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1  Introduction 
 

Recent advancements in information and vehicular technologies drive the wave of innovations in mobility 
services. Specifically, the number of smart mobile devices in the US has been rising steadily and a study 
suggests that nearly two-thirds of Americans now own at least one such device. These devices retrieve 
users’s geolocations, enable ubiquitous communications, and allow instant peer-to-peer interaction, giving 
rise to various on-demand mobility services for goods and people, which bring together suppliers of 
resources (e.g., cars) and services (e.g., rides) with very low transaction costs. Connected and autonomous 
vehicle technology will further revolutionize urban and rural mobility and promote the shift from car 
ownership to sharing/subscription. Automated shared-use mobility services may eventually emerge where 
companies own a fleet of different types of automated vehicles and offer on-demand ride hailing services. 
Other types of mobility services will be likely catalyzed by new business models and venture capital 
investments. These mobility services are expected to play an increasingly important role in meeting 
mobility needs. It is critical to better design, plan and operate them. 

Existing travel-demand forecasting models are limited in capturing the travel demand and system 
performance associated with them. One of the most critical challenges is that none of existing network 
assignment approaches can adequately model shared-use mobility services, as these approaches are trip 
centric, assigning vehicular trips to transportation networks. With shared-use mobility, vehicular trips are 
the outcome of the interactions between service operators and travelers, a missing ingredient in the current 
assignment methodology. In this study, we will enhance the methodology by explicitly modeling the 
behaviors of both service operators and travelers. More specifically, we consider two implementations of 
shared-used mobility: one of a decentralized system in which vehicles choose which areas to serve based 
on their individually defined utility functions, and one of a centralized system in which a shared-use 
mobility service provider optimally assigns vehicles to requests based on a system-level objective function. 
In both system architectures, the assignment of vehicles to regions/requests will be determined 
endogenously, and will be reflected in the origin-destination trip tables that are inputs to the assignment 
problem. In the assignment step, both shared-use and private vehicles will follow a user-optimum principle 
in choosing routes from their origins to destinations. 

 
2  Equilibrium Analysis of Urban Traffic Networks with Ride-Sourcing 

  
2.1  Base Model 
Consider a road network ( , )G V A whereV is the set of nodes and A is the set of links in the network. Each 
node v V∈ represents an isotropic zone or neighborhood. For the base model, we assume that the matching 
radius adopted by the e-hailing platform is relatively small such that customers who request rides online 
will only be matched to idle RVs nearby (mathematically, at the same node). Consequently, deadheading 
to pick up customers is negligible. Below we describe major components of the base model. 
2.1.1  Customer Demand 
Denote the node sets ,R S respectively as the origins and destinations of customer demands, and letW be 
the set of origin-destination (OD) pairs. Define oβ and iβ respectively as the out-of-vehicle and in-vehicle 
value of time ($/h). Then, the travel cost rsC between OD pair ( , )r s W∈ is given by:  

= , ( , )o c i
rs rs r rsC F w h r s Wβ β+ + ∀ ∈  

where rsh is the equilibrium or shortest vehicular travel time between node r and s ; rsF is the trip fare 

between the nodes and assumed to follow the structure of 0= f
rs rs rsF F hβ+ , where f

rshβ represents the 

time-based component with ( 0)fβ  characterizing the hourly surcharge and 0
rsF denotes a constant for the 
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rest time-irrelevant components; and c
rw is the customer's average waiting time at node r . 

 Assuming the customer demand rsQ to be a monotonically decreasing and convex function of the trip 
cost rsC , we then have:  

 ( )= ( ) , ( , )o c i f
rs rs r rsQ f w h r s Wβ β β+ + ∀ ∈  (1) 

where ' < 0rsf and ' 0rsf ′ . Moreover, lim ( | ) (0, )c c
r rs rcwr

w f w
→+∞

⋅ ∈ +∞h , implying that there are always finite 

numbers of customers waiting on each origin node no matter how long they shall wait. 
2.1.2  Idle RV Supply 
The idle RVs refer to the group of ride-sourcing vehicles who stay vacant waiting to be matched. Typically, 
idle RVs emerge at destination node set S where they drop off customers, and disappear at origin node set 
R  where they get matched to new riders. Suppose the utility function of an idle RV cruising from node 
s S∈ to node r R∈ is prescribed as  

 = ( ), ,v
sr r r sr rU F h h w s S r Rγ− ⋅ + + ∀ ∈ ∈  (2) 

where rF and rh are the average fare and service time of the customer trips originating from node r ; v
rw  is 

the idle RV's average waiting time for matching or meeting at node r ; and γ  denotes ride-sourcing 
drivers' value of time ($/h). Specifically, rF and rh are given as follows,  

 :( , ) :( , )
0

:( , ) :( , )

( ) ( )
= , = ,

( ) ( )

o o o o
rs rs rs rs

s r s W s r s W
r ro o o

rs rs
s r s W s r s W

T F T h
F h r R

T T
∈ ∈

∈ ∈

+ +
∀ ∈

+ +

∑ ∑
∑ ∑

 

 
 (3) 

where o
rsT is the occupied RV flow that serves customer demand from node r to s ; 0 is a small constant 

applied to ensure the feasibility of mapping when
:( , )

o
rss r s W

T
∈∑ in the denominator is zero. In brevity, the 

weighted averages of fare and service time converge to be unweighted when the flows{ }o
rsT are very small. 

The rationale behind such a treatment is that when there are few flows sourced from one origin node, it is 
difficult for drivers to "learn" the actual distribution of flow destinations and then gives rise to the random 
perceptions for drivers. Nevertheless, this treatment is implemented for mathematical completeness, and 
we will prove later that the zero demand condition, which rarely happen in practice (Ban, 2019), will not 
arise in our system equilibrium. 

 Assume each idle RV after dropping off customers cruises towards a node r R∈ that maximizes its 
perceptual utility, and the perception error on the utility follows the Gumbel distribution. Then, the portion

srP of idle RVs cruising to r among all those generated at node s is given as  

 
exp( )= , ,

exp( )
sr

sr
sk

k R

UP s S r R
U

θ
θ

∈

∀ ∈ ∈
∑

 

whereθ is a constant representing the degree of perceptual dispersion. This leads to the corresponding idle 
RV flow v

srT , written as  

 
:( , )

exp( )= , ,
exp( )

v osr
sr ks

k k s Wsk
k R

UT T s S r R
U

θ
θ ∈

∈

⋅ ∀ ∈ ∈∑∑
 (4) 

2.1.3  Intra-node Matching Between Hailing Customers And Idle RVs 
As aforementioned, the base model considers only intra-node matching, i.e. customers can only be matched 
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to idle RVs at the same node. Since each node features one isotropic zone, an aggregate matching function 
rm can be used to characterize the matching frictions between unmatched RVs and customers (e.g., 

(Douglas, 1972)). In particular, we adopt the matching function suggested by (Yang, 2011) to capture the 
competition among drivers and customers over intra-node matching:  

 = ( , ),m v c
r r r rO m N N r R∀ ∈  (5) 

where m
rO represents the realized rate of matchings at node r ; v

rN and c
rN denote the number of idle RVs and 

hailing customers at node r , respectively. Under stationary states, the variables in the above matching 
function are also subject to the following relationships:   

=v v v
r sr r

s S
N T w

∈

 
 
 
∑  (6) 

 
:( , )

=c c
r rs r

s r s W
N Q w

∈

 
 
 
∑  (7) 

 
:( , ) :( , )

= = =m o v
r rs rs sr

s r s W s r s W s S
O T Q T

∈ ∈ ∈
∑ ∑ ∑  (8) 

2.1.4  Network Equilibrium Under Intra-node Matching 
Given all the above relations regarding idle and occupied RV movements, we define the network 
equilibrium state that results from interactions between idle and occupied RVs, and the background regular 
traffic generated by non-sharing vehicles. Define bW as the set of OD pairs for the regular traffic, and cW  
as the complete set of OD pairs including those for idle RVs, occupied RVs as well as regular traffic, i.e.

= {( , ) | , }c bW s r s S r R W W∈ ∈ ∪ ∪ . Let N denote the total number of RVs serving the network; and 
let n

rsT denote the OD demand of regular traffic from node r to s , which in this study is assumed to be fixed 

for all ( , ) br s W∈ . Then, the equilibrium link flow distribution { }rs
ijx solves the following system of 

equalities and inequalities:   
 

 Path Equilibrium between OD pairs 
       ( ) = 0 ( , ) , ( , )rs rs rs c

ij ij i j ijt v x i j A r s Wρ ρ − + ∀ ∈ ∈   (9) 

 ( ) 0 ( , ) , ( , )rs rs c
ij ij i jt v i j A r s Wρ ρ− + ∀ ∈ ∈  (10) 

 
( , )

= ( , )rs
ij ij

cr s W

v x i j A
∈

∀ ∈∑  (11) 

 0 ( , ) , ( , )rs c
ijx i j A r s W∀ ∈ ∈  (12) 

 = ( , )rs v o n c
rs rs rsT T T T r s W+ + ∀ ∈  (13) 

 
:( , ) :( , )

, if =
= , if = ( , )

0, otherwise

rs

rs rs rs c
ik kj

i i k A j k j A

T k r
x x T k s r s W

∈ ∈

−
− ∀ ∈



∑ ∑  (14) 

 = ( , )rs rs c
rs r sh r s Wρ ρ− ∀ ∈  (15) 

 
 Customer Demand 
 ( )= ( ) ( , )o c i f

rs rs r rsQ f w h r s Wβ β β+ + ∀ ∈  (16) 
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 0= ( , )f
rs rs rsF F h r s Wβ+ ∀ ∈  (17) 

 
 Idle RV movements 
 = ( ) ,v

sr r r sr rU F h h w s S r Rγ− ⋅ + + ∀ ∈ ∈  (18) 

 :( , )

:( , )

( )
=

( )

o o
rs rs

s r s W
r o o

rs
s r s W

T F
F r R

T
∈

∈

+
∀ ∈

+

∑
∑




 (19) 

 :( , )

:( , )

( )
=

( )

o o
rs rs

s r s W
r o o

rs
s r s W

T h
h r R

T
∈

∈

+
∀ ∈

+

∑
∑




 (20) 

 :( , )

exp( ) , ,
exp( )=

0, ( , ) \{( , ) | , }

osr
ks

v k k s Wsksr k R
c

U T s S r R
UT

s r W s r s S r R

θ
θ ∈

∈

 ⋅ ∀ ∈ ∈



∀ ∈ ∈ ∈

∑∑  (21) 

 
 Intra-node matching 

 
:( , ) :( , )

= ,o v v c
rs r sr r rs r

s r s W s S s r s W
T M T w Q w r R

∈ ∈ ∈

    ∀ ∈        
∑ ∑ ∑  (22) 

 
:( , )

=v
sr rs

s S s r s W
T Q r R

∈ ∈

∀ ∈∑ ∑  (23) 

 
( , )

=
0 ( , ) \

rso
rs c

Q r s W
T

r s W W
∀ ∈

 ∀ ∈
 (24) 

 
 RV fleet conservations 
 
 

( , ) ( , ): ,
( ) =o v v

rs rs sr sr r
r s W s r s S r R

T h T h w N
∈ ∈ ∈

+ ⋅ +∑ ∑  (25) 

where { }rs
kρ are auxiliary variables, and ( , ){ }ij i j At ∈ denote link performance functions which increase 

monotonically on the corresponding link flows. The existence of equilibria for system (9)-(25) is proven in 
Appendix B, as a specialization of the inter-node matching system (33)-(56) introduced in the next section. 

 
2.2  Modeling Inter-node Matching Between Customers And Idle RVs 
In this section, we relax the intra-node matching assumption in the base model to consider the inter-node 
matching between customers and idle RVs, which appears to be a common practice by ride-sourcing 
platforms. Due to the spatial heterogeneity in the ride-sourcing markets, platforms frequently dispatch idle 
RVs from neighborhoods with excessive supply to those experiencing shortage. As a consequence, RVs are 
often matched to customers who are several miles away. Modifications should be made to handle this type 
of long-distance spatial matching.  

One straightforward remedy is to enlarge each node to cover a relatively large area with internally 
balanced demand and supply. However, such an evading strategy may compromise the representativeness 
and accuracy of the established model, as the aggregate matching function is likely to be biased if intra-
node heterogeneities are left out. More importantly, as the node "grows" larger, the intra-node traffic 
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becomes substantial and comparable to the inter-node traffic, defeating the original intent of conducting a 
network equilibrium analysis.  

We thus resort to modeling the long-distance matching among different nodes, while keeping the node 
itself to be isotropic and at the neighborhood scale. For each node r R∈ , the spatial matching radius is 
sculptured by a set of nodes ( )cM r , to which the hailing customers at node r can potentially be matched. 
Let = ( )c

r RL M r∈∪ . Note that these matching sets are not mutually exclusive. Reversely, there is also 

another nested matching set ( )vM l R⊆ for idle RVs on each l L∈ . In this study, we simply assume that 
all the nested sets{ ( )}cM r and{ ( )}vM l are exogenously predetermined, and then use m

lrT to denote the rate 

of RVs matched from node l L∈ to ( )vr M l∈ 1. 

2.2.1  Customer Demand Under Inter-node PickupsCustomers' travel costs now explicitly embody 
the inter-node pickup time:  

= ( ) , ( , )o c m i f
rs rs r r rsC g w h h r s Wβ β β β+ + + + ∀ ∈



where mβ denotes customers' value of the pickup time ($/h), and rh


is the average inter-node pickup time 
for customers on node r :  

( )

( )

( )
= ,

( )

m m
lr lr

cl M r
r m m

lr
cl M r

T h
h r R

T
∈

∈

+

∀ ∈
+

∑

∑





(26) 

The small constant m features another treatment defined to ensure the feasibility of mapping (26) when all 
the flow m

lrT s are zero. We note that the use of m here is also innocuous, because the zero-flow condition 

essentially arises when c
rw approaches infinity, under which any rh



valued from the convex hull formed by

{ }lrh becomes nil in comparison. 
The customer demand rsQ then subjects to a function reformulated as follows: 

( )= ( ) , ( , )o c m i f
rs rs r r rsQ f w h h r s Wβ β β β+ + + ∀ ∈



2.2.2  Idle RVs' Search Target Zones 
The movements of idle RVs are also different as drivers now choose their search target nodes based on all 
the potential matching outcomes, including the matches to passengers at other nodes in the matching set of 
a target node. So the utility function of an idle RV cruising from node s S∈ to any node l L∈ is respecified 
as: 

ˆˆ= ( ), ,v
sl l l sl lU F h h w s S l Lγ− ⋅ + + ∀ ∈ ∈  

where l̂F and l̂h are the average fare and service time of RVs who get matched at node l . Note that the service 
time now consists of two parts, respectively corresponding to deadheading to pick up the matched passenger 
and then delivering him or her. We can expand lF and lh respectively as follows,  

( ) ( )

( ) ( )

( ) ( )( )
ˆˆ = , = ,

( ) ( )

m m m m
lr r lr lr r

v vr M l r M l
l lm m m m

lr lr
v vr M l r M l

T F T h h
F h l L

T T
∈ ∈

∈ ∈

+ + +

∀ ∈
+ +

∑ ∑

∑ ∑

 

 

1 Intra-node matching flows in this framework are essentially indicated by{ }m
rrT , r R∀ ∈ . 
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where rF and rh still follow the previous definitions in Eq. (3). By assuming drivers' perceptual errors on 

utilities follow the Gumbel distribution, we then write the idle RV flow v
slT under the inter-node matching 

scenario as  

 
:( , )

exp( )= , ,
exp( )

v osl
sl ks

k k s Wsk
k L

UT T s S l L
U

θ
θ ∈

∈

⋅ ∀ ∈ ∈∑∑
 

  
 
2.2.3  Inter-node Matching Functions 
Previously, the intra-node matching flow is estimated from the numbers of hailing customers and idle 
vehicles at the same node, using a single-output matching function. With inter-node matching, the idle 
vehicles/hailing customers at each node can possibly be matched to customers/RVs at a set of nodes. 
Consequently, a multi-output matching function needs to be developed to delineate aggregately the 
matching process. Figure 1a outlines a conceptual instance for inter-node matching, where the blue circles 
on the left and the green circles on the right respectively represent the pools of idle RVs and hailing 
customers at different nodes. Let v

lN and c
rN respectively denote the average number of entities respectively 

at node l L∈ and r R∈ under the stationary state. Then, as shown by Figure 1a, the RV accumulations 1
vN  

at node 1 are "digested" by flows 11
mT and 12

mT , while the customer accumulations 1
cN are matched to flows 

of 11
mT and 12

mT etc. Therefore, when determining 11
mT , the knowledge on 1

vN and 1
cN is not sufficient. We also 

need to know flows such as 12
mT and 21

mT , which may further depend on 2{ }m
rT and 2{ }m

lT etc. Propagating by 
nodes and links, the inter-dependencies are likely to integrate over the whole set of matching flows 

,{ }m
lr l L r RT ∈ ∈ throughout a well-connected network. 

Another challenge arises from the matching priority issue. Taking Figure 1a as an example, there are two 
possible matching outcomes for RVs in 1

vN , either node 1 or 2. Suppose customer requests from node 1 can 
be served by RVs from the same node with less pick-up time, compared to the counterparts at node 2. Then, 
idle RVs at node 1 will be prioritized to match with closer customers, i.e. the customers at node 1 in this 
case. The modeling of such a priority is nontrivial, because the comparative nature of priorities essentially 
gives rise to asymmetries for the paired nodes as well as the interdependences between pairs. 

Our inter-node matching function is built upon an analogy to electric circuits. For each inter-node 
matching graph (e.g. Figure 1(a)), an electric circuit can be constructed correspondingly by duplicating the 
connections with resistances (see Figure 1(b)). Additionally, each node outstretches a separate resistance 
as well as an external power supply, and connects in parallel to constitute a circuit. Denote t

iε , t
iR and t

iI  
respectively as the power voltage, the resistance and the current on each node's individual branch, where 
{( , ) | { , }; , if = ; , if = }t i t v c i L t v i R t c∈ ∈ ∈ . Denote lrR and lrI respectively as the resistance and the 
current on connections between the paired nodes l and r , where l L∈ and r R∈ . Then, the currents on the 
graph are subject to the following relationships as per Kirchhoff's circuit laws:  

  
 ( ) ( ) = ( , ) {( , ) | ( ), }v v v c c c v

l l l r r r lr lrR I R I R I l r l r r M l l Lε ε− ⋅ − ⋅ − ⋅ ∀ ∈ ∈ ∈  (27) 
 

( )

=v
l lr

vr M l

I I l L
∈

∀ ∈∑  (28) 

 
( )

=c
r lr

cl M r

I I r R
∈

∀ ∈∑  (29) 
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(a)                       (b) 
Figure 1 The analogy of (a) inter-node matching flows to (b) currents in an electric circuit 

 
 The two terms on the left-hand side of Eq. (1) respectively represent the potentials at the blue and green 
nodes, while the right-hand side calculates the potential difference in terms of Ohm's law. The latter two 
equations Eq. (2) and (3) essentially represent current conservation at nodes. We note that such an electric-
circuit framework mimics or approximates the inter-node matching process and its outcomes. The current 
on each branch of the circuit is analogous to the matching flow between the corresponding paired nodes, 
and the voltage of each power supply measures the accumulation of entities at the corresponding node. For 
each individual branch, higher voltage/accumulation will yield larger current/flow. Further, the resistances 
in the electric circuit characterize the time that RVs/customers spend on each process. Specifically, the 
separate-node resistance represents the waiting time of RVs/customers on each node, while the connecting-
node resistance quantifies RVs' deadheading or pick-up time for customers in between. The 
interdependencies of currents/flows thus transmit rotationally through the two types of 
resistances/residence time and propagate systematically to the whole graph. 

In light by the above analogy, we construct the inter-node matching function following a similar 
principle. Denote v

lφ and c
rφ  respectively as the RV and customer potentials at different nodes, and define 

them respectively as the following functions2,  
 ( )( )= log ,v v v v

l l lT N l Lφ Φ ∀ ∈  

 ( )( )= log ,c c c c
r r rT N r Rφ − Φ ∀ ∈  

where the potential functionΦ (including vΦ and cΦ ) ranges in (0, )+∞ , decreasing on the cumulative 

flowT and increasing on the accumulation N , i.e. < 0
T
∂Φ
∂

and > 0
N
∂Φ
∂

. Note that the waiting time w does 

not appear inΦ 's variable argument list, because in this case w can be directly written as a function of N  
overT . Besides, we define the potential difference on each pair of connected nodes as the flow and travel 
time in between, i.e.  

( )= log ( , ) ( , ) {( , ) | ( ), }m v
lr lr lrT h l r l r r M l l Lδφ ∆ ∀ ∈ ∈ ∈  

                                                      
2 The logarithm associated with the potentials (also, the potential differences defined later) seems unnecessary, but it facilitates making a 
connection with a Cobb-Douglas-type matching function. 
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where the function∆ also ranges from (0, )+∞ , and > 0mT
∂∆
∂

, > 0
h
∂∆
∂

. 

Then, by setting the accumulations{ }v
lN ,{ }c

rN and node-transfer time{ }lrh as given parameters, the 
resultant matching flow pattern{ }lrT in line with Eq. (1) solves the following equation system3,  

( ) ( ), , = ( , ) ( , ) {( , ) | ( ), }v v v c c c m v
l l r r lr lrT N T N T h l r l r r M l l LΦ ⋅Φ ∆ ∀ ∈ ∈ ∈  (30) 

( )

=v m
l lr

vr M l

T T l L
∈

∀ ∈∑ (31) 

( )

=c m
r lr

cl M r

T T r R
∈

∀ ∈∑ (32) 

We assume the functions ( , )T NΦ , including vΦ and cΦ , as well as ( , )T h∆ additionally satisfy the 
following properties (with implications clarified below), given any N and h with positive and finite values: 

• Domain of definition - both ( , )T NΦ and ( , )T h∆ are continuous functions defined on (0, )T ∈ +∞ .
For each pair of nodes with one locating in the matching range of the other, there will have positive
flows matched in between.

• Boundary conditions -
0

lim ( , ) =
T

T N
+→
Φ +∞ and lim ( , ) = 0

T
T N

→+∞
Φ ;

These two conditions can be obtained conceptually, as the accumulation N is stuck in the matching 
process when 0T +→ and dissipates instantaneously forT →+∞ . 

0
lim ( , ) = 0

T
T h

+→
∆  and lim ( , ) =

T
T h

→+∞
∆ +∞ . 

As per the Ohm's law, less potential differences are associated with with less matching flows through 
the time impedance.  

• Limiting behavior - there exist > 0p and > 0q such that4

( , ) = {[ ] ( ),as 0pT N l T T− +Φ Θ →
( ),as .qT T−Θ → +∞  

This implies a diminishing marginal rate of substitution in the matching process. We letΦ possibly 
converge/grow onT with different speed when approaching 0 /+ +∞ , respectively.  

Based on these general properties onΦ and∆ , the existence and uniqueness of solutions{ }m
lrT to system 

(30)-(32) are proved in Appendix A. 

2.2.4  Network Equilibrium Under Inter-node Matching condition 
Based on the modifications for inter-node matching derived in this section, we rewrite the network 
equilibrium conditions (19)-(25) to reflect the inter-node matching flows. The complete set of OD pairs 

cW now includes those for idle RV trips, deadheading RV trips, occupied RV trips as well as trips made 
by regular traffic, i.e.  

= {( , ) | , } {( , ) | , ( )}c v bW s l s S l L l r l L r M l W W∈ ∈ ∪ ∈ ∈ ∪ ∪

 Then, the equilibrium link flow distribution { }rs
ijx  satisfies the following conditions: 

3 Eq. (1a) results from the internal relations among potentials that =v c
l r lrφ φ δφ− . 

4 BigΘ pertains to one of the Bachmann-Landau notations. By writing ( ) = ( ( ))f n g nΘ , it means f is asymptotically bounded both
above and below by g . 
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 Path equilibrium between OD pairs 
 ( ) = 0 ( , ) , ( , )rs rs rs c

ij ij i j ijt v x i j A r s Wρ ρ − + ∀ ∈ ∈   (33) 

 ( ) 0 ( , ) , ( , )rs rs c
ij ij i jt v i j A r s Wρ ρ− + ∀ ∈ ∈  (34) 

 
( , )

= ( , )rs
ij ij

cr s W

v x i j A
∈

∀ ∈∑  (35) 

 0 ( , ) , ( , )rs c
ijx i j A r s W∀ ∈ ∈  (36) 

 = ( , )rs v m o n c
rs rs rs rsT T T T T r s W+ + + ∀ ∈  (37) 

 
:( , ) :( , )

, if =
= , if = ( , )

0, otherwise

rs

rs rs rs c
ik kj

i i k A j k j A

T k r
x x T k s r s W

∈ ∈

−
− ∀ ∈



∑ ∑  (38) 

 = ( , )rs rs c
rs r sh r s Wρ ρ− ∀ ∈  (39) 

  
 Customer demand 
 ( )= ( ) ( , )o c m i f

rs rs r r rsQ f w h h r s Wβ β β β+ + + ∀ ∈


 (40) 

 ( )

( )

( )
=

( )

m m
lr lr

cl M r
r m m

lr
cl M r

T h
h r R

T
∈

∈

+

∀ ∈
+

∑

∑





 (41) 

 0= ( , )f
rs rs rsF F h r s Wβ+ ∀ ∈  (42) 

  
 Idle RV movements 
 ˆˆ= ( ) ,v

sl l l sl lU F h h w s S l Lγ− ⋅ + + ∀ ∈ ∈  (43) 

 ( )

( )

( )
ˆ =

( )

m m
lr r

vr M l
l m m

lr
vr M l

T F
F l L

T
∈

∈

+

∀ ∈
+

∑

∑




 (44) 

 ( )

( )

( )( )
ˆ =

( )

m m
lr lr r

vr M l
l m m

lr
vr M l

T h h
h l L

T
∈

∈

+ +

∀ ∈
+

∑

∑




 (45) 

 :( , )

:( , )

( )
=

( )

o o
rs rs

s r s W
r o o

rs
s r s W

T F
F r R

T
∈

∈

+
∀ ∈

+

∑
∑




 (46) 

 :( , )

:( , )

( )
=

( )

o o
rs rs

s r s W
r o o

rs
s r s W

T h
h r R

T
∈

∈

+
∀ ∈

+

∑
∑




 (47) 
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 :( , )

exp( ) , ,
exp( )=

0, ( , ) \{( , ) | , }

osl
ks

v k k s Wsksl k L
c

U T s S l L
UT

s l W s l s S l L

θ
θ ∈

∈

 ⋅ ∀ ∈ ∈



∀ ∈ ∈ ∈

∑∑  (48) 

 
( , )

=
0 ( , ) \

rso
rs c

Q r s W
T

r s W W
∀ ∈

 ∀ ∈
 (49) 

  
 Inter-node matching 
 ( ) ( ) ( ), , = , , ( )v v v v c c c c m t

l l l r r r lr lrT w T T w T T h l L r M lΦ ⋅ ⋅Φ ⋅ ∆ ∀ ∈ ∈  (50) 

 
( )

=v m
l lr

vr M l

T T l L
∈

∀ ∈∑  (51) 

 
( )

=c m
r lr

cl M r

T T r R
∈

∀ ∈∑  (52) 

 
( )

=m v
lr sl

v s Sr M l

T T l L
∈∈

∀ ∈∑ ∑  (53) 

 
:( , )( )

=m o
lr rs

c s r s Wl M r

T T r R
∈∈

∀ ∈∑ ∑  (54) 

 = 0, ( , ) \{( , ) | , ( )}m c v
lrT l r W l r l L r M l∀ ∈ ∈ ∈  (55) 

  
 RV fleet conservations 
 

( , ): ,( , )

( ) =o v m v v
rs rs rs rs sl l

c s l s S l Lr s W

T T T h T w N
∈ ∈∈

+ + ⋅ + ⋅∑ ∑  (56) 

 
Again,{ }rs

kρ are auxiliary variables. The existence of an equilibrium solution to the above system (33)-(56) 
is proved in Appendix B5. We also prove there that the zero-flow condition will not arise in equilibrium 
solution. As system (33)-(56) degenerates into (9)-(25) when the matching range of each node shrinks to 
only cover itself, the proof readily guarantees the intra-node matching system with an equilibrium solution. 
 
2.3  Solution Procedure 
In this section, we develop an iterative algorithm to solve the network equilibrium conditions (33)-(55). 
Before presenting the solution procedure, we first reformulate some conditions into mathematical problems, 
which can be easily solved by using commercial solvers. 

Specifically, given ( , , )v m nT T T , Eq. (33)-(38) can be reformulated as a convex problem below:  
 PE: 

 
0, ( , )

( )min
vij

ij
i j A

t dϖ ϖ
∈
∑ ∫x v

 

 s.t. (33) (38)−  
 
 Furthermore, treating ,m oT T , andh as exogenous variables, the idle RV movements, i.e., Eq. (42)-

(47), can be captured by the following mathematical program:  
                                                      
5 We suggest readers to go over Section 2.3 before detouring to the appendix, as some mapping systems defined in the former are referred in the 
proof. 
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 IRVM: 

 ( ) ( )1ˆˆ ln 1min v v v
sl l l sl sl sl

s S l L
T F h h T Tγ

θ∈ ∈

  − + + + −   
∑∑

vT
 

 s.t. (51)  
 

:( , )
=v o

sl rs
l L r r s W

T T s S
∈ ∈

∀ ∈∑ ∑  (57) 

  
 The KKT conditions of IRVM can be stated as follows:  
 (51),(57)  

 ( ) 1ˆˆ ln = 0 ,v
l l sl sl l sF h h T l L s Sγ β τ

θ
− + + + + + ∀ ∈ ∈  (58) 

 whereβ and τ are Lagrangian multipliers associated with (51) and (57). From (58), we have  

 ( ) ( )1 1ˆ ˆˆ ˆln = ln , ,v v
l l sl sl l k k sk sk kF h h T F h h T l k L s Sγ β γ β

θ θ
− + + + + − + + + + ∀ ∈ ∈  

 which is equivalent to  

 

ˆˆexp
= , , ,

ˆˆexp

l
l l slv

sl
v

sk k
k k sk

F h h
T l k L s S
T

F h h

βθ γ
γ

βθ γ
γ

    − + +   
     ∀ ∈ ∈

    − + +   
    

 

 and further yields  

 

:( , )

ˆˆexp
= = , , ,

ˆˆexp

l
l l slv v

sl sl
v o

sk rs k
k L r r s W k k sk

r R

F h h
T T l k L s S
T T

F h h

βθ γ
γ

βθ γ
γ∈ ∈

∈

    − + +   
     ∀ ∈ ∈

    − + +   
    

∑ ∑ ∑
 

  

 From the above formula, we can interpret lβ
γ

as the RV waiting time at node l , i.e., = ,v l
lw l Lβ

γ
∈ . 

As lβ
γ

is not unique, we can always add a constantη to lβ
γ

, such that the above equation still holds. 

 
As per (55), we have  

 ( )
( , ): ,( , )

=v m o vl
rs rs rs rs sl

c s l s S l Lr s W

T T T h T Nβ η
γ∈ ∈∈

 
+ + + + 

 
∑ ∑  

which gives rise to  

 
( , ): ,( , )

( , ): ,

( )
=

v m o v l
rs rs rs rs sl

c s l s S l Lr s W
v

sl
s l s S l L

N T T T h T

T

β
γ

η
∈ ∈∈

∈ ∈

− + + − ⋅∑ ∑

∑
 

and accordingly,  
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 =v l
lw β η

γ
+  

Given the above deduction, we know that given ,m oT T , andh , the idle RV movements, i.e., Eq. (42)-(47), 
can be delineated by IRVM. The following solution procedure is developed to solve the system (33)-(56) 
(see Figure 2 for the corresponding flow chart):  
 

   
Figure 2 Solution procedures 

     
1. Initialize h , vN , and cN .  
2. Obtain mT by solving (48)-(50), and then deduce{ , , , }c c oT w Q T . If 

:( , )
= | |c o c

c r rs r cr R s r s W
E N T w ε

∈ ∈
− ≥∑ ∑ , then update

:( , )
= ,c o c

r rs rs r s W
N T w r R

∈
∀ ∈∑ , and repeat this 

step; otherwise, go to Step 3.  
3. Obtain{ , }v vT w by solving IRVM. If = | |v v v

v l sl l vl L s S
E N T w ε

∈ ∈
− ≥∑ ∑ , then update 

= ,v v v
l sl ls S

N T w l L
∈

∀ ∈∑ , and go to Step 2; otherwise, go to Step 4.  

4. Obtain{ , }x ρ by solving PE. If
( , )

= | |rs rs
ch rs r s hr s W

E h ρ ρ ε
∈

− + ≥∑ , then update  

= ,rs rs
rs r sh ρ ρ−  ( , ) cr s W∀ ∈ , and go to Step 2; otherwise, stop and the obtained  
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{ , , , , , , , , , }m c v o v ch T T T T Q w w x ρ is the optimal solution.  
 where ,c vε ε , and hε are given tolerances. 
 

3  Trip-based Graph Partitioning for Parallel Computing in Ridesharing 
 
We start this section by forming a bipartite graph on which the ride-matching problem can be formulated. 
As the number of system participants increases, finding the max cardinality matching on this graph becomes 
more computationally expensive. Therefore, we propose a graph portioning scheme that approximates 
finding the max cardinality matching on the original graph by finding max cardinality matching on a number 
of mutually disjoint sub-graphs.  
 
3.1  Max Cardinality Bipartite Matching 
The one-to-one matching problem can be represented by a bipartite graph = ( , )G P L , where P is the set of 
participants and L is the link set. Let us denote the set of riders by = { }R r and the set of drivers by = { }D d
. Rider and driver sets are mutually exclusive, and form the set of participants, = { } =P p R D∪ , which 
constitute the set of nodes in graphG . 

We assume that the study region consists of m stations, in which participants start or finish their trips, 
denoted by 1 2, , , ms s s . Let us characterize the trip of participant p P∈ by its origin and destination 

station, denoted by O
ps and D

ps , respectively, and the earliest departure time from the trip origin, denoted by 
ETD
pt . The latest arrival time of the participant at the trip's destination station, denoted by LTA

pt , can be 
computed as the sum of earliest departure time, travel time on the shortest path from the origin station to 
the destination station, and a detour time. The maximum detour time for participant p , denoted by det

pt , can 
either be specified by the participant or decided by the system operator, and correlates inversely with level 
of service. A link = ( , )r d L∈ between rider r and driver d exists in graph G if the driver is capable of 
serving the rider before heading to his/her own destination. This condition can be mathematically expressed 
by having equations (59) and (60) hold concurrently, where ,i jt is the shortest path travel time between 
stations i  and j . Equation (59) ensures that a driver who arrives at a rider's origin station as early as 
possible would have enough time left to carry the rider to his/her destination. Equation (60) states that after 
dropping off the rider, the driver should have enough time left to accomplish his/her own trip.  

 
, ,

max{  , }ETD ETD LTA
d O O r O D rs s s sd r r r

t t t t t+ + ≤  (59) 

 
, , ,

max{  , }ETD ETD LTA
d O O r O D D D ds s s s s sd r r r r d

t t t t t t+ + + ≤  (60) 

 The goal of the ridesharing system is to find the max cardinality solution in this graph, i.e., the solution 
that yields the highest matching rate. The matching problem can be mathematically formulated as a binary 
program in model (61)-(64). The decision variable rdu is a binary variable that holds the value 1 if rider r  
is matched with driver d , and the value 0 otherwise. The objective function in equation (61) maximizes 
the total number of served riders, which equates to maximizing the matching rate. Constraint (62) ensures 
that each driver is assigned to at most one rider, and constraint (63) ensures that each rider gets served at 
most once. Notice that although the decision variable u is by definition a binary variable, the total 
unimodularity structure of the constraint set allows for relaxing the binary constraint and replacing it with 
equation (64).   

 rd
r R d D

Maximize u
∈ ∈
∑∑  (61) 
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 . . 1, : ( , )rd
r R

s t u d D r d L
∈

≤ ∀ ∈ ∈∑  (62) 

 1, : ( , )rd
d D

u r R r d L
∈

≤ ∀ ∈ ∈∑  (63) 

 0 1rdu≤ ≤  (64) 
Although this matching problem can be solved reasonably fast using commercial optimization engines or 
custom-designed algorithms (see e.g. (Hopcroft, 1973), (Ford, 1956)) for small- to medium-sized problems, 
in ridesharing systems that operate over a large region, the large scale of the problem can prohibit it from 
being solved in real-time, or at all. In this paper, we propose a graph partitioning method to bisect the 
bipartite graph G into disjoint sub-graphs, creating smaller-size problems that are computationally less 
expensive to solve. 

 
3.2  Connectivity Matrix 
Let us form the binary matrix F based on graphG , such that each element ( , )r d R D∈ × of this matrix 
holds the value 1 if r and d are connected in the bipartite matching graph, and the value 0 otherwise. We 
call matrix F the "connectivity matrix" of graph G , denoted by GF (hereafter referred to as F for 
simplicity). 

Decomposing the connectivity matrix F into sub-matrices corresponds to partitioning graph G into 
sub-graphs. Figure 3 displays an example of such partitioning. In this figure, the matrix has been divided 
into four sub-matrices at splitting points vb and hb . Level 1 partitioning as depicted in this figure will provide 
sub-matrices , = {1,2,3,4}iF i , while level 2 partitioning corresponds to decomposing level 1 sub-
matrices, and will result in sub-matrices , , ( , ) {1,2,3,4} {1,2,3,4}i jF i j ∈ × . In general, level i of 
partitioning is equivalent to dividing all partitions in level ( 1)i − into four partitions. 

In Figure 3, the sub-graph corresponding to 1F includes drivers in set 1D and riders in set 1R . Similarly, 
the sub-graph of 4F includes driver in 2D and riders in 2R . Hence, since 1 2 =R R R∪ , 1 2 =R R∩ ∅ , 

1 2 =D D D∪ , and 1 2 =D D∩ ∅ , the sub-graphs associated with 1F  and 4F  are exhaustive and disjoint 
in set P . Similarly, 2F  and 3F  correspond to exhaustive disjoint sub-graphs. 

Figure 3 Partitioning the connectivity matrix F  at splitting points vb  and hb . Level 1 partitioning will provide 

sub-matrices , = {1,2,3,4}iF i , while level 2 partitioning will provide sub-matrices 

, , ( , ) {1,2,3,4} {1,2,3,4}i jF i j ∈ × . 
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 Hence, in order to approximate the matching problem associated withG  with two smaller matching 
problems, we can solve the matching problems associated with either 1F and 4F , or 2F and 3F . Without loss 
of generality, we assume that 1F and 4F are always selected. Note that this procedure provides solutions to 
two sub-problems the union of which provides only an approximation of the solution to the original 
problem. The reason is that the unit elements of sub-matrices 2F and 3F correspond to links in G (i.e., 
potential matches) that have been removed in order to partitionG into two disjoint sub-graphs.   

 
3.3  Properties of a Desirable Partitioning 

In the previous section, we noted that the splitting points vb and hb are required to decompose matrix F . 
There are, however, two sets of decisions that affect the quality of the sub-graphs resulting from this 
partitioning, namely the location of the splitting points, and the row and column orderings in matrix F . 

Choice of the splitting points, vb and hb , affects the quality of the solutions in two ways. Firstly, by 
moving the location of the splitting points, we are in fact changing the riders and drivers in the resultant 
sub-graphs. The proper selection of vb and hb would result in a partitioning that ( i ) removes as few links as 
possible, and ( ii ), results in a near uniform split of the graph. The reason for the former condition is that 
the number of links removed as a result of partitioning of G provides a bound on the performance of the 
partitioning procedure, since each removed link is a potential matching opportunity that is being ignored. 
The latter condition stems from the objective of partitioning, which is reducing the computational 
complexity of the problem. The number of computations required in each iteration of the Simplex algorithm 
is ( )PL . Hence, a partitioning of the graph that is uniform in the number of nodes and links would provide 
the highest computational benefit. 

Secondly, for a given set of splitting points, the ordering of riders and drivers in F leads to different 
sub-graphs. It is easy to see that we can re-order the identification numbers of riders and drivers in F  before 
decomposing it, without making any changes to the original problem. Figure 4 showcases an example of 
how re-ordering riders and drivers in F can lead to more desirable partitions. In Figure 4(a), a good split, 
subject to uniformity in the size of the sub-graphs, requires omitting 7 links. Re-ordering the rider and 
driver sets, as presented in Figure 4(b), could lead to a much more desirable partitioning that removes only 
2 links. Note that choice of the splitting points and row and column re-orderings need to take place 
concurrently. In the next section, we present the mathematical formulation of a partitioning that satisfies 
both conditions presented in this section.  

 
3.4   Theε -uniform Graph Partitioning Problem 
The goal of the ε -uniform graph partitioning problem is to partition graphG into K disjoint components 
by eliminating the minimum number of links, while guaranteeing that the number of nodes and links in 
partitions are within | |p Pε and | |Lε



of each other, respectively. This problem is mathematically 

formulated in model (65)-(70). Let us define the binary decision variable pkf to take the value 1 if node 
p P∈ is assigned to sub-graph k , and the value 0 otherwise. Furthermore, we define the binary variable 

kh


to take the value 1 is link  is assigned to sub-graph k , and the value 0 otherwise.  
The objective function in equation (65) maximizes the total number of links within the partitions, hence 

minimizing the total number of omitted links with end points in different partitions. Constraint (66) ensures 
that each node is assigned to a single sub-graph. Constraint (67) ensures that only links connecting two  
nodes within the same sub-graph are selected; if both end nodes of link  , p and 'p , belong to sub-graph 
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k , the left-hand side of the constraint becomes 1, and the max objective function forces ,kh


to take its upper 

bound of 1. Any other arrangement of 0 and 1 values assigned to variables pkf and 'p k
f would make the left 

hand side of equation (66) smaller than 1, forcing the binary variable kh


to take the value 0. 
Although equations (66) and (67) partitionG into K sub-graphs, they do not impose any restrictions 

on the size of the resulting sub-graphs. Constraint (68) ensures that links are, within a threshold | |Lε


, 
distributed uniformly among sub-graphs. It is easy to see that setting ε



 closer to zero would distribute the 
links more uniformly among sub-graphs, reducing the upper bound on the computational complexity of the 
otherwise larger sub-problem. However, this reduced computational complexity may come at the cost of a 
higher number of eliminated links, and hence lower accuracy. Analogous to constraint (68), constraint (69) 
ensures a uniform distribution of nodes among sub-graphs, within the threshold | |p P . Constraint (70) 
enforces decision variables to take only binary values.   

 
=1

K

k
k L

Maximize h
∈

∑∑




 (65) 

(a) On the left: Graph G . On the right: Two sub-graphs 1G and 2G obtained by 

removing 7 links from G . 
 

(b) On the left: Graph G after row and column re-ordering. On the right: Two 
sub-graphs 1G and 2G obtained by removing 2 links from G . 

Figure 4 Bipartite matching graph: Two re-orderings of same set of participants  
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=1

. . = 1,
K

pk
k

s t f p P∀ ∈∑  (66) 

 , {1, , }, ( , )
2

pk 'p k '
k

f f
h k K p p L

+
≥ ∀ ∈ ∈ ∈



   (67) 

 
| |(1 ) , {1, , }k

L

Lh k K
K

ε
∈

≤ + ∀ ∈∑
 



  (68) 

 
| |(1 ) , {1, , }pk p

p P

Pf k K
K

ε
∈

≤ + ∀ ∈∑   (69) 

 , {0,1}f h∈  (70) 
It can be easily shown that the mathematical problem in model (65)-(70) is NP-hard. Additionally, creating 
graph G , which is an input to this problem, can create a computational bottleneck in real-time applications, 
since it requires | | | |R D× trip comparisons to generate set L , each trip comparison requiring 
computations in (59) and (60). In the next section, we present an algorithm to solve this problem fast and 
with a high level of accuracy, without the necessity of generating graph G a priori. 

 
3.5   The Trip-based ε -uniform Partitioning Algorithm 
As an alternative for the problem in (65)-(70), we introduce a "proxy" problem in which generating the 
entire graphG is not required a priori; rather, we strategically decide the parts of graphG that need to be 
generated. This problem aims at assigning N objects to K clusters such that the total distance between 
objects and their assigned cluster centers is minimized, and the clusters are of about the same size. Before 
presenting the formulation, we need to define the points/objects to be clustered, and elaborate on how the 
distance between two objects can be measured. 

This problem considers each object to be a trip, characterized by latitude and longitude of both trip 
ends, and the average of its earliest departure time and latest arrival time. Let us define the trip vector 

= ( , , , , )n O O D D ns s s sn n n n
tr lat lon lat lon θ  , where the first two terms are the latitude and longitude of the origin 

station of trip n , respectively. Similarly, the third and forth terms are the latitude and longitude of the 
destination station of this trip, respectively. The last term is the average of start time and end time of the 
trip in minutes, with 12 pm set as the reference point (i.e., time zero). 

Let us define the distance matrix = [ ], {1, , }, {1, , }nkC c n N k K∀ ∈ ∈  , to hold the distance 
between the center of cluster k (which is the representative trip of the cluster) and trip n . In order to compute 
the distance between two trips ntr and 'n

tr , the elements of the two vectors should be expressed in the same 

unit. Towards this end, we compute the travel time between two points with the same longitude/latitude, 
but a difference of 1000  meters in latitude/longitude in the region where the ridesharing system is 
operating. This can be done by first replacing the coordinates of the trips, which are originally in the 
latitude/longitude coordinate system, with the Universal Transverse Mercator (UTM) coordinate system, 
and then converting the distances to travel time (in minutes), assuming an average speed for the entire 

region. Let us denote the travel time between these two points asα . We define latω / lonω to be set as
1000
α

, and interpret it as the trip length (in minutes) between two points with the same latitude/longitude and a 
difference of 1000 meters in longitude/latitude in the region under study. Consequently, let us define the 
weight vector = ( , , , ,1)lat lon lat lonω ω ω ω ω , and compute distances as:  

 = ( ( )) ( ( )) ,k k
nk n nc tr tr tr tr− − 

ω ω  (71) 
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where ktr is the center of cluster k which can be found by taking the average of trip vectors in cluster k . 
As a result, the proxy problem can be formulated as a mixed integer, non-linear program presented in 

(72)-(77). Let us define the binary decision variable nkq to take the value 1 if point {1, , }n N∈  is assigned 

to cluster {1, , }k K∈  , and the value 0 otherwise. We further define a non-negative vector ktr to 
represent the center of cluster k. The non-linear objective function in equation (72) minimizes the total 
distance between trips and their associated cluster centers. Note that nkc is not constant in this problem, since 

it involves the ktr variables. Constraint (73) ensures that each trip is assigned to a single cluster. 
Let us define the indicator parameter nI to assume the value 1 if point n is a rider trip, and the value 0 

if point n is a driver trip. Constraint (74) ensures that the difference between the number of riders between 
any two clusters is at most 2 | |Rε× . Similarly, constraint (75) ensures that the difference between the 
number of drivers between any two clusters is at most 2 | |Dε× .   
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  The problem in model (72)-(77) is a generalization of the well-known clustering problem, with the 
addition of the uniformity constraints, and is therefore NP-hard. As such, we devise a polynomial time 
solution methodology based on Lloyd's algorithm. Lloyd's algorithm is an iterative method that has been 
implemented in several well-known clustering algorithms, such as k -means and expectation-maximization 
(EM). It is a 2-step heuristic that iteratively assigns points to their nearest cluster centers, and adjusts cluster 
centers by averaging the points assigned to them. The proposed algorithm closely resembles the application 
of Lloyd's algorithm in k -means, but modifies it by adding an optimization problem to step 2 (where points 
are assigned to given cluster centers) to ensure the uniformity of the clusters within a certain threshold. In 
the absence of the uniformity constraint, it is easy to show that given cluster centers, the total system-wide 
within-cluster distance is minimized when each point is assigned to the cluster with the nearest center. In 
our specific problem of interest, however, the ultimate goal is to reduce the complexity of the matching 
problems associated with clusters. Consequently, we need to adjust this allocation rule by requiring 
uniformity in cluster sizes. 

Algorithm 1 provides a high level description of the proposed method. The algorithm is initialized by 
randomly selecting K points (i.e., trips) as cluster centers. In step 1, points are assigned to clusters by 
solving the optimization problem in model (78)-(82). Constraint (79) ensures that each trip is assigned to 
a single cluster, and constraints (80) and (81) guarantee an ε -uniform distribution of riders and drivers 
between the K sub-graphs, respectively. Note that we are taking the integer part of the expressions on the 
left hand side of constraints (80)-(81) to obtain an integer right-hand side vector, which combined with the 
totally unimodular structure of the constraint set (see Proposition 9), allows for relaxing the binary 
constraints on the decision variables. Constraint set (82) relaxes the binary constraint on variable q . Note 
that model (78)-(82) can be transformed into an unbalanced Hitchcock Transportation problem (see 
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Proposition 10). For such problems with m source nodes and n sink nodes (where n m ), (Brenner, 2008) 
developed an efficient algorithm with a worst-case running time of 2( (log log ))nk n k k+ . Hence, the 
computational requirement for solving this problem is very minimal. 

In step 2, cluster centers are re-calculated by averaging the points in clusters, and a new distance matrix 
is generated based on the updated cluster centers. The algorithm terminates when the change in the objective 
function in equation (78) is bound by a pre-determined threshold, or when a max number of iterations is 
reached. Note that the structure of the graphG is not an input to Algorithm 1, and the spatio-temporal 
compatibility of trips will be captured through the distance matrixC .  

 
Algorithm 1 The ε -uniform partitioning algorithm 

Initialization Randomly select K points (i.e., trips) as cluster centers; 
Create the distance matrix = [ ], {1, , }, {1, , }nkC c n N k K∀ ∈ ∈  . 

Step 1 (Cluster allocation) 
Allocate N nodes to K clusters by solving the optimization problem below:   
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Step 2 (Update cluster centers) 

Update cluster centers by averaging the points in each cluster;  
Update the distance matrix = [ ], {1, , }, {1, , }nkC c n N k K∀ ∈ ∈  .  

Termination Stop when the reduction in equation (78) in two consecutive iterations is less than a pre-
determined threshold, or when a max number of iterations is reached.   

 
Using Algorithm 1, each sub-graph can be recursively partitioned into smaller sub-graphs using the 

same procedure, as needed. After the graph partitioning is done, the optimization problem in model (61)-
(64) needs to be solved for each sub-graph. 

After partitioning, sub-problems are independent of each other and can be solved in parallel. Therefore, 
the highest computational complexity after partitioning can be attributed to the largest sub-problem. This 
complexity has two sources: generating the bipartite graph within the cluster, and solving the max 
cardinality problem on this graph. In Appendix D, we show how one can benefit from using the proposed 
partitioning method by presenting upper bounds on the computational requirements of both sources. 

It is obvious that as the number of clusters increases, or when a more uniform distribution of riders and 
drivers in sub-graphs is required (i.e., lowerε values), the upper bound on the number of computations to 
generate the graph in the largest sub-problem decreases. However, it is very likely that being less flexible 
in terms of rider and driver uniformity in sub-problems and/or considering more clusters lead to eliminating 
more links from the original graph, hence reducing the accuracy of the solution obtained from Algorithm 
1. Finally, while partitioning the graph would lead to smaller sub-problems that can be solved faster, a more 
important contribution of partitioning is solving problems that cannot be solved at all due to the large 
number of variables and constraints. 
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3.6  Network Equilibrium  
 In this section, our goal is to devise a procedure, which incorporates the proposed graph partitioning 

technique, to obtain the equilibrium state of a traffic network with ride-sourcing. This goal, however, 
requires us to somehow relate the two problems at hand. On the one hand, the trip-based graph partitioning 
is prescribed for a system with microscopic view in which the trip information of every single participant 
is available. On the other hand, the user-equilibrium problem requires a macroscopic view of system with 
hourly OD tables and traffic flows. In order to address this issue, we consider a rolling horizon framework 
with length horizonL . In this framework, we first generate participant profiles from hourly demand, and apply 
the partitioning algorithm. Then, we solve the ridematching problems for each partition and convert the 
result of matching back to the hourly flows to solve the equilibrium problem. The length of rolling horizon 
must be chosen carefully such that it does not violate the time window of any ride-sourcing demand. Next, 
we elaborate on the assumptions and different steps of the proposed algorithm. 

The algorithm starts by assuming no ride-sourcing service within the network. Thus, the total demand 
between every two nodes, c

rsT , is set to the background traffic flow ( n
rsT ). As a result, we have no waiting 

time for customers and drivers. Having the demand, we can solve for the user-equilibrium to obtain the 
equilibrated flow and shortest path travel times denoted by rsx and rsh , respectively. Next, we use equation 
(1) to find the number of ride-sourcing customers between every two nodes, denoted by rsQ . 

Now, let's consider one rolling horizon. We generate N driver profiles and
( , ) rsr s W

Q
∈∑ rider profiles 

from available information. Let's assume that all participants including riders and drivers are available at 
the beginning of a time horizon. We further set the time window of riders to the length of the time horizon 
and assume a very large time window for drivers. Moreover, we assume that every driver can serve at most 
one rider in each time horizon. Finally, we assume that if served any, a driver will stay at the destination 
station of that rider until the start of next time horizon. Otherwise, they will wait at their own origin station 
until the next time horizon. Furthermore, we initialize the drivers' origin stations by drawing random 
stations from a discrete uniform distribution. In order to find a potential destination of every driver at the 
end of each time horizon, suppose that the driver rationally chooses a destination that maximizes their 
expected utility for the next time horizon based on the ride-sourcing demand, shortest path times and driver 
waiting times in this time horizon. Having the profiles generated, we apply Algorithm 1 to distribute riders 
and driver between K clusters. For each cluster, we solve a maximum weighted bipartite matching problem 
formulated as in equation (83)-(86). 

 rd rd
r R d Dk k

Maximize uδ
∈ ∈
∑ ∑  (83) 

 . . 1, : ( , )rd k k
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s t u d D r d L
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u r R r d L
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 0 1rdu≤ ≤  (86) 
In this equation, rdδ represents the expected benefit of driver d serving rider r , and can be computed as 
follows:  

 
, ,

= ( ), ( , )  .v
rd O D O O D ks s s s sr r d r r

F h w r d Lδ γ− ⋅ + ∀ ∈  (87) 

After solving the optimization problems, we update the total traffic demand by adding the traffic flow of 
occupied and idle ride-sourcing vehicles to the background traffic flow. We further, update the waiting time 
of riders and drivers in each station accordingly. Solving for the user-equilibrium using the updated network 
information provides new values for the flows, shortest path travel times and ride-sourcing demand. The 
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convergence test will be run between the current ( rsx ) and previous flows ( rsx′′ ). If the criterion is not met, 
we update the number of riders in each cluster and repeat the process for the same horizon. Upon the 
convergence of the flows in a horizon, we run a convergence test for the flows from this horizon ( rsx ) and 
the previous one ( rsx′ ). If the criterion is met, the algorithm terminates, otherwise, the origin station of 
drivers will be updated and the process will be repeated for another rolling horizon. A summary of the 
proposed procedure is presented in Algorithm 2. 

 
Algorithm 2 Equilibrium Algorithm For Traffic Network with Ride-sourcing And Graph Partitioning 

Initialization 
Set = , ( , )c n c

rs rsT T r s W∀ ∈ ; 
Set = 0,c

rw r S∀ ∈ ; 
Set = 0,v

rw r S∀ ∈ ; 
Set { | > 0},O

d rss
s unif r Q d D∀ ∈∑ ; 

Set =h∆ ∞ ; 
Solve the user-equilibrium and find rsx , rsh  and ( , )rsQ r s W∀ ∈ ; 

While ( >h
h∆  ) do: 

Set 
,

= { { ( ( ))}},D vrs
d rs O ss rds S r S rss

Qs argmax argmax F h w d D
Q

γ
∈ ∈

− ⋅ + ∀ ∈
∑

; 

Generate riders and drivers; 
Solve the trip-based partitioning algorithm to cluster participants into K regions; 
Set =m∆ ∞  
While ( >m

m∆  ) do: 
Update number of riders within clusters; 
For ( {1,..., }k K∈ ) do:  

Solve the max wighted bipartite matching for cluster k ;  
  end 

Update v
rsT , , ( , )o

rsT r s W∀ ∈ ; 
Update c

rw  and ,v
rw r S∀ ∈ ; 

Set = , ( , )c v o n c
rs rs rs rsT T T T r s W+ + ∀ ∈ ; 

Solve the user-equilibrium and find rsx , rsh  and ( , )rsQ r s W∀ ∈ ; 
 end 
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 Set 
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=
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∀


   

end 
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Figure 5 The Nguyen-Dupuis network 

4  Numerical Experiments 
 
Numerical experiments are carried out on the Nguyen-Dupius network, which consists of 13 nodes, 38 
links, and 5 OD pairs as shown in Figure 5. The performance on each link is assumed to follow a linear 
relationship with the corresponding link flow, i.e.  

( ) = ( , )ij ij ij ij ijt v a b v i j A+ ⋅ ∀ ∈  

The values of constants{ }ija and{ }ijb as well as the regular traffic demand{ }n
rsT for the network are enclosed 

respectively in Table 2(a) and 2(b), Appendix E.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
  

Let there be ride-sourcing service demands between the two node sets{1,4,5}and{2,3} located in the 
corners of the network (see the red nodes in Figure 5), and the fare structure of the service be  

0= ( , )rs rsF F h r s Wτ+ ⋅ ∀ ∈  
where 0F denotes the flag-drop fee, and rshτ ⋅ represents the time/distance-based portions. Define the 
customer demand function as: 

0
ˆexp( )ˆ( , ) = ( , )ˆ ˆ ˆexp( ) exp( )

rs
rs rs rs rs

rs rs

Cf C C Q r s W
C C

θ
θ θ

−
⋅ ∀ ∈

− + −
 

where 0
rsQ  indicates the potential customer demand from node r to s (see Table 2(c));θ̂ features a constant 

representing the degree of travelers' perceptual dispersion over the costs of using different modes; the costs
ˆ

rsC of alternative modes is assumed to also take the form ˆ ˆˆ ˆo c i
rs rsF w hβ β+ + , in which parameters and 

variables hold the same meanings as their hatless counterparts in rsC . 
For the inter-node matching, we further specify the potential functions ,v cΦ Φ and the potential 

difference function ∆  in Equation (48) to respectively adopt the following forms,  

( ), = ( ) ( )
vv qqv v v v v NT

l l l lT N T N−Φ ⋅  
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( ), = ( ) ( )
cc qqc c c c c NT

r r r rT N T N−Φ ⋅  

( , ) = ( )qm m h
lr lr lr lrT h T hη∆ ⋅ ⋅  

where , hqη and { , }, { , }{ }i
j i v c j T Nq ∈ ∈ are constants. Note that all the parametric values implemented in the 

experiment are summarized in Table 2(d), Appendix E for reference. 
 

4.1  Numerical Results For Inter-node And Intra-node Matching 
Based on the nominal system defined above, the scenarios of intra-node and inter-node matching are 
produced by using two different specifications of matching sets below:  
  

Matching range  (1)cM    (4)cM    (5)cM    (2)cM    (3)cM  

Intra-node   {1}  {4}   {5}   {2}   {3} 
Inter-node   {1,5,6,12}   {4,5,9}    {1,4,5,6,9}   {2,8,11}    {3,11,13}   

  
Equilibrium solutions are then retrieved by applying the procedure developed in Section 2.3. 

The equilibrium solution of inter-node matching is firstly presented. As shown in Figure 6, beside each 
source node, a pair of red and green columns are attached to indicate the matching time that RVs and 
customers undertake therein, respectively. The exact time of waiting is numbered directly on the top of each 
column. 

 
Figure 6 Equilibrated system states under inter-node matching 

 
In general, it is clear that the system under investigation experiences an excessive supply of RVs, i.e., 

customers enjoy relatively quick matches while RVs suffer from long time of waiting. The degree of excess 
peaks at node 1 and 3 but appears milder at other source nodes. Additionally, we observe in Figure 6 that 
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there are idle vehicles accumulating on nodes that have no customer demand inside, e.g. node 12 and 6. 
This is perhaps due to the fact that idle drivers in e-hailing systems are potentially less incentivized for 
chasing hotspots, as such a strategy may not necessarily reduce their deadheading time and render higher 
profitability. Even on hotspots, idle drivers may receive matches with distant pickups that make their long-
distance cruise futile. 

By taking the above equilibrium as the baseline, we then compare the differences between the intra-
node and inter-node matching scenarios. In contrast to inter-node matching, results show that RVs under 
intra-node matching on average experience longer time of idleness but less time in pickups. Also, both the 
rate of customers being served and the profitability of drivers are slightly lower under intra-node matching, 
intimating the potential for ride-sourcing platforms to match RVs and customers staying apart. 

Figure 7 displays the relative changes on the link flows as well as RVs and customers' waiting time by 
shrinking down the matching range. Specifically, for each variable x illustrated on the map, its relative 
change x∆ is defined as  

intra inter

inter

=x
x x

x
−

∆  

Figure 7 Comparisons of the inter-node and intra-node matching scenarios 
  
The red and green arrows in Figure 7 indicate percentage decrements and increments of flows on 

different links, respectively. The exact percent difference is numbered next to each arrow and shown 
graphically by its thickness. As can be observed, there are significantly greater amount of flows on links 
around the two sets of source nodes under inter-node matching (e.g. link 5 4→  and 12 1→ ). Such 
differences suggest that for e-hailing systems with unignorably long distance of pickups, an intra-node 
matching model may bias the flow estimates due to the lack of strength in modeling vehicles' deadheading. 

Further, the red and green columns in Figure 7 present the percentage changes on RVs' and customers' 
waiting time, respectively. Since inter-node matching enlarges the matching range and thereby reducing 
the meeting frictions between drivers and customers, it is likely that both parties' waiting time in matching 
decreases compared to the intra-node matching counterparts (see, e.g., node 4 and 3 in Figure 7). 
Counterexamples, however, may arise when the matching sets of two source nodes grow large enough to 
overlap with each other. Taking the pair of nodes 1 and 5 as an example, node 1 exhibits severer excess of 
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Figure 8 Equilibrated system states under ride matching with graph partitioning 

 
 
 
 
 
 
 
 
 

 

supply compared to node 5 (see Figure 6). Then, as we enlarge the matching range and have node 1 and 5 
own a large portion of matching sets in common, the supply excess condition on the two nodes neutralizes, 
which yields longer wait for customers on node 1 and RVs on node 5 (see Figure 7).  

 
4.2  Numerical Results For Graph Partitioning 
In this study, we assume that all trips will be completed on the shortest paths. To use the trip-basedε -
uniform partitioning, we need to assume some xy -coordinates for each station. Therefore, we assume that 
the network is located on a grid of 4 3×  units. In order to calibrate the wight vector ω  for the region, we 
assume an average travel time distance of 10 minutes between every two points with the same x / y but a 
difference of 1 unit in y / x . As a result, we have = (10,10,10,10,1)ω  . Further, let the number of clusters 
( K ), the value ofε , and the maximum number of iterations in algorithm 1 be 2, 0.1, and 20, respectively. 

For solving the user-equilibrium problem, we adopt the well-known method of "Convex Combination" 
with a threshold of 510− . Also, we let the flow convergence threshold of m and h be equal to zero. Since we 
start Algorithm 2 with a random choice of origin stations, we run the algorithm for 10 samples. Hence, the 
results are reported as the average of 10 runs. Finally, the length of the rolling horizon is set to be 1 hour. 

The equilibrium result of Algorithm 2 is presented in Figure 8. Similar to the result of previous section, 
we observe high rates of RVs' waiting times that suggests an excess of RV supply. However, unlike the 
previous cases, we observe zero waiting times for customers in all stations. This is duo the fact that there 
are enough RVs at each station to serve all the customers in that station. Therefore, no customer has to wait 
for RVs from other station to pick them up. Low rate of flow between node 4 and node 5 also confirms that 
RVs are mostly incentivized to serve the customers at their origin station. 

Figure 9 and Figure 10 display the relative changes on the link flows as well as RVs and customers’ 
waiting time compared to inter-node matching and intra-node matching, respectively. Roughly speaking, 
we observe that Algorithm 3.5 results in lower flow estimates. This is duo to the fact that the matching rate 
in this method is slightly lower than the 2 other methods. Since we assumed that unmatched RVs will stay 
in their origin station, we can expect this result. We speculate that increasing the length of rolling time 
horizon would increase the matching rate and hence the flows on network links. 
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Figure 9 Comparisons of the inter-node matching and graph partitioning scenarios   

 

 
Figure 10 Comparisons of the intra-node matching and graph partitioning scenarios 
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5  Findings 
 

This project proposes a network equilibrium model to deal with the traffic assignment problem in systems 
where a large portion of travel demands get served by ride-sourcing services. In such systems, besides the 
occupied vehicular trips transporting travelers from their origins to destinations, massive traffic is 
contributed by vacant RV trips that originate from the end of one customer trip to the start of the next. 
Different from the existing models, our aggregate framework takes into account the two major types of 
vacant trips generated by RVs, i.e. cruising and deadheading. We firstly present a basic model by 
considering intra-node matching between customers and idle RVs. The model is only capable of capturing 
the congestion effects of cruising trips. To cope with the distant matching, a common practice adopted by 
ride-sourcing systems nowadays, we base on the basic model and develop an enhanced modeling 
framework for inter-node matching. By using an analogy to electricity circuits, the proposed inter-node 
matching function handles the spatial interactions between neighboring zones in the matching process. Such 
a specification endows us with higher flexibility in evaluating the matching strategies of platforms and 
depicting the movements of vacant RVs. An iterative solution procedure is proposed to solve the 
equilibrium of an inter-node matching system. 

Although the presented methodologies provide an effective strategy to obtain network equilibrium in 
the existence of ride-sourcing, their operational efficacy may be far from reality duo to utilizing an 
approximate function of matching. In order to mitigate this issue, we further present a multi-layer 
framework that combines the microscopic and macroscopic view of the system, as it solves a ride-matching 
problem in the lower level whose results are fed to a user-equilibrium problem in the upper level. To achieve 
a high performance level in finding the matches, the ridesharing operator needs to make the matching 
decision based on a global view of the system that includes all active riders and drivers when proposing 
ride-matches. Consequently, the ride-matching problem that needs to be solved can become 
computationally expensive, especially when the system is operating over a large region, or when it faces 
high demand levels during certain hours of the day. In this project, we proposes a methodology to 
decompose the matching problem into multiple sub-problems with the goal of reducing the overall 
computational complexity of the problem as well as providing high quality solutions. 

 
6  Recommendations 

 
For the future research, we intend to feed the real-world data into the proposed framework to calibrate the 
inter-node matching function and empirically examine its practicality. We are interested in further 
understanding the physics behind inter-node matching, and studying how parameters in the matching 
function associate with the macroscopic performance of a system. Also, we intend to enhance our 
operational methodology by exploiting more complicated, yet more realistic matching problems (e.g. one-
to-many matching problem) to enhance the efficiency of our ride-sourcing vehicles. We expect that our 
enhanced assignment model as well as the derived knowledge will help government agencies/platforms 
with their critical policy/operational decision-makings in managing a ride-sourcing system. 
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Nomenclature 
 

Table 1 Notation list of sets, variables, parameters and functions 
Notation   Description  
Sets 
V    Set of nodes 
A    Set of links 
R    Set of the original nodes of customer trips; R V⊆  
S    Set of the destination nodes of customer trips; S V⊆  
W    Set of OD pairs of ride-sourcing customer demands 

bW    Set of OD pairs of background regular traffic 
cW    Complete set of OD pairs, including those of RVs and regular vehicles 

( )cM r    Set of nodes hailing customers at node r R∈  can potentially be matched to 

L    Set of nodes with positive accumulations of idle RVs 
( )vM l    Set of nodes idle RVs at node l L∈  can potentially be matched to 

Variables 
rsC    Monetary travel cost between OD pair ( , )r s W∈  

rsF    Fare of trips from node r  to s  
c
rw    Customer's average waiting time at node r , r R∈  

rsh    The equilibrium or shortest vehicular travel time between node r  and s  

rsQ    Customer demand on OD pair ( , )r s W∈  

( )sr slU U    Driver's utility of cruising his/her idle RV from node s S∈  to ( )r R l L∈ ∈  

( )v v
r lw w    Idle RV’s average additional waiting time at node ( )r R l L∈ ∈  

rF    Average fare of the customer trips originating from node r R∈  

l̂F    Average fare earnings of RVs who get matched at node l L∈  

rh    Average service time of the customer trips originating from node r R∈  

l̂h    Average service time of RVs who get matched at node l L∈  
o

rsT    Occupied RV flow that serves customer demand from node r  to s , ( , )r s W∈  

( )v v
sr slT T    Idle RV flow from node s S∈  to ( )r R l L∈ ∈  
n

srT    Regular traffic flow from node r  to s , ( , ) br s W∈  

( )v v
r lN N    Number of idle RVs at node ( )r R l L∈ ∈  
c
rN    Number of hailing customers at node r R∈  
m

lrT    Rate of RVs matched from node l L∈  to ( )vr M l∈  

Parameters 
oβ    Customer's out-of-vehicle value of time ($/h) 
iβ    Customer's in-vehicle value of time ($/h) 

γ    RV driver’s value of time $ / h  
θ    Degree of drivers' perceptual dispersion 
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N    Total number of RVs in the network 
Functions 

rsf    Function of customer demand versus travel costs for OD pair ( , )r s W∈  

rsg    Function of trip fare versus travel time for OD pair ( , )r s W∈  

rm    Aggregate matching function for node r R∈  

( )v cΦ Φ    Node potential function on accumulations of idle RVs(hailing customers) 

∆    Potential gap function for paired nodes with positive matching flows 
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Appendix A  Existence And Uniqueness of Solutions For the Inter-node 
Matching Equations 

 
This appendix proves that given { }v

lN ,{ }c
rN and{ }lrh to be fixed and positively valued, there exists a 

unique flow pattern{ }m
lrT that satisfies the following aggregate matching equation set ((88)),  

 
( ) ( )

, , = ( , ) , ( )v m v c m c m v
lk l kr r lr lr

v ck M l k M r

T N T N T h l L r M l
∈ ∈

   
Φ ⋅Φ ∆ ∀ ∈ ∈   

   
   
∑ ∑  (88)  

For mathematical convenience, we use{ }v
l l L∈Φ ,{ }c

r r R∈Φ and
, ( )

{ }lr vl L r M l∈ ∈
∆ to indicate the functions of 

vΦ , cΦ and ∆ conditional on { }v
lN , { }c

rN and { }lrh , respectively. Generic properties that pertain to 

{ ( ), { ( )}v v c c
l l r rT TΦ Φ (abbrev. ( )TΦ ) and { ( )}m

lr lrT∆ (abbrev. ( )T∆ ) are summarized as the following 
conditions C1-C3:      

C1: ( )TΦ and ( )T∆ are continuous functions defined on (0, )T ∈ +∞ .  
C2: For any (0, )T ∈ +∞ , we have ( ) > 0, ( ) < 0T T′Φ Φ and ( ) > 0, ( ) > 0T T′∆ ∆ .  
C3: There exist > 0p and > 0q such that: 

( ),     as 0
( ) =

( ),   as .

p

q

T T
T

T T

− +

−

Θ →
Φ 

Θ → +∞
 

These properties serve as the foundation for proofs below. 
On the first stage, we prove the existence of a feasible solution{ }m

lrT to Eq. (88). The proof begins with 
the Proposition 1 stated below.  
Proposition 1  There exist positive constants ( , , , )o u o uω ω τ τ  such that  

 1( ) ( )p q p q
o u o uT T T T Tω ω τ τ− − −+ Φ +    

Proof. Condition C3 suggests there exist > 0, > 0, > 0o o oT ω τ′ ′  and > 0, > 0, > 0u u uT ω τ′ ′  such that  
 ( ) (0, ]p p

o o oT T T T Tω τ− −′ ′Φ ∈   
 ( ) [ , )q q

u u uT T T T Tω τ− −′ ′Φ ∈ +∞   
Collectively, the above two inequalities yield  

 1 1 1( ) ( ) (0, ] [ , )p q p q
o u o u o uT T T T T T T Tω ω τ τ− − − − −′ ′ ′ ′+ Φ + ∈ ∪ +∞   (89) 

If o uT T , the proposition is proven. Otherwise, asΦ is monotonically decreasing, we have that for any 
[ , ]o uT T T∈ ,   

 1 1 1( ) ( )( ) ( ) ( )
( ) ( )

p qu u
o o u

o o

T TT T T T
T T

ω ω− − −Φ Φ′ ′Φ Φ ⋅ + ⋅
Φ Φ

   (90) 

 
( ) ( )( ) ( ) ( )
( ) ( )

p qo o
u o u

u u

T TT T T T
T T

τ τ− −Φ Φ′ ′Φ Φ ⋅ + ⋅
Φ Φ

   (91) 

where the first inequality results from the monotonicity of Φ  and the second one is due to the above 
relation (89). Since ( )oTΦ and ( )uTΦ characterize two constants with ( ) ( )o uT TΦ Φ , the inequalities (8) 
are extensible for the entire domain of (0, )T ∈ +∞ , which essentially indicates Proposition (1).  
 Define ( )lrZ T as 2 2 ( )p q

lrT T+ ∆ . Then, each lrZ characterizes a monotonically increasing function onT
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. By multiplying both side of Eq. (88) with 2 2p qT + , we can base on that equation to construct the following 
mappingΓ that maps (= { })i

lrTiT to (= { })d
lrTdT , i.e.  

 1 2 2

( ) ( )

: = , , ( )d i p q v i c i v
lr lr lr l lk r kr

v ck M l k M r

T Z T T T l L r M l− +

∈ ∈

       Γ ⋅Φ ⋅Φ ∀ ∈ ∈              
∑ ∑  (92) 

Then, the existence of a solution to Eq. (88) is equivalent to prove that the mapping ((92)) has a fixed point. 
As per Brouwer’s fixed point theorem (de2000mathematical), this requires the existence of a compact 
convex set Ω , such that = ( )Γ ∈Ωd iT T  for any ∈ΩiT . We thus prove the second proposition as 
follows,  
Proposition 2  A pair of positive bounds oB and ( )u oB B can always be found, with 

= { | [ , ], , ( )}v
lr o uT B B l L r M lΩ ∈ ∀ ∈ ∈T satisfying the above condition required by the existence of fixed 

points.  
Proof. According to Proposition (1), there will be a set of constants , , , ,( , , , )t t t t

k o k u k o k uω ω τ τ for each t
kΦ  such 

that  
1

, , , ,( ) ( )t p t q t t p t q
k o k u k k o k uT T T T Tω ω τ τ− − −+ Φ +   

where ( , ) = {  if  and  if }t k S k L t v k R t c∈ ∈ = ∈ = . By defining , ,= max{ }, = max{ }t t
o k o u k uω ω ω ω  

and , ,= max{ }, = max{ }t t
o k o u k uτ τ τ τ over all ( , )t k S∈ , we thus have  

1( ) ( ) ( , )p q t p q
o u k o uT T T T T t k Sω ω τ τ− − −+ Φ + ∀ ∈   

Next, we define two univariate functions ( )o T∆ and ( )u T∆ based on{ ( )}lr T∆ , i.e.  
( ) = min{ ( ), , ( )}v

o lrT T L r M l∆ ∆ ∀∈ ∈  
( ) = max{ ( ), , ( )}v

u lrT T L r M l∆ ∆ ∀∈ ∈  
Also, define 2 2( ) = ( )p q

i iZ T T T+ ∆ for either { , }i o u∈ . As all functions in{ ( )}lr T∆ increase monotonically 
on T , the resultant ,o u∆ ∆ and ,o uZ Z are all monotonically increasing functions. Suppose lrT will be valued 

from a given set [ , ]o uB B , , ( )vl L r M l∀ ∈ ∈ . Then,  

1 2 2

( ) ( )

( ) p q v c
lr o lr l lk r kr

v ck M l k M r

Z T T T− +

∈ ∈

    
 Γ ⋅Φ ⋅Φ   

        
∑ ∑T   

( ) ( )( )1 2 2p q v c
o lr l lr r lrZ T T T− + ⋅Φ ⋅Φ  

( )( )21 2 2p q p q
o lr o lr u lrZ T T Tτ τ− + − −⋅ ⋅ + ⋅  

( )1 2( )q p
o o u u uZ B Bτ τ− +  

Let ( )Bξ denote 2( )q p
o uB Bτ τ+ . The upper bound uB can thus be defined as solving ( ) = ( )o u uZ B Bξ . 

Note that by solving the equation, we can always receive a feasible uB because  

 ( ) ( )2 2 2 2 2
u(<) (<) (0 )

( ) = ( ) > ( ) > ( ) asBp q p q q p
o u o u u u o u u uZ B B B B B Bτ τ+ +

+
Θ ∆ ⋅ Θ Θ + → +∞  

given > 0, > 0p q and ( )o∆ ⋅ increases monotonically ranging from 0+ to+∞ . 
On the other hand, by defining constants = max{| ( ) |}v

v l L
n M l

∈
and = max{| ( ) |}c

c r R
n M r

∈
,   
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      1 2 2

( ) ( )

( ) p q v c
lr u lr l lk r kr

v ck M l k M r

Z T T T− +

∈ ∈

    
 Γ ⋅Φ ⋅Φ   

        
∑ ∑T   

 ( ) ( )( )1 2 2 ( 1) ( 1)p q v c
u lr l lr v u r lr c uZ T T n B T n B− + ⋅Φ + − ⋅Φ + −  

 Definition: Let ( 1)  and ( 1)v c
u v u u c uB n B B n B= − = −  

 1

( ) ( ) ( ) ( )

p q p q
lr lr

u v p v q c p c q
o lr u u lr u o lr u u lr u

T TZ
T B T B T B T Bω ω ω ω

+ +
−  

⋅ ⋅ + + ⋅ + ⋅ + + ⋅ + 
  

 1

( ) ( ) ( ) ( )

p q p q
o o

u v p v q c p c q
o o u u o u o o u u o u

B BZ
B B B B B B B Bω ω ω ω

+ +
−  

⋅ ⋅ + + ⋅ + ⋅ + + ⋅ + 
  

Define the above term on oB within the parenthesis behind 1
uZ − as ( )oBζ . Then, the lower bound oB can be 

defined as solving ( ) = ( )u o oZ B Bζ . Again, such a oB always exists because  

( ) ( ) ( )2 2 2 2
u(<) ( ) (0 )

( ) = ( ) > > ( ) asBp q p q
u o u o o o oZ B B B B Bζ+ +

+
Θ ∆ ⋅ Θ Θ → +∞


 

Further, since ( ) ( ) = ( ) ( )u u o u u uZ B Z B B Bξ ζ  , there must exist a oB in (0, ]uB . It is then straightforward 

that with any pair of oB and uB defined above and = { | [ , ], , ( )}v
lr lr o uT T B B l L r M l∈ ∀ ∈ ∈T , all the 

mappings{ ( )}lrΓ T will compliantly fall in [ , ]o uB B .  
With Proposition (2) held, the existence of a feasible solution{ }m

lrT to the equation set (88) is always 

guaranteed. On the second stage, we prove that the ensured solution{ }m
lrT is unique.  

Proposition 3  The matching flow pattern{ }m
lrT that solves the following Eq. (3) is unique.   

 ( ) ( ) = ( ) , ( )v v c c m v
l l r r lr lrT T T l L r M lΦ ⋅Φ ∆ ∀ ∈ ∈  (93) 

 
( )

=v m
l lk

vk M l

T T l L
∈

∈∑  (94) 

 
( )

=c m
r kr

ck M r

T T r R
∈

∈∑  (95)  

Proof. We prove the proposition by contradiction. Assume there are two distinct flow patterns ,1{ }m
lrT and 

,2{ }m
lrT solving Eq. (3). Firstly, if ,1 ,2=v v

l lT T and ,1 ,2=c c
r rT T for all l L∈ and r R∈ , then Eq. (3a) suggests 

the equivalence of 1{ }lrT and 2{ }lrT . Suppose ,1 ,2

1 1
>v v

l lT T for 1l L∈ , and then ,1 ,2

1 1 1 1
>m m

l r l rT T  for 1 1( )vr M l∈ . 

These two inequalities yields  
,1 ,2

,1 ,21 1 1 1 1 1 1 1
,1 ,21 1 1 1

1 1 1 1

( ) ( )
( ) = > = ( )

( ) ( )

m m
l r l r l r l rc c c c

r r r rv v v v
l l l l

T T
T T

T T

∆ ∆
Φ Φ

Φ Φ
 

which further gives rise to ,1 ,2

1 1
<c c

r rT T . Thus, there exists and 2 1( )cl M r∈  such that ,1 ,2

2 1 2 1
<m m

l r l rT T . Through 

a simple conduction, we obtain the following connection between 
2

v
lΦ and 

1

v
lΦ ,  

 
,1 ,1 ,1 ,1 ,1

2 2 2 1 2 1 1 1 1 1 1 1 1 1
,2 ,2 ,2 ,2 ,2

2 2 2 1 2 1 1 1 1 1 1 1 1 1

( ) ( ) / ( ) ( ) ( )
= < < 1

( ) ( ) / ( ) ( ) ( )

v v m m v v v v
l l l r l r l r l r l l l l

v v m m v v v v
l l l r l r l r l r l l l l

T T T T T

T T T T T

Φ ∆ ∆ Φ Φ
⋅

Φ ∆ ∆ Φ Φ
 (96) 

The inequality ((96)) implies two folds of relationships: 1. 2 1l l≠ ; 2. ,1 ,2

2 2
>v v

l lT T , which together evidences 
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the existence of an 2r R∈ with ,1 ,2

2 2 2 2
>m m

l r l rT T and  
,1 ,1 ,1 ,1 ,1

2 2 2 2 2 2 2 1 2 1 1 1 1 1
,2 ,2 ,2 ,2 ,2

2 2 2 2 2 2 2 1 2 1 1 1 1 1

( ) ( ) / ( ) ( ) ( )
= > > 1

( ) ( ) / ( ) ( ) ( )

c c m m c c c c
r r l r l r l r l r r r r r

c c m m c c c c
r r l r l r l r l r r r r r

T T T T T

T T T T T

Φ ∆ ∆ Φ Φ
⋅

Φ ∆ ∆ Φ Φ
 

Therefore, by repeating the above process iteratively, we can retrieve two ceaselessly nonrepetitive 
sequences 3 4 5{ , , , }l l l L⊆ and 3 4 5{ , , , }r r r R⊆ . This yields an obvious contradiction because both L  
and R are finite sets.  

Integrating Proposition (2) and (3) proves the existence and uniqueness of a solution for Eq. (88). We 
present this conclusion formally as the following Theorem (1):  
Theorem 1 By fixing{ }v

lN ,{ }c
rN and{ }lrh with positive values, the aggregate matching equation set (88) 

solves a unique flow pattern
, ( )

{ }m
lr vl L r M l

T
∈ ∈

.  
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Appendix B  Existence of an Equilibrium For the Inter-node Matching 
system 
 
This appendix proves that for any practical parametric setting, there always exists an equilibrium solution 
to the inter-node matching system (33)-(56). Before starting the proof, we firstly enumerate two general 
properties that our system should comply with:      

• All the link performance functions ( , ){ }ij i j At ∈ are monotonically increasing on the corresponding link 

flows, with the free-flow travel time 0
( , ){ }ij i j At ∈ being positive constants.  

• All the customer demand functions ( , ){ }rs r s Wf ∈ are convex and monotonically decreasing on the 

corresponding trip costs, with the limit lim ( | )c c
r rs rcwr

w f w
→+∞

⋅ h being positively finite. The potential 

demands (under the zero-cost condition) 0
( , ){ }rs r s WQ ∈ are positive constants.  

These properties then lead to the following two propositions:  
Proposition 4 For any pair of nodes 2( , )i j V∈ and i j≠ , there exists a pair of positive bounds o

ijh  and 

(> )u o
ij ijh h  such that the equilibrated travel time *

ijh  is always in [ , ]o u
ij ijh h .  

The proposition holds as the free-flow travel time and the bounded travel demand respectively block *
ijh  

from approaching 0 and +∞ .  
Proposition 5 Both the accumulations of idle vehicles v

lN and waiting customers c
rN are bounded under 

equilibrium for any node l L∈ and r R∈ .  
The boundedness of v

lN and c
rN are respectively ensured by the finite number of RV fleets N as well as the 

boundedness of the term ( | )c c
r rs rw f w⋅ h . We then specify ˆ cN as a constant greater than 

max{sup ( | )}c c
r rs rr R cwr

w f w
∈

⋅ oh , where 2( , )
= { }o

ij i j V
h

∈

oh . 

Next, we bring back the mappingΓ defined in Appendix A,  
 

1 2 2

( ) ( )

: = , , , , , ( )d i p q v i v c i c v
lr lr lr l lk l r kr r lr

v ck M l k M r

T Z T T N T N h l L r M l− +

∈ ∈

       Γ ⋅Φ ⋅Φ ∀ ∈ ∈              
∑ ∑  (97) 

where the variables { },{ }v c
l rN N and { }lrh previously specified as fixed parameters are now explicitly 

incorporated. We then have the following proposition,  
Proposition 6  An upper bound uB can always be found with = { | [0, ], , ( )}v

m lr uT B l L r M lΩ ∈ ∀ ∈ ∈T

, such that ( ) mΓ ∈Ωv cT,N ,N ,h  for all mT ∈Ω  when [0, ]LN∈vN  and ˆ[0, ]c RN∈cN .  
Since 1( , )lrZ T h− is monotonically increasing onT and decreasing on h , we have  

 ˆ( , , , ) ( , , ,0), , ( )v c c v
lr l l lr lrN N h N N l L r M lΓ Γ ∀ ∈ ∈T T  

Then, by following the same procedure as to find the upper bound in Proposition 2, we can retrieve a bound 
uB . Also, we bring back the mapping from the solution procedure section,  

Proposition 7  the complex mapping is continuous. and vT , cT shrink down. and cw goes up.  
{ , , , , }c v c v

r l r l rsT T w w h ∈Ω  should be determined firstly. 
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Steps for the proof:      
    • Also, we bring back the mapping from the solution procedure section,  

Proposition 8 The complex mapping is continuous. And vT , cT  shrink down. And cw  goes up.  
    • Necessary step: Define the state of mapping when cw  is infinitely large.  
    • Define the mapping and prove the the compact and convexity, continuity.  
    • Prove that the zero flow condition won't happen.  

( , )
( , , ) { } ( , )

{ }

v v v
l lr

v c m c c
lr l rs

rs

w T N
N N T w Q N

T

→
→ → →

→
h

h
 

(see (Lu, 2010), (Hall, 1978)). 
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Appendix C  Properties of the ε -uniform Partitioning Algorithm 

  
In what follows, we prove certain properties of theε -uniform partitioning algorithm.  
 
Proposition 9  The coefficient matrix in model (78)-(82) is totally unimodular.   
Proof. Let us assume that the N point are ordered such that the first | |R points are rider trips and the 
remaining | |D  points are driver trips, i.e. {1, ,| |,| | 1, ,| | | |= }n R R R D N∈ + +  . As a result, the 
coefficient matrix in model (78)-(82) can be presented as:  

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0

Cons. 79 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1
1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Cons. 80

0

Cons. 81

























    

    

              

    

    

              

    

    

    

              

0 0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

    

    

              

    

 

 
The columns in this matrix correspond to the following variables: 

11 21 | |,1 | | 1,1 | | | |,1 1 2 | |, | | 1, | | | |,, ,..., , ,..., ,..., , ,..., , ,...,R R R D K K R K R K R D Kq q q q q q q q q q+ + + + . 
Since total unimodularity is invariant to multiplying a row by a constant, we can multiply the sub-matrices 
associated with constraints (80) and (81) by -1. As a result, the coefficient matrix becomes equivalent to 
a node-edge incidence matrix of a graph, where every column has exactly a single 1 and a single -1, and all 
other entries are zeros. As all node-edge incidence matrices are totally unimodular, the result follows.  

 
Proposition 10  The problem in model (78)-(82) can be transformed to an unbalanced Hitchcock 
Transportation problem with 1N +  source nodes and 2 K×  sink nodes.  
Proof. Let us define 2 disjoint sets of  = {1, , 1}N +  and = {1, , 2 }K to represent the set of 
sources and sinks, respectively. Without loss of generality, we assume that the first | |R  elements in  
are rider trips, each with a supply of 1, followed by D elements of driver trips, each with a supply of 1. The 

last element in   denotes a dummy node with a supply of 
| | | |([(1 ) ] [(1 ) ])R Dk
K K

ε ε+ + + . We further 

assume that the first K elements in  represent the riders in clusters 1 to K , each with a demand of 
| |[(1 ) ]R
K

ε+ , followed by another K elements to represent the drivers in cluster 1 to K , each with a 

demand of 
| |[(1 ) ]D
K

ε+ . The supply and demand vectors are presented by and , respectively. The 
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arcs can be defined by set 1 2 3= ∪ ∪    , where 1 = {1, ,| |} {1, , }R K×  , 

2 = {| | 1, , } { 1, , 2 }R N K K+ × +  , and 3 = { 1} {1, , 2 }N K+ ×  . The cost of each arc, denoted 
by ij , for the arcs in sets 1 and 2 can be determined from distance matrixC . Finally, the arcs in set 

3  have a zero cost. As a result, the problem can be formulated as in model (98)-(101).   
 

( , )
ij ij

i j
Minimize f

∈
∑



  (98) 

 
:

( , )

. . = ,ij i
j

i j

s t f j
∈
∈

∀ ∈∑



   (99) 

 
:

( , )

= ,ij j
i

i j

f i
∈
∈

∀ ∈∑



   (100) 

 0ijf ≥  (101) 
In this formulation, the decision variable is the flow from source i  to sink j denoted by ijf . The model in 
(98)-(101) is the mathematical formulation of a Hitchcock Transportation problem with unbalanced number 
of source and sink nodes (i.e. 2 1k N + ), and the result follows.  
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Appendix D  Computational Complexity Before and After Partitioning 
 
In the following, we compare the computational complexity of the problem before and after partitioning to 
quantify the effectiveness of the proposed algorithm.  
Proposition 11  The objective function of the proxy problem in (3.5) decreases with iterations of 
Algorithm in 3.5.  
Proof. Let us denote the objective function in (3.5) by∆  which is a function of the assignment variable 

nkq  and cluster center vector ktr . In Step 1, the cluster centers are fixed, and ∆  will decrease from the 
previous iteration by solving the model in (3.5), since it assigns the points to the clusters so as to minimize 
∆ . 

In Step 2, the assignment variables are fixed, and we find the cluster centers that minimize ∆  with 
respect to ktr . since ∆  is a convex function with respect to ktr , the optimum point is a minimum. Thus, 
we have for each {1, , }k K∈  :   

 = 0ktr
∂∆
∂

 (102) 

 
=1

( ) = 0
N

k
nk n

n
q tr tr−∑  (103) 

 =1

=1

=

N

nk n
k n

N

nk
n

q tr
tr

q

∑

∑
 (104) 

The equation in (104) simply indicates that ∆  will be minimized if we choose the center of a cluster to be 
the average of all trip vectors in that cluster. Hence, ∆  will decrease with iterations.  

  
Proposition 12  Algorithm 3.5 converges in a finite number of iterations.  
Proof. Let us denote the objective function in (3.5) by∆  which is a function of the assignment variable 

nkq  and the cluster center vector ktr . The proposed algorithm consists of two steps. In the assignment step, 
it solves an assignment problem by minimizing∆ given the cluster centers, subject to a set of uniformity 
constraints. In the update step, it minimizes ∆  by letting each cluster’s center be the centroid of the points 
in that cluster given the current assignment of points to clusters. Thus, we can infer that:    
    1.  There are possibly many but finite number of ways to assign N points to K clusters.  
    2.  From one iteration to the next, ∆  will not increase (see Proposition 11). Since we stop the 
algorithm when ∆  does not change significantly between two consecutive iterations (i.e., when cluster 
centers do not change), we can further state that ∆  will strictly decrease as iterations proceed.  

 From 1, we know that the solution set is finite. For each solution in this finite set, there is a unique 
minimum ∆  based on the update step. From 2, we know that the solution should improve, and therefore, 
we will visit any solution at most once. As such, we conclude that the algorithm in (3.5) converges in a 
finite number of iterations.  

  
Proposition 13  Algorithm 3.5 has polynomial time complexity.   
Proof. As noted earlier, the cluster allocation step of one iteration has a worst-case running time of 

2( (log log ))nk n k k+ . Also, the update step requires a running time of ( )nkd , where d  is the 
dimension of a trip vector and is set to 5, at every iteration. Given the maximum number of iterations, 
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denoted by i , the running time complexity of the ε -uniform partitioning is 2( (log log ))ink n k k+ .  
  

Remark 1 After partitioning the matching problem based on Algorithm 3.5, the worst-case computational 

complexity of the original problem is reduced as follows: Graph generation by a factor of 
2(1 )

K
ε+

, and 

solving the matching problem by a factor of 
3

2

(1 )
K
+

.   

Proof. The most complex sub-problem generated by Algorithm 3.5 could have 
| |(1 ) R
K

ε+  riders and 

| |(1 ) D
K

ε+  drivers, requiring 2
2

| || |(1 ) R D
K

ε+  trip comparisons to generate the bipartite graph, which 

is by a factor of 
2

2

(1 )
K
ε+

smaller than the original number of trip comparisons. Once graph kG  for 

partition k  is generated, we solve a matching optimization problem whose complexity depends on the size 
of kG . More specifically, the computational complexity in each iteration of the Simplex algorithm when 
solving the max cardinality problem in model (3.1) is proportionate to the product of number of nodes and 

links, i.e., 
3

3

(1 ) | || |(| | | |)R D R D
K
+

+


, which is by a factor of 
3

3

(1 )
K
+

smaller than the complexity of 

each Simplex iteration when solving the original problem.  
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Appendix E  Parametric settings for the numerical experiment 

   
Table 2 Characteristics of the Nguyen-Dupuis network 

Link 

1-5 
1-12 
2-8 
2-11 
3-11 
3-13 
4-5 
4-9 
5-6 
5-9 
5-1 
5-4 
6-7 

          *The units of

(a) Parameters for the link performance functions 
aij  b  ij Link aij  b  ij Link aij  b  ij

7 
9 
9 
9 
8 

11 
9 

12 
3 
9 
7 
9 
5 

0.0125 
0.01 

0.0125 
0.005 

0.01 
0.01 
0.01 

0.005 
0.0075 
0.0075 
0.0125 

0.01 
0.0125 

6-10 
6-5 

6-12 
7-8 

7-11 
7-6 
8-2 
8-7 

8-12 
9-10 
9-13 
9-4 
9-5 

13 
3 
7 
5 
9 
5 
9 
5 

14 
10 
9 

12 
9 

0.005 
0.0075 
0.0025 
0.0125 
0.0125 
0.0125 
0.0125 
0.0125 

0.01 
0.005 
0.005 
0.005 

0.0075 

10-11 
10-6 
10-9 
11-2 
11-3 
11-7 
11-10 
12-6 
12-8 
12-1 
13-3 
13-9 

 

6 
13 
10 

9 
8 
9 
6 
7 

14 
9 

11 
9 
 

0.0025 
0.005 
0.005 
0.005 
0.01 

0.0125 
0.0025 
0.0025 

0.01 
0.01 
0.01 

0.005 
 

aij and b are minute and minutes per unit flow, respectively. ij    

 
(b) Regular traffic demand       

O\D 1 2 3 4 5 
1 0 225 600 0 0 
2 150 0 0 450 300 
3 450 0 0 300 240 
4 0 375 150 0 0 
5 0 150 225 0 0 

         (c) Potential ride-sourcing service demand 
O\D 1 2 3 4 5 

1 0 150 400 0 0 
2 100 0 0 300 200 
3 300 0 0 200 160 
4 0 250 100 0 0 
5 0 100 150 0 0 

  
      
 
 

(d) Parametric values for the system setting 
Param Value Unit Param Value Unit Param Value 

0 ˆ 0,β β  20 $/h F  0 2 $ v c,q qN  N 1, 1 
i ˆ iβ ,β  6, 12 $/h τ  60 $/h v c,q qT  T 0.1, 0.1 
γ  10 $/h θ̂  0.01 1/$ qh  0.1 
θ  0.5  ˆ cw  0.5 h η  10 

N  2200  F̂  rs 0.8 F  rs $   
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Appendix F  Impact 
  
1. Presentations  

(a) Peer-to-Peer Ridesharing: Using the Existing Passenger-Movement Capacity to Serve the 
Transportation Demand, Apr. 2018, Neda Masoud, ASCE speaker series, University of Michigan  

(b) An Optimization Framework for Shared Mobility in Dynamic Transportation Networks, 2017, 
Neda Masoud, Michigan Innovative Mobility Symposium, Ann Arbor, MI  

(c) Modeling Spatial Effects of Surge Pricing in Ride-Sourcing Markets, July 2017, Yafeng Yin, 2017 
Conference for Computational Transportation Science, Lanzhou, China  

(d) Research Needs for Achieving Connected and Automated Mobility, August 2017, Yafeng Yin, 
Workshop for Future Mobility Systems, University of Illinois Urbana-Champaign  

(e) Modeling and Analysis of Ride-Sourcing Services, March 2018, Yafeng Yin, Invited Seminar, 
Tongji University, Shanghai, China  

 
2. Journal Papers/Reports (full citation)  

(a) Zhengtian Xu, Zhibin Chen and Yafeng Yin (2019) Equilibrium Analysis of Urban Traffic 
Networks with Ride-Sourcing Services, Transportation Research Part B: Methodological 
(submitted)  

(b) Tafreshian Amirmahdi and Neda Masoud (2020) Trip-based Graph Partitioning for Parallel 
Computing in Ridesharing, Transportation Reserach Part C: Emerging Technologies. 114, 532-
553 

 
3. New Courses (Title, Undergraduate/Graduate, Date)  

(a) Course modules on equilibrium analysis of urban traffic networks with ride-sourcing services, 
CEE 557 Transportation Network Modeling, Graduate, Winter 2019.  
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