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Summary: Causal mediation analysis aims to examine the role of a mediator or a group of mediators that lie

in the pathway between an exposure and an outcome. Recent biomedical studies often involve a large number of

potential mediators based on high-throughput technologies. Most of the current analytic methods focus on settings

with one or a moderate number of potential mediators. With the expanding growth of -omics data, joint analysis

of molecular-level genomics data with epidemiological data through mediation analysis is becoming more common.

However, such joint analysis requires methods that can simultaneously accommodate high-dimensional mediators

and that are currently lacking. To address this problem, we develop a Bayesian inference method using continuous

shrinkage priors to extend previous causal mediation analysis techniques to a high-dimensional setting. Simulations

demonstrate that our method improves the power of global mediation analysis compared to simpler alternatives and

has decent performance to identify true non-null contributions to the mediation effects of the pathway. The Bayesian

method also helps us to understand the structure of the composite null cases for inactive mediators in the pathway.

We applied our method to Multi-Ethnic Study of Atherosclerosis (MESA) and identified DNA methylation regions

that may actively mediate the effect of socioeconomic status (SES) on cardiometabolic outcomes.
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1. Introduction

Causal mediation analysis has been of significant interest across many disciplines (Van-

derWeele, 2016; Ten Have and Joffe, 2012). It investigates how an intermediate variable,

referred to as mediator, explains the mechanism through which the exposure variable affects

the outcome. Under certain regularity conditions, mediation analysis allows us to disentangle5

the exposure’s effect into two parts: effect that acts through the mediator of interest (in-

direct/mediation effect) and effect that is unexplained by the mediator (direct effect). The

state-of-the-art causal mediation analysis (Ten Have and Joffe, 2012) which builds upon the

counterfactual framework (Robins and Greenland, 1992), establishes rigorous assumptions

regarding the exposure-outcome, exposure-mediator and mediator-outcome relationships to10

justify appropriate use of the classical formulas from Baron and Kenny in the linear regression

setting (Baron and Kenny, 1986; MacKinnon, 2008) and creates a framework for other

general extensions. Many of the existing methods focus on univariate mediation analysis

that analyzes one mediator at a time in the causal inference framework, and are applicable

to both continuous (Imai et al., 2010) and binary outcomes (VanderWeele and Vansteelandt,15

2010). Several studies have recently extended mediation analysis models to jointly account

for multiple mediators. However, most of the literature considered settings with two or three

mediators, where each mediator is ordered along a priori known mediation pathways and the

path-specific effects are estimated (Daniel et al., 2015). In the presence of multiple unordered

mediators, one often has to rely on an ad hoc approach to fit a series of univariate mediation20

models (Taguri et al., 2015; Huang and Pan, 2016) and then summarize the mediation

effects across all the mediators. Such approach ignores correlation among mediators and the

estimated mediation effect does not necessarily have a causal interpretation, particularly

when the dimension of the potential mediators is truly large.

In this paper, using the potential outcome framework for causal inference, we develop a25

Bayesian mediation analysis method to characterize the indirect effect through an entire set
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of high-dimensional mediators. Note that Bayesian methods for mediation have also been

proposed in a principal stratification framework (Elliott et al., 2010), though there are subse-

quent discussions on whether the principal stratification framework is a plausible framework

to estimate indirect effects (VanderWeele, 2011). In addition, for estimating natural direct

and indirect effects, recent work applied Bayesian non-parametric models, especially Dirichlet5

process mixture models (Kim et al., 2017, 2019) in both univariate and multiple mediators

analysis. In contrast, here, we rely on Bayesian variable selection methods to simultaneously

analyze a relatively large number of mediators in a pathway with potentially a small number

being truly active. With sparsity inducing priors on active coefficients, we assume only a

small proportion of mediators in the whole set may mediate the exposure effect on the10

outcome. This sparsity assumption allows us to extend previous univariate mediation analysis

methods to a high-dimensional setting by framing the identification of active mediators in

the whole set as a variable selection problem and applying Bayesian methods with continuous

shrinkage priors. Unlike previous methods developed for multiple mediators, ours can jointly

analyze much larger number of potential mediators without making any path-specific or15

causal ordering assumptions on mediators. Our method enables us to identify the joint

indirect effects of all the mediators and the subset of active ones in the set, and propagates

uncertainty in inference in a principled way. Recently, there has been emerging interest in

high-dimensional mediation analysis, and our method adds to the burgeoning literature for

high-dimensional mediators (Chén et al., 2017; Derkach et al., 2019).20

While our method is generally applicable to many settings, we examine its performance in the

setting of genomics studies. Recent studies have proposed the molecular traits such as gene

expression and DNA methylation (DNAm) may act as a mechanism through which various

aspects of socioeconomic status (SES) and neighborhood disadvantages affect physical health.

For example, childhood/adult SES and neighborhood crime rates have recently been shown25

to influence DNAm in several genes related to stress and inflammation (Needham et al.,
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2015; Smith et al., 2017). DNAm of inflammatory markers have also been associated with

cardiovascular risk and disease (Zhong et al., 2016). Here, we show through simulations and

data analysis that our high-dimensional mediation analysis framework can increase power of

a joint analysis and facilitate the identification of active mediators in the set.

2. Notation, Definitions and Assumptions5

In this paper, we focus on causal mediation analysis for the setting where there is a single

exposure of interest but there exists a high-dimensional set of candidate mediators that may

mediate the effect of exposure on an outcome. Suppose our analysis is based on a study

of n subjects and for subject i, i = 1, ..., n, we collect data on exposure Ai, p candidate

mediators Mi = (M
(1)
i ,M

(2)
i , ...,M

(p)
i )T , outcome Yi, and q covariates Ci = (C

(1)
i , ..., C

(q)
i )T .10

In particular, we focus on the case where Yi and Mi are all continuous variables.

We adopt the counterfactual (or potential outcomes) framework to formally define mediators

and their causal effects. Let M
(j)
i (a) denote the potential (or counterfactual) value of the

jth mediator, j = 1, . . . , p, for subject i under exposure level at a. Suppose the exposure has

K levels, then K×p potential counterfactual random variables for mediators are defined, i.e.15

M (1)(1),M (2)(1), ...,M (p)(1),M (1)(2),M (2)(2), ...,M (p)(2),M (1)(K),M (2)(K), ...,M (p)(K). Let

Yi(a,m) = Yi(a,m
(1), ...,m(p)) denote the ith subject’s potential outcome if the subject’s ex-

posure were a and mediators were m = (m(1), ...,m(p)). As this paper focuses on the joint ef-

fects of the whole set of mediators, for simplicity, we defineMi(a) = (M
(1)
i (a),M

(2)
i (a), ...,M

(p)
i (a)).

These counterfactuals are hypothetical variables and may not be observed in real data. To20

connect potential variables to observed data, we make the Stable Unit Treatment Value

Assumption (SUTVA) (Rubin, 1980), which is a commonly made assumption in causal

inference. Specifically, the SUTVA assumes there is no interference between subjects and the

consistency assumption, which states that the observed variables are the same as the potential
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variables corresponding to the actually observed treatment level, i.e.,Mi =
∑

aMi(a)I(Ai = a),

and Yi =
∑

a

∑
m Yi(a,m)I(Ai = a,Mi = m), where I(·) is the indicator function. For

simplicity, we define Yi(a) = Yi(a,Mi(a)), the potential outcome had the exposure been

a and the whole set of mediators been the value that would have been observed under

exposure a. The defined potential variables are hypothetical and actually most of them are5

not observed in real data. For example, if Ai 6= a, then Yi(a) or Mi(a) are not observed.

We may decompose the effect of an exposure into its direct effect and effect mediated

through the whole set of mediators (VanderWeele and Vansteelandt, 2014). The controlled

direct effect (CDE) of the exposure on the outcome is defined as Yi(a,m) − Yi(a
?,m),

which is the effect of changing exposure from level a? (the reference level) to a while10

hypothetically controlling mediators at level m. The natural direct effect (NDE) is defined

as Yi(a,Mi(a
?)) − Yi(a?,Mi(a

?)), which is the CDE when mediators are controlled at the

level that would have naturally been had the exposure been a?. The natural indirect effect

(NIE) is defined by Yi(a,Mi(a))− Yi(a,Mi(a
?)), capturing the effect mediated through the

whole set of mediators, i.e., the change in potential outcomes when mediators change from15

Mi(a
?) toMi(a) while fixing exposure at a. The total effect (TE), Yi(a)−Yi(a?), can then be

decomposed into natural direct and indirect effect, written as Yi(a)−Yi(a?) = Yi(a,Mi(a))−

Yi(a
?,Mi(a

?)) = Yi(a,Mi(a))−Yi(a,Mi(a
?))+Yi(a,Mi(a

?))−Yi(a?,Mi(a
?)) =NIE+NDE.

Causal effects are formally defined in terms of potential variables which are not neces-

sarily observed, but the identification of causal effects must be based on observed data.20

Therefore, similar to missing data problems, further assumptions regarding the confounders

are required for the identification of causal effects in mediation analysis (VanderWeele and

Vansteelandt, 2014). We will use A |= B|C to denote that A is independent of B conditional

on C. For estimating the average CDE, two assumptions on confounding are needed: (1)

Yi(a,m) |= Ai|Ci, namely, there is no unmeasured confounding for the exposure effect on the25

outcome; (2) Yi(a,m) |=Mi|{Ci, Ai}, namely, there is no unmeasured confounding for any of
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mediator-outcome relationship after controlling for the exposure. The two assumptions are

illustrated in the left panel of Figure 1, and controlling for exposure-outcome and mediator-

outcome confounding corresponds to controlling for C1, C2 in the figure. In practice, both

sets of covariates C1 and C2 need not to be distinguished from one another and can simply

be included in the overall set of C that we adjust for. The identification of the average5

NDE and NIE requires assumption (1) and (2), along with two additional assumptions: (3)

Mi(a) |= Ai|Ci, namely, there is no unmeasured confounding for the exposure effect on all

the mediators; (4) Yi(a,m) |=Mi(a
?)|Ci, which can be interpreted as there is no downstream

effect of the exposure that confounds the mediator-outcome relationship for any of the

mediators. Graphically, assumption (4) implies that there should be no arrow going from10

exposure A to mediator-outcome confounder C2 in Figure 1(a). It is thus violated in Figure

1(b) since the mediator-outcome confounder L is itself affected by the exposure. The four

assumptions are required to hold with respect to the whole set of mediatorsMi(a). Finally, as

in all mediation analysis, the temporal ordering assumption also needs to be satisfied, i.e., the

exposure precedes the mediators, which precede the outcome. With the above assumptions,15

the average NDE and NIE can be identified by modeling Yi|Ai,Mi,Ci and Mi|Ai,Ci using

observed data. The full derivation can be found in the Supporting Information (SI).

[Figure 1 about here.]

We note that as the main interest of this paper lies in the joint effect of the whole set of media-

tors,thus the definition of NIE and NDE only involve the counterfactuals of the formMi(a) =20

(M
(1)
i (a),M

(2)
i (a), ...,M

(p)
i (a)). If one is interested in estimating the effect of a specific me-

diator, then one needs to consider the Kp counterfactuals (M
(1)
i (a1),M

(2)
i (a2), ...,M

(p)
i (ap)),

a1, a2, ..., ap ∈ {1, 2, ..., K}. Characterizing mediator-specific NIE is a much more challenging

task and requires stronger assumptions, in particular when the multiple mediators influence

and interact with one another.25
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3. Models and Estimands

Since the effects of mediators (average NDE and NIE) defined in terms of potential out-

comes can be deduced from two conditional models for Yi|Ai,Mi,Ci and Mi|Ai,Ci using

observed data, we propose two regression models and subsequently deduce the causal ef-

fects of mediators. For modeling Yi|Ai,Mi,Ci, we assume for subject i (i = 1, ..., n), a

continuous outcome of interest Yi is associated with exposure Ai, p potential mediators

Mi = (M
(1)
i ,M

(2)
i , ...,M

(p)
i )T that may be on the pathway from Ai to Yi, and q covariates

Ci with the first element being the scalar 1 for the intercept:

Yi = Mi
Tβm + Aiβa +Ci

Tβc + εY i (1)

where βm = ((βm)1, ..., (βm)p)
T , βc = (βc1, ..., βcq)

T , εY i ∼ N(0, σ2
e). Here we assume there

is no interaction between Ai andMi. Next for modelingMi|Ai,Ci we consider a multivariate

regression model that jointly analyzes the p potential mediators:

Mi = Aiαa +αcCi + εMi (2)

where αa = ((αa)1, ..., (αa)p)
T , αc = (αc1

T , ...,αcp
T )T , αc1, ...,αcp are q-by-1 vectors,

εMi ∼ MVN(0,Σ), Σ captures the correlation among the mediators. εY i and εMi are

assumed independent of Ai, Ci and each other.

With assumptions made in Section 2, we show in Supporting Information that the average5

NDE, NIE and TE can then be computed as below, and in the rest of the paper, we refer to

NDE as direct effect and NIE as indirect/mediation effect.

NDE = E[Yi(a,Mi(a
?))− Yi(a?,Mi(a

?))|Ci] = βa(a− a?). (3)

NIE = E[Yi(a,Mi(a))− Yi(a,Mi(a
?))|Ci] = (a− a?)

p∑

j=1

(αa)j(βm)j. (4)

TE = E[Yi(a)− Yi(a?)|Ci] = (βa +αa
Tβm)(a− a?). (5)

As noted in Equation (4), under the assumptions of model (1) the NIE through the whole10

set of mediators turns out to be the sum of the product of (αa)j and (βm)j over the entire
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set. Those individual product terms do not correspond to the NIE of a specific (say j-

th) mediator. We define active mediators as the ones with non-null contribution to the

global NIE, i.e. (αa)j(βm)j being non-zero. The proposed Bayesian shrinkage and selection

methods are used to identify and estimate these active components. Any inactive mediator

will naturally fall into one of the following three categories: (βm)j is non-zero while (αa)j is5

zero; (αa)j is non-zero while (βm)j is zero; both are zero. Such a refined partition for the high-

dimensional set of mediators provides useful and insightful interpretations for the structure

of the composite null. Regarding a summary global measure of the indirect effect, we note

that the quantity of
∑p

j=1(αa)j(βm)j is not a good summary of the global mediation effects

when the terms have opposite directions. Considering this, we propose to use the L2 norm10

of the p-by-1 vector of (αa)j(βm)j (Huang and Pan, 2016) as a global measure of mediation

effects, i.e., τ = ||((αa)1(βm)1, (αa)1(βm)2, ..., (αa)p(βm)p)||2 =
∑p

j=1{(αa)j(βm)j}2.

4. Bayesian Method for Estimation

4.1 Prior Specification

In order to conduct high-dimensional mediation analysis, we need to make certain model as-15

sumptions on the effect sizes. In genome-wide association studies, Bayesian sparse regression

models, such as Bayesian variable selection regression models (BVSR), have been proven

to yield better power in detecting relevant covariates (Guan and Stephens, 2011). Here, we

also make the reasonable sparsity assumption, which implies that only a small proportion of

mediators mediate the exposure effects on the outcome. Linear mixed models (LMM), on the20

other hand, assume that every mediator transmits certain effects from exposure to outcome,

with the effect sizes normally distributed. We first assume that all the potential mediators

contribute small, non-zero effects in mediating the exposure-outcome relationship, which is

aligned with the main idea of polygenic (Zhou et al., 2013) and omnigenic (Boyle et al.,

2017) models. Besides these small effects, we also assume that there is a small proportion25
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of mediators exhibiting additional/large effects. We refer to these mediators with additional

effects as active mediators, which is consistent with the concept of core genes defined in the

omnigenic model. Therefore, in this paper, we use the Baysian Sparse Linear Mixed Model

(BSLMM) priori, which imposes continuous shrinkage on the effects (Zhou et al., 2013) and

assumes the presence of small and additional effects, for high-dimensional mediation analysis.5

The BSLMM is capable of learning the underlying mediation architecture from the data,

producing good performances across a wide range of scenarios. Our model assumptions are

also akin to the notion of quasi-sparsity that has become popular with continuous shrinkage

priors (Ge et al., 2019). Specifically, we assume a mixture of two normal components a priori

for the jth mediator, j = 1, 2, ...p,10

(βm)j ∼ πmN(0, σ2
m1) + (1− πm)N(0, σ2

m0)

(αa)j ∼ πaN(0, σ2
ma1) + (1− πa)N(0, σ2

ma0)

where σ2
m1 > σ2

m0, σ
2
ma1 > σ2

ma0, and πm, πa denote the proportion of coefficients that belong

to the normal distribution with a larger variance.

For the other coefficients, we assume βa ∼ N(0, σ2
a) and βc,αc ∼ MVN(0, σ2

cI), σ2
c → ∞.

Here we use a limiting normal prior for βc,αc with its variance going to infinity, since we

often have insufficient information from the data to overwhelm any prior assumptions. For15

the convenience of modeling, we set the correlation structure among mediators Σ as σ2
gI.

For the hyper-parameters of variances in the model, we use the standard conjugate priors,

σ2
ms ∼ inverse-gamma(kms, lms), s = 0, 1

σ2
mas ∼ inverse-gamma(kmas, lmas), s = 0, 1

σ2
a ∼ inverse-gamma(ka, la) and σ2

e , σ
2
g ∼ inverse-gamma(ke, le)

We set km0 = km1 = ka = kma0 = kma1 = ke = 2.0, and lm0 = lma0 = 10−4, la = lm1 =

lma1 = le = 1.0. The prior inclusion probabilities πm, πa encode the prior information about



A
u
th
or

M
an
u
sc
ri
p
t

This article is protected by copyright. All rights reserved.

Bayesian Shrinkage Estimation of High Dimensional Causal Mediation Effects in Omics Studies 9

the sparsity of the coefficients. We place a uniform prior on log(πm), log(πa),

log(πm), log(πa) ∼ U(log(1/p), log(1))

The priors were chosen so that πm and πa range from 1/p to 1, and the lower and upper

bounds correspond to an expectation of 1 and p covariates in each model. A uniform prior

on log(πm) and log(πa) reflects the fact that the uncertainty in πm, πa is large due to the

sparsity of the models. We do not choose a uniform prior on πm, πa since that would put

appreciable prior probability on large numbers of covariates (Guan and Stephens, 2011).5

4.2 Posterior Sampling Algorithm

We develop a Markov chain Monte Carlo (MCMC) sampling algorithm to obtain the posterior

samples from our Bayesian method. To facilitate MCMC, we introduce indicator variables

rm, ra ∈ {0, 1}p to indicate which normal component (βm)j and (αa)j are from, and10

for the jth mediator, rmj = I((βm)j ∼ N(0, σ2
m1)), raj = I((αa)j ∼ N(0, σ2

ma1)), where

I(·) represents an indicator function. We use a Hastings-within-Gibbs algorithm to obtain

posterior samples, and full details of the algorithm appear in Supporting Information.

For the jth mediator, we can estimate the posterior probability of both (βm)j and (αa)j

being in the normal components with larger variances as the posterior inclusion probability15

(PIP), defined as P (rmj = 1, raj = 1|Data) in our model. Mediators with larger (βm)j

and (αa)j tend to be categorized into larger variance normals, and such tendency can be

quantified by the mediator’s PIP. PIP provides non-null evidence for both (βm)j and (αa)j,

and therefore, we select mediators with the highest PIP as potentially active mediators.

4.3 Mediator Categorization20

Under the above Bayesian mediation framework, active mediators are the ones whose (βm)j

and (αa)j both come from larger normal components. The three categories for the inactive
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mediators are: (βm)j from larger normal component while (αa)j from smaller normal com-

ponent; (αa)j from larger normal component while (βm)j from smaller normal component;

both from smaller components. In practice, we have the indicator variables rmj and raj to

denote which component the coefficients (βm)j, (αa)j belong to and can easily obtain the

posterior probabilities for each group. The four groups are illustrated in Table 1,5

[Table 1 about here.]

5. Simulations

We evaluate the performance of the proposed Bayesian mediation method and compare it

with the three existing mediation methods, which include single mediation analysis, multi-

variate mediation analysis and high-dimensional multivariate mediation (HDMM) method-10

ology of Chén et al. (2017). Single mediation analysis tests one mediator at a time for its

mediation effect, and we use the R package mediation with the nonparametric bootstrap

option for standard error estimation. Multivariate mediation analysis (VanderWeele and

Vansteelandt, 2014), on the other hand, jointly analyzes all the mediators in both model (1)

and (2) and tests the product term (βm)j(αa)j for each j at a time while controlling for15

all other variables. This method can only be fit when a multivariate ordinary least squares

regression model can be fit for the outcome model (1). The HDMM is a novel method recently

developed for high-dimensional mediation analysis and aims to identify active mediators

through dimension reduction techniques. We use p-values for univariate and multivariate

mediation analysis, estimated indirect effect for HDMM and PIP for our Bayesian method20

as measures of the evidence for mediation. We compare the power to identify active mediators

based on either 5% or 10% false discovery rate (FDR).

We consider various simulation settings with n = 1, 000 and p mediators (p = 100 / 2,000).

We first examine the settings of p = 100 (i.e. p < n) in order to include the multivariate
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mediation analysis for comparison. In each setting, we simulate the continuous exposure

variables {Ai, i = 1, ..., 1000} independently from a standard normal distribution. We then

generate a p-vector of mediators for the ith individual from Mi = Aiαa +εMi. Each element

of αa, (αa)j (j = 1, ..., p), is simulated from a point-normal prior: πaN(0, 1) + (1 − πa)δ0,

where δ0 is a point mass at zero. The residual errors εMi are simulated from a multivariate5

normal distribution with mean zero and a covariance Σ. Σ accounts for the correlation

among mediators commonly seen in real data, and we use the sample covariance estimated

from the Multi-Ethnic Study of Atherosclerosis (MESA) data to serve as Σ. Since our

Bayesian mediation model does not explicitly account for the correlation structure of me-

diators in the exposure-mediators model, the simulations with correlated mediators allow10

us to examine the robustness of our modeling assumption on independence. We scale the

two terms Aiαa and εMi further so that the former explains a fixed proportion of variance:

PV EA = V ar(Aiαa)/V ar(Mi), where V ar denotes the sample variance.

Given the exposure and mediators, we then generate the outcome Yi from the linear model:

Yi = Mi
Tβm + Aiβa + εY i. Here, each element of βm, (βm)j (j = 1, ..., p), is simulated15

from πmN(0, 1)+(1−πm)δ0. The residual error εY i is simulated independently from N(0, 1).

We assume that only 10% of the mediators are truly active ones, whose (βm)j and (αa)j

are both sampled from the large variance normal distribution. After simulating Mi
Tβm,

Aiβa and εY i, we scale these three terms further to achieve two desirable PV Es: PV EIE =

V ar(αa
TβmAi)/V ar(Yi) and PV EDE = V ar(Aiβa)/V ar(Yi).20

We consider a baseline scenario where we set PV EA = 0.5, PV EIE = 0.4, PV EDE =

0.1, πa = 0.3, πm = 0.2. We then vary each of the four parameters (PV EA, PV EIE, πa, πm)

one at a time to investigate their individual influences on the results. We perform 200

replicates for each scenario to do the power comparison.

[Figure 2 about here.]25
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For p = 100, we display the comparative results in Figure 2. The results show that our

Bayesian multivariate mediation method outperforms the other three methods in all scenar-

ios. For example, in the baseline setting, at 10% FDR, Bayesian mediation method achieves

a power of 0.725, while the univariate and multivariate methods, and HDMM achieve a

power of 0.527, 0.676 and 0.167, respectively. The power of the four approaches increases5

with increasing PV EIE, which increases the effect sizes of βm. In addition, the power of

most approaches reduces with increased πa or πm, which reduces the effect sizes of either αa

or βm, respectively. As expected, the advantage of our Bayesian method over the univariate

and multivariate methods is more apparent in sparse settings with smaller values of πa and

πm. In terms of PV EA, which determines the effect size of αa, we found that the power10

of different methods first increases slightly when PV EA changes from 0.3 to 0.5 and then

decreases slightly as PV EA changes further to 0.8. The later decrease in power in the setting

of PV EA = 0.8 is presumably due to the increased correlation between the exposure and

mediators, which makes it difficult for all the methods to distinguish between direct and

indirect effects in model (1). The performance of HDMM is relatively stable to PV EA,15

PV EIE and πa, and improves slightly with increased πa. HDMM does not assume sparsity

on mediation effects and thus does not fare well in relatively sparse situations. Between

single and multivariate mediation method, the latter yields better power than the former in

all scenarios, as the multivariate one properly controls for the correlation among mediators.

[Figure 3 about here.]20

Next, we examine the settings for p = 2, 000. Now we select 1% of the mediators to be active

and set πm = 2%, πa = 3% as the baseline setting with all other configurations being same

as in the baseline setting of p = 100. We use a threshold of 1% false positive rate (FPR)

instead of false discovery rate due to low power in the p = 2, 000 settings. The comparisons

are shown in Figure 3. The Bayesian mediation method yields more power than the single25

mediator analysis and HDMM in all the scenarios. For example, in the baseline setting, at
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1% FPR, Bayesian mediation method achieves a power of 0.470, while the univariate method

and HDMM have a power of 0.357 and 0.248, respectively. The power of our method and the

univariate approach again increases with increasing PV EIE and decreases with increasing

πa/πm. Increasing PV EA decreases the power of the Bayesian method, while tends to improve

the performance of HDMM possibly due to the dimension reduction applied on the high-5

dimensional mediators. Comparing the settings with varied πa, we note that the major

power gain of our method lies in the joint analysis of mediators in the outcome model and

appropriate shrinkage on βm. For the mediator model, we are essentially fitting a series of

regression models for each mediator and exposure. Therefore, shrinkage on the vector of αa

does not help much in mediator selection, especially if πa is relatively large, e.g. 0.1 or 0.25.10

In situations where the number of non-zero βm gets closest to the reduced dimension of M

in HDMM, its power is improved (e.g. πm = 0.1).

Finally, we examine the ability of our method to estimate the global NIE and the proportions

of mediators in the four categories as shown in Table 1. The full results are provided in the

SI. Overall, our method provides decent estimates for πg1 and τ across different scenarios,15

especially when p = 100. Note that our estimates for πg1 are slightly conservative due to the

fact that the model does not have full power to detect all the active mediators. The 95%

credible intervals of τ shows that its posterior distribution is asymmetric and depends on

the composition of the four groups. We also show a distribution graph from the posterior

samples of τ in four different scenarios with n = 1000, p = 100 in Figure 2 of SI.20

6. Data Analysis

We applied the proposed Bayesian method to investigate the mediation mechanism of DNAm

in the pathway from adult socioeconomic status (SES) to glycated hemoglobin (HbA1c) in the

Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al., 2002). The exposure, adult SES,
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is indicated by adult educational attainment and is an important risk factor for cardiovascular

diseases. The outcome, HbA1c, is a surrogate measurement of average blood glucose levels

and a critical variable for various diseases including T2D and CVD (Selvin et al., 2010). We

provide our detailed processing steps for MESA data in the SI. For computational reasons,

we focused on a final set of 2,000 CpG sites that have the strongest marginal associations5

with adult SES for the following mediation analysis with 1,231 individuals.

We applied both univariate mediation analysis and our Bayesian multivariate mediation

analysis to analyze the selected 2,000 CpG sites. For the multivariate analysis, we consider

Yi = Mi
Tβm + Aiβa +C2i

Tβc + εY i (6)

Mi = Aiαa +αcC1i + εMi (7)

where Yi represnts HbA1c levels; Ai represents adult SES values; and Mi represnts methy-

lation level for 2,000 CpG sites. In Equation (6), the model controls for age, gender and10

race/ethnicity, and in Equation (7), we adjust for age, gender, race/ethnicity and enrichment

scores for 4 major blood cell types (neutrophils, B cells, T cells and natural killer cells). All the

continuous variables are standardized to have zero mean and unit variance. The univariate

analysis is applied in a similar fashion except that it is used to analyze one site at a time.

We display PIP values for each of the 2,000 CpG sites from the Bayesian multivariate analysis15

in Figure 4. Two CpG sites were identified with strong evidence (PIP > 0.5) for mediating

the adult SES effects on HbA1c. They are also among the top ten sites with the smallest

p-values obtained from univariate mediation analysis. In addition, these two CpG sites are

close to genes CCDC54 and CCND2, both of which are known candidates associated with

HbA1c. Specifically, the expression of CCND2 has been shown to be associated with risk20

of T2D and the related glycemic traits of glucose, HbA1c, and insulin (Yaghootkar et al.,

2015). The gene CCDC54 interacts with valproic acid and acrylamide, both of which are

associated with diabetes and blood insulin (Lin et al., 2009). Therefore, strong evidence
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from our method suggests that adult SES may act through these two genes to affect HbA1c.

We also apply the HDMM and Bayesian methods with spike-and-slab and horseshoe priors

to the data. For HDMM, the weights for the first direction of mediation do not suggest

obvious signal or pattern. We also note that there is a lack of biological evidence to support

a mediating role of the genes picked out by the other methods, except for one gene (CLU ).5

[Figure 4 about here.]

In addition, we estimate the global mediation effects τ̂ as 0.0084 and its 95% credible interval

from the posterior as (0.0063, 0.0115). The P̂ V EIE is 0.096, indicating that approximately

10% of the outcome variance is indirectly explained by DNAm jointly after controlling for

covariates. We also estimate the proportion of CpG sites in each of the four categories as10

defined in Section 4.3: π̂g1 = 0.002, π̂g2 = 0.031, π̂g3 = 0.001, π̂g4 = 0.966. We find that a

small proportion of DNAm has large effects on the HbA1c level, and a small proportion of

DNAm is notably associated with adult SES. The results also suggest that adult SES acts

through certain important DNAm sites to influence HbA1c.

7. Discussion15

In this paper, we develop a Bayesian sparse linear mixed model for high-dimensional media-

tion analysis. The advantage of a Bayesian method is to propagate uncertainty for functions

of parameters in a natural way instead of resorting to Delta methods or two-step approaches.

Our method can jointly analyze a large number of unordered mediators and characterize

their global mediation effect without making any assumptions on their joint distribution. By20

imposing continuous shrinkage priors on the key regression coefficients in mediation analysis,

our method achieves up to 30% power gain in identifying true non-null mediators compared

with univariate mediation method and approximately 10% power gain over the multivariate

methods from simulations. The Bayesian method also provides better interpretations of the
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way in which a mediator links or does not link exposure to outcome, and automatically

categorize mediators into four groups based on exposure-mediator and mediator-outcome

relationship. Implementing our method to MESA, we have identified two genes, CCDC54

and CCND2, with strong evidence for actively mediating the adult SES effects on HbA1c.

Although our proposed method can simultaneously analyze high-dimensional mediators, like5

other posterior sampling based methods, the computation speed is not fast due to the large

number of sampling iterations required for reasonable convergence. Also, throughout the

paper, we focus on one continuous outcome of interest. For binary outcome, we can naively

treat it as a quantitative trait, which is justified by recognizing the linear model as a first

order Taylor approximation to a generalized linear model (Zhou et al., 2013). One may hope10

to adapt our method to directly model binary outcomes through nonlinear link functions,

but such an approach will substantially increase the computational cost and may not bring

much power gain, as is shown in Zhou et al. (2013). Future development of new algorithms

and/or new methods will likely be required to scale our method to handle thousands of

individuals and millions of mediators in generalized regression models.15

Recent literature proposes a convex penalty on the product term of indirect effect (Zhao and

Luo, 2016), which improves power of pathway selection and reduces estimation bias in the

indirect effects. In the Bayesian framework, direct shrinkage on the product term may be a

more appropriate choice, as it takes into account the correlation between the two models in

mediation analysis and is more straightforward when the goal is to identify non-null medi-20

ators. In addition, the biological annotations like pathways can be important predictors for

the underlying mediation mechanism, and integrating them into high-dimensional mediation

analysis would be promising to facilitate the selection of active mediators. Possible extensions

include linking the functional annotation information for mediators to the mediator-specific

group probabilities, e.g. πmj, πaj for the j-th mediator through a logistic regression model25

(Carbonetto and Stephens, 2013). We leave these interesting extensions for future work.
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C1 A {M (1),M (2), ...,M (p)} Y

C2

C A {M (1),M (2), ...,M (p)} Y

L

Figure 1: Left (a): High-dimensional mediators ((M (1),M (2), ...,M (p))) between exposure (A) and outcome (Y )
with exposure-outcome confounders C1 and mediator-outcome confounders C2; Right (b): An example of
mediator-outcome confounder L that is affected by the exposure A.
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Figure 2: Power comparison among our Bayesian mediation method (yellow), multivariate mediation method (red),
single mediation method (orange) and HDMM (coral) when the number of mediators is 100 and sample size 1,000.
The x-axis marks the one parameter we change at a time from the baseline setting. We calculate the true positive
rate (TPR) for the power comparison. The average TPR at FDR = 0.05/0.1 and its error bar based on ±2 standard
errors are calculated across 200 replicates. The standard error of the empirically estimated proportions is computed
using variance of a binomial random variable.
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Figure 3: Power comparison among our Bayesian mediation method (yellow), single mediation method (orange) and
HDMM (coral) when the number of mediators is 2,000 and sample size 1,000. The x-axis marks the one parameter we
change at a time from the baseline setting. We calculate the true positive rate (TPR) for the power comparison. The
average TPR at FPR = 0.01 and its error bar based on ±2 standard errors are calculated across 200 replicates. The
standard error of the empirically estimated proportions is computed using variance of a binomial random variable.
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Figure 4: Consider the trio: Adult SES → DNAm → HbA1c. The black dots are the estimated posterior inclusion
probability (PIP) for each CpG site from the Bayesian mediation method and the red dots are the estimated PIPs
when we permute the outcome once and fit the Bayesian mediation method.
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Table 1: Mediators are categorized into four groups based on their relationships with exposure and outcome; Group
1: Both (βm)j and (αa)j come from larger normal components; Group 2: (αa)j from larger normal component while
(βm)j from smaller normal component; Group 3: (βm)j from larger normal component while (αa)j from smaller
normal component; Group 4: Both (βm)j and (αa)j come from smaller normal components.

(βm)j Larger component Smaller component
(αa)j

Larger component rmj ∗ raj = 1 (Group 1) rmj = 0, raj = 1 (Group 2)
Smaller component rmj = 1, raj = 0 (Group 3) rmj = raj = 0 (Group 4)


