focus on settings with one or a

moderate number of potential mediators. With the expanding growth of -omics data,

joint analysis of molecular-level genomics data with epidemiological data through

mediation analysis is becoming more common. However, such joint analysis requires

methods that can simultaneously accommodate high-dimensional mediators and that

are currently lacking. To address this problem, we develop a Bayesian inference

method using continuous shrinkage priors to extend previous causal mediation analy-

sis techniques to a high-dimensional setting. Simulations demonstrate that our method

improves the power of global mediation analysis compared to simpler alternatives and

has decent performance to identify true nonnull contributions to the mediation effects

of the pathway. The Bayesian method also helps us to understand the structure of the

composite null cases for inactive mediators in the pathway. We applied our method to

Multi-Ethnic Study of Atherosclerosis and identified DNA methylation regions that

may actively mediate the effect of socioeconomic status on cardiometabolic outcomes.

K E Y W O R D S
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1 INTRODUCTION

Causal mediation analysis has been of significant interest

across many disciplines (Ten Have and Joffe, 2012; Van-

derWeele, 2016). It investigates how an intermediate vari-

able, referred to as mediator, explains the mechanism through

which the exposure variable affects the outcome. Under cer-

tain regularity conditions, mediation analysis allows us to dis-

entangle the exposure’s effect into two parts: effect that acts

through the mediator of interest (indirect/mediation effect)

and effect that is unexplained by the mediator (direct effect).

The state-of-the-art causal mediation analysis (Ten Have and

Joffe, 2012), which builds upon the counterfactual framework

(Robins and Greenland, 1992), establishes rigorous assump-

tions regarding the exposure-outcome, exposure-mediator,

and mediator-outcome relationships to justify appropriate use

of the classical formulas from Baron and Kenny in the lin-

ear regression setting (Baron and Kenny, 1986; MacKinnon,

2008) and creates a framework for other general extensions.

Many of the existing methods focus on univariate mediation

analysis that analyzes one mediator at a time in the causal

inference framework and are applicable to both continuous
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(Imai et al., 2010) and binary outcomes (VanderWeele and

Vansteelandt, 2010). Several studies have recently extended

mediation analysis models to jointly account for multiple

mediators. However, most of the literature considered set-

tings with two or three mediators, where each mediator is

ordered along a priori known mediation pathways and the

path-specific effects, are estimated (Daniel et al., 2015). In

the presence of multiple unordered mediators, one often has

to rely on an ad hoc approach to fit a series of univariate medi-

ation models (Taguri et al., 2018; Huang and Pan, 2016) and

then summarize the mediation effects across all the mediators.

Such approach ignores correlation among mediators, and the

estimated mediation effect does not necessarily have a causal

interpretation, particularly when the dimension of the poten-

tial mediators is truly large.

In this article, using the potential outcome framework for

causal inference, we develop a Bayesian mediation analysis

method to characterize the indirect effect through an entire

set of high-dimensional mediators. Note that Bayesian meth-

ods for mediation have also been proposed in a principal strat-

ification framework (Elliott et al., 2010), though there are

subsequent discussions on whether the principal stratifica-

tion framework is a plausible framework to estimate indirect

effects (VanderWeele, 2011). In addition, for estimating nat-

ural direct and indirect effects, recent work applied Bayesian

nonparametric models, especially Dirichlet process mixture

models (Kim et al., 2017, 2019) in both univariate and multi-

ple mediators analysis. In contrast, here, we rely on Bayesian

variable selection methods to simultaneously analyze a rel-

atively large number of mediators in a pathway with poten-

tially a small number being truly active. With sparsity induc-

ing priors on active coefficients, we assume only a small

proportion of mediators in the whole set may mediate the

exposure effect on the outcome. This sparsity assumption

allows us to extend previous univariate mediation analysis

methods to a high-dimensional setting by framing the identifi-

cation of active mediators in the whole set as a variable selec-

tion problem and applying Bayesian methods with continu-

ous shrinkage priors. Unlike previous methods developed for

multiple mediators, ours can jointly analyze much larger num-

ber of potential mediators without making any path-specific

or causal ordering assumptions on mediators. Our method

enables us to identify the joint indirect effects of all the medi-

ators and the subset of active ones in the set and propagates

uncertainty in inference in a principled way. Recently, there

has been emerging interest in high-dimensional mediation

analysis, and our method adds to the burgeoning literature for

high-dimensional mediators (Chén et al., 2017; Derkach et al.,
2019).

While our method is generally applicable to many settings,

we examine its performance in the setting of genomics stud-

ies. Recent studies have proposed the molecular traits such

as gene expression and DNA methylation (DNAm) may act

as a mechanism through which various aspects of socioeco-

nomic status (SES) and neighborhood disadvantages affect

physical health. For example, childhood/adult SES and neigh-

borhood crime rates have recently been shown to influence

DNAm in several genes related to stress and inflammation

(Needham et al., 2015; Smith et al., 2017). DNAm of inflam-

matory markers has also been associated with cardiovascular

risk and disease (Zhong et al., 2016). Here, we show through

simulations and data analysis that our high-dimensional medi-

ation analysis framework can increase power of a joint anal-

ysis and facilitate the identification of active mediators in

the set.

2 NOTATION, DEFINITIONS, AND
ASSUMPTIONS

In this article, we focus on causal mediation analysis for the

setting where there is a single exposure of interest but there

exists a high-dimensional set of candidate mediators that may

mediate the effect of exposure on an outcome. Suppose our

analysis is based on a study of 𝑛 subjects and for subject

𝑖, 𝑖 = 1,… , 𝑛, we collect data on exposure 𝐴𝑖, 𝑝 candidate

mediators 𝑴𝒊 = (𝑀 (1)
𝑖 , 𝑀

(2)
𝑖 ,… , 𝑀

(𝑝)
𝑖 )𝑇 , outcome 𝑌𝑖, and 𝑞

covariates 𝑪𝒊 = (𝐶 (1)
𝑖 ,… , 𝐶

(𝑞)
𝑖 )𝑇 . In particular, we focus on

the case where 𝑌𝑖 and 𝑴𝒊 are all continuous variables.

We adopt the counterfactual (or potential outcomes)

framework to formally define mediators and their causal

effects. Let 𝑀
(𝑗)
𝑖 (𝑎) denote the potential (or counterfactual)

value of the 𝑗th mediator, 𝑗 = 1,… , 𝑝, for subject 𝑖 under

exposure level at 𝑎. Suppose the exposure has 𝐾 levels, then

𝐾 × 𝑝 potential counterfactual random variables for media-

tors are defined, i.e. 𝑀 (1)(1), 𝑀 (2)(1),… , 𝑀 (𝑝)(1), 𝑀 (1)(2),
𝑀 (2)(2),… , 𝑀 (𝑝)(2), 𝑀 (1)(𝐾), 𝑀 (2)(𝐾),… , 𝑀 (𝑝)(𝐾). Let

𝑌𝑖(𝑎,𝒎) = 𝑌𝑖(𝑎, 𝑚(1),… , 𝑚(𝑝)) denote the 𝑖th subject’s poten-

tial outcome if the subject’s exposure were 𝑎 and mediators

were 𝒎 = (𝑚(1),… , 𝑚(𝑝)). As this paper focuses on the joint

effects of the whole set of mediators, for simplicity, we define

𝑴𝒊(𝑎) = (𝑀 (1)
𝑖 (𝑎), 𝑀 (2)

𝑖 (𝑎),… , 𝑀
(𝑝)
𝑖 (𝑎)). These counterfac-

tuals are hypothetical variables and may not be observed in

real data. To connect potential variables to observed data, we

make the Stable Unit Treatment Value Assumption (SUTVA)

(Rubin, 1980), which is a commonly made assumption in

causal inference. Specifically, the SUTVA assumes there

is no interference between subjects and the consistency

assumption, which states that the observed variables are the

same as the potential variables corresponding to the actually

observed treatment level, that is, 𝑴𝒊 =
∑

𝑎 𝑴𝒊(𝑎)𝐼(𝐴𝑖 = 𝑎),
and 𝑌𝑖 =

∑
𝑎

∑
𝒎 𝑌𝑖(𝑎,𝒎)𝐼(𝐴𝑖 = 𝑎,𝑴𝒊 = 𝒎), where 𝐼(⋅)

is the indicator function. For simplicity, we define

𝑌𝑖(𝑎) = 𝑌𝑖(𝑎,𝑴𝒊(𝑎)), the potential outcome had the exposure

been 𝑎 and the whole set of mediators been the value that

would have been observed under exposure 𝑎. The defined
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F I G U R E 1 Left (A): High-dimensional mediators ((𝑀 (1), 𝑀 (2),… , 𝑀 (𝑝))) between exposure (𝐴) and outcome (𝑌 ) with exposure-outcome

confounders 𝐶1 and mediator-outcome confounders 𝐶2; right (B): An example of mediator-outcome confounder 𝐿 that is affected by the exposure 𝐴

potential variables are hypothetical, and actually most of

them are not observed in real data. For example, if 𝐴𝑖 ≠ 𝑎,

then 𝑌𝑖(𝑎) or 𝑴𝒊(𝑎) are not observed.

We may decompose the effect of an exposure into its direct

effect and effect mediated through the whole set of mediators

(VanderWeele and Vansteelandt, 2014). The controlled direct

effect (CDE) of the exposure on the outcome is defined as

𝑌𝑖(𝑎,𝒎) − 𝑌𝑖(𝑎⋆,𝒎), which is the effect of changing exposure

from level 𝑎⋆ (the reference level) to 𝑎 while hypothetically

controlling mediators at level 𝒎. The natural direct effect

(NDE) is defined as 𝑌𝑖(𝑎,𝑴𝒊(𝑎⋆)) − 𝑌𝑖(𝑎⋆,𝑴𝒊(𝑎⋆)), which

is the CDE when mediators are controlled at the level that

would have naturally been had the exposure been 𝑎⋆. The

natural indirect effect (NIE) is defined by 𝑌𝑖(𝑎,𝑴𝒊(𝑎)) −
𝑌𝑖(𝑎,𝑴𝒊(𝑎⋆)), capturing the effect mediated through the

whole set of mediators, that is, the change in potential out-

comes when mediators change from 𝑴𝒊(𝑎⋆) to 𝑴𝒊(𝑎) while

fixing exposure at 𝑎. The total effect (TE), 𝑌𝑖(𝑎) − 𝑌𝑖(𝑎⋆), can

then be decomposed into natural direct and indirect effect,

written as 𝑌𝑖(𝑎) − 𝑌𝑖(𝑎⋆) = 𝑌𝑖(𝑎,𝑴𝒊(𝑎)) − 𝑌𝑖(𝑎⋆,𝑴𝒊(𝑎⋆)) =
𝑌𝑖(𝑎,𝑴𝒊(𝑎)) − 𝑌𝑖(𝑎,𝑴𝒊(𝑎⋆)) + 𝑌𝑖(𝑎,𝑴𝒊(𝑎⋆)) − 𝑌𝑖(𝑎⋆,𝑴𝒊(𝑎⋆))
= NIE + NDE.

Causal effects are formally defined in terms of potential

variables, which are not necessarily observed, but the iden-

tification of causal effects must be based on observed data.

Therefore, similar to missing data problems, further assump-

tions regarding the confounders are required for the identifi-

cation of causal effects in mediation analysis (VanderWeele

and Vansteelandt, 2014). We will use 𝐴⟂⟂𝐵|𝐶 to denote

that 𝐴 is independent of 𝐵 conditional on 𝐶 . For estimat-

ing the average CDE, two assumptions on confounding are

needed: (1) 𝑌𝑖(𝑎,𝒎)⟂⟂𝐴𝑖|𝑪𝒊, namely, there is no unmea-

sured confounding for the exposure effect on the outcome; (2)

𝑌𝑖(𝑎,𝒎)⟂⟂𝑴𝒊|{𝑪𝒊, 𝐴𝑖}, namely, there is no unmeasured con-

founding for any of mediator-outcome relationship after con-

trolling for the exposure. The two assumptions are illustrated

in the left panel of Figure 1, and controlling for exposure-

outcome and mediator-outcome confounding corresponds to

controlling for 𝐶1, 𝐶2 in the figure. In practice, both sets of

covariates 𝐶1 and 𝐶2 need not to be distinguished from one

another and can simply be included in the overall set of 𝐶 that

we adjust for. The identification of the average NDE and NIE

requires assumption (1) and (2), along with two additional

assumptions: (3) 𝑴𝒊(𝑎)⟂⟂𝐴𝑖|𝑪𝒊, namely, there is no unmea-

sured confounding for the exposure effect on all the medi-

ators; (4) 𝑌𝑖(𝑎,𝒎)⟂⟂𝑴𝒊(𝑎⋆)|𝑪𝒊, which can be interpreted

as there is no downstream effect of the exposure that con-

founds the mediator-outcome relationship for any of the medi-

ators. Graphically, assumption (4) implies that there should be

no arrow going from exposure 𝐴 to mediator-outcome con-

founder 𝐶2 in Figure 1A. It is thus violated in Figure 1B

since the mediator-outcome confounder 𝐿 is itself affected

by the exposure. The four assumptions are required to hold

with respect to the whole set of mediators 𝑴𝒊(𝑎). Finally, as in

all mediation analysis, the temporal ordering assumption also

needs to be satisfied, that is, the exposure precedes the medi-

ators, which precede the outcome. With the above assump-

tions, the average NDE and NIE can be identified by model-

ing 𝑌𝑖|𝐴𝑖,𝑴𝒊,𝑪𝒊 and 𝑴𝒊|𝐴𝑖,𝑪𝒊 using observed data. The full

derivation can be found in the Supporting Information.

We note that as the main interest of this article lies

in the joint effect of the whole set of mediators,thus the

definition of NIE and NDE only involve the counterfac-

tuals of the form 𝑴𝒊(𝑎) = (𝑀 (1)
𝑖 (𝑎), 𝑀 (2)

𝑖 (𝑎),… , 𝑀
(𝑝)
𝑖 (𝑎)).

If one is interested in estimating the effect of a spe-

cific mediator, then one needs to consider the 𝐾𝑝 counter-

factuals (𝑀 (1)
𝑖 (𝑎1), 𝑀

(2)
𝑖 (𝑎2),… , 𝑀

(𝑝)
𝑖 (𝑎𝑝)), 𝑎1, 𝑎2,… , 𝑎𝑝 ∈

{1, 2,… , 𝐾}. Characterizing mediator-specific NIE is a much

more challenging task and requires stronger assumptions, in

particular when the multiple mediators influence and interact

with one another.

3 MODELS AND ESTIMANDS

Since the effects of mediators (average NDE and NIE) defined

in terms of potential outcomes can be deduced from two

conditional models for 𝑌𝑖|𝐴𝑖,𝑴𝒊,𝑪𝒊 and 𝑴𝒊|𝐴𝑖,𝑪𝒊 using

observed data, we propose two regression models and subse-

quently deduce the causal effects of mediators. For modeling

𝑌𝑖|𝐴𝑖,𝑴𝒊,𝑪𝒊, we assume for subject 𝑖 (𝑖 = 1,… , 𝑛), a con-

tinuous outcome of interest 𝑌𝑖 is associated with exposure 𝐴𝑖,
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𝑝 potential mediators 𝑴𝒊 = (𝑀 (1)
𝑖 , 𝑀

(2)
𝑖 ,… , 𝑀

(𝑝)
𝑖 )𝑇 that may

be on the pathway from 𝐴𝑖 to 𝑌𝑖, and 𝑞 covariates 𝑪𝒊 with the

first element being the scalar 1 for the intercept:

𝑌𝑖 = 𝑴𝒊
𝑇 𝜷𝒎 + 𝐴𝑖𝛽𝑎 + 𝑪𝒊

𝑇 𝜷𝒄 + 𝜖𝑌 𝑖, (1)

where 𝜷𝒎 = ((𝜷𝒎)1,… , (𝜷𝒎)𝑝)𝑇 , 𝜷𝒄 = (𝛽𝑐1,… , 𝛽𝑐𝑞)𝑇 , 𝜖𝑌 𝑖 ∼
𝑁(0, 𝜎2

𝑒 ). Here we assume there is no interaction between 𝐴𝑖

and 𝑴𝒊. Next for modeling 𝑴𝒊|𝐴𝑖,𝑪𝒊, we consider a multi-

variate regression model that jointly analyzes the 𝑝 potential

mediators:

𝑴𝒊 = 𝐴𝑖𝜶𝒂 + 𝜶𝒄𝑪𝒊 + 𝝐𝑀𝑖, (2)

where 𝜶𝒂 = ((𝜶𝒂)1,… , (𝜶𝒂)𝑝)𝑇 , 𝜶𝒄 = (𝜶𝒄𝟏
𝑇 ,… ,𝜶𝒄𝒑

𝑇 )𝑇 ,

𝜶𝒄𝟏,… ,𝜶𝒄𝒑 are 𝑞-by-1 vectors, 𝝐𝑀𝑖 ∼ 𝑀𝑉 𝑁(𝟎,𝚺), 𝚺
captures the correlation among the mediators. 𝜖𝑌 𝑖 and 𝝐𝑀𝑖

are assumed independent of 𝐴𝑖, 𝑪𝒊 and each other.

With assumptions made in Section 2, we show in the Sup-

porting Information that the average NDE, NIE, and TE can

then be computed as presented below, and in the rest of the

article, we refer to NDE as a direct effect and NIE as an indi-

rect/mediation effect.

NDE = 𝐸[𝑌𝑖(𝑎,𝑴𝒊(𝑎⋆)) − 𝑌𝑖(𝑎⋆,𝑴𝒊(𝑎⋆))|𝑪𝒊] = 𝛽𝑎(𝑎 − 𝑎⋆).

(3)

NIE = 𝐸[𝑌𝑖(𝑎,𝑴𝒊(𝑎)) − 𝑌𝑖(𝑎,𝑴𝒊(𝑎⋆))|𝑪𝒊]

= (𝑎 − 𝑎⋆)
𝑝∑

𝑗=1
(𝜶𝒂)𝑗(𝜷𝒎)𝑗 . (4)

TE = 𝐸[𝑌𝑖(𝑎) − 𝑌𝑖(𝑎⋆)|𝑪𝒊] = (𝛽𝑎 + 𝜶𝒂
𝑇 𝜷𝒎)(𝑎 − 𝑎⋆). (5)

As noted in Equation (4), under the assumptions of model

(1) the NIE through the whole set of mediators turns out to be

the sum of the product of (𝜶𝒂)𝑗 and (𝜷𝒎)𝑗 over the entire set.

Those individual product terms do not correspond to the NIE

of a specific (say 𝑗th) mediator. We define active mediators

as the ones with nonnull contribution to the global NIE, that

is (𝜶𝒂)𝑗(𝜷𝒎)𝑗 being nonzero. The proposed Bayesian shrink-

age and selection methods are used to identify and estimate

these active components. Any inactive mediator will natu-

rally fall into one of the following three categories: (𝜷𝒎)𝑗 is

nonzero, while (𝜶𝒂)𝑗 is zero; (𝜶𝒂)𝑗 is nonzero, while (𝜷𝒎)𝑗
is zero; both are zero. Such a refined partition for the high-

dimensional set of mediators provides useful and insight-

ful interpretations for the structure of the composite null.

Regarding a summary global measure of the indirect effect,

we note that the quantity of
∑𝑝

𝑗=1(𝜶𝒂)𝑗(𝜷𝒎)𝑗 is not a good

summary of the global mediation effects when the terms

have opposite directions. Considering this, we propose to

use the 𝐿2 norm of the 𝑝-by-1 vector of (𝜶𝒂)𝑗(𝜷𝒎)𝑗 (Huang

and Pan, 2016) as a global measure of mediation effects,

that is, 𝜏 = ||((𝜶𝒂)1(𝜷𝒎)1, (𝜶𝒂)1(𝜷𝒎)2,… , (𝜶𝒂)𝑝(𝜷𝒎)𝑝)||2 =∑𝑝
𝑗=1{(𝜶𝒂)𝑗(𝜷𝒎)𝑗}2.

4 BAYESIAN METHOD FOR
ESTIMATION

4.1 Prior specification

In order to conduct high-dimensional mediation analysis, we

need to make certain model assumptions on the effect sizes.

In genomewide association studies, Bayesian sparse regres-

sion models, such as Bayesian variable selection regression

models (BVSR), have been proven to yield better power

in detecting relevant covariates (Guan and Stephens, 2011).

Here, we also make the reasonable sparsity assumption, which

implies that only a small proportion of mediators mediate

the exposure effects on the outcome. Linear mixed mod-

els (LMM), on the other hand, assume that every media-

tor transmits certain effects from exposure to outcome, with

the effect sizes normally distributed. We first assume that

all the potential mediators contribute small, nonzero effects

in mediating the exposure-outcome relationship, which is

aligned with the main idea of polygenic (Zhou et al., 2013)

and omnigenic (Boyle et al., 2017) models. Besides these

small effects, we also assume that there is a small propor-

tion of mediators exhibiting additional/large effects. We refer

to these mediators with additional effects as active medi-

ators, which is consistent with the concept of core genes

defined in the omnigenic model. Therefore, in this article,

we use the Baysian sparse linear mixed model (BSLMM)

priori, which imposes continuous shrinkage on the effects

(Zhou et al., 2013) and assumes the presence of small

and additional effects, for high-dimensional mediation anal-

ysis. The BSLMM is capable of learning the underlying

mediation architecture from the data, producing good per-

formances across a wide range of scenarios. Our model

assumptions are also akin to the notion of quasi-sparsity

that has become popular with continuous shrinkage pri-

ors (Ge et al., 2019). Specifically, we assume a mixture

of two normal components a priori for the 𝑗th mediator,

𝑗 = 1, 2,… 𝑝,

(𝜷𝒎)𝑗 ∼ 𝜋𝑚𝑁(0, 𝜎2
𝑚1) + (1 − 𝜋𝑚)𝑁(0, 𝜎2

𝑚0)

(𝜶𝒂)𝑗 ∼ 𝜋𝑎𝑁(0, 𝜎2
𝑚𝑎1) + (1 − 𝜋𝑎)𝑁(0, 𝜎2

𝑚𝑎0),

where 𝜎2
𝑚1 > 𝜎2

𝑚0, 𝜎2
𝑚𝑎1 > 𝜎2

𝑚𝑎0, and 𝜋𝑚, 𝜋𝑎 denote the propor-

tion of coefficients that belong to the normal distribution with

a larger variance.

For the other coefficients, we assume 𝛽𝑎 ∼ 𝑁(0, 𝜎2
𝑎) and

𝜷𝒄 ,𝜶𝒄 ∼ 𝑀𝑉 𝑁(𝟎, 𝜎2
𝑐 𝑰), 𝜎

2
𝑐 → ∞. Here we use a limiting

normal prior for 𝜷𝒄 ,𝜶𝒄 with its variance going to infinity,

since we often have insufficient information from the data

to overwhelm any prior assumptions. For the convenience of

modeling, we set the correlation structure among mediators 𝚺
as 𝜎2

𝑔𝑰 .
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T A B L E 1 Mediators are categorized into four groups based on their relationships with exposure and outcome

(𝜷𝒎)𝒋 Larger component Smaller component
(𝜶𝒂)𝑗
Larger component 𝑟𝑚𝑗 ∗ 𝑟𝑎𝑗 = 1 (Group 1) 𝑟𝑚𝑗 = 0, 𝑟𝑎𝑗 = 1 (Group 2)

Smaller component 𝑟𝑚𝑗 = 1, 𝑟𝑎𝑗 = 0 (Group 3) 𝑟𝑚𝑗 = 𝑟𝑎𝑗 = 0 (Group 4)

Group 1: Both (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 come from larger normal components; Group 2: (𝜶𝒂)𝑗 from larger normal component while (𝜷𝒎)𝑗 from smaller normal component; Group

3: (𝜷𝒎)𝑗 from larger normal component while (𝜶𝒂)𝑗 from smaller normal component; Group 4: both (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 come from smaller normal components.

For the hyperparameters of variances in the model, we use

the standard conjugate priors,

𝜎2
ms

∼ inverse-gamma(𝑘ms, 𝑙ms), 𝑠 = 0, 1

𝜎2
mas

∼ inverse-gamma(𝑘mas, 𝑙mas), 𝑠 = 0, 1

𝜎2
𝑎 ∼ inverse-gamma(𝑘𝑎, 𝑙𝑎) and

𝜎2
𝑒 , 𝜎2

𝑔 ∼ inverse-gamma(𝑘𝑒, 𝑙𝑒).

We set 𝑘𝑚0 = 𝑘𝑚1 = 𝑘𝑎 = 𝑘𝑚𝑎0 = 𝑘𝑚𝑎1 = 𝑘𝑒 = 2.0, and 𝑙𝑚0 =
𝑙𝑚𝑎0 = 10−4, 𝑙𝑎 = 𝑙𝑚1 = 𝑙𝑚𝑎1 = 𝑙𝑒 = 1.0. The prior inclusion

probabilities 𝜋𝑚, 𝜋𝑎 encode the prior information about the

sparsity of the coefficients. We place a uniform prior on

log(𝜋𝑚), log(𝜋𝑎),

log(𝜋𝑚), log(𝜋𝑎) ∼ 𝑈 (log(1∕𝑝), log(1)).

The priors were chosen so that 𝜋𝑚 and 𝜋𝑎 range from 1∕𝑝 to

1, and the lower and upper bounds correspond to an expec-

tation of 1 and 𝑝 covariates in each model. A uniform prior

on log(𝜋𝑚) and log(𝜋𝑎) reflects the fact that the uncertainty in

𝜋𝑚, 𝜋𝑎 is large due to the sparsity of the models. We do not

choose a uniform prior on 𝜋𝑚, 𝜋𝑎 since that would put appre-

ciable prior probability on large numbers of covariates (Guan

and Stephens, 2011).

4.2 Posterior sampling algorithm

We develop a Markov chain Monte Carlo (MCMC) sampling

algorithm to obtain the posterior samples from our Bayesian

method. To facilitate MCMC, we introduce indicator vari-

ables 𝒓𝒎, 𝒓𝒂 ∈ {0, 1}𝑝 to indicate which normal component

(𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 are from, and for the 𝑗th mediator, 𝑟𝑚𝑗 =
I((𝜷𝒎)𝑗 ∼ 𝑁(0, 𝜎2

𝑚1)), 𝑟𝑎𝑗 = I((𝜶𝒂)𝑗 ∼ 𝑁(0, 𝜎2
𝑚𝑎1)), where

I(⋅) represents an indicator function. We use a Hastings-

within-Gibbs algorithm to obtain posterior samples, and full

details of the algorithm appear in the Supporting Information.

For the 𝑗th mediator, we can estimate the posterior prob-

ability of both (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 being in the normal compo-

nents with larger variances as the posterior inclusion proba-

bility (PIP), defined as 𝑃 (𝑟𝑚𝑗 = 1, 𝑟𝑎𝑗 = 1|Data) in our model.

Mediators with larger (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 tend to be categorized

into larger variance normals, and such tendency can be quan-

tified by the mediator’s PIP. PIP provides nonnull evidence

for both (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 , and, therefore, we select mediators

with the highest PIP as potentially active mediators.

4.3 Mediator categorization

Under the above Bayesian mediation framework, active medi-

ators are the ones whose (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗 both come from

larger normal components. The three categories for the inac-

tive mediators are (𝜷𝒎)𝑗 from larger normal component while

(𝜶𝒂)𝑗 from smaller normal component; (𝜶𝒂)𝑗 from larger nor-

mal component while (𝜷𝒎)𝑗 from smaller normal component;

both from smaller components. In practice, we have the indi-

cator variables 𝑟𝑚𝑗 and 𝑟𝑎𝑗 to denote which component the

coefficients (𝜷𝒎)𝑗 , (𝜶𝒂)𝑗 belong to and can easily obtain the

posterior probabilities for each group. The four groups are

illustrated in Table 1,

5 SIMULATIONS

We evaluate the performance of the proposed Bayesian medi-

ation method and compare it with the three existing media-

tion methods, which include single mediation analysis, mul-

tivariate mediation analysis, and high-dimensional multivari-

ate mediation (HDMM) methodology of Chén et al. (2017).

Single mediation analysis tests one mediator at a time for its

mediation effect, and we use the R package mediation with

the nonparametric bootstrap option for standard error esti-

mation. Multivariate mediation analysis (VanderWeele and

Vansteelandt, 2014), on the other hand, jointly analyzes all

the mediators in both model (1) and (2) and tests the prod-

uct term (𝜷𝒎)𝑗(𝜶𝒂)𝑗 for each 𝑗 at a time while controlling

for all other variables. This method can only be fit when

a multivariate ordinary least squares regression model can

be fit for the outcome model (1). The HDMM is a novel

method recently developed for high-dimensional mediation

analysis and aims to identify active mediators through dimen-

sion reduction techniques. We use 𝑝-values for univariate and

multivariate mediation analysis, estimated indirect effect for

HDMM and PIP for our Bayesian method as measures of the

evidence for mediation. We compare the power to identify

active mediators based on either 5% or 10% false discovery

rate (FDR).
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We consider various simulation settings with 𝑛 = 1000 and

𝑝 mediators (𝑝 = 100/2000). We first examine the settings

of 𝑝 = 100 (ie, 𝑝 < 𝑛) in order to include the multivariate

mediation analysis for comparison. In each setting, we sim-

ulate the continuous exposure variables {𝐴𝑖, 𝑖 = 1,… , 1000}
independently from a standard normal distribution. We then

generate a 𝑝-vector of mediators for the 𝑖th individual from

𝑴𝒊 = 𝐴𝑖𝜶𝒂 + 𝝐𝑀𝑖. Each element of 𝜶𝒂, (𝜶𝒂)𝑗 (𝑗 = 1,… , 𝑝)

is simulated from a point-normal prior: 𝜋𝑎𝑁(0, 1) + (1 −
𝜋𝑎)𝛿0, where 𝛿0 is a point mass at zero. The residual errors 𝝐𝑀𝑖

are simulated from a multivariate normal distribution with

mean zero and a covariance 𝚺. 𝚺 accounts for the correla-

tion among mediators commonly seen in real data, and we

use the sample covariance estimated from the Multi-Ethnic

Study of Atherosclerosis (MESA) data to serve as 𝚺. Since

our Bayesian mediation model does not explicitly account

for the correlation structure of mediators in the exposure-

mediators model, the simulations with correlated mediators

allow us to examine the robustness of our modeling assump-

tion on independence. We scale the two terms 𝐴𝑖𝜶𝒂 and 𝝐𝑀𝑖

further so that the former explains a fixed proportion of vari-

ance: 𝑃𝑉 𝐸𝐴 = Var(𝐴𝑖𝜶𝒂)∕Var(𝑴𝒊), where Var denotes the

sample variance.

Given the exposure and mediators, we then generate the

outcome 𝑌𝑖 from the linear model: 𝑌𝑖 = 𝑴𝒊
𝑇 𝜷𝒎 + 𝐴𝑖𝛽𝑎 + 𝜖𝑌 𝑖.

Here, each element of 𝜷𝒎, (𝜷𝒎)𝑗 (𝑗 = 1,… , 𝑝), is simulated

from 𝜋𝑚𝑁(0, 1) + (1 − 𝜋𝑚)𝛿0. The residual error 𝜖𝑌 𝑖 is simu-

lated independently from 𝑁(0, 1). We assume that only 10%

of the mediators are truly active ones, whose (𝜷𝒎)𝑗 and (𝜶𝒂)𝑗
are both sampled from the large variance normal distribution.

After simulating 𝑴𝒊
𝑇 𝜷𝒎, 𝐴𝑖𝛽𝑎, and 𝜖𝑌 𝑖, we scale these three

terms further to achieve two desirable 𝑃𝑉 𝐸s: 𝑃𝑉 𝐸𝐼𝐸 =
Var(𝜶𝒂

𝑇 𝜷𝒎𝐴𝑖)∕Var(𝑌𝑖) and 𝑃𝑉 𝐸𝐷𝐸 = Var(𝐴𝑖𝛽𝑎)∕Var(𝑌𝑖).
We consider a baseline scenario where we set 𝑃𝑉 𝐸𝐴 =

0.5, 𝑃 𝑉 𝐸𝐼𝐸 = 0.4, 𝑃 𝑉 𝐸𝐷𝐸 = 0.1, 𝜋𝑎 = 0.3, 𝜋𝑚 = 0.2. We

then vary each of the four parameters (𝑃𝑉 𝐸𝐴, 𝑃𝑉 𝐸𝐼𝐸,

𝜋𝑎, 𝜋𝑚) one at a time to investigate their individual influences

on the results. We perform 200 replicates for each scenario to

do the power comparison.

For 𝑝 = 100, we display the comparative results in Fig-

ure 2. The results show that our Bayesian multivariate medi-

ation method outperforms the other three methods in all sce-

narios. For example, in the baseline setting, at 10% FDR, the

Bayesian mediation method achieves a power of 0.725, while

the univariate and multivariate methods and HDMM achieve

a power of 0.527, 0.676, and 0.167, respectively. The power of

the four approaches increases with increasing 𝑃𝑉 𝐸𝐼𝐸 , which

increases the effect sizes of 𝜷𝒎. In addition, the power of most

approaches reduces with increased 𝜋𝑎 or 𝜋𝑚, which reduces

the effect sizes of either 𝜶𝒂 or 𝜷𝒎, respectively. As expected,

the advantage of our Bayesian method over the univariate and

multivariate methods is more apparent in sparse settings with

smaller values of 𝜋𝑎 and 𝜋𝑚. In terms of 𝑃𝑉 𝐸𝐴, which deter-

mines the effect size of 𝜶𝒂, we found that the power of dif-

ferent methods first increases slightly when 𝑃𝑉 𝐸𝐴 changes

from 0.3 to 0.5 and then decreases slightly as 𝑃𝑉 𝐸𝐴 changes

further to 0.8. The later decrease in power in the setting of

𝑃𝑉 𝐸𝐴 = 0.8 is presumably due to the increased correlation

between the exposure and mediators, which makes it difficult

for all the methods to distinguish between direct and indirect

effects in model (1). The performance of HDMM is relatively

stable to 𝑃𝑉 𝐸𝐴, 𝑃𝑉 𝐸𝐼𝐸 and 𝜋𝑎 and improves slightly with

increased 𝜋𝑎. HDMM does not assume sparsity on mediation

effects and thus does not fare well in relatively sparse situ-

ations. Between single and multivariate mediation methods,

the latter yields better power than the former in all scenarios,

as the multivariate one properly controls for the correlation

among mediators.

Next, we examine the settings for 𝑝 = 2000. Now we select

1% of the mediators to be active and set 𝜋𝑚 = 2%, 𝜋𝑎 = 3% as

the baseline setting with all other configurations being same

as in the baseline setting of 𝑝 = 100. We use a threshold of

1% false positive rate (FPR) instead of false discovery rate

due to low power in the 𝑝 = 2000 settings. The comparisons

are shown in Figure 3. The Bayesian mediation method yields

more power than the single mediator analysis and HDMM

in all the scenarios. For example, in the baseline setting, at

1% FPR, the Bayesian mediation method achieves a power of

0.470, while the univariate method and HDMM have a power

of 0.357 and 0.248, respectively. The power of our method

and the univariate approach again increase with increas-

ing 𝑃𝑉 𝐸𝐼𝐸 and decrease with increasing 𝜋𝑎/𝜋𝑚. Increasing

𝑃𝑉 𝐸𝐴 decreases the power of the Bayesian method, while

tends to improve the performance of HDMM possibly due

to the dimension reduction applied on the high-dimensional

mediators. Comparing the settings with varied 𝜋𝑎, we note

that the major power gain of our method lies in the joint analy-

sis of mediators in the outcome model and appropriate shrink-

age on 𝜷𝒎. For the mediator model, we are essentially fitting

a series of regression models for each mediator and expo-

sure. Therefore, shrinkage on the vector of 𝜶𝒂 does not help

much in mediator selection, especially if 𝜋𝑎 is relatively large,

for example, 0.1 or 0.25. In situations where the number of

nonzero 𝜷𝒎 gets closest to the reduced dimension of 𝑴 in

HDMM, its power is improved (eg, 𝜋𝑚 = 0.1).

Finally, we examine the ability of our method to estimate

the global NIE and the proportions of mediators in the four

categories as shown in Table 1. The full results are pro-

vided in the Supporting Information. Overall, our method

provides decent estimates for 𝜋𝑔1 and 𝜏 across different sce-

narios, especially when 𝑝 = 100. Note that our estimates for

𝜋𝑔1 are slightly conservative due to the fact that the model

does not have full power to detect all the active mediators.

The 95% credible intervals of 𝜏 shows that its posterior dis-

tribution is asymmetric and depends on the composition of

the four groups. We also show a distribution graph from the
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F I G U R E 2 Power comparison among our Bayesian mediation method (yellow), multivariate mediation method (red), single mediation

method (orange), and HDMM (coral) when the number of mediators is 100 and sample size 1000. The x-axis marks the one parameter we change at a

time from the baseline setting. We calculate the true positive rate (TPR) for the power comparison. The average TPR at FDR = 0.05/0.1 and its error

bar based on ±2 standard errors are calculated across 200 replicates. The standard error of the empirically estimated proportions is computed using

variance of a binomial random variable

posterior samples of 𝜏 in four different scenarios with

𝑛 = 1000, 𝑝 = 100 in Figure 2 of Supporting Information.

6 DATA ANALYSIS

We applied the proposed Bayesian method to investigate the

mediation mechanism of DNAm in the pathway from adult

SES to glycated hemoglobin (HbA1c) in the MESA (Bild

et al., 2002). The exposure, adult SES, is indicated by adult

educational attainment and is an important risk factor for

cardiovascular diseases. The outcome, HbA1c, is a surrogate

measurement of average blood glucose levels and a critical

variable for various diseases including type 2 diabetes (T2D)

and cardiovascular disease (CVD) (Selvin et al., 2010). We

provide our detailed processing steps for MESA data in

the Supporting Information. For computational reasons, we

focused on a final set of 2000 cytosine-phosphate-guanine

(CpG) sites that have the strongest marginal associations with

adult SES for the following mediation analysis with 1231

individuals.

We applied both univariate mediation analysis and our

Bayesian multivariate mediation analysis to analyze the

selected 2000 CpG sites. For the multivariate analysis, we

consider

𝑌𝑖 = 𝑴𝒊
𝑇 𝜷𝒎 + 𝐴𝑖𝛽𝑎 + 𝑪𝟐𝒊

𝑇 𝜷𝒄 + 𝜖𝑌 𝑖 (6)

𝑴𝒊 = 𝐴𝑖𝜶𝒂 + 𝜶𝒄𝑪𝟏𝒊 + 𝝐𝑀𝑖, (7)

where 𝑌𝑖 represents HbA1c levels, 𝐴𝑖 represents adult SES

values, and 𝑴𝒊 represents the methylation level for 2000 CpG

sites. In Equation (6), the model controls for age, gender, and

race/ethnicity, and in Equation (7), we adjust for age, gender,

race/ethnicity, and enrichment scores for four major blood cell

types (neutrophils, B cells, T cells, and natural killer cells). All

the continuous variables are standardized to have zero mean

and unit variance. The univariate analysis is applied in a sim-

ilar fashion except that it is used to analyze one site at a time.
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F I G U R E 3 Power comparison among our Bayesian mediation method (yellow), single mediation method (orange), and HDMM (coral) when

the number of mediators is 2000 and sample size 1000. The x-axis marks the one parameter we change at a time from the baseline setting. We

calculate the TPR for the power comparison. The average TPR at FPR = 0.01 and its error bar based on ±2 standard errors are calculated across 200

replicates. The standard error of the empirically estimated proportions is computed using variance of a binomial random variable

We display PIP values for each of the 2000 CpG sites from

the Bayesian multivariate analysis in Figure 4. Two CpG sites

were identified with strong evidence (PIP > 0.5) for mediating

the adult SES effects on HbA1c. They are also among the top

10 sites with the smallest 𝑝-values obtained from univariate

mediation analysis. In addition, these two CpG sites are close

to genes CCDC54 and CCND2, both of which are known can-

didates associated with HbA1c. Specifically, the expression

of CCND2 has been shown to be associated with risk of T2D

and the related glycemic traits of glucose, HbA1c, and insulin

(Yaghootkar et al., 2015). The gene CCDC54 interacts with

valproic acid and acrylamide, both of which are associated

with diabetes and blood insulin (Lin et al., 2009). Therefore,

strong evidence from our method suggests that adult SES may

act through these two genes to affect HbA1c. We also apply

the HDMM and Bayesian methods with spike-and-slab and

horseshoe priors to the data. For HDMM, the weights for the

first direction of mediation do not suggest obvious signal or

pattern. We also note that there is a lack of biological evi-

dence to support a mediating role of the genes picked out by

the other methods, except for one gene (CLU).

In addition, we estimate the global mediation effects 𝜏

as 0.0084 and its 95% credible interval from the posterior

as (0.0063, 0.0115). The 𝑃𝑉 𝐸𝐼𝐸 is 0.096, indicating that

approximately 10% of the outcome variance is indirectly

explained by DNAm jointly after controlling for covariates.

We also estimate the proportion of CpG sites in each of the

four categories as defined in Section 4.3: �̂�𝑔1 = 0.002, �̂�𝑔2 =
0.031, �̂�𝑔3 = 0.001, �̂�𝑔4 = 0.966. We find that a small pro-

portion of DNAm has large effects on the HbA1c level, and

a small proportion of DNAm is notably associated with adult

SES. The results also suggest that adult SES acts through cer-

tain important DNAm sites to influence HbA1c.

7 DISCUSSION

In this article, we develop a Bayesian sparse linear mixed

model for high-dimensional mediation analysis. The advan-

tage of a Bayesian method is to propagate uncertainty for

functions of parameters in a natural way instead of resort-

ing to delta methods or two-step approaches. Our method can
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F I G U R E 4 Consider the trio: Adult SES → DNAm → HbA1c. The black dots are the estimated PIP for each CpG site from the Bayesian

mediation method, and the red dots are the estimated PIPs when we permute the outcome once and fit the Bayesian mediation method

jointly analyze a large number of unordered mediators and

characterize their global mediation effect without making any

assumptions on their joint distribution. By imposing contin-

uous shrinkage priors on the key regression coefficients in

mediation analysis, our method achieves up to 30% power

gain in identifying true nonnull mediators compared with the

univariate mediation method and approximately 10% power

gain over the multivariate methods from simulations. The

Bayesian method also provides better interpretations of the

way in which a mediator links or does not link exposure to out-

come and automatically categorize mediators into four groups

based on exposure-mediator and mediator-outcome relation-

ship. Implementing our method to MESA, we have identified

two genes, CCDC54 and CCND2, with strong evidence for

actively mediating the adult SES effects on HbA1c.

Although our proposed method can simultaneously analyze

high-dimensional mediators, like other posterior sampling-

based methods, the computation speed is not fast due to the

large number of sampling iterations required for reasonable

convergence. Also, throughout the article, we focus on one

continuous outcome of interest. For binary outcome, we can

naively treat it as a quantitative trait, which is justified by rec-

ognizing the linear model as a first-order Taylor approxima-

tion to a generalized linear model (Zhou et al., 2013). One

may hope to adapt our method to directly model binary out-

comes through nonlinear link functions, but such an approach

will substantially increase the computational cost and may not

bring much power gain, as is shown in Zhou et al. (2013).

Future development of new algorithms and/or new methods

will likely be required to scale our method to handle thou-

sands of individuals and millions of mediators in generalized

regression models.

Recent literature proposes a convex penalty on the product

term of indirect effect (Zhao and Luo, 2016), which improves

power of pathway selection and reduces estimation bias in the

indirect effects. In the Bayesian framework, direct shrinkage
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on the product term may be a more appropriate choice, as

it takes into account the correlation between the two mod-

els in mediation analysis and is more straightforward when

the goal is to identify nonnull mediators. In addition, the bio-

logical annotations like pathways can be important predic-

tors for the underlying mediation mechanism, and integrat-

ing them into high-dimensional mediation analysis would be

promising to facilitate the selection of active mediators. Possi-

ble extensions include linking the functional annotation infor-

mation for mediators to the mediator-specific group proba-

bilities, for example, 𝜋𝑚𝑗, 𝜋𝑎𝑗 for the 𝑗th mediator through a

logistic regression model (Carbonetto and Stephens, 2013).

We leave these interesting extensions for future work.
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