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ABSTRACTS: 

Aims: Intervention for end-stage kidney disease (ESKD), which is associated with 

adverse prognoses and major economic burdens, is challenging due to its complex 

pathogenesis. The study was performed to identify biomarker genes and molecular 

mechanisms for ESKD by bioinformatics approach.  

Methods: Using the Gene Expression Omnibus (GEO) dataset GSE37171, this study 

identified pathways and genomic biomarkers associated with ESKD via a multi-stage 

knowledge discovery process, including identification of modules of genes by 

weighted gene co-expression network analysis (WGCNA), discovery of important 

involved pathways by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) enrichment analyses, selection of differentially expressed genes 

(DEGs) by the empirical Bayes method, and screening biomarker genes by the least 

absolute shrinkage and selection operator (Lasso) logistic regression. The results were 

validated using GSE70528, an independent testing dataset.  

Results: Three clinically important gene modules associated with ESKD, were 

identified by WGCNA. Within these modules, GO and KEGG enrichment analyses 

revealed important biological pathways involved in ESKD, including TGF-β and Wnt 
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signaling, RNA-splicing, autophagy, and chromatin and histone modification. 

Furthermore, Lasso logistic regression was conducted to identify five final genes, 

namely, CNOT8, MST4, PPP2CB, PCSK7 and RBBP4, that are differentially 

expressed and associated with ESKD. The accuracy of the final model in 

distinguishing the ESKD cases and controls was 96.8% and 91.7% in the training and 

validation datasets, respectively.  

Conclusions: Network-based variable selection approaches can identify biological 

pathways and biomarker genes associated with ESKD. The findings may inform more 

in-depth follow-up research and effective therapy. 

 

Key words: End-stage kidney disease; Computational biology; Machine learning; 

Genetic transcription; Biomarkers 

 

 

 

 

 

 

INTRODUCTION 

Chronic kidney disease (CKD), with a prevalence of 10-15% worldwide 1 and the 

projected 5th leading cause of death by 2040 2, has emerged as a major epidemic. 

CKD may eventually progress to end-stage kidney disease (ESKD), which is 

associated with markedly increased mortality and adverse complications, such as 

cardiovascular events, anemia, bone mineral disorders and frequent hospitalizations 1, 

3. In addition, ESKD consumed 7.1% of the overall Medicare claims in US 4 and 2–3% 

of the total health care expenditure in other developed countries 5, and has posed 

considerable economic burden on developing countries 3. The etiology for the 

progression of CKD to ESKD is multifactorial, involving pathophysiological 

pathways of fibrosis, inflammation, oxidative stress, and mitochondrial damage, 

among others 1, 6, 7.  
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Despite the availability of renal replacement therapy, it remains challenging to 

develop effective therapeutic interventions due to the complex pathogenesis of ESKD. 

Understanding the mechanisms that govern the progression from CKD to ESKD is 

key in disease intervention, and identification of reliable molecular mechanisms for 

the CKD progression remains an enduring theme in renal research. Advances in 

molecular biology, genomics, and computational statistics have accelerated the work 

of finding novel disease-related genomic and molecular factors that will shed light on 

effective treatments. Since co-expression patterns of genes provide useful information 

of the underlying cellular processes, we conducted weighted gene co-expression 

network analysis (WGCNA) to identify highly correlated gene expression modules, 

which are related to a number of physical, behavioral, and disease traits 8-10. In 

WGCNA, the connection of each pair of genes is weighted by a “soft” threshold, 

yielding more robust results than unweighted networks 8. In addition, variable 

selection approaches may detect meaningful phenotype-genotype relationships 11. 

Therefore, the combined use of WGCNA and variable selection may help detect novel 

genes associated with a number of diseases 12-15 and construct predictive models.  

Given the fact that kidney biopsy in ESKD patients was generally not safe, this 

paper seeks to discover featured biomarkers in ESKD patients, gene expression 

profiles of peripheral blood cells (PBCs) from a previously published cohort of ESKD 

patients 16, and normal controls from the Gene Expression Omnibus (GEO) via 

WGCNA and the least absolute shrinkage and selection operator (Lasso) logistic 

regression. The findings might provide new knowledge of the pathophysiological 

alterations of ESKD on the molecular level, and suggest therapeutic targets for future 

research and clinical intervention. 

 

MATERIALS AND METHODS 

Microarray data selection 

Microarray data were retrieved from the Gene Expression Omnibus (GEO) 

database of the National Center for Biotechnology Information 

(https://www.ncbi.nlm.nih.gov/geo/). Dataset GSE37171 was used as the training set 
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16. The original study was of case-control design, enrolling 75 ESKD patients and 20 

normal controls. Dataset GSE70528 17, with 4 ESKD patients and 8 controls, was 

used as the validating set. The gene expression profiles of both datasets were analyzed 

on Affymetrix Human Genome U133 Plus 2.0 Array (GPL570 [HG-U133_Plus_2]). 

 

Microarray data preprocessing 

The diagram of the study is shown in Figure 1. We conducted background 

adjustment, quantile normalization, log-transformation and summarization of the raw 

data by using the GC-robust multi-array analysis (GC-RMA), which uses probe 

sequence information to estimate probe affinity to non-specific binding 18, 19. As only 

40% of genes were expressed in most tissues, filtering by variance was performed 

with a cutoff at 50%, the default value in GC-RMA 20. The probes were then mapped 

to gene symbols according to the annotation files. For genes with multiple matching 

probes, the mean values of the probes were used as the genes’ expression levels. The 

“ComBat” function in the SVA package was used to remove the batch effects between 

the two datasets 21.  

 

WGCNA 

In WGCNA, each gene pair is assigned a connection weight via “soft” 

thresholding. Specifically, the pairwise correlation between two co-expressed genes, 

say, sij, is transformed to be a connection weight, aij, through a power function:  

𝑎𝑎𝑖𝑖𝑖𝑖 = |𝑠𝑠𝑖𝑖𝑖𝑖 |β. Here,β>0 is the soft thresholding parameter and is chosen to ensure a 

good scale-free topology fit (eg. Index R2 larger than 0.80) and a large number of 

connections 8. We implemented “blockwiseModules” function in WGCNA package 

for network construction and module detection in a group-wise manner. Firstly, genes 

were grouped by using K-means clustering. For each group of genes, the topological 

overlap was calculated and genes were further clustered by average linkage 

hierarchical clustering. The minimum module size was set to include at least 30 genes 
22, 23. The connectivity (or degree) of genes in the modules were obtained by the 
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“fundamentalNetworkConcepts” function 22, 23. 

 

Identification of clinically important modules and enrichment analysis 

Clinically important modules were identified according to the correlations 

between clinical traits and module eigengenes (MEs), which were considered as the 

first principal component for each gene module 23. Additionally, the module 

significance (MS) was measured by the average gene significance (GS), defined as 

the average of the negative log p-values for individual genes’ correlations within each 

module 23.  

The “clusterProfiler” package was used to conduct Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis 

for genes in clinically important modules based on the hypergeometric distribution 24. 

The cutoff criteria were p-value <0.01 and q- <0.2. 

 

Biomarker genes selection  

Candidate genes were pre-selected according to the following criteria: (1) DEGs 

between ESKD and the controls screened by empirical Bayes methods using the 

“limma” package 25 have adjusted p-value <0.05 and |log2FC(fold change)|>0.585 

(corresponding to |FC|>1.5)）; (2) High module membership (MM), defined as the 

correlation of gene expression with MEs 23, e.g. |MM|≥0.8, and significant correlation 

with ESKD (Pearson’s correlation |r|≥0.4); (3) Hub genes with the highest 1% 

connectivity (degree) in the modules with clinical significance (or 2% if the number 

of genes are much smaller than the others); (4) Genes with node degree ≥2 in the 

protein-protein interactions (PPI) network calculated by CytoHubba plugin in 

Cytoscape 26. The original PPI was constructed by the Search Tool for the Retrieval of 

Interacting Genes (STRING) database and visualized in Cytoscape. 

The “glmnet” package, which performs the Lasso logistic regression, was used to 

conduct variable selection on the training set. The tuning parameters in the models 

were chosen via 5-fold cross-validation 27. The predictive performance of the selected 
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biomarkers was further validated using the testing dataset GSE70528. The sensitivity, 

specificity, positive predictive value (PPV), and negative predictive value (NPV) were 

calculated in both training and testing datasets. To assess the overall differentiation 

accuracy, the Area under the Receiver-operating characteristic (ROC) curve (AUC) 

with 95% confidence interval (CI) was obtained by using the “pROC” package 28. All 

statistical tests were performed with R (version 3.5.1). 

 

Results: 

WGCNA 

After data preprocessing, the expressions of 12,007 genes were obtained from 75 

ESKD patients and 20 controls in the training GSE37171 dataset. The soft threshold 

was used in the adjacency function, wherein β is set at 11 to ensure the scale-free 

topology fitting (R2 =0.857) with an acceptable number of connections (mean k=370) 

(Figure 2). WGCNA identified a total of 10 modules; see Figure 3 A. The turquoise 

module contained the most genes (n=5,441), followed by the blue (n=1009), brown 

(n=939), yellow (n=453), green (398), red (n=158), black (n=66), pink (n=52), and 

magenta (n=44) modules. Within these mentioned-above modules, expression profiles 

of genes were highly correlated 8. Although the gray module contained 3,447 genes, it 

featured a heterogeneous expression pattern that could not be clustered to any specific 

modules. Hence, it was excluded from further analysis. The measure of 

over-expression (eg. module eigengene) was also obtained. Figure 3 B and Figure 3 C 

demonstrate the topological overlap matrix based on 1,000 randomly selected genes, 

and the adjacency of eigengenes, the first principal component in each module, with 

red being highly related and blue being not related in the heatmap plot. 

 

Identification of gene modules with clinical significance 

The Pearson correlations between the module eigengenes (MEs) and clinical 

traits were computed. The brown, turquoise, and blue modules had absolute r-values 

greater than 0.4 and p-values < 0.05 with ESKD (Figure 4 A). These three modules 

also had the highest MS (Figure 4 B), which denoted association of the genes in the 
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modules with ESKD. In addition, Figure 4 C demonstrates that genes with higher MM 

(correlation with modules’ eigengenes) were likely to have higher GS (correlation 

with ESKD) as shown in the blue, brown and turquoise modules. Thus, we considered 

the brown, turquoise and blue modules for further analysis. 

 

Functional enrichment analysis of clinically significant modules 

A total of 939 genes in the brown module, 5,441 genes in the turquoise module, 

and 1,009 genes in the blue module were included in the GO and KEGG pathway 

enrichment analyses. Figure 5 presents the first 5 enriched results for each module. 

The blue module was associated RNA complex biogenesis, and covalent chromatin 

and histone modification, the brown module was associated with the biological 

function of erythrocyte systems, and the turquoise module was associated with RNA 

splicing and processing. KEGG analysis has further showed that these modules were 

enriched in several pathways, such as ubiquitin mediated proteolysis, autophagy, 

spliceosome, endocrine resistance and mitophagy. 

 

Selection of biomarkers 

A total of 2,975 DEGs in the training set were identified using the empirical 

Bayes method (Figure 4 D). Applying the criteria of the connectivity and the 

correlation with ESKD and MM had pre-selected 64 candidate genes (Figure S1), 

whose PPI network is shown in Figure (Figure 6). These genes were enriched in 

several GO-BP terms (eg. proteasome-mediated ubiquitin-dependent protein catabolic 

process and histone methylation) and KEGG pathways (eg. spliceosome, Wnt and 

TGF-β signaling pathways) (Figure 6).  

To construct a model to differentiate ESKD patients and normal controls, we 

applied the Lasso logistic regression analysis on the 64 candidate genes in the training 

set (identified by WGCNA and DEGs approach) and selected 5 genes: CNOT8, 

MST4 and PPP2CB (in the turquoise module), PCSK7 (in the brown module), and 

RBBP4 (in the blue module); see Table 1. The model correctly identified 74 out of 75 

ESKD patients and 18 out of 20 healthy controls, with an accuracy of 96.8% and 
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AUC of 0.943 (95%CI: 0.875 -1.000). Other diagnostic metrics are listed in Table 2. 

The 5- gene model was validated using the GSE70528 dataset. The accuracy of 

the classifier was 91.7% (with only one misclassification). The AUC of the classifier 

for the validation set was 0.900 (95%CI: 0.704- 1.000).  

 

Discussion 

Since interactions among a cell’s numerous constituents (ie. DNA, RNA, et al) 

play an important role in regulating biological functions 9, network based approaches, 

including WGCNA, have been widely used in kidney research and other biomedical 

studies 12-14, 29 to capture altered molecular networks and pathways. Once driver 

modules or pathways are identified, it is crucial to pinpoint key genes for in-depth 

pathophysiological study and intervention target identification. Variable selection has 

become a routinely used method for identifying relevant biomarkers 11, and Lasso 

regression is widely used for binary classifications 14.  

The combined use of co-expression network-based analysis (WGCA) and 

variable selection techniques can be powerful for identifying novel biomarkers and 

developing predictive models for ESKD risks. Indeed, the predictive model based on 

the five selected differentially expressed genes showed a strong discrimination power 

to classify ESKD and controls in the validation dataset. 

The modules that were enriched by GO terms and KEGG pathways highlighted 

several biological processes that might be closely associated with ESKD, such as the 

RNA-splicing related process and autophagy pathway for the turquoise module, 

chromatin and histone modification for the blue module, erythrocyte 

differentiation/homeostasis, endocrine resistance and mitophagy for the brown 

module, and protein catabolic process, histone methylation, TGF-β and Wnt signaling 

pathways for the candidate genes.  

These findings confirm several previously reported pathways in ESKD. For 

example, the TGF-β pathway is actively involved in the progression of CKD via 

fibrogenesis, apoptosis, epithelial-to-mesenchymal transition (EMT), and 

inflammation 30. Moreover, dysregulation of Wnt/β-catenin is associated with renal 
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fibrosis after injury, possibly via regulated effects on the downstream mediators 

implicated in kidney fibrosis, such as fibronectin, Snail1, matrix metalloproteinase-7, 

and hepatocyte growth factor 31. However, the role of autophagy in CKD remains 

controversial. In some CKD models, autophagy protects against renal disease 

progression, but can also be profibrotic in different conditions 7. Specifically, 

mitophagy was selected by KEGG pathway analysis in the current study, confirming 

the involvement of autophagy at the mitochondria in kidney disease 32. 

Our results showed some novel ESKD mechanisms. The epigenetics-related 

process, including histone modification and covalent chromatin modification, was 

highlighted in the network-based analysis. A growing number of studies have revealed 

the role of histone modification in CKD. For example, histone H3 lysine methylation 

was involved in the TGF-β1-induced expression of ECM-associated genes (ie. 

connective tissue growth factor, collagen-α1, and plasminogen activator inhibitor-1) 33, 

while administration of an histone deacetylase inhibitor could ameliorate renal 

fibrosis via modulating TGF-β and epidermal growth factor receptor signaling 34. 

Though not being fully validated for clinical use, epigenetic mechanisms do provide 

insights for CKD intervention targets.  

The GO analysis detected the involvement of the turquoise module of 

RNA-splicing-related biological process. RNA splicing is a tightly controlled process, 

during which spliceosome removes introns and joins exons to generate a mature 

mRNA molecule, providing transcriptional plasticity and protein variability 35, 36. 

Alternative splicing plays important roles in various diseases 37, 38, such as 

neurological and muscle diseases, and cancers. It has been reported that the standard 

isoform of the cell surface protein CD44 is associated with fibrotic disease 39. In 

human renal proximal tubular epithelial cells, nuclear hyaluronidase 2 (HYAL2), 

regulated by bone morphogenetic protein 7, could displace serine-arginine-rich 

splicing factor 5 from CD44 pre-mRNA and the early spliceosome to promote the 

accumulation of the antifibrotic CD44 isoform CD44v7/8 at the cell surface via 

alternative splicing 39.  

These findings indicate that RNA splicing could play a role in the development of 
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CKD and ESKD-related complications. However, the results need to be validated 

through in vivo studies. Furthermore, it is noteworthy that RNA splicing is regulated 

by chromatin structure and histone modifications 40. These two processes were both 

identified in our study, indicating the potential crosstalk between epigenetic changes 

and RNA splicing in the pathogenesis of kidney diseases. 

The identification of potential pathways and biomarker genes that may be 

involved in ESKD might facilitate in-depth analysis for mechanisms. Protein 

phosphatase 2 catalytic subunit beta (PPP2CB) encodes the catalytic subunit beta 

isoform of the protein phosphatase 2A (PP2A), one of the most abundant 

serine/threonine phosphatases that catalyze the dephosphorylation of phosphoproteins 

with an important role in the regulation of numerous intracellular processes 41, 42. The 

role of PP2A in the renal fibrosis has been previously reported. The catalytic subunit 

of PP2A was found to be positively correlated with extracellular matrix accumulation 

in the unilateral ureteral obstruction model 43. Previous studies suggested that the 

inhibition of PP2A could prevent endothelial-to-mesenchymal transition and renal 

fibrosis 43, 44. However, the role of differentially expressed PPP2CB in the peripheral 

blood in the development of ESKD has not been reported yet. 

Meanwhile, mammalian sterile-20-like kinase 4 (MST4), residing within the 

striatin interacting phosphatase and kinase (STRIPAK) complex along with PP2A and 

other proteins 45, was selected in our study. MST4 is ubiquitously distributed at low 

levels, with high expression in the thymus, placenta and peripheral blood leukocytes 
46. The STRIPAK PP2A complex mediates the kinase activity of Hpo/MST in the 

Hippo signaling pathway, which has a key role in organ size control and the 

pathogenesis of several diseases 47, 48. For example, the STRIPAK complex regulates 

autophagosome transport in neurons 49 and is associated with heart disease, diabetes, 

autism, and cancers 50. Other than being a component of STRIPAK complexes, MST4 

mediates cell growth and transformation via extracellular signal-regulated protein 

kinase (ERK) signaling pathways in in vitro studies 46, regulates 

epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma 51, regulates 

TLR signaling and inflammatory responses via direct phosphorylation of the adaptor 
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TRAF6 and ameliorates experimental septic shock 52, and can be stimulated by 

epidermal growth factor receptor ligands to contribute to prostate cancer progression 
53.  

Of the five featured biomarkers, two were closely associated with the epigenetic 

pathways. One is retinoblastoma binding protein (RBBP4), a component of several 

complexes, such as the nucleosome remodeling and deacetylase (NuRD) complex 54 

and polycomb repressive complex 2 55. It can interact with partners like histone H3 54, 

through which RBBP4 plays a major role in the regulation of chromatin remodeling, 

histone modification and gene expression, and is implicated in various conditions, 

including cancer 56, sensitivity to cancer therapy 57, autoimmune exocrinopathy 58, 

age-related memory loss 59, and human pluripotent stem cell maintenance 60. 

Additionally, RBBP4 can regulate the efficiency of importin α/β-mediated nuclear 

import, which is associated with cellular senescence 61. The other is the CCR4-NOT 

transcription complex subunit 8 (CNOT8), which, along with CNOT7 encodes the 

Caf1 catalytic subunit of Ccr4-Not deadenylase complex. The complex participates in 

the transcription and histone modification in the nucleus and mRNA turn over through 

degradation of eukaryotic mRNA by removing the poly(A) tail of mRNA in the 

cytoplasm, and, thus, is essential for accurate gene expression 62, 63. Additionally, 

Caf1 interacts with BTG/TOB proteins and other substrates to regulate cell cycle 64 

and proliferation 65. 

The remaining biomarker was protein convertase subtilisin/kexin type 7 (PCSK7). 

Previous studies revealed that PCSK7 was associated with lipids (especially 

triglyceride) 66, insulin sensitivity via interaction with dietary carbohydrate 67, liver 

cirrhosis in hereditary hemochromatosis 68, and soluble transferrin receptor (sTfR) 

levels, a marker for iron deficiency and erythropoietic activity 69. The roles of the 

featured biomarkers in CKD and ESKD are worthy of further investigation, since the 

conditions and pathways that are associated with CKD progression have not been 

fully studied. 

This study has some limitations. Firstly, alterations of gene expression might be 

influenced by fluctuations in peripheral blood 16. However, since kidney biopsy is 
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generally not safe and feasible in ESKD patients, the gene expressions in PBCs may 

hint at potential mechanisms. Secondly, the sample size of the validation set was 

small. Further studies are required to validate the obtained results.  

In summary, WGCNA was performed to identify three modules of genes closely 

associated with ESKD and potential pathophysiological processes. Lasso regression 

has further identified 5 predictive genes. These findings might inform in-depth 

research and clinical interventions for ESKD patients. 
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Supporting information legend: 

Figure S1. Selection of candidate genes. Connectivity: genes with highest 

connectivity in the blue, brown, and turquoise modules identified by WGCNA; 

Module membership: genes with high module membership within the blue, brown, 

and turquoise modules identified by WGCNA; Gene significance: genes with 

significant association with ESKD in the blue, brown, and turquoise modules 

identified by WGCNA; DEGs & PPI degree: DEGs identified by empirical Bayes 

methods and with node degree≧2 in the protein-protein interaction network. WGCNA, 

weighted gene co-expression network; ESKD, end-stage kidney disease; DEGs, 

differentially expressed genes; PPI, protein-protein interaction. 
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Figure legends: 
Figure 1. Diagram of the study. 

 

Figure 2. The scale free topology fitting index (R2) and the mean connectivity for 

different soft thresholds (power). 

 

Figure 3. Modules in the co-expression network. A. Clustering dendrogram of genes 

and modules identified by WGCNA. Branches of the hierarchical clustering tree, 

denoted by different colors, correspond to the modules consisting of the genes whose 

expression profiles are highly correlated 8, and the non-module genes are color-coded 

as grey. B. TOM plot of randomly selected 1,000 genes. The color code from yellow 

to red denotes the strength of correlations between genes. Dark squares along the 

diagonal correspond to the modules. C. Heatmap plot of the adjacencies of modules’ 

eigengenes. Red color denotes high adjacency between modules’ eigengenes, the first 

principal component for each gene module, while blue color denotes low adjacency. 

WGCNA, weighted gene co-expression network; TOM, topological overlap matrix. 

 

Figure 4. Selection of candidate biomarker genes. A. Correlation matrix of MEs and 

clinical traits. Rows correspond to module’s eigengenes, and columns correspond to 

clinical traits. Pearson’s r and p-value are presented in the cells. The different shades 

of color indicate the correlation strength: from blue (not significantly correlated) to 

red (highly significantly correlated). B. Gene significance of ESKD across modules. 

The height of bars represents the average -log10 (p-value) for individual genes’ 

correlations with ESKD in the modules. C a-c. Scatterplots of gene significance 

versus module membership for ESKD associated modules (blue, brown, turquoise), 

along with correlations and p-values indicated. D. The heatmaps of DEGs between 

ESKD and the normal controls. The x-axis and y-axis present samples and DEGs, 

respectively. MEs, module eigengenes; ESKD, end-stage kidney disease; DEGs, 

differentially expressed genes. 
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Figure 5. Functional enrichment of genes in the turquoise module, the blue module, 

the brown module, and the candidate genes. The length of bars shows gene ratio, and 

the colors indicate the value of -log10 (p-value) for enrichment analysis. 

 

Figure 6. Protein-protein interaction network of candidate genes among the turquoise, 

blue and brown modules. 
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Tables: 

Table 1. Genes selected by the Lasso logistic regression, with the estimated 

coefficients and odds ratio. 

Gene  Coefficient Odds Ratio 

CNOT8 -0.758 0.47 

MST4 -0.872 0.42 

PPP2CB -0.290 0.75 

PCSK7 -2.402 0.09 

RBBP4 -1.266 0.28 

 

 

 

 

 

Table 2. Performance of the classifier obtained by Lasso logistic regression analysis in 

the training and validation sets. 

 Sensitivity Specificity PPV NPV AUC 

Training  0.989 0.900 0.979 0.947 0.943 

Validation  1.000 0.875 0.800 1.000 0.900 

Abbreviations: PPV, Positive predictive value; NPV, Negative predictive value; AUC, 

area under the curve. 
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