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ABSTRACT 

The introduction of automation technologies to various application domains has resulted 

in improved efficiency and precision of operations. However, it has also created challenges. One 

problem that has recently received considerable attention is trust miscalibration, i.e., a mismatch 

between a person’s trust in automation and the actual capabilities and reliability of the system. 

Trust miscalibration can refer to too much or too little trust in a system which, in turn, leads to 

misuse (e.g., overreliance) or disuse (e.g., slow adoption) of automation. Avoiding these 

undesirable outcomes requires a better understanding of, and support for trust calibration – the 

focus of the proposed research. To date, most studies on trust suffer from a number of 

limitations, including highly intrusive techniques for measuring trust, a limited understanding of 

important factors affecting the process of trust development and a lack of effective 

countermeasures to deal with trust miscalibration.  

To address these shortcomings, the goals of this dissertation were to (1) develop an eye-

tracking based technique to infer trust levels and variations in real time, (2) identify how the 

magnitude and duration of changes in system reliability affect the process of trust evolution and 

calibration, and (3) develop and evaluate the effectiveness of a real-time intervention (an audio 

alert) for supporting trust calibration. To this end, a series of empirical studies were conducted in 

the context of an Unmanned Arial Vehicle (UAV) control simulation. Participants were required 

to perform two tasks in parallel: a tracking task and a target detection task, the latter with the 

assistance of an imperfectly reliable automated system. Subjective trust measures, eye 

movements, behavioral data, and performance outcome data were recorded. 
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As expected, participants in the first study monitored low-reliability UAVs more closely, 

as indicated by a set of eye-tracking metrics. Variations in their monitoring behavior aligned 

with their subjective trust ratings, suggesting that eye tracking is indeed a promising less 

intrusive technique for inferring trust in real time. The second experiment showed that 

participants were sensitive to four types of UAV reliability changes that differed with respect to 

magnitude and duration. Both duration and, even more so, magnitude affected participants’ trust 

calibration and recovery. The large and long reliability drop in system performance had the most 

severe negative impact on trust and target detection performance. To prevent performance 

breakdowns due to trust miscalibration, an eye-tracking based trust inference system using a k-

Nearest Neighbor algorithm was developed and used in Experiment 3 to trigger audio alerts in 

case of a divergence between system reliability and participant trust in the system. The audio 

alert was successful in improving trust calibration and contributed to faster trust recovery 

following a period of low system performance. However, these improvements did not translate 

into better performance on the target detection task.  

The findings from this dissertation add to the knowledge base in trust in automation. At a 

methodological level, a new nonintrusive was developed and validated. At a conceptual level, a 

better understanding of the effects of variations in the magnitude and duration of system 

reliability changes on trust and performance was gained. And at an applied level, a candidate 

countermeasure to trust miscalibration was designed and tested. Ultimately, this research helps 

prevent catastrophic consequences due to inappropriate reliance on automation, and thus 

contributes to safer operations in a wide range of application domains. 
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Chapter 1  

Introduction 

 

The introduction of automation technologies to various application domains has resulted in 

improved efficiency and precision of operations (Breton & Bossé, 2003). However, it has also 

created challenges. One important problem that has recently received considerable attention is 

trust miscalibration, i.e., a mismatch between a person’s trust in automation and the actual 

capabilities and reliability of the system (Lee & See, 2004). Trust miscalibration can refer to too 

much or too little trust in a system which, in turn, leads to misuse or disuse of automation 

(Parasuraman & Riley, 1997). Misuse involving overreliance on technology has contributed to 

incidents and accidents in high-risk domains such as aviation, military operations and nuclear 

power plants. For instance, in 2013, Asiana flight 214 struck the sea wall during its approach to 

San Francisco International Airport. Three passengers were fatally injured in this accident. 

According to the NTSB investigation, pilots’ overreliance on the automation was one important 

factor contributing to this accident. The pilots ‘trusted’ that the automation would provide speed 

protection at all times and therefore did not intervene when, in fact, the auto-throttle system had 

entered the so-called HOLD mode in which it no longer prevented the airspeed from falling 

below a minimum value. In contrast, a lack of trust has led to the slow adoption, and even 

complete rejection of highly automated systems. For example, in the domain of healthcare, 

automated infection prevention surveillance was found to help reduce 61% of the time infection 
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control professionals (ICPs) spent on surveillance activities; yet, only 23%~56% of surveyed 

facilities adopted the automated surveillance system. A lack of understanding of how the system 

worked made it difficult to for ICPs to establish trust and rely on the system (Hebden, 2015). 

Avoiding these undesirable outcomes requires a better understanding of, and support for trust 

calibration – the focus of the proposed research. To date, most studies on trust suffer from a 

number of limitations, including disruptive and biased techniques for measuring trust, a limited 

understanding of important factors affecting the process of trust development and a lack of 

effective countermeasures to deal with trust miscalibration. To address these shortcomings, this 

research addressed three main objectives: 

1) Develop an eye tracking based technique for inferring trust in real time in a nonintrusive 

manner 

2) Study how the degree and duration of variations in system reliability affect the calibration 

and levels of trust in automated systems over time 

3) Evaluate the effectiveness of real-time audio alerts for improving trust calibration and 

proper use of automation 

This chapter will provide an overview of studies on trust in human-automation interaction 

and identify gaps in the literature.  Eye tracking will then be introduced as a promising way to 

infer trust in technology in real time. Finally, to overcome the issue of trust miscalibration, a 

potential countermeasure using both training and audio alerts will be described.  
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Trust in automation 

Human-automation interaction 

Automation can be defined as “the execution by a machine agent (usually a computer) of 

a function that was previously carried out by a human” (Parasuraman & Riley, 1997). The 

development and wide application of automation systems has created numerous benefits: 

automation is not vulnerable to cognitive limitations such as fatigue, stress and bias; physical 

restrictions in extreme working environment are no longer an issue; automation has also 

improved operation precision and work efficiency remarkably (Parasuraman & Miller, 2004).  At 

the same time, the inappropriate use of automated systems – both misuse and disuse of modern 

technologies - has led to unexpected or undesirable outcomes, including incidents and accidents 

(Parasuraman & Riley, 1997). Misuse refers to operators over-relying on “imperfectly reliable” 

automation while disuse happens when operators neglect or underutilize automation even when it 

works well. Several studies have shown that trust in automation is an important factor affecting 

automation usage (Hoff & Bashir, 2015; Lee & Moray, 1994; Lee & See, 2004).  

 

Trust 

Trust is a concept that was originally developed and studied in the field of social 

psychology but soon gained interest in other research areas, such as sociology, economics, 

political science and, most recently, ergonomics. Barber (1983) defined interpersonal trust along 

three dimensions: persistence of natural and moral laws (expectation of constancy), technically 

competent performance (skill-, rule-, knowledge-based abilities that a trustor expects from a 

trustee), and fiduciary responsibility (trustees’ duties to place others’ interests before their own). 

Later, Rempel et al. (1985) focused on the dynamic nature of human-human trust and proposed 
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predictability (dominating trust in early stages), dependability (dominating trust later) and faith 

(orienting to future trust) as three main aspects of interpersonal trust. Muir (1987, 1994) was the 

first to systematically study trust between humans and machines. Based on the assumption that 

trust in machines resembles trust in humans, she integrated the above six dimensions to build a 

model of human-machine trust. However, it was soon noted that there are indeed important 

differences between human-human and human-machine trust (Madhavan & Wiegmann, 2007b; 

Meyer & Lee, 2013). For example, Lee and See (2004) who define trust as “the attitude that an 

agent will help achieve an individual’s goals in a situation characterized by uncertainty and 

vulnerability” proposed that one major difference is that “automation lacks intentionality”, which 

implies that the machine does not exhibit features like loyalty and dependability, features that 

form the basis for the development of human-human trust. The authors built a dynamic model of 

trust and reliance on automation. This model identifies three critical factors affecting trust 

development: 1) the closed-loop dynamics of trust and reliance, 2) the importance of context on 

trust and on mediating the effect of trust on reliance, and 3) the role of information display on 

developing appropriate trust. According to this model, trust, along with other attitudes (such as 

self-confidence or perceived risk) determines people’s intention to rely on automation. This 

intention, combined with factors such as time constraints, affects how people actually rely on the 

automation. The actual interaction between people and automation, in turn, affects how much 

people trust the system, because trust is largely dependent on the observation of actual 

automation behavior. A study by Jian et al. (2000) highlighted that people are more likely to 

distrust a machine, compared to human beings. They explained that this difference is, in part, due 

to the fact that interpersonal trust tends to build up over a long period of time while there is often 

little time for humans to develop trust in automation (Lee & Moray, 1994).  
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Ideally, operators’ trust in automation should be calibrated, i.e., it should be proportional 

to the trustworthiness or reliability of the system. In reality, however, there is often “a mismatch 

between the perceived and the actual system performance and capabilities”, an issue called trust 

miscalibration (Lee & Moray, 1994; Muir, 1987). Miscalibration relates to two important 

dimensions of trust, its resolution and its specificity (Lee & See, 2004, See Figure 1.1). 

Resolution refers to how well the range of automation capabilities is reflected in the range of 

operator trust (Cohen, Parasuraman, & Freeman, 1998). Specificity includes both functional and 

temporal specificity. Functional specificity describes the degree to which trust is associated with 

a particular function of the system. Temporal specificity, the focus in this research, refers to 

“changes in trust as a function of the situation or over time” (Lee & See, 2004). Both trust 

resolution and trust specificity highlight the dynamic nature and context-sensitivity of trust in 

automation. However, most studies to date have treated trust as a steady-state, rather than time-

variant variable (Yang, Unhelkar, Li, & Shah, 2017). These studies have made important 

contributions by identifying a wide range of factors that affect trust levels (Hoff & Bashir, 2015; 

Schaefer, Chen, Szalma, & Hancock, 2016) but supporting trust calibration will require a better 

understanding of the process of trust formation and change (Khastgir, Birrell, Dhadyalla, & 

Jennings, 2017; G. H. Walker, Stanton, & Salmon, 2016; Yang, Wickens, & Hölttä-Otto, 2016; 

Yu et al., 2017). 
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Figure 1.1. The relationship among trust calibration, trust resolution, and automation 

capability/trustworthiness (Lee & See, 2004) 

 

  Factors affecting trust 

Trust in human-machine teams can be affected by many factors. A literature review of 30 

trust-related studies divided these factors into three categories: human-related, environment-

related and automation-related (Schaefer et al., 2016). Human-related factors can be divided 

further into traits (e.g., age, gender, ethnicity etc.), emotive factors (e.g., attitudes towards 

automation, comfort/confidence/satisfaction with automation), states (e.g., stress, fatigue), and 

cognitive factors (e.g., ability to use automation, expectation). Factors related to the environment 

are team collaboration (e.g., role interdependence, team composition) and task/context (e.g., 

risk/uncertainty, physical environment). Automation-related factors include the features and 

capability of automation, such as its appearance, reliability, feedback and behavior. The latter 

were found to be the main contributors to the development of trust in human-machine teams, 

followed by human-related factors. 

Among automation-related factors, system reliability has received the most attention 

and appears to be the most critical factor in shaping operators’ trust in a system (Lee & Moray, 
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1994; Lee & See, 2004; Schaefer et al., 2016). Not surprisingly, highly reliable automation gains 

more trust than low reliability automation (Bailey & Scerbo, 2007; Dzindolet, Peterson, 

Pomranky, Pierce, & Beck, 2003; Madhavan, Wiegmann, & Lacson, 2006; Walliser, de Visser, 

& Shaw, 2016). Note that operators’ standard for considering a system reliable and their 

tolerance for automation error varies as a function of the potential consequences of a failure. For 

example, if a life saving device, such as robotic medical device, is not 100% reliable, the device 

is considered untrustworthy while other less safety critical technologies may be trusted even 

when they are only 70% reliable. Operators’ trust is affected not only by the actual reliability of a 

system but also by how reliable they perceive the system to be. Perceived reliability can differ 

from actual reliability when operators do not notice mistakes or when a system performs as 

designed but not as expected by the operator (e.g., Christopher D Wickens, 1995). Finally, the 

timing of poor system performance also matters. If a system fails early on during human-

machine interaction, the negative effect on trust tends to be much more severe compared to a 

performance breakdown happening at a later stage (Desai et al., 2012; Robinette, Howard, & 

Wagner, 2017).  

While the effects of system reliability on trust have been studied quite extensively, 

research in this area still involves some notable limitations. In most studies, system reliability 

was varied as a between-subject factor (e.g., Dzindolet, Pierce, Beck, Dawe, & Anderson, 2001; 

Lee & Moray, 1994), and trust was measured only one time - at the end of the experiment. Very 

few studies have examined how changes in system reliability- in particular, the magnitude and 

duration of system reliability changes - affect longer-term trust development at an individual 

level. Another shortcoming of most studies is that they focused on the effects of automation 

failure on trust decrement (Ezer, Fisk, & Rogers, 2008; Wiegmann, Rich, & Zhang, 2001); little 
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is known about the trust recovery process once system performance returns to a high level. 

Finally, it remains unclear how system reliability interacts with other factors, such as priming, a 

process where exposure to one stimulus influences the response to subsequent stimuli, without 

the individual necessarily being aware of this effect (Tulving & Schacter, 1990). 

In addition to automation-related factors, human-related factors can affect trust 

development. Among them, culture (Huerta, Glandon, & Petrides, 2012), age (Ho, Wheatley, & 

Scialfa, 2005), and trust propensity (Merritt, Heimbaugh, LaChapell, & Lee, 2013) contribute to 

dispositional trust (an individual’s enduring tendency to trust automation) (Hoff & Bashir, 2015), 

while expectation (Mayer, Sanchez, Fisk, & Rogers, 2006), experience with a system (Sanchez, 

Rogers, Fisk, & Rovira, 2014; Yuviler-Gavish & Gopher, 2011), and understanding of a system 

(Manzey, Reichenbach, & Onnasch, 2012) contribute to learned trust, which is known as an 

operator’s evaluation of the automation based on past experience or current interaction (Hoff & 

Bashir, 2015). The present research considers two human-related factors, expectation and 

training, because they are more easily manipulated in real world environments than factors that 

affect dispositional trust (Mayer, 2008).  

Expectation is a factor that is embedded in the definition of trust in automation. Muir 

(1994) extended the definition of interpersonal trust to human/machine relationships and 

proposed that trust development depended on the realization of three types of expectations: 1) 

persistence (predictable behavior), 2) technical competence (to work properly, to be competent), 

3) fiduciary responsibility (morality considerations). When operators interact with an automated 

system, the initial expectation for automation capabilities was compared to the actual automation 

performance, and then contributed to the dynamic trust evolution process (Merritt & Ilgen, 

2008). Some research addressed the importance of delivering true capabilities and limitations of 
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the automated system, so that operators can have the right expectations and are more likely to 

gain well-calibrated trust in automation (Khastgir, Birrell, Dhadyalla, & Jennings, 2018). 

Furthermore, experiment results from several studies showed that operators with high automation 

expectation (the expectation that automation is trustworthy) were more sensitive to changes (both 

increases and decreases) in automation reliability than participants with low automation 

expectation (Mandell, 2018; Pop, Shrewsbury, & Durso, 2015).  

Providing training to operators in advance can alter operators’ trust and reliance patterns. 

On the one hand, training increases operators’ familiarity with the automation and promote 

automation use. For example, in a driving study, participants who were both informed about and 

trained on how to use an auto-parking system showed higher trust compared to participants who 

were only told about how to employ the auto-parking feature (Tenhundfeld et al., 2019). 

Training can serve also as a preventive intervention to mitigate the negative effects of 

automation misuse. For example, if operators receive training about when an automated system 

would not function well before they started using it, they would show less trust in that certain 

situation but unquestioningly accept the automation decision aid in a general situation 

(Masalonis, 2003).  Another study revealed that operators who were exposed to potential 

automation failures during training were less likely to have complacency in the automation 

(Bahner, Hüper, & Manzey, 2008). These research findings suggested that training can either 

promote trust or suspend trust. However, it is still not clear what should be conveyed and taught 

in the training in order to best support trust calibration.  
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Trust calibration 

Ideally, operators’ trust in automation should be calibrated, i.e., it should be proportional 

to the trustworthiness or reliability of the system. To date, attempts to promote appropriate trust 

in automation fall into two main categories: 1) influencing trust formation early on, through 

training and instruction, in a top-down fashion and 2) providing alerts and real-time feedback on 

system performance throughout human-machine interaction, and thus shape trust in a bottom-up 

fashion. 

One promising means of affecting trust formation early on appears to be priming. 

Priming refers to a process where exposure to one stimulus influences the response to subsequent 

stimuli, without the individual necessarily being aware of this effect (Tulving & Schacter, 1990). 

Some studies have confirmed that shaping an operator’s general attitude towards automation 

through priming alters the trust formation process during actual automation usage (Abe & 

Richardson, 2006; Ezer, Fisk, & Rogers, 2007; Lacson, Wiegmann, & Madhavan, 2005; Pop et 

al., 2015). For instance, different framings of why the system made error can lead to different 

levels of trust even though the aid’s reliability was the same among different groups (Bisantz & 

Seong, 2001). Participants in the sabotage group (where they were told that the automation was 

subject to intentional attack from the enemy) were more likely to disuse automation compared to 

the control group. Clare et al. (2015) also found that priming is an effective way of manipulating 

operators’ trust levels. However, their results highlight that the effect of priming may last for a 

limited time only. Research has also shown that the specific content of priming needs to be 

tailored to each automated system and its application environment in order to best benefit 

operators. In an automated driving study, one group of participants received trust-promoted 

introduction, and another group received trust-lowered introduction. Even in the risky 
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environment where take-over is needed to avoid collision, participants in the trust-promoted 

group still trusted the automation and collided with the obstacle when driving the autonomous 

vehicle (SAE level 3), while no collision happened in the trust-lowered group (Körber, Baseler, 

& Bengler, 2018), suggesting that trust-lowered introduction was more appropriate for trust 

calibration in this case.  

Another means of shaping trust in and reliance on automation is to provide real-time 

continually updated feedback about system reliability and trustworthiness. For instance, in an 

experiment conducted by McGuirl and Sarter (2006), continuously updated system confidence 

information for a neural network based decision support system (DSS) was provided to pilots 

who experienced and had to respond quickly to two types of icing conditions in a flight 

simulator. The information helped pilots decide when to trust and rely on the DSS’s diagnosis of 

aircraft icing, versus when to engage in the icing identification task themselves. This resulted in 

less misuse of the system and better performance (i.e., fewer stalls), compared to when no 

confidence information was available. In another study on trust in and reliance on an automated 

combat identification (CID) system (Wang, Jamieson, & Hollands, 2009), reliability information 

for the system was presented to participants. Results indicated that this information did 

contribute to more appropriate reliance on the CID system. However, participants’ performance 

was improved only in the 80% reliability condition, not in the 67% reliability condition, 

suggesting that the effectiveness of this approach may depend on the actual level of automation 

reliability.  

Kraus and his colleagues (Kraus, Scholz, Stiegemeier, & Baumann, 2019) integrated past 

research findings on trust development and proposed a model to illustrate the dynamic trust 

calibration process, as shown in Figure 1.2. Their model highlights the fact that “trust is 
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calibrated in accordance with information provided both prior to and during the interaction with 

an automated system”.  Very few studies have combined these two means of supporting trust 

calibration, a shortcoming that was addressed in the present research.   

 

Figure 1.2. Dynamic trust calibration model 

 

 

Trust measurement 

To date, several measures of trust have been developed and employed. These measures 

fall into three main categories: subjective ratings, behavioral data and physiological data. 

 

Subjective ratings 

Many trust-related studies rely heavily on subjective rating scales (e.g., Bagheri & 

Jamieson, 2004; Barg-Walkow & Rogers, 2016; Merritt & Ilgen, 2008), and many different 

scales have been developed (e.g., Chavaillaz, Wastell, & Sauer, 2016; Madsen & Gregor, 2000; 

Manzey et al., 2012; Sauer, Chavaillaz, & Wastell, 2016). In a systematic review of empirical 
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research on trust in automation over the past ten years (Hoff and Bashir, 2015), the “Checklist of 

Trust between People and Automation (CTPA)” (Jian, Bisantz, & Drury, 2000), a 12-item 

questionnaire with 7-point Likert scale ratings, was found to be the most commonly used self-

reporting scale. Sample items include “The system is reliable”, “The system behaves in an 

underhanded manner”, and “I am confident in the system”. CTPA was developed and tested 

through a series of experiments and is considered a valid method for inferring human trust in 

automation (Clare, Cummings, & Repenning, 2015). Still, some researchers created their own 

questionnaires to better serve their specific research purposes and settings (e.g., Manzey et al., 

2012; Merritt, Lee, Unnerstall, & Huber, 2015). 

Subjective rating scales have the advantage of being easy to implement and employ. 

When properly constructed, subjective ratings can be reliable and valid indicators of people’s 

trust (Moray & Inagaki, 1999). However, responses may not be comparable across different 

people. For example, a self-reported trust rating of ‘60’ may not reflect the same actual level of 

trust for different participants. Another shortcoming of rating scales is that they tend to be 

employed only once, often at the end of an experiment (Bagheri & Jamieson, 2004; Pop et al., 

2015; Rovira, McGarry, & Parasuraman, 2007). This approach fails to capture how trust evolves 

over time due to priming or variations in system performance. Some studies have tried to 

measure trust changes over time by repeatedly asking for subjective ratings at short intervals 

throughout an experiment (Clare et al., 2015; Desai, Kaniarasu, Medvedev, Steinfeld, & Yanco, 

2013; Holliday, Wilson, & Stumpf, 2016; Yang et al., 2017). This technique can capture the 

temporal evolution of trust to some extent, through successive ‘snapshots’, but it is quite 

disruptive of task performance and thus undesirable for use in simulation studies and in real-

world environments. Another problem with repeatedly asking for trust ratings in a laboratory 
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setting is that participants may speculate that system reliability has changed whenever they are 

asked for a rating, which leads to biased responses.  

 

Behavioral data 

Some studies try to infer trust levels from observable operator/participant behavior. This 

approach is based on the assumption that trust, which is considered an attitude, forms the basis 

for intentions (Lee & See, 2004) and, ultimately, mediates behavior (Dzindolet et al., 2003; 

Dzindolet, Pierce, Beck, & Dawe, 2002). Reliance and compliance are two behavioral measures 

that have been widely used in past trust research (Chancey, Bliss, Yamani, & Handley, 2017). 

Compliance refers to an operator taking action in accordance with a system-generated warning 

while reliance denotes the absence of an operator action when the system indicates an intact 

system or a normal situation (Dixon, Wickens, & McCarley, 2007; Meyer, 2001, 2004). In 

addition to these generic behaviors, some studies have employed more domain- or task-specific 

measures. For instance, in studies related to autonomous vehicles, when a driver reverts to 

manual control of the vehicle, this is assumed to be an indicator of a loss of, or reduction in trust 

(Brown & Noy, 2004). Similarly, when operators interact with adaptable automation, switching 

to lower levels of autonomy may signal low or reduced trust (Manzey et al., 2012). As with 

subjective ratings, behavioral measures tend to be outcome-oriented and discrete. This makes it 

impractical to trace moment-to-moment changes in trust which is important for studying trust 

calibration, including both resolution and specificity.  

Most research on trust combines subjective ratings with behavioral data. In some studies, 

these measures were found to be positively correlated (Dzindolet et al., 2003; Muir & Moray, 

1996). However, other experiments obtained inconsistent findings using both techniques (Rovira 
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et al., 2007; Satterfield, Baldwin, de Visser, & Shaw, 2017). For instance, Miller et al. (2016) 

conducted an experiment to measure drivers’ trust in an autonomous vehicle. They recorded both 

drivers’ behavior (taking manual control of the car) and their trust ratings. The experiment 

showed that drivers intervened with the behavior of the autonomous car even when they 

expressed that, subjectively, they trusted the system. The current research will investigate how 

various trust-related factors may lead to such disassociations between subjective ratings and 

behavioral data. 

 

Physiological data 

Physiological measures such as electroencephalography (EEG), galvanic skin response 

(GSR), and functional magnetic resonance imaging (fMRI) have been used widely to assess 

mental workload (Haapalainen, Kim, Forlizzi, & Dey, 2010) and affective states (Lichtenstein, 

Oehme, Kupschick, & Jürgensohn, 2008). More recently, studies have highlighted the promise of 

inferring trust from these physiological signals (de Visser et al., 2018; Jung, Dong, & Lee, 2019). 

For example, observational error positivity (oPe), a type of neural marker that can be obtained 

from EEG, was found to be positively related to subjective trust ratings (de Visser et al., 2018). 

Research has also tried to build models of human trust in modern technologies using EEG and 

GSR signals (Ajenaghughrure, Sousa, Kosunen, & Lamas, 2019; Hu, Akash, Jain, & Reid, 

2016). In both studies, it was found that, once participants’ trust reached a stable status, the 

model could achieve a mean accuracy of over 70% to predict people’s trust level in real time. 

Though physiological data can be collected and analyzed in real-time, setting up for data 

collection can be rather difficult and time consuming. For example, when collecting EEG data, 

participants have to wear a cap with embedded electrodes that need to be filled with an abrasive 
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gel, a set-up that is quite intrusive and uncomfortable.  

In summary, a more process-oriented, unobtrusive, real-time technique for measuring 

trust is needed in order to better understand trust development and promote trust calibration. The 

next section will describe eye tracking as the proposed method to achieve these goals. 

 

Eye tracking: a promising means of tracing trust development in real time 

 

Eye tracking fundamentals 

An eye tracker is a sensor device that can trace where people are looking in real time 

using infrared light. There are two main types of eye trackers on the market: desktop-mounted 

(screen-based) and head-mounted (wearable). In the current research, a wearable device, Tobii 

Pro Glasses 2, was used to collect participants’ eye movement data in an unobtrusive way. 

Participants are wearing this eye tracker like a regular pair of glasses and are thus able to move 

their heads freely during an experiment. Absolute points of gaze (POGs) are obtained from the 

raw eye movement data (Majaranta & Bulling, 2014). They indicate the spatial locations people 

are looking at in a scene, in the form of x, y coordinates and a corresponding timestamp. 

The raw eye movement gaze points recorded by an eye tracker can be used to determine 

two basic elements in eye tracking research: fixations and saccades. Fixations refer to those 

times when the eyes remain relatively stable and take in new information from the area the eyes 

are focusing on (Jacob, 1995; Rayner, 1995, 2009). A fixation is usually composed of multiple 

gaze points. Saccades refer to rapid eye movements between fixations (Jacob, 1995; Jacob & 

Karn, 2003; Salvucci & Goldberg, 2000). It is assumed that people do not acquire information 

during a saccade.  Fixations and saccades tend to be studied in relation to areas of interest (AOI), 
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which are specific regions defined by researchers based on the purpose of the study or based on 

tasks, as shown in Figure 1.3. 

Several techniques have been developed to identify fixations and saccades (Salvucci, 

1999). The fixation filter used by Tobii Pro Analyzer is based on the Velocity-Threshold 

identification fixation filter (I-VT) algorithm developed by Salvucci & Goldberg (2000). This I-

VT filter is an algorithm that classifies fixations and saccades based on the velocity of eye shifts. 

Specifically, Tobii Pro Analyzer uses a threshold of 100 degrees/second to identify fixations. 

This means that if the velocity between two consecutive gaze points is smaller than 100 

degrees/second, they are considered to belong to the same fixation. A moving velocity between 

two points above this threshold are categorized as saccades. The filter also merges adjacent 

fixation points (with a visual angle smaller than 0.5 degree) and discards short fixations that last 

for less than 60 ms to reduce noise and disturbances in classification (Olsen, 2012b). 

 

Figure 1.3. Illustration of fixations, saccades and an Area of Interest (AOI) 

 

Fixation 

Saccade 

Area of Interest 
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Eye tracking applications and benefits 

Eye tracking has been employed successfully in a variety of disciplines including 

psychology, neuroscience, marketing, human factors and computer science (Duchowski, 2002). 

In the area of human factors, eye movement data have been used to gain insight into people’s 

perception and cognitive processes, such as decision making (Vachon & Tremblay, 2014), 

cognitive workload (Marshall, 2002; Peißl, Wickens, & Baruah, 2018) and situation awareness 

(Barnard & Lai, 2010; Moore & Gugerty, 2010). For example, eye tracking metrics including 

scan path and eye fixations help predict the time spent on making a decision, and pupil dilation 

can be used as an indicator of the decision-making quality (Vachon & Tremblay, 2014). Pupil 

size and blink rate have been used widely to assess cognitive workload (Niezgoda, Tarnowski, 

Kruszewski, & Kamiński, 2015; Tsai, Viirre, Strychacz, Chase, & Jung, 2007).  In aviation, 

research has shown that fixation rates and dwell times are well suited for measuring  level 1 

situation awareness (low-level perceptual processes) and scanning entropy (also referred to as 

‘Nearest Neighbor Index’) appears to be a good indicator of level 3 situation awareness (high-

level cognitive process) (Van De Merwe, Van Dijk, & Zon, 2012). 

One of the main benefits of using eye tracking is its non-invasive nature (Rayner, 1998)  

which makes it possible to employ eye tracking in simulation and field studies (Ji, Zhu, & Lan, 

2004; Kircher, Ahlstrom, & Kircher, 2009). Another advantage is that eye tracking data can be 

collected and processed data in real-time. This is a prerequisite for identifying and counteracting 

problematic mental states (such as inappropriate levels of workload or trust) in a timely fashion. 

For example, in a study focusing on attentional narrowing (an involuntary reduction in the 

attentional scope), eye tracking was used to detect the onset of this state in a multitasking 
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environment in real time. A display adaptation was then triggered to broaden participants’ 

attention field and mitigate the negative effects of attentional narrowing (Prinet, 2016).  

 

Eye tracking, attention management, trust and automation usage  

Eye tracking is considered by many to be the most direct way to measure people’s 

attention allocation (e.g., Shinar, 2008). The underlying assumption is that a person’s direction of 

gaze is an approximation of or closely related to what information their attention is focused on 

(Hoffman & Subramaniam, 1995; Shepherd, Findlay, & Hockey, 1986). This assumption is 

commonly referred to as the “eye–mind hypothesis” (Just & Carpenter, 1980). Although some 

have argued that attention allocation and eye movements may be completely independent of each 

other (Klein & Pontefract, 1994; Posner, 1980), Rayner (2009) showed that, at least in the 

context of performing tasks such as visual search or reading, it is quite difficult and impractical 

to have eye movements and attention focus on different locations or content.  

Eye tracking has been widely used in the study of attention allocation and automation 

usage (Diez et al., 2001). For example, eye tracking data combined with behavioral data were 

used to identify shortcomings in pilots’ understanding and monitoring of highly automated 

commercial flight deck systems (Sarter, Mumaw, & Wickens, 2007). Eye tracking has also been 

employed to study complacency and overreliance on automation due to overtrust in the system. 

Complacency has been shown to result in operators monitoring the automation less often than 

optimal which can lead to breakdowns in joint system performance (Moray & Inagaki, 2000; 

Parasuraman & Manzey, 2010). For example, in a study on air traffic control, it was observed 

that air traffic controllers who failed to detect traffic conflicts showed significantly fewer 

fixations on the radar display when in automation mode, compared to manual mode; in contrast, 
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fixation frequencies for controllers who reliably detected conflicts did not differ between the two 

modes of operation (Metzger & Parasuraman, 2005). This connection between monitoring 

behavior and performance was confirmed in several other studies (Bagheri & Jamieson, 2004; C. 

Wickens, Dixon, Goh, & Hammer, 2005).  

While the relation between (visual) attention allocation, automation usage  and 

performance has been studied extensively (e.g., Cullen, Rogers, & Fisk, 2013; Onnasch, Ruff, & 

Manzey, 2014), there is limited empirical evidence for the feasibility and validity of using eye 

tracking to infer human trust in automation even though trust has been shown to alter operators’ 

attention and monitoring strategies (Bailey & Scerbo, 2007; Molloy & Parasuraman, 1996). For 

instance, Hergeth and colleagues (Hergeth, Lorenz, Vilimek, & Krems, 2016) collected eye 

tracking data to quantify drivers’ trust in a highly automated car. Gaze behavior was measured in 

terms of the frequency of monitoring (defined as the number of fixations on the driving scene) 

during a particular non-driving-related task (NDRT) and the monitoring ratio (defined as the sum 

of fixation durations in a NDRT, scaled to the duration of that NDRT). Subjective trust ratings 

were collected also and compared with the eye tracking results. The findings support the 

assumption of a negative correlation between trust and monitoring frequency. In other words, 

participants indeed monitored automation-related displays more often when the system was 

trusted less, and vice versa.  

 

As mentioned above, the benefits of using eye tracking for measuring trust are its non-

intrusive nature (compared to repeated subjective trust ratings) and its ability to trace moment-to-

moment changes in trust in real time. More research is needed, however, to establish which eye 

tracking metrics are particularly well suited for capturing trust levels and variations. Moacdieh 
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and Sarter (2015) proposed three categories of eye tracking metrics that relate to different aspects 

of monitoring and information search: location/spread, directness and duration. Among these 

three categories, location/spread (e.g., number of fixations) and duration metrics (e.g., mean 

fixation duration) are likely best suited for inferring trust as low trust levels can be expected to 

lead to more frequent and longer fixations on agents and displays. Another open question is to 

what extent and how fast variations in trust translate into changes in people’s attention allocation 

as expressed by changes in eye movement data.  

 

Adaptation algorithm 

Using eye tracking as a real-time, unobtrusive measure of trust is a prerequisite for 

detecting and counteracting trust miscalibration and avoid resulting performance breakdowns. 

Another requirement for achieving this goal is the development of an eye tracking based 

algorithm that can function as a classifier of a person’s cognitive state. To date, several 

modeling, machine learning or deep learning techniques have been used for this purpose. These 

techniques include but are not limited to logistic regression, random forest, k-nearest neighbor, 

multilayer perceptron, and convolutional neural networks.  

Eye tracking metrics extracted from raw eye movement data have proved to work well as 

inputs to these different modeling methods. For example, pupil diameter was used successfully 

to predict user performance in real-time using a random forest method (Buettner, Sauer, Maier, 

& Eckhardt, 2018). Scanpath length and fixation duration were able to predict the time taken to 

make a decision (in a simulated setting to classify an aircraft as hostile or not) using logistic 

regression (Vachon & Tremblay, 2014). In a study using eye tracking data to detect personality 

traits, seven classifying methods (AdaBoost, Decision Tree, Logistic Regression, Naive Bayes, 



 22 

Random Forest, Support Vector Machine, and k-Nearest Neighbor) were applied to ten unique 

features extracted from the raw eye movement data. Naive Bayes turned out to achieve the 

highest accuracy in identifying personality traits (Berkovsky et al., 2019). 

To date, most studies trying to infer people’s trust in a system have used physiological 

data such as EEG or GSR as input to train a classification model. For instance, using features 

extracted from both EEG and GSR data, a study found that a general trust sensor model could be 

created with a quadratic discriminant classifier that achieved an average accuracy rate of 75% in 

predicting trust levels (Akash, Hu, Jain, & Reid, 2018). In another study, employing EEG 

signals, deep learning methods such as Convolutional Neural Networks (CNN) were able to 

assess trust calibration and outperform other machine learning methods such as Multi-Layer 

Perceptron (MLP) and Deep Neural Network (DNN) (Choo et al., 2019). However, to our 

knowledge, there is very limited research using eye tracking data as input and applying the above 

modeling methods to infer human operator’s trust levels in real time.  

 

Summary 

Trust miscalibration remains a major challenge for safe and effective human-machine 

teaming and collaboration. The overall goal of this dissertation is therefore to develop an eye-

tracking based technique to detect trust miscalibration and address the problem and thus prevent 

performance breakdowns in real time. To achieve this goal, a series of research activities and 

empirical studies were conducted that will be described in the following chapters. Chapter 2 

reported on an experiment that established the feasibility and validity of using eye tracking to 

infer trust levels in real time. The study described in Chapter 3 examined how the magnitude and 

duration of variations in system reliability affect trust evolution and calibration, and it 
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established which combination of those two factors affected trust calibration and performance 

the most. In Chapter 4, an eye-tracking based algorithm for classifying trust levels is developed 

which is then used in the experiment in Chapter 5 to trigger an audio alert in case of trust 

miscalibration. The alert serves to redirect participants’ attention allocation and improve overall 

system performance. Finally, Chapter 6 summarizes the findings from this line of research and 

suggests potential future work to address limitations of the current effort. 
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Chapter 2  

Eye Tracking: A Process-oriented Method for Inferring Trust in 

Automation as A Function of Priming and System Reliability 

 

The ultimate goals of this research are (1) to better understand the process of trust 

development in automated systems and (2) to create a technique for detecting and addressing 

trust miscalibration in order to avoid the misuse and disuse of modern technology. One 

prerequisite for achieving these goals is the availability of an unobtrusive technique for 

measuring or inferring trust in real time. There is increasing evidence that eye tracking is well 

suited for this purpose (e.g., Petersen, Robert, Yang, & Tilbury, 2019; Strauch et al., 2019; F. 

Walker, Verwey, & Martens, 2018.  Operators’ gaze behavior while monitoring an automated 

system has been shown to be highly associated with subjective trust ratings (Hergeth et al., 

2016). However, studies that documented this association involve a number of limitations. First, 

they explored the diagnosticity of very few eye tracking metrics, mainly the number of fixations 

(count metrics) and fixation duration (temporal metrics). Other eye tracking metrics, such as 

mean saccade amplitude or backtrack rate, which are related to different (in this case, spatial) 

search and monitoring features, are worth investigating as low trust levels might lead to less 

efficient and organized search behavior when collaborating with an automated system. Also, 

studies suggesting that eye tracking is a valid technique for inferring trust were conducted almost 

exclusively in the context of automated driving. Research is needed to establish the effectiveness 
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of eye tracking in other application domains as the selection and calculation of eye tracking 

metrics are usually display-dependent and can vary based on tasks and settings. To address the 

above shortcomings, the experiment reported in this chapter compared eight different eye 

tracking metrics to determine how well each captures levels and changes in trust resulting from 

variations in system reliability and priming. The application domain for this study was military 

intelligence gathering with the help of multiple unmanned aerial vehicles (UAVs). Multi-UAV 

control imposes considerable attentional demands on operators. It involves high levels of time 

pressure and uncertainty and thus is an appropriate setting for studying human trust in 

automation. 

Specifically, eye tracking and other trust-related measures were used in this study to 

assess the long-term effects of priming on trust, and how priming may interact with, and possibly 

be overridden by observations of actual system performance during human interaction with 

automation. Participants experienced both high and low reliability automation. Half of the 

participants were informed about the automation reliability in advance of each trial (priming 

condition) while the other half were not provided with this information (no priming). Dependent 

measures included eye tracking data, subjective trust ratings, and performance on the target 

detection task (including response times and error rates). 

 

Method 

Participants 

Thirty-five University of Michigan undergraduate and graduate students participated in 

the experiment. Data from three participants were excluded due to malfunctions of the eye 

tracker or incomplete data. The 32 participants whose data were included in the data analysis 
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were between the ages of 18 to 35 years (Mean=24.50, SD=3.86). 18 participants were males. 

None of the participants had any experience with Unmanned Aerial Vehicle (UAV) control 

before this study. Because the eye tracker used in this experiment cannot be worn with additional 

eyewear (such as prescription glasses), all participants were required to have normal or 

corrected-to-normal vision (contact lenses were allowed). This study was approved by the 

University of Michigan Institutional Review Board (IRB Reference ID: HUM00126745). 

 

Apparatus and tasks 

The application domain for this study was military reconnaissance and intelligence 

gathering with the assistance of unmanned aerial vehicles (UAVs). A UAV simulation 

replicating military target identification tasks was developed in our laboratory, as shown in 

Figure 2.1.   

 

Figure 2.1. UAV simulation (video feed highlighted if automation detects a target) 

 

During the 30-minute scenario, automation onboard six UAVs scanned pre-defined 

regions to help with the detection of a military target (a truck carrying a gun; see Figure 2.2). The 
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simulated video feeds from the six UAVs were displayed in a 2*3 grid on a single 27” monitor 

display. They included both actual targets and similar looking non-targets, as shown in Figure 

2.3. 

 

 

          Figure 2.2. Target example       Figure 2.3. Non-Target example 

 

When a UAV identified a possible target, its video feed was highlighted (see Figure 2.1). 

The participant then reviewed the scene and pressed one of two buttons to either confirm (Ö) or 

reject (X) the presence of a target. In addition, participants were asked to scan the various UAV 

video feeds on a continuing basis to make sure no targets were missed. If a target was missed by 

a UAV but detected by a participant, s/he pressed a third ‘target’ (8) button to record the event. 

Participants were instructed to press the ‘?’ button if they were uncertain about the presence of a 

target, independent of whether the screen was highlighted or not.  

 

Experiment design 

The experiment employed a 2 (reliability: high, low) * 2 (priming: reliability information, 

no reliability information) full factorial design. Automation reliability was a within-subject 

factor. Half of the UAVs were highly reliable (95% correct) while the other three UAVs were 

only 50% reliable. The low level was selected based on past trust research which set low 
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reliability at 50-70% (e.g., Chavaillaz, Wastell & Sauer, 2016; Chugh & Caird, 1999; 

Wiegmann, Rich & Zhang, 2001). The lowest value in this range - 50% - was chosen in this 

experiment to create a large enough difference between low and high reliability and thus ensure  

that participants would reliably notice low system reliability and adjust their trust accordingly. 

For half of the participants, the upper three UAVs were the highly reliable ones whereas for the 

other half of the participants, the three highly reliable UAVs were shown at the bottom of the 

screen. Detailed information about the performance of the high and low reliability UAVs is 

shown in Table 2.1. The total number of hits and false alarms was the same for the two levels of 

automation reliability to avoid biasing participants’ attention allocation. 95% reliable automation 

only made false alarms to make sure that participants could detect these errors and understand 

that the automation was not perfectly reliable. 

 

Table 2.1 Overall UAV reliability and corresponding numbers of hits, correct rejections, false 

alarms and misses 

(Hit: UAV successfully detects a target and the screen is highlighted. Correct rejection: 

UAV correctly determines that an object is not a target and the screen is not highlighted. False 

alarm: UAV incorrectly identifies an object as a target and the screen is highlighted. Miss: UAV 

fails to detect a target and the screen is not highlighted) 

Reliability = 95% Reliability = 50% 

Hits 35 Hits 30 

Correct rejections 51 Correct rejections 15 

False alarms 4 False alarms 9 

Misses 0 Misses 36 
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Priming was a between-subject factor. Half of the participants were informed about the 

overall reliability of the two groups of UAVs in advance of the experiment while the other half 

did not receive any reliability information. The latter group of participants assessed system 

reliability solely based on their observations of UAV performance throughout the experiment.  

The dependent measures in this experiment included eye tracking data, performance on 

the target detection task (including response times and error rates), and subjective trust ratings. 

Throughout the experiment, participants were prompted every two minutes to rate their trust in 

the upper three UAVs and the lower three UAVs on a scale of 0 (“I do not trust these UAVs at 

all”) to 9 (“I completely trust these UAVs”) using the keyboard. Once participants completed the 

two ratings, the target detection task automatically resumed.  

Eye movement data were collected using Tobii Pro Glasses 2 and the Tobii Pro Lab 

software. The sampling rate of the eye tracking glasses was 50 Hz. The raw eye tracking data 

were used to calculate the eight metrics listed in Table 2.2. These metrics fall into three 

commonly used categories (Goldberg & Kotval, 1999; Lai et al., 2013) : (1) temporal metrics (2) 

spatial metrics, and (3) count metrics. The two temporal metrics in this study were total and 

average fixation duration. A fixation is defined as “a relatively stable eye-in-head position within 

some threshold of dispersion (typically ~2°) over some minimum duration (typically 100-200 

ms), and with a velocity below some threshold (typically 15-100 degrees per second)” (Jacob & 

Karn, 2003). The fixation filter in the Tobii Pro Lab Analyzer is based on the velocity of the 

directional shifts of the eye. The default threshold is 100 degrees/second. The 4 spatial metrics 

used in this study – mean saccade amplitude, backtrack rate, rate of transitions, and scanpath 

length per second – relate to the efficiency and randomness of the search and scanpath 

(Moacdieh & Sarter, 2017). Efficiency refers to how quickly and easily participants can locate 
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and detect a target and has traditionally been measured by response time (e.g., Beck, Lohrenz & 

Trafton, 2010). Finally, the two count metrics capture the number/frequency of fixations and 

transitions between areas of interest (AOI). An area of interest (AOI) is defined by the 

experimenter as the specific area for which eye movement data are being analyzed. In this 

experiment, two sets of AOIs were used: (1) for the purpose of studying the effects of 

automation reliability and the relationship between eye tracking and subjective trust ratings, the 

three upper and the three lower UAV windows, respectively, were considered separate AOIs, and 

(2) to examine participants’ scan patterns in more detail, each of the six UAV windows was 

defined as a separate AOI. The definition of each eye tracking metric and predictions on how the 

metrics are associated with different trust levels can be found in Table 2.2. 
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Table 2.2. Eye tracking metrics calculated in this study  

Metric Definition Prediction 
Temporal metrics 

Total fixation 
duration(s) 

The total time each participant 
fixated each AOI 

Low system reliability results in low 
trust which, in turn, is expected to 
lead to longer fixation duration for 
affected UAVs (both average and 
total). Priming will, at least initially, 
result in a larger difference in fixation 
duration between low and high 
reliability automation. 

Average fixation 
duration (s) 

The average duration of the 
fixations within each AOI 

Spatial metrics 
Mean saccade 
amplitude (pixel) 

The average amplitude of all 
saccades 

Low trust levels resulting from low 
system reliability will lead to less 
efficient and organized search 
behavior. The no-priming group 
needs time to build up appropriate 
trust levels. Therefore, their search 
behavior will initially be more 
random and less efficient (longer 
mean saccade amplitude, larger 
backtrack rate, larger transition rate 
between AOIs and longer scanpath 
length per second).  

Backtrack rate 
(/s) 

The number of saccade angles 
larger than 90 degrees, divided by 
the total time 

Rate of transitions 
(/s) 

The number of transitions 
between AOIs, divided by the 
total time 

Scanpath length 
per second 
(pixel/s) 

The total length of the scanpath, 
divided by the total time 

Count metrics 
Total fixation 
count 

The number of fixations within 
each AOI  

Participants are likely to monitor low 
reliability UAVs more often; 
therefore, the total fixation count is 
expected to be larger for those 
vehicles. Participants are also likely 
to switch more often between the 
three low-reliability UAV windows 
to detect misses, resulting in a higher 
transition count. Priming information 
will further differentiate participants’ 
trust in low and high reliability 
UAVs, leading to more efficient 
search behavior (smaller total fixation 
counts and transition counts). 

Transition count The number of transitions 
between AOIs  
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Experiment procedure 

Each experiment session started with participants being informed that the goal of the 

experiment was to study trust in human-automation interaction. Participants then read and signed 

the consent form. The eye tracker was calibrated, and participants were trained on the target 

identification task for 10 minutes. At the end of the training, participants were expected to 

correctly identify at least 90% of all targets. If they did not meet this criterion, they received 

additional training until their performance was acceptable. Participants in the priming group 

were informed about the overall reliability of the two groups of UAVs (95% vs 50%) in advance 

of the experiment. However, they were not told about the distribution of particular types of errors 

(false alarms versus misses), nor were they informed that there would be no misses in the high 

reliability condition. Participants in the no priming group did not receive any information about 

overall system reliability. Following the 30-minute experiment session, a debriefing was 

conducted to ask participants for feedback about various aspects of the experiment, such as their 

overall monitoring strategy and the effectiveness of the automatic highlighting of UAV 

windows.  

 

Results 

Subjective trust ratings 

Subjective trust ratings were analyzed using a 2 (Reliability: high vs. low) *2 (Priming: 

reliability information provided vs. not) linear mixed model. The significance level was set at 

0.05. Participants rated the highly reliable UAVs (Mean=7.34, SD=1.06) as significantly more 

trustworthy than the low reliability UAVs (Mean=4.37, SD=1.24, F (1,30) =112.71, p <0.001), 
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as shown in Figure 2.4. There was no significant effect of priming, nor was there an interaction 

between reliability and priming (see Figure 2.5). 

        

Figure 2.4. Subjective trust ratings as a 

function of reliability  

Figure 2.5. Subjective trust ratings as a 

function of priming and reliability 

            (**: p<0.01)                                                                 (*: p<0.05) 

                       

Eye Tracking Metrics 

Eye tracking metrics were analyzed with a 2 (Reliability: high vs. low) *2 (Priming: 

reliability information provided vs. not) linear mixed model. The participant number was entered 

as a random effect. The significance level was set at 0.05.  

The analysis revealed a significant main effect of automation reliability on one of the two 

temporal eye tracking metrics (see Table 2.3). Longer total fixation durations were observed for 

low reliability UAVs (Mean = 817.75, SD = 168.65), compared to high reliability UAVs (Mean 

= 650.06, SD=160.82; F (1, 30) =18.12, p<0.001). Average fixation duration remained 

unchanged. Except for mean saccade amplitude, all spatial metrics were significantly affected by 

system reliability. Participants’ backtrack rate was significantly higher in the low reliability 

condition (Mean=0.09, SD=0.07), compared to the high reliability condition (Mean=0.05, 
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SD=0.04, F(1,30)=12.16, p =0.001). The rate of transitions for highly reliable UAVs 

(Mean=0.37, SD=0.16) was significantly smaller than for low reliability UAVs (Mean=0.46, 

SD=0.17, F(1,30)=5.06, p =0.028). And participants’ scanpath length per second was 

significantly shorter for highly reliable UAVs, compared to low reliability UAVs (F(1,30)=5.24, 

p =0.029).  Finally, both count metrics changed significantly as a function of reliability: fixation 

counts were significantly higher for low reliability UAVs (Mean=2277.63, SD=669.72), 

compared to high reliability UAVs (Mean=2679.75, SD=469.49; F (1,30) = 8.78, p=0.004), and 

transition counts were significantly larger for low reliability UAVs (Mean=975.12, SD=374.36) 

than for highly reliable vehicles (Mean=781.91, SD=330.17, F(1,30)=5.21, p=0.03). 

 
Table 2.3. Effects of system reliability on eye tracking metrics 

Metric High reliability Low reliability Main effects of reliability 
Temporal metrics 

Total fixation duration(s) 650.06(160.82) 817.65(168.71) F(1,30)=18.12, p<0.001 
Not significant Average fixation duration (s) 0.30(0.06) 0.31(0.06) 

Spatial metrics 
Mean saccade amplitude 
(pixel) 

31.92(9.67) 32.09(11.20) Not significant 

Backtrack rate (/s) 0.05(0.04) 0.09(0.07) F(1,30)=12.16, p=0.001 
Rate of transitions (/s) 0.37(0.16) 0.46(0.17) F(1,30)=5.06, p=0.028 
Scanpath length per second 
(pixel/s) 

522.07(221.79) 646.20(248.03) F(1,30)=5.24, p=0.029 

Count metrics 
Total fixation count 2277.63(669.72) 2679.75(469.49) F(1,30)=8.78, p=0.004 
Transition count 781.91(330.17) 975.12(374.36) F(1,30)=5.21, p=0.030 

 

A significant main effect of priming was found for one of the two temporal metrics (see 

Table 2.4). The average fixation duration was longer for the priming group (Mean=0.33, 

SD=0.08) than for the no priming group (Mean=0.27, SD=0.03, F (1, 30) = 8.45, p = 0.007). A 

significant effect of priming was observed also for the three spatial metrics. In the priming 

group, mean saccade amplitude was significantly shorter (Mean=27.89, SD=10.25), compared to 
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the no priming condition (Mean=36.12, SD=8.88, F(1,30)=6.56, p =0.016); the rate of transitions 

(Mean=0.36, SD=0.16) was significantly smaller, compared to participants who had no 

information about UAV reliability (Mean=0.47, SD=0.16, F(1,30)=7.24, p =0.009); and the 

scanpath length per second was significantly longer (Mean=518.36, SD=244.38, F(1,30)=4.89, p 

=0.035). As for count metrics, the priming group showed a smaller fixation count 

(Mean=2293.41, SD=639.752), compared with the no priming group (Mean=2663.97, 

SD=521.78, F (1,30) = 7.46, p=0.008); however, the second count metric – transition counts – 

did not change as a function of priming.  

 
Table 2.4. Effects of priming on eye tracking metrics 

Metric Priming No priming Main effects of priming 
Temporal metrics 

Total fixation duration(s) 744.32(225.41) 723.49(133.36) Not significant 
F(1,30)=8.45, p=0.007 Average fixation duration (s) 0.33(0.08) 0.27(0.04) 

Spatial metrics 
Mean saccade amplitude 
(pixel) 

27.89(10.25) 36.12(8.88) F(1,30)=6.56, p=0.016 

Backtrack rate (/s) 0.07(0.05) 0.07(0.05) Not significant 
Rate of transitions (/s) 0.36(0.16) 0.47(0.16) F(1,30)=7.24, p=0.009 
Scanpath length per second 
(pixel/s) 

518.36(244.38) 649.91(223.63) F(1,30)=4.89, p=0.035 

Count metrics 
Total fixation count 2293.41(639.75) 2663.97(521.78) F(1,30)=7.46, p=0.008 
Transition count 799.44(383.83) 957.59(328.91) Not significant 

 
There was also a significant interaction between automation reliability and priming for 

total fixation duration (F (1,60) = 7.50, p=0.008). A simple effect analysis showed that total 

fixation duration (F(1,60)=24.47), p <0.001) differed significantly as a function of automation 

reliability only for the priming group where it was longer for low reliability vehicles (see Figure 

2.6). 
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Figure 2.6. Interaction effect between priming and reliability for fixation duration  

(**: p<0.01) 

 

Relationship between eye tracking metrics and subjective trust ratings 

To validate the eye tracking metrics, we calculated their correlations with the subjective 

trust ratings, both for all participants combined and separately for the priming and no priming 

groups (see Table 2.5). The eye tracking metrics showed a significant negative correlation with 

subjective trust ratings, with two exceptions. There was no significant correlation between mean 

saccade amplitude and subjective trust ratings, and average fixation duration was not correlated 

with subjective ratings in the no priming group.  
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Table 2.5. Correlations between eye tracking metrics and subjective ratings 

  

Total 
fixation 
duration 
(s) 

Average 
fixation 
duration 
(s) 

Mean 
saccade 
amplitude 
(pixel) 

Backtrack 
rate (/s) 

Rate of 
transitions 
(/s) 

Scanpath 
per 
second 
(pixel/s) 

Total 
fixation 
count 

Transition 
count 

Subjective 
trust 
ratings 
(Overall)  

-0.918** -0.433* 0.058 -0.858** -0.821** -0.793** -0.796** -0.783** 

Subjective 
trust 
ratings 
(Priming) 

-0.928** -0.487** 0.012 -0.839** -0.852** -0.837** -0.849** -0.829** 

Subjective 
trust 
ratings(No 
priming) 

-0.799** -0.188 0.035 -0.687** -0.565** -0.621** -0.556** -0.491** 

*: p <0.05, **: p <0.01 
 

Changes in eye tracking metrics as a function of short-term variations in actual system 

reliability  

The overall reliability for the two groups of UAVs was 95% (group 1, high reliability) 

versus 50% (group 2, low reliability), respectively. It varied slightly for each vehicle throughout 

the experiment (every 2 minutes; range: 0-100%) (see Table 2.6). A correlation analysis was 

conducted on the percentage differences for the various eye tracking metrics between the high- 

and low-reliability UAVs to determine whether these reliability variations were reflected in 

short-term changes in attention allocation. Only total fixation count was found to be correlated 

with reliability changes over time (r=0.685, p=0.005), as shown in Figure 2.7. 
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Table 2.6. Actual reliability settings for high (Group 1) and low (Group 2) reliability automation 

  Interval 1 Interval 2 Interval 3 Interval 4 Interval 5 
Group 1 1 1 1 1 1 
Group 2 0.5 0.4 0.375 0.5 0.625 

  Interval 6 Interval 7 Interval 8 Interval 9 Interval 10 
Group 1 0.88 0.67 1 1 0.8 
Group 2 0.67 0.4 0.75 0.286 0.6 

  Interval 11 Interval 12 Interval 13 Interval 14 Interval 15 
Group 1 1 1 0.857 1 1 
Group 2 0.57 0.625 0 0.4 0.56 

 

 

Figure 2.7.  Correlation between fixation count and actual reliability variations 

 

Performance on target detection task 

Reaction time 

Response time was defined as the time between the first appearance of the target/non-

target on the screen and the participant’s button press (confirm, reject, uncertain, miss). A 2 

(Reliability: high vs. low) *2 (Priming: reliability information provided vs. not) mixed linear 
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model showed a significant main effect for UAV reliability. Participants’ response time for low 

reliability UAVs (Mean=2.14s, SD=0.17) was significantly slower than for high reliability 

UAVs (Mean=1.88s, SD=0.18; F(1,30)=205.07, p<0.001).  Response time did not differ 

significantly between the priming and the no priming groups, and no interaction was observed 

between priming and reliability.  

 

Overall error rate 

The overall error rate on the target detection task was defined as the total number of 

errors, divided by the total number of trials in that condition. A 2 (Reliability: high vs. low) *2 

(Priming: reliability information provided vs. not) mixed linear model revealed a significant 

main effect of reliability on error rate. Participants made more errors when interacting with the 

low reliability UAVs (Mean=9%, SD=0.005), compared to the highly reliable vehicles 

(Mean=2.7%, SD=0.005; F(1,30)=73.60, p<0.001). No significant effect of priming and no 

interaction effect were found. 

 

Error types 

There were five possible types of errors that participants could make during the 

experiment, as listed in Table 2.7. A 2 (Reliability)*2 (Priming) mixed linear model was 

conducted on participants’ error rates for each of these categories. Results indicated a significant 

main effect of reliability on error types 3 (missing a target that was missed by the UAV), 4 (false 

alarms) and 5 (failure to respond when the UAV window was highlighted). Participants showed 

significantly higher type 3 and 5 error rates (Mean=12.5%, SD=0.072 and Mean=5.6%, 

SD=0.0126, respectively) for low reliability UAVs, compared to high reliability UAVs where no 
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such errors were observed.  The type 4 error rate was also significantly higher (Mean=13.5%, 

SD=0.055, F(1,30)=147.71, p<0.001) when participants interacted with low reliability UAVs, 

compared to the highly reliable UAVs (Mean=1.5%, SD=0.033). No significant effect of priming 

and no interaction effect between priming and reliability were found. 

Table 2.7. Error definition and effect of reliability 

Error 
type 

Definition Error rate - 
high 
reliability 

Error rate - 
low 
reliability 

Significance  

Error 1 When the sub-screen was 
highlighted and there was a 
target, the participant clicked 
“reject” button. 

M=0.031 
SD=0.027 

M=0.032 
SD=0.036 

Not significant 

Error 2 When the sub-screen was 
highlighted and there was 
not a target, the participant 
clicked “confirm” button. 

M=0.094 
SD=0.177 

M=0.070 
SD=0.100 

Not significant 

Error 3 When the sub-screen was 
not highlighted and there 
was a target, the participant 
didn’t click “miss” button. 

M=0 
SD=0 

M=0.125 
SD=0.072 

F(1,30)=94.92, p<0.001 

Error 4 When the sub-screen was 
not highlighted and there 
was not a target, the 
participant clicked “miss” 
button. 

M=0.015 
SD=0.033 

M=0.135 
SD=0.055 

F(1,30)=147.71, p<0.001 

Error 5 When the sub-screen was 
highlighted, the participant 
didn’t click any button. 

M=0.0056 
SD=0.0126 

M=0  
SD=0 

F(1,30)=6.39, p=0.017 
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 Discussion 

The purpose of this study was to develop and validate an eye tracking-based method for 

inferring and tracing, in real time, changes in operator trust levels as a function of automation 

reliability and priming. A total of eight different eye tracking metrics were calculated from raw 

eye movement data. They fall into three categories: temporal, spatial, and count metrics. To 

validate these eye tracking metrics, they were correlated with subjective trust ratings, the 

traditional means of assessing trust levels. Participants’ performance on a UAV control task was 

recorded to determine whether and how it was affected by changes in attention allocation 

resulting from different levels of trust.  

 

Effects of changes in system reliability on eye movements and monitoring 

The analysis of the eye tracking data revealed that low automation reliability was 

associated with longer total fixation durations, higher backtrack and transition rates, an increased 

scanpath length per second, and higher total fixation and transition counts.  

Longer fixation durations were expected for low system reliability as participants would 

trust the automation less and therefore examine potential targets more carefully. This effect was 

observed for total, but not for average fixation duration. One possible explanation for this finding 

is that, while participants visited low reliability UAV windows more often (resulting in longer 

total fixation durations), they were able to examine potential targets equally quickly for both 

high and low reliability UAVs (translating into comparable average fixation durations) since the 

appearance of the targets was identical. 

As predicted, most of the spatial metrics were significantly affected by system reliability, 

except for mean saccade amplitude. Backtrack rate, transition rate and scanpath length per 
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second can be considered indicators of the efficiency of visual search and scanning which 

suffered as a result of low automation reliability (Goldberg & Kotval, 1999). This may be 

explained by the high attentional load imposed and by a high level of uncertainty of where to 

look, leading to less systematic monitoring behavior. The fact that mean saccade length was not 

affected by reliability may be explained by earlier findings showing that this metric is 

particularly sensitive to mental effort (Chen, Epps, Ruiz, & Chen, 2011). Mental effort has been 

defined as “the amount of attentional demand that participants allocated to the task (how hard 

they were trying) (Vicente, Thornton & Moray, 1987)”. All targets in this experiment for both 

high and low reliability UAVs were identical, and thus likely required the same amount of effort. 

Other metrics such as heart-rate variability (Aasman, Mulder & Mulder, 1987) or pupillary 

dilation (Kahneman, 1973) could be used to validate whether participants’ mental effort was 

indeed the same when detecting targets with different groups of UAVs. 

Finally, system reliability significantly affected both count metrics. This result confirms 

our expectations and is consistent with earlier research findings (Bagheri & Jamieson, 2004; 

Moray & Inagaki, 2000; F. Walker et al., 2018). When people trust automation to perform a task 

reliably, they will monitor the system less frequently (as expressed by fixation counts). The 

number of transitions between the low reliability UAV windows was also higher, most likely 

because participants felt they needed to scan these windows more frequently to make sure the 

UAVs did not miss any targets.  

The above results indicate that it is useful to consider and combine multiple eye tracking 

metrics when trying to infer trust as various aspects (temporal, spatial and count) of eye 

movements respond differently to variations in system reliability.  

 

 



 50 

Effects of priming on eye movements and monitoring 

Even though priming did not affect subjective trust ratings, it was associated with 

changes in participants’ monitoring behavior. Specifically, priming seemed to contribute to 

smaller mean saccade amplitudes, transition rates, scanpath length per second and total fixation 

counts, as well as longer average fixation durations. 

Average fixation duration was the only temporal metric affected by priming. Receiving 

reliability information in advance likely resulted in participants allocating more effort and 

attention to the low reliability UAVs, in a top-down fashion. In contrast, total fixation duration 

did not differ between the priming and the no priming group. One explanation could be that 

participants’ attention allocation across the entire screen was decided mainly by the total task 

duration instead of other factors. Priming significantly affected all spatial metrics, except the 

backtrack rate. This confirms that participants’ visual search and scanning were indeed less 

efficient and systematic if participants were not informed about system reliability. It is not clear 

why the backtrack rate was not affected by priming when it showed the expected change due to 

differences in UAV reliability.  

Among the count metrics, significantly fewer fixation counts, but not fewer transition 

counts, were observed in the priming condition. It is possible that any difference in transition 

counts was masked as it was calculated for the entire screen (including both high and low 

reliability UAVs).  

 

Relationship between subjective trust ratings and eye tracking metrics 

For the most part, the observed differences in monitoring behavior for the high- and low-

reliability UAVs aligned with participants’ subjective trust ratings. The only exceptions were 
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average fixation duration and mean saccade amplitude. These metrics were not affected by 

system reliability but did change as a function of priming, while subjective trust ratings were 

affected only by system reliability but not priming. This explains why there was no correlation 

between subjective trust ratings and the two eye tracking metrics. The result also suggests that, 

overall, system reliability has a more pronounced effect on trust, compared to priming. This 

finding is similar to previous research finding (Liao & MacDonald, 2019) showing that affective 

primes did not affect trust propensity while product performance was critical in shaping trust.  

Another important difference between the eye tracking metrics and subjective trust 

ratings was that subjective ratings differed significantly between high and low reliability UAVs, 

independent of whether participants were informed about system reliability at the beginning of 

the experiment. In contrast, one eye tracking metric, total fixation duration, differed between the 

two reliability levels only in the priming condition. Participants in the no priming group 

explained during the debrief that, even though they had noticed differences in automation 

reliability during the experiment, they still monitored all UAVs to the same extent because they 

were not sure whether observed reliability levels would remain constant.  

A third difference between subjective ratings and the eye tracking metrics was the higher 

temporal resolution of total fixation counts which closely mirrored the changes in UAV 

reliability every two minutes. In other words, monitoring behavior changed even though 

participants’ attitude towards the vehicle appeared unaffected. This finding is similar to the 

results from an earlier experiment on autonomous driving (Miller et al., 2016), where drivers 

intervened even when they expressed verbally that they expected the automation to be able to 

handle the emergency situation successfully.  

 



 52 

Effects of system reliability and priming on performance 

In terms of performance, participants’ overall error rate was quite low. Their reaction 

time was longer, and their overall error rate was higher for low reliability UAVs. The high rate 

of type 3 errors (failure to notice a missed target when the window was not highlighted) for low 

reliability UAVs was likely due to the lack of attention guidance in the form of highlighting of 

the video feed. The high type 4 error rate (false alarms when the window was not highlighted) 

for low reliability UAVs may be due to participants’ response bias. They expected these vehicles 

to miss more targets and were therefore more willing to call an ambiguous object a target. And 

the high rate of type 5 errors (failure to respond to highlighting of window) for highly reliable 

UAVs may be the result of participants focusing so much on the low reliability vehicles that they 

did not react in time or totally missed in their peripheral vision the highlighting of the high 

reliability UAV windows. Priming did not affect participants’ performance significantly which 

may be explained by a ceiling effect (above 90% accuracy rate). 

 

In conclusion, the findings from this experiment suggest that eye tracking is indeed an 

effective technique for inferring changes in operator trust levels in real time. Compared to other 

psychophysiological measures, eye tracking has the benefits of easier implementation, less 

intrusion and a more fine-grained analysis of monitoring behavior. Given the dissociation 

between some trust-related measures in this study, eye tracking is ideally combined with other 

techniques, such as subjective ratings or behavioral data, to assess and study various facets of 

trust. 

It is important to note two limitations of the present study. First, false alarms and misses 

were evenly distributed among UAVs of equal reliability and over each short time interval. Past 
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studies have shown that these two failure types can have different effects on one’s trust in 

automation (C. Wickens et al., 2005). Automation that mostly triggers false alarms may more 

strongly affect eye tracking metrics that relate to information processing; in contrast, automation 

that is prone to misses may lead to changes in eye tracking metrics that reflect search behavior. 

Second, in this experiment, high and low automation reliability were coupled, which means that, 

if a participant looked more at one group of UAVs, his/her monitoring of the other group was 

necessarily reduced, independent of whether or not his/her trust in those vehicles was different. 

The experiments reported in the following chapters addressed the above shortcomings.  

  



 54 

References 

Aasman, J., Mulder, G., & Mulder, L. J. (1987). Operator effort and the measurement of heart-
rate variability. Human factors, 29(2), 161-170. 

Bagheri, N., & Jamieson, G. A. (2004). Considering subjective trust and monitoring behavior in 
assessing automation-induced “complacency.”. Human performance, situation 
awareness, and automation: Current research and trends, 54-59.  

Beck, M. R., Lohrenz, M. C., & Trafton, J. G. (2010). Measuring search efficiency in complex 
visual search tasks: Global and local clutter. Journal of experimental psychology: 
applied, 16(3), 238. 

Chavaillaz, A., Wastell, D., & Sauer, J. (2016). System reliability, performance and trust in 
adaptable automation. Applied Ergonomics, 52, 333-342. 

Chen, S., Epps, J., Ruiz, N., & Chen, F. (2011). Eye activity as a measure of human mental effort 
in HCI. Paper presented at the Proceedings of the 16th international conference on 
Intelligent user interfaces. 

Chugh, J. S., & Caird, J. K. (1999, September). In-vehicle train warnings (ITW): The effect of 
reliability and failure type on driver perception response time and trust. In Proceedings of 
the Human Factors and Ergonomics Society Annual Meeting (Vol. 43, No. 18, pp. 1012-
1016). Sage CA: Los Angeles, CA: SAGE Publications. 

Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: 
methods and constructs. International Journal of Industrial Ergonomics, 24(6), 631-645.  

Hergeth, S., Lorenz, L., Vilimek, R., & Krems, J. F. (2016). Keep your scanners peeled: Gaze 
behavior as a measure of automation trust during highly automated driving. Human 
factors, 58(3), 509-519.  

Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability 
research: Ready to deliver the promises. In The mind's eye (pp. 573-605): Elsevier. 

Kahneman, D. (1973). Attention and effort (Vol. 1063). Englewood Cliffs, NJ: Prentice-Hall. 
Lai, M.-L., Tsai, M.-J., Yang, F.-Y., Hsu, C.-Y., Liu, T.-C., Lee, S. W.-Y., . . . Tsai, C.-C. 

(2013). A review of using eye-tracking technology in exploring learning from 2000 to 
2012. Educational research review, 10, 90-115.  

Liao, T., & MacDonald, E. Manipulating Trust of Autonomous Products With Affective Priming. 
Paper presented at the ASME 2019 International Design Engineering Technical 
Conferences and Computers and Information in Engineering Conference. 

Miller, D., Johns, M., Mok, B., Gowda, N., Sirkin, D., Lee, K., & Ju, W. (2016). Behavioral 
Measurement of Trust in Automation: The Trust Fall. Paper presented at the Proceedings 
of the Human Factors and Ergonomics Society Annual Meeting. 

Moacdieh, N. M., & Sarter, N. (2017). The effects of data density, display organization, and 
stress on search performance: An eye tracking study of clutter. IEEE Transactions on 
Human-Machine Systems, 47(6), 886-895. 

Moray, N., & Inagaki, T. (2000). Attention and complacency. Theoretical Issues in Ergonomics 
Science, 1(4), 354-365.  

Petersen, L., Robert, L., Yang, J., & Tilbury, D. (2019). Situational awareness, driver’s trust in 
automated driving systems and secondary task performance. SAE International Journal 
of Connected and Autonomous Vehicles, Forthcoming.  

Strauch, C., Mühl, K., Patro, K., Grabmaier, C., Reithinger, S., Baumann, M., & Huckauf, A. 
(2019). Real autonomous driving from a passenger’s perspective: Two experimental 



 55 

investigations using gaze behaviour and trust ratings in field and simulator. 
Transportation research part F: traffic psychology and behaviour, 66, 15-28.  

Vicente, K. J., Thornton, D. C., & Moray, N. (1987). Spectral analysis of sinus arrhythmia: A 
measure of mental effort. Human factors, 29(2), 171-182. 

Walker, F., Verwey, W., & Martens, M. (2018). Gaze behaviour as a measure of trust in 
automated vehicles. Paper presented at the Proceedings of the the 6th Humanist 
Conference (June 2018). 

Wickens, C. D., & Dixon, S. R. (2007). The benefits of imperfect diagnostic automation: A 
synthesis of the literature. Theoretical Issues in Ergonomics Science, 8(3), 201-212. 

Wickens, C., Dixon, S., Goh, J., & Hammer, B. (2005). Pilot dependence on imperfect 
diagnostic automation in simulated UAV flights: An attentional visual scanning analysis. 
ILLINOIS UNIV AT URBANA SAVOY 

Wiegmann, D. A., Rich, A., & Zhang, H. (2001). Automated diagnostic aids: The effects of aid 
reliability on users' trust and reliance. Theoretical Issues in Ergonomics Science, 2(4), 
352-367. 

 



 56 

Chapter 3  

Effects of Magnitude and Duration of Changes in System Reliability 

on Trust Calibration and Recovery 

 

As mentioned in the literature review (Chapter 1), and as shown in Experiment 1, system 

reliability is one of the most critical factors shaping operators’ trust in automated systems (Lee & 

Moray, 1994; Lee & See, 2004; Schaefer et al., 2016). While the effects of system reliability on 

trust have been studied quite extensively, research in this area involves limitations related to the 

type of changes in system reliability and the aspects of trust that are being examined. Most 

experiments vary system reliability between but not within trials (e.g., Chavaillaz et al., 2016; 

Merritt et al., 2013; Yu et al., 2017). Also, trust is usually measured only one time - at the end of 

the experiment (e.g., Dzindolet et al., 2001; Rossi, Dautenhahn, Koay, & Walters, 2017). This 

means that very few studies provide any insight into how changes in system reliability affect 

trust calibration and evolution over time. One such study was conducted by Desai and colleagues 

(Desai et al., 2013; Desai et al., 2012) who investigated how the timing of a breakdown in 

system performance influenced trust development. Trust changes were captured in real time by 

asking participants for trust ratings every 20 seconds. However, data from only one scenario, 

where system reliability dropped halfway through the trial, could be compared with the baseline 

scenario where the automation performed highly reliably throughout; other scenarios were 

eliminated from the analysis because they did not last long enough to allow for trust 
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development or trust recovery. Also, the study did not examine the effects of changes in system 

reliability on trust calibration. The experiment presented in this chapter will fill these gaps.  

In terms of the nature of system reliability changes, past studies have focused primarily 

on the timing (i.e., at what point during a scenario reliability increased or decreased) (e.g., Rossi 

et al., 2017) and the type of breakdowns in system performance (i.e., false alarm and miss)(e.g., 

Guznov, Lyons, Nelson, & Woolley, 2016). Very few studies have examined how the severity of 

a drop in system reliability (Lewis, Sycara, & Walker, 2018), in particular its magnitude and 

duration, affect operators’ trust and reliance on automation – the focus of the present experiment.  

The main goals of this study then are: 1) to establish the detectability of system reliability 

changes of different magnitudes and durations, 2) to assess how trust calibration and recovery 

vary as a function of the magnitude and duration of variations in system reliability, and 3) to 

examine whether the magnitude and duration of system reliability changes interact with respect 

to how they affect trust calibration and recovery. To this end, participants performed a tracking 

task and a target detection task similar to the one used in the first experiment, with the aid of 

automation on board eight UAVs. The dependent measures were subjective trust ratings, 

perceived automation reliability, eye movements and performance on both tasks. The main 

expectations were that (1) participants would likely miss small and short drops but would 

reliably notice large or long decreases in system reliability, (2) perceived reliability of the 

automation would decline when a drop in system reliability was observed and trust ratings would 

change accordingly, (3) in case of large reliability drops, participants’ trust in the automation 

would change immediately and significantly, (4) during long periods of low system reliability, 

participants’ perceived reliability and trust would continue to decrease and approach actual 

system reliability, (5) participants’ trust calibration during the first three minutes after system 
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reliability returned to its original high level would suffer the most (as reflected by a large 

perceived reliability difference and inappropriate subjective trust levels) following a combined 

large and long drop in reliability, (6) trust recovery would take longer after a large or a long 

reduction in system reliability, and (7) the most severe trust miscalibration would lead to the 

worst task performance due to inappropriate reliance on the automation.  

 

Method 

Participants 

A total of 20 students from the University of Michigan participated in the experiment. 

Their average age was 22.2 years (SD=3.5). 12 participants were males. Participants were 

required to have normal or corrected-to-normal vision. None of the participants had any 

experience with Unmanned Aerial Vehicle (UAV) control or the MATB tracking task before the 

experiment. This study was approved by the UM Health Sciences and Behavioral Sciences 

Institutional Review Board (HSBS-IRB; ID: HUM00143537).  

 

Apparatus and tasks 

The experiment was set in a computer-based Unmanned Aerial Vehicle (UAV) control 

simulation built in the THInC lab. Participants were asked to complete a target detection task and 

a tracking task at the same time (see Figure 3.1). The two tasks were displayed on a 27’’ 

monitor. 
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Figure 3.1. UAV simulation screenshot 

(tracking task in the center of the screen) 

 

 

 

Figure 3.2. Simulation screenshot when 

reaching a non-target area

 

For the target detection task, participants were asked to monitor the video feeds from 8 

unmanned aerial vehicles (UAVs) to detect the presence of military targets. They were informed 

that automation onboard the UAVs would scan pre-defined regions to help with the detection of 

a target. Whenever a UAV reached one of the target regions, its video feed was highlighted. The 

surround of the video feed changed to red when it identified a possible target (as shown in Figure 

3.1). The surround appeared green when the automation reached a region but did not detect a 

target (as shown in Figure 3.2). The target was defined as a black truck carrying a gun (See 

Figure 3.3). The video feeds also included a similar-looking object, a black truck without a gun, 

as a distractor, as shown in Figure 3.4. 

 



 60 

                   Figure 3.3. Target example Figure 3.4. Non-Target example 

 

It was up to the participant to decide whether or not to review the scene once a video feed 

was highlighted. If they did, they could then press one of two buttons (Ö or ´) to either agree or 

disagree with the automation assessment regarding the presence of a target. If the participant did 

not review the scene, the automation would make a decision for the participant. Independent of 

whether the participant reviewed the scene and responded to the automation assessment, they 

would receive auditory feedback regarding the accuracy of the automation (Lu & Sarter, 2019b). 

If the automation was correct, a ‘pleasant’ high pitch chime sounded; when the automation 

assessment was wrong, a low pitch buzzing sound was played. Participants were presented with 

both sounds during the training session to make sure they were reliably distinguished. 

In parallel with the target detection task, participants had to perform a tracking task 

(adopted from MATB-II (NASA)) in the center of the screen (see Figure 3.1). Using a joystick, 

they had to keep the smaller target circle inside the two larger circles around the origin of the 

coordinate frame. They were told that, if the target circle moved outside the larger circles, this 

could result in the UAV crashing. Participants were instructed to treat the target detection task 

and the tracking task as equally important and to try to achieve the best possible performance on 

both tasks.  
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Experiment design 

The experiment employed a 2 (magnitude of reliability change: large vs. small) *2 

(duration of reliability change: long vs. short) full factorial design. Both the magnitude and the 

duration of variations in system reliability were within-subject factors, leading to a total of four 

reliability scenarios, as shown in Figures 3.5-3.8. In Scenario 1, system reliability dropped from 

95% to 50% and stayed at 50% for 9 minutes before recovering to 95%. Scenario 2 was the same 

as Scenario 1, except that system reliability dropped to 80% (instead of 50%). In Scenario 3, 

system reliability changed from 95% to 50% (like in scenario 1) but returned to 95% after only 3 

minutes. Finally, Scenario 4 was different from Scenario 3 in that the reliability dropped to 80%, 

as opposed to 50%. The sequence in which each participant experienced the four scenarios was 

counterbalanced between subjects. Half of the participants experienced the four scenarios in the 

order of Scenario 1-2-3-4. The other half of the participants experienced the four scenarios in 

reverse order. In the data analysis, this “sequence” factor was entered as an independent variable 

to check if the manipulation was successful.  

 

                 Figure 3.5. Large & long drop                        Figure 3.6. Small & long drop                       
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                 Figure 3.7. Large & short drop                      Figure 3.8. Small & short drop 

 

The dependent measures in this study were subjective trust ratings, perceived automation 

reliability (as a measure of trust miscalibration (Merritt et al., 2015)), eye movements, as well as 

the frequency to review automation assessments and performance on the target identification and 

tracking tasks. Trust ratings and perceived reliability estimates were collected every three 

minutes, throughout each trial, by asking participants to answer two questions verbally: (1) 

“How much do you trust the automation?” (on a scale from 0-10, with 0 being the lowest 

possible trust) and (2) “What is your perceived reliability of the system” (on a scale of 0-100%). 

The 3-minute time interval was selected because it was shown in pilot testing to be long enough 

to trace trust changes and not as disruptive as the shorter time intervals used in earlier research. 

The eye tracking metrics used in this study were total fixation duration percentage, fixation count 

percentage and transition count. Total fixation duration percentage is the percentage of fixation 

time that a participant focuses on the display area showing the tracking task (see AOI2 in Figure 

3.9). Fixation count percentage is the percentage of fixation count on the tracking task. 

Percentages, rather than absolute values, were used in this study to account for large individual 

differences in eye tracking metrics. Transition count is number of transitions between AOI 1 

(Area of Interest 1: the target detection area) and AOI 2 (the tracking task area). These eye 
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tracking metrics have been confirmed in Experiment 1 as indicators of different trust levels in 

response to system reliability variance. Metrics in the spatial dimension (related to different 

search features) were not used in this study because in Experiment 2, participants did not need to 

actively search for missing targets. The performance data consisted of participants’ tracking task 

performance and target detection performance. Tracking task performance refers to the Mean 

Square Distance (MSD) of the small circle target from the center (as shown in Figure 3.1), 

calculated over five-second windows. Target detection task performance includes overall error 

rate for target identification, and response time which was defined as the time between 

highlighting of video feed and button press. 

 

 

 

 

 

 

 

Figure 3.9. Area of Interest (AOI) definition 

 

Experiment procedure 

Upon arrival at the laboratory, participants first read and signed the consent form. They 

were then asked to fill out a background questionnaire asking for basic information, such as their 

age, gender, and nationality. Next, participants were instructed on the two tasks and completed a 

12-minute training session before the actual experiment started. Each participant completed the 4 

AOI 1 

AOI 2 
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automation reliability scenarios described above, with a 5-minute break in between. Each 

scenario ended once a steady state of trust in the automation was reached (i.e., when the 

participant provided 2 similar subjective trust ratings that were close to their initial trust ratings). 

After completing the four scenarios, baseline eye tracking behavior was collected for three 6-

minute periods that differed with respect to system reliability (95%, 80% or 50%). Participants 

were informed about the respective system reliability in advance of each trial during which they 

performed the same tasks as in the previous four scenarios. These baseline data were collected 

for later modeling purposes that will be described in Chapter 4. This baseline data collection was 

conducted after the four formal trials to avoid priming effects on participants. Finally, 

participants were asked to fill out a debriefing questionnaire. It took participants around 2 hours 

to complete the entire experiment, and they were compensated $30 for their participation. 

 

Results 

The Results section consists of three main parts. The first part reports on data analyses 

related to the detection of system reliability drops of varying duration and magnitude 

(expectation 1).  Specifically, polynomial contrast analyses were performed to assess how well 

actual changes in system reliability were reflected in participants’ perceived reliability, 

subjective trust ratings and eye movement data. The second part of the Results section describes 

findings related to expectations 2-6 on page 55. Linear mixed models were applied to establish 

the effects of magnitude and duration of system reliability changes on participants’ perceived 

reliability, subjective trust ratings, eye tracking metrics, their review of automation assessments 

and various performance outcome measures (see expectation 7). The analyses examined the 

following four time periods (illustrated in Figure 3.10): 1) the first three minutes after system 
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reliability dropped (the red rectangle), 2) the nine-minute period of low system reliability (the 

yellow rectangle), 3) the three-minute period after system reliability returned to its original level 

(the green rectangle), and 4) the time until participants’ trust recovered after experiencing the 

system performance breakdown (the blue rectangle). For statistical analysis, the significance was 

set at p < 0.05. Error bars on the figures indicate the standard error of the mean. 

 

Figure 3.10. Four time periods for which data were analyzed 

 

Part 1: Detection of system reliability changes of different magnitude and duration  

Polynomial contrast analyses show that participants’ perceived reliability and trust ratings 

reflect actual changes in system reliability in all four scenarios (see Table 3.1). A polynomial 

contrast analysis was conducted also on the eye tracking metrics to determine if participants 

adjusted their attention allocation in response to changes in system reliability. In Scenarios 1-3, 

all three eye tracking metrics changed when system reliability dropped. However, in Scenario 4 

(the small and short reliability change), only total fixation duration showed a significant 

quadratic trend. The results from the above tests are summarized in Table 3.1. 
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Table 3.1. Polynomial contrast analyses for perceived reliability ratings, subjective trust ratings 

and eye tracking metrics 

Scenario Perceived 
reliability 

Subjective 
trust ratings 

Eye tracking 
Total fixation 
duration PC 

Fixation count 
PC 

Transition count 

1-large and 
long 
reliability 
drop 

t(1,95)=11.175,  
p < 0.001 

t(1,95)=8.688, 
p < 0.001 

t(1,85) = 7.126,  
p < 0.001 

t(1,85) = 5.331,  
p < 0.001 

t(1,85) = -6.321, 
p < 0.001 

2-small and 
long 
reliability 
drop 

t(1,92)=8.022,  
p < 0.001 

t(1,92)=7.002, 
p < 0.001 

t(1,87) = 3.059, 
p = 0.003 

t(1,87) = 3.677, 
p < 0.001 

t(1,87) = -3.748, 
p < 0.001 

3-large and 
short 
reliability 
drop 

t(1,38)=8.106,  
p < 0.001 

t(1,38)=5.539, 
p < 0.001 

t(1,34) = 3.233, 
p = 0.003 

t(1,34) = 3.807, 
p = 0.001 

t(1,34) = -2.739, 
p = 0.01 

4-small and 
short 
reliability 
drop 

t(1,38)=3.117,  
p = 0.003 

t(1,38)=2.392, 
p = 0.022 

t(1,38) = 2.306,  
p = 0.027 

t(1,38) = 0.019, 
p = 0.985 

t(1,38) = -1.243, 
p = 0.222 

*Significant findings (p < 0.05) are highlighted in grey  
 
 

Part 2: The effects of magnitude and duration of system reliability changes on perceived 

reliability, subjective trust ratings, eye movements, review of automation assessments and 

performance 

Period 1: the first three minutes after a drop in system reliability  

This period was examined to determine whether abrupt changes in system reliability 

resulted in a temporary miscalibration of trust, as reflected by the difference between the actual 

system reliability and participants’ perceived reliability and by subjective trust ratings, eye 

movement data, participant behavior and performance outcomes. Note that this period has a 

fixed duration, and this factor was therefore not included in the analyses. 
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Perceived reliability calibration  

To calculate perceived reliability calibration, both perceived reliability and actual 

reliability were first re-scaled to a range of ‘0-10’ and then compared. A 

2(magnitude)*2(sequence) linear mixed model analysis was performed on the difference 

between actual and perceived reliability. It reveals a significant main effect of magnitude 

(F(1,58) = 10.720, p = 0.002), as shown in Figure 3.11. Large reliability drops (Mean = -1.063, 

SD = 1.542) resulted in a significantly larger difference between actual and perceived reliability, 

compared to small reliability drops (Mean = -0.243, SD = 0.905).  

 

Figure 3.11. Effects of magnitude of system reliability changes on perceived reliability 

calibration

Subjective trust ratings  

A 2 (magnitude)*2(sequence) linear mixed model analysis was conducted on the 

subjective trust ratings. Participant ID was entered as a random effect, and the subjective trust 

ratings immediately preceding the system reliability change were entered as a covariant. The 

result indicates that participants’ trust ratings were significantly lower (Mean = 6.308, SD = 
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2.173, F (1,58) = 42.281, p < 0.001) when they experienced a large reliability drop compared to 

their ratings (Mean = 8.189, SD = 1.214) following a small reliability drop (see Figure 3.12). 

 

Figure 3.12. Effects of magnitude of system reliability changes on trust ratings 

 

Eye tracking metrics  

Three 2(magnitude)*2(sequence) linear mixed model analyses were conducted separately 

on the eye tracking metrics: total fixation duration percentage, total fixation count percentage, 

and transition count. Participant ID was entered as a random effect. There was a significant 

effect of magnitude on all three metrics (see Table 3.2). The average percentage of total fixation 

duration on AOI 2 (the tracking task area) was significantly lower (85.9%) following a large 

reduction in system reliability, compared to a small reduction in reliability (91.6%). Similarly, 

the fixation count percentage on AOI 2 significantly decreased to 68.7% following a large drop 

in reliability, as compared to 78.5% following a smaller drop. And the transition counts between 

the two AOIs following a large versus as small change in system reliability were 37.78 and 

25.68, respectively. There was no significant effect of sequence and no interaction effect 

between magnitude and sequence. 
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Table 3.2. Changes in three eye tracking metrics as a function of magnitude of reliability change 

Eye movement metrics Small magnitude 
mean 

Large magnitude 
mean 
 

Main effects of 
magnitude 

Total fixation duration 
percentage  

0.916 (0.068) 0.859 (0.066) F(1,54.14) = 20.99, 
 p <0.001 

Total fixation count 
percentage  

0.785 (0.142) 0.687 (0.118) F(1,53.48) = 17.389,  
p <0.001 

Transition count  25.68 (17.82) 37.78 (16.41) F(1,54.029) = 14.269,  
p <0.001 

 
 
Review of automation assessments 

Finally, a 2(magnitude)*2(sequence) linear mixed model was applied to the number of 

times participants reviewed the automation assessments in the three-minute period following the 

system reliability drop. Participant ID was entered as a random effect, and the number of times 

immediately preceding the system reliability drop was entered as a covariant. A large drop in 

system reliability resulted in a significantly larger number of times (Mean = 11.58, SD = 6.19), 

compared to a small drop in system reliability (Mean = 6.78, SD = 6.53, F(1,58) = 32.884, p 

<0.001), as shown in Figure 3.13. There was no significant effect of sequence and no interaction 

effect between magnitude and sequence.  

 

Figure 3.13. Effects of magnitude on the number of reviews after a reliability drop 
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Tracking task performance 

A 2(magnitude)*2(sequence) linear mixed model, with MSD before the reliability change 

entered as a covariant, did not show any main or interaction effects for MSD following the drop 

in system reliability. 

 

Target detection performance 

Overall error rate 

The overall error rate on the target detection task during the three-minute period after 

system reliability suddenly dropped was examined using a 2(magnitude)*2(sequence) linear 

mixed model. As shown in Figure 3.14, a significant effect of magnitude on overall error rate 

was observed (F(1,58) = 59.25, p < 0.001). Participants’ error rate was significantly smaller 

(13.88%; SD = 6.25%) when reliability dropped by only 15%, compared to 29.25% 

(SD=15.09%) when reliability dropped by 45%. No significant effect of sequence and no 

interaction effect were observed.  

 

Figure 3.14. Effects of magnitude on overall error rate after a reliability drop 
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Response time 

The analysis of response times for button pushes did not yield any significant main or 

interaction effects. 

  

Period 2: the nine-minute period of low system reliability 

The nine-minute period of low system reliability was examined to determine whether 

trust calibration would improve over time, i.e., whether participants’ perceived reliability 

estimation would get closer to actual system reliability, and to assess how subjective trust 

ratings, attention allocation and performance would change as a function of magnitude and 

duration (3 three-minute intervals) of the reliability change.  

 

Perceived reliability calibration  

A 2 (magnitude) *3 (time interval) * 2(sequence) linear mixed model analysis was 

conducted on perceived reliability calibration. Participant ID was entered as a random effect. 

Similar to the results in period 1, there was a significant effect of magnitude on perceived 

reliability (F(1,90) = 19.074, p < 0.001). A large reliability drop (Mean = -0.813, SD = 1.674) 

resulted in a significantly larger difference between actual and perceived reliability, compared to 

a small reliability drop (Mean = -0.042, SD = 0.824), as shown in Figure 3.15. No significant 

effects of time interval and sequence were observed. 
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Figure 3.15. Effects of magnitude on perceived reliability calibration during the 9-minute low 

reliability period 

 

Subjective trust ratings 

A 2 (magnitude) *3 (time interval) * 2(sequence) linear mixed model analysis was 

conducted also on subjective trust ratings. Consistent with the findings on perceived reliability 

differences, only magnitude was found to significantly affect participants’ trust ratings for the 9-

minute period. Participants’ trust ratings were significantly lower (Mean = 5.905, SD = 2.352, 

F(1,90) = 93.071, p <0.001) but did not change throughout the large reliability drop, compared to 

their ratings (Mean = 7.838, SD = 1.427) during the small drop in reliability, as shown in Figure 

3.16. 
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Figure 3.16. Effects of magnitude on subjective trust ratings during the 9-minute low reliability 

period 

 

Eye tracking metrics 

A 2 (magnitude) *3 (time interval) * 2(sequence) linear mixed model analysis on the eye 

tracking data revealed a significant effect of magnitude for all three eye tracking metrics (see 

Table 3.3). The average percentage of total fixation duration on AOI 2 (the tracking task area) 

was significantly lower (84.5%) during a large reduction in system reliability, compared to a 

small reduction in reliability (90.2%). Similarly, the fixation count percentage on AOI 2 

decreased to 66.1% during a large reduction in reliability, as compared to 75.2% during a smaller 

reduction. And the transition counts between the two AOIs during a large versus as small 

magnitude change in reliability were 45.81 and 31.09, respectively.  

The analysis also shows a significant effect of time interval on two of the eye tracking 

metrics. A post-hoc analysis with Bonferroni corrections indicates that the average percentage of 

total fixation durations on AOI 2 (the tracking area) during the first three minutes after the 
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reliability drop (interval 3) was significantly higher (89.5%) than during interval 4 (86.5%) and 

interval 5 (85.9%). For transition counts between the two AOIs, the post-hoc analysis revealed a 

significantly smaller transition count during interval 3 (32.97), compared to interval 5 (42.19). 

 
Table 3.3. Changes in three eye tracking metrics as a function of magnitude of reliability change 

and time intervals 

Eye 
movement 
metrics 

Magnitude effect Interval effect 
 

Small Large Interval 3 Interval 4 Interval 5 
Total 
fixation 
duration 
percentage  

0.902 
(0.074) 

0.842 
(0.077) 

0.895 
(0.067) 

0.865 
(0.083) 

0.859 
(0.088) 

F(1,90.9) = 30.661, 
p < 0.001 
 

F(1,88.396) = 5.952, p = 0.004 
Post-hoc: Interval 3 significantly larger than 
interval 4 (p = 0.028) and 5 (p = 0.005) 

Total 
fixation 
count 
percentage  

0.752 
(0.145) 

0.661 
(0.095) 

0.734 
(0.135) 

0.697 
(0.124) 

0.693 
(0.134) 

F(1,91.75) = 20.592,  
p < 0.001 

Not significant 

Transition 
count  

31.09 
(17.73) 

45.81 
(23.17) 

32.97 
(17.79) 

39.59 
(21.53) 

42.19 
(24.90) 

F(1,91.45) = 20.46,  
p < 0.001 

F(1,88.4) = 3.869, p = 0.025 
Post-hoc: Interval 3 significantly smaller than 
interval 5 (p = 0.025)  

 
 

Review of automation assessments 

A 2 (magnitude)*3 (time interval)* 2(sequence) linear mixed model analysis on the 

number of times participants reviewed the automation assessments over the nine-minute period 

shows that a large system reliability drop led to significantly (F(1,90) = 71.634, p < 0.001) more 

reviews (Mean = 13.22, SD = 6.00) than a small drop in reliability (Mean = 8.23, SD = 6.63). 

The number of reviews also changed across the three 3-minute time intervals (F(1,90)=8.271, p = 

0.001). A post-hoc analysis with Bonferroni corrections shows that the number of reviews in 
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interval 3 (Mean = 9.1, SD = 6.95) was significantly smaller than in intervals 4 (Mean = 11.13, 

SD = 6.25, p = 0.044) and 5 (Mean = 11.95, SD = 6.95, p = 0.002; see Figure 3.17). 

 

Figure 3.17. Effects of magnitude and time interval on number of reviews during  

the 9-minute low reliability period 

 

Tracking task performance  

A 2(magnitude) *3(time interval) * 2(sequence) linear mixed model, with MSD before 

the reliability change entered as a covariant, showed a significant effect of magnitude on MSD 

during the 9-minute period of low system reliability (F(1,90)=6.008, p =0.016). Participants who 

experienced a large reliability drop (from 95% to 50%) produced a significantly larger MSD 

(Mean = 42.058, SD = 5.467) compared to participants who experienced a small reliability drop 

(from 95% to 80%) (Mean = 40.727, SD = 5.441) (See Figure 3.18). 
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Figure 3.18. Effects of magnitude on tracking performance during the 9-minute reliability drop  

 

Target detection performance 

Overall error rate 

A 2(magnitude) *3(time interval) *2(sequence) linear mixed model was performed for 

the 9-minute time period after system reliability dropped. The results revealed a significant effect 

of magnitude (F(1,90) = 24.015, p < 0.001). Participants’ overall error rate was significantly 

higher following the large reliability drop (Mean = 0.235, SD = 0.160) compared to the overall 

error rate following the small reliability drop (Mean = 0.154, SD = 0.074), as shown in Figure 

3.19. There was also a significant effect of time interval on the overall error rate. A post-hoc 

analysis with Bonferroni correction indicated that the error rate 4-6 minutes (Interval 4) (Mean = 

0.186, SD = 0.122) and 7-9 minutes (Interval 5) after the reliability drop (Mean = 0.163, SD = 

0.135) was significantly lower than during the first three minutes (Interval 3) after the decline in 

reliability (Mean = 0.235, SD = 0.127). However, a significant interaction effect between time 

interval and magnitude indicates that this was true only with a large reliability drop. 
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Figure 3.19. Effects of magnitude and time intervals on overall error rate during a long reliability 

drop 

Response time 

The analysis of response times for button pushes did not yield any significant main or 

interaction effects. 

 

Period 3: the three-minute period after system reliability recovered to its initial high level 

Perceived reliability calibration 

A 2(magnitude)*2(duration)*2(sequence) linear mixed model analysis was performed for 

the three-minute period following system reliability recovery. There was a main effect of 

magnitude (F(1,54) = 12.539, p = 0.001) on the difference between actual and perceived 

reliability, as shown in Figure 3.20. A large reliability drop resulted in a significantly larger 

miscalibration in perceived reliability (Mean = 1.29, SD = 1.18), compared to a small reliability 

drop (Mean = 0.668, SD = 0.848). No significant effect of duration and no interaction effect 

were observed. 
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Figure 3.20. Effects of magnitude and duration on perceived reliability calibration 

 

Subjective trust ratings  

A 2 (magnitude) *2 (duration) * 2(sequence) linear mixed model analysis was conducted 

also on subjective trust ratings right after system reliability recovered to its initial high level. 

Participant ID was entered as a random effect, and the subjective trust ratings right before the 

change in system reliability were entered as a covariant. The result indicates that both magnitude 

and duration of the change significantly affected trust ratings (see Figure 3.21). Participants’ 

subjective trust ratings after reliability had returned to its initial value were significantly lower 

(Mean = 7.633, SD = 1.261, F(1,54) = 15.88, p < 0.001) when system reliability had dropped by 

45%, compared to when it had dropped by only 15% (Mean = 8.463, SD = 1.263). Also, a longer 

duration of low reliability led to a more significant decrease in subjective trust ratings, from an 

overall mean rating of 8.288 (SD = 1.169) following a short reliability drop to a rating of 7.808 

(SD = 1.432) (F(1,54) = 5.311, p = 0.025) following a longer drop. No significant effect of 

sequence and no interaction effect were observed. 
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Figure 3.21. Effects of magnitude and duration on trust ratings after a reliability recovery 

 

Eye tracking metrics  

A 2 (magnitude) *2 (duration) * 2(sequence) linear mixed model analysis was conducted 

on total fixation duration percentage, total fixation count percentage and transition count after 

system reliability recovered. There was a marginally significant effect of magnitude on total 

fixation duration (F(1,50.47) = 3.749, p =0.058). No significant effect of duration was observed. 

There was, however, a significant interaction between magnitude and duration such that large 

versus small changes in reliability differed significantly (p = 0.006) in their effect on total 

fixation duration only for short duration changes in reliability.  

The total fixation count percentage on AOI 2 was significantly smaller (Mean = 71.2%, 

SD = 0.144) when system reliability dropped from 95% to 50%, compared to when it dropped by 

15% only (Mean = 77.3%, SD = 0.157, F(1,48.78) = 6.47, p = 0.014). No significant effect of 

duration and no interaction effect were observed.  

Similar results were found for the transition count data which were affected significantly 

only by the magnitude of the change in system reliability.  Transition counts between the two 
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AOIs were significantly larger (Mean =35.46, SD = 23.17) when system reliability dropped from 

95% to 50%, compared to when it dropped from 95% to 80% (Mean =25.63, SD = 18.80, 

F(1,50.28) = 6.15, p =0.017). The results of the statistical analysis are summarized in Table 3.4. 

 
Table 3.4. Effects of magnitude and duration on three eye tracking metrics after a reliability 

recovery 

                          Main effects Interaction effects 
Eye movement 
metrics 

Magnitude 
 

Duration Magnitude & Duration 
interaction 

Total fixation 
duration percentage  

Not significant Not significant F(1,49.79) = 4.3,  
p = 0.043  

Total fixation count 
percentage  

Large:  
0.712 (0.144) 
Small: 
0.773(0.157) 
F(1,48.78) = 6.47, 
p = 0.014 

Not significant Not significant 

Transition count  Large:  
35.46(23.17) 
Small: 
25.63(18.80) 
F(1,50.28) = 6.15, 
p = 0.017 

Not significant Not significant 

 
 
Review of automation assessments 

A 2(magnitude)*2(duration)*2(sequence) linear mixed model was applied to the number 

of reviews right after system reliability recovered. Participant ID was entered as random effect, 

and the number of reviews before system reliability dropped was entered as covariant. Again, the 

magnitude of a system reliability drop was the only factor that significantly affected the number 

of reviews (F(1,54) = 7.54, p = 0.008) which increased from 8 (SD = 7.23) in the small reliability 

change scenario to 10.9 (SD = 6.88) following a large reliability drop (Figure 3.22). No other 

main or interaction effects were observed. 
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Figure 3.22. Effects of magnitude  on the number of reviews after a reliability recovery 

 

Tracking task performance 

A 2(magnitude)*2(duration)*2(sequence) linear mixed model, with MSD before the 

reliability change entered as a covariant, did not yield main effects of magnitude or duration 

following system reliability recovery. However, a significant interaction between magnitude and 

duration (F(1,54) = 17.78, p <0.001) was observed, as shown in Figure 3.23. MSD during a small 

and short drop in reliability was larger than during a small and long drop (p = 0.003), while MSD 

during a large and short drop was smaller than during a large and long drop (p = 0.007). 
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Figure 3.23. Interaction effect of magnitude and duration on tracking performance 

 

Target detection performance 

Overall error rate 

Finally, the overall error rate during the three-minute period after system reliability had 

recovered to its original level was examined using a 2(magnitude)*2(duration)*2(sequence) 

linear mixed model. Only a marginally significant interaction between magnitude and duration 

(F(1,54) = 3.717, p = 0.059)(See Figure 3.24) was observed, such that the error rate was higher 

following recovery from a longer reliability drop only in case of a large drop (45%). 

 

Figure 3.24. Effects of magnitude and duration on overall error rate after a reliability drop
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Response time 

The analysis of response times for button pushes did not yield any significant main or 

interaction effects. 

 

Period 4: Time until trust recovery  

‘Time until trust recovery’ is defined as the number of 3-minute periods that it took for 

participants’ trust ratings to return to a steady (though not necessarily the initial) level following 

the recovery of system reliability to its initial high level. A 2 (magnitude) *2 (duration) * 2 

(sequence) linear mixed model analysis was performed on the number of 3-minute periods 

required. Large reliability changes resulted in a significant increase in the time taken to recover 

trust (F(1,54) = 27.323, p < 0.001, Mean = 3.700, SD = 1.114), compared to trust recovery after 

small reliability changes (Mean = 2.725, SD = 0.987). There was no significant effect of the 

duration but there was a significant interaction between the magnitude of the reliability change 

and the sequence in which scenarios were experienced (F(1,18) = 4.042, p = 0.049). For both 

sequences, trust recovery took longer with large reliability drops; however, this effect was more 

pronounced when participants experienced the scenario sequence 4(small and short drop)-

>3(large and short drop)->2(small and long drop)->1(large and long drop) (Sequence 2) 

compared to the sequence 1->2->3->4 (Sequence 1), as shown in Figure 3.25.  
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Figure 3.25. Effects of magnitude and sequence on recovery time 

 

Results Summary 

The following three tables provide a summary of the findings that were reported in the 

Results section. 

Table 3.5. Detection of system reliability change 

 Subjective ratings 
 

Eye tracking 

Perceived 
reliability 

Subjective trust 
ratings 

Total fixation 
duration PC 

Fixation count 
PC 

Transition 
count 

Detection of 
system 
reliability 
change 

✔ in all 
scenarios 
 

✔ in all 
scenarios 
 

✔ in all 
scenarios 
 

✔ in all 
scenarios 
except when 
system reliability 
dropped for a 
short duration 
and small 
magnitude  

✔ in all 
scenarios 
except when 
system 
reliability 
dropped for a 
short duration 
and small 
magnitude 
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Table 3.6. Effects of magnitude and duration of system reliability change on perceived 

reliability, subjective trust ratings, eye movements and behavior (NS: not significant) 

Effects of magnitude 
and duration 

Subjective ratings 
 

Eye tracking Behavior 

Perceived 
reliability 
calibration 

Subjective 
trust 
ratings 

Total 
fixation 
duration 
PC 

Fixation 
count 
PC 

Transition 
count 

Number of 
reviews 

3 min 
after the 
reliability 
drop 

Magnitude 
↑ 

↑ ↓ ↓ ↓ ↑ ↑ 

9 min low 
reliability 
period 

Magnitude 
↑ 

↑ ↓ ↓ ↓ ↑ ↑ 

Time 
interval 
↑ 

NS 
 

NS 
 

↓ NS 
 

↑ ↑ 

3 min 
after the 
reliability 
recovery 

Magnitude
↑ 

↑ ↓ NS 
 

↓ ↑ ↑ 

Duration↑ NS ↓ NS NS NS NS 
Interaction NS NS 

 
Significant 
effect of 
magnitude 
when 
duration is 
short 

NS 
 

NS NS 
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Table 3.7. Performance outcomes 

Effects of magnitude and 
duration 

Tracking task (Mean 
square distance) 

Target detection performance 
 
Response time Error rate 

3 min 
after the 
reliability 
drop 

Magnitude 
↑ 

NS NS ↑ 

9 min low 
reliability 
period 

Magnitude 
↑ 

↑ NS ↑ 

Time 
interval 
↑ 

NS 
 

NS ↓ 

Interaction NS NS Significant effect of time 
interval when magnitude was 
large 
Significant effect of 
magnitude in time interval 3 
and 4 

3 min 
after the 
reliability 
recovery 

Magnitude
↑ 

NS NS NS 

Duration↑ NS NS NS 
Interaction After a short reliability 

drop, significant higher 
MSD in the small 
reliability drop. 
Reversed results after 
the long reliability drop 

NS Marginal significant: 
error rate was higher 
following recovery from a 
longer reliability drop only in 
case of a large drop  

 
 

Discussion 

The main goal of this experiment was to examine how the magnitude and duration of 

variations in system performance affect participants’ trust calibration and recovery. The 

following sections summarize and discuss the main findings for the various trust-related 

dependent variables in the study, including subjective trust ratings, perceived reliability, eye 

movement metrics, behavioral data and performance outcomes. 
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Detection of system reliability changes as evidenced by changes in participants’ perceived 

reliability, subjective trust ratings and eye movements  

The analysis of the perceived reliability and trust ratings shows that participants were 

sensitive to all changes in system reliability, even to small and short drops in performance. 

However, this did not necessarily translate into changes to their visual attention allocation. Small 

and short drops in reliability affected fixation duration only (but not fixation or transition count). 

In those cases, participants did not immediately change their monitoring strategy in terms of how 

often they checked the target detection task. However, when they did check, they reviewed the 

scene more carefully as reflected in the longer fixation duration. One possible explanation for 

this behavior may be a fairly large switching cost (both in terms of performance and response 

time (Crandall & Cummings, 2007; Rogers & Monsell, 1995) associated with alternating 

between two different tasks - the target detection and the tracking task – and associated control 

settings. Participants may have been willing to incur this cost only in case of more severe (larger 

and/or longer) breakdowns in system performance.   

 

Effects of magnitude and duration of reliability changes on perceived reliability, subjective 

trust ratings, eye movements, review of automation assessments and corresponding 

performance outcomes 

Period 1: the first three minutes after a drop in system reliability  

During the first three minutes of low system reliability, a large drop resulted in the worst 

perceived reliability calibration. In particular, participants tended to overestimate the automation 

reliability after it had dropped to its lowest level (50%).This result differs from Wiegmann 

(2001) who found that, when system reliability was low (in that study, 60%), participants still 
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underestimated it. One possible explanation for this discrepancy in findings is that, in our 

experiment, participants always experienced high reliability first, which may have had a priming 

effect leading to a fairly high and robust baseline trust; in contrast, in Wiegmann’s study, trials 

started at the low level of reliability of 60%.  

In terms of participants’ attention allocation and monitoring behavior, a large drop in 

system reliability resulted in more and longer fixations on the target detection task, more 

transitions between the tracking and target detection tasks, and a more frequent review of 

automation assessments. These results closely mirror the findings for perceived reliability and 

subjective trust ratings: perception/attitude changes due to a large drop resulted in behavioral 

changes in the sense that participants monitored and checked the automation more closely. The 

error rate for the target detection task was still higher with a large drop. The main reason for this 

finding is that the overall error rate included the performance of the automation when 

participants did not review the scene on their own. The change in trust and automation 

monitoring during the first three minutes after a large reliability drop did not affect participants’ 

tracking performance. This may be explained by masking due to large individual variances on 

this task.  

 

Period 2: the nine-minute period of low system reliability 

During the nine-minute period of low system reliability, the effect of magnitude of the 

reliability drop was similar for subjective and behavioral measures. However, the effect of 

duration on subjective and behavioral measures diverged. While participants monitored the 

automation more often and more closely throughout a long period of low reliability (as indicated 

by increases in total fixation duration and fixation count for the target detection task AOI and an 
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increasing transition count between the tracking and target detection task), perceived reliability 

and their trust ratings did not continue to decrease. This finding is consistent with previous 

research findings (Barg-Walkow & Rogers, 2016; Ezer et al., 2008) showing that perception and 

attitudes towards technology change more quickly and easily compared to automation reliance, 

i.e., the actual use of the automation, as it takes time and is more costly to change behavior rather 

than attitudes.  

An effect of magnitude on tracking performance was observed during the later stages of 

low reliability when participants who experienced a large reliability drop showed significantly 

worse performance compared to participants who experienced a more minor reduction in system 

reliability. As indicated by all three eye tracking metrics and the frequency of reviewing 

automation assessments, participants focused increasingly on the target detection task and their 

performance on the tracking task was eventually sacrificed over the long duration of low system 

reliability. Interestingly, participants’ overall error rate on the target detection task continued to 

decrease in case of a large reliability drop but not with a small drop in system performance. This 

may be explained by participants investing more effort into timesharing both tasks (Christopher 

D Wickens, 1990; Christopher Dow Wickens et al., 2016) to compensate for very poor 

automation performance and maintain a reasonable level of joint system performance.  

 

Period 3: the three-minute period after system reliability recovered to its initial high level 

Perceived reliability during the first three minutes after system performance returned to 

its initial high level was affected only by magnitude but not by duration of the reliability change. 

This  confirms earlier research findings suggesting that perceived reliability estimates are based 

almost exclusively on the actual level of system reliability (e.g., Dzindolet et al., 2002; 
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Madhavan & Phillips, 2010). When actual system reliability returned to its initial high level 

(95%; from both 50 and 80%), participants tended to underestimate the reliability of the 

automation. This finding is consistent with results from previous studies (e.g. Madhavan & 

Wiegmann, 2007a; Wiegmann & Cristina Jr, 2000; Wiegmann et al., 2001) showing that a 

breakdown in system performance leads to difficulty in trust recovery and calibration. 

In contrast to perceived reliability, subjective trust ratings were affected by both 

magnitude and duration. Specifically, a large drop in system reliability resulted in a significant 

loss of trust (Lee & Moray, 1992) and a long period of low reliability led to a further drop in 

trust ratings during the first three minutes after system reliability recovered. This finding is in 

line with earlier work suggesting that perceived reliability is only one of many factors affecting 

people’s trust in a system. Perceived reliability may simply reflect observed moment-to-moment 

changes in system performance (Madhavan & Wiegmann, 2007a) while trust is formed based on 

multiple factors and their interactions, including system performance, process and purpose (as 

summarized by Lee and See, 2004). The resulting attitude of trust appears to be less dynamic, 

i.e., lag behind observed changes in system reliability. 

During the 3-minute period after reliability recovered to its original high level, magnitude 

and duration interacted in their effect on tracking performance. When system reliability dropped 

for a long time, participants’ tracking performance was worse with a large (as compared to a 

small) drop. Unexpectedly, when system reliability dropped for a short period of time, 

participants’ tracking performance was worse with a small (as compared to a large) drop. One 

possible explanation for this finding is the sequence in which participants experienced the 

various reliability scenarios. One of the two combinations above - scenario 1 (large and long 

drop) or scenario 4 (small and short drop) - were experienced first by participants in this study. 
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As their tracking performance improved when they interacted with the system for a longer time, 

this may explain why performance was so poor with a small and short drop even. 

After system reliability recovered to its original level, participants more often incorrectly 

disagreed with the automation after a large and long reliability drop, compared to a small and 

long performance reduction, even though their perceived reliability did not differ for those two 

scenarios. This may have resulted from a significant loss of trust after experiencing highly 

unreliable automation performance and from trust being slower to recover than perceived 

reliability, affecting their interaction with and reliance on the automation (Dzindolet et al., 2003).  

 

Period 4: Time until trust recovery  

In terms of trust recovery, a large change in system reliability (but not a long duration of 

low reliability) resulted in a significantly longer time taken to recover trust, compared to a small 

reliability drop. This finding suggests that the effect of duration on trust is short-lived, again 

confirming that the magnitude of system reliability changes has a more pronounced impact on 

trust development. 

The time it took for trust to recover differed as a function of the sequence in which 

participants experienced the reliability scenarios. Trust recovery took significantly longer with a 

large drop in reliability for sequence 2 (small and short drop-> large and short drop-> small and 

long drop->large and long drop) than when participants experienced reliability changes in 

reverse order. This might be explained by the contrast effect, a cognitive bias that either 

enhances or diminishes perception due to the previous exposure to something similar (Schwarz, 

Münkel, & Hippler, 1990). When participants experienced the most reliable automation first and 

finished with the most unreliable automation, it took longer to recover trust following a large 



 92 

reliability drop, because participants have been anchored with highly reliable automation and this 

contrast made them more difficult to recover trust in the automation.  

 

Relationship between subjective trust ratings and eye tracking metrics 

Both subjective ratings and eye tracking data were collected in this experiment as 

possible indicators of trust. The fact that variations in system reliability affected eye tracking 

metrics in a similar way to perceived reliability and trust ratings strongly suggests the feasibility 

of using eye tracking as a promising less intrusive technique for inferring trust in real time (Lu & 

Sarter, 2019a). However, similar to Experiment 1, there were some discrepancies and 

inconsistencies between these two types of measures. Perceived reliability, in particular, was 

highly sensitive to and quickly changed in response to variations in actual reliability. Trust 

ratings lagged behind to some extent and eye movements and behavioral changes were even 

slower to respond. Still, compared to the intrusive nature of subjective ratings, this lag in 

behavioral measures is still acceptable for real-time inference of trust levels.  

 

In summary, this study examined the effects of magnitude and duration of system 

reliability changes on trust calibration and recovery. The results from this experiment show that, 

overall, participants were sensitive to all four types of system reliability change (small-short, 

small-long, large-short and large-long). Both magnitude and duration of the system reliability 

drop had some effect on participants’ trust calibration and recovery, with magnitude being the 

more critical factor. The effect of duration was limited to significantly lower trust ratings during 

the first three minutes after system recovery from a large and long reliability drop. And not 

surprisingly, the large and long reliability drop in system performance had the most severe 
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impact on trust and target detection performance. Therefore, in the next two chapters, the focus 

will be on developing and testing an algorithm and alerting measure for improving trust 

calibration in this scenario. 
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Chapter 4  

Development of Eye-tracking Based Algorithms to Infer Trust in 

Real Time  

 

In Chapter 2 (Experiment 1), several eye tracking metrics were shown to reflect trust 

changes that resulted from priming and variations in system reliability. However, eye tracking 

metrics in that study were calculated over fairly long-time windows (two or three minutes) and 

were analyzed post-hoc, following the experiment. In order to support the ultimate goal of this 

line of research, namely the development of an alert system that detects and responds to observed 

trust miscalibration and potential performance breakdowns in a timely manner, the next step 

serves to establish 1) whether eye tracking metrics calculated over a shorter time window (such 

as one minute) can serve as valid indicators of trust and 2) whether modeling techniques such as 

machine learning can be applied to eye tracking data to infer operators’ trust levels in real time.  

As reviewed in Chapter 1, eye tracking metrics extracted from raw eye movement data 

have been used successfully as input to various modeling methods. For example, pupil diameter 

has been used to predict performance on various information search and integration tasks, using 

a random forest method (Buettner et al., 2018). People’s personality traits could be detected 

based on eye tracking using classifying methods such as Naïve Bayes (Berkovsky et al., 2019). 

In most studies, the datasets used as input for the modeling process were based on groups of 

participants because classifying algorithms tend to require large data samples to train the model 
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and achieve relatively high and stable performance. This “generalized” modeling process is 

appropriate in many cases. However, prediction accuracy with this approach can suffer due to 

large inter-individual differences in a dataset (Krull & MacKinnon, 2001) which have been 

observed for eye movements (Castelhano & Henderson, 2008). Also, very few studies to date 

have used raw eye movement data as input to machine learning models in order to make 

predictions. One benefit of modeling raw eye tracking data, rather than processed eye tracking 

features, is that this approach is more generalizable to a wide range of tasks and settings as the 

selection and calculation of effective eye tracking metrics can be highly associated with certain 

tasks and settings.   

To address these two limitations, the work reported in this chapter examines the 

performance of two different modeling processes to infer trust: 1) using eye tracking metrics 

from individuals for “personalized” modeling, and 2) using eye tracking metrics from a group of 

participants for “generalized” modeling. In the latter case, two types of input data were 

compared: 1) using defined eye tracking metrics, and 2) using raw eye movement data (gaze 

point coordinates).  

There is no agreement on which classification modeling methods are preferable. The 

utility of each method depends heavily on the data to be modeled. In this study, supervised 

machine learning techniques including Logistic Regression (LR), k-Nearest Neighbor (kNN), 

Random Forest (RF), Multi-Layer Perceptron (MLP) and Convolutional Neural Networks 

(CNN) were compared to determine which method works best to infer trust levels in real time. 

LR uses an equation that is very similar to linear regression but predicts probabilities between 0 

and 1. The coefficients of the equation were estimated based on training data using maximum 

likelihood estimation. LR is light-weight and efficient for real-time processing (Moacdieh, 
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2015). There is evidence that LR can achieve similar prediction performance as other more 

complex machine learning techniques (Jie, Collins, Steyerberg, Verbakel, & van Calster, 2019). 

LR was therefore used as the baseline against which all other techniques were compared. kNN 

returns classification labels by comparing the feature similarity between the new sample and 

labeled training data sample using Euclidean distance (Dudani, 1976). It has the advantage of 

working well with a relatively small number of features. RF is an ensemble learning method that 

classifies a new sample based on the vote result from many trained decision trees (Breiman, 

2001), where each decision tree provides a classification prediction based on different split 

features/criteria. Bagging and feature randomness ensure the modeling performance of RF. 

Bagging, also known as bootstrap aggregation, is the process of randomly sampling the dataset 

for decision making of each individual tree.  Feature randomness means that the features used in 

each decision tree to make classifications are randomly selected. These two characteristics 

enable uncorrelated predictions from individual decision trees and thus optimize the modeling 

performance. Both kNN and RF have been used successfully with eyetracking data in other 

application domains (e.g., Berkovsky et al., 2019; Buettner et al., 2018). They both require little 

data preprocessing and parameter handling; therefore, they are considered promising candidates 

for the modeling process described in this chapter.  

The two deep learning approaches in our set of classification modeling methods, MLP 

and CNN, were only employed for modeling the raw eye tracking data. MLP is a type of 

feedforward artificial neural network consisting of at least three layers (input, hidden, output) 

(Collobert & Bengio, 2004). It finds the best approximation (through assigning weights and bias) 

to map the input x (raw gaze coordinate in this case) to an output classification y (high or low 

trust in this case). CNN has at least one convolution layer to replace the general matrix 
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multiplication used in MLP (Goodfellow, Bengio, & Courville, 2016).  Compared to MLP, it can 

capture the spatial and temporal dependencies in the data. These two methods were specifically 

applied to model raw eye tracking data because they are well suited for identifying the intricate 

structure of large data sets and have been shown to dramatically improve the modeling results in 

various application domains (LeCun, Bengio, & Hinton, 2015). Figure 4.1 provides an overview 

of the modeling process and classification methods used in this study.  

 

Figure 4.1. Modeling process overview 

 

Data collection  

Data collected in Experiment 2 (Chapter 3) were used as input to the modeling processes. 

Specifically, baseline eye tracking data were collected for two scenarios (high (95%) and low 

(50%) reliability) after participants completed all formal trials in Experiment 2. Each scenario 

lasted 6 minutes, and participants were informed about the respective system reliability in 

advance. The sequence in which the two reliability settings were experienced was randomized.  
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Data processing and modeling 

Three types of data sets were tested as input for the modeling process, as shown in Figure 

4.1: (1) eye tracking metrics for each individual participant, (2) eye tracking metrics for all 

participants combined, and (3) the raw eye movement data for all participants combined. 

The eye tracking metrics used in this study were fixation duration percentage and 

transition count. Fixation duration percentage is the percentage of fixation time that a participant 

focuses on the display area showing the tracking task (see AOI2 in Figure 4.2). Transition count 

is number of transitions between AOI 1 (Area of Interest 1: the target detection area) and AOI 2 

(the tracking task area) (see Figure 4.2). These metrics were selected for two reasons: 1) they 

were identified as promising indicators of trust levels in Experiments 1 and 2, and 2) they were 

found to be closely associated with target detection performance when trust calibration suffered 

in Experiment 2.  

 

Figure 4.2. AOI definition 

For the raw eye movement dataset, each data sample consisted of the coordinates of raw 

gaze points in the form of (x,y). These data were preprocessed, including dealing with missing 

data, down-sampling and standardization. Each missing data point was filled with the previous 

data point. The whole dataset was down-sampled from 50 Hz to 1 Hz using average pooling, i.e., 

calculating the average x, y value for every 50 raw eye movement points. Finally, input 
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standardization (a process of being subtracted by the mean and then divided by the standard 

deviation) was performed on the data.  

For the calculation of all model input data, a moving time window of one minute was 

used. This time window was shorter than those used in Experiments 1 and 2 in order to be able to 

detect trust miscalibration and trigger alerts in a more timely fashion.  It was based on extensive 

piloting which showed that one minute of eye movement data is sufficient to avoid excessive 

variance in the data and reflect participants’ trust levels in near real time. Successive time 

windows were overlapped by ten seconds to generate enough data samples and implement the 

trust level inference in real time.  

Incomplete data from 4 participants were discarded, leaving data from 16 participants as 

input to the modeling process. For individual-level modeling, data from the first three minutes 

were used as the training set. The next 1.5 minutes were used as the validation set to select the 

most appropriate parameters in the model. The last 1.5 minutes were used as the test set. For 

group-level modeling, data from 4 of the 16 participants were randomly selected as test sets. For 

model selection, twelve-fold cross validation was applied, meaning that in each model training 

process, data from eleven participants were used as the training set and data from the twelfth was 

used as the validation set. This process was repeated twelve times so that data from each 

participant was used once as a validation set. The final validation performance was the average 

of the outcome of the twelve trials.  

For the feature extraction data set, three classifying methods were explored: Logistic 

Regression (LR), k-Nearest Neighbors (kNN) and Random Forest (RF). These methods were 

applied using standard implementations from the Python library “Scikit-learn” (Pedregosa et al., 

2011).  
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For the raw eye movement data set, LR, MLP and CNN were compared. MLP and CNN 

were implemented using TensorFlow (Abadi et al., 2016). Specifically, an MLP with two hidden 

layers was used. Each hidden layer had 64 units with Relu activations. Batch normalization was 

applied after each hidden layer. The output layer had two output units and Softmax activation. 

For CNN, one 1-D convolutional layer with 8 kernels of size 3 was used, followed by a fully 

connected layer with 32 units. Both the convolutional layer and the fully connected layer used 

Relu activations. As for MLP, batch normalization was applied after each hidden layer. The 

output layer had two output units and Softmax activation. 

 

Modeling performance 

In this section, results for each of the three modeling processes are presented. The 

performance of each classifying method was assessed by comparing the accuracy and efficiency 

of inferring trust levels in the test datasets. 

 

Accuracy 

Individual level modeling using eye tracking metrics 

Figure 4.3 shows the accuracy of three classifiers when individual-based eye tracking 

metrics were used as input to the models. RF achieved the highest average accuracy rate at 93% 

(SD = 0.047). The mean accuracy for 16 participants when using kNN was 92.2% (SD = 0.053). 

And logistic regression resulted in a mean accuracy rate of 90.6% (SD = 0.059).   

 

Group level modeling using eye tracking metrics 
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The modeling accuracy of the same three classification methods with group-level eye 

tracking metrics as input is shown in Figure 4.4. RF achieved the highest accuracy at 81.5% (SD 

= 0.077), followed by kNN at 80.7% (SD = 0.130), and logistic regression with an accuracy of 

77.5% (SD = 0.055). 

 

          

          Figure 4.3. Personalized prediction                                 Figure 4.4. Generalized prediction 

 

Group level modeling using raw eye movement data 

The accuracy of the three classification methods when using raw eye movement data as 

input is shown in Figure 4.5. CNN outperformed the other methods and achieved an accuracy 

rate of 80.7% (SD = 0.096). MLP and LR did not perform well when using raw eye movement 

data as input. Their accuracy rate was substantially lower at 60.6% (SD = 0.031) and 44.1% (SD 

= 0.041), respectively.   
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Figure 4.5. Generalized prediction using raw data 

 

Efficiency 

The modeling efficiency of the three procedures and for each algorithm is shown in Table 

4.1. For individual-level modeling, LR was the most efficient (Mean = 0.48 ms, SD = 0.22). The 

modeling time using kNN was 1.3 ms (SD = 0.38), and the modeling time for RF was the 

slowest with a mean of 4 ms (SD = 0.61). Similar efficiency trends were observed for group-

level modeling, with LR being the fastest and RF being the slowest approach. For group-level 

modeling using raw eye movement data, it took longer to infer trust than with the other two 

modeling procedures. Here, LR was the fastest technique with a mean modeling time of 2.4 ms 

(SD = 0.22). MLP and CNN were much slower with a mean modeling time of 72.5 ms (SD = 

5.73) and 68.4 ms (SD = 2.06), respectively. 

 

Table 4.1. Modeling efficiency 

Algorithm Time (ms) Algorithm Time (ms) 
Metrics from individual Metrics from group Raw data 

LR 0.48 (0.22) 0.46 (0.17) LR 2.43 (0.22) 
kNN 1.25 (0.38) 5.09 (0.38) MLP 72.45 (5.73) 
RF 3.98 (0.61) 22.8 (0.56) CNN 68.4 (2.06) 
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Discussion  

Effective support for trust calibration requires an unobtrusive method for inferring trust in 

real time. To this end, eye tracking data were used as input to several modeling procedures and 

classification algorithms, and the accuracy and efficiency of these approaches were compared.  

The findings indicate that 1) eye tracking data extracted from a fairly short one-minute time 

window are sufficient to infer trust levels in real time, 2) modeling at an individual level 

outperformed modeling at a group level when using two eye tracking metrics as input, and 3) at a 

group level, both raw eye movement data and eye tracking metrics worked reliably (achieving an 

accuracy of around 80%) for inferring high and low trust levels when using machine/deep 

learning techniques. 

The three modeling processes used in this research all achieved an accuracy of 80% or 

higher, demonstrating the feasibility and effectiveness of using eye tracking data to infer trust in 

real time. The much higher accuracy achieved with individual-level modeling, compared to 

generalized modeling, is likely due to significant interindividual differences due to dispositional 

factors affecting operators’ trust in automation (Merritt et al., 2013; Merritt & Ilgen, 2008). In 

addition, this modeling process was much more efficient than group-level modeling in terms of 

the time taken to infer trust.  

When modeling at an individual level, there was no significant difference between the 

accuracy of kNN and RF. However, other aspects of these techniques, such as their efficiency 

and interpretability (Wright, Chen, & Lakhmani, 2019) also need to be considered when 

selecting a method for use in real-world safety-critical environments. As shown in Table 1, kNN 

was about three times faster than RF, suggesting kNN may be the more appropriate method for 

settings that involve large data sets. Also, kNN appears to be more transparent, and its results are 
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easier to interpret than those from RF. For example, as shown in Figure 4.6, it is easy to visualize 

how kNN works using a 2D figure. When a new data sample arrived, this algorithm found out 

the nearest k neighbors around the new data sample and determined the label of the new data 

sample based on the majority of labels in the circle. Thus, in summary, kNN may be considered 

the most appropriate algorithm for use in our subsequent work described in Chapter 5. 

 

Figure 4.6. An example of kNN modeling 

 

The accuracy observed for the generalized modeling approach suggests that data 

collected from one group of operators can be applied, to an extent, to other cohorts. While not as 

accurate as personalized modeling, generalized modeling was still rather effective at over 80% 

accuracy. This means that, in situations where training and collecting individual baseline data is 

not feasible, trust modeling and inference is still possible, to a more limited extent, using this 

method. Also, with more data samples being collected over time and being added to the 

modeling process, the accuracy of this approach may well increase further.  

Based on our findings, it appears that using raw eye movement data as input to the 

modeling process can result in similar levels of accuracy as using eye tracking metrics. The 

increase in performance from LR to MLP demonstrates that non-linear transformation of raw 
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data is required for classifying raw eye movement data. The increase in performance from MLP 

to CNN illustrates that incorporating the inductive bias of temporal invariance can further 

improve the performance of the classification model.  

Our eye tracking-based approach outperforms the use of EEG and GSR in an earlier 

study on building trust classification models (Akash et al., 2018). In their study, their general 

trust sensor model (for all participants) achieved a mean accuracy of 71.22% and individual 

model based on customized features (for each participant) achieved a mean accuracy of 78.55%. 

The fact that the performance of group-level modeling was similar when using either eye 

tracking metrics or raw eye movement data supports the robustness of deep learning algorithms. 

It suggests that the complex and time-consuming step of feature extraction may not be needed to 

achieve high performance. However, the notably longer time required to model trust using raw 

eye movement data suggests a tradeoff between the time spent on data preprocessing and 

modeling.  

In summary, individual-level modeling using kNN can be considered the most effective 

approach for inferring trust levels in real time. It was shown to be most accurate, efficient and 

transparent technique of the ones compared in this study. In the next and final step of this line of 

research, kNN will be used for the development of an audio alert system to help facilitate trust 

calibration and prevent potential resulting performance breakdowns.  
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Chapter 5  

Development and Evaluation of A Real-time Countermeasure to 

Trust Miscalibration, Inappropriate Reliance on Automation and 

Associated Performance Decrements  

 

The experiment reported in Chapter 3 revealed that both the magnitude and the duration 

of a change in system reliability affected trust calibration and recovery, though to varying 

degrees. With a combined large and long drop in system reliability, participants’ trust calibration 

suffered the most, and their performance was negatively affected due to inappropriate reliance on 

the automation. In particular, they underutilized the system when the automation was actually 

highly reliable. In an effort to try to correct trust miscalibration before it can lead to performance 

decrements, an eye-tracking based algorithm was developed that infers trust levels and variations 

in real time (Chapter 4). Personalized modeling using k-Nearest Neighbor was selected from 

among various candidates as the most accurate, transparent and fastest method. In the experiment 

reported in this chapter, this algorithm was used to trigger a candidate countermeasure to trust 

miscalibration in the form of an audio alert. Earlier studies have shown that discrete audio alerts 

are a good choice in domains such as Unmanned Aerial Vehicle (UAV) control as they do not 

interfere or compete with the visual demands imposed by the primary tasks. Audio alerts are 

reliably detected and particularly effective for supporting operator performance (Dixon, 

Wickens, & Chang, 2005; Graham & Cummings, 2007). In general, independent of a particular 
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application domain, the auditory channel tends to be the preferred modality for simple warnings 

and for triggering immediate responses (Woods, 1995). This is true especially when the alert is 

implemented as a command display, i.e., a type of display that indicates what action to take (as 

opposed to status displays which describe the nature of a problem). Command displays have 

been shown to improve users’ attention management and multitasking performance (e.g., 

McGuirl & Sarter, 2006; Prinet, 2016). In this study, the audio alert was used to notify 

participants when the algorithm described in chapter 4 detected that their trust level was not 

proportional to the trustworthiness of the automation. The alert instructed participants where to 

orient their visual attention, to the center (the tracking task) or the surround (the target detection 

task). Half of the participants were presented with the audio alert while the baseline condition 

completed the experiment without this feedback.  

Based on the literature review and our findings from the previous two experiments, we 

expected that perceived reliability and trust in the audio alert group would more closely reflect 

actual levels and changes in system reliability and lead to behavioral adjustments in terms of 

attention allocation and automation reliance. More specially, the expectations were that: 

(1) during the first 6 minutes of each trial when system reliability was high (red rectangle 

– see Figure 5.1 below), participants’ perceived reliability and trust would increase over time,  

(2) during that same time period (red rectangle), participants in the audio alert group 

would be better calibrated in terms of perceived reliability and trust, leading to more appropriate 

reliance on the automation and better overall task performance,  

(3) during the three-minute period following a drop in actual system reliability (yellow 

rectangle), participants in the audio alert group would adjust their perceived reliability, trust and 

behavior more quickly and appropriately, while for participants in the control group, perceived 
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reliability and trust would initially be too high, leading to overreliance on the automation and 

worse performance,  

(4) in the control group, perceived reliability and trust would continue to decrease and 

slowly and eventually approach actual system reliability during large and long reliability drops 

(blue rectangle); their behavior would change accordingly, ultimately leading to performance 

levels similar to those of participants in the audio alert group,  

(5) during the first three minutes after system reliability returned to its original high level 

(black rectangle), participants in the audio alert group would show better trust calibration (as 

reflected by smaller perceived reliability calibration value and more appropriate trust levels) and 

thus more appropriate reliance on the automation; trust recovery (green bracket) would take 

longer in the control group leading to worse performance during those first three minutes (black 

rectangle). 

 

Figure 5.1. Scenario 
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Method 

Participants 

A total of 32 students from the University of Michigan participated in this experiment. 

Their average age was 22.5 years (SD=2.74). Half of the participants were males. Participants 

were required to have normal or corrected-to-normal vision. Due to the use of eye tracking 

glasses in the experiment, contact lenses were allowed but glasses were not. None of the 

participants had any experience with Unmanned Aerial Vehicle (UAV) control or the MATB 

tracking task before the experiment. Participants were randomly assigned to one of two groups: 

1) baseline – no audio alert and 2) audio alert group. Independent samples t-tests showed that 

these two groups did not differ in terms of age, propensity to trust, experience with video games, 

problem-solving and decision-making capabilities (the assessment of these variables will be 

described in more detail in the Experiment Procedure section). This study was approved by the 

UM Health Sciences and Behavioral Sciences Institutional Review Board (exempt and not 

regulated; HSBS-IRB; ID: HUM00173710). 

 

Apparatus and tasks 

This study was set in a computer-based Unmanned Aerial Vehicle (UAV) control 

simulation built in the THInC lab. Participants were asked to complete a target detection task and 

a tracking task at the same time (see Figure 5.2). The two tasks were displayed on one 24’’ 

monitor. A detailed description of the two tasks can be found in Chapter 3. The eye tracker used 

in this study was the same as in the earlier experiments – Tobii Glasses 2.  
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Figure 5.2. Simulation setup 

For the most part, the setup in this experiment was the same as in Experiment 2 (Chapter 

3); however, there were a few notable differences. First, for the target detection task, participants 

were asked to monitor the video feeds from 6 unmanned aerial vehicles (UAVs) (instead of 8 

UAVs in Experiment 2) to detect the presence of military targets. As shown in Figure 5.2, QR 

code hardboards were attached to the display for real-time mapping of the 3-D eye tracking data 

points to the static 2-D image of the simulation setup (Figure 5.2). Pilot tests showed a large 

error when mapping data points in the vertical direction. Therefore, the number of video feeds 

was reduced to six only which allowed us to divide the screen into two Areas of Interest (AOIs), 

as shown in Figure 5.3.   

 

Figure 5.3. Area of Interest (AOI) definition 

 

AOI 2 

AOI 1 AOI 1 
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The second difference was that there were two types of targets which were defined as 

either a black truck carrying a gun (See Figure 5.4, inside the red circle) or a small tank (See 

Figure 5.5, inside the red circle) surrounded by other vehicles without weapons to increase the 

difficulty of the target search task. The video feeds also included distractors in the form of 

similar-looking vehicles that did not carry weapons, as shown in Figure 5.6. Figure 5.7 and 

Figure 5.8 show the targets and nontargets looked like in the simulation.  The third difference 

was that, if participants decided to review the scene, they had to press one of two buttons (  or 

; rather than (Ö or ´) which were used in the earlier experiments) to either agree or disagree 

with the automation assessment regarding the presence of a target. This change was made to 

increase the intuitiveness of the buttons. Lastly, to ensure that participants correctly interpreted 

the red and green border around the video feeds, as shown in Figure 5.7 and 5.8, the words 

“danger” or “safe” were added for redundancy.  

Participants were instructed to treat the target detection task and the tracking task as 

equally important and to try to achieve the best possible performance on both tasks.  

 

         

Figure 5.4. Target example 

one 

Figure 5.5. Target example 

two 

Figure 5.6. Non-Target 

example 
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                     Figure 5.7. Target in simulation Figure 5.8. Non-target in simulation 

 

Experiment design 

The experiment employed a between-subject design. Participants were randomly assigned 

to one of two groups: half of the participants received an audio alert if trust miscalibration was 

detected by the algorithm, while the other half did not receive such feedback (baseline). The trust 

inference model was based on participants’ eye tracking data over the last one-minute period. If 

the predicted value was ‘high trust’ but the system’s trustworthiness was actually low, an audio 

alert “surround-surround” was triggered to encourage participants to re-orient their attention 

from the tracking to the target detection task. In contrast, if the predicted value was ‘low trust’ 

but the system was actually highly reliable, an audio alert “center-center” was played. The audio 

alert thus represented a command display in that it indicated to the participant where (on which 

task) to focus their attention. 

The experiment employed the system reliability scenario shown in Figure 5.1. During the 

first six minutes, the automation was highly reliable (95% reliable), then system reliability 

dropped from 95% to 50% and stayed at 50% for a relatively long period of time (9 minutes) 

before recovering to the initial value of 95%. This scenario was chosen because it resulted in the 

worst trust miscalibration and poorest task performance in Experiment 2. 
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The dependent measures in this study were subjective trust ratings, perceived automation 

reliability, eye movement data, reviews of the automation assessments and overall task 

performance. Trust ratings and perceived reliability estimates were collected every three 

minutes, throughout each trial, by asking participants for a verbal response to two questions: (1) 

“How much do you trust the automation?” (on a scale from 0-10, with ‘0’ being the lowest 

possible trust) and (2) “What is your perceived reliability of the system” (on a scale of 0-100%).   

The raw 3-D eye tracking data collected in real-time were first mapped to the fixed 2-D 

image as shown in Figure 5.2. The gaze points were then used to calculate fixations based on the 

Velocity-Threshold Identification (I-VT) fixation classification algorithm described by Tobii 

(Olsen, 2012a). This ensured that the outcomes were comparable to the outputs from Tobii Pro 

Lab used in our previous studies. The fixation classification algorithm was validated using eye 

tracking output from Experiment 2. The result showed that the fixation classification achieved an 

accuracy of 96%.  The fixations were then used to calculate two eye tracking metrics: total 

fixation duration percentage (the percentage of fixation time that a participant focuses on the 

tracking task) and transition count (the number of transitions between the tracking task and target 

detection task). 

The performance data consisted of participants’ scores on the tracking and monitoring 

tasks and their overall performance (cumulative combined score of monitoring and tracking). 

Tracking task performance was defined as the Mean Square Distance (MSD) of the small circle 

target from the central. The movement of the small circle was based on a series of random 

numbers and thus not predictable. If participants’ MSD over the past 3 seconds was smaller than 

35, they would get ten points; if their MSD was between 35 and 55 over the past 3 seconds, their 

points remained the same; if their MSD was over 55, they would lose ten points. The monitoring 
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task performance was calculated by combining the participants’ accuracy and the performance of 

the automation. If participants decided to review the video feed to determine whether there was a 

target and if they made a correct decision, they would obtain ten points. If they made a wrong 

decision, they would lose ten points. If participants decided to rely on the automation and not 

review the video feed, they would get ten points if the automation was correct and lose ten points 

if the automation was incorrect.  

 

Experiment procedure 

Upon arriving at the laboratory, participants first read and signed the consent form. They 

were then asked to fill out a background questionnaire asking for basic information (e.g., age, 

gender, nationality). The questionnaire also assessed their propensity to trust (Merritt et al., 

2013), experience with video games (Clare et al., 2015), and their problem-solving and decision-

making capabilities (Wiegmann, 2002).  

Next, participants were instructed on the two tasks and completed a 12-minute training 

session. Participants in the audio alert group were also informed about the meaning of the audio 

alerts. Then, all participants experienced a 6-minute scenario without any automation assistance 

on the monitoring/target identification task. Each time the video feed was highlighted (without 

any green/red border), participants had to determine on their own whether a target was present 

and then click the corresponding button to the side of the feed. At the end of this manual trial, 

participants were informed about their accuracy on the target detection task. This feedback 

served to help participants decide how much they should rely on the automation to achieve the 

best performance, as the choice to rely on automation has been shown to depend on both an 
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estimate of automation reliability and one’s own proficiency/self-confidence (Lee & Moray, 

1994). 

Participants then completed four 6-minute trials to establish a baseline for their handling 

of the tracking and target detection tasks with 4 different levels of automation reliability (95%, 

80%, 65% or 50%). Participants experienced these four trials in randomized order. They were 

informed about the system reliability in advance of each trial and then performed the same tasks 

as in the training session. These baseline data were collected for the purpose of developing the 

trust inference model and for triggering audio alerts in the formal trial. Even though these 

baseline data were not needed for participants in the control group as they would not receive 

audio alerts, the same procedure was followed to ensure that participants in both groups spent the 

same amount of time practicing the task and interacting with the automation. After each baseline 

trial, participants were asked for subjective ratings of their trust in the automation (on a scale 

from 0-10, with ‘0’ being the lowest possible trust). Based on their responses, the trial was 

marked as either high or low trust. If participants’ subjective trust ratings were lower than ‘7’ 

and they frequently checked the target detection task, the trial was considered low trust. If they 

reported trust ratings higher than or equal to ‘7’, and they rarely or occasionally checked the 

target detection task, it was considered high trust. If participants’ ratings were not consistent with 

their behavior, the trust level was based on their behavior (checking automation accuracy) rather 

than attitude (trust rating).  

Following the baseline data collection, each participant completed the scenario shown in 

Figure 5.1. The scenario ended once a steady state of trust in the automation was reached after 

the return of system reliability to its initial high level. Participants were then asked to fill out a 
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debriefing questionnaire. It took participants around 90 minutes to complete the entire 

experiment, and they were compensated $30 for participating in the experiment. 

 

Results 

This experiment examined how audio alerts in case of trust miscalibration affected both 

the processes of trust development/recovery and attention allocation and the resulting 

performance outcomes for the monitoring and tracking tasks. The first part of the Results section 

focuses on process. It is organized around five time periods within each trial, as shown in Figure 

5.1: (1) the first 6 minutes when automation reliability was high (red rectangle), (2) the three-

minute time period right after a drop in reliability (yellow rectangle), (3) the nine-minute time 

period during which system reliability was consistently low (blue rectangle), (4) the first three 

minutes after recovery of automation reliability back to its initial high level (black rectangle), 

and (5) the time taken to fully recover trust after the system breakdown (the green bracket). 

Unless otherwise specified, linear mixed models were applied to analyze all dependent variables. 

The fixed effects were audio alert and time interval (if there was more than one time interval). 

Participant ID was entered as a random effect. For all analyses, the significance level was set at p 

<0.05. Error bars on the figures indicate the standard error of the mean. 

 

Period 1: The six-minute high-reliability period at the beginning of the trial 

The six-minute period at the beginning of the formal trial was examined to determine 

whether perceived reliability and trust increased when automation performance was nearly 

perfect (expectation 1) and whether participants in the audio alert group were better calibrated in 
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terms of perceived reliability, trust (including subjective trust ratings and eye tracking metrics) 

and automation reliance, leading to better overall performance (expectation 2).  

 

Perceived reliability  

To examine whether participants’ perceived reliability was well calibrated, the difference 

between actual system reliability and participants’ perceived reliability was calculated. This 

measure is considered one valid indicator of the trust calibration process (Merritt et al., 2015). 

The analysis shows a significant effect of time interval (F(1,30) = 5.922, p = 0.021). Participants’ 

perceived reliability calibration was significantly smaller in the 2nd three-minute interval (Mean 

= 0.081, SD = 0.434) than in the 1st three-minute interval (Mean = 0.3, SD = 0.671) (Figure 5.9). 

No significant effect of audio alert and no interaction effects were observed. 

 

Figure 5.9. Perceived reliability calibration in the first 6 minutes 

 

Subjective trust ratings 

There was also a significant effect of time interval on subjective trust ratings. 
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p = 0.006) in the second three-minute period, compared to their ratings (Mean = 9.072, SD = 

0.798) for the first three minutes. No significant effect of audio alert and no interaction effect 

was observed, as shown in Figure 5.10. 

 

Figure 5.10. Subjective trust ratings in the first 6 minutes 

Eye tracking metrics  

The results show a significant effect of time interval on total fixation duration percentage 

(but not on transition count; see Table 5.1). The average percentage of total fixation duration on 

AOI2 (the tracking task window) was significantly lower (88.2%) during the first 3-minute 

period, compared to next three minutes (90.6%). 

Table 5.1. Time interval effects on eye tracking metrics  

Eye tracking metrics First 3-min mean Second 3-min mean 
 

Main effect of time 
interval 

Total fixation duration 
percentage  

0.882 (0.078) 0.906 (0.073) F(1,54.14) = 20.99,  
p < 0.001 
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There was a significant effect of time interval on review frequency. In the second 3-

minute period, participants reviewed the automation assessments less often (Mean = 5.97, 

SD=5.88), compared to the first three minutes (Mean = 8.38, SD=6.1, F(1,30)=7.993, p =0.008), 

as shown in Figure 5.11. There was also a significant effect of audio alerts on review frequency. 

Participants who received audio alerts reviewed the automation assessment less often (Mean = 

4.69, SD = 4.86), compared to the baseline condition (Mean = 9.66, SD = 6.20, F(1,30) = 7.988, 

p = 0.008).  

 

 

Figure 5.11. Number of reviews as a function of audio alerts and time interval 

 

Tracking performance – MSD variance 

The results show a significant effect of time interval for the initial 6-minute high 

reliability period of the trial (F(1,30) = 25.30, p <0.001). Participants’ tracking performance in 

the second 3-minute period (Mean = 25.67, SD = 3.13) was significantly better than their 

performance during the first 3 minutes (Mean = 27.18, SD = 3.54), as shown in Figure 5.12. No 

other significant main effects or interaction effects were found. 
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Figure 5.12. Tracking variance as a function of time intervals 

 

Target detection performance  

Accuracy and response time 

No significant main effects or interaction effects were observed for accuracy and 

response time. 

 

Overall performance 

For the combined performance on the tracking and monitoring task, there was a 

significant effect of time interval (F(1,30) = 10.31, p = 0.003). Participants’ overall performance 

during the second 3-minute period (Mean = 646.28, SD = 137.90) was significantly better than 

their performance during the first 3-minute period (Mean = 610.34, SD = 138.02), as shown in 

Figure 5.13. No other significant main or interaction effects were found. 
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Figure 5.13. Overall score as a function of time intervals 

 

Period 2: The three-minute period after the drop in system reliability  

The three-minute period right after the reliability drop was examined to assess 1) whether 

the sudden and large change in system reliability resulted in a temporary miscalibration of trust, 

as reflected in the perceived reliability, subjective trust ratings, eye tracking metrics, and 

participants’ reliance on the automation, and 2) whether participants in the audio alert group 

were able to adjust their perceived reliability, trust and behavior more quickly and appropriately, 

leading to better overall performance (expectation 3).  

A linear mixed model analysis was conducted on each of the following dependent 

variables: perceived reliability difference, subjective trust ratings, two eye tracking metrics, 

reviews of automation assessments and performance on both tasks. Audio alert was entered as a 

fixed effect, and participant ID was entered as a random effect. There was no significant effect of 

audio alerts on any of these dependent variables.  
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Period 3: The nine-minute period of low system reliability  

The nine-minute period (divided into 3 three-minute intervals) following the reliability 

drop was examined to determine if trust calibration improved over time for participants in the 

control group, leading to performance levels similar to those of participants in the audio alert 

group (expectation 4).  

 

Perceived reliability  

A 2(audio alert)*3(time interval) linear mixed model was performed on the perceived 

reliability calibration during the nine-minute low reliability period. Participant ID was entered as 

a random effect. The results reveal a significant effect of time interval (F(1,60) = 12.343, p < 

0.001) (See Figure 5.14). Post hoc analyses with Bonferroni correction show that participants in 

both groups tended to overestimate the reliability of the automation early on, leading to a 

significantly smaller perceived reliability calibration (Mean =-0.772 , SD = 1.464) in interval 3 

compared to both intervals 4 (Mean = 0.359 , SD = 1.541, p <0.001) and 5 (Mean =0.063 , SD = 

1.038, p = 0.002). No effect of audio alerts and no interaction effects were observed. 

 

Figure 5.14. Time interval effects on perceived reliability calibration 
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Subjective trust ratings 

Consistent with the findings for the perceived reliability, only time interval had a 

significant effect on participants’ trust ratings over the 3 three-minute intervals. Specifically, 

participants’ trust ratings were significantly lower for the 4th interval (Mean = 3.703, SD = 1.946, 

F(1,60) = 4.715, p =0.013), compared to their ratings (Mean = 4.672, SD = 2.010) in the 3rd 

interval, as shown in Figure 5.15. No significant effect of audio alerts or any interaction effects 

were found. 

 

Figure 5.15. Time interval effects on subjective trust ratings 

 

Eye tracking metrics  

A 2 (audio alert) *3 (time interval) linear mixed model analysis was conducted on total 

fixation duration percentage and transition count. No significant main effects or interaction 

effects were observed.  
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Reviews of automation assessments 

A 2 (audio alert) *3 (time interval) linear mixed model analysis was conducted on the 

reviews of automation assessments. No significant main effects or interaction effects were 

observed. Participants in both groups clicked quite frequently (Mean = 15.78, SD = 0.62) during 

the 9 minutes. 

 

Tracking performance – MSD variance 

The same analysis was conducted on tracking performance. No significant main effects 

or interaction effects were found. 

 

Monitoring performance 

Accuracy 

There was a significant effect of time interval on accuracy for the 9-minute low-

reliability period (F(1,33.58)=4.928, p =0.013)(see Figure 5.16). Participants’ monitoring 

accuracy significantly improved over time, increasing from 72.81% (SD = 0.134) during the first 

3 minutes after the reliability drop to 80% (SD=0.136) during the last three minutes of low 

reliability. No other significant main effects or interaction effects were observed. 
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Figure 5.16. Time interval effects on overall accuracy rate 

 

Response time and Overall performance 

No significant main effects or interaction effects were observed for response time and 

overall performance. 
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level was examined to determine if participants in the audio alert group showed faster and better 

trust calibration and more appropriate reliance on the automation than the control group. 

Performance was expected to be worse for the control group during this period due to a delay in 

their adjustment of trust and reliance (expectation 5).  
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Perceived reliability calibration 

A linear mixed model analysis was performed on participants’ perceived reliability 

calibration for the three-minute period following automation reliability recovery. No significant 

effect of audio alerts was observed. 

 

Subjective trust ratings 

The same analysis was conducted on subjective trust ratings. The analysis reveals a 

marginally significant effect of audio alerts on subjective trust ratings for the three-minute period 

following system reliability recovery (F (1,30) = 3.884, p = 0.058). Participants in the audio alert 

group expressed higher trust (Mean = 8.938, SD = 0.75) than participants in the control group 

(Mean = 8.219, SD = 1.251), as shown in Figure 5.17. No significant effect of audio alert was 

observed. 

 

Figure 5.17. Marginal effects of audio alerts on subjective trust ratings 

 

Eye tracking metrics 

The same analysis was performed on the two eye tracking metrics. No significant 

difference was found between the control and the audio alert groups. 
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Reviews of automation assessments 

A linear mixed model analysis was conducted with audio alert entered as a fixed effect 

and participant ID entered as a random effect. There was a marginally significant effect of audio 

alerts (F(1,30) = 3.927, p = 0.057). Participants in the control group reviewed the automation 

assessments more often (Mean = 7.25, SD=5.37) than participants in the audio alert group (Mean 

= 4.25, SD =2.79) (Figure 5.18). 

 

Figure 5.18. Marginal effects of audio alerts on number of reviews 

 

Performance 

A linear mixed model analysis was conducted on tracking variance, monitoring overall 

accuracy, monitoring response time and overall performance score. There was no significant 

effect of audio alerts on any of these performance outcomes.  
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necessarily the initial) level and 2) the trust inference model indicates high trust for two 

consecutive periods. A linear mixed model was conducted on time taken to recover trust. The 

result shows that the audio alert significantly reduced the time it took for participants’ trust to 

recover (F(1,30)=7.075, p =0.012) from 3 periods in the control group (SD = 1.60, without alert 

system) to 1.75 periods in the audio alert group (SD = 1), as shown in Figure 5.19. 

 

Figure 5.19. Effects of audio alerts on trust recovery 

 

Additional analysis on model inference results and overall performance  

To better understand why audio alerts did not appear to affect performance, an additional 

analysis was conducted on the model inference results and overall performance for the two 

groups of participants on a minute-by-minute basis. For participants in the control group, even 

though they did not receive any audio alerts, the trust inference model still worked in the 

background to infer whether a participant was in a high or low trust state during the past minute. 

A Chi-Square test was performed to compare the number of alerts actually presented to 

participants in the audio alert group and the number of alerts that would have been triggered for 
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(χ2(1,N=32) = 7.575), p = 0.015) and minute 18 (χ2(1,N=32) = 6, p = 0.037), as shown in Figure 

20. The number of alerts would have been higher for the baseline condition for minutes 5 and 18 

and higher for the audio alert group for the seventh minute of the trial. 

 

 

Figure 5.20. Alert number in each group for every 1 minute  
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Results summary 

Table 5.2. Effects of audio alert and time intervals on perceived reliability, subjective trust 

ratings, eye movements, behavior and performance (NS: not significant) 

Effects of audio alert 
and time intervals 

Subjective ratings Eye tracking Behavior Performance 

Perceived 
reliability 
calibration 

Subjective 
trust 
ratings 

Total 
fixation 
duration 
PC 

Transition 
count 

Number 
of reviews 

MSD Accuracy Overall 
score 

First 6 
min 

Audio 
alert 
(Yes) 

NS NS NS NS ↓ NS NS NS 

Time 
interval 
↑ 

↓ ↑ ↑ NS ↓ ↓ NS ↑ 

3 min 
after the 
reliability 
drop 

Audio 
alert 
(Yes) 

NS NS NS NS NS NS NS NS 

9 min low 
reliability 
period 

Audio 
alert 
(Yes) 

NS NS NS NS NS NS NS NS 

Time 
interval 
↑ 

Worst 
trust mis-
calibration 
in interval 
3 
compared 
to 4 and 5 
 

Lowest 
trust 
rating in 
interval 4 
 

NS NS NS NS Improved 
from 
interval 3 
to 5 

NS 

3 min 
after the 
reliability 
recovery 

Audio 
alert 
(Yes) 

NS 
 

Marginall
y higher 
trust in the 
audio alert 
group  

NS 
 

NS 
 

↓ NS 
 

NS 
 

NS 
 

Trust 
recovery 

Audio 
alert 
(Yes) 

 Faster 
trust 
recovery 
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Discussion 

The final experiment in this line of research aimed to examine the effectiveness of using 

an audio alert for overcoming trust miscalibration and thus prevent inappropriate reliance on 

automation and resulting performance breakdowns. The results show that the audio alert did not 

affect participants’ perceived reliability, and that trust ratings differed between the control and 

the alert group only during the trust recovery period when participants in the alert group were 

faster to recover trust in the automation. Participants in the alert group relied more heavily and 

appropriately on the highly reliable automation during the first 6 minutes of the trial, compared 

to the control group. The same difference in automation reliance between the two groups was 

observed during the first three minutes following the recovery of system reliability to its initial 

high level. The observed changes in trust ratings and automation reliance did not translate into 

significantly improved overall performance on the tracking and target detection tasks. The 

following sections will discuss these findings as well as the observed effects of time interval on 

the various dependent measures in more detail. 

During the first 6 minutes of each trial, when system reliability was consistently high 

(95% reliable), perceived reliability and trust increased for participants in both the control and 

the audio alert group. This observation is consistent with previous research findings showing that 

participants’ trust in the highly reliable systems increases gradually over time (Desai et al., 2013; 

Kraus et al., 2019; Muir & Moray, 1996). The audio alert did not lead to a more pronounced 

increase, likely due to a ceiling effect. Perceived reliability and trust in the automation were very 

high in both groups and could not increase by much. As trust increased, participants in both 

groups started to rely more on the automation to perform the target detection task for them, 

leading to significantly fewer reviews of automation assessments in the 2nd three-minute period. 



 135 

This effect was more pronounced in the audio alert group. One likely explanation for this finding 

is that, even though all participants reported a high level of trust in the automation from the 

beginning, they initially still reviewed the UAV scene and automation assessments quite 

frequently. This discrepancy between participants’ (high) subjective trust ratings and their (low) 

reliance on the system has been observed in earlier studies (Lu & Sarter, 2019a; Miller et al., 

2016). In response to their disuse of the highly reliable automation, participants in the audio alert 

group (but not those in the control group) were presented with aural “center-center” commands 

instructing them to rely more heavily on the target detection system and focus on the tracking 

task instead. This promoted more appropriate trust in and reliance on the system.   

Total fixation duration on the tracking task significantly increased over time for all 

participants as they relied more on the automation to perform the target detection task. Even 

though participants in the control group still continued to review automation assessments more 

often than those in the audio alert group, total fixation duration did not differ between the two 

groups, likely because the control group was aware of the high reliability of the automation and 

thus reviewed the target area only very briefly. Transition counts did not change significantly, 

probably due to large variance in the data.  

The increased attention on the tracking task resulted in improved performance for both 

groups during the second 3-minute period. One possible reason why the audio group did not 

outperform the control group may be that the average response time to an automation assessment 

in this group was less than 3 seconds. Performance on the tracking task was calculated every 3 

seconds. This means that, even if participants in the control group did review automation 

assessments more frequently, this did not necessarily hurt their tracking performance as long as 

they could keep the average MSD within the positive score range. The movement of the small 
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circle in the tracking task was based on a series of random numbers, meaning that even if 

participants did not work on the tracking task, there was still a chance that the average MSD of 

the small circle was within the positive score range. Target detection performance in both groups 

remained unchanged, mainly due to a ceiling effect. Even when participants double-checked an 

automation assessment, they rarely disagreed with the system because of its high reliability 

(Hussein, Elsawah, & Abbass, 2019) and therefore the final target detection performance did not 

change. 

During the three-minute period following a drop in system reliability, the control and 

audio alert groups did not differ with respect to any of the dependent measures. Participants in 

both groups were able to quickly detect the rather large change in system reliability and adjust 

their behavior. This may have been helped by the collection of baseline data for modeling 

purposes in advance of the experiment which did not take place in experiments 1 and 2. All 

participants experienced four baseline scenarios (50%, 65%, 80% and 95%) in a randomized 

order before they started the formal trial. Before each scenario, participants were informed of the 

actual capability of the automation to help them decide how much they should trust and rely on 

the automation. This process served as additional training and familiarization with the 

automation which has been  shown to be an effective technique to help facilitate the trust 

calibration process (Masalonis, 2003; Tenhundfeld et al., 2019). This explanation is supported by 

the fact that the number of alerts that were actually triggered in the audio alert group was not 

significantly different from the number of alerts that would have been triggered in the control 

group after 2 minutes of low system reliability, meaning both groups were equally calibrated at 

that point. Interestingly, the number of alerts that would have been triggered during the first 

minute after the reliability drop was significantly lower in the control group, compared to the 
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audio alert group. This unexpected result may be explained by the way the alert was designed. It 

was based on eye tracking data over the last one-minute period. Therefore, during the first 

minute after the reliability of the system dropped, some participants in the audio alert group may 

still have received audio alerts that carried over from the 6-minute high-reliability period, telling 

them to focus more on the tracking task.  

Participants overestimated system reliability, and their subjective trust ratings were 

higher during the first 3 minutes of the 9-minute period of low system reliability. This confirms 

earlier findings (e.g., Lee and Moray, 1992) that trust adjustments lag behind changes in actual 

system reliability. Trust tends to reach its lowest point only after several performance 

breakdowns have been observed and then recovers gradually, even in the continued presence of 

system faults.  The change in subjective ratings during the 9-minute period was not mirrored in  

participants’ attention allocation and automation monitoring behavior. Both groups double-

checked automation assessments nearly every time during the low reliability period. Audio alerts 

were rarely triggered and therefore the audio group did not benefit. While subjective ratings and 

behavior did not change, participants’ performance on the automation monitoring task did 

improve (in terms of accuracy) over the course of the 9-minute low-reliability period. This is 

likely the result of their increased familiarity with the unreliable automation and increased 

scrutiny of automation decisions once they calibrated their trust in the system.  

During the first 3 minutes after system reliability had recovered, perceived reliability did 

not differ significantly between the two groups; however, trust ratings for participants in the 

audio alert group were marginally higher than for the control group, which translated into less 

frequent reviews of automation assessments. This difference in behavior was not reflected in the 
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eye metrics which, as mentioned earlier, may relate to the fact that participants in the control 

group had a tendency to agree very quickly with the automation when it was highly reliable.  

With regard to trust recovery, the results show that audio alerts helped participants 

rebuild their trust in the automation in a more timely fashion. In this experiment, trust recovery 

was defined as 1) participants’ trust ratings returned to a steady (though not necessarily the 

initial) level, and 2) the trust inference model indicated high trust twice in a row. While 

participants’ trust ratings did not differ, the eye tracking based model output (criterion 2) for 

participants in the audio group showed higher level of trust and mirrored system reliability.  

In conclusion, the results of this experiment indicate that the audio alert was partially 

successful in improving the trust calibration process, especially during trust recovery, and 

contributed to more appropriate reliance on automation, especially during the time period 

following a large system reliability drop.  However, the alert did not improve participants’ 

overall performance as expected, mainly because of two factors. First, all participants received 

extra exposure to various system reliability scenarios during the baseline data collection, which 

served as training and improved trust calibration in both groups. Second, the cost of 

unnecessarily checking on the automation when it was highly reliable was minimal; as a result, 

performance in the control group did not suffer. These factors should be addressed in the future 

research to better investigate the effectiveness of the audio alert system. 
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Chapter 6  

Summary and Conclusion  

Trust calibration remains a major challenge for safe and efficient human-machine 

interaction. Poor trust calibration, i.e., “a lack of correspondence between a person’s trust in a 

system and the system’s actual capabilities (Lee & Moray, 1994)”, can lead to either misuse 

(overreliance on) or disuse (slow adoption or complete rejection) of automated systems 

(Parasuraman & Riley, 1997). The consequences of inappropriate reliance on advanced 

technologies can be catastrophic, especially in high-risk, safety-critical domains such as military 

operations, aviation and process control (e.g., nuclear power plants). Addressing this challenge 

requires a better understanding of, and support for the process of trust development and 

calibration – the focus of the proposed research. Earlier research in this area suffers from a 

number of limitations. First, most studies rely heavily on subjective ratings to measure trust 

(Hoff & Bashir, 2015). Such ratings are susceptible to biases and are too disruptive for real-

world applications. Also, discrete ratings fail to capture the dynamics of trust, i.e., they do not 

provide insight into the continuous evolution and temporal variability of trust in response to 

factors such as variations in system reliability. In the absence of a real-time continuous measure 

of trust it is also not possible to detect the need for, and trigger interventions to overcome 

inappropriate trust levels and resulting misuse or disuse of technology.  This may explain why, to 

date, most research tried to improve trust calibration in a top-down fashion through training 

(Bahner et al., 2008; Masalonis, 2003) and priming (Pop et al., 2015) in advance of operations.  
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To address these gaps and shortcomings, the goals of this dissertation research were to: 

1) Develop an eye-tracking based technique to infer trust levels in real time and identify the 

eye tracking metrics that are best suited for tracing trust variations. 

2) Identify how the magnitude and duration of variations in system reliability affect trust 

evolution and calibration  

3) Develop and evaluate the effectiveness of a real-time intervention (an audio alert) for 

supporting trust calibration and promoting proper use of automation 

 

To achieve these goals, three experiments were conducted in the context of an Unmanned 

Arial Vehicle (UAV) control simulation. Participants were required to perform two tasks in 

parallel: a tracking task and a target detection task, the latter with the assistance of an imperfectly 

reliable automated system. Experiment 1 used subjective trust ratings and eye movement data to 

examine variations in trust as a function of system reliability and priming. Three types of eye 

tracking metrics were calculated from raw eye movement data: temporal metrics (e.g., total 

fixation duration), spatial metrics (e.g., backtrack rate), and count metrics (e.g., transition count). 

System reliability had a significant effect on both subjective trust ratings and eye tracking 

metrics whereas priming affected eye movements only. The observed differences in eye 

movements for high- and low-reliability UAVs were closely associated with participants’ 

subjective trust ratings, suggesting that eye tracking is a promising less intrusive technique for 

measuring trust in real time. Some differences between subjective trust ratings and the eye 

tracking data also highlight, however, that the two measures should be employed in a 

complementary fashion. For example, subjective ratings of trust differed significantly between 

high- and low-reliability UAVs independent of the priming condition. In contrast, one of the eye 
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tracking metrics, total fixation duration, was affected by reliability variations only in the priming 

condition. Also, one of the eye tracking metrics, total fixation count, was sensitive to variations 

in system reliability over time, while subjective ratings were not. These differences suggest that 

subjective trust ratings mainly reveal participants’ explicit trust levels, while eye tracking metrics 

reflect more about implicit trust levels (Burns, Mearns, & McGeorge, 2006).  

After Experiment 1 confirmed the feasibility of using eye tracking to infer trust in real 

time, this technique was employed in Experiment 2 to assess the effects of the magnitude (small 

and large) and duration (short and long) of system reliability changes on the process of trust 

development and calibration. Subjective trust ratings showed that participants detected changes 

in reliability even when they were small and short. However, awareness of these changes did not 

result in behavioral (monitoring) changes, as indicated by the eye movement data. Trust 

miscalibration was observed for all combinations of magnitude and duration of reliability 

changes: participants underestimated system reliability when it was actually quite high (95%) 

and overestimated it when it was low (50% & 80%). The magnitude of variations in system 

reliability had a more significant impact on trust calibration and trust recovery than duration. 

Trust miscalibration was most severe, and trust recovery took the longest in case of large and 

long drops in system reliability. In those cases, accuracy on a target detection task was also 

lowest due to inappropriate reliance on the automation.  

After establishing that trust variations could be detected in real time, and that participants 

experienced trust miscalibration in various circumstances, we next developed a machine learning 

technique to support the development of a countermeasure to trust miscalibration in the form of 

an audio alert. Two different modeling approaches were compared:  1) using eye tracking 

metrics from individual participants for “personalized” modeling, and 2) using eye tracking 
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metrics from a group of participants for “generalized” modeling. For the latter approach, two 

types of input data were used: 1) raw eye movement data (gaze point coordinates) and 2) eye 

tracking metrics calculated from those raw data. Linear Regression (LR), k-Nearest Neighbor 

(kNN), Random Forest (RF), Multi-Layer Perceptron (MLP) and Convolutional Neural 

Networks (CNN) were compared to determine which classification method was most sensitive 

and reliable and thus best suited for triggering an audio alert to notify participants that they 

needed to adjust their trust and reliance on the automation. Individual-level modeling using kNN 

or RF was found to achieve the best performance (accuracy rate around 92%). After considering 

factors including modeling efficiency, modeling variance, and interpretability, kNN was picked 

over RF for inferring trust levels in real time. 

Finally, Experiment 3 was conducted to evaluate the effectiveness of the audio alert 

system for supporting trust calibration in the worst case scenario (long and large reliability drop) 

identified in Experiment 2. The audio alert resulted in more appropriate trust (reflected by both 

subjective trust ratings and eye tracking metrics) and more appropriate reliance on the 

automation (as seen in behavioral measures such as the number of times participants reviewed 

automation recommendation). Compared to participants in the baseline condition (no audio 

alerts), participants who experienced audio alerts recovered their trust in the automation much 

faster once the system performed well again. However, this improved trust calibration did not 

translate into improved performance on either the target detection or the tracking task. This result 

could be explained by the fact that the time required to double-check decisions of the automation 

was not long enough to negatively affect tracking performance. In addition, results indicated that 

participants had a tendency to always agree with the automation when the automation was highly 
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reliable, resulting in no significant target detection performance difference between the audio 

alert group and the control group.  

Overall, the findings from this line of research were quite consistent across the three 

experiments. All three studies showed that low trust levels were associated with longer fixation 

duration, more fixation counts on the target detection task and more transition counts between 

tasks, suggesting the feasibility of using eye tracking to infer trust in an unobtrusive way. It is 

important to note that the selection of specific eye tracking metrics as indicators of trust will 

likely have to be tailored to task demands. For example, if an operator performs only one task, 

transition counts will not be useful for capturing trust variations. And if the task does not require 

operators to search actively, spatial metrics may not be informative, as shown in Experiment 2. 

In addition, the shape, size and location of AOIs need to be carefully chosen by the experimenter 

to find the proper balance between selectivity and sensitivity for a given task set.  

To facilitate trust calibration, this line of research examined two promising methods: 1) 

priming to assist with trust formation in advance of operations, in a top-down fashion 

(Experiment 1) and 2) real-time audio alerts to support timely and appropriate adjustments of 

trust throughout task performance, in a bottom-up fashion (in Experiment 3). The results indicate 

that priming affected overall trust levels (though not as strongly as system reliability). According 

to an integrative model of long-term trust development in human-robot teams (de Visser et al., 

2019), priming promotes trust calibration because it allows operators to familiarize themselves 

with how an automated system works and thus anticipate system breakdowns which might 

otherwise represent violations of trust and lead to a “fall from grace” (de Visser et al., 2016; 

Madhavan, Wiegmann, & Lacson, 2006). Past research suggests, however, that this effect may 

not be long-lasting (Clare, Cummings, and Repenning, 2015). Real-time audio alerts, on the 
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other hand, mainly promoted faster and appropriate trust recovery following a system 

breakdown. This confirms earlier work showing that real-time countermeasures, such as alerts, 

help repair trust after the automation has made a mistake or behaved unexpectedly (Baker, 

Phillips, Ullman and Keebler, 2018). Taken together, these findings suggest that both methods 

are valuable but should be employed to address different aspects of trust miscalibration.  

 

Intellectual merit and broad impact  

Findings from this dissertation carry both conceptual, methodological and practical value. 

First, they contribute to the knowledge base in trust and reliance on modern automation 

technologies. The results enhance our understanding of the effects of variations in system 

reliability on subjective trust ratings, behavioral markers and performance outcomes and of the 

connections between these three types of measures. A much-needed eye tracking based 

technique for tracing trust development in real time was developed which complements existing 

discrete and more intrusive trust measurement techniques, such as subjective ratings. Also, an 

eye tracking-based algorithm for detecting divergence between system trustworthiness and 

operator trust was developed and used to trigger and evaluate the effectiveness of a candidate 

countermeasure to trust miscalibration in the form of an audio alert.  From an applied 

perspective, the findings from this line of research will lead to more appropriate attitudes 

towards, and adoption of modern automation technologies in a variety of application domains 

such as aviation, driving, space operations and medicine. This will, in turn, help avoid 

unexpected performance breakdowns and the rejection of useful technologies, thus contributing 

to more efficient and safer operations. 
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Future work 

Through a series of empirical studies, this dissertation improved our understanding of and 

addressed challenges for studying trust in automation. However, as with all research, the reported 

work involves some notable limitations.  

First, the examination of the effects of duration of reliability changes was somewhat 

limited. Even the long duration changes lasted for nine minutes only. That may explain why this 

factor did not affect most of the trust-related variables in our experiments. Past research (Hoff & 

Bashir, 2015; Lee & See, 2004; Muir & Moray, 1996) has shown that operators’ trust tends to be 

based largely on continuously observing and interacting with an automated system. Future work 

should therefore include longitudinal studies that allow operators to collaborate with the 

automation over more extended periods of time.  

Second, the need for, and the effectiveness of the audio alerts should be investigated in 

the absence of training (in this case, during the baseline data collection) which may have enabled 

participants to develop a model of the automation that was sufficient for performance to reach a 

ceiling. Past research has shown that training is an effective means of promoting appropriate 

trust levels in automation (Tenhundfeld et al., 2019). It is therefore not clear to what extent the 

findings from Experiment 3 were due to bottom-up guidance (the audio alert) or top-down 

influences (the training/mental model) or a combination of both. 

Third, as this was the first attempt to trace participants’ trust evolution process in real 

time, the input for the trust inference model was quite simple (with only two eye tracking 

metrics). In order to build a more comprehensive trust inference model, other factors such as 

dispositional trust, situational trust and learned trust, should be carefully considered (Hoff & 

Bashir, 2015). For example, by integrating factors reflecting individual differences in 
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dispositional trust (such as culture, age, gender), it is possible to develop a more robust and 

generalizable trust inference model, which can be specific to individuals. In terms of the 

techniques to measure trust, in addition to eye tracking metrics, other techniques such as 

physiological measures (Akash et al., 2018), subjective measures (Jian et al., 2000) and 

behavioral measures (Miller et al., 2016) can be used in combination to trace trust evolution over 

time in a more robust way. 

Finally, a more comprehensive understanding of the relationships between trust 

calibration and performance outcomes is needed. To date, there is limited research on developing 

metrics that can quantify trust miscalibration and establish whether and how trust contributes to 

performance (Merritt et al., 2015). A better understanding of this relationship is needed as 

performance and safety are ultimately the main concerns for human factors practitioners working 

on human-automation collaboration. 
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APPENDIX A Debriefing Form for Experiment 1 
Debriefing Questionnaire 

 

Principal Investigator: Yidu Lu 

Department of Industrial and Operations Engineering 

University of Michigan 

 

 

1. Did your trust differ among the 6 UAVs?  
o yes  o no   Please explain. 

 

 

 

 

 

 

2. What was your general strategy for monitoring the UAVs? For example, did you monitor certain 
UAVs more than others? If so, why? Did you regularly check all video feeds for targets, 
independent of whether they were highlighted or not?  
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3. Do you think the automation improved your ability to detect targets? In other words, did the 

automatic highlighting of video feeds from UAVs reaching a target area help you notice and 
identify targets? Was the highlighting ever detrimental? Please explain.  
 
 
 
 
 
 
 
 
 
 
 
 

4. Was it difficult to distinguish between targets & non-targets?  
o yes  o no   if yes, please explain what made this task difficult 
 
 
 
 
 
 
 
 

5. Please rate your fatigue level after finishing all the tasks: 
     |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| 

     0      1      2      3      4       5      6      7      8      9     10 
 
 
 

6. Did the information we provided regarding the different degrees of reliability of the 6 UAVs 
affect your monitoring behavior? If so, was this true especially early on, or did this effect persist 
throughout the experiment? 
 
 
 
 
 
 
 
 
 
 

7. Please feel free to add any other comments about the automation assistance and the experiment in 
general. 
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APPENDIX B Debriefing Form for Experiment 2 
Debriefing Questionnaire 

 

Principal Investigator: Yidu Lu 

Department of Industrial and Operations Engineering 

University of Michigan 

 

 

1. How would you rate the difficulty of the monitoring task? 
     |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| 

     0      1      2      3      4       5      6      7      8      9     10 
  very easy                                                      very difficult 
 
 

2. How would you rate the difficulty of the tracking task? 
     |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| 

     0      1      2      3      4       5      6      7      8      9     10 
  very easy                                                       very difficult 

 
3. How would you rate the difficulty of timesharing the above two tasks? 

     |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| 

     0      1      2      3      4       5      6      7      8      9     10 
  very easy                                                       very difficult 

 
 

4. What was your strategy for performing both tasks (monitoring the UAVs and doing the tracking 
task) at the same time? If your strategy differed for the four scenarios, please describe your 
strategy separately for each scenario and explain how and why it differed. 
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5. Do you think the automation improved your ability to detect targets? In other words, did the 
automatic highlighting of video feeds from UAVs reaching a target area help you notice the 
targets? Was the highlighting ever detrimental? Please explain.  
 
 
 
 
 

6. Was it difficult to distinguish between targets & non-targets?  
o yes  o no   if yes, please explain what made this task difficult 
 
 
 
 
 
 
 
 

7. Did the sound feedback make you feel confused? In other words, did it give you a clear idea of 
your performance and the automation performance? Please write the meaning of the sound 
feedback. 

 
 
 
 
 

8. Please rate your fatigue level after finishing all the tasks: 
     |---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| 

     0      1      2      3      4       5      6      7      8      9     10 
    Not tired at all                                                   Extremely tired                                                                                                                                        
 
 
 
 
 
 

9. Please feel free to add any other comments about the automation assistance and the experiment in 
general. 
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APPENDIX C Debriefing Form for Experiment 3 
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