
Fast, Optimal, and Safe Motion Planning for Bipedal Robots

by

Pengcheng Zhao

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in the University of Michigan
2020

Doctoral Committee:

Assistant Professor Ram Vasudevan, Chair
Associate Professor Robert Gregg
Professor Jessy Grizzle
Assistant Professor Kenneth Shorter

Pengcheng Zhao

pczhao@umich.edu

ORCID iD: 0000-0001-6431-6926

© Pengcheng Zhao 2020

TABLE OF CONTENTS

List of Figures . v

List of Tables . ix

List of Appendices . x

Abstract . xi

Chapter

1 Introduction . 1

1.1 Motivation . 1
1.2 State of the Art . 3

1.2.1 Hybrid Optimal Control . 3
1.2.2 Ensuring Safety of Bipedal Robots . 4
1.2.3 Bounding Computation Time During Online Control Synthesis 5

1.3 Contributions and Thesis Outline . 6

2 Solving Optimal Control Problems with Guaranteed Performance 8

2.1 Introduction . 8
2.2 Problem Formulation . 9

2.2.1 Controlled Hybrid Systems . 9
2.2.2 Problem Statement . 11

2.3 The Hybrid Liouville Equation . 12
2.4 Infinite Dimensional Linear Program . 18
2.5 Numerical Implementation . 20

2.5.1 LMI Relaxations and SOS Approximations 21
2.6 Results . 23

2.6.1 Hybridized Double Integrator . 24
2.6.2 Dubins Car Model with Shortcut Path 24
2.6.3 SLIP Model . 25

2.7 Conclusion . 26

3 Real-Time Safe Control for A Planar Bipedal Robot Model 30

3.1 Introduction . 30
3.2 Preliminaries . 32

3.2.1 RABBIT Model (Anchor) . 32
3.2.2 Simplified Biped Model (Template) . 34

ii

3.3 Outputs to Describe Successful Walking . 34
3.3.1 Outputs to Describe Successful RABBIT Walking 35
3.3.2 Approximating Outputs Using the SBM 37

3.4 Enforcing N-Step Safe Walking . 39
3.4.1 Forward Reachable Set . 39
3.4.2 N-step Successful Walking and MPC 41

3.5 Results . 43
3.6 Conclusion . 46

4 Efficiently Solving Polynomial Optimization Problems 49

4.1 Introduction . 49
4.1.1 Related Work . 51
4.1.2 Contributions and chapter Organization 53

4.2 Preliminaries . 54
4.2.1 Notation . 54
4.2.2 Polynomial Optimization Problems . 55
4.2.3 Reachability-based Trajectory Design 55
4.2.4 Bernstein Form . 56
4.2.5 Subdivision Procedure . 57

4.3 Parallel Constrained Bernstein Algorithm . 58
4.3.1 Algorithm Summary . 61
4.3.2 Items and The List . 61
4.3.3 Tolerances and Stopping Criteria . 61
4.3.4 Subdivision . 62
4.3.5 Cut-Off Test . 63
4.3.6 Advantages and Disadvantages of PCBA 67

4.4 Complexity Analysis . 68
4.4.1 Unconstrained Case . 68
4.4.2 Constrained Case . 70
4.4.3 Memory Usage Implementation . 70
4.4.4 Summary . 71

4.5 PCBA Evaluation . 71
4.5.1 Parameter Selection . 71
4.5.2 Benchmark Evaluation . 72
4.5.3 Increasing Constraint Problems . 73
4.5.4 Summary . 75

4.6 Hardware Demonstrations . 77
4.6.1 Overview . 78
4.6.2 Demo 1 . 79
4.6.3 Demo 2 . 80
4.6.4 Discussion . 83

4.7 Conclusion . 83

5 Fast, Safe Control Synthesis for a 3D Bipedal Robot 85

5.1 Introduction . 85

iii

5.2 Dynamic Models and Environments . 86
5.2.1 Dynamical Model of a Biped . 86
5.2.2 Control Input . 87
5.2.3 Environment and Safety Criterion . 88
5.2.4 Planning, Sensing, and Persistent Feasibility 89

5.3 Error Bound for Hybrid System Simulations . 91
5.3.1 Preliminaries . 91
5.3.2 Hybrid System and Its Numerical Simulation 92
5.3.3 Bounding Errors in Numerical Simulation 96

5.4 Representing Safety for Online Optimization . 103
5.5 Online Trajectory Optimization . 104
5.6 Implementation . 107

5.6.1 Hybrid Model of Cassie . 107
5.6.2 Definition of Terminal Set . 108
5.6.3 Bounding Functions . 108
5.6.4 GPU Implementation of SolveTrajOpt 111

5.7 Results . 111

6 General Conclusions and Future Directions . 116

6.1 Future Work . 116
6.1.1 Real-Time Computation on GPUs . 116
6.1.2 Planning Under Uncertainty . 117
6.1.3 Walking on Uneven Terrains . 117

Appendices . 118

Bibliography . 154

iv

LIST OF FIGURES

FIGURE

1.1 Several bipedal robots: (a) RABBIT, a planar bipedal robot with seven degrees of
freedom and four actuators, (b) ATRIAS, a 3D bipedal robot with 13 degrees of free-
dom and six actuators, (c) Cassie, a 3D bipedal robot with 20 degrees of freedom and
10 actuators . 2

2.1 The procedure to define a trajectory of hybrid systemH. 11
2.2 An illustration of the SLIP model (left) and its hybrid modes (right) 25
2.3 An illustration of the performance of our algorithm on the active SLIP model. The

blue lines are the optimal control computed by GPOPS-II by iterating through all
the possible transition sequences, and the red lines of various saturation are controls
generated by our method. As the saturation increases, the corresponding degree of
relaxation increases between 2k = 4 to 2k = 6 to 2k = 8. Fig. 2.3a shows trajectories
that maximize vertical displacement, where the optimal solution goes through three
transitions; Fig. 2.3b shows trajectories that track v = 0.1, where the optimal solution
goes through 6 transitions. 27

3.3 An illustration of the performance of the method proposed in this chapter (top) and
the naı̈ve method (second from top). Note that the rapid change in the desired speed
(third from top) results in a gait which cannot be tracked by just considering a SBM
model without successful walking constraints. By ensuring that the outputs satisfy the
inequality constraints proposed in Theorem 23 (bottom two sub-figures), the proposed
method is able to safely track the synthesized gaits. Note the naı̈ve method violates
the y2 constraint proposed in Theorem 23 on Step 5. 45

3.4 A comparison of speed tracking performance of the proposed method and the naı̈ve
method. Although both methods generate gaits that can be followed by the RAB-
BIT model without falling over, the tracking error of naı̈ve method is lower (0.3681)
compared to the proposed method (0.3912). 46

v

3.1 This chapter proposes a method to design gaits that are certified to be tracked by a
full-order robot model (bottom row sub-figures) for N -steps without falling over. To
construct this method, this chapter defines a set of outputs that are functions of the
state of the robot and a chosen gait (middle row sub-figures). If the outputs associated
with a particular gait satisfy a set of inequality constraints (depicted as the safe region
drawn in light gray in the middle row sub-figures), then the gait is proven to be safely
tracked by the legged system without falling. Due to the high-dimensionality of the
robot’s dynamics, forward propagating these outputs via the robot’s dynamics for N -
steps to design a gait that is certified to be tracked safely is intractable. To address
this challenge, this chapter constructs a template model (top row sub-figures) whose
outputs are sufficient to predict the behavior of the anchor’s outputs. In particular, if all
of the points in a bounded neighborhood of the forward reachable set of the outputs of
the template model remain within the safe region, then the anchor is certified to behave
safely. This chapter illustrates how this can be incorporated into a MPC framework to
design safe gaits in real-time. 47

3.2 An illustration of how the values of the outputs can be used to determine whether the
robot walks safely. To ensure that the robot does not fall backwards, one can require
that y1(i) ≥ 0 (left column). In particular if y1(i) < 0, then tMS

i = +∞which implies
that the robot is falling backwards. To ensure that the robot does not fall forward, one
can require that y2(i) ≤ π (right column). 48

4.1 A Segway RMP mobile robot using the proposed PCBA/RTD* method to autonomously
navigate a tight obstacle blockade. The executed trajectory is shown fading from light
to dark blue as time passes, and the robot is shown at four different time instances.
The top right plot shows the Segway’s (blue circle with triangle indicating heading)
view of the world at one planning iteration, with obstacles detected by a planar lidar
(purple points). The top left plot shows the optimization program solved at the same
planning iteration; the decision variable is (q1, q2), which parameterizes the velocity
and yaw rate of a trajectory plan; the pink regions are infeasible with respect to con-
straints generated by the obstacle points in the right plot; and the blue contours with
number labels depict the cost function, which is constructed to encourage the Segway
to reach a waypoint (the star in the top right plot). The optimal solution found by
PCBA is shown as a star on the left plot, in the non-convex feasible area (white). This
optimal solution generates a provably-safe trajectory for the Segway to track, shown
as a blue dashed line in the right plot. 50

vi

4.2 The 3rd iteration of PCBA (Algorithm 1) on a one-dimensional polynomial cost (top)
with one inequality constraint (middle) and one equality constraint (bottom). The rect-
angles represent Bernstein patches (as in Section 4.2.5), where the horizontal extent
of each patch corresponds to an interval of the decision variable over which Bernstein
coefficients are computed. The top and bottom of each patch represent the maximum
and minimum Bernstein coefficients, which bound the cost and constraint polynomi-
als on the corresponding interval. As per Definition 37, the green patch is feasible,
the pink patches are infeasible, and the grey patches are undecided; the purple dashed
lines show the inequality constraint cut-off (zero) and the equality constraint tolerance
εeq = 1 (note that εeq is chosen to be this large only for illustration purposes). Per Def-
inition 39, the light blue patch is suboptimal; the blue dashed line in the top plot is
the current solution estimate (Definition 38). The infeasible and suboptimal patches
are each marked with × for elimination (Algorithm 5), since they cannot contain the
global optimum (Theorem 40); the feasible and undecided patches are kept for the
next iteration. 59

4.3 The maximum number of patches (left axis) and corresponding GPU memory used
(right axis) at each iteration of PCBA, for P4 of the benchmark problems (see Section
4.5). This problem took 24 iterations to solve. Notice that the number of patches
peaks in iteration 5, then stays under 400 patches at every iteration from iteration 9
onwards; this visualizes Theorem 46. 73

4.4 Results for an increasing number of constraints on the Powell objective function (see
the Appendix) for the PCBA, BSOS, and fmincon. The top plot shows the time
required to solve the problem as the number of constraints increases. The bottom plot
shows the error between each solver’s solution and the true global optimum. For both
time and error, fmincon is shown as a box plot over 50 trials with random initial
guesses; the central red line indicates the median, the top and bottom of the red box
indicate the 25th and 75th percentiles, the black whiskers are the most extreme values
not considered outliers, and the outliers are red plus signs. PCBA solves the fastest
in general; fmincon typically solves slightly slower than PCBA for more than 40
constraints; and BSOS is the slowest solver. PCBA and BSOS always find the global
optimum, as does fmincon when there are not many constraints, because the Powell
objective function is convex. Above 30 constraints, fmincon frequently has large
error due to convergence to local minima. 75

4.5 The approximate peak GPU memory used by PCBA for the Powell problem, as a
function of the number of constraints. Since the amount of memory required per item
in the list L grows linearly with the number of constraints, the overall memory usage
also grows linearly. However, at 160 constraints, we see a drop in the memory usage;
this is because the additional constraints render more parts of the problem domain
infeasible, resulting in more items being eliminated per PCBA iteration. Note that
the maximum memory usage is well under the several GB of memory available on a
typical GPU. 77

vii

4.6 Solve times of PCBA and fmincon on 528 POPs generated by the Segway robot
navigating random scenarios in Demo 1. Each POP was solved 25 times by each
solver. While fmincon can often find a solution an order of magnitude faster than
PCBA, it also has a much higher standard deviation, meaning that it is less consistent
at obeying the real-time limit required by mobile robot trajectory planning. 81

4.7 The number of POPs from Demo 1, out of 528, that fall into the given bins of number
of constraints; we see that most of the POPs had 100 – 140 constraints. This number of
constraints can makes it challenging to solve a POP while constrained by a real-time
planning limit. 82

4.8 The robot becomes stuck when planning with RTD/fmincon in the second scene of
the second hardware demo, because fmincon cannot find an optimal solution quickly
enough given the high number of constraints produced by the surrounding obstacles.
The robot requires human assistance to proceed, whereas it is able to navigate the
entire scene autonomously when planning with RTD*/PCBA (Figure 4.1). See the
video. 82

5.1 A kinematic model of Cassie where the joints on the right limb are omitted for ease
of understanding. The joints q1L, . . . , q4L, q1R, . . . , q4R, q7L, q7R are actuated and
the corresponding control inputs are labeled u1L, . . . , u4L, u1R, . . . , u4R, u5L, u5R,
respectively. 86

5.2 An illustration of global errors when yk /∈ Sδ . 97
5.3 An illustration of global errors when yk ∈ Sδ . 101
5.4 An illustration of the performance of the direct method (top) and the proposed method

(bottom). Cassie is colored in blue, its trajectory is colored in light blue. Obstacles
and the boundaries are colored in red, and the goal is colored in black. Cassie reaches
the goal if its footprint is inside the black ring with radius 0.5[m]. 112

5.5 An illustration of global error bound in the xy-plane at 3 arbitrary time instances with
the proposed method with respect to Fig. 5.4. Cassie is marked as the blue triangle,
and its trajectory is colored in blue. Obstacles are colored in red, goal is colored in
black, and global error bound is colored in pink. The boxes in dark pink stands for the
error bound on pelvis position at each touch-down. 113

5.6 An illustration of global error bound of hip heights at the same time instances with
the proposed method with respect to Fig. 5.4 and 5.5. Hip heights are colored in blue,
and their corresponding global error bounds are colored in magenta. 114

5.7 An illustration of the performance of the direct method (top) and the proposed method
(bottom). Cassie is colored in blue, its trajectory is colored in light blue. Obstacles
and the boundaries are colored in red, and the goal is colored in black. Cassie reaches
the goal if its footprint is inside the black ring with radius 0.5[m]. 114

F.1 Left limbs of Cassie are contained in convex hulls of adjacent balls. 149

viii

https://youtu.be/YcH4WAzqPFY

LIST OF TABLES

TABLE

2.1 The setup for each example problem. 28
2.2 Numerical results for the proposed algorithm on each example. 29

4.2 Results for the increasing constraints PCBA evaluation. Abbreviated problem names
(as in the Appendix) are on the left, along with each problem’s decision variable di-
mension l. Over all 20 trials (with between 10 and 200 constraints), we report the
maximum time spent find a solution, the maximum number of items in the list L, and
the maximum amount of GPU memory used. Note that the problems all solved under
0.5 s regardless of the number of constraints, and no problem requested more than 650
MB of memory. 76

4.1 Results for PCBA, BSOS, and fmincon on eight benchmark problems with 2, 3, and
4 dimensional (column l) decision variables (see the Appendix for more details). The
error columns report each solver’s result minus the true global minimum. For all three
solvers, the reported error and time to find a solution are the median over 50 trials
(with random initial guesses for fmincon). For PCBA, we also report the optimality
tolerance ε (as in (4.28)), number of iterations to convergence, and peak GPU memory
used. Note that, on P1 and P5, PCBA stopped at the maximum number of iterations
(28). 84

5.1 A quantitative comparison of the direct method to the method developed in this chap-
ter while controlling Cassie. 115

ix

LIST OF APPENDICES

A Connecting Occupation Measure With Flow Map of Smooth Vector Field 118

B placeholder . 120

C Proof of Theorem 12 . 128

D Proofs of Theorems 44, 45, and 46 . 131

E A List of Polynomial Optimization Problems . 143

F Proof of Theorem 49 . 148

G Derivation of a Balancing Controller u0 for Cassie . 151

x

ABSTRACT

Bipedal robots have the potential to traverse a wide range of unstructured environments, which
are otherwise inaccessible to wheeled vehicles. Though roboticists have successfully constructed
controllers for bipedal robots to walk over uneven terrain such as snow, sand, or even stairs, it has
remained challenging to synthesize such controllers in an online fashion while guaranteeing their
satisfactory performance. This is primarily due to the lack of numerical method that can accom-
modate the non-smooth dynamics, high degrees of freedom, and underactuation that characterize
bipedal robots. This dissertation proposes and implements a family of numerical methods that be-
gin to address these three challenges along three dimensions: optimality, safety, and computational
speed.

First, this dissertation develops a convex relaxation-based approach to solve optimal control for
hybrid systems without a priori knowledge of the optimal sequence of transition. This is accom-
plished by formulating the problem in the space of relaxed controls, which gives rise to a linear
program whose solution is proven to compute the globally optimal controller. This conceptual
program is solved using a sequence of semidefinite programs whose solutions are proven to con-
verge from below to the true optimal solution of the original optimal control problem. Moreover,
a method to synthesize the optimal controller is developed. Using an array of examples, the per-
formance of this method is validated on problems with known solutions and also compared to a
commercial solver.

Second, this dissertation constructs a method to generate safety-preserving controllers for a pla-
nar bipedal robot walking on flat ground by performing reachability analysis on simplified models
under the assumption that the difference between the two models can be bounded. Subsequently,
this dissertation describes how this reachable set can be incorporated into a Model Predictive Con-
trol framework to select controllers that result in safe walking on the biped in an online fashion.
This method is validated on a 5-link planar model.

Third, this dissertation proposes a novel parallel algorithm capable of finding guaranteed opti-
mal solutions to polynomial optimization problems up to pre-specified tolerances. Formal proofs
of bounds on the time and memory usage of such method are also given. Such algorithm is imple-
mented in parallel on GPUs and compared against state-of-the-art solvers on a group of benchmark
examples. An application of such method on a real-time trajectory-planning task of a mobile robot
is also demonstrated.

xi

Fourth, this dissertation constructs an online Model Predictive Control framework that guaran-
tees safety of a 3D bipedal robot walking in a forest of randomly-placed obstacles. Using numerical
integration and interval arithmetic techniques, approximations to trajectories of the robot are con-
structed along with guaranteed bounds on the approximation error. Safety constraints are derived
using these error bounds and incorporated in a Model Predictive Control framework whose fea-
sible solutions keep the robot from falling over and from running into obstacles. To ensure that
the bipedal robot is able to avoid falling for all time, a finite-time terminal constraint is added
to the Model Predictive Control algorithm. The performance of this method is implemented and
compared against a naive Model Predictive Control method on a biped model with 20 degrees of
freedom.

In summary, this dissertation presents four methods for control synthesis of bipedal robots
with improvements in either optimality, safety guarantee, or computational speed. Furthermore,
the performance of all proposed methods are compared with existing methods in the field.

xii

CHAPTER 1

Introduction

1.1 Motivation

Wheeled vehicles have proven to be the most effective means of long-distance ground transporta-
tion in modern society. Despite their ability to move people and cargo, wheeled vehicles are largely
restricted by the types of terrains that they are able to traverse. Most wheeled vehicles can only
operate on paved surfaces or on relatively smooth natural terrains, and usually encounter difficul-
ties when snow, mud, sand, or rocks are present. On the other hand, animals and humans, who
are able to rely on legged locomotion, typically face fewer challenges in traversing through these
same scenarios. This motivates the development of legged robots systems with the objective of
autonomously traversing the rough terrains that are accessible to animals and humans.

In fact, researchers have illustrated the capability of bipedal robots to walk up stairs [Rob19b],
run and jump over obstacles [Dyn18], and walk through grass, snow, and sand [GHD+19]. How-
ever, in contrast to wheeled or flying robots wherein algorithms have been developed to perform
provably safe online control synthesis [KVJRV17, KVB+18, VKL+19, KHV19, HKZ+20], re-
searchers have struggled to develop algorithms to guarantee the performance of bipedal robots in
an online fashion. This has limited the broad deployment of bipedal robots especially with and
around humans. The challenge to making such guarantees during real-time control is the lack of
numerical methods that can accommodate the non-smooth dynamics, high degrees of freedom, and
underactuation that characterize bipedal robots. Before describing how state of the art numerical
methods address each of these challenges, we briefly summarize how each of these features that
characterize bipedal robots arise.

Bipedal locomotion involves impacts between the leg ends and the ground, where the robot’s
velocities change drastically within a short amount of time. As a result, a rigid contact model is
often hypothesized for control design purposes, where such impact is assumed to be instantaneous
and velocities of the robot are allowed to be discontinuous at the moment of impact. Although such
an assumption avoids many difficulties associated with compliant contact models, it also renders

1

(a) (b) (c)

Figure 1.1: Several bipedal robots: (a) RABBIT, a planar bipedal robot with seven degrees of
freedom and four actuators, (b) ATRIAS, a 3D bipedal robot with 13 degrees of freedom and six
actuators, (c) Cassie, a 3D bipedal robot with 20 degrees of freedom and 10 actuators

the dynamic model hybrid in nature, consisting of alternating phases of continuous dynamics (the
evolution of states according to a differential equation) and discrete dynamics (the re-initialization
of states due to the impacts). Such hybrid models can pose serious challenges to numerically solv-
ing optimal control problems without a priori knowledge of the number and type of impacts. This
is because derivatives of solutions are not well defined at the moment of transition between the
different continuous modes of a hybrid system. As a result, generic numerical techniques usually
assume additional information about such transitions to perform simultaneous optimization across
continuous and discrete dynamics. For example, GPOPS-II [PR14], a commercial optimal con-
trol solver, requires an explicit definition for each transition as a pre-defined boundary condition;
FROST [HA17], on the other hand, allows for periodic solutions but the sequence of transition
within a period needs to be pre-specified.

Many bipedal robots have high degrees of freedom and are underactuated. The planar robot
RABBIT [CAA+03] has seven degrees of freedom, but only four of these are actuated (Fig. 1.1a);
the 3D robot ATRIAS [GH12] has 13 degrees of freedom when supported on one leg, but only six
of these are actuated (Fig. 1.1b); the 3D robot Cassie [Rob19a] has 20 degrees of freedom, but only
10 of these are actuated (Fig. 1.1c). Real-time control synthesis for such high-dimensional systems
can pose serious computational challenges. As a result, engineers typically rely on simplified

2

models that capture essential features of bipedal locomotion [FK99] to guide the control design
for such systems[WO13, ACG+18], but it is unclear how to link a synthesized controller for such
model with the true system. Note, this challenge is further aggravated by underactuation, since
underactuated systems cannot be easily commanded to track arbitrary trajectories.

The above observations lead to the following open problems:

1. Can one numerically solve a hybrid system optimal control problem even in the absence of
a priori knowledge of the optimal sequence of contacts?

2. Can one ensure the safety of a bipedal robot at run-time?

3. Can one bound the computation time to perform online control synthesis for a bipedal robot?

1.2 State of the Art

A variety of algorithms have been proposed to address each of these open problems. The following
subsections describe related work to address each of these problems in order.

1.2.1 Hybrid Optimal Control

Optimal control for hybrid system (or simply put, hybrid optimal control) has drawn a great deal of
interest from researchers. The theoretical development of both necessary and sufficient conditions
for the optimal control of hybrid controlled systems has been considered using extensions of the
Pontryagin Maximum Principle [PLSB11, SC07, Sus99] and Dynamic Programming [BBM98,
DR05, SCEM07], respectively. Recent work has even linked these approaches [PC17]. Typically,
these methods have assumed that the sequence of transitions between the systems is known a

priori. Practitioners, as a result, have fixed the sequence of transitions and used gradient-based
methods to locally optimize over the time spent and control applied within each subsystem [GG15,
HCHA16, SAGVR17, WGK03].

Recent work has focused on the development of numerical optimal control techniques for me-
chanical systems undergoing contact without specifying the ordering of visited subsystems. One
approach to address the hybrid optimal control problem has focused on the construction of a novel
notion of derivative [PB17]. Though this method still requires fixing the total number of visited
subsystems, assuming a priori knowledge of the visited subsystems, and performs optimization
only over the initial condition, this gradient-based approach is able to find the locally optimal
ordering of subsystems under certain regularity conditions on the nature of the state-dependent
switching. Other approaches have relaxed satisfaction of the unilateral constraint directly and

3

instead focused on treating constraint satisfaction as a continuous decision variable that can be
optimized using traditional numerical methods to find local minima [PCT14, WG15, YG05].

1.2.2 Ensuring Safety of Bipedal Robots

When performing online trajectory planning for bipedal robots, there are a variety of techniques
that attempt to ensure that a biped will not fall over while walking. For instance, the Zero-Moment
Point (ZMP) approach [VS72] characterizes the stability of a legged robot with planar feet by
defining the notion of the Zero-Moment Point and requiring that it remains within a robot’s base
of support. Though this requirement can be used to design a controller that can avoid falling at
run-time, the gaits designed by the ZMP approach are static and energetically expensive [Kuo07,
WCC+07, Section 10.8].

In contrast, the Hybrid Zero Dynamics approach, which relies upon feedback linearization to
drive the actuated degrees of freedom of a robot towards a lower dimensional manifold, is able
to synthesize a controller that generates more dynamic gaits. Though this approach designs con-
trollers for legged systems even in the presence of model uncertainty [AGSG14, HXA15, NS15,
NS16, NHG+16], it is only able to prove that the gait associated with a synthesized control is
locally stable. As a result, it is non-trivial to switch between multiple hybrid zero dynamics con-
structed controllers while guaranteeing that a biped will not fall over. Fortunately, recent work has
extended the ability of the hybrid zero dynamic approach to switch between several parameterized
gaits while preserving safety guarantees [MVP16, VP18, ATJ+17, SARV19]. However, these ex-
tensions either assume full-actuation [ATJ+17] or ignore the behavior of the legged system off the
lower dimensional manifold while assessing stability [MVP16, VP18, SARV19].

Rather than designing controllers for legged systems, other techniques have focused on charac-
terizing region of attraction of walking gaits by performing Sums-of-Squares (SOS) optimiza-
tion [Par00]. These approaches use semi-definite programming to identify a region of attrac-
tion to a steady state locomotion pattern in the state space of a system and can even be used to
design controllers that maximize the size of the region of attraction [PJ04, SVBT14a]. These
safe sets can take the form of reachable sets [KPT16, SVBT14a] or invariant sets in state space
[Wie02, PJ04, PKT17]. However, the representation of each of these sets in the state space restricts
the size of the problem that can be tackled by these approaches. As a result, these SOS-based ap-
proaches have been primarily applied to reduced models of walking robots, ranging from spring
mass models [ZMV17b], to inverted pendulum models [KPT16, TBM17], or to inverted pendulum
models with an offset torso mass [PKT17]. Unfortunately, the differences between these simple
models and real robots make it challenging to extend the generated safety guarantees to the real-
world.

4

1.2.3 Bounding Computation Time During Online Control Synthesis

The difficulty of performing trajectory optimization and control synthesis increases with the di-
mension of the cost and constraints, with the number of constraints, and with the number of optima
[NW06]. Existing methods attempt to solve such optimization problems while minimizing time
and memory usage. These methods broadly fall into the following categories: derivative-based,
convex relaxation, and branch-and-bound.

Derivative-based methods use derivatives (and sometimes Hessians) of the cost and constraint
functions, along with first- or second-order optimality conditions [NW06, §12.3, §12.5], to attempt
to find optimal, feasible solutions to nonlinear problems. These methods can find local minima
rapidly despite high dimension, a large number of constraints, and high degree cost and constraints
[NW06, Chapter 19.8]. However, these methods do not typically converge to global optima without
requiring assumptions on the problem and constraint structure (e.g., [QWY04]).

Convex relaxation methods attempt to find global optima by approximating the original prob-
lem with a hierarchy of convex optimization problems. These methods can be scaled to high-
dimensional problems (up to 10 dimensions), at the expense of limits on the degree and sparse
structure of the cost function; furthermore, they typically struggle to handle large numbers of
constraints, unless the problem has low-rank or sparse structure [RCBL19]. Well-known exam-
ples include the lift-and-project linear program procedure [BCC93], reformulation-linearization
technique [SA90], and Semi-Definite Program (SDP) relaxations [Las01, RCBL19, MLEV19].
By assuming structure such as homogeneity of the cost function or convexity of the domain and
constraints, one can approximate solutions to certain type of problems in polynomial-time, with
convergence to global optima in the limit [DKLP06, LNQY09, LZ10, So11, HLZ10]. Conver-
gence within a finite number of convex hierarchy relaxations is possible under certain assumptions
[Nie13, LTY17].

Branch-and-bound methods perform an exhaustive search over the feasible region. These meth-
ods are typically limited to up to four dimensions, but can handle large numbers of constraints and
high degree cost and constraints. Examples include interval analysis techniques [HW03, VEH94]
and the Bernstein Algorithm (BA) [Gar93, NA11, SS15]. Traditional interval analysis requires cost
and constraint function evaluations in each iteration, and therefore can be computationally slow.
BA, on the other hand, does not evaluate the cost and constraint functions; instead, BA represents
the coefficients of the polynomial cost and constraints in the Bernstein basis, which provides lower
and upper bounds on the polynomial cost and constraints over box-shaped subsets of Euclidean
space by using a subdivision procedure [Gar85, NA07]. However, parallelized implementation or
bounds on the rate of convergence of either interval analysis or BA with constraints has not yet
been shown in the literature. Furthermore, to the best of our knowledge, neither of such methods
has been shown as a practical method for solving problems in real-time robotics applications.

5

1.3 Contributions and Thesis Outline

The goal of this thesis is to help bridge the gap between safety and real-time performance of legged
robots. To address the aforementioned difficulties in optimization, a novel formulation of optimal
control is proposed to achieve a global optima regardless of unknown sequences of transition. To
establish safety guarantees at run-time, sufficient safety conditions are derived and enforced in a
receding horizon trajectory planner. Then, to improve real-time performance, a parallel algorithm
is developed and implemented on GPU, which solves a version of the optimization problem with
provable bounds on computation time and memory usage. Below is a brief outline of this thesis:

Chapter 2 describes how to transform hybrid system optimal control problems into infinite-
dimensional linear programs (LPs) over the space of measures. Subsequently, it describes how
to approximate the solution to these infinite-dimensional LPs using a hierarchy of semi-definite
programs (SDPs) whose solutions are proved to converge to the true optimal solution under mild
assumptions. This approach is proven effective for a variety of extensions to the hybrid system op-
timal control problem. Its performance is compared against state-of-the-art solutions in simulation.
The methods and results of this study were originally presented in [ZMV17a, ZMV19, ZV19].

Chapter 3 constructs a Model Predictive Control (MPC) framework whose feasible solutions
ensure that a planar robot walking on flat ground will not fall over. To design the constraints for
this MPC problem, Chapter 3 describes a set of outputs that are functions of the states of the robot,
which can be used to determine whether a particular gait can be safely tracked by a legged system
without falling. This enables the construction of a simple model whose behavior can predict the
full model’s outputs under the assumption that the discrepancy between those two models can be
bounded. Using this simple model and the associated bounds, one can formulate an N -step safety
condition. This is then incorporated in an online MPC framework to generate parameterized safety
controllers in real-time. Lastly, the proposed approach is validated on a walking example. These
results were presented in [LZG+19].

Chapter 4 develops a parallel solver capable of quickly finding global optima and polynomial
optimization problems up to pre-specified tolerances. This is accomplished by utilizing a special
form of polynomial expansion to find conservative bounds on the values of polynomials over boxes.
By iteratively subdividing each box of interest and eliminating infeasible or sub-optimal regions,
one may continuously narrow down possible locations of global optima with at least a linear rate
of convergence. Moreover, bounds on the computation time and memory usage of this method
are proved. The proposed method is then implemented on a GPU and compared against generic
solvers on various problems.

Chapter 5 extends the MPC framework in Chapter 3 to perform online control synthesis over
a 3D bipedal robot while walking on a flat ground filled with randomly placed obstacles. Safety

6

constraints are enforced by computing a sequence of approximation points via numerical integra-
tion, bounding the distance between these points and the exact solution using interval analysis, and
ensuring safety conditions are satisfied for all points within the error bound. Such safety guaran-
tees are further extended to infinite time by forcing trajectories to reach a pre-specified set at the
end of each planning horizon, after which a controller is assumed to be able to keep the robot bal-
anced in place on two feet. To reduced the computation time needed for the online MPC, a parallel
algorithm is developed. The proposed MPC framework is validated on a variety of scenarios with
different numbers of obstacles, and its performance is compared against a naive MPC.

Finally, Chapter 6 provides a review of the main contributions and results of the thesis and
outline possible directions for further related work.

7

CHAPTER 2

Solving Optimal Control Problems with Guaranteed
Performance

2.1 Introduction
1 A variety of engineering problems require searching for optimal system trajectories while sat-
isfying certain constraints [Ber95]. Despite the numerous applications for these optimal con-
trol problems, they remain challenging to solve. Pontryagin’s maximum principle (PMP)-based
indirect shooting methods can suffer from serious numerical issues; the application of Hamil-
ton–Jacobi–Bellman (HJB) theory usually requires discretizing time and state space, therefore
greatly suffering from the curse of dimensionality. Various numerical methods also exist to solve
the optimal control problem, including direct shooting, collocation, and pseudospectral methods.
Although rendering the optimal control problems more amenable to computation, such approaches
struggle to find global optimizers that satisfy the state and input constraints with high accuracy.

For hybrid systems whose evolution undergoes sudden changes due to satisfaction of state-
dependent conditions, such as in bipeds [WGC+07], automotive sub-systems [HSCN07], aircraft
control [SOS10], and biological systems [EL00], the optimal control problem also seeks the opti-
mal ordering of subsystems visited. Such ordering is formally called sequence of transition. Tech-
nical difficulties arise when the optimal sequence of transition is unknown since derivatives are
not well defined in the usual sense across different subsystems (modes). Recent work has focused
on the development of numerical optimal control techniques for mechanical systems undergo-
ing impacts without specifying the sequence of transition a priori [PB17, PCT14, WG15, YG05].
However, they fail to establish convergence to a global optimal solution in all circumstances, but
rather provide locally optimal results only.

On the other hand, people have found ways to relax the nonlinear optimal control problem for
classical systems and obtain a infinite-dimensional linear program (LP) over the space of measures

1This chapter was previously published in the 2017 American Control Conference [ZMV17a], 2019 American
Control Conference [ZV19], and IEEE Transactions on Automatic Control [ZMV19].

8

[Vin93]. Under mild conditions, the solutions of two formulations are proved to coincide. The
solutions to this infinite-dimensional LP can be further approximated by solving a hierarchy of
semi-definite programs (SDPs) [LHPT08]. Such an approach has proven effective in construction
of a sequence of lower bounds that converges to the true optimal value with guaranteed global
convergence, even in the presence of nonlinear dynamics and states constraints. However, several
challenges remain.

First, the original method proposed in [LHPT08] does not provide a way to recover the optimal
trajectory nor the control law, therefore its utility is strictly limited. Modifications can be made
to construct approximations to the optimal trajectory [CS14] or the control law [HLS08, KHJ16],
but such methods either do not provide convergence guarantees or make strong assumptions about
the problem structure. A reliable, general approach to perform a control synthesis with provable
convergence still needs to be developed.

Second, it has not yet been shown a measure formulation can be similarly established for hybrid
systems. Being unable to model state transitions, the traditional measure for formulation cannot
be directly applied to the hybrid case. Although one could fix the sequence of transition and solve
multiple instances of the measure formulation at once by matching the boundary conditions across
transitions, such an approach scales poorly with respect to the number of transitions and little can
be shown when the sequence is not known a priori.

In this chapter, I develop an algorithm that solves a general form of optimal control of both
classical and hybrid systems with guaranteed convergence to global minima and provide a means
of performing control synthesis without a priori knowledge of the sequence of transition.

2.2 Problem Formulation

This section defines the controlled hybrid systems and formulates the optimal control problem of
interest.

2.2.1 Controlled Hybrid Systems

Motivated by [BGV+15], we define the class of controlled hybrid systems as

Definition 1. A controlled hybrid system is a tupleH = (I, E ,D, U,F ,S,R), where:

• I is a finite set indexing the discrete states ofH;

• E ⊂ I × I is a set of edges, forming a directed graph structure over I;

• D =
∐

i∈I Xi is a disjoint union of domains, where each Xi is a compact subset of Rni and

ni ∈ N;

9

• U is a compact subset of Rm that describes the range of control inputs, where m ∈ N;

• F = {Fi}i∈I is the set of vector fields, where each Fi : R × Xi × U → Rni is a Lipschitz

continuous vector field defining the dynamics of the system on Xi;

• S =
∐

e∈E Se is a disjoint union of guards, where each S(i,i′) ⊂ ∂Xi is a compact, co-

dimensional 1 guard defining a state-dependent transition from Xi to Xi′; and,

• R = {Re}e∈E is a set of continuous reset maps, where each map R(i,i′) : S(i,i′) → Xi′ defines

the transition from guard S(i,i′) to Xi′ .

For convenience, throughout this thesis we refer to these controlled hybrid systems as hybrid
systems, and a vertex within the graph associated with a hybrid system is referred to as a mode.
Though the range space of control inputs are assumed to be the same in each mode, this is not
restrictive since we can always concatenate all the control inputs in different modes. The compact-
ness of each Xi ensures the optimal control problem, defined below, is well-posed. Since the focus
of this chapter is on the optimal control of deterministic hybrid systems, we avoid any ambiguity
during the transition between modes by making the following assumption:

Assumption 2. Guards do not intersect with themselves or the images of reset maps. The con-

trolled vector fields in each mode have a nonzero normal component on the guard for all control

inputs in U .

Next, we define a hybrid trajectory of a hybrid system up to time T > 0 in Fig. 2.1. Step 1
initializes the hybrid trajectory at a given point (x0, i) at time t = 0. Step 3 defines φ to be the
maximal integral curve of Fi under the control u beginning from the initial point. Step 4 defines
the hybrid trajectory on a finite interval as the curve φ with associated index i. As described in
Steps 5 - 7, the hybrid trajectory terminates when it either reaches the terminal time T or hits
∂Xi\

⋃
(i,i′)∈E S(i,i′) where no transition is defined. Steps 8 and 9 define a discrete transition to a

new domain using a reset map where evolution continues again as a classical dynamical system
by returning to Step 3. Note that this definition is a rephrasing of [BGV+15, Fig. 8] and is meant
to formalize what is meant by a solution to a hybrid system. This chapter applies this definition
only to ensure the existence of solutions to hybrid systems. A description of how to implement
this definition can be found in [BGV+15]. The space of such hybrid trajectories is denoted as X .
Note that for any t at which a hybrid trajectory γ is defined, γ(t) = (γλ(γ(t))(t), λ(γ(t))).

Trajectories of hybrid systems can undergo an infinite number of discrete transitions in a finite
amount of time. Since the state of the trajectory after these Zeno behaviors occur may not be well
defined [AZGS06] and because the focus of this chapter is on optimal control for deterministic
hybrid systems, we make the following assumption:

Assumption 3. H has no Zeno trajectories.

10

Require: t = 0, T > 0, i ∈ I, (x0, i) ∈ D, and u : R→ U Lebesgue measurable.
1: Set γ(0) = (x0, i).
2: loop
3: Let I ⊂ [t, T] and φ ∈ AC(I;Xi) such that:

(i) φ̇(s) = Fi(s, φ(s), u(s)) for almost every s ∈ I with respect to the Lebesgue measure
on I with (φ(t), i) = γ(t) and

(ii) for any other φ̂ : Î → Xi satisfying (i), Î ⊂ I .

4: Let t′ = sup I and γ(s) = (φ(s), i) for each s ∈ [t, t′).
5: if t′ = T , or @(i, i′) ∈ E such that φ(t′) ∈ S(i,i′) then
6: Stop.
7: end if
8: Let (i, i′) ∈ E be such that φ(t′) ∈ S(i,i′).
9: Set γ(t′) = (R(i,i′)(φ(t′)), i′), t = t′, and i = i′.

10: end loop

Figure 2.1: The procedure to define a trajectory of hybrid systemH.

2.2.2 Problem Statement

This chapter is interested in finding a (γ, u) satisfying algorithm 2.1 from a given initial condition
x0, that reaches a target set while minimizing a cost function. To formulate this problem, define
the target set, XT ⊂ D, as XT =

∐
i∈I XTi , where XTi is a compact subset of Xi for each i ∈ I.

To avoid any ambiguity, we make the following assumption:

Assumption 4. The target set does not intersect any guards.

Given a T > 0 and an initial point (x0, j) ∈ D, a pair of functions (γ, u) satisfying algorithm
2.1 is called an admissible pair if γ(T) ∈ XT . In this instance, γ is called an admissible trajectory

and u is called an admissible control. The time T at which the admissible trajectory reaches the
target set is called the terminal time. Denote the space of admissible trajectories and controls by
XT and UT , respectively. The space of admissible pairs is denoted as PT ⊂ XT ×UT . Without loss
of generality, we make the following assumption:

Assumption 5. The initial condition is not in any guard.

For any admissible pair (γ, u), the associated cost is defined as:

J(γ, u) =

∫ T

0

hλ(γ(t))

(
t, γλ(γ(t))(t), u(t)

)
dt+

+Hλ(γ(T))

(
γλ(γ(T))(T)

)
+
∑
e∈E

∑
t∈Te(γ)

ce(γλ(γ(t))(t))
(2.1)

11

where hi : [0, T]×Xi×U → R, Hi : Xi → R, and ce : Se → R are measurable functions for each
i ∈ I. In this instance, hi is a mode-dependent cost function, Hi is a mode-dependent terminal
cost, and ce is a guard dependent switching cost.

Our goal is to find an admissible trajectory that minimizes (2.1), which we refer to as Hybrid

Optimal Control Problem (OCP):

inf
(γ,u)∈PT

J(γ, u) (OCP)

The optimal cost of (OCP) is defined as J∗.

2.3 The Hybrid Liouville Equation

This section constructs measures whose support models the evolution of families of trajectories,
an equivalent form of J , and an equivalent form of Algorithm 2.1 in the space of measures. These
transformations make a convex formulation of (OCP) feasible.

Consider the projection γi of a hybrid trajectory γ onto mode i ∈ I. Define the occupation

measure in mode i ∈ I associated with γ, denoted by µi(· | γ) ∈M+([0, T]×Xi), as

µi(A×B | γ) :=

∫ T

0

1A×B(t, γi(t)) dt (2.2)

for all subsets A×B in the Borel σ-algebra of [0, T]×Xi. Note that γi(t) may not be defined for
all t ∈ [0, T], but we use the same notation and let 1A×B(t, γi(t)) = 0 whenever γi(t) is undefined.
The quantity µi(A × B | γ) is equal to the amount of time the graph of the trajectory, (t, γi(t)),
spends in A×B. Define the initial measure, µi0(· | γ) ∈M+(Xi), as

µi0(B | γ) := 1B(γi(0)) (2.3)

for all subsets B in the Borel σ-algebra of Xi; define the terminal measure, µiT (· | γ) ∈M+(XTi),
as

µiT (B | γ) := 1B(γi(T)) (2.4)

for all subsets B in the Borel σ-algebra of XTi .
One can show that the occupation measure, initial measure, and the terminal measure sat-

isfy a linear equation whose solution can model the evolution of a nonlinear dynamical system
[LHPT08]. This result enables one to formulate nonlinear optimal control problems as infinite di-
mensional linear programs [LHPT08, Theorem 2.3]. Unfortunately, the linear equation over mea-
sures is unable to describe the transitions between hybrid modes. However, these transitions can be

12

described using guard measures. Define the guard measure, µS(i,i′)(· | γ) ∈ M+([0, T] × S(i,i′)),
as

µS(i,i′)(A×B | γ) := card{t ∈ A | lim
τ→t−

γi(τ) ∈ B} (2.5)

for all subsets A×B in the Borel σ-algebra of [0, T]×S(i,i′), given any pair (i, i′) ∈ E . The guard
measure counts the number of times a given trajectory passes through the guard.

Next, define the occupation measure in i ∈ I associated with (γ, u), denoted µi(· | γ, u) ∈
M+([0, T]×Xi × U), as

µi(A×B × C | γ, u) :=

∫ T

0

1A×B×C(t, γi(t), u(t)) dt (2.6)

for all subsets A × B × C in the Borel σ-algebra of [0, T] × Xi × U . It is useful to collect the
initial, average, terminal, and guard occupation measures in each mode. That is, define µI0 (· |
γ) ∈ M+(D) as µI0 (·, i | γ) := µi0(· | γ) for each i ∈ I. For convenience, we refer to µI0

as an initial measure and write µi0 when we refer to the i-th slice of µI0 . We define and refer to
µI(· | γ, u) ∈M+([0, T]×D× U), µIT (· | γ, u) ∈M+(XT), and µS(· | γ, u) ∈M+([0, T]×S)

similarly.
Using these definitions, we can rewrite the cost function J :

Lemma 6. Let µI(· | γ, u) and µIT (· | γ) be the occupation measure and terminal measure associ-

ated with the pair (γ, u), respectively. Then, the cost function can be expressed as

J(γ, u) =
∑
i∈I

〈µi(· | γ, u), hi〉+
∑
i∈I

〈µiT (· | γ), Hi〉. (2.7)

Despite the cost function being a nonlinear function of the admissible pair in the space of
functions, the analogous cost function over the space of measures is linear. A similar analogue
holds true for the dynamics of the system. That is, the occupation measure associated with an
admissible pair satisfies a linear equation over measures. To formulate this linear equation, let
Li : C1 ([0, T]×Xi) → C ([0, T]×Xi × U) be a linear operator that acts on a test function v,
defined as

(Liv)(t, x, u) :=
∂v(t, x)

∂t
+

ni∑
k=1

∂v(t, x)

∂[x]k
[Fi(t, x, u)]k (2.8)

for all i ∈ I. Using the dual relationship between measures and functions, we define L′i :

C([0, T]×Xi×U)′ → C1([0, T]×Xi)
′ as the adjoint operator ofLi, satisfying 〈L′iµ, v〉 = 〈µ,Liv〉

for all µ ∈M([0, T]×Xi × U) and v ∈ C1([0, T]×Xi).
Each of these adjoint operators can describe the evolution of trajectories of the system within

each mode [LHPT08]. However, in the case of hybrid systems, trajectories may not just begin

13

evolving within a mode at t = 0. Instead, a trajectory can enter a mode either by starting from
inside it at t = 0 or by being reset into it. Similarly, a trajectory can terminate in a mode either
by reaching the terminal time or by hitting a guard and transitioning. To formalize this, we first
modify reset maps to also act on time by defining R̃(i,i′) : [0, T] × S(i,i′) → [0, T] × Xi′ by
R̃(i,i′)(t, x) = (t, R(i,i′)(x)) for all (i, i′) ∈ E and (t, x) ∈ [0, T]×S(i,i′). To describe trajectories of
a controlled hybrid system using measures, we rely on the following result of [SVBT14b, (16)]:

Lemma 7. Given an admissible pair (γ, u), its initial measure, occupation measure, terminal

measure, and guard measure satisfy the following linear equation over measures:

δ0 ⊗ µi0(· | γ) + L′iµi(· | γ, u) +
∑

(i′,i)∈E

R̃(i′,i)#µ
S(i′,i)(· | γ)

= δT ⊗ µiT (· | γ) +
∑

(i,i′)∈E

µS(i,i′)(· | γ), ∀i ∈ I,
(2.9)

where (2.9) holds in the sense that it is true for all test functions in C1([0, T]×Xi).

One can ask whether the converse relationship holds: does an arbitrary set of measures, µI0 ∈
M+(D), µI ∈ M+([0, T] × D × U), µIT ∈ M+(XT), and µS ∈ M+([0, T] × S), that satisfy
(2.9) correspond to an initial measure, µI0 (· | γ), occupation measure, µI(· | γ, u), terminal mea-
sure, µIT (· | γ), and guard measure, µS(· | γ) for some admissible pair (γ, u)? To answer this
question, consider a family of hybrid trajectories modeled by a non-negative probability measure
ρ ∈ M+(X), and define an average occupation measure ζ i ∈ M+([0, T] × Xi) in each mode
i ∈ I for the family of trajectories as

ζ i(A×B) :=

∫
X
µi(A×B | γ) dρ(γ) (2.10)

for any i ∈ I and A×B in the Borel σ-algebra of [0, T]×Xi; Define the average initial measure

ζ i0, average terminal measure ζ iT , and average guard measure ζS(i,i′) similarly.
To prove the converse of Lemma 7, we define the Hybrid Liouville Equation, whose solution

can be disintegrated into a set of measures that we eventually prove are related to ρ in Theorem 12.

Lemma 8. Let µI0 ∈M+(D), µI ∈M+([0, T]×D×U), µIT ∈M+(XT), and µS ∈M+([0, T]×
S) satisfy the Hybrid Liouville Equation (HLE), which is defined as

δ0 ⊗ µi0 + L′iµi +
∑

(i′,i)∈E

R̃(i′,i)#µ
S(i′,i) = δT ⊗ µiT +

∑
(i,i′)∈E

µS(i,i′) (2.11)

14

for each i ∈ I. Then, each measure µi can be disintegrated as

dµi(t, x, u)=dνiu|t,x(u)dµit,x(t, x)=dνiu|t,x(u)dµ̃ix|t(x)dt (2.12)

where νiu|t,x is a stochastic kernel on U given (t, x) ∈ [0, T]×Xi, µit,x is the (t, x)-marginal of µi,

and µ̃ix|t is a conditional measure on Xi given t ∈ [0, T].

For convenience, denote µ̃ix|t by µix|t and define:

σi :=δ0 ⊗ µi0 +
∑

(i′,i)∈E

R̃(i′,i)#µ
S(i′,i) ,

ηi :=δT ⊗ µiT +
∑

(i,i′)∈E

µS(i,i′)
(2.13)

Using (2.12), HLE can also be written as a non-homogeneous PDE that holds in the sense of
distributions:

∂tµ
i
t,x +Dx · (F̄iµit,x) = σi − ηi, (2.14)

where
F̄i(t, x) :=

∫
U

Fi(t, x, u) dνiu|t,x(u) ∈ conv Fi(t, x, U). (2.15)

Note that even when Fi is Lipschitz continuous, F̄i may not be Lipschitz continuous. By applying
integration by parts, we can write∫ T

0

∫
Xi

(
∂tv(t, x) +∇xv(t, x) · F̄i

)
dµix|t(x) dt

+

∫
[0,T]×Xi
v(t, x) dσi(t, x) =

∫
[0,T]×Xi
v(t, x) dηi(t, x)

(2.16)

for any test function v ∈ C1([0, T]×Xi). We later show in Corollary 10 that σi and ηi capture the
trajectories that enter and leave domain i, respectively.

Next, we prove the converse of Lemma 7 using Theorems 9 and 12. These converse theorems
prove that a solution to the Hybrid Liouville Equation can be identified with a solution to the hybrid
system under certain regularity conditions on the vector fields in each mode. This result enables
us to formulate (OCP) as an optimization problem over measures, as described in Section 2.4. We
start by showing µix|t is related to the solution of the ODE F̄i. As shown in Appendix A, (Theorem
79), when F̄i satisfies certain regularity conditions (e.g., Lipschitz continuity), the relationship
between µix|t and F̄i is clear, but to deal with solutions to a non-smooth ODE, we construct the
notion of evaluation maps that act on the space of absolutely continuous functions. Let Γi :=

15

AC([0, T];Rni) be the space of absolutely continuous functions from [0, T] to Rni endowed with
the norm ‖ · ‖ : γ 7→ |γ(0)|+

∫ T
0
|γ̇(t)| dt. Define an evaluation map et : [0, t]× [t, T]×Γi → Rni

as et(s, τ, γ) = γ(t) on s ≤ t ≤ τ for each t ∈ [0, T]. The evaluation map allows us to establish
the following relationship:

Theorem 9. Let µix|t, σ
i, ηi satisfy the PDE (2.16) for some i ∈ I, where F̄i is defined as in (2.15).

Assume F̄i is pointwise bounded. Then, there exists a measure ρi ∈M+([0, T]× [0, T]× Γi) such

that

(a) ρi is concentrated on the triplets (s, τ, γ), where s ≤ τ , and γ ∈ Γi are solutions of the ODE

γ̇(t) = F̄i(t, γ(t)) for a.e. t ∈ [s, τ].

(b) µix|t = (et)# ρ
i for a.e. t ∈ [0, T].

Proof. See Appendix B.

Theorem 9 establishes a connection between the measure µix|t that solves the PDE (2.16) and
trajectories that satisfy the dynamics in mode i. We next show the start of those trajectories and
terminate in the support of σi and ηi, respectively.

Corollary 10. Let µix|t, σ
i, and ηi satisfy the PDE (2.16) for some i and let F̄i, which is defined in

(2.15), be pointwise bounded. Let ρi be defined as in Theorem 9. Define maps r1, r2 ∈ [0, T] ×
[0, T] × Γi → [0, T] × Rni by r1 : (s, τ, γ) 7→ (s, γ(s)) and r2 : (s, τ, γ) 7→ (τ, γ(τ)). Then,

r1
#ρ

i = σi and r2
#ρ

i = ηi.

Proof. Recall in the proof of Theorem 9, we mollified σi and ηi using a family of smooth mol-
lifiers to obtain smooth measures σiε and ηiε. We also defined a tight family of measures {ρiε}ε ⊂
M+([0, T] × [0, T] × Γi) that converges to ρi in the narrow sense. The connection between each
ρiε in that family and the mollified measures σiε and ηiε was established via measures ρi,+ε and ρi,−ε .

For all ϕ ∈ Cb([0, T]× Rni), it follows from (B.16), (B.4), and (B.3) that∫
[0,T]×[0,T]×Γi

ϕ(s, γ(s)) dρiε(s, τ, γ) =

∫
[0,T]×Rni

ϕ(s, x)σiε(s, x) (2.17)

Since the families {σiε}ε and {ρiε}ε are tight as was shown in the proof of Theorem 9, we may let
ε ↓ 0 to obtain

∫
[0,T]×[0,T]×Γi

ϕ(r1(s, τ, γ)) dρi(s, τ, γ) =
∫

[0,T]×Rni ϕ(s, x)σi(s, x). This is also
true for all measurable functions ϕ because Cb(Rni+1) is dense in L1(σi) [Bog07, Corollary 4.2.2],
as a result r1

#ρ
i = σi. The result for ηi can be proved in a similar manner.

Theorem 9 illustrates that measures satisfying HLE in mode i ∈ I correspond to trajectories
γ ∈ Γi of the convexified inclusion, γ̇(t) ∈ conv Fi(t, γ(t), U), rather than the original specified

16

dynamics within each mode of the system. To ensure that the there is no gap between the original
dynamics and its convexified inclusion, we make the following assumption:

Assumption 11. The set Fi(t, x, U) is compact and convex for all t, x, and i ∈ I.

The above condition is sufficient to ensure that measures satisfying HLE correspond exactly to
trajectories described according to Algorithm 2.1 [Vin93, p. 529]. Assumption 11 is satisfied if,
for example, Fi is control affine and U is compact and convex.

As a consequence of Corollary 10 and Assumption 11, any triplet (s, τ, γ) ∈ spt(ρi) can be
viewed as a trajectory γ in mode i that is well defined on [s, τ] and satisfies (s, γ(s)) ∈ spt(σi),
(τ, γ(τ)) ∈ spt(ηi). Such trajectories in different modes are related by reset maps and can be
combined together to be admissible trajectories for the hybrid system. To illustrate this, we define
an evaluation map that acts on the trajectories of the hybrid system eit : X → Xi as eit(γ) = γi(t)

if λ(γ(t)) = i and eit(γ) = ∅ otherwise for each i ∈ I. We can establish a relationship between
admissible trajectories and measures that satisfy (2.16) for each i:

Theorem 12. Let µix|t, σ
i, and ηi satisfy the PDE (2.16) for some i and let F̄i which is defined in

(2.15) be pointwise bounded. There then exists a non-negative measure ρ ∈M+(X) such that

(a) For any hybrid trajectory γ ∈ spt(ρ), γ is defined on [0, T] and satisfies γ(0) ∈ spt(µI0),

γ(T) ∈ spt(µIT).

(b) For a.e. t ∈ [0, T], µix|t = (eit)#ρ.

(c) If
∑

i∈I µ
i
0(Xi) = 1, then ρ is a probability measure.

(d) If
∑

i∈I µ
i
0(Xi) = 1, then µit,x (resp. µi0, µiT , µSe) is the average occupation measure (resp.

average initial measure, average terminal measure, average guard measure) generated by the

family of admissible trajectories in the support of ρ for each mode i ∈ I and e ∈ E . Moreover,∑
i∈I µ

i
t,x([0, T] × Xi) = T ,

∑
i∈I µ

i
T (XTi) = 1, and

∑
e∈E µ

Se([0, T] × Se) ≤ C for some

constant C < +∞.

Proof. See Appendix C.

Notice in Theorem 12 that if we define µi0 to be Dirac measure supported at x0 if x0 ∈ Xi

or zero otherwise, then spt(ρ) ⊂ XT . Finally, we establish a relationship between the solution
measures and the underlying control input when the dynamics are control-affine, which enables
control synthesis:

Corollary 13. Let U be convex. For each i ∈ I, suppose there exists pointwise bounded functions

fi : R × Xi → Rni and gi : R × Xi → Rni×m such that Fi(t, x, u) = fi(t, x) + gi(t, x)u for all

17

t, x, u ∈ [0, T]×Xi × U . Let νiu|t,x be defined as in (2.12) and let ρ be defined as in Theorem 12.

Then t 7→ (γ(t),
∫
U
u dν

λ(γ(t))
u|t,γλ(γ(t))

(u)) is an admissible pair for all γ ∈ spt(ρ), where

∫
U

u dνiu|t,x(u) :=


∫
U

[u]1 dν
i
u|t,x(u)

...∫
U

[u]m dν
i
u|t,x(u)

 (2.18)

is an m× 1 real vector for each t, x, and i ∈ I.

Proof. For any γ ∈ spt(ρ), γ̇i(t) = fi(t, γi(t)) + gi(t, γi(t)) ·
∫
U
u dνiu|t,γi(t)(u) for a.e. t ∈ [0, T].

Since νiu|t,x is a stochastic kernel and U is convex,
∫
U
u dνiu|t,γi(t)(u) ∈ U for all i ∈ I. Thus

t 7→ (γ(t),
∫
U
u dν

λ(γ(t))
u|t,γλ(γ(t))

(u)) is an admissible pair.

2.4 Infinite Dimensional Linear Program

This section formulates (OCP) as an infinite-dimensional linear program over the space of mea-
sures, proves that its solution coincides with the solution to (OCP), and illustrates how its solution
can be used for control synthesis. To begin, we make the following assumption:

Assumption 14. U is convex and for each i ∈ I, there exists point-wise bounded functions fi :

R × Xi → Rni and gi : R × Xi → Rni×m such that Fi(t, x, u) = fi(t, x) + gi(t, x)u for all

(t, x, u) ∈ [0, T]×Xi × U .

Define the optimization problem (P) as:

inf
Γ

∑
i∈I

〈µi, hi〉+
∑
i∈I

〈µiT , Hi〉+
∑
e∈E

〈µSe , ce〉 (P)

s.t. δ0 ⊗ µi0 + L′iµi +
∑

(i′,i)∈E

R̃(i′,i)#µ
S(i′,i) = δT ⊗ µiT +

∑
(i,i′)∈E

µS(i,i′) , ∀i ∈ I,

∑
i∈I

〈1X0i
, µi0〉 = 1,

µi0, µ
i, µiT ≥ 0, ∀i ∈ I,

µSe ≥ 0, ∀e ∈ E

where the infimum is taken over a tuple of measures Γ = (µI0 , µ
I , µIT , µ

S) ∈M+(X0)×M+([0, T]

×D × U)×M+(XT)×M+([0, T]× S).

18

The dual to problem (P) is given as:

sup
v,w

w (D)

s.t. Livi(t, x) + hi(t, x, u) ≥ 0 ∀(t, (x, i), u) ∈ [0, T]×D × U,

vi(T, x) ≤ Hi(x) ∀(x, i) ∈ XT ,

vi(t, x) ≤ vi′(t, R(i,i′)(x)) + c(i,i′)(x)

∀(t, (x, (i, i′))) ∈ [0, T]× S,

w ≤ vi(0, x) ∀(x, i) ∈ X0,

where the supremum is taken over the tuple (v, w) ∈ C1([0, T]×D)× R and the first and second
constraint are for all i ∈ I and the third constraint is for all i, i′ ∈ E . Again, for notational
convenience, we denote the i ∈ I slice of v using subscript i (i.e. for every i ∈ I and (t, x) ∈
[0, T] × Xi, let vi(t, x) = v(t, x, i)). Using [AN87, Theorem 3.10], we can prove the following
relationship between the primal and dual:

Theorem 15. There is no duality gap between (P) and (D).

Next, we illustrate the (P) is well-posed by proving the existence of an optimal solution:

Lemma 16. If (P) is feasible, the infimum value of (P), denoted by p∗, is attained.

Now we prove that (P) solves (OCP):

Theorem 17. Let (P) be feasible and suppose hi(t, x, ·) is convex for all i ∈ I and (t, x) ∈
[0, T]×Xi. Then (P) solves (OCP), i.e., their optimal values are equal.

By applying the same argument as shown in [ZMV17b, Theorem 21], one can perform control
synthesis:

Theorem 18. Let (P) be feasible and suppose h(t, x, ·) is convex for all i ∈ I and (t, x) ∈ [0, T]×
Xi. Suppose the optimal trajectory γ∗ is unique dt-almost everywhere. Let Γ∗=(µI∗0 , µ

I∗, µI∗T , µ
S∗)

be a vector of measures that achieves the infimum of (P), then the function ũi(t, x) : [0, T]×Xi →
U defined by the Radon-Nikodym derivative

[ũi(t, x)]j :=

∫
U

[u]j dµ
i∗(t, x, u)∫

U
dµi∗(t, x, u)

,∀j ∈ {1, · · · ,m} (2.19)

is an optimal feedback controller for each mode i ∈ I.

19

2.5 Numerical Implementation

We compute a solution to the infinite-dimensional problem (P) via a sequence of finite-dimensional
approximations formulated as semidefinite programs (SDPs). These are generated by representing
the measures in (P) using a truncated sequence of moments and restricting the functions in (D) to
polynomials of finite degree. As illustrated in this section, the solutions to any of the SDPs in this
sequence can be used to synthesize an approximation to the optimal initial condition. To begin, we
make the following assumptions:

Assumption 19. The functions Fi, hi, Hi, and ci are polynomials, that is, [Fi]j ∈ R[t, x], hi ∈
R[t, x], Hi ∈ R[x], and ci ∈ R[x] for all i ∈ I and j ∈ {1, · · · , ni}. X0i , Xi, XTi , and S(i,i′) are

semi-algebraic sets, i.e.,

X0i = {x ∈ Rni | h0ij
≥ 0,∀j ∈ {1, · · · , n0i}},

Xi = {x ∈ Rni | hXij ≥ 0,∀j ∈ {1, · · · , nXi}},

XTi = {x ∈ Rni | hTij ≥ 0,∀j ∈ {1, · · · , nTi}},

U = {u ∈ Rm | hUj ≥ 0,∀j ∈ {1, · · · , nU}},

S(i,i′) = {x ∈ ∂Xi | h(i,i′)j ≥ 0, ∀j ∈ {1, · · · , n(i,i′)}}

(2.20)

for all i ∈ I and (i, i′) ∈ E , where h0ij
, hXij , hTij , hUj , h(i,i′)j ∈ R[x].

Since X0i , Xi, XTi , and S(i,i′) are also compact, note that Putinar’s condition is satisfied by adding
the redundant constraint M − ‖x‖2

2 for large enough M [Las09, Theorem 2.14].
To derive the SDP relaxation, we begin with a few preliminaries. Any polynomial p ∈ Rk[x]

can be expressed in the monomial basis as p(x) =
∑
|α|≤k pαx

α =
∑
|α|≤k pα · (x

α1
1 · · · xαnn) where

α ranges over vectors of non-negative integers such that |α| =
∑n

i=1 αi ≤ k, and we denote
vec(p) = (pα)|α|≤k as the vector of coefficients of p. Given a vector of real numbers y = (yα)

indexed by α, we define the linear functional Ly : Rk[x]→ R as:

Ly(p) :=
∑
α

pαyα (2.21)

Note that when the entries of y are moments of a measure µ, i.e. yα =
∫
xα dµ(x), then 〈µ, p〉 =

Ly(p). If |α| ≤ 2k, the moment matrix, Mk(y), is defined as:

[Mk(y)]αβ = y(α+β) (2.22)

20

Given any polynomial h ∈ Rl[x] with l < k, the localizing matrix, Mk(h, y), is defined as:

[Mk(h, y)]αβ =
∑
|ω|≤l

hωy(ω+α+β). (2.23)

The moment and localizing matrices are symmetric and linear in moments y.

2.5.1 LMI Relaxations and SOS Approximations

A sequence of SDPs approximating (P) can be obtained by replacing constraints on measures
with constraints on moments. Since hi, Hi, and ci are polynomials, the objective function of (P)

can be written using linear functionals as
∑
i∈I

Lyµi (hi) +
∑
i∈I

Ly
µi
T

(Hi) +
∑

(i,i′)∈E
Ly

µ
S(i,i′)

(ci), where

yµi , yµiT , and y
µ
S(i,i′) are the sequence of moments of µi, µiT , and µS(i,i′) , respectively. The equality

constraints in (P) can be approximated by an infinite-dimensional linear system, which is obtained
by restricting to only polynomial test functions: vi(t, x) ∈ R[t, x], for any i ∈ I. The positivity
constraints in (P) can be replaced with semidefinite constraints on moment and localizing matrices,
which guarantees the existence of Borel measures [Las09, Theorem 3.8].

A finite-dimensional SDP is then obtained by truncating the degree of moments and polynomial
test functions to 2k. Let Ξ0 =

∐
i∈I µ

i
0, ΞI =

∐
i∈I µ

i, ΞE =
∐

e∈E µ
Se , ΞT =

∐
i∈I µ

i
T , and

Ξ = Ξ0

⋃
ΞI
⋃

ΞE
⋃

ΞT . Let (yk,ξ) be the sequence of moments truncated to degree 2k for each
(ξ, i) ∈ Ξ, and let yk be a vector of all the sequences (yk,ξ). The equality constraints in (P) can
then be approximated by a finite-dimensional linear system: Ak(yk) = bk. Define the k-th relaxed
SDP representation of (P) as:

inf
∑
i∈I

Lyk,µi (hi) +
∑
i∈I

Ly
k,µi

T

(Hi) +
∑
e∈E

Ly
k,µSe

(ce) (Pk)

s.t. Ak(yk) = bk,

Mk(yk,ξ) � 0 ∀(ξ, i) ∈ Ξ,

MkXij
(hXij , yk,µi) � 0 ∀(j, i) ∈

∐
i∈I
{1, · · · , nXi},

MkUij
(hUj , yk,µi) � 0 ∀(j, i) ∈ {1, ..., nU} × I,

MkSej
(hej , yk,µSe) � 0 ∀(j, e) ∈

∐
e∈E
{1, · · · , ne},

Mk0ij
(h0ij

, yk,µi0) � 0 ∀(j, i) ∈
∐

i∈I
{1, · · · , n0i},

MkTij
(hTij , yk,µiT) � 0 ∀(j, i) ∈

∐
i∈I
{1, · · · , nTi},

Mk−1(hτ , yk,ξ) � 0 ∀(ξ, i) ∈ ΞI
⋃

ΞE

21

where the infimum is taken over yk; hτ = t(T − t), kXij = k − ddeg(hXij)/2e, kUij = k −
ddeg(hUij)/2e, kSej = k−ddeg(hej)/2e, kTij = k−ddeg(hTij)/2e, k0ij

= k−ddeg(h0ij
)/2e, and

� denotes positive semidefiniteness.
The dual of (Pk) is a Sums-of-Squares (SOS) program that is obtained by restricting the opti-

mization space in (D) to the polynomial functions with degree truncated to 2k and then replacing
the non-negativity constraints in (D) with SOS constraints. For notational convenience, we let xi
be the indeterminate that corresponds to Xi. Define Q2k(hTi1 , · · · , hTinTi) ⊂ R2k[xi] to be the set

of polynomials l ∈ R2k[xi] expressible as l = s0 +
∑nTi

j=1 sjhTij for polynomials {sj}
nTi
i=0 ⊂ R2k[xi]

that are sums of squares. Every such polynomial is non-negative on XTi . Similarly, we de-
fine Q2k(h0i1

, · · · , h0in0i

) ⊂ R2k[xi], Q2k(hτ , hXi1 , · · · , hXinXi , hU1 , · · · , hUnU) ⊂ R2k[t, xi], and
Q2k(hτ , h(i,i′)1 , · · · , h(i,i′)n(i,i′)

) ⊂ R2k[t, xi] for each i ∈ I and (i, i′) ∈ E . The k-th relaxed SDP
representation of (D) is given as

sup w (Dk)

s.t. Livi + hi ∈

Q2k(hτ , hXi1 , · · · , hXinXi , hU1 , · · · , hUnU) ∀i ∈ I,

− vi(T, ·) +Hi ∈ Q2k(hTi1 , · · · , hTinTi) ∀i ∈ I,

vi′ ◦ R̃(i,i′) + ci − vi ∈

Q2k(hτ , h(i,i′)1 , · · · , h(i,i′)n(i,i′)
) ∀(i, i′) ∈ E ,

vi(0, ·)− w ∈ Q2k(h0i1
, · · · , h0in0i

) ∀i ∈ I0,

where the supremum is over (vi, w) ∈ R2k[t, xi] × R for all i ∈ I. We prove that these pair
of problems are well-posed, which follows from Slater’s condition (see [BV04]), and that they
converge, which follows from [ZMV17b, Theorem 25]:

Theorem 20. For each k ∈ N, if (Pk) is feasible, then there is no duality gap between (Pk) and

(Dk). Moreover, if p∗k and d∗k denote the infimum of (Pk) and supremum of (Dk), respectively, then

{p∗k}∞k=1 and {d∗k}∞k=1 converge monotonically from below to the optimal value of (OCP).

Next, we describe how to extract a polynomial control law from the solution yk of (Pk). Given
moment sequences truncated to 2k, we choose an approximate polynomial control law ũk,i in each
mode i ∈ I such that the analogue of (2.19) is satisfied, i.e.,∫

[0,T]×Xi
tα0xα[ũk,i]j(t, x)

∫
U

dµi∗k (t, x, u) =

∫
[0,T]×Xi

tα0xα
∫
U

[u]j dµ
i∗
k (t, x, u) (2.24)

for all i ∈ I, j ∈ {1, · · · ,m}, and (α0, α) ∈ N × Nni satisfying
∑n

l=0 αl ≤ k, αl ≥ 0. Here µi∗k

22

is any measure whose truncated moments match y∗µi . In fact, these linear equations written with
respect to the coefficients of [u∗k,i]j are expressible in terms of the optimal solution y∗k,µi . To see
this, define (t, x)-moment matrix of y∗k,µi as:[

M
(t,x)
k (y∗k,µi)

]
(α0,α)(β0,β)

= Ly∗
k,µi

(tα0+β0xα+βu0) (2.25)

for all i ∈ I, and (α0, α,0), (β0, β,0) ∈ N × Nni × {0}m satisfying
∑n

l=0 αl ≤ k, αl ≥ 0,∑n
l=0 βl ≤ k, βl ≥ 0. Also define a vector bjk as

[
bjk(y

∗
k,µi)

]
α

= Ly∗
k,µi

(tα0xα · [u]j) (2.26)

for all j ∈ {1, · · · ,m}, and (α0, α) ∈ N×Nni satisfying
∑n

l=0 αl ≤ k, αl ≥ 0. Direct calculation
shows Equation (2.24) is equivalent as the following linear system of equations:

M
(t,x)
k (y∗k,µi) vec([u∗k,i]j) = bjk(y

∗
k,µi) (2.27)

Finally, we prove the convergence of the sequence of controllers generated by (2.27) by apply-
ing [MVTT14, Theorem 4.5]:

Theorem 21. Let {y∗k,ξ}(ξ,i)∈Ξ be an optimizer of (Pk), and let {µi∗k }i∈I be a set of measures such

that the truncated moments of µi∗k match y∗k,µi for each i ∈ I. For each k ∈ N, let u∗k,i denote

the controller from (2.27), and ũi be the optimal control law in mode i ∈ I from Theorem 18;

then, there exists a subsequence {kl}l∈N ⊂ N such that for all i ∈ I, vi ∈ C1([0, T] × Xi),

and j ∈ {1, · · · ,m}, as l → ∞, the value
∫

[0,T]×Xi vi(t, x)[u∗kl,i]j(t, x) dµi∗t,x;kl
(t, x) converges to∫

[0,T]×Xi vi(t, x) [ũi(t, x)]j dµ
i∗
t,x(t, x).

2.6 Results

This section illustrates the performance of our approach using several examples. Our algorithm
is implemented using MOSEK [ApS17]. The trajectory is obtained by plugging the computed,
saturated control law back into the system dynamics in each mode and simulating forward using
a standard ODE solver with event detection. To provide a thorough comparison, all examples are
also solved by fixing the sequence of transitions and optimizing over each mode with the method
proposed in [LHPT08, ZMV16]. Since the optimal sequence is not known a priori, this method
is then applied over all feasible sequences of bounded total lengths. In addition, all examples are
solved either analytically or using GPOPS-II [PR14] by iterating through a finite set of possible
transitions. Notice that in this latter instance we fix the sequence of transition in each GPOPS-II

23

call and provide an initial guess. All experiments are performed on an Intel Xeon, 144 core, 2.40
GHz, 1056 GB RAM machine. Our code and detailed description of the examples are available
online at https://github.com/pczhao/hybridOCP.git.

2.6.1 Hybridized Double Integrator

We first consider a double integrator with states x = (x1, x2) ∈ R2 and input u ∈ [−1, 1]. We
hybridize this system by dividing the domain into two parts X1 = [0.5, 2] × [−1, 1] and X2 =

[−1, 0.5] × [−1, 1] and with transitions only from mode 1 to mode 2 with an identity reset map
between them. The guard is defined as {0.5} × {[−1,−10−3] ∪ [10−3, 1]}. We solve a Linear
Quadratic Regulator (LQR) problem, where the goal is to drive the system towards (0, 0) while
minimizing the control action. The problem is setup according to Table 2.1. Note that Assumptions
2-5 are satisfied. Our results, which are summarized in Table 2.2, are compared to those generated
by [ZMV16] with the degree of relaxation as 2k = 12 when applied to finite mode sequences of
the total length two. Table 2.2 also describes the results generated by a standard LQR solver which
does not treat the problem as hybrid. This latter result is treated as ground truth. The proposed
method is able to generate tight lower bounds and the optimal sequence of transitions even when
degree of relaxation is low (2k = 6).

2.6.2 Dubins Car Model with Shortcut Path

The next example illustrates our algorithm can work with different dimensions in each mode. Con-
sider a planar Dubins Car model with the states x = (x1, x2, x3) ∈ [−1, 1]× [−1, 1]× [−π/2, π/2]

representing the 2D position and heading angle, and the inputs u = (v, ω) ∈ [10−3, 1] × [−3, 3]

representing the linear and angular velocity. We hybridize this system by dividing the domain into
two parts along the line x2 = 0 and defining an identity reset map. Note that only transitions from
the mode where x2 is greater than or equal to zero to the mode where x2 is less than or equal to zero
are permitted. We also add to the system another one-dimensional mode with dynamics ẋ = −v,
where x ∈ [−1, 1] and v ∈ [10−3, 2]. We connect this mode with the other two modes by defin-
ing S(1,3) = [−1, 1] × {1} × ([−π/2,−10−3] ∪ [10−3, π/2]), R(1,3)(x) = 1, S(3,2) = {−1}, and
R(3,2) = (0.6,−0.8, 0). We are interested in solving an optimal control problem where the goal is
to get to the target position as quickly as possible. To solve this free final time problem, we modify
HLE by substituting δT ⊗ µiT with µiT whose support is in [0, T]×XT , for all i ∈ I. (P) and (D)

can be modified accordingly. Notice that by treating the measure associated with the time-varying
target set as a guard measure without any associated reset map, we can extend Theorems 9 and 12
to show that (P) can solve the free final time problem [LHPT08, Remark 2.1]. The optimal control
problem is defined in Table 2.1 so that Assumptions 2-5 are satisfied.

24

https://github.com/pczhao/hybridOCP.git

Notice the transition sequences “1-2” and “1-3-2” are both feasible in this instance according
to our guard definition, but a direct calculation shows that we arrived at the target point in less time
by taking the “shortcut path” in mode 3. This problem is solved using our algorithm with degrees
of relaxation 2k = 6, 2k = 8, and 2k = 10. As a comparison, we also solved the problem using the
method presented in [ZMV16] with a 2k = 10 degree of relaxation by applying it to each possible
feasible mode sequence that has a maximum length 3, and treats the analytically computed optimal
control as ground truth. The results are compared in Table 2.2. Our algorithm is able to pick the
transition sequence “1-3-2” and approximate the true optimal solution even when 2k = 6.

2.6.3 SLIP Model

o

b

a

l

θ

u

(a) SLIP model

stance phase flight phase

mode 1

(l, l̇, θ, θ̇, a)

mode 2

(a, ȧ, b, ḃ)

mode 3

(a, ȧ, b, ḃ)

α
α

to
uc

hd
ow

n

lif
to

ff

ap
ex

to
uc

hd
ow

n
(b) SLIP locomotion phases and hybrid modes

Figure 2.2: An illustration of the SLIP model (left) and its hybrid modes (right)

The Spring-Loaded Inverted Pendulum (SLIP) is a model that describes the center-of-mass
dynamics of animals and has been used to perform control synthesis for legged robots [HFKG06].
We may simulate the system numerically, but the optimal control problem is still difficult to solve
if the sequence of transition is not known beforehand. We focus on the active SLIP model (Fig.
2.2a), which is an actuated mass-spring physical system, modeled as a point mass, M , a mass-less
spring leg with stiffness k and length l, and a mass-less actuator u. The behavior of such a system
can be fully characterized using 8 variables: leg length l, leg angle θ, horizontal displacement a,
vertical displacement b, and their time derivatives (denoted as l̇, θ̇, ȧ, and ḃ, respectively). The
system states in each of the 3 hybrid modes are defined as shown in Fig. 2.2b. The github repo
describes the physical parameters, dynamics, guards, and reset maps. To ensure that we satisfy

25

Assumptions 2-5, the guard at touch-down is satisfied when ḃ ≤ −10−3, and the guard at lift-off is
satisfied when l̇ ≥ 10−3.

We fix the initial condition, and consider the following two hybrid optimal control problems
for the active SLIP. In the first problem, we maximize the vertical displacement b up to time T =

2.5. In the stance phase, the 1st-order Taylor approximation b = l cos(θ) ≈ l is used. In the
second problem, we define a constant-speed reference trajectory a(t) = vt− 0.5 in the horizontal
coordinate, then try to follow this trajectory with active SLIP up to time T = 3. The optimal
control problems are defined according to Table 2.1. Note that these problems are defined such
that the optimal transition sequences are different in each instance, and some modes are visited
multiple times.

The optimization problems are solved by our algorithm with degrees of relaxation 2k = 4,
2k = 6, and 2k = 8. For the sake of comparison, the same problems are also solved using
the method presented in [ZMV16] and GPOPS-II for all possible, feasible mode sequences of
maximum total length 12. The results are compared in Fig. 2.3 and Table 2.2. The proposed
method is able to generate the optimal sequence of transitions even at low relaxation degrees (e.g.,
2k = 6) while other methods have to search through all possible sequences. In particular, the
proposed method takes an order of magnitude less time to find the optimal sequence of transitions
on both examples when compared to GPOPS-II.

2.7 Conclusion

This chapter proposes a convex approach for solving hybrid optimal control problems by relating
the trajectories of hybrid systems to the solutions of a system of linear equations over measures.
The hybrid optimal control problem is then formulated as an infinite-dimensional LP that does not
require pre-specifying the sequence of possible transitions. A sequence of provably convergent
SDPs to this LP are constructed to approximate the optimal cost from below and synthesize the
optimal control law. Though it does not require pre-specifying the sequence of transitions of the
hybrid system, the proposed method can be difficult to apply when the state space dimension is
high, since the number of decision variables in the SDP grows exponentially with the state space
dimension.

26

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

(a) Maximizing vertical displacement

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

-0.5 0 0.5
0

(b) Tracking constant speed v = 0.1

Figure 2.3: An illustration of the performance of our algorithm on the active SLIP model. The blue
lines are the optimal control computed by GPOPS-II by iterating through all the possible transition
sequences, and the red lines of various saturation are controls generated by our method. As the
saturation increases, the corresponding degree of relaxation increases between 2k = 4 to 2k = 6
to 2k = 8. Fig. 2.3a shows trajectories that maximize vertical displacement, where the optimal
solution goes through three transitions; Fig. 2.3b shows trajectories that track v = 0.1, where the
optimal solution goes through 6 transitions.

27

Table 2.1: The setup for each example problem.

Mode i = 1 i = 2 i = 3

Double
Integrator
LQR

hi x2
1 + x2

2 + 20u2 x2
1 + x2

2 + 20u2

N/A
Hi 0 0

x0 (1, 1) N/A

XTi [0.5 + 10−3, 2]×
[−1, 1]

X2

T 5 or 15

Dubins
Car

hi 1 1 1

Hi 0 0 0

x0 (-0.8,0.8,0) N/A N/A

XTi N/A {0.8} ×
{−0.8}×

[−π/2, π/2]

N/A

T 3

SLIP
Max
jump

hi −x1 −x3 −x3

Hi 0 0 0

x0 N/A N/A (-0.5,0.3,0.2,0)

XTi {x ∈ X1 | x1 ≤
l0 − 10−3}

{x ∈ X2 | x4 ≥
10−3}

{x ∈ X3 |
x3 ≥

l0 cos(α) +
10−3}

T 2.5

SLIP
Track
speed

hi (vt− 0.5− x5)2 (vt− 0.5− x1)2 (vt−0.5−x1)2

Hi 0 0 0

x0 N/A N/A (-0.5,0.3,0.2,0)

XTi {x ∈ X1 | x1 ≤
l0 − 10−3}

{x ∈ X2 | x4 ≥
10−3}

{x ∈ X3 |
x3 ≥

l0 cos(α) +
10−3}

T 3

28

Table 2.2: Numerical results for the proposed algorithm on each example.

Computation
time

Cost from
optimization

Cost from
simulation

Double
Integrator
LQR
T = 5

2k = 6 3.2004[s] 24.9496 24.9908

2k = 8 9.4318[s] 24.9496 24.9908

2k = 12 252.8047[s] 24.9496 24.9914

[ZMV16],
2k = 12

326.1610[s] 24.9496 24.9905

Ground truth N/A 24.9503 N/A

Double
Integrator
LQR
T = 15

2k = 6 3.1583[s] 26.1993 26.3557

2k = 8 9.8637[s] 26.1993 26.3644

2k = 12 219.8932[s] 26.1994 26.3710

[ZMV16],
2k = 12

295.1562[s] 26.1993 26.3694

Ground truth N/A 26.2033 N/A

Dubin’s
Car

2k = 6 67.6682[s] 1.5640 1.5748

2k = 8 956.6177[s] 1.5646 1.5718

2k = 10 1.0654× 104[s] 1.5648 1.5708

[ZMV16],
2k = 10

2.6259× 104[s] 1.5648 1.5708

Ground truth N/A 1.5651 N/A

SLIP
Max
Jump

2k = 4 45.1598[s] -0.6962 -0.5525

2k = 6 584.8139[s] -0.5815 -0.5474

2k = 8 7.7398× 103[s] -0.5776 -0.5545

[ZMV16],
2k = 8

2.1225× 105[s] -0.5737 -0.5728

GPOPS-II 792.9885[s] -0.5735 N/A

SLIP
Track
Speed

2k = 4 40.7036[s] 0.0534 0.2250

2k = 6 565.7164[s] 0.1417 0.1813

2k = 8 1.0263× 104[s] 0.1523 0.1825

[ZMV16],
2k = 8

2.2373× 105[s] 0.1592 0.1718

GPOPS-II 673.5100[s] 0.1626 N/A

29

CHAPTER 3

Real-Time Safe Control for A Planar Bipedal Robot
Model

3.1 Introduction
1 Legged robots are an ideal system to perform locomotion on unstructured terrains. Unfortunately
designing controllers for legged systems to operate safely in such situations has proven challeng-
ing. To robustly traverse such environments, an ideal control synthesis technique for legged robotic
systems should satisfy several requirements.

First, since uncertainties and disturbances may appear during operation, any algorithm for
control synthesis should run in real-time. Second, since modeling contact can be challenging,
any control synthesis technique should be able to accommodate model uncertainty. Third, since
the most appropriate controller may be a function of the environment and given task, a control
synthesis algorithm should optimize over as rich a family of control inputs at run-time as possible.
Finally, since falling can be costly both in time and expense, a control synthesis technique should be
able to guarantee the satisfactory behavior of any constructed controller. As illustrated in Fig. 3.1,
this chapter presents an optimization-based algorithm to design gaits for legged robotic systems
while satisfying each of these requirements.

We begin by summarizing related work with an emphasis on techniques that are able to make
guarantees on the safety of the designed controller. For instance, the Zero-Moment Point approach
[VS72] characterizes the stability of a legged robot with planar feet by defining the notion of the
Zero-Moment Point and requiring that it remains within the robot’s base of support. Though this
requirement can be used to design a controller that can avoid falling at run-time, the gaits designed
by the ZMP approach are static and energetically expensive [Kuo07, WCC+07, Section 10.8].

In contrast, the Hybrid Zero Dynamics approach, which relies upon feedback linearization
to drive the actuated degrees of freedom of a robot towards a lower dimensional manifold, is

1This chapter was previously published in 2020 IEEE International Conference on Robotics and Automation
(ICRA) [LZG+20].

30

able to synthesize a controller which generates gaits that are more dynamic. Though this ap-
proach can generate safety preserving controllers for legged systems in real-time in the presence
of model uncertainty [AGSG14, HXA15, NS15, NS16, NHG+16], it is only able to prove that
the gait associated with a synthesized control is locally stable. As a result, it is non-trivial to
switch between multiple constructed controllers while preserving any safety guarantee. Recent
work has extended the ability of the hybrid zero dynamic approach beyond a single neighborhood
of any synthesized gait [MVP16, VP18, ATJ+17, SARV19]. These extensions either assume full-
actuation [ATJ+17] or ignore the behavior of the legged system off the lower dimensional manifold
[MVP16, VP18, SARV19].

Rather than designing controllers for legged systems, other techniques have focused on char-
acterizing the limits of safe performance by using Sums-of-Squares (SOS) optimization [Par00].
These approaches use semi-definite programming to identify the limits of safety in the state space
of a system as well as associated controllers for hybrid systems [PJ04, SVBT14a]. These safe
sets can take the form of reachable sets [KPT16, SVBT14a] or invariant sets in state space
[Wie02, PJ04, PKT17]. However, the representation of each of these sets in state space restricts
the size of the problem that can be tackled by these approaches and as a result, these SOS-based
approaches have been primarily applied to reduced models of walking robots: ranging from spring
mass models [ZMV17b], to inverted pendulum models [KPT16, TBM17] and to inverted pendu-
lum models with an offset torso mass [PKT17]. Unfortunately the differences between these sim-
ple models and real robots makes it challenging to extend the safety guarantees to more realistic
real-world models.

This chapter addresses the shortcomings of prior work by making the following four contribu-
tions. First, in Section 3.3.1, we describe a set of outputs that are functions of the state of the robot,
which can be used to determine whether a particular gait can be safely tracked by a legged system
without falling. In particular, if a particular gait’s outputs satisfy a set of inequality constraints that
we define, then we show that the gait can be safely tracked by the legged system without falling.
To design gaits over N -steps that do not fall over, one could begin by forward propagating these
outputs via the robot’s dynamics for N -steps. Unfortunately performing this computation can be
intractable due to the high-dimensionality of the robot’s dynamics. To address this challenge, our
second contribution, in Section 3.3.2, leverages the anchor and template framework to construct
a simple model (template) whose outputs are sufficient to predict the behavior of the full model’s
(anchor’s) outputs [FK99] under the assumption that the modeling error between the anchor and
template can be bounded. Third, in Section 3.4.1, we develop an offline method to compute a
gait parameterized forward reachable set that describes the evolution of the outputs of the simple
model.

Similar to recently developed work on motion planning for ground and aerial vehicles [MT17a,

31

HCH+17, KVB+18, KHV19], one can then require that all possible outputs in the forward reach-
able set satisfy a family of conditions that we define to ensure that the robot does not fall over
during the N -steps. Finally, in Section 3.4.2, we describe how to incorporate these conditions
in a Model Predictive Control (MPC) framework that are sufficient to ensure N -step walking
safely. Note, to simplify exposition, this chapter focuses on an example implementation on a
14-dimensional model of the robot RABBIT that is described in Section 3.2. The remainder of
this chapter is organized as follows. Section 3.5 demonstrates the performance of the proposed
approach on a walking example and Section 3.6 concludes the chapter.

3.2 Preliminaries

This section introduces the notation, the dynamic model of the RABBIT robot, and a Simplified
Biped Model (SBM) that are used throughout the remainder of this paper. The following notation
is adopted in this manuscript. All sets are denoted using calligraphic capital letters. Let R denote
the set of real numbers, and let N+ denote the collection of all non-negative integers. Give a set
A ⊂ Rn for some n ∈ N+, let C1(A) denote the set of all differentiable continuous functions from
A to R whose derivative is continuous and let λA denote the Lebesgue measure which is supported
on A.

3.2.1 RABBIT Model (Anchor)

This chapter considers the walking motion of a planar 5-link model of RABBIT [CAA+03]. The
walking motion of the RABBIT model consists of alternating phases of single stance (one leg in
contact with the ground) and double stance (both legs in contact with the ground). While in single
stance, the leg in contact with the ground is called the stance leg, and the non-stance leg is called
the swing leg. The double stance phase is instantaneous. The configuration of the robot at time t is
q(t) := [qh(t), qv(t), q1(t), q2(t), q3(t), q4(t), q5(t)]> ∈ Q ⊂ R7, where (qh(t), qv(t)) are Cartesian
position of the robot hip; q1(t) is the torso angle relative to the upright direction; q2(t) and q4(t)

are the hip angles relative to stance and swing leg, respectively; and q3(t) and q5(t) are the knee
angles. The joints (q2, q3, q4, q5) are actuated, and q1 is an underactuated degree of freedom. Let
θ(q) := q1 + q2 + q3/2 denote the stance leg angle, and let φ(q) := q1 + q4 + q5/2 denote the
swing leg angle. We refer to the configuration when the robot hip is right above the stance foot, i.e.
θ = π, as mid-stance. We refer to the motion between the i-th and (i + 1)-st swing leg foot touch
down with the ground as the i-th step.

Using the method of Lagrange, we can obtain a continuous dynamic model of the robot during

32

swing phase:
ȧ(t) = f(a(t), u(t)) (3.1)

where a(t) = [q>(t), q̇>(t)]> ∈ TQ ⊂ R14 denotes the tangent bundle ofQ, u(t) ∈ U , U describes
the permitted inputs to the system, and t denotes time. We model the RABBIT as a hybrid system
and describe the instantaneous change using the notation of a guard and a reset map. That is,
suppose (θ(q(t)), cfoot(q(t))) denotes the stance leg angle and the vertical position of the swing
foot relative to the stance foot, respectively, given a configuration q(t) at time t. The guard G
is {(b, b′) ∈ TQ | π/2 < θ(b) < 3π/2, cfoot(b) = 0 and ċfoot(b, b

′) < 0}. Notice the force of
the ground contact imposes a holonomic constraint on stance foot position, which enables one to
obtain a reset map: [WCC+07, Section 3.4.2]:

q̇+(t) = ∆
(
q̇−(t)

)
, (3.2)

where ∆ describes the relationship between the pre-impact and post impact velocities. More details
about the definition and derivation of this hybrid model can be found in [WCC+07, Section 3.4].

To simplify exposition, this chapter at run-time optimizes over a family of reference gaits that
are characterized by their average velocity and step length. These reference gaits are described by
a vector of control parameters P (i) =

(
p1(i), p2(i)

)
∈ P for all i ∈ N, where p1(i) denotes the

average horizontal velocity and p2(i) denotes the step length between the i-th and (i + 1)-st mid-
stance position. Note P is compact. These reference gaits are generated by solving a finite family
of nonlinear optimization problems using FROST in which we incorporate p1(i), p2(i), and peri-
odicity as constraints, and minimize the average torque squared over the gait period [HA17]. Each
of these problems yields a reference trajectory parameterized by P (i) and interpolation is applied
over these generated gaits to generate a continuum of gaits. Given a control parameter, a control
input into the RABBIT model is generated by tracking the corresponding reference trajectories
using a classical PD controller.

Next, we define a solution to the hybrid model as a pair (I, a), where I = {Ii}Ni=0 is a hybrid

time set with Ii being intervals in R, and a = {ai(·)}Ni=0 is a finite sequence of functions with
each element ai(·) : Ii → TQ satisfying the dynamics (3.1) over Ii where N ∈ N [LST12,
Definitions 3.3, 3.4, 3.5]. Denote each Ii := [τ+

i , τ
−
i+1] for all i < N . τi corresponds to the time

of the transition between (i − 1)-th to i-th step. We let τ−i correspond to the time just before the
transition and and τ+

i correspond to the time just after the transition. Since transitions are assumed
to be instantaneous, τi = τ−i = τ+

i if all values exist. When a transition never happens during the i-
th step, we denote τ−i−1 = +∞. Note when τi+1 <∞, ai(τ−i+1) ∈ G and ai+1(τ+

i+1) ∈ ∆(ai(τ
−
i+1)).

33

3.2.2 Simplified Biped Model (Template)

As we show in Section 3.5, performing online optimization with the full RABBIT model is in-
tractable due to the size of its state space. In contrast, performing online optimization with the
Simplified Biped Model (SBM) adopted from [WKW08] is tractable. This model consists of a
point-mass M and two mass-less legs each with a constant length l. The configuration of the SBM
at time t is described by the stance leg angle, θ̂, and the swing leg angle, φ̂. The guard is the set
of configurations when θ̂ + φ̂ = 2π. The swing leg swings immediately to a specified step length.
During the swing phase, one can use the method of Lagrange to describe the evolution of the con-
figuration as a function of the current configuration and the input. Subsequent to the instantaneous
double stance phase, an impact with the ground happens with a coefficient of restitution of 0. We
denote a hybrid execution of the SBM as a pair (Î, â) where Î = {Îi}Ni=0 is a hybrid time set with
Îi := [τ̂+

i , τ̂
−
i+1] and â = {âi(·)}Ni=0 is a finite sequence of solutions to the SBM’s equations of

motion.

3.3 Outputs to Describe Successful Walking

During online optimization, we want to optimize over the space of parameterized inputs while
introducing a constraint to guarantee that the robot does not fall over. This section first formalizes
what it means for the RABBIT model to walk successfully without falling over. Unfortunately
due to the high-dimensionality of the RABBIT model, implementing this definition directly as
a constraint during online optimization is intractable. To address this problem, in Section 3.3.1
defines a set of outputs that are functions of the state of RABBIT and proves that the value of these
outputs can determine whether RABBIT is able to walk successfully. Subsequently in Section 3.3.2
we define a corresponding set of outputs that are functions of the state of the SBM and illustrate
how their values can be used to determine whether RABBIT is able to walk successfully.

To define successful walking on RABBIT, we begin by defining the time during step i at which
mid-stance occurs (i.e., the largest time t at which θ(q(t)) = π during Ii) as

tMS
i :=


+∞, if θ(q(t)) < π ∀t ∈ Ii,

−∞, if θ(q(t)) > π ∀t ∈ Ii,

max{t ∈ Ii | θ(q(t)) = π}, otherwise.

(3.3)

Note if mid-stance is never reached during step i, then the mid-stance time is defined as plus or
minus infinity depending upon if the hip-angle remains less than π or greater than π during step i,
respectively. Using this definition, we formally define successful walking for the RABBIT model

34

as:

Definition 22. The RABBIT model walks successfully in step i ∈ N if

1. tMS
i 6= ±∞,

2. π/2 < θ(q(t)) < 3π/2 for all t ∈ Ii, and

3. τ−i+1 < +∞.

To understand this definition, note that the first requirement ensures that mid-stance is reached,
the second requirement ensures that the hip remains above the ground, and the final requirement
ensures that the swing leg actually makes contact with the ground. Though satisfying this definition
ensures that RABBIT takes a step, enforcing this condition directly during optimization can be
cumbersome due to the high dimensionality of the RABBIT dynamics.

3.3.1 Outputs to Describe Successful RABBIT Walking

This subsection defines a set of discrete outputs that are functions of the state of RABBIT model
and illustrates how they can be used to predict failure. We begin by defining another time variable
t0i :

t0i :=


τ+
i , if θ̇(q(t), q̇(t)) < 0 ∀t ∈ Ii,

τ−i+1, if θ̇(q(t), q̇(t)) > 0 ∀t ∈ Ii,

max{t ∈ Ii | θ̇(q(t), q̇(t)) = 0}, otherwise.

(3.4)

Note t0i is defined to be the last time in Ii when a sign change of θ̇ occurs; when a sign change does
not occur, t0i is defined as an endpoint of Ii associated with the sign of θ̇.

We first define an output, y1 : N→ R that can be used to ensure that tMS
i 6= +∞:

y1(i) :=


θ̇(q(tMS

i), q̇(tMS
i)), if tMS

i 6= ±∞,

−
√

2g(lst(t0i)− qv(t0i))/lst(t
0
i), if tMS

i = +∞,

1 if tMS
i = −∞,

(3.5)

where g is gravity and lst(t
0
i) is the stance leg length at time t0i . Note that y1(i) is the hip angular

velocity when the mid-stance position is reached during the i-th step. When the mid-stance position
is not reached,−y1(i) represents the additional hip angular velocity needed to reach the mid-stance
position. In particular, notice tMS

i 6= +∞ whenever y1(i) ≥ 0 .

35

Next, we define an output y2 : N→ R that can be used to ensure that tMS
i 6= −∞:

y2(i) :=

φ(q(τ−i+1)), if τ−i+1 < +∞,

2π, otherwise.
(3.6)

Note, y2(i) is the swing leg angle at touch-down at the end of the i-th step; if touch-down does not
occur, y2(i) is defined as 2π. Recall φ(q(τ−i+1)) = θ(q(τ+

i+1)), so if y2(i) ≤ π, it then follows from
(3.3) and (3.6) that tMS

i+1 6= −∞ and τ−i+1 < +∞. Fig. 3.2 illustrates the behavior of y1 and y2.
We now define our last two outputs y3, y4 : N → R ∪ {−∞,+∞} that can be used to ensure

that the hip stays above the ground:

y3(i) :=

inf{θ(q(t)) | t ∈ [tMS
i , tMS

i+1]}, if tMS
i+1 , t

MS
i ∈ R,

−∞, otherwise.
(3.7)

y4(i) :=

sup{θ(q(t)) | t ∈ [tMS
i , tMS

i+1]}, if tMS
i+1 , t

MS
i ∈ R,

+∞, otherwise.
(3.8)

Finally, we let Y := R× R× (R ∪ {−∞,+∞})× R.
The outputs are defined based on the observation that the hip usually has forward speed (e.g.

moving forward, rather than falling backwards) at mid-stance and appears between thee two legs
at touch-down when the RABBIT model walks safely. Specifically, y1 represents the hip angular
velocity at mid-stances and y2 represents the swing leg angle at touch-downs. y3 and y4 are defined
as the maximum and minimum stance leg angles between adjacent mid-stances, which are used to
indicate whether the hip hits the ground.

Using these definitions, we can prove the following theorem that constructs a sufficient condi-
tion to ensure successful walking by RABBIT.

Theorem 23. Suppose that the 0-th step can be successfully completed (i.e. τ+
0 and tMS

0 are finite,

inf{θ(q(t)) | t ∈ [τ+
0 , t

MS
0]} > π/2, and sup{θ(q(t)) | t ∈ [τ+

0 , t
MS
0]} < 3π/2)). Suppose

y1(i) ≥ 0, y2(i) ≤ π, y3(i) > π/2 and y4(i) < 3π/2 for each i ∈ {0, · · · , N}, then the robot

walks successfully at the i-th step for each i ∈ {0, · · · , N}.

Proof. Notice y1(i) ≥ 0 ⇒ tMS
i 6= +∞ and y2(i) ≤ π ⇒ tMS

i+1 6= −∞ for each i ∈ {1, · · · , N}.
By induction we have tMS

i is finite ∀i ∈ {1, · · · , N}. y2(i) ≤ π < 2π implies that τ−i+1 < +∞. By
using the definitions of y3 and y4, one has that the robot walks successfully in the i-th step based
on Definition 22.

36

3.3.2 Approximating Outputs Using the SBM

Finding an analytical expression describing the evolution of each of the outputs can be challenging.
Instead we define corresponding outputs

ŷ(i) :=
(
ŷ1(i), ŷ2(i), ŷ3(i), ŷ4(i)

)
∈ Y (3.9)

for SBM. Importantly, the dynamics of each of these corresponding outputs can be succinctly
described.

As we did for the RABBIT model, consider the following set of definitions for the SBM:

t̂MS
i :=


+∞, if θ̂(t) < π ∀t ∈ Îi,

−∞, if θ̂(t) > π ∀t ∈ Îi,

max{t ∈ Îi | θ̂(t) = π}, otherwise.

(3.10)

t̂0i :=


τ̂+
i , if ˙̂

θ(t) < 0 ∀t ∈ Îi,

τ̂−i+1, if ˙̂
θ(t) > 0 ∀t ∈ Îi,

max{t ∈ Îi | ˙̂
θ(t) = 0}, otherwise.

(3.11)

ŷ1(i) :=


˙̂
θ(t̂MS

i), if t̂MS
i 6= ±∞

−
√

2g(l(1 + cos(θ̂(t̂0i))))/l, if t̂MS
i = +∞

1 if t̂MS
i = −∞,

(3.12)

ŷ2(i) :=

φ̂(τ̂−i+1), if τ̂−i+1 < +∞,

2π, otherwise.
(3.13)

ŷ3(i) :=

inf{θ̂(t) | t ∈ [t̂MS
i , t̂MS

i+1]}, if t̂MS
i+1 , t̂

MS
i ∈ R,

−∞, otherwise.
(3.14)

ŷ4(i) :=

sup{θ̂(t) | t ∈ [t̂MS
i , t̂MS

i+1]}, if t̂MS
i+1 , t̂

MS
i ∈ R,

+∞, otherwise.
(3.15)

The discrete-time dynamics of each of these outputs of SBM can be described by the following

37

difference equations:
ŷ1(i+ 1) = fŷ1

(
ŷ1(i), P (i)

)
ŷ2(i) = fŷ2

(
P (i)

)
ŷ3(i) = fŷ3

(
ŷ1(i), P (i)

)
ŷ4(i) = fŷ4

(
ŷ1(i), P (i)

) (3.16)

for each i ∈ N, ŷ(i) ∈ Y , and P (i) ∈ P . Such functions fŷ1 , fŷ2 , fŷ3 and fŷ4 can be generated
using elementary mechanics 2.

To describe the gap between the discrete signals y and ŷ we make the following assumption:

Assumption 24. For any sequence of control parameters, {P (i)}i∈N , and corresponding se-

quences of outputs, {y1(i), y2(i), y3(i), y4(i)}i∈N and {ŷ1(i), ŷ2(i), ŷ3(i), ŷ4(i)}i∈N, generated by

the RABBIT dynamics and (3.16), respectively, there exists bounding functions B1, B1 : R×P →
R, B2 : P × R× P → R, and B3, B4 : R× P → R satisfying

B1

(
y1(i), P (i)

)
≤ y1(i+ 1)− ŷ1(i+ 1) ≤ B1

(
y1(i), P (i)

)
(3.17)

y2(i)− ŷ2(i) ≤ B2

(
P (i− 1), y1(i), P (i)

)
(3.18)

y3(i)− ŷ3(i) ≥ B3

(
y1(i), P (i)

)
(3.19)

y4(i)− ŷ4(i) ≤ B4

(
y1(i), P (i)

)
. (3.20)

In other words, if y1(i) = ŷ1(i), then B1, B1, B2, B3, and B4 bound the maximum possible
difference between (y1(i+ 1), y2(i), y3(i), y4(i)) and (ŷ1(i+ 1), ŷ2(i), ŷ3(i), ŷ4(i)). Though we do
not describe how to construct these bounding functions here due to space limitations, one could
apply SOS optimization to generate them [SYA19] or bound the dynamics of the system [KHV19].
Note, constructing such a bound precisely using SOS optimization can be challenging due to the
high-dimensionality of the full-order model. However, several papers have proposed techniques
that have begun to address these scaling challenges while applying SOS optimization [AM14,
KGNSZ19, PY19, TCHL19]. To simplify further exposition, we define the following:

B(y1(i), P (i)) := [fŷ1

(
y1(i), P (i)

)
+B1

(
y1(i), P (i)

)
,

fŷ1

(
y1(i), P (i)

)
+B1

(
y1(i), P (i)

)
]

(3.21)

for all (y1(i), P (i)) ∈ R × P . In particular, it follows from (3.17) that for any sequence of con-
trol parameters, {P (i)}i∈N , and corresponding sequences of outputs, {y1(i)}i∈N generated by the
RABBIT dynamics, y1(i+ 1) ∈ B

(
y1(i), P (i)

)
for all i ∈ N.

2A derivation can be found at: https://github.com/pczhao/TA_GaitDesign/blob/master/
SBM_dynamics.pdf

38

https://github.com/pczhao/TA_GaitDesign/blob/master/SBM_dynamics.pdf
https://github.com/pczhao/TA_GaitDesign/blob/master/SBM_dynamics.pdf

3.4 Enforcing N-Step Safe Walking

This section proposes an online MPC framework to design a controller for the RABBIT model that
can ensure successful walking for N -step. In fact, when N = 1 one can directly apply Theorem 23
and Assumption 24 to generate the following inequality constraints over y1(i), P (i− 1) and P (i)

to guarantee walking successfully from the i-th to the (i+ 1)-th mid-stance:

fŷ1

(
y1(i), P (i)

)
+B1

(
y1(i), P (i)

)
≥ 0, (3.22)

fŷ2

(
P (i)

)
+B2

(
P (i− 1), y1(i), P (i)

)
≤ π, (3.23)

fŷ3

(
y1(i), P (i)

)
+B3

(
y1(i), P (i)

)
> π/2, (3.24)

fŷ4

(
y1(i), P (i)

)
+B4

(
y1(i), P (i)

)
< 3π/2. (3.25)

Unfortunately, to construct a similar set of constraints when N > 1, one has to either compute
(y1(i+M), y2(i+M), y3(i+M), y4(i+M)) for each 1 ≤M ≤ N , which can be computationally
taxing, or one can apply (3.17) recursively to generate an outer approximation to y1(i+M) for each
1 ≤M ≤ N and then apply the remainder of Assumption 24 to generate an outer approximation to
y2(i+M), y3(i+M), and y4(i+M) for each 1 ≤M ≤ N . In the latter instance, one would need
the entire set of possible values for the outputs to satisfy conditions in Theorem 23 from the i-th
step to the (i + N)-th step to ensure N -step safe walking. This requires introducing set inclusion
constraints that can be cumbersome to enforce at run-time. To address these challenges, Section
3.4.1 describes how to compute in an offline fashion, an N -step Forward Reachable Set (FRS)
that captures all possible outcomes for the output y1 from a given initial state and set of control
parameters for up to N steps. Subsequently, Section 3.4.2 illustrates how to write down N -step
successful walking conditions on outputs (y2, y3, y4) and set up an MPC framework to update gait
parameters for RABBIT using nonlinear program with set inclusion constraints.

3.4.1 Forward Reachable Set

Letting Y1 ⊂ R be compact, we define the N -step FRS of the output y1:

Definition 25. The N -step FRS of the output beginning from
(
y1(i), P (i)

)
∈ Y1 × P for i ∈ N

39

and for N ∈ N is defined as

WN

(
y1(i), P (i)

)
:=

i+N⋃
n=i+1

{
y1(n) ∈ Y1 | ∃P (i+ 1), . . . ,

P (n− 1) ∈ P such that ∀j ∈ {i, . . . , i+ n− 1},

y1(j + 1) is generated by the RABBIT

dynamics from y1(j) under P (j)
}

(3.26)

In other words, given a fixed output y1(i) and the current control parameter P (i), the FRSWN

captures all the outputs y1(j) that can be reached within N steps, provided that all subsequent
control parameters are contained in a set P . Since WN is the union of all possible y1 within the
next N steps, it follows that:

Lemma 26.
WM

(
y1(i), P (i)

)
⊆ WN

(
y1(i), P (i)

)
∀1 ≤M ≤ N (3.27)

As a result of Lemma 26, to predict the behavior of RABBIT system over N steps, it is unnec-
essary to compute distinct FRS-es for each of the next N steps. Instead one only needs to compute
a single FRS.

To compute an outer approximation of the FRS, inspired by [HK13], one can solve the follow-
ing infinite-dimensional linear problem over the space of functions:

inf
wN ,v1,··· ,vN

∫
Y1×P×Y1

wN(x1, x2, x3) dλY1×P×Y1 (FRSopt)

s.t. v1(x1, x2, x3) ≥ 0, ∀x3 ∈ B(x1, x2)

∀(x1, x2) ∈ Y1 × P

vζ+1(x1, x2, x4) ≥ vζ(x1, x2, x3), ∀ζ ∈ {1, 2, · · · , N − 1}

∀x4 ∈ B(x3, x5)

∀(x1, x2, x5) ∈ Y1 × P × P

wN(x1, x2, x3) ≥ 0, ∀(x1, x2, x3) ∈ Y1 × P × Y1

wN(x1, x2, x3) ≥ vζ(x1, x2, x3) + 1, ∀ζ = 1, 2, · · · , N

∀(x1, x2, x3) ∈ Y1 × P × Y1

where the sets Y1 and P are given, and the infimum is taken over an (N + 1)-tuple of continuous
functions (wN , v1, · · · , vN) ∈ (C1(Y1 × P × Y1;R))

N+1. Note that only the SBM’s dynamics
appear in this program via B(·, ·).

Next, we prove that the FRS is contained in the 1-superlevel set of all feasible w’s in (FRSopt):

40

Lemma 27. Let (wN , v1, · · · , vN) be feasible functions to (FRSopt), then the following condition

is true for all
(
y1(i), P (i)

)
∈ Y1 × P:

WN

(
y1(i), P (i)

)
⊆
{
x3 ∈ Y1 | wN

(
y1(i), P (i), x3

)
≥ 1
}
. (3.28)

Proof. Let (wN , v1, · · · , vN) be feasible functions to (FRSopt). Substitute an arbitrary y1(i) ∈ Y1

and P (i) ∈ P into x1 and x2, respectively. Suppose µ ∈ WN

(
y(i), P (i)

)
, then there exists a

natural number n ∈ [i+1, i+N] and a sequence of control parameters P (i+1), · · · , P (n−1) ∈ P ,
such that y1(j + 1) ∈ B

(
y1(j), P (j)

)
for all i ≤ j ≤ n− 1 and µ = y1(n).

We prove the result by induction. Let x3 = y1(i+1) ∈ B
(
y1(i), P (i)

)
. It then follows from the

first constraint of (FRSopt) that v1

(
y1(i), P (i), y1(i+1)

)
≥ 0. Now, suppose vζ

(
y1(i), P (i), y1(i+

ζ)) ≥ 0 for some 1 < ζ ≤ n − i − 1. In the second constraint of (FRSopt), let x3 = y1(i + ζ),
x4 = y1(i+ζ+1) ∈ B

(
y1(i+ζ), P (i+ζ)

)
, and x5 = P (i+ζ) ∈ P ′, then vζ+1

(
y1(i), P (i), y1(i+

ζ + 1)
)
≥ 0. By induction, we know vN

(
y1(i), P (i), y1(n)

)
≥ 0. Using the fourth constraint

of (FRSopt), let x3 = µ = y1(n), and we get wN
(
y1(i), P (i), µ

)
≥ 1. Therefore the result

follows.

Though we do not describe it here due to space restrictions, a feasible polynomial solution to
(FRSopt) can be computed offline by making compact approximation of Y1 and applying Sums-
of-Squares programming [ZMV17a, MLV17].

3.4.2 N-step Successful Walking and MPC

To ensure safe walking through N -steps beginning at step i, we require several set inclusions to be
satisfied during online optimization based on Theorem 23. First, we require thatWN

(
y1(i), P (i)

)
⊆ [0,∞), which sufficiently guarantee y1(i) ≥ 0 for each i ≤ N . Since we cannot compute
WN

(
y1(i), P (i)

)
exactly, from Lemma 27 we instead can require that the 1-superlevel set of wN

is a subset of [0,∞).
With the help of the FRS, N -step successful walking conditions on (y2, y3, y4) can be guaran-

teed in a fashion similar to (3.23), (3.24), (3.25) if

fŷ2

(
P (i+M)

)
+B2

(
P (i+M − 1), y1(i+M), P (i+M)

)
≤ π, (3.29)

fŷ3

(
y1(i+M), P (i+M)

)
+B3

(
y1(i+M), P (i+M)

)
> π/2, (3.30)

fŷ4

(
y1(i+M), P (i+M)

)
+B4

(
y1(i+M), P (i+M)

)
< 3π/2. (3.31)

hold for all y1(i + M) ∈ WM(y1(i), P (i)), 1 ≤ M ≤ N . Applying Lemma 26, one can in-
stead enforce (3.29), (3.30), (3.31) for all y1(i + M) ∈ WN(y1(i), P (i)) to avoid computing

41

WM(y1(i), P (i)) for each 1 ≤M < N .
We then use a MPC framework to select gait parameter for RABBIT by solving the following

nonlinear program:

min
P (i)

...
P (i+N−1)

r (y(i), P (i), P (i+ 1), · · · , P (i+N − 1)) (OL)

s.t. P (i), P (i+ 1), · · · , P (i+N − 1) ∈ P

fŷ2

(
P (i)

)
+B2

(
P (i− 1), y1(i), P (i)

)
≤ π

fŷ3

(
y1(i), P (i)

)
+B3

(
y1(i), P (i)

)
> π/2

fŷ4

(
y1(i), P (i)

)
+B4

(
y1(i), P (i)

)
< 3π/2

WN(y1(i), P (i)) ⊆ [0,∞)

fŷ2

(
P (i+M)

)
+B2

(
P (i+M − 1), y1(i+M), P (i+M)

)
≤ π,

if y1(i+M) ∈ WN(y1(i), P (i)), 1 ≤M ≤ N − 1

fŷ3

(
y1(i+M), P (i+M)

)
+B3

(
y1(i+M), P (i+M)

)
> π/2,

if y1(i+M) ∈ WN(y1(i), P (i)), 1 ≤M ≤ N − 1

fŷ4

(
y1(i+M), P (i+M)

)
+B4

(
y1(i+M), P (i+M)

)
< 3π/2,

if y1(i+M) ∈ WN(y1(i), P (i)), 1 ≤M ≤ N − 1

where r ∈ C1(Y ×PN ;R) is any user specified cost function. Note that the last four constraints in
(OL) are set inclusion constraints. These can be difficult to implement these directly. Howeveer,
one can conservatively represent these set inclusion constraints by the 0-super level set of a set of
polynomials by using the generalized S-procedure described in Section 2.6.3 of [BEGFB94] and
SOS optimization [ZMV17a, MLV17]. Note that this set of polynomial functions to conservatively
represent these set inclusion constraints can be generated offline.

Notice that (OL) is solved at the i-th mid-stance and only the optimal P (i) is applied to the
RABBIT and the problem is then solved again for the (i+ 1)-st step. The constraints of (OL) lead
to the following theorem:

Theorem 28. Suppose that RABBIT is at the i-th mid-stance, then tracking the gait parameters

associated with any feasible solution to (OL) ensures that RABBIT can walk successfully for the

next N -steps.

42

3.5 Results

To illustrate that the proposed method is able to guarantee safe walking performance online, we
evaluate the performance of our method when it is tasked with tracking a randomly generated
speed sequence. In each trial, the RABBIT model is required to track a randomly generated speed
sequence that holds still for the first 4 steps and changes to a different value starting from the 5th
step, i.e. a step function. The speed sequence is restricted to be in a range [0.2, 2]. We repeat
this experiment on 300 randomly generated speed sequences. The space of control parameter is
restricted to be P = [0.25, 2] × [0.15, 0.7] on which the gait library is generated. The RABBIT
model is initialized with the gait whose speed is closest to the initial value of the desired speed
sequence in each trial. The control parameter can only be updated at the mid-stance of each step.
Our MATLAB implementation of the experiments can be found at https://github.com/
pczhao/TA_GaitDesign.git.

In the proposed method, the cost function of (FRSopt) is set to be the weighted Euclidean norm
of the difference between the predicted speeds and the desired speeds within the next 3 steps. Note
N = 3. We compute an outer approximation to the (FRSopt) using the commercial solver MOSEK
on a machine with 144 64-bit 2.40GHz Intel Xeon CPUs and 1 Terabyte memory. To create the
bounding functions that satisfy Assumption 24, we employ simulation. In particular, we initialized
the RABBIT model randomly twenty thousand times and varied the control parameter randomly
for 5 steps and observed the output. We repeated the process with the SBM model using the same
control parameter sequence and calculated the difference of the output between the two models on
each of the twenty thousand trials. Finally, we applied SOS optimization to bound the difference
from above and below to generate the error bounding polynomial that satisfied the conditions in
Assumption 3.

We compare our method with a naı̈ve method and the direct method using the same speed
tracking sequences. The naı̈ve method uses the SBM model to update gaits in an MPC framework
without enforcing walking successful conditions. The direct method uses the full-order dynamics
of the RABBIT model to design a controller by solving an optimal control problem via FROST
[HA17].

Fig. 3.3 illustrates the performance of the naı̈ve method and the method proposed in this chapter
on one of the 300 trials. Note in particular that the gait generated by the naı̈ve method is unable to
be followed by the full-order RABBIT model. On the other hand, as shown in Fig. 3.3, the method
proposed in this chapter is able to generate a gait that can satisfy the safety requirements described
in Theorem 23. This results in a controller which can track the synthesized gait without falling
over.

Fig. 3.4 compares the speed tracking performance of another trial, where both methods gener-

43

https://github.com/pczhao/TA_GaitDesign.git
https://github.com/pczhao/TA_GaitDesign.git

ate gaits that can be followed by the RABBIT model. Notice naı̈ve method achieves a lower speed
tracking error of 0.3681 (in Euclidean norm), while the proposed method achieves a slightly higher
tracking error of 0.3912. This is because the additional safety constraints in the MPC prevents rapid
transition from a low-speed gait to a high-speed gait, therefore generating higher costs.

Across all 300 trials the computation time of the naı̈ve method is 0.01 seconds, the direct
method is 93.12 seconds, and the proposed method is 0.11 seconds. Moreover, the RABBIT model
falls 2% of the time with the naı̈ve method, but never falls with the proposed method or the direct
method. Therefore the proposed method is able to guarantee walking performance online. The
average speed tracking error (computed in Euclidean norm) of the naı̈ve method is 0.8719, and the
proposed method is 0.9808.

44

0

1

2

3

S
p
e
e
d
 (

m
/s

)

0

2

4

y
 (

ra
d
/s

)
1

y

 (
ra

d
)

2

2.5

3

3.5

0 5 10 15

Number of steps

Safe region

Safe region

Unsafe region

Unsafe region

Desired

Naїve method

Proposed method

Naїve method

Proposed method

Naїve method

Proposed method

Figure 3.3: An illustration of the performance of the method proposed in this chapter (top) and
the naı̈ve method (second from top). Note that the rapid change in the desired speed (third from
top) results in a gait which cannot be tracked by just considering a SBM model without successful
walking constraints. By ensuring that the outputs satisfy the inequality constraints proposed in
Theorem 23 (bottom two sub-figures), the proposed method is able to safely track the synthesized
gaits. Note the naı̈ve method violates the y2 constraint proposed in Theorem 23 on Step 5.

45

Figure 3.4: A comparison of speed tracking performance of the proposed method and the naı̈ve
method. Although both methods generate gaits that can be followed by the RABBIT model without
falling over, the tracking error of naı̈ve method is lower (0.3681) compared to the proposed method
(0.3912).

3.6 Conclusion

This chapter develops a method to generate safety-preserving controllers for full-order (anchor)
models by performing reachability analysis on simpler (template) models while bounding the mod-
eling error. The method is illustrated on a 5-link, 14-dimenstional RABBIT model, and is shown
to allow the robot to walk safely while utilizing controllers designed in a real-time fashion.

Though this method enables real-time motion planning, future work will consider several ex-
tensions that will enable real-world robotic control. First, a template and associated outputs need
to be constructed for 3D motion. Second, no guarantee is provided that the optimization problem
solved at each step in the MPC will return a feasible solution.

46

S
im

p
lifi

e
d

m

o
d

e
l

O
u

tp
u

t
sp

a
c
e

F
u

ll-
o

rd
e

r
m

o
d

e
l

Safe region

MPC time horizon
Step # 0 1 2 3 0 1 2

MPC time horizon
3

Unsafe region

Simplified model

Full-order model

Forward
reachable set

(a) (b)

Figure 3.1: This chapter proposes a method to design gaits that are certified to be tracked by a
full-order robot model (bottom row sub-figures) for N -steps without falling over. To construct
this method, this chapter defines a set of outputs that are functions of the state of the robot and a
chosen gait (middle row sub-figures). If the outputs associated with a particular gait satisfy a set
of inequality constraints (depicted as the safe region drawn in light gray in the middle row sub-
figures), then the gait is proven to be safely tracked by the legged system without falling. Due to
the high-dimensionality of the robot’s dynamics, forward propagating these outputs via the robot’s
dynamics for N -steps to design a gait that is certified to be tracked safely is intractable. To address
this challenge, this chapter constructs a template model (top row sub-figures) whose outputs are
sufficient to predict the behavior of the anchor’s outputs. In particular, if all of the points in a
bounded neighborhood of the forward reachable set of the outputs of the template model remain
within the safe region, then the anchor is certified to behave safely. This chapter illustrates how
this can be incorporated into a MPC framework to design safe gaits in real-time.

47

(a) (b)

A
n

gu
la

r
V

el
o

ci
ty

A
n

gl
e

0

Timeτ2t1

MS t2

MS τ3

π

Time

0

π

τ2t1

MS t2

MS τ3 t3

0

: θ(t)

: ϕ(t)

: y 2

: θ(t)̇

: θ(t)3
̇ 0

: y 1

Figure 3.2: An illustration of how the values of the outputs can be used to determine whether the
robot walks safely. To ensure that the robot does not fall backwards, one can require that y1(i) ≥ 0
(left column). In particular if y1(i) < 0, then tMS

i = +∞ which implies that the robot is falling
backwards. To ensure that the robot does not fall forward, one can require that y2(i) ≤ π (right
column).

48

CHAPTER 4

Efficiently Solving Polynomial Optimization
Problems

4.1 Introduction
1 For mobile robots to operate successfully in unforeseen environments, they must plan their mo-
tion as new sensor information becomes available. This receding-horizon strategy requires iter-
atively generating a plan while simultaneouly executing a previous plan. Typically, this requires
solving an optimization program in each planning iteration (see, e.g., [Kuw07]).

The present work considers a mobile ground robot tasked with reaching a global goal location
in an arbitrary, static environment. To assess receding-horizon planning performance, we consider
the following characteristics of plans. First, a plan should be dynamically feasible, meaning that
it obeys the dynamic description of the robot and obeys constraints such as actuator limits and
obstacle avoidance. Second, a plan should maintain liveness, meaning that it keeps the robot
moving through the world without stopping frequently to replan, which can prevent a robot from
achieving a task in a user-specified amount of time. Third, a plan should be optimal with respect
to a user-specified cost function, such as reaching a goal quickly.

Ensuring that plans have these characteristics is challenging for several reasons. First, robots
typically have nonlinear dynamics; this means that creating a dynamically feasible plan often re-
quires solving a nonlinear program (NLP) at runtime. However, it is difficult to certify that an NLP
can be solved in a finite amount of time, meaning that the robot may have to sacrifice liveness.
Furthermore, even if a robot has linear dynamics, the cost function may be nonlinear; in this case,
it is challenging to certify optimality due to the presence of local minima.

1This chapter was previously submitted to IEEE Transactions on Robotics (T-RO)

49

Figure 4.1: A Segway RMP mobile robot using the proposed PCBA/RTD* method to au-
tonomously navigate a tight obstacle blockade. The executed trajectory is shown fading from
light to dark blue as time passes, and the robot is shown at four different time instances. The
top right plot shows the Segway’s (blue circle with triangle indicating heading) view of the world
at one planning iteration, with obstacles detected by a planar lidar (purple points). The top left
plot shows the optimization program solved at the same planning iteration; the decision variable
is (q1, q2), which parameterizes the velocity and yaw rate of a trajectory plan; the pink regions
are infeasible with respect to constraints generated by the obstacle points in the right plot; and the
blue contours with number labels depict the cost function, which is constructed to encourage the
Segway to reach a waypoint (the star in the top right plot). The optimal solution found by PCBA
is shown as a star on the left plot, in the non-convex feasible area (white). This optimal solution
generates a provably-safe trajectory for the Segway to track, shown as a blue dashed line in the
right plot.

50

This chapter extends prior work on Reachability-based Trajectory Design (RTD). RTD is able
to provably generate dynamically-feasible trajectory plans in real time, but cannot guarantee opti-
mality or liveness (the robot will generate plans in real time, but may brake to a stop often). We
address this gap by proposing the Parallel Constrained Bernstein Algorithm (PCBA), which
provably finds globally-optimal solutions to Polynomial Optimization Problems (POPs), a spe-
cial type of NLP. We apply PCBA to RTD to produce an optimal version of RTD, which we call
RTD* in the spirit of the well-known RRT* algorithm [KF11]. We show on hardware that RTD*
demonstrates liveness (in comparison to RTD) for trajectory optimization. For the remainder of
this section, we discuss related work, then state our contributions.

4.1.1 Related Work

4.1.1.1 Receding-horizon Planning

A variety of methods exist that attempt receding-horizon planning while maintaining dynamic fea-
sibility, liveness, and optimality. These methods can be broadly classified by whether they perform
sampling or solve an optimization program at each planning iteration. Sampling-based methods
typically either attempt to satisfy liveness and dynamic feasibility by choosing samples offine
[PKK09, MT17b], or attempt to satisfy optimality at the potential expense of liveness and dynamic
feasibility [KF11]. Optimization-based methods attempt to find a single optimal trajectory. These
methods typically have to sacrifice dynamic feasibility (e.g., by linearizing the dynamics) to ensure
liveness [MR93], or sacrifice liveness to attempt to satisfy dynamic feasibility [YGF+16, FFT19]
(also see [KVB+18, Section 9] and [PR14]).

4.1.1.2 Reachability-based Trajectory Design

Reachability-based Trajectory Design (RTD) is an optimization-based receding horizon planner
that requires solving a POP at each planning iteration [KVB+18]. RTD specifies plans as param-
eterized trajectories. Since these trajectories cannot necessarily be perfectly tracked by the robot,
RTD begins with an offline computation of a Forward Reachable Set (FRS). The FRS contains
every parameterized plan, plus the tracking error that results from the robot not tracking any plan
perfectly. At runtime, in each planning iteration, the FRS is intersected with sensed obstacles to
identify all parameterized plans that could cause a collision (i.e., be dynamically infeasible). This
set of unsafe plans is represented as a (finite) list of polynomial constraints, and the user is allowed
to specify an arbitrary (not necessarily convex) polynomial cost function, resulting in a POP. At
each planning iteration, either the robot successfully solves the POP to get a new plan, or it con-
tinues executing its previously-found plan. While the decision variable is typically only two- or
three-dimensional, each POP often has hundreds of constraints, making it challenging to find a

51

feasible solution in real-time [KVB+18]. Each plan includes a braking maneuver, ensuring that the
robot can always come safely to a stop if the POP cannot be solved quickly enough in any planning
iteration.

Note, for RTD, optimality means finding the optimal solution to a POP at each planning iter-
ation. The cost function in RTD’s POPs typically encode behavior such as reaching a waypoint
between the robot’s current position and the global goal (e.g., [KVB+18, Section 9.2.1]; RTD at-
tempts to find the best dynamically feasible trajectory to the waypoint. RTD does not attempt to
find the best waypoints themselves (best, e.g., with respect to finding the shortest path to the global
goal). Such waypoints can be generated quickly by algorithms such as A* or RRT* by ignoring
dynamic feasibility [KF11, KVB+18].

4.1.1.3 Polynomial Optimization Problems

POPs require minimizing (or maximizing) a polynomial objective function, subject to polynomial
equality or inequality constraints. As a fundamental class of problems in non-convex optimization,
POPs arise in various applications, including signal processing [QT03, TCL93, MLD03], quantum
mechanics [DLMO07, Gur03], control theory [KP14, KVB+18, BSS15], and robotics [RCBL19,
MLEV19]. This chapter presents a novel parallelized constrained Bernstein Algorithm for solving
POPs.

The difficulty of solving a POP increases with the dimension of the cost and constraints, with
the number of constraints, and with the number of optima [NW06]. Existing methods attempt
to solve POPs while minimizing time and memory usage (i.e., complexity). Doing so typically
requires placing limitations on one of these axes of difficulty to make solving a POP tractable.
These methods broadly fall into the following categories: derivative-based, convex relaxation, and
branch-and-bound.

Derivative-based methods use derivatives (and sometimes Hessians) of the cost and constraint
functions, along with first- or second-order optimality conditions [NW06, Sections 12.3, 12.5], to
attempt to find optimal, feasible solutions to nonlinear problems such as POPs. These methods
can find local minima of POPs rapidly despite high dimension, a large number of constraints, and
high degree cost and constraints [NW06, Chapter 19.8]. However, these methods do not typically
converge to global optima without requiring assumptions on the problem and constraint structure
(e.g., [QWY04]).

Convex relaxation methods attempt to find global optima by approximating the original prob-
lem with a hierarchy of convex optimization problems. These methods can be scaled to high-
dimensional problems (up to 10 dimensions), at the expense of limits on the degree and sparse
structure of the cost function; furthermore, they typically struggle to handle large numbers of
constraints (e.g., the hundreds of constraints that arise in RTD’s POPs), unless the problem has

52

low-rank or sparse structure [RCBL19]. Well-known examples include the lift-and-project lin-
ear program procedure [BCC93], reformulation-linearization technique [SA90], and Semi-Definite
Program (SDP) relaxations [Las01, RCBL19]. By assuming structure such as homogeneity of the
cost function or convexity of the domain and constraints, one can approximate solutions to a POP
in polynomial-time, with convergence to global optima in the limit [DKLP06, LNQY09, LZ10,
So11, HLZ10]. Convergence within a finite number of convex hierarchy relaxations is possible
under certain assumptions (e.g., a limited number of equality constraints [Nie13, LTY17]).

Branch-and-bound methods perform an exhaustive search over the feasible region. These meth-
ods are typically limited to up to four dimensions, but can handle large numbers of constraints and
high degree cost and constraints. Examples include interval analysis techniques [HW03, VEH94]
and the Bernstein Algorithm (BA) [Gar93, NA11, SS15]. Interval analysis requires cost and con-
straint function evaluations in each iteration, and therefore can be computationally slow. BA, on
the other hand, does not evaluate the cost and constraint functions; instead, BA represents the
coefficients of the cost and constraints in the Bernstein basis, as opposed to the monomial ba-
sis. The coefficients in the Bernstein basis provide lower and upper bounds on the polynomial
cost and constraints over box-shaped subsets of Euclidean space by using a subdivision procedure
[Gar85, NA07]. Note, one can use the Bernstein basis to transform a POP into a linear program
(LP) on each subdivided portion of the problem domain, which allows one to find tighter solution
bounds that given by the Bernstein coefficients alone [SS15]. Since subdivision can be paral-
lelized [DN17], the time required to solve a POP can be greatly reduced by implementing BA on
a Graphics Processing Unit (GPU). However, a parallelized implementation or bounds on the rate
of convergence of BA with constraints has not yet been shown in the literature. Furthermore, to
the best of our knowledge, BA has not been shown as a practical method for solving problems in
real-time robotics applications.

4.1.2 Contributions and chapter Organization

In this chapter, we make the following contributions. First, we propose a Parallel Constrained
Bernstein Algorithm (PCBA) (Section 4.3). Second, we prove that PCBA always finds an optimal

solution (if one exists), and prove bounds on PCBA’s time and memory usage (Section 4.4). Third,
we evaluate PCBA on a suite of well-known POPs in comparison to the Bounded Sums-of-Squares
(BSOS) [LTY17] solver and a generic nonlinear solver (MATLAB’s fmincon) (Section 4.5).
Fourth, we apply PCBA to RTD to make RTD*, a provably-safe, optimal, and real-time trajectory
planning algorithm for mobile robots (Section 4.6), thereby demonstrating dynamic feasibility and
liveness. The remainder of the chapter is organized as follows. Section 4.2 defines notation for
RTD and POPs. Section 4.7 draws conclusions. Appendix E lists benchmark problems for PCBA.

53

4.2 Preliminaries

This section introduces notation, RTD, POPs, the Bernstein form, and subdivision.

4.2.1 Notation

4.2.1.1 Polynomial Notation

We follow the notation in [NA11]. Let x := (x1, x2, · · · , xl) ∈ Rl be real variable of dimension l ∈
N. A multi-index J is defined as J := (j1, j2, · · · , jl) ∈ Nl and the corresponding multi-power xJ

is defined as xJ := (xj11 , x
j2
2 , · · · , x

jl
l) ∈ Rl. Given another multi-index N := (n1, n2, · · · , nl) ∈

Nl of the same dimension, an inequality J ≤ N should be understood component-wise. An l-
variate polynomial p in canonical (monomial) form can be written as

p(x) =
∑
J≤N

aJx
J , x ∈ Rl, (4.1)

with coefficients aJ ∈ R and some multi-index N ∈ Nl. The space of polynomials of degree
d ∈ N, with variable x ∈ Rl, is Rd[x].

Definition 29. We call N ∈ Nl the multi-degree of a polynomial p; each ith element of N is the

maximum degree of the variable xi out of all of the monomials of p. We call d ∈ N the degree
of p; d is the maximum sum, over all monomials of p, of the powers of the variable x. That is,

d = ||N ||1, where || · ||1 is the sum of the elements of a multi-index.

4.2.1.2 Point and Set Notation

Let x := [x1, x1]×· · ·× [xl, xl] ⊂ Rl denote a general l-dimensional box in Rn, with−∞ < xµ <

xµ < +∞ for each µ = 1, · · · , l. Let u := [0, 1]l ⊂ Rl be the l-dimensional unit box. Denote by
|x| the maximum width of a box x, i.e. |x| = max{xµ−xµ : µ = 1, · · · , l}. For any point y ∈ Rl,
denote by ‖y‖ the Euclidean norm of y, and denote by BR(y) the closed Euclidean ball centered at
y with radius R > 0.

4.2.1.3 RTD Notation

Let T = [0, tf] denote the time interval of a single plan (in a single receding-horizon iteration). Let
X ⊂ RnX denote the robot’s state space, and U ⊂ RnU denote the robot’s control inputs where
nX , nU ∈ N. The robot is described by dynamics fhi : T × X × U → RnX , which we call a
high-fidelity model. The parameterized trajectories are described by f : T × X × Q → RnX ,
where Q ⊂ RnQ is the space of trajectory parameters. A point q ∈ Q parameterizes a trajectory

54

xdes : T → X . For any q, the robot uses a feedback controller uq : T × X → U to track the
trajectory parameterized by q (we say it tracks q for short).

4.2.2 Polynomial Optimization Problems

We denote a POP as follows:

min
x∈D⊂Rl

p(x)

s.t gi(x) ≤ 0 i = 1, · · · , α
hj(x) = 0 j = 1, · · · , β.

(P)

The decision variable is x ∈ D ⊂ Rn, where D is a compact, box-shaped domain and l ∈ N is the
dimension of the program. The cost function is p ∈ Rd[x], and the constraints are gi, hj ∈ Rd[x]

(α, β ∈ N). We assume for convenience that d is the greatest degree amongst the cost and constraint
polynomials; we call d the degree of the problem.

4.2.3 Reachability-based Trajectory Design

Recall that RTD begins by computing an FRS offline for a robot tracking a parameterized set of
trajectories. At runtime, in each receding-horizon planning iteration, the FRS is used to construct
a POP as in (P); solving this POP is equivalent to generating a new trajectory plan. We now briefly
describe how this POP is constructed (see [KVB+18] for details).

We define the FRS F ⊂ X × Q as the set of all states reachable by the robot when tracking
any parameterized trajectory:

F =
{

(x, q) ∈ X ×Q | ∃ t ∈ T s.t. x = x̂(t), x̂(0) ∈ X0 and

˙̂x(τ) = fhi(τ, x̂(τ), uq(τ, x̂(τ)))∀ τ ∈ T
} (4.2)

where X0 ⊂ X is the set of valid initial conditions for the robot in any planning iteration. To
implement RTD, we conservatively approximate the FRS using sums-of-squares programming. In
particular, we compute a polynomial w ∈ Rd[q] (d = 10 or 12) for which the 0-superlevel set
contains the FRS:

(x, q) ∈ F =⇒ w(x, q) ≥ 0. (4.3)

See [KVB+18, Section 3.2] for details on how to compute w.
At runtime, we use w to identify unsafe trajectory plans. If {xi}ni=1 ⊂ X is a collection of

55

points on obstacles, then we solve the following program in each planning iteration:

argmin
q ∈Q

p(q)

s.t w(xi, q) < 0 ∀ i = 1, · · · , n,
(4.4)

where p is a user-constructed polynomial cost function (see (4.29) in Section 4.6 as an example).
Note that, by (4.3), the set of safe trajectory plans is open, so we implement the constraints in (4.4)
as w(xi, q) + εq ≤ 0, εq ≈ 10−4. Critically, any feasible solution to (4.4) is provably dynamically
feasible (and collision-free) [KVB+18, Theorem 68]. To understand RTD’s online planning in
more detail, see [KVB+18, Algorithm 2].

In this work, instead of using a derivative-based method to solve (4.4), we use our proposed
PCBA method, which takes advantage of the polynomial structure of p and w. Next, we discuss
Bernstein polynomials.

4.2.4 Bernstein Form

A polynomial p in monomial form (4.1) can be expanded into Bernstein form over an arbitrary
l-dimensional box x as

p(x) =
∑
J≤N

B
(N)
J (x) b

(N)
J (x, x), (4.5)

where b(N)
J (x, ·) is the J th multivariate Bernstein polynomial of multi-degreeN over x, andB(N)

J (x)

are the corresponding Bernstein coefficients of p over x. A detailed definition of Bernstein form
is available in [Ham18]. Note that the Bernstein form of a polynomial can be determined quickly
[TG17], by using a matrix multiplication on a polynomial’s monomial coefficients, with the matrix
determined by the polynomial degree and dimension. This matrix can be precomputed, and the
conversion from monomial to Bernstein basis only needs to happen once for the proposed method
(see Algorithm 1 in Section 4.3).

For convenience, we collect all such Bernstein coefficients in a multi-dimensional array B(x)

:=
(
B

(N)
J (x)

)
J≤N , which is called a patch. We denote by minB(x) (resp. maxB(x)) the mini-

mum (resp. maximum) element in the patch B(x). The range of polynomial p over x is contained
within the interval spanned by the extrema of B(x), formally stated as the following theorem:

Theorem 30 ([NA11, Lemma 2.2]). Let p be a polynomial defined as in (4.5) over a box x. Then,

the following property holds for a patch B(x) of Bernstein coefficients

minB(x) ≤ p(x) ≤ maxB(x), ∀x ∈ x. (4.6)

This theorem provides a means to obtain enclosure bounds of a multivariate polynomial over a box

56

by transforming the polynomial to Bernstein form. This range enclosure can be further improved
either by degree elevation or by subdivision. This work uses subdivision, discussed next, to refine
the bounds.

4.2.5 Subdivision Procedure

Consider an arbitrary box x ⊂ Rl. The range enclosure in Theorem 30 is improved by subdividing
x into subboxes and computing the Bernstein patches over these subboxes. A subdivision in the
rth direction (1 ≤ r ≤ l) is a bisection of x perpendicular to this direction. That is, let

x := [x1, x1]× · · · × [xr, xr]× · · · × [xl, xl] (4.7)

be an arbitrary box over which the Bernstein patch B(x) is already computed. By subdividing x

in the rth direction we obtain two subboxes xL and xR, defined as

xL = [x1, x1]× · · · × [xr, (xr + xr)/2]× · · · × [xl, xl],

xR = [x1, x1]× · · · × [(xr + xr)/2, xr]× · · · × [xl, xl].
(4.8)

Note that we have subdivided x by halving its width in the rth direction; we choose 1/2 as the
subdivision parameter in this work, but one can choose a different value in [0, 1] (see [NA11,
Equation (10)]).

The new Bernstein patches, B(xL) and B(xR), can be computed by a finite number of linear
transformations [NA11, Section 2.2]:

B(xL) = Mr,LB(x),

B(xR) = Mr,RB(x).
(4.9)

where Mr,L and Mr,R are constant matrices, which can be precomputed, for each r (notice that
[NA11, Equation (10)] obtains B(xL) with linear operations on B(x)). The patches and one
iteration of the subdivision procedure are shown in Figure 4.2.

Remark 31. To reduce wordiness, we say that we subdivide a patch to mean the subdivision of a

single subbox into two subboxes and the computation of the corresponding Bernstein patches for

the POP cost and constraints.

By repeatedly applying the subdivision procedure and Theorem 30, the bounds on the range of
polynomial in a subbox can be improved. In fact, such bounds can be exact in the limiting sense if
the subdivision is applied evenly in all directions:

57

Theorem 32 ([MMTG92, Theorem 2]). Let x(n) be a box of maximum width 2−n (n ∈ N) and let

B(x(n)) be the corresponding Bernstein patch of a given polynomial p, then

minB(x(n)) ≤ min
x∈x(n)

p(x) ≤ minB(x(n)) + ζ · 2−2n (4.10)

where ζ is a non-negative constant that can be given explicitly independent of n.

Notice from the proof of Theorem 32 that changing the sign of p does not change the value
of ζ . By substituting p with −p in Theorem 32, one can easily show a similar result holds for the
maximum of p over x(n):

Corollary 33. Let x(n) and B(x(n)) be as in Theorem 32. Then,

maxB(x(n))− ζ · 2−2n ≤ max
x∈x(n)

p(x) ≤ maxB(x(n)), (4.11)

where ζ is the same non-negative constant as in Theorem 32.

Theorems 32 and Corollary 33 provide shrinking bounds for values of a polynomial over sub-
boxes as the subdivision process continues. By comparing the bounds over all subboxes, one can
argue that the minimizers of a polynomial may appear in only a subset of the subboxes. This idea
underlies the Bernstein Algorithm for solving POPs [NA07, NA11], discussed next.

4.3 Parallel Constrained Bernstein Algorithm

This section proposes the Parallel Constrained Bernstein Algorithm (PCBA, Algorithm 1) for solv-
ing a general POP. We extend the approach in [NA11]. This approach utilizes Bernstein form to
obtain upper and lower bounds of both objective and constraint polynomials (Theorem 30), it-
eratively improves such bounds using subdivision (Theorem 32 and Corollary 33), and removes
patches that are cannot contain a solution (Theorem 40). We discuss the algorithm, the list used to
store patches, tolerances and stopping criteria, subdivision, a cut-off test for eliminating patches,
and the advantages and disadvantages of PCBA. The next section, 4.4, proves PCBA finds globally
optimal solutions to POPs, up to user-specified tolerances.

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-5

0

5

co
st

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-4

-2

0

2

4

in
eq

. c
on

s.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
decision variable

-2

0

2

eq
. c

on
s.

Figure 4.2: The 3rd iteration of PCBA (Algorithm 1) on a one-dimensional polynomial cost (top)
with one inequality constraint (middle) and one equality constraint (bottom). The rectangles repre-
sent Bernstein patches (as in Section 4.2.5), where the horizontal extent of each patch corresponds
to an interval of the decision variable over which Bernstein coefficients are computed. The top and
bottom of each patch represent the maximum and minimum Bernstein coefficients, which bound
the cost and constraint polynomials on the corresponding interval. As per Definition 37, the green
patch is feasible, the pink patches are infeasible, and the grey patches are undecided; the pur-
ple dashed lines show the inequality constraint cut-off (zero) and the equality constraint tolerance
εeq = 1 (note that εeq is chosen to be this large only for illustration purposes). Per Definition
39, the light blue patch is suboptimal; the blue dashed line in the top plot is the current solution
estimate (Definition 38). The infeasible and suboptimal patches are each marked with × for elim-
ination (Algorithm 5), since they cannot contain the global optimum (Theorem 40); the feasible
and undecided patches are kept for the next iteration.

59

Algorithm 1 Parallel Constrained Bernstein Algorithm (PCBA)
Inputs: Polynomials p, {gi}αi=1, {hj}βj=1 as in (P), of dimension l; optimality tolerance ε > 0, step tolerance

δ > 0, and equality constraint tolerance εeq > 0; and maximum number of patches M ∈ N and of iterations

N ∈ N.

Outputs: Estimate p∗ ∈ R of optimal solution, and subbox x∗ ⊂ u containing optimal solution.

Algorithm:

1: Initialize patches of p, gi, and hj over l-dimensional initial domain box u as in [TG17]

[Bp(u), Bgi(u), Bhj(u)]← InitPatches(p, gi, hj)

2: Initialize lists of undecided patches and patch extrema on the GPU

L ← {(u, Bp(u), Bgi(u), Bhj(u))}
Lbounds ← {}

3: Initialize iteration count and subdivision direction

n← 1, r ← 1

4: Test for sufficient memory (iteration begins here)

if 2× length(L) > M then go to 12

else continue

end if
5: (Parallel) Subdivide each patch in L in the rth direction to create two new patches using Algorithm 2

L ← Subdivide(L, r)

6: (Parallel) Find bounds of p, gi, and hj on each new patch using Algorithm 3

Lbounds ← FindBounds(L)

7: Estimate upper bound p∗up of the global optimum as the least upper bound of all feasible patches, and

determine which patches to eliminate using Algorithm 4

[p∗up, p
∗
lo,Lsave,Lelim]← CutOffTest(Lbounds);

8: Test if problem is feasible

if length(Lsave) = 0 then go to 14

9: Test stopping criteria for all (x, Bp(x), Bgi(x), Bhj(x)) ∈ L
if p∗up − p∗lo ≤ ε

and |x| ≤ δ
and −εeq ≤ minBhj(x) ≤ maxBhj(x) ≤ εeq

then go to 12

end if
10: (Parallel) Eliminate infeasible, suboptimal patches using Algorithm 5

L ← Eliminate(L,Lsave,Lelim);

11: Prepare for next iteration

r ← (mod(r + 1, l)) + 1

if r = 1 then n← n+ 1

end if
if n = N then go to Step 12

else go to Step 4

end if
12: Return current best approximate solution

p∗ ← p∗up

x∗ ← x for which maxBp(x) = p∗up

13: return p∗, x∗

14: No solution found (problem infeasible)

60

Before proceeding, we make an assumption for notational convenience, and to make the initial
computation of Bernstein patches easier.

Assumption 34. Without loss of generality, the domain of the decision variable is the unit box (i.e.,

D = u), since any nonempty box in Rl can be mapped affinely onto u [TG17].

4.3.1 Algorithm Summary

We now summarize PCBA, implemented in Algorithm 1. The algorithm is initialized by com-
puting the Bernstein patches of the cost and constraints on the domain u (Line 1). Subsequently,
PCBA subdivides each patch as in Remark 36 (Line 5 and Algorithm 2). Then, PCBA finds the
upper and lower bounds of each new patch (Line 6 and Algorithm 3). These bounds are used to
determine which patches are feasible, infeasible, and undecided as in Definition 37 (Line 7; see
Algorithm 4 and Theorem 40). Algorithm 4 also determines the current solution estimate (the
smallest upper bound over all feasible patches), and marks any patches that are suboptimal as in
Definition 39. If every patch is infeasible (Line 8), PCBA returns that the problem is infeasible
(Line 14); otherwise, PCBA checks if the current solution estimate meets user-specified tolerances
(Line 9). If the tolerances are met, PCBA returns the solution estimate (Line 12). Otherwise,
PCBA eliminates all infeasible and suboptimal patches (Line 10 and Algorithm 5), then moves to
the next iteration (Line 11). Note, algorithms 2, 3, and 5 are parallelized.

4.3.2 Items and The List

Denote an item as the tuple ` = (x, Bp(x), Bgi(x)), Bhj(x)), where Bgi(x) (resp. Bhj(x)) is
shorthand for the set of patches {Bgi(x)}αi=1 (resp. {Bhj(x)}βj=1). We use the following notation
for items. If ` = (x, Bp(x), Bgi(x), Bhj(x)), then `1 = x, `2 = Bp(x), `3 = Bgi(x), and `4 =

Bhj(x).
We denote the list L = {`µ : µ = 1, · · · , NL}, NL ∈ N, indexed by µ ∈ N. PCBA adds and

removes items from L by assessing the feasibility and optimality of each item.

4.3.3 Tolerances and Stopping Criteria

Recall that, by Theorem 30, Bernstein patches provide upper and lower bounds for polynomials
over a box. From Theorem 32 and Corollary 33, as we subdivide u into smaller subboxes, the
bounds of the Bernstein patches on each subbox more closely approximate the actual bounds of
the polynomial. While the bounds will converge to the value of the polynomial in the limit as
the maximum width of subboxes goes to zero, to ensure the algorithm terminates, we must set
tolerances on optimality and equality constraint satisfaction (the equality constraints hj(x) = 0

61

may not be satisfied for all points in certain boxes). During optimization one is also usually
interested in finding the optimizer of the cost function up to some resolution. In our case, this
resolution corresponds to the maximum allowable subbox width which we refer to as the step

tolerance.

Definition 35. We denote the optimality tolerance as ε > 0, the equality constraint tolerance as

εeq > 0, and the step tolerance as δ > 0. We terminate Algorithm 1 either when L is empty (the

problem is infeasible) or when there exists an item (x, Bp(x), Bgi(x)), Bhj(x)) ∈ L that satisfies

all of the following conditions:

(a) |x| ≤ δ,

(b) maxBgi(x) ≤ 0 for all i = 1, · · · , α,

(c) −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq for all j = 1, · · · , β, and

(d) maxBp(x)−minBp(y) ≤ ε for all y ∈ L.

We discuss feasibility in more detail in section 4.3.5 Note that, to implement the step tolerance
δ, since we subdivide by halving the width of each subbox, we need only ensure that sufficiently
many iterations have passed.

Note that we do not set a tolerance on inequality constraints, since these are “one-sided” con-
straints; for any inequality constraint gi and subbox x, we satisfy the constraint if maxBgi(x) ≤ 0

(see Definition 37 and Theorem 45).

4.3.4 Subdivision

Recall that subdivision is presented in Section 4.2.5. We implement subdivision with Algorithm
2. Since the subdivision of one Bernstein patch is computationally independent of another, each
subdivision task is assigned to an individual GPU thread, making Algorithm 2 parallel.

Note that the subdivision of Bernstein patches can be done in any direction, leading to the
question of how to select the direction in practice. Example rules are available in the literature,
such as maximum width [RC95, Section 3], derivative-based [ZG98, Section 3], or a combination
of the two [RC95, Section 3]. In the context of constrained optimization, the maximum width
rule is usually favored over derivative-based rules for two reasons: first, computing the partial
derivatives of all constraint polynomials can introduce significant computational burden, especially
when the number of constraints is large (see Section 4.5.3); second, the precision of Bernstein
patches as bounds to the polynomials depends on the maximum width of each subbox (Theorem 32
and Corollary 33), so it is beneficial to subdivide along the direction of maximum width for better
convergence results.

62

In each nth iteration of PCBA, we subdivide in each direction r, in the order 1, 2, · · · , l. We
halve the width of each subbox each time we subdivide, leading to the following remark.

Remark 36. In the nth iteration, the maximum width of any subbox in L is 2−n.

Algorithm 2 L = Subdivision(L, r) (Parallel)
1: K ← length(L)
2: for k ∈ {1, . . . , K} do in parallel
3: (x, Bp(x), Bgi(x), Bhj(x))← L[k];
4: Subdivide x along the rth direction into xL and xR
5: Compute patches Bp(xL) and Bp(xR)
6: Compute patches Bgi(xL) and Bgi(xR)
7: Compute patches Bhj(xL) and Bhj(xR)
8: L[k]← (xL, Bp(xL), Bgi(xL), Bhj(xL))
9: L[k +K]← (xR, Bp(xR), Bgi(xR), Bhj(xR))

10: end for
11: return L

4.3.5 Cut-Off Test

Subdivision would normally occur for every patch in every iteration, leading to exponential mem-
ory usage (2n patches in iteration n). However, by using a cut-off test, some patches can be deleted,
reducing both the time and memory usage of PCBA (see Section 4.4 for complexity analysis). To
decide which patches are to be eliminated, we require the following definitions.

Definition 37. An item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L is feasible if both of the following hold:

(a) maxBgi(x) ≤ 0 for all i = 1, · · · , α, and

(b) −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq for all j = 1, · · · , β.

An item is infeasible if any of the following hold:

(c) minBgi(x) > 0 for at least one i = 1, · · · , α, or

(d) minBhj(x) > 0 for at least one j = 1, · · · , β, or

(e) maxBhj(x) < 0 for at least one j = 1, · · · , β.

An item is undecided if it is neither feasible nor infeasible.

Notice in particular, a feasible item must not be infeasible.

63

Definition 38. The solution estimate p∗up is the smallest upper bound of the cost over all feasible

items in L:

p∗up = min
{

max{`2 | ` ∈ L, ` feasible}
}
, (4.12)

where `2 = Bp(x) if ` = (x, Bp(x), Bgi(x), Bhj(x)).

Definition 39. An item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L is suboptimal if

minBp(x) > p∗up. (4.13)

Note that Definitions 38 and 39 are dependent onL; that is, for the purposes of PCBA, optimality is
defined in terms of the elements ofL. We show in Corollary 41 below how this notion of optimality
coincides with optimality of the POP itself.

Feasible, infeasible, undecided, and suboptimal patches are illustrated in Figure 4.2. Any item
that is infeasible or suboptimal can be eliminated from L, because the corresponding subboxes
cannot contain the solution to the POP (formalized in the following Theorem). We call checking
for infeasible and suboptimal items the cut-off test.

Theorem 40 (Cut-Off Test). Let (x, Bp(x), Bgi(x), Bhj(x)) ∈ L be an item. If the item is infea-

sible (as in Definition 37) or suboptimal (as in Definition 39), then x does not contain a global

minimizer of (P). Such item can be removed from the list L.

Proof. Let (x, Bp(x), Bgi(x), Bhj(x)) be an item in L. We only need to show:

(a) if (x, Bp(x), Bgi(x), Bhj(x)) is feasible, then all points in x are feasible (up to the tolerance
εeq), and

(b) if (x, Bp(x), Bgi(x), Bhj(x)) is infeasible, then all points in x are infeasible (up to the toler-
ance εeq), and

(c) if (x, Bp(x), Bgi(x), Bhj(x)) is suboptimal, then all points in x are not optimal.

Note that (a) and (b) follow directly from Theorem 30. To prove (c), let y ⊂ u be a subbox on
which the solution estimate p∗up is achieved, i.e., (y, Bp(y), Bgi(y), Bhj(y)) is feasible and

maxBp(y) = p∗up. (4.14)

Let y ∈ y be arbitrary, then it follows from Theorem 30 and the definition of suboptimality that

p(x) ≥ minBp(x) > maxBp(y) ≥ p(y) (4.15)

64

for all x ∈ x. Since such point y is necessarily feasible (obtained from condition (b)), x cannot be
global minimum to the POP.

Corollary 41. Suppose there exists a (feasible) global minimizer x∗ of the POP (P). Then, there

always exists an item (x, Bp(x), Bgi(x), Bhj(x)) ∈ L such that x∗ ∈ x while executing Algorithm

1.

Proof. This result is the contrapositive of Theorem 40.

We implement the cut-off tests as follows. Algorithm 3 (FindBounds) computes the maximum
and minimum element of each Bernstein patch; Algorithm 4 (CutOffTest) implements the cut-
off tests and marks all subboxes to be eliminated with a list Lelim; and Algorithm 5 (Eliminate)
eliminates the marked subboxes from the list L. Algorithms 3 and 5 are parallelizable, whereas
Algorithm 4 must be computed serially.

Algorithm 3 Lbounds = FindBounds(L) (Parallel)
1: K ← length(L)

2: for k ∈ {1, . . . , K} do in parallel

3: (x, Bp(x), Bgi(x), Bhj(x))← L[k]

4: Find minBp(x) and maxBp(x) by parallel reduction
5: Find minBgi(x) and maxBgi(x) similarly
6: Find minBhj(x) and maxBhj(x) similarly

7: Lbounds[k]←

x,

{minBp(x), maxBp(x)}
{minBgi(x), maxBgi(x)}
{minBhj(x), maxBhj(x)}


8: end for
9: return Lbounds

65

Algorithm 4 [p∗up, p
∗
lo,Lsave,Lelim] = CutOffTest(Lbounds)

1: p∗up ← +∞, p∗lo ← +∞
2: K ← length(Lbounds)

3: for k ∈ {1, . . . , K} do

4:

x,

{minBp(x), maxBp(x)}
{minBgi(x), maxBgi(x)}
{minBhj(x), maxBhj(x)}

← Lbounds[k]

5: if −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq then
6: if maxBgi(x) ≤ 0 then
7: p∗up ← min(p∗up,maxBp(x))

8: end if
9: if minBgi(x) ≤ 0 then

10: p∗lo ← min(p∗lo,minBp(x))

11: end if
12: end if
13: end for
14: Initialize lists for indices of patches to save or eliminate Lsave ← {}, Lelim ← {}
15: for k ∈ {1, · · · , K} do
16: if −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq

and minBgi(x) ≤ 0

and minBp(x) ≤ p∗up then
17: Append k to Lsave

18: else
19: Append k to Lelim

20: end if
21: end for
22: return p∗up, p

∗
lo,Lsave, Lelim

66

Algorithm 5 L = Eliminate(L,Lsave,Lelim) (Parallel)
1: Ksave ← length(Lsave)

2: Kelim ← length(Lelim)

3: Kreplace ← Kelim − 1

4: if Kelim = 0 or Lelim[1] > Kelim then
5:

6: return L
7: end if
8: for k ∈ {1, · · · , Kelim} do
9: if Lelim[k] ≥ Ksave then

10: Kreplace ← k − 1

11: break
12: end if
13: end for
14: for k ∈ {1, · · · , Kreplace} do in parallel

15: L[Lelim[k]]← L[Lsave[Ksave + 1− k]]

16: end for
17:

18: return L

4.3.6 Advantages and Disadvantages of PCBA

PCBA has several advantages. First, it always finds a global optimum (if one exists), subject to
tolerances. PCBA does not require an initial guess, and does not converge to local minima, unlike
generic nonlinear solvers (e.g., fmincon [Mat19]). It also does not require tuning hyperparame-
ters. As we show in Section 4.4, PCBA has bounded time and memory complexity under certain
assumptions. Finally, due to parallelization, PCBA is fast enought to enable RTD* for real-time,
safe, optimal trajectory planning, which we demonstrate in Section 4.6.

However, PCBA also has several limitations in comparison to traditional approaches to solving
POPs. First, to prove the bounds on time and memory usage, at any global minimum, we require
that active constraints are linearly independent, and that the Hessian of the cost function is positive
definite (see Theorems 42 and 45). Furthermore, due to the number of Bernstein patches growing
exponentially with the decision variable dimension, we have not yet applied PCBA to problems
larger than four-dimensional.

67

4.4 Complexity Analysis

In this section, we prove that Algorithm 1 terminates by bounding the number of iterations of
PCBA for both unconstrained and constrained POPs. We also prove the number of Bernstein
patches (i.e., the length of the list L in Algorithm 1) is bounded after sufficiently many iterations,
under certain assumptions. For convenience, in the remainder of this section we use x ∈ L as a
shorthand notation for x = `1 where ` = (x, Bp(x), Bgi(x), Bhj(x)) ∈ L. The proofs of Theorems
44, 45, and 46 are in the Appendix.

4.4.1 Unconstrained Case

We first consider unconstrained POPs whose optimal solutions are not on the boundary of u. Note,
we can treat optimal solutions on the boundary of u as having active linear constraints; see Section
4.4.2 for the corresponding complexity analysis. In the unconstrained case, all points in u are
feasible, and we are interested in solving

min
x∈u⊂R

p(x) (4.16)

where p is an l-dimensional multivariate polynomial. Given an optimality tolerance ε and step
tolerance δ, we bound the number of iterations to solve (4.16) with PCBA as follows:

Theorem 42. Let p in (4.16) be a multivariate polynomial of dimension l with Lipschitz constant

Lp. Then the maximum number of iterations needed to solve (4.16) up to accuracy ε and δ is

N =

⌈
max

{
− log2 δ,−

1

2
log2

(
ε

4ζp

)
,− log2

(
ε

2Lp
√
l

)}⌉
, (4.17)

where ζp is the constant in Theorem 32 corresponding to polynomial p, and d·e rounds up to the

nearest integer.

Proof. Let n be the current iteration number. It is sufficient to show that, for all n > N , there
exists a subbox x ∈ L of u such that the following conditions hold:

(a) |x| ≤ δ; and

(b) maxBp(x)−minBp(y) ≤ ε for all y ∈ L.

Let x∗ ∈ u be a minimizer of (4.16). According to Corollary 41, there exists a subbox x ∈ L
such that x∗ ∈ x. To prove such x satisfies Condition (a), notice from Remark 36 that

|x| ≤ 2−n ≤ 2−N ≤ δ. (4.18)

68

To prove Condition (b), first notice for any y ∈ L,

minBp(y) ≥ min
y∈y

p(y)− ζp · 2−2n (4.19)

≥ p(x∗)− ζp · 2−2n, (4.20)

where (4.19) follows from Theorem 32; and (4.20) follows from the definition of x∗. Therefore

maxBp(x)−minBp(y) ≤ max
x∈x

p(x)− p(x∗) + 2ζp · 2−2n (4.21)

≤ Lp ·
(√

l · |x|
)

+ 2ζp · 2−2n (4.22)

≤ ε

2
+
ε

2
= ε (4.23)

where (4.21) follows from Corollary 33 and (4.20); (4.22) is true because ‖x∗ − x‖ ≤
√
l · |x| for

all x ∈ x; and (4.23) follows from (4.17) and the assumption that n > N .

According to (4.17), the rate of convergence with respect to (WRT) the decision variables is
quadratic (1st term); the rate of convergence WRT the objective function is either quadratic (2nd

term) or linear (3rd term), depending on which term dominates. However, a tighter bound exists if
one of the global minimizers satisfies the second-order sufficient condition for optimality [NW06,
Theorem 2.4], which is shown in the following theorem:

Theorem 43. Let p in (4.16) be a multivariate polynomial of dimension l. Let the Hessian∇2p be

positive definite at some global minimizer x∗ of (4.16), where x∗ is not on the boundary of u. Then

the maximum number of iterations needed to solve (4.16) up to accuracy ε and δ is

N =

⌈
max

{
− log2 δ, C1, −

1

2
log2 ε+ C2

}⌉
, (4.24)

where C1 and C2 are constants that only depend on p.

Theorem 43 proves a quadratic rate of convergence WRT the objective function once the number
of iterations exceeds a threshold C1, given that the second-order optimality condition is satisfied at
some global minimizer. We now discuss the number of patches remaining after sufficiently many
iterations, which gives an estimate of memory usage when Algorithm 1 is applied to solve (4.16).

Theorem 44. Suppose there arem <∞ global minimizers x∗1, · · · , x∗m of (4.16), and none of them

are on the boundary of the unit box u. Let the Hessian∇2p be positive definite at these minimizers.

Then after sufficiently many iterations of Algorithm 1, the number of Bernstein patches remaining

(i.e., length of the list L in Algorithm 1) is bounded by a constant.

69

The constant bound in Theorem 44 scales exponentially with the problem dimension, and is a
function of the condition number of the cost function’s Hessian at the minimizers.

4.4.2 Constrained Case

Theorem 45. Suppose that the linear independence constraint qualification (LICQ) [NW06, Defi-

nition 12.4] is satisfied at all global minimizers x∗1, · · ·x∗m of the constrained POP (P), and at least

one constraint is active (i.e., the active set A(x∗) [NW06, Definition 12.1] is nonempty) at some

minimizer x∗ ∈ {x∗1, · · · , x∗m}. Then the maximum number of iterations needed to solve (P) up to

accuracy ε, δ, and equality constraint tolerance εeq is

N :=

⌈
max

{
C7, − log2 δ, − log2 εeq + C8, − log2 ε+ C9

}⌉
, (4.25)

where C7, C8, C9 are constants.

Theorem 45 gives a bound on the number of PCBA iterations needed to solve a POP up to specified
tolerances. In particular, (4.25) shows the rate of convergence is linear in step tolerance (2nd term),
equality constraint tolerance (3rd term), and objective function (4th term), once the number of
iterations is larger than a constant (1st term). We next prove a bound on the number of items in the
list L after sufficiently many iterations.

Theorem 46. Suppose there are m (m < ∞) global minimizers x∗1, · · · , x∗m of the constrained

problem (P), and none of them are on the boundary of the unit box u. Let the critical cone (see

[NW06, (12.53)]) be nonempty for (Pn) as in the proof of Theorem 45. Then after sufficiently many

iterations of Algorithm 1, the number of Bernstein patches remaining (i.e., length of the list L) is

bounded by a constant.

The constant proved in Theorem 46 scales exponentially with respect to the dimension of the
problem.

4.4.3 Memory Usage Implementation

We now state the amount of GPU memory required to store a single item, namely

(x, Bp(x), Bgi(x), Bhj(x)) ∈ L, (4.26)

given the degree and dimension of the cost and constraint polynomials. Note that, for our imple-
mentation, all numbers in an item are represented using 4B of space, as either floats or unsigned
integers.

70

For a multi-index J = (j1, · · · , jl) ∈ Nl, let ΠJ = j1×· · ·×jl, and let J+n = (j1+n, · · · , jl+
n) for n ∈ N. Let P be the multi-degree of the cost p. Let G be a multi-degree large enough for
all inequality constraints gi, and H a multi-degree large enough for all equality constraints hj . By
“large enough” we mean that, if Gi is the multi-degree of any gi then Gi ≤ G (and similarly for
H). Then, as per [TG17, §4.1], an item can be stored in memory as an array with the following
number of entries:

2l + (Π(P + 1)) + (α · Π(G+ 1)) + (β · Π(H + 1)), (4.27)

where the first 2l entries store the upper and lower bounds (in each dimension) of the subbox x.

4.4.4 Summary

We have shown that PCBA will find a solution to (P), if one exists, in bounded time. We have
also shown that the memory usage of PCBA is bounded after a finite number of iterations, which
implies that the memory usage is bounded; and we have provided a way to compute how much
memory is required to store the list L. Next, we benchmark PCBA on a variety of problems and
compare it to two other solvers.

4.5 PCBA Evaluation

In this section, we compare PCBA against a derivative-based solver (fmincon [Mat19]) and a
convex relaxation method (BSOS [LTY17]). First, we test all three solvers on eight Benchmark
Evaluation problems with dimension less than or equal to 4. Second, we compare all three solvers
on several Increasing Number of Constraints problems, to assess how each solver scales on a
variety of difficult objective functions [Gav19].

All of the solvers/problems in this section are run on a computer with a 3.7GHz proces-
sor, 16 GB of RAM, and an Nvidia GTX 1080 Ti GPU. PCBA is implemented with MATLAB
R2017b executables and CUDA 10.2. Our code is available on GitHub: https://github.
com/ramvasudevan/GlobOptBernstein.

4.5.1 Parameter Selection

To set up a fair comparison, we scale each problem to the u = [0, 1]l box, where l is the problem
dimension. For PCBA, we use the stopping criteria in Section 4.3. To choose ε, we first compute

71

https://github.com/ramvasudevan/GlobOptBernstein
https://github.com/ramvasudevan/GlobOptBernstein

the patch B(u), then set

ε = (10−7) · (maxB(u)−minB(u)) . (4.28)

We set the maximum number of iterations to N = 28. We do not set δ, which determines the
minimum number of iterations; δ is only needed to prove complexity bounds in Section 4.4.

BSOS [LTY17, Section 4] requires the user to specify the size of the semidefinite matrix asso-
ciated with the convex relaxation of the POP. This is done by by selecting a pair of parameters, d
and k (note these are different from our use of d and k). Though one has to increase d and k grad-
ually to ensure convergence, larger values of d and k correspond to larger semidefinite programs,
which can be difficult to solve. We chose d and k separately for the Benchmark Evaluation. We
used d = k = 2 for the Increasing Number of Constraints.

For fmincon [Mat19], we set the OptimalityTolerance option to ε in (4.28). We
set MaxFunctionEvaluations = 105 and MaxIterations = 104. We also provide
fmincon with the analytic gradients of the cost and constraints.

4.5.2 Benchmark Evaluation

4.5.2.1 Setup

We tested PCBA, BSOS, and fmincon on eight benchmark POPs [NA11], listed as P1 through
P8; the problems are reported in the Appendix. We ran each solver 50 times on each problem, and
report the median solution error and time required to find a solution. Since fmincon may or may
not converge to the global optimum depending on its initial guess, we used random initial guesses
for each of the 50 attempts.

4.5.2.2 Results

The results are summarized in Table 4.1. For additional results (e.g., to plot the results of any of
the problems), see the GitHub repository.

In terms of solution quality, PCBA always found the solution to within the desired optimality
tolerance ε, except for on P1, where PCBA stopped at the maximum allowed number of iterations
(28); PCBA always used between 22 and 28 iterations. BSOS always found a lower bound to the
solution, as expected. While fmincon converged to the global optimum at least once on every
problem, it often converged to local minima, hence the large error values on some problems. In
terms of solve time, fmincon solves the fastest (in 10–20 ms), PCBA is about twice as slow as
fmincon, and BSOS is one to two orders of magnitude slower than PCBA.

72

https://github.com/ramvasudevan/GlobOptBernstein

1 3 5 7 9 11 13 15 17 19 21 23 25

iteration

0

200

400

600

800

1000

1200

m
ax

 #
 o

f p
at

ch
es

0

50

100

150

200

250

300

350

400

450

ap
pr

ox
im

at
e

m
em

or
y

us
ed

 [k
B

]

benchmark P4: max # of patches / memory usage

Figure 4.3: The maximum number of patches (left axis) and corresponding GPU memory used
(right axis) at each iteration of PCBA, for P4 of the benchmark problems (see Section 4.5). This
problem took 24 iterations to solve. Notice that the number of patches peaks in iteration 5, then
stays under 400 patches at every iteration from iteration 9 onwards; this visualizes Theorem 46.

For PCBA, the memory usage (computed with (4.27)) increases roughly by one order of mag-
nitude for each additional dimension of the decision variable increases (Table 4.1 reports the peak
GPU memory used by PCBA on each benchmark problem). Notice that PCBA never uses more
than several MB of GPU memory, which is much less than the 11 GB available on the Nvidia GTX
1080 Ti GPU. Figure 4.3 shows the number of patches and the amount of GPU memory used on
P4. We see that the memory usage peaks, then stays below a constant, as predicted by Theorem
46.

4.5.3 Increasing Constraint Problems

Next, we tested each solver on problems with an increasing number of constraints, to each solver
for use with RTD; we find in practice that a robot running RTD must handle between 30 and 300
constraints at each planning iteration.

73

4.5.3.1 Setup

We first choose an objective function with either many local minima or a nearly flat gradient near
the global optimum (the global optimizer is known for each function). In particular, we tested on
the ElAttar-Vidyasagar-Dutta, Powell, Wood, Dixon-Price (with l = 2, 3, 4), Beale, Bukin02, and
Deckkers-Aarts problems (see the Appendix and [Gav19]).

For each objective function, we generate 200 random constraints in total, while ensuring at
least one global optimizer stays feasible (if there are multiple global optimizers, we choose one at
random that will be feasible for all constraints). To generate a single constraint g : u → R, we
first create a polynomial gtemp as a sum of the monomials of the decision variable with maximum
degree 2, with random coefficients in the range [−5, 5]. To ensure x∗ is feasible, we evaluate gtemp

on x∗, then subtract the resulting value from gtemp to produce g (i.e., g ← gtemp − gtemp(x
∗)).

We run PCBA, BSOS, and fmincon on each objective function for 20 trials, with 10 random
constraints in the first trial, and adding 10 constraints in each trial. As before, we run fmincon
50 times for each trial with random initial guesses, since its performance is dependent upon the
initial guess.

4.5.3.2 Results

To illustrate the results, data for the Powell objective function are shown in Figure 4.4. The data
(and plots) for the other objective functions are available in the GitHub repository

In terms of solution quality, all three algorithms converge to the global optimum often when the
number of constraints is low, but fmincon converges to suboptimal solutions more frequently as
the number of constraints increases. PCBA and BSOS are always able to find the optimal solution.
PCBA is always able to find the global optimum regardless of the number of constraints, unlike
BSOS (which runs out of memory) or fmincon (which converges to local minima).

All three solvers require an increasing amount of solve time as the number of constraints in-
creases. PCBA is comparable in speed to fmincon on 2-D problems, but is typically slower on
higher-dimensional problems. Regardless of the number of constraints, BSOS takes three to four
orders of magnitude more time to solve than PCBA or fmincon.

More details on PCBA are presented in Table 4.2. PCBA’s time to find a solution increases
roughly by an order of magnitude when the decision variable dimension increases by 1; however,
PCBA solves all of the increasing constraint POPs within 0.5 s. The memory usage increases by
1–3 orders of magnitude with each additional dimension; however, PCBA never uses more than
650 MB of GPU memory, well below the 11 GB available. Figure 4.5 shows PCBA’s GPU memory
usage versus the number of constraints for the Powell objective function.

74

https://github.com/ramvasudevan/GlobOptBernstein

4.5.4 Summary

As expected from the complexity bounds in Section 4.4.2, the results in this section indicate that
PCBA is practical for quickly solving 2-D POPs with hundreds of constraints. We leverage this
next by applying PCBA to solve RTD’s POP (4.4) for real-time receding-horizon trajectory opti-
mization.

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

number of constraints

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

so
lv

e
tim

e
[lo

g
10

(s
)]

'Powell' solve time vs. number of constraints

PCBA
BSOS
fmincon

 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

 9
0

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

number of constraints

-200

0

200

400

600

800

1000

(s
ol

ve
r

ou
tp

ut
)

-
(t

ru
e

op
tim

um
)

'Powell' solution error vs. number of constraints

Figure 4.4: Results for an increasing number of constraints on the Powell objective function (see
the Appendix) for the PCBA, BSOS, and fmincon. The top plot shows the time required to solve
the problem as the number of constraints increases. The bottom plot shows the error between each
solver’s solution and the true global optimum. For both time and error, fmincon is shown as a
box plot over 50 trials with random initial guesses; the central red line indicates the median, the
top and bottom of the red box indicate the 25th and 75th percentiles, the black whiskers are the most
extreme values not considered outliers, and the outliers are red plus signs. PCBA solves the fastest
in general; fmincon typically solves slightly slower than PCBA for more than 40 constraints; and
BSOS is the slowest solver. PCBA and BSOS always find the global optimum, as does fmincon
when there are not many constraints, because the Powell objective function is convex. Above 30
constraints, fmincon frequently has large error due to convergence to local minima.

75

l max time [s] max items max memory

E-V-D 2 0.0360 66 171 kB
Powell 2 0.0447 1200 6.24 MB
Wood 2 0.0532 54 220 kB

D-P 2-D 2 0.0259 90 433 kB
D-P 3-D 3 0.0675 356 3.47 MB
D-P 4-D 4 0.402 4994 193 MB

Beale 2 0.0302 106 259 kB
Bukin02 4 0.393 10550 110 MB

D-A 4 0.389 51886 647 MB

Table 4.2: Results for the increasing constraints PCBA evaluation. Abbreviated problem names (as
in the Appendix) are on the left, along with each problem’s decision variable dimension l. Over all
20 trials (with between 10 and 200 constraints), we report the maximum time spent find a solution,
the maximum number of items in the list L, and the maximum amount of GPU memory used. Note
that the problems all solved under 0.5 s regardless of the number of constraints, and no problem
requested more than 650 MB of memory.

76

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

number of constraints

0

1

2

3

4

5

6

7
pe

ak
 m

em
or

y
us

ag
e

[M
B

]

'Powell' peak memory usage vs. number of constraints

Figure 4.5: The approximate peak GPU memory used by PCBA for the Powell problem, as a
function of the number of constraints. Since the amount of memory required per item in the list
L grows linearly with the number of constraints, the overall memory usage also grows linearly.
However, at 160 constraints, we see a drop in the memory usage; this is because the additional
constraints render more parts of the problem domain infeasible, resulting in more items being
eliminated per PCBA iteration. Note that the maximum memory usage is well under the several
GB of memory available on a typical GPU.

4.6 Hardware Demonstrations

Recall from Section 4.2.3 that RTD enables real-time, provably collision-free trajectory planning
via solving a POP every planning iteration. RTD is provably collision-free regardless of the POP
solver used, meaning that we are able to test PCBA safely on hardware; when PCBA is applied
to RTD, we call the resulting trajectory planning algorithm RTD*. See Figure 4.1 and the video
(click for link).

In this section, we apply RTD* to a Segway robot navigating a hallway with static obstacles.

77

https://youtu.be/YcH4WAzqPFY
https://youtu.be/YcH4WAzqPFY

Recall that RTD always produces dynamically feasible trajectory plans [KVB+18]. As proven in
Corollary 41 and demonstrated in Section 4.5, PCBA always finds optimal solutions. This section
shows that PCBA/RTD* improves the liveness of a robot by successfully navigating a variety of
scenarios, and outperforming fmincon/RTD.

4.6.1 Overview

4.6.1.1 Demonstrations

We ran two demonstrations in a 20 × 3 m2 hallway. In the first demonstration, we filled the
hallway with random static obstacles and ran RTD*. In the second demonstration, we constructed
two difficult scenarios and ran bot PCBA/RTD* and fmincon/RTD on each.

4.6.1.2 Hardware

We use a Segway differential-drive robot with a planar Hokuyo UTM-30LX LIDAR for mapping
and obstacle detection (see Figure 4.1). Mapping, localization, and trajectory optimization run
onboard, on a 4.0 GHz laptop with an Nvidia GeForce GTX 1080 GPU.

4.6.1.3 POPs

As in Section 4.2.3 (also see Figure 4.1), the robot plans by optimizing over a set Q ⊂ R2 of
parameterized trajectories as in [KVB+18, (16)]. The parameters are speed q1 ∈ [0, 1.2] m/s and
yaw rate q2 ∈ [−1, 1] rad/s, so Q = [0, 1] × [−1, 1]. The trajectories are between 1 and 2 s
long, depending on the robot’s initial speed (since each trajectory includes a braking maneuver).
The robot must find a new plan (i.e., PCBA must solve a new POP) every 0.5 s, or else it begins
executing the braking maneuver associated with its previously-computed plan [KVB+18, Remark
70]. In other words, we require PCBA to return a feasible solution or that the problem is infeasible.
PCBA is given a time limit of 0.4 s to find a solution, because the robot requires 0.1 s for other
onboard processes.

At each planning iteration, obstacles are converted into constraints as in [KVB+18, Sections 6
and 7]; this produces a list of α ∈ N inequality constraints, which we denotew(x1, ·), . . ., w(xα, ·) :

Q→ R. In practice, 30 ≤ α ≤ 300 (see Figure 4.7).
The objective function is constructed at each planning iteration as follows. Offline, we rep-

resent the endpoint of any parameterized trajectory as a degree 10 polynomial x : Q → X . At
runtime, we generate Nwp ∈ N waypoints (i.e., desired locations for the robot to reach), denoted

78

{xn}
Nwp
n=1. We then create the following POP:

argmin
q ∈Q

∏Nwp
n=1

(
‖x(q)− xn‖2

2

)
s.t w(xi, q) ≤ 0 ∀ i = 1, · · · , α.

(4.29)

The objective function is degree 10 · Nwp, and the constraints are each degree 12. Furthermore,
ignoring the constraints, the objective function requires the POP solver to choose between as many
global minima as there are waypoints.

4.6.2 Demo 1

The first demo shows the ability of the RTD* to plan safe trajectories in randomly-generated sce-
narios in real time, demonstrating dynamic feasibility, optimality, and liveness.

4.6.2.1 Setup

The robot was required to move autonomously back and forth ten times between two global goal
locations spaced 12 m apart, while (30 cm)3 box-shaped obstacles were randomly placed in its
path. At each planning iteration, we generated Nwp = 2 waypoints, xL and xR, both 1.5 m ahead
of the robot in the direction of the global goal; xL is on the left side of the hallway relative to the
robot, and xR is on the right.

After running the robot with RTD*, we ran fmincon on the 528 saved POPs generated during
these 10 trials (we do not run BSOS due to its slow solve time). Each POP has between 49 and
245 constraints (see Figure 4.7). For each POP, we initialized fmincon with 25 random initial
guesses, and did not require fmincon to solve within 0.4 s (i.e., we did not enforce the real time
planning constraint). To understand the timing of PCBA and for fair comparison with fmincon,
we re-ran PCBA 25 times on each trial and did not require it to solve in real time.

4.6.2.2 Results

The robot running RTD* successfully completed every trial (meaning that it reached the global
desired goal location without collisions, and without human assistance).

When re-running on the saved POPs, fmincon performs nearly as well as PCBA in terms
of finding solutions. Out of all 25 × 528 attempts in which fmincon converged to a feasible
solution, fmincon converged to a greater cost than PCBA 93.9% of the time (recall that PCBA
provably upper-bounds the optimal solution); however, the fmincon solution was only 0.77%
greater in cost than the PCBA solution on average, indicating that fmincon was often able to
find a global optimum when given enough attempts. In terms of feasibility, PCBA and fmincon

79

also show similar results. PCBA reports that 7.01% of the POPs are infeasible, whereas fmincon
converged to an infeasible result on 8.08% of the 25 × 528 total attempts. Note that, on 14.2% of
the 528 POPs, fmincon converged to an infeasible result least once out of 25 attempts.

Where fmincon suffers with respect to PCBA is in its consistency of finding an answer within
the time limit (see Figure 4.6). While fmincon is often able to solve in 10−2 s (an order of
magnitude faster than PCBA), it has a standard deviation of up to 10 s. On the other hand, PCBA
always finds a solution or returns infeasible within 0.4 s, and has a standard deviation of 2.4 ms
on average over all 25 × 528 POPs. To summarize: as we expect from the theory in Section 4.4,
PCBA’s solve time in practice appears constant on real trajectory optimization problems.

4.6.3 Demo 2

The second demo shows that RTD* can navigate difficult scenarios because PCBA is able to rapidly
solve POPs with hundreds of constraints. Recall that, in any planning iteration, RTD and RTD*
command the robot to begin braking if they cannot find a new trajectory plan (i.e., solve (P)). By
difficult scenarios, we mean that the obstacles are arranged to cause the robot to have to brake
often. Therefore, by RTD*’s successful navigation of these scenarios, we demonstrate liveness.

4.6.3.1 Setup

The robot was required to navigate two difficult scenarios autonomously. In the first scenario, static
obstacles were arranged to force the robot to turn frequently, and to decide to go left or right around
each obstacle. In the second scenario, the robot was required to navigate a tight obstacle blockade.
For each scenario, we ran PCBA/RTD* and fmincon/RTD once each. At each planning iteration,
we generate Nwp = 1 waypoint positioned 1.5 m away from the robot along a straight line to the
global goal; this produces a convex cost function for (4.29), but the constraints make the problem
nonconvex.

4.6.3.2 Results

In the first scenario, both RTD* and RTD are able to successfully navigate the scenario. Recall
that the robot begins emergency braking when it does not find a feasible trajectory in a planning
iteration. RTD* brakes 6 times, whereas RTD brakes 13 times; furthermore, RTD* only takes
27 s to navigate to the goal, whereas RTD takes 43 s. In other words, PCBA/RTD* is half as
conservative as fmincon/RTD, because it finds feasible solutions more frequently.

The results of the second scenario confirm that RTD* is less conservative than RTD. In this
scenario, RTD* is able to navigate the entire scenario autonomously without human assistance,

80

60 80 100 120 140 160 180 200 220 240

-2

-1

0

1
m

ea
n

[lo
g

10
(s

)]

solve time vs. number of constraints

PCBA
fmincon

60 80 100 120 140 160 180 200 220 240
number of constraints

-4

-2

0

2

st
d.

 d
ev

. [
lo

g
10

(s
)]

Figure 4.6: Solve times of PCBA and fmincon on 528 POPs generated by the Segway robot
navigating random scenarios in Demo 1. Each POP was solved 25 times by each solver. While
fmincon can often find a solution an order of magnitude faster than PCBA, it also has a much
higher standard deviation, meaning that it is less consistent at obeying the real-time limit required
by mobile robot trajectory planning.

whereas RTD causes the robot to become stuck (see Fig. 4.8), and a human operator must drive
the robot for a short time to enable to it to continue moving autonomously.

81

number of constraints per trial

40 60 80 100 120 140 160 180 200 220 240 260
number of constraints

0

20

40

60

80

100

120

nu
m

be
r

of
 P

O
P

s

Figure 4.7: The number of POPs from Demo 1, out of 528, that fall into the given bins of number
of constraints; we see that most of the POPs had 100 – 140 constraints. This number of constraints
can makes it challenging to solve a POP while constrained by a real-time planning limit.

Figure 4.8: The robot becomes stuck when planning with RTD/fmincon in the second scene of
the second hardware demo, because fmincon cannot find an optimal solution quickly enough
given the high number of constraints produced by the surrounding obstacles. The robot requires
human assistance to proceed, whereas it is able to navigate the entire scene autonomously when
planning with RTD*/PCBA (Figure 4.1). See the video.

82

https://youtu.be/YcH4WAzqPFY

4.6.4 Discussion

We have demonstrated that RTD* is capable of dynamic feasibility, optimality, and liveness for
online trajectory optimization on robot hardware. RTD* is able to find an optimal solution, if it
exists, at every receding-horizon planning iteration, leading to it consistently navigating random
scenarios without collisions. Furthermore, RTD* outperforms RTD at the same navigation and
obstacle-avoidance tasks. This performance increase is due to PCBA’s ability to find solutions more
quickly than fmincon on problems with hundreds of constraints. To the best of our knowledge,
this is the first time any Bernstein algorithm has been demonstrated as practical for a real-time
mobile robotics application.

4.7 Conclusion

Mobile robots typically use receding-horizon planning to move through the world. Plans should be
dynamically feasible and optimal, but also need to be generated quickly, otherwise the robot may
stop frequently and never complete a user-specified task. We propose and implement a Parallel
Constrained Bernstein Algorithm (PCBA) to rapidly generate provably dynamically-feasible and
optimal plans. PCBA takes advantage of the polynomial optimization problem (POP) structure
used by the existing Reachability-based Trajectory Design (RTD) method; but, where RTD uses
a gradient-based nonlinear solver that cannot guarantee optimality or real-time performance, we
use PCBA. The resulting algorithm, RTD*, is shown to outperform RTD on a variety of hardware
demonstrations. To the best of our knowledge, this is the first time a Bernstein Algorithm has
been used for real-time mobile robotics. Furthermore, PCBA outperforms the Bounded Sums-of-
Squares (BSOS) and fmincon solvers on a variety of benchmark POPs. For future work, we plan
to explore non-polynomial optimization problems and to improve the proposed time and space
complexity bounds of PCBA; our goal is to apply RTD* and PCBA to more types of robots.

83

PC
B

A
B

SO
S

[L
T

Y
17

]
f
m
i
n
c
o
n

[M
at

19
]

l
ε

er
ro

r
tim

e
[s

]
ite

ra
tio

ns
m

em
or

y
(d
,k

)
er

ro
r

tim
e

[s
]

er
ro

r
tim

e
[s

]
P1

2
7.

00
00

e-
07

7.
90

02
e-

07
0.

01
41

28
23

kB
(3

,3
)

-0
.0

06
8

1.
22

64
1.

08
80

0.
00

83
P2

2
0.

13
69

0.
07

31
0.

01
31

26
60

kB
(2

,2
)

-3
.4

99
4e

-0
4

0.
76

71
-0

.4
44

7
0.

01
80

P3
2

2.
00

00
e-

06
1.

98
79

e-
06

0.
01

28
26

57
kB

(2
,2

)
-3

.2
74

7
0.

50
65

-3
.0

00
0

0.
02

20
P4

3
1.

70
00

e-
06

6.
55

65
e-

07
0.

02
04

24
41

6
kB

(4
,4

)
-0

.9
45

5
6.

65
46

3.
20

00
e-

05
0.

01
30

P5
3

1.
00

00
e-

06
0

0.
03

12
28

3
M

B
(2

,2
)

-4
.4

85
8e

-0
7

0.
84

62
7.

99
85

e-
06

0.
00

62
P6

4
4.

26
77

e-
04

1.
86

85
e-

04
0.

03
15

23
2

M
B

(3
,3

)
-3

6.
61

79
6.

24
34

0.
00

40
0.

00
65

P7
4

5.
00

00
e-

07
2.

52
80

e-
07

0.
03

74
26

28
2

kB
(1

,1
)

-1
.0

89
9

0.
18

39
2.

40
02

e-
07

0.
01

39
P8

4
1.

34
45

e-
04

6.
78

03
e-

05
0.

04
40

22
6

M
B

(2
,2

)
-3

.2
52

1
1.

82
95

9.
99

89
e-

04
0.

01
69

Ta
bl

e
4.

1:
R

es
ul

ts
fo

r
PC

B
A

,B
SO

S,
an

d
f
m
i
n
c
o
n

on
ei

gh
tb

en
ch

m
ar

k
pr

ob
le

m
s

w
ith

2,
3,

an
d

4
di

m
en

si
on

al
(c

ol
um

n
l)

de
ci

si
on

va
ri

ab
le

s
(s

ee
th

e
A

pp
en

di
x

fo
r

m
or

e
de

ta
ils

).
T

he
er

ro
r

co
lu

m
ns

re
po

rt
ea

ch
so

lv
er

’s
re

su
lt

m
in

us
th

e
tr

ue
gl

ob
al

m
in

im
um

.
Fo

r
al

l
th

re
e

so
lv

er
s,

th
e

re
po

rt
ed

er
ro

ra
nd

tim
e

to
fin

d
a

so
lu

tio
n

ar
e

th
e

m
ed

ia
n

ov
er

50
tr

ia
ls

(w
ith

ra
nd

om
in

iti
al

gu
es

se
s

fo
rf
m
i
n
c
o
n

).
Fo

r
PC

B
A

,w
e

al
so

re
po

rt
th

e
op

tim
al

ity
to

le
ra

nc
e
ε

(a
s

in
(4

.2
8)

),
nu

m
be

ro
fi

te
ra

tio
ns

to
co

nv
er

ge
nc

e,
an

d
pe

ak
G

PU
m

em
or

y
us

ed
.N

ot
e

th
at

,o
n

P1
an

d
P5

,P
C

B
A

st
op

pe
d

at
th

e
m

ax
im

um
nu

m
be

ro
fi

te
ra

tio
ns

(2
8)

.

84

CHAPTER 5

Fast, Safe Control Synthesis for a 3D Bipedal Robot

5.1 Introduction

In the prior two chapters, an MPC framework is constructed to perform control synthesis on bipedal
robots in an online fashion, and a parallel computing scheme is developed to solve polynomial
optimization problems with provable guarantees on optimality, computation time, and memory
usage. However, the method developed in each chapter has shortcomings. The MPC framework
proposed in Chapter 3 is only applicable to planar robots, and is unable to guarantee safety when
a feasible solution to the optimization is not found. The application of PCBA as proposed in
Chapter 4 requires expressing the objective and constraint functions in polynomial form. This
chapter proposes to combine and extend the work from the prior two chapters to construct an
online MPC framework capable of keeping a 3D bipedal robot safe for all time even when the
optimization problem is infeasible.

In each planning iteration of the proposed MPC framework, we generate a plan made up of
two phases. The first phase of the plan moves the robot forward while minimizing a user-specified
cost; the second phase brings the robot to a fixed configuration where it balances on two feet.
However, the second phase is only ever applied if a feasible new control input is not found. By
forcing the robot to reach a pre-specified set of “safe” states at the end of the second phase, any
safety guarantees that are previously established over finite time horizon can be extended to all
future times.

The contributions of this chapter are three-fold: first, Section 5.3 develops a numerical simu-
lation scheme for hybrid systems that generates numerical approximations to hybrid trajectories,
and proposes to bound the approximation error by using interval-arithmetic techniques; second,
Section 5.4 formulates sufficient conditions for safety using the constructed error bounds; third,
Section 5.5 describes a parallel algorithm that solves each optimization up to a user-specified tol-
erance, and proves persistent feasibility of the method.

The remainder of this chapter is organized as follows: Section 5.2 describes a 3D bipedal robot

85

and its environment, and gives a formal definition of safety; Section 5.6 provides implementation
details; Section 5.7 demonstrates the performance of the proposed approach on a walking example;

5.2 Dynamic Models and Environments

We start by introducing a bipedal robot and its environment. Specifically, Section 5.2.1 introduces
necessary notations to define a dynamical model of Cassie; Section 5.2.2 defines a two-phase
parameterized control input that is applied in each planning horizon; and Section 5.2.3 defines the
environment and provides a formal definition of safety.

5.2.1 Dynamical Model of a Biped

hip, L

Lhip,

Lhip,

Figure 5.1: A kinematic model of Cassie where the joints on the right limb are omitted for ease of
understanding. The joints q1L, . . . , q4L, q1R, . . . , q4R, q7L, q7R are actuated and the corresponding
control inputs are labeled u1L, . . . , u4L, u1R, . . . , u4R, u5L, u5R, respectively.

We focus on designing trajectories online for Cassie while it walks on a flat ground plane that
we denote by G ⊂ R2. We define the flow map of Cassie as φ : [t0,∞) × X × U → X where

86

φ(t, y0, u(·)) denotes the solution to Cassie’s dynamics under the control input u(t) ∈ U at time
t ∈ [t0,∞) starting from an initial condition y0 ∈ X . We refer to T = [t0, τf] as the planning time

horizon where τf <∞. When the control input and initial condition are clear in context, we refer
to the solution at time t by φ(t). Note that the dynamics of Cassie are typically described using a
hybrid system [GHD+19] and φ(·, y0, u(·)) must be understood as a hybrid system trajectory (c.f.
Fig. 2.1). Detailed discussion about hybrid trajectory of Cassie and its discrete approximation is
postponed until Section 5.3.2 . Since planning is done in a receding-horizon fashion, without loss
of generality (WLOG), let each planned trajectory (i.e., each planning iteration) begin at t0 = 0.

The state space of X is composed of variables corresponding to the configuration variables of
Cassie and their velocities. The configuration variables of Cassie are depicted in Figure 5.1. In
particular, the variables qx, qy, and qz are the Cartesian position of the pelvis, and qyaw, qpitch, and
qroll are the intrinsic Euler Angles of the pelvis. The coordinates (q1L, q1R), (q2L, q2R), (q3L, q3R)

are the hip roll, hip yaw, and hip pitch angles for left and right limbs, respectively; (q4L, q4R) are
the left and right knee pitch angles; (q5L, q5R) are the left and right shin pitch angles; (q6L, q6R) are
the tarsus pitch angles; (q7L, q7R) are the left and right toe pitch angles. In addition the variables
(qhip,xL, qhip,yL, qhip,zL) and (qhip,xR, qhip,yR, qhip,zR) are the Cartesian positions of the left and right
hips, respectively. From now on, we refer to Cassie’s toe as its “foot” since it behaves like the foot
of other bipedal robots. We also refer to a particular configuration coordinate of the flow map by
using that coordinate as a subscript (e.g., φqx denotes the qx-coordinate of the flow map φ, whereas
φq̇x denotes the velocity coordinate of qx in φ).

Typically one refers to Cassie’s footprint as the area occupied by Cassie when projected onto
the ground, G. However, this definition prohibits real-time computation because the shape of such
projection can evolve as Cassie moves its limbs. To conservatively represent such a projection, we
make the following assumption:

Assumption 47. Cassie’s footprint in G can be bounded by a circle centered at (qx, qy) with con-

stant radius R ≥ 0, where qx and qy are the 2D Cartesian position of Cassie’s pelvis on G.

5.2.2 Control Input

Rather than try to optimize over arbitrary control inputs during online optimization, we instead
focus on optimizing over a recently developed family of parameterized controllers for Cassie
[GHD+19] . These control inputs are parameterized by a pair of control parameters, P :=

(P1, P2) ∈ P with P := [0, 1] × [−0.1, 0.1] where P1 corresponds to a forward speed in meters
per second and P2 corresponds to a yaw rate in radians per second. In particular, each parameter is
associated with a control input, (u1L,P , . . . , u5L,P , u1R,P , . . . , u5R,P) : [0, τ1)→ U , whose compo-
nents corresponds to motor torques at the joints q1L, . . . , q4L, q7L, q1R, . . . , q4R, q7R, respectively,

87

as a function in time for some pre-specified τ1 ∈ (0, τf). Note that we refer to the concatenation
of the controller at each joint by uP for each P ∈ P . These control inputs try to get the pelvis
to track a forward speed P1 and yaw rate P2. In this chapter, we append each control input with
a second phase u0 : [τ1,+∞) → U where the robot decelerates to zero pelvis velocity and then
balances on two feet. This second phase of the control input attempts to bring Cassie to a fixed
double-stance configuration with zero joint velocity. The specific details of this controller u0 are
included in Appendix G. We denote the concatenated controller as ûP : [0,+∞)→ U , where

ûP (t) :=

uP (t) if 0 ≤ t < τ1

u0(t) if t ≥ τ1

(5.1)

Note, for the remainder of this chapter, when it is clear in context, we abuse notation and denote
this two phase controller by the control parameter applied during the first phase.

5.2.3 Environment and Safety Criterion

This paper assumes that Cassie is tasked with reaching a user-specified goal location while walking
without falling over on the ground and avoiding randomly placed obstacles. To walk safely, first
Cassie must not fall, which is defined formally as follows:

Definition 48. Cassie falls if any portion of it other than its feet touch the ground.

However, checking the above condition directly requires bounding the position of all joints
over the planning horizon T . Instead, we rely on the following sufficient condition to ensure that
Cassie does not fall:

Theorem 49. If the left and right hip height states of Cassie is above 0.75 [m], then Cassie has

not yet fallen.

Proof. See Appendix F.

As a result of Theorem 49, we only need to make sure Cassie’s left and right hip heights do not fall
below the threshold 0.75 [m] to prevent Cassie from falling before τf .

Next, we formalize the notion of obstacles in the environment, which are treated as subsets of
G, and as:

Definition 50. At any time t ≥ 0, an obstacle is a static closed polygon in G that Cassie’s footprint

cannot intersect without being in collision. Denote the lth obstacle by Ol ⊂ G for each l ∈
{1, · · · , Nobs}.

88

Note that this definition treats obstacles as if they have an infinite height (i.e. Cassie cannot step
over an obstacle without being in collision). Once again, checking the above condition directly
requires bounding the position of all joints over the planning horizon T . To simplify enforcement
of this requirement, we buffer each obstacle by the footprint radius R, and require Cassie’s pelvis
position to stay outside such buffered obstacles. To do this, define a function buffer : Ol 7→ Ôl

that maps each obstacleOl to its corresponding obstacle, Ôl, that is buffered by the footprint radius
R. A detailed definition of such function can be found in [KVB+18, Definition 47]. We then obtain
a sufficient condition that ensures Cassie is not in collision with any obstacles:

Theorem 51. Let (qx, qy) be the 2D Cartesian position of Cassie’s pelvis. If ∀l ∈ {1, . . . , Nobs},
(qx, qy) 6∈ buffer(Ol), then Cassie is not in collision with any obstacles.

Using these pair of definitions, we can define safety as avoiding falling and collisions, which
is defined formally as follows:

Definition 52. Cassie is safe if it does not fall or collide with any obstacles for all t ≥ 0.

5.2.4 Planning, Sensing, and Persistent Feasibility

To ensure that Cassie is able to walk safely at run-time, we begin with an assumption about the
amount of time that planning is allotted.

Assumption 53. During each planning iteration, Cassie has τplan > 0 amount of time to pick a

new input. If the robot cannot find a new input in a planning iteration, it continues applying the

parameterized control input it computed during the previous iteration.

At the beginning of each planning iteration, time is reset to t = 0. During each planning
iteration, we create a new desired trajectory for the next planning iteration by choosing P ∈ P

while applying the previously-computed parameterized input.
Next, we describe how the planning loop constructs controllers for Cassie that are ensured

to keep it persistently safe. During each online trajectory design iteration, we would like to find a
control parameter P ∈ P such that Cassie is safe for all future times if uP is applied over [0, τ1) and
u0 is applied over [τ1,+∞). In particular, each iteration is given τplan amount of time to construct
new control input. During this time, typically the safe control input constructed in the previous
planning iteration is applied. If a new control input that can be applied safely can be found in τplan,
then it is applied to Cassie beginning at t = τ1 and the online trajectory design process is repeated.
If no new control input can be found, then the u0 whose safe behavior was verified in the previous
iteration is applied.

89

Unfortunately, verifying that u0 can be applied safely over an infinite time horizon is compu-
tationally taxing. Instead, we verify during online optimization that u0 over some time horizon,
[τ1, τf] is able to drive the states of Cassie to a pre-specified set Xf . This set which we formally de-
fine in the implementation section (c.f. Section 5.6) corresponds to a set of states in double-stance
where the velocity of each joint is small and Cassie’s center of mass is within its base of support.
Once Cassie arrives in this set, we then make the following assumption about u0 and Xf to ensure
that it can remain in a safe, balanced state indefinitely:

Assumption 54. There exists a compact set Xf ⊂ X of double stance configurations, such that

if u0 is applied to Cassie with current state contained in Xf , Cassie will keep balanced in place

indefinitely.

To make sure the planning framework is able to accommodate newly observed obstacles as
Cassie moves through the environment, we make several assumptions about the sensing model.
Using these assumptions we can prove persistent feasibility of the proposed planning framework.
We begin by making an assumption about how the obstacles are perceived:

Assumption 55. The robot has a finite sensor horizon Dsense, which is a radius around the pelvis

position in G within which obstacles are perceived. During operation, new obstacles appear from

outside the sensor horizon and are sensed as soon as they appear. In particular, occluded regions

are treated as obstacles.

We may now formally prove safety and persistent feasibility of the proposed planning frame-
work using similar arguments from [KVB+18, Theorem 35]:

Theorem 56. Let τplan be the overall computation time for online planning. Let Assumption 55 be

satisfied, and suppose τplan ≤ τ1. Furthermore, suppose the sensor horizon Dsense satisfies

Dsense ≥ (τplan + τ1) · vmax (5.2)

where vmax Cassie’s maximum speed. Suppose that their exists a safe controller uP which can be

applied for the next τ1 seconds, then the planning framework is persistently feasible. That is, in the

following planning iterations the robot can either find a safe plan every τ1 seconds, or can follow

the controller u0 to come to a fixed position where it balances on two feet indefinitely.

In practice, to ensure real-time operation, the condition τplan ≤ τ1 is enforced by placing a hard
time limit of τ1 on the planning time, after which any ongoing computation is terminated.

90

5.3 Error Bound for Hybrid System Simulations

To establish safety guarantees of Cassie, one needs to verify Theorem 49 and 51 are satisfied
along a hybrid execution φ(·, y0, u(·)). Although such φ is not directly accessible to us, we may
find approximations to it through numerical simulation. This section defines hybrid systems and
presents a numerical technique to simulate hybrid executions with provable error bounds. We start
by introducing necessary notations and preliminaries for interval arithmetic. A longer introduction
to interval arithmetic can be found in [Moo66].

5.3.1 Preliminaries

Let Rd
+ be the set of vectors in d-dimensional real Euclidean space whose components are pos-

itive, and let Rd
− be the set of d-dimensional real vectors with negative components. Define

BV([0,+∞),U) to be the set of all functions of bounded variation from [0,+∞) to U .
Given two intervals X = [X,X] and Y = [Y , Y] where X ≤ X and Y ≤ Y , define their

product by

X · Y := [min{XY ,XY ,XY ,XY },max{XY ,XY ,XY ,XY }] (5.3)

Notice in particular for any x ∈ X and y ∈ Y , xy ∈ X · Y . Given any positive real number
a > 0, let [a] := [−a, a] ⊂ R be a closed real interval that contains 0. For any vector b ∈ Rd

+, let
[b] := [b1] × · · · × [bd] ⊂ Rd be a closed box in d-dimensional Euclidean space, where bj stands
for the j th component of b. Given any c ∈ Rd, let c+ [b] be defined as

c+ [b] = [c1 − b1, c1 + b1]× · · · × [cd − bd, cd + bd] ⊂ Rd (5.4)

Such objects [b] and c+[b] are essentially vectors with interval components, therefore often referred
to as interval vectors. In a similar fashion, given any matrix A ∈ Rl×d

+ with positive components,
let [A] be a matrix with interval components [Aij] where Aij stands for the (i, j)th component of
A. Such a matrix [A] is referred to as interval matrix. The interval-arithmetic operations involving
interval vectors and matrices are defined by using the same formulas as in the scalar case, except
that scalars are replaced by intervals [Moo66]. For example, if a d × d interval matrix [A] has
components [Aij] for all 1 ≤ i, j ≤ d, and a d × 1 interval vector [b] has components [bk] for
all 1 ≤ k ≤ d, then the ith components of their product [A] · [b] is given by

∑d
k=1[Aik] · [bk] =

[
∑d

k=1Aikbk].
Let f : Rd → Rl be a continuous function whose analytical representation contains only a

finite number of constants, variables, arithmetic operations, and standard functions (sin, cos, log,

91

exp, etc.). The interval-arithmetic evaluation of f on [b], which we denote by f([b]), is obtained
by replacing each occurrence of a real variable with the corresponding interval and performing
interval-arithmetic operations. In particular, such an interval-arithmetic evaluation provides an
outer approximation of f over the interval vector [Moo66, Theorem 5.1], that is, {f(v) | v ∈
[b]} ⊆ f([b]).

One useful result that we use extensively in the subsequent subsections is an extension of the
mean value theorem to the interval-arithmetic case formally stated as follows:

Theorem 57. Let a, b ∈ Rd, ε ∈ Rd
+ be such that a ∈ b + [ε]. Suppose f : b + [ε] → Rl is

differentiable and let Jf (c) be its Jacobian matrix at c ∈ b+ [ε]. Then, there exists θ ∈ (0, 1) such

that

f(a)− f(b) = Jf ((1− θ)a+ θb) · (a− b) (5.5)

Furthermore, suppose there exists a matrix B ∈ Rl×d
+ such that |Jf (c)| ≤ B for each c ∈ b + [ε],

where | · | is meant component-wise. Then,

f(a)− f(b) ∈ [Bε]. (5.6)

Proof. (5.5) follows from the mean value theorem of multivariate functions by noticing a, b ∈
b+ [ε], where the box b+ [ε] is closed and convex. To prove (5.6), notice Jf ((1− θ)a+ θb) ∈ [B]

and a− b ∈ [ε].

For any v ∈ Rd, let |v| := (|v1|, . . . , |vd|) be the component-wise absolute value of v. Similarly,
let the inequalities ≤, <, >, ≥ between vectors be defined component-wise.

5.3.2 Hybrid System and Its Numerical Simulation

Recall from Definition 1 that a hybrid system is a tupleH = (I, E ,X ,U ,F ,S,R), where:

• I is a finite set indexing the discrete states ofH;

• E ⊂ I × I is a set of edges, forming a directed graph structure over I;

• X =
∐

i∈I Xi is a disjoint union of domains, where each Xi is a compact subset of Rni and
ni ∈ N;

• U is a compact subset of Rm that describes the range of control inputs, where m ∈ N;

• F = {Fi}i∈I is the set of vector fields, where each Fi : R × Xi × U → Rni is a Lipschitz
continuous vector field defining the dynamics of the system on Xi;

92

• S =
∐

e∈E Se is a disjoint union of guards, where each S(i,i′) ⊂ ∂Xi is a compact, co-
dimensional 1 guard defining a state-dependent transition from Xi to Xi′; and,

• R = {Re}e∈E is a set of continuous reset maps, where each map R(i,i′) : S(i,i′) → Xi′ defines
the transition from guard S(i,i′) to Xi′ .

To avoid any ambiguity during transitions, we make the same set of assumptions as in Section
2.2:

Assumption 58. Guards do not intersect with themselves or the images of reset maps. The con-

trolled vector fields in each mode have a nonzero normal component on the guard for all control

inputs in U .

To guarantee the existence and uniqueness of solutions to ordinary differential equations in
individual domains, we assume the following regularity of the controller:

Assumption 59. The controller u that is applied to a hybrid system is of bounded variation. That

is, u ∈ BV([0,+∞),U).

Notice the vector field Fi for each i ∈ I is Lipschitz continuous by definition. One may show the
ordinary differential equation associated with Fi in each domain has a unique solution:

Theorem 60 ([BGV+15, Lemma 10]). For each i ∈ I, x0 ∈ Xi, and u ∈ BV ([0,+∞),U), there

exists an interval I ⊂ [0,+∞) such that the following differential equation has a unique solution:

γ̇(t) = Fi(t, γ(t), u(t)), t ∈ I, γ(0) = x0. (5.7)

Moreover, γ is absolutely continuous.

With the above assumptions, given a controller u ∈ BV([0,+∞),U) and an initial condition
y0 ∈ X , we define a hybrid trajectory, φ(·, y0, u(·)), of the hybrid system H as in Algorithm 2.1.
WLOG, we assume such trajectory does not start from inside a guard:

Assumption 61. The initial condition of a hybrid trajectory is not in any guard.

Such hybrid trajectories, however, are usually not directly accessible to us due to lack of numerical
method that finds exact solution to ordinary differential equation, and the inability to perform
accurate event detection. Instead, we seek numerical approximations to them and prove bounds on
the approximation error.

To make sure such hybrid trajectories are numerically approximable, we impose a few regular-
ity assumptions on the vector fields as well as hybrid trajectories themselves:

93

Assumption 62. For each i ∈ I, the vector field Fi : R × Xi × U → Rni is differentiable with

respect to the state variable (i.e., second argument of Fi).

Assumption 63. For each y0 ∈ X and u ∈ BV([0,+∞),U), the hybrid trajectory φ(·, y0, u(·)) of

H is orbitally stable. The hybrid trajectory has a continuous second derivative at each instance

in time. Such φ(·, y0, u(·)) either has a finite number of discrete transitions or is a Zeno trajectory

that accumulates.

One may refer to [BGV+15, Definition 23-25] for definitions of orbital stability and accumulation
points of Zeno trajectories.

Next, to construct a numerical simulation scheme of hybrid system that does not rely on exact
computation of the time instant at which a hybrid trajectory intersects a guard, we define a re-

laxation of a hybrid system by introducing slackness in the guards and reset maps. This requires
additional regularity of the guards and reset maps:

Assumption 64. Each guard of the hybrid systemH is a 0-sublevel set of a differentiable function.

That is, for each (i, j) ∈ E , there exists a differentiable function c(i,j) : Rni → R such that

S(i,j) = {x ∈ Xi | c(i,j)(x) = 0}. (5.8)

Moreover, let c(i,j)(x) ≥ 0 for each x ∈ Xi. For each (i, j) ∈ E , the reset map R(i,j) is differen-

tiable and admits a differentiable extension on Rni . That is, there exists a differentiable function

R̂(i,j) : Rni → Rnj such that

R̂(i,j)(x) = R(i,j)(x) ∀x ∈ S(i,j) (5.9)

We now formally define relaxed guards, relaxed reset maps, and relaxed domains as follows:

Definition 65. Let H = (I, E ,X ,U ,F ,S,R) be a hybrid system. Let δ > 0. For each (i, j) ∈ E ,

define a δ-relaxation of the guard S(i,j) as

Sδ(i,j) := {x ∈ Rni | −δ ≤ c(i,j)(x) ≤ 0} ⊂ S(i,j) (5.10)

The δ-relaxation of the reset map R(i,j), denoted as Rδ
(i,j) : Sδ(i,j) → Rnj , is a differentiable exten-

sion of R(i,j) onto Sδ(i,j) such that

Rδ
(i,j)(x) = R(i,j)(x) ∀x ∈ S(i,j). (5.11)

For each i ∈ I, define the δ-relaxation of the domain Xi, denoted as Xδ
i , to also contain the

94

relaxed guards:

Xδ
i := Xi ∪(i,j)∈E S

δ
(i,j) (5.12)

The definitions of relaxed guards, relaxed reset maps, and relaxed domains allow us to construct
a relaxation of the hybrid system that is closely related to the evolution of numerical simulations:

Definition 66. LetH = (I, E ,X ,U ,F ,S,R) be a hybrid system. A δ-relaxation ofH is a tuple

Hδ = (I, E ,X δ,U ,F ,Sδ,Rδ) (5.13)

where:

• X δ =
∐

i∈I X
δ
i is a disjoint union of δ-relaxations of domains;

• Sδ =
∐

e∈E S
δ
e is a disjoint union of δ-relaxations of the guards;

• Rδ = {Rδ
e}e∈E is a set of δ-relaxations of the reset maps.

Notice the set of vector fieldsF is not defined on all points in the relaxed guards Sδ. Such definition
is intentional because the numerical simulations, as we define next, does not require evaluation of
the vector fields on Sδe .

Finally, we define the numerical simulation of a relaxed hybrid system, which is constructed as
an extension of any existing ODE numerical integration algorithm. Let Ψh

i : R ×Xi × U → Rni

be a numerical integrator in domain Xi with step size h > 0. Let [0, T] be the time domain
over which the numerical simulation is computed, and let N := dT/he be the total number of
steps in the numerical simulation. For a sufficiently large δ > 0 such that the range of Φh

i is
contained in Xδ

i for each i ∈ I, a numerical simulation of a relaxed hybrid system Hδ under a
set of numerical simulators {Ψh

i }i∈I consists of a time sequence {tk}1≤k≤N and a state sequence
{yk}1≤k≤N constructed via Algorithm. 6.

In the remainder of this section, we let the numerical integrator Ψh
i be obtained from the Euler

method with a fixed step size h > 0. That is,

Ψh
i (t, x, u(t)) := x+ h · Fi(t, x, u(t)) (5.14)

for all t ∈ [0, Nh], i ∈ I, and x ∈ Xi. For convenience, given any yk = (xk, i) ∈ X , let

Φi
k(xk) := Ψh

i (tk, xk, u(tk)). (5.15)

95

Algorithm 6 The procedure to define a numerical simulation of the δ-relaxation of a hybrid system
Hδ.
Require: h > 0, N > 0, i ∈ I, (x0, i) ∈ X , and u ∈ BV([0,+∞),U)

1: Set t0 ← 0, y0 ← (x0, i)
2: loop
3: Set tk+1 ← tk + h.
4: Set xk+1 ← Ψh

i (tk, xk, u(tk)).
5: Set yk+1 ← (xk+1, i).
6: if ∃(i, j) ∈ E such that xk+1 ∈ Sδ(i,j) then
7: Set tk+2 ← tk+1.
8: Set xk+2 ← Rδ

(i,j)(xk+1).
9: Set yk+2 ← (xk+2, i)

10: Set k ← k + 2.
11: else
12: Set k ← k + 1.
13: end if
14: end loop

5.3.3 Bounding Errors in Numerical Simulation

Given a hybrid systemH, an initial condition y0 = (x0, i) ∈ X , and a control u ∈ BV([0,+∞),U),
it is our interest to understand how a hybrid trajectory φ(·, y0, u(·)) of H differs from a numerical
simulation {tn, yn}1≤n≤N of Hδ. To simplify notation, let yi(·) denote the projection of a hybrid
trajectory φ(·, y0, u(·)) ontoXi for each i ∈ I, and let xk be the projection of yk onto the continuous
state space such that yk = (xk, i) for some i ∈ I. Notice in Lines 7-14 of Algorithm. 6 that the
pair (tk+1, yk+2) is updated differently depending on whether yk+1 reaches the relaxed guard. In a
similar vein we shall prove an error bound in two separate cases.

5.3.3.1 Error bound when yk /∈ Sδ

Let the discrete state component of yk be i ∈ I. It then follows from Line 4 in Algorithm. 6
that xk+1 = Φi

k(xk). We refer to the difference between yi(tk) and xk as the global error at
time tk. In particular, suppose we are given a bound εk ∈ Rni

+ of the global error at tk such that
εk ≥ |yi(tk)− xk|, we are interested in finding an εk+1 ∈ Rni

+ such that εk+1 ≥ |yi(tk+1)− xk+1|,
where the inequality is meant component-wise.

96

X

X

X

X

X

X

Figure 5.2: An illustration of global errors when yk /∈ Sδ

To understand how εk+1 can be obtained from εk, consider the scenario shown in Fig. 5.2. Let
x′k+1 be the point we would have computed using Euler’s method if the global error at time tk was
zero, then the distance between x′k+1 and yi(tk+1) represents the amount of error introduced by
one step of Euler method. In addition, the error at tk is propagated through the dynamical system,
which is represented as the difference between x′k+1 and xk+1. So, the global error at time tk
can be decomposed into 2 parts: truncation error due to describing the solution to the differential
equation by using the Euler method, and propagation error due to the inexactness of the initial
condition at each subsequent discrete time step since it is generated by using the Euler method.
We now explain how each error is computed.

Let x′k := yi(tk) and x′k+1 := Φi
k(x
′
k), then the truncation error εtrunc

k+1 := yi(tk+1) − x′k+1

characterizes the difference between yi(tk+1) and x′k+1. It can be shown [Atk08, Theorem 6.3] that

Theorem 67. There exists some ξ ∈ [tk, tk+1] such that

εtrunc
k+1 =

h2

2

d2(yi)

dt2
(ξ) (5.16)

where yi is the projection of y onto Xi.

It can be seen from Theorem 67 that bounding εtrunc
n+1 requires a priori bounds of second derivative of

the trajectory in each domain. In Section 5.6 we describe how we construct this bound; however,
for now we assume such a bound is given:

97

Assumption 68. There exists functions Bi
1 : [0, T]→ Rni

+ such that for all i ∈ I, 1 ≤ l ≤ N , and

ξ ∈ [tl, tl+1], ∣∣∣∣d2(yi)

dt2
(ξ)

∣∣∣∣ ≤ Bi
1(tl) (5.17)

whenever the projection of a trajectory y onto the continuous state space, denoted as yi, is well

defined. The absolute value | · | and inequality are meant component-wise.

It then follows directly from Theorem 67 and Assumption 68 that

∣∣εtrunc
k+1

∣∣ ≤ h2

2
Bi

1(tk) (5.18)

Next, notice xk and x′k may not be identical due to the error from previous numerical simulation
steps, thus the propagation of such separation from the kth step into the (k + 1)th step through the
numerical integrator (5.14) must be considered. The propagation error, εprop

k+1, is defined as the
difference between x′k+1 and xk+1, namely

εprop
k+1 := x′k+1 − xk+1 = Φi

k(x
′
k)− Φi

k(xk). (5.19)

Notice the function Φi
k : Xi → Xi is differentiable because Fi is assumed to be differentiable with

respect to the state variable. Let JΦik
(a) be the Jacobian matrix of Φi

k at a ∈ Xi, which we assume
is bounded in a neighborhood of xk:

Assumption 69. For each i ∈ I, there exists a function Bi
2 : Xi×Rni

+ → Rni×ni
+ , such that for all

1 ≤ k ≤ N satisfying yk = (xk, i), ∣∣∣JΦik
(a)
∣∣∣ ≤ Bi

2(xk, εk) (5.20)

for all a ∈ xk + [εk], where the absolute value | · | and inequality are meant component-wise.

In Section 5.6 we describe how we construct this bound.
It follows from (5.19) and Theorem 57 that

∣∣εprop
k+1

∣∣ ≤ Bi
2(xk, εk)εk. (5.21)

Combining (5.21) and (5.18), we may obtain a bound for the total error at time tn+1, denoted
as εn+1:

εk+1 :=
h2

2
Bi

1(tk) +Bi
2(xk, εk)εk ≥

∣∣εtrunc
k+1

∣∣+
∣∣εprop
k+1

∣∣ (5.22)

98

However, such εn+1 provides global error bound only at a discrete time instant tn+1, rather than for
all of [tn, tn+1]. This issue can be resolved by taking the convex hull of two adjacent error sets:

Theorem 70. Let y0 ∈ X be an initial condition, and let u ∈ BV([0,+∞),U) be a control law.

Let yk, yk+1 be obtained from the algorithm in Algorithm. 6 for some 1 ≤ k ≤ N − 1 such that

yk 6∈ Sδ. Let xk (resp., xk+1) be the projection of yk (resp., yk+1) onto the continuous state space

such that yk = (xk, i) and yk+1 = (xk+1, i). Let φ(·, y0, u(·)) be a hybrid trajectory of H, whose

projection onto Xi is denoted as yi(·). Let εk be such that εk ≥ |yi(tk) − xk|. Let εk+1 be defined

as in (5.22). Let a set Ek ⊂ Y be defined as

Ek := conv ((xk + [εk]) ∪ (xk+1 + [εk+1])) (5.23)

where conv stands for the convex hull. Then, yi(t) ∈ Ek for all t ∈ [tk, tk+1].

Proof. Let x′k = yi(tk) and x′k+1 = Φi
k(x
′
k). Define a continuous function θ : [tk, tk+1]→ [0, 1] as

θ(t) =
t− tk

tk+1 − tk
(5.24)

for each t ∈ [tk, tk+1]. Let z : [tk, tk+1]→ Xi be a linear function defined as

z(t) = (1− θ(t))xk + θ(t)xk+1 (5.25)

for all t ∈ [tk, tk+1]. In particular, z(tk) = xk and z(tk+1) = xk+1. Similarly, let z′ : [tn, tn+1] →
Xi be defined as

z′(t) = (1− θ(t))x′k + θ(t)x′k+1 (5.26)

for all t ∈ [tk, tk+1]. An illustration of z and z′ is shown in Fig. 5.2.
Let t ∈ [tk, tk+1] be arbitrary. We then have

|z′(t)− z(t)| =
∣∣(1− θ(t))x′k + θ(t)x′k+1 − (1− θ(t))xk − θ(t)xk+1

∣∣ (5.27)

≤(1− θ(t)) |x′k − xk|+ θ(t)|x′k+1 − xk+1| (5.28)

≤(1− θ(t))εk + θ(t)Bi
2(xk, εk)εk (5.29)

where (5.27) follows from definitions of z and z′; (5.28) follows from triangle inequality; (5.29)
follows from (5.21).

Notice the value z(t) can be obtained by applying Euler method to xk with step size t − tk, it

99

follows from Theorem 67 and Assumption 68 that

|yi(t)− z′(t)| ≤ (t− tk)2

2
Bi

1(tk) = θ(t)2h
2

2
Bi

1(tk) ≤ θ(t)
h2

2
Bi

1(tk) (5.30)

By combining (5.29), (5.30), (5.22), and applying triangle inequality we obtain

|yi(t)− z(t)| ≤ (1− θ(t))εk + θ(t)

(
h2

2
Bi

1(tk) +Bi
2(xk, εk) · εk

)
= (1− θ(t))εk + θ(t)εk+1

(5.31)

Since z(t) = (1− θ(t))xk + θ(t)xk+1, we may rewrite (5.31) as

(1− θ(t))(xk − εk) + θ(xk+1 − εk+1) ≤ yi(t) ≤ (1− θ(t))(xk + εk) + θ(xk+1 + εk+1) (5.32)

Or equivalently,

yi(t) ∈ conv(xk + [εk], xk+1 + [εk+1]) = Ek (5.33)

5.3.3.2 Error bound when yk ∈ Sδ

Without loss of generality, let yk ∈ Sδ(i,j), where (i, j) ∈ E . Let σ be in a neighborhood of tk at
which a hybrid trajectory φ(·, y0, u(·)) intersects the guard S(i,j), as shown in Fig. 5.3. Note in the
remainder of this chapter we assume tk ≤ σ. Note that the argument presented generalizes to the
case when tk > σ. Let εk be a bound for global error at time tk. For notational convenience, we
denote by y(σ−) the limit of y(t) as t approaches σ from the left, and denote by y(σ+) the limit of
y(t) as t approaches σ from the right. That is,

y(σ−) := lim
t→σ−

y(t), (5.34)

y(σ+) := lim
t→σ+

y(t). (5.35)

In particular, y(σ−) denotes the state of a hybrid trajectory y right before the transition happens,
and y(σ+) denotes the state of y right after a transition.

100

X

X
X X

X

X

X

Figure 5.3: An illustration of global errors when yk ∈ Sδ

We now make an assumption on the transition time, σ:

Assumption 71. For each (i, j) ∈ E , there exist a function B(i,j)
3 : Sδ(i,j) × Rni

+ → R+ such that

for all hybrid trajectory ỹ satisfying ỹi(t) ∈ (xk + [εk]) ∪ Xi for some t ∈ [0, T], there exists

σ̃ ∈ [t, t+B
(i,j)
3 (xk, εk)] such that

c(i,j)(ỹ
i(σ̃−)) = 0 (5.36)

In other words, if the projection of a hybrid trajectory ỹ onto domain Xi, denoted as ỹi, reaches a
neighborhood xk + [εk] of xk at time t ∈ [0, T] but has not yet reached the guard S(i,j), it will reach
the guard before time t+B

(i,j)
3 (xk, εk). In Section 5.6 we describe how we construct this bound.

Notice yi(tk) ∈ xk + [εk] by definition, it then follows from Assumption 71 that

σ − tk ≤ B
(i,j)
3 (xk, εk) (5.37)

We next assume the vector field in each domain is bounded:

Assumption 72. For each i ∈ I, there exists a vector Bi
4 ∈ Rni

+ such that

|Fi(t, x, u(t))| ≤ Bi
4 (5.38)

for all t ∈ [0, T], x ∈ Xi, and u ∈ BV([0,+∞),U).

101

In Section 5.6 we describe how we construct this bound.
Using fundamental theorem of calculus, we have

|yi(t)− yi(tk)| =
∣∣∣∣∫ t

tk

Fi(s, y
i(s), u(s))ds

∣∣∣∣ ≤ B
(i,j)
3 (xk, εk)B

i
4 (5.39)

for all t ∈ [tk, σ), where the inequality follows from (5.37) and Assumption 72. Using triangle
inequality, the value of yi(t) for t ∈ [tk, σ) can be bounded by

|yi(t)− yk| ≤ |yi(tk)− yk|+ |yi(t)− yi(tk)| ≤ εn + ∆tB5 =: εσ− (5.40)

To under stand how the global error changes when reset map is applied, we assume the Jacobian
matrix of Rδ

(i,j), denoted as JRδ
(i,j)

, is bounded in a neighborhood of xk:

Assumption 73. For each (i, j) ∈ E , there exists a function B(i,j)
5 : Sδ(i,j) × Rd

+ → Rnj×ni
+ such

that

|JR̂(a)| ≤ B
(i,j)
5 (xk, εk) (5.41)

for all 1 ≤ k ≤ N satisfying yk ∈ Sδ(i,j) and a ∈ xk + [εk]. The absolute value | · | and inequality

are meant component-wise.

In Section 5.6 we describe how we construct this bound. Since Rδ
(i,j) is differentiable, it follows

from Theorem 57 that

|yj(σ+)− xk+1| ≤ B
(i,j)
5 (xk, εσ−)εσ− =: εσ+ (5.42)

Let l ∈ N be such that (l − 1)h < B
(i,j)
3 (xk, εk) ≤ lh. For all t ∈ [σ, tk+l], we have

|yj(t)− xk+1| ≤ |yj(σ+)− xk+1|+ |yj(t)− yj(σ+)| ≤ εσ+ + hBj
5 =: εk+1 (5.43)

Finally, we can bound the difference between yj(tk+l) and xk+l using triangle inequality:

|yj(tk+l)− xk+l| ≤ |yj(tk+l)− xk+1|+ |xk+l − xk+1| ≤ εσ+ + lhBj
5 =: εk+l (5.44)

Using the above arguments, we may bound the evolution of y over [tk, tk+l] as follows:

Theorem 74. Let y0 ∈ X be an initial condition, and let u ∈ BV([0,+∞),U) be a control law.

Let yk, yk+1 be obtained from the algorithm in Algorithm. 6 for some 1 ≤ k ≤ N − 1 such that

yk ∈ Sδ for some (i, j) ∈ E . Let xk (resp., xk+1) be the projection of yk (resp., yk+1) onto the

102

continuous state space such that yk = (xk, i) and yk+1 = (xk+1, j). Let φ(·, y0, u(·)) be a hybrid

trajectory ofH, whose projection onto Xi is denoted as yi(·). Let σ ∈ [0, T] be in a neighborhood

of tk such that yi(σ−) ∈ S(i,j). Let εσ− be defined as in (5.40). Let εk+1 be defined as in (5.43). Let

l ∈ N be such that (l − 1)h < B
(i,j)
3 (xk, εk) ≤ lh. Define sets Ek and Ek+1 as

Ek :=xk + [εσ−] (5.45)

Ek+1 :=xk+1 + [εk+1] (5.46)

Then, yi(t) ∈ Ek for all t ∈ [tk, σ), and yj(t) ∈ Ek+1 for all t ∈ [σ, tk+l].

Proof. Theorem 74 is a restatement of (5.40) and (5.43).

5.4 Representing Safety for Online Optimization

Although a bound on the difference between a hybrid trajectory y and its discrete approxima-
tion {yn} is established through Theorems 70 and 74, such error bounds must be projected onto
subspaces of X to produce sufficient conditions for safety that can be enforced during online op-
timization. To do this, let πqhip,zL

, πqhip,zR
, πqxy be projection operators that map subsets of X to

its qhip,zL-, qhip,zR-, and (qx, qy)-coordinates, respectively. Using the safety criteria established in
Section 5.2.3, we obtain a set of sufficient conditions for safety:

Theorem 75. Let Ek be defined as in Theorem 70 and Theorem 74 for each 1 ≤ k ≤ N . Let

A := ∪l∈{1,...,Nobs}Ôl be the set of buffered obstacles. Suppose for each 1 ≤ k ≤ N the following

conditions are satisfied:

πqhip,zL
(Ek)− 0.75 ⊆ R+, (5.47)

πqhip,zR
(Ek)− 0.75 ⊆ R+, (5.48)

πqxy(Ek) ∩ A = ∅, . (5.49)

Furthermore assume:

EN ⊂ Xf . (5.50)

Then Cassie is safe.

Proof. (5.47) and (5.48) follows from Theorems 49, 70, and 74. (5.49) follows from Theorems 51,
70, and 74. (5.50) follows from Assumption 54 and Theorem 70.

Theorem 75 extends safety conditions over points to corresponding sufficient conditions over sets.
In particular, (5.47) and (5.48) imply the left and right hip height states of Cassie are above 0.75

103

[m], which according to Theorem 49 guarantees Cassie does not fall before τf ; (5.49) implies
Cassie’s pelvis trajectory does not intersect any buffered obstacles, which according to Theorem
51 guarantees Cassie does not run into obstacles before τf ; (5.50) ensures that Cassie’s trajectory
reaches a set Xf at the end of planning horizon, which according to Assumption 54 keeps Cassie
safe indefinitely.

5.5 Online Trajectory Optimization

Using the safety conditions established in the previous section, we may formulate an optimization
problem over control parameters and solve such programs online in a receding horizon fashion in
a provably safe manner. Since the Ek’s as defined in Theorem 70 and 74 are dependent on Cassie’s
initial state y0, the control law ûP , and the global error ε0 at t0 = 0, we abuse notation and denote
as Ek(y0, P, ε0) the set Ek as in Theorems 70 and 74 obtained by numerically bounding Cassie’s
trajectory starting from y0 ∈ X with control P ∈ P under the assumption that there was global
error ε0 at t0 = 0. Let A := ∪l∈{1,...,Nobs}Ôl be the set of buffered obstacles. Let Γ be the space
of hybrid trajectories of Cassie. We now formally define the optimization problem to be solved
online:

min
P∈P

J(φ(·, y0, ûP (·))) (TrajOpt)

s.t. πqhip,zL
(Ek(y0, P, ε0))− 0.75 ⊆ R+ ∀k ∈ {1, . . . , N},

πqhip,zR
(Ek(y0, P, ε0))− 0.75 ⊆ R+ ∀k ∈ {1, . . . , N},

πqxy(Ek(y0, P, ε0)) ∩ A = ∅ ∀k ∈ {1, . . . , N},

EN(y0, P, ε0) ⊂ Xf .

where the optimization is taken over the control parameter space P; y0 ∈ X represents the current
state of Cassie; φ(·, y0, ûP (·)) is a hybrid trajectory of Cassie starting from y0 at t0 = 0 under
control law ûP ; ε0 is a vector of zeros representing the global error at t0 = 0; A ⊂ G is the set
of buffered obstacles obtained from the function buffer; J ∈ Γ → R is a user specified cost
function that maps a hybrid trajectory to a real number. Notice the constraints are adopted from
Theorem 75. It then follows from Theorem 75 that any feasible solution to (TrajOpt) keeps
Cassie safe:

Theorem 76. Let y0 be the current state of Cassie, and let P ∈ P be any feasible point to

(TrajOpt). If P is applied to Cassie, then Cassie is safe.

Although (TrajOpt) provides a means to find safe control inputs, solving such an optimiza-
tion problem in practice can be challenging due to a lack of gradient information about the con-

104

straints. As such, gradient-descent methods that rely on numerical construction of the derivative
often struggle to find feasible solutions. Exhaustive search methods, on the other hand, require
evaluation of the constraints at many points which can be slow. In this chapter, we borrow the idea
from Chapter 4 and develop a parallel algorithm that finds solutions to (TrajOpt) with safety
guarantees.

To start, notice from Theorem 70 and 74 that Ek(y0, P, ε0) for all 1 ≤ k ≤ N are set enclosures
of the hybrid trajectory φ(·, y0, ûP (·)) over the time [0, T]. We abuse notation and denote by
J({Ek(y0, P, ε0)}1≤k≤N) the interval-arithmetic evaluation of J obtained by replacing the hybrid
trajectory φ(·, y0, ûP (·)) with the corresponding set enclosures {Ek(y0, P, ε0)}1≤k≤N . Let tol be a
pre-specified optimality tolerance . We now formally define our approach in Algorithm 7: first, in
Lines 1-2, the search space P is represented as a box P + [εP], where P ∈ P is the center and
εP := (εP1 , εP2) ∈ R2

+ the width in each dimension divided by two; second, in Line 5, for each box
P + [εP], we append the control parameters to the states and global errors, that is, let

ŷ0 :=

[
y0

P

]
, ε̂0 :=

[
ε0

εP

]
(5.51)

be the aggregated states and the aggregated global error at t0, respectively. Here ε0 ∈ Rni is a
vector of zeros, where i is the discrete state of y0; third, in Lines 6-7, the Euler method is applied
from initial state ŷ0 with initial global error ε̂0 where the dynamics in P-coordinates are assumed
to be zero, through which the set enclosures Ek(ŷ(0), P, ε̂0), 1 ≤ k ≤ N are computed; fourth, in
Line 8, the constraints in (TrajOpt) are evaluated over each Ek(ŷ(0), P, ε̂0) where 1 ≤ k ≤ N ,
and any infeasible box P + [εP] is removed from the search space; fifth, in Line 9, an interval-
arithmetic evaluation J({Ek(ŷ0, P, ε̂0)}1≤k≤N) is computed; sixth, in Line 11, any box P + [εP] is
removed from the search space if it gives a strictly worse value of cost function than another box;
seventh, in Line 12, a solution P ∗ is chosen such that it gives a lower value of cost function when
compared to other (P, εP) ∈ L; eighth, in Line 13, the algorithm returns P ∗ if the value of the cost
function over the remaining search space is within a range of tol; ninth, in Lines 16-17, each box
P + [εP] is subdivided along the rth direction to obtain pairs (P ′, ε′P) and (P ′′, ε′′P), such that

ε′P = ε′′P =

[
1
2
(εP)1

(εP)2

]
, P ′ =

[
(P)1 − (ε′P)1

(P)2

]
, P ′ =

[
(P)1 − (ε′P)1

(P)2

]
, if r = 1;

ε′P = ε′′P =

[
(εP)1

1
2
(εP)2

]
, P ′ =

[
(P)1

(P)2 − (ε′P)2

]
, P ′ =

[
(P)1

(P)2 − (ε′P)2

]
, if r = 2,

(5.52)

where the subscripts (·)1 and (·)2 denote the first and second component of a vector, respectively;
Finally, in Line 20, the subdivision direction r is changed at the end of each iteration.

105

Algorithm 7 P ∗ = SolveTrajOpt(y0,A, J)

Require: y0 ∈ X , A ⊂ G, J : Γ→ R, tol ∈ R+.
1: Choose P ∈ P and εP ∈ R2 such that P + [εP] = P .
2: Set L ← {(P, εP)}, r ← 1, ε0 ← 0ni , where i is the discrete state of y0.
3: loop
4: for (P, εP) ∈ L do
5: Define ŷ0, ε̂0 as in (5.51).
6: Construct a numerical simulation {tk, yk}1≤k≤N with initial condition ŷ0 and control uP via Al-

gorithm 6.
7: Using ε̂0 as a global error bound at t = 0, construct set enclosures Ek(ŷ0, P, ε̂0) as defined in

Theorems 70 and 74.
8: If any of the constraints in (TrajOpt) is not satisfied for such Ek(ŷ0, P, ε̂0), remove the pair

(P, εP) from L.
9: Set Cost(P,εP) ← J({Ek(ŷ0, P, ε̂0)}1≤k≤N)

10: end for
11: If there exists some (P, εP), (P ′, ε′P) ∈ L such that maxCost(P,εP) < minCost(P ′,ε′P), remove the

pair (P ′, ε′P) from L;
12: Choose(P ∗, εP ∗) ∈ L so that minCost(P ∗,εP∗) < minCost(P,εP) for all (P, εP) ∈ L, P 6= P ∗.
13: If |maxCost(P,εP) −minCost(P ∗,εP∗)| < tol for all (P, εP) ∈ L, then return P ∗.
14: Set L′ ← {}.
15: for (P, εP) ∈ L do
16: subdivide (P, εP) along rth dimension to obtain (P ′, ε′P) and (P ′′, ε′′P) as in (5.52).
17: Set L′ ← L′ ∪ {(P ′, ε′P), (P ′′, ε′′P)}.
18: end for
19: Set L ← L′.
20: Set r ← mod(r + 1, 2) + 1.
21: end loop

Similar to Theorem 76, it can be shown that any feasible solution generated by Algorithm 7
keeps Cassie safe:

Theorem 77. Let y0 be the current state of Cassie, and let P ∗ ∈ P be any feasible solution to

Algorithm 7 which is applied to Cassie. Then, Cassie is safe.

Algorithm 8 describes how the online planning scheme works. SenseObstacles senses
all obstacles within the sensor horizon in Line 5; The function buffer generates buffered region
around each sensed obstacle in Line 6; ComputeFutureState takes the current state and con-
trol parameter and applies the flow map to compute the future state of Cassie at time τ1 in line 7;
Finally, Algorithm 7 solves an optimization to generate safe control parameters that also minimize
the cost function J in Line 8. Recall that we use Theorem 56 to check Algorithm 7 is persistently
feasible.

106

Algorithm 8 Online Planning Scheme
Require: φ(0) ∈ X , P0 ∈ P , and J : X × P → R.

1: Set j = 0, tj = 0, P ∗ = P0

2: loop
3: // Line 4 executes at the same time as Lines 5–11
4: Apply P ∗ for [tj , tj + τ1) to reach state φ(tj + τ1)
5: {On}n=1,...,Nobs ← SenseObstacles()
6: A ← ∅
7: A ← A∪ (buffer(Ok)) for each n = 1, . . . , Nobs
8: y0 ← ComputeFutureState(τ1, φ(tj), Pj)
9: Try P ∗ ← SolveTrajOpt(y0,A, J) until tj + τ1

10: Catch continue // P ∗ is unchanged
11: tj+1 ← tj + τ1, Pj+1 ← P ∗, j ← j + 1
12: end loop

5.6 Implementation

This section provides some implementation details of the proposed approach.

5.6.1 Hybrid Model of Cassie

Recall that the hybrid model of Cassie is a tupleH = (I, E ,X ,U ,F ,S,R). In this work, let:

• I := {1, 2, 3}, where the indices 1, 2, and 3 correspond to left leg stance phase, right leg
stance phase, and double stance phase, respectively;

• E := {(1, 2), (2, 1), (1, 3), (2, 3)};

• X =
∐

i∈I Xi, where each Xi ⊂ R26 is subject to joint limits;

• U ∈ R10, where U is subject to torque limits;

• F = {Fi}i∈I , where Fi : R × Xi × U → Rni is obtained using the method of Lagrange
[WGC+18, Appendix D];

• S =
∐

e∈E Se such that S(i,j) := {x ∈ Xi | c(i,j)(x) = 0} for all (i, j) ∈ E , where c(i,j) maps
Cassie’s states to the height of non-stance foot; and,

• R = {Re}e∈E , where each reset map Re is obtained as in [GHD+19, (9)-(10)].

Note that this hybrid system definition satisfies Assumptions 58, 62, 63, and 64.

107

5.6.2 Definition of Xf
In this work, Xf is defined to be the set of states where the velocity of each joint is small and the
joint angles are sufficiently close to a set of pre-specified reference values. That is, let a reference
configuration, qref ∈ X3, be defined as

qref := (qref
x , q

ref
y , q

ref
z , q

ref
yaw,−0.357, 0, 0.0813, 0.0007, 0.4555,

− 1.1979,−0.0379, 1.4989,−1.6044, 0.0813, 0.0007,

0.4555,−1.1979,−0.0379, 1.4989,−1.6044, 0.0813,

qref
hip,xL, q

ref
hip,yL, q

ref
hip,zL, q

ref
hip,xR, q

ref
hip,yR, q

ref
hip,zR) (5.53)

where qref
x , q

ref
y , q

ref
z , q

ref
yaw ∈ R are set to be the current value of qx, qy, qz and qyaw. The reference hip

positions qref
hip,xL, q

ref
hip,yL, q

ref
hip,zL, q

ref
hip,xR, q

ref
hip,yR, q

ref
hip,zR are computed based on the the first 6 elements

of qref and the forward kinematics of Cassie. Then, define

Xf := {(q, q̇) ∈ X3 | |q − qref| ≤ 0.1, |q̇| ≤ 0.1, } (5.54)

where q, q̇ are the configuration and velocity coordinates of Cassie’s state, respectively; the abso-
lute value | · | and inequality are meant component-wise.

5.6.3 Bounding Functions

We now describe how to construct the bounding functions in Assumptions 68, 69, 71, 72, and 73.
To generate a function Bi

2 : Xi × Rni → Rni×ni
+ as in Assumption 69, we apply Algorithm 6

to a group of randomly selected initial conditions and control parameters to obtain a set of time
and state sequences. Each of the state sequence, denoted as {yk}1≤k≤N , is then projected to the
continuous state space to obtain the sequence {xk}1≤k≤N . For each point xk in that sequence, we
randomly sample a and ε such that a ∈ xk + [ε], and compute the Jacobian matrix, JΦik(a). We then
collect all the data and fit a polynomial function, f , to it. To make sure the bounding function is
conservative, an offset C is added to f to generate Bi

2. This procedure is described in Algorithm
9. The bounding functions in Assumptions 68, 72, and 73 are obtained in a similar fashion.

We next describe how a bounding function B(i,j)
3 in Assumption 71 is constructed. We start by

defining Jc(i,j)(a) as the Jacobian of c(i,j) at a ∈ X , which we assume is bounded by a function
B

(i,j)
Jc : Xi × Rni

+ → R1×ni
+ in a neighborhood of xk, i.e.,∣∣∣Jc(i,j)(a)

∣∣∣ ≤ B
(i,j)
Jc (xk, εk) (5.55)

108

Algorithm 9 Algorithm that generates Bi
2

1: Set Li = {} for each i ∈ I.
2: for itr1← 1 to 100 do
3: Sample y0 ∈ X , P ∈ P .
4: Apply Algorithm 6 with initial condition y0 and control law ûP to obtain {yk}1≤k≤N .
5: for k = 1 to N do
6: Let (xk, i) = yk.
7: for itr2← 1 to 100 do
8: Sample a ∈ Xi and ε ∈ Rni+ such that a ∈ xk + [ε].
9: Let JΦik

(a) be computed numerically.

10: Set Li ← Li ∪
(
xk, ε,

∣∣∣JΦik
(a)
∣∣∣)

11: end for
12: end for
13: end for
14: for i ∈ I do
15: Fit a polynomial f : Xi × Rni+ → Rni×ni+ to the data in Li such that for each triplet (x, ε,M) ∈ Li,

the value f(x, ε) approximates M .
16: Choose an offset C ∈ Rni×ni+ such that f(x, ε) + C ≥ 1.2M for each triplet (x, ε,M) ∈ Li.
17: Set Bi

2 ← f + C.
18: end for

for all 1 ≤ k ≤ N satisfying yk ∈ Sδ(i,j) and a ∈ xk + [εk]. The absolute value | · | and inequality
are meant component-wise. Such function B(i,j)

Jc can be generated in a similar way as in Algorithm
9. It then follows from Theorem 57 that

c(i,j)(y(tk)) ≤ c(i,j)(xk) +B
(i,j)
Jc (xk, εk)εk ≤ B

(i,j)
Jc (xk, εk)εk (5.56)

where the last inequality is true because c(i,j)(xk) ≤ 0. Then B(i,j)
3 can be generated by bounding

the rate of change of c(i,j) in a neighborhood of the guard S(i,j). Specifically, we want to find
β ∈ R+ such that

d

dt
c(i,j)(y

i(t)) ≤ −β < 0 (5.57)

and

B
(i,j)
Jc (xk, εk)εk ≤ β ·B(i,j)

3 (xk, εk) (5.58)

where yi(t) ∈ Xi and for all t ∈ [σ − B3(xk, εk), σ] . β and B
(i,j)
3 are constructed using the

procedure described in Algorithm 10.

109

Algorithm 10 Algorithm that generates β and B3

Require: Be
Jc for all e ∈ E .

1: Set Le = {} for each e ∈ E .

2: Set ∆t← 0.005.

3: for itr ← 1 to 100 do
4: Sample y0 ∈ X , P ∈ P .

5: Apply Algorithm 6 with initial condition y0 and control law ûP to obtain {tk}1≤k≤N and {yk}1≤k≤N .

6: Let ε0 ∈ R26 be a vector of zeros. Compute the global error bounds {εk}1≤k≤N using (5.22),(5.43),

and (5.44).

7: for each k such that yk ∈ Sδ do
8: WLOG let yk ∈ Sδ(i,j) for some (i, j) ∈ E . Let (xk, i) = yk. Set ∆t← 0.005.

9: while true do
10: Let k′ ∈ {1, . . . , k} be such that tk − t′k − h ≤ ∆t < tk − t′k.

11: Set β ← −maxκ∈{k′,...,k}{Swing foot vertical velocity at tκ}.
12: Set α← 1/β ·maxκ∈{k′,...,k}{B

(i,j)
Jc

(xκ, εκ)εκ}.
13: if α ≤ ∆t then
14: L(i,j) ← L(i,j) ∪ (xk, εk, α).

15: break.

16: else
17: Set ∆t← 1.5∆t.

18: end if
19: end while
20: end for
21: end for
22: for (i, j) ∈ E do
23: Fit a polynomial f : Xδ

i ×Rni → R+ to the data in L(i,j) such that for each triplet (x, ε, α) ∈ L(i,j),

the value f(x, ε) approximates α.

24: Choose an offset C ∈ R+ such that f(x, ε) + C ≥ 1.2α for each triplet (x, ε, α) ∈ L(i,j).

25: Set B(i,j)
3 ← f + C.

26: end for

The idea behind Algorithm 10 is as follows: We start by setting ∆t to be some small value and
search for the largest value of β that satisfies (5.57), then check if (5.58) holds. If (5.58) is violated,
then we increase the value of ∆t and repeat the procedure. A group of data points is generated
through 100 numerical simulations of Cassie over 30 seconds each with randomly generated initial
conditions and control parameters. A function B(i,j)

3 is then obtained by fitting a polynomial to the
data and adding a constant offset to it.

110

5.6.4 GPU Implementation of SolveTrajOpt

In this work, the function SolveTrajOpt as described in Algorithm 7 is implemented on GPUs
where double-precision floating-point representations are used. The optimality tolerance tol in
SolveTrajOpt is set to be 1.

5.7 Results

The proposed method is evaluated by requiring Cassie to reach a pre-defined goal and avoid ran-
domly generated obstacles along the way in 100 simulation trials. In each simulation trial, let
G = [−1, 7]× [−3, 3], and Cassie is required to reach the goal (5, 0) ∈ G from the origin of the G
in which the units of x-axis and y-axis are both meter. Obstacles are randomly located in G with
the number of obstacles varying from 4 to 8. Each obstacle has 0 orientation, length and width
both as 0.2[m]. The foot print radius R of Cassie is set to be 0.3[m]. In the MPC framework, let
τ1 = 2[sec] and τf = 4[sec]. We also assume the sensing horizon Dsense to be 3 meters.

An RRT is used as our high-level planner to generate waypoints that Cassie attempts to track.
In particular, in the proposed method, the cost function J is set to be the summation of two parts:
the Euclidean norm of the difference between the predicted robot xy-position 2 seconds later and
the waypoint to be traveled to next, and the 2-norm of the difference between the predicted robot
heading 2 seconds later and the desired heading. The trials are tested on a machine with 32 64-bit
2.60GHz Intel Core i9 CPUs, 128 GB of RAM, and two Nvidia GTX TITAN Xp GPUs.

The proposed method is compared with a direct method using the same obstacle locations,
sizes, and orientations. The direct method also updates control parameter K via optimization,
which has the same cost function as the proposed method does, but ensures the safety of the robot
by only checking whether the discretization of the predicted trajectory of Cassie intersects with
obstacles. In particular, no error propagation, hip height, or parallel computing is considered in the
direct method.

Fig. 5.4 illustrates one of the 100 trials in which Cassie runs into obstacles with the direct
method, but is able to successfully reach the target with the method developed in this chapter.
Fig. 5.5 depicts the proposed method, at 3 arbitrarily chosen time instances. Note the global error
bounds along the trajectory never intersect the obstacles in the xy-plane. In addition, note that the
global error bounds along the trajectories of hip heights remain above 0.75[m] at the same time
instances as in Fig. 5.6. Fig. 5.7 illustrates another trail in which Cassie crashes the boundary
using the direct method, but successfully reaches the target again with the proposed method.

111

Figure 5.4: An illustration of the performance of the direct method (top) and the proposed method
(bottom). Cassie is colored in blue, its trajectory is colored in light blue. Obstacles and the bound-
aries are colored in red, and the goal is colored in black. Cassie reaches the goal if its footprint is
inside the black ring with radius 0.5[m].

112

Figure 5.5: An illustration of global error bound in the xy-plane at 3 arbitrary time instances
with the proposed method with respect to Fig. 5.4. Cassie is marked as the blue triangle, and its
trajectory is colored in blue. Obstacles are colored in red, goal is colored in black, and global error
bound is colored in pink. The boxes in dark pink stands for the error bound on pelvis position at
each touch-down.

113

Figure 5.6: An illustration of global error bound of hip heights at the same time instances with
the proposed method with respect to Fig. 5.4 and 5.5. Hip heights are colored in blue, and their
corresponding global error bounds are colored in magenta.

Figure 5.7: An illustration of the performance of the direct method (top) and the proposed method
(bottom). Cassie is colored in blue, its trajectory is colored in light blue. Obstacles and the bound-
aries are colored in red, and the goal is colored in black. Cassie reaches the goal if its footprint is
inside the black ring with radius 0.5[m].

114

Direct Method Proposed Method

obs # Fall Crash Reach Fall Crash Reach

4 0 4 3 0 0 18
5 0 2 3 0 0 13
6 0 6 1 0 0 17
7 0 5 3 0 0 14
8 0 5 3 0 0 11

Table 5.1: A quantitative comparison of the direct method to the method developed in this chapter
while controlling Cassie.

Among all the 100 trials, the statistics of directed method and proposed method is summarized
in Tab. 5.1. For each value of number of obstacles, we randomly generate 20 trials to evaluate the
performance of both methods. Notice the numbers in the row do not always sum to 20, since it is
possible that Cassie is unable to find a feasible way to reach the goal in some circumstances.

The average solving time of one optimization in the direct method is 59.2393 seconds, while
the average solving time of the proposed method is 5.726 seconds. Notice that the solving time is
larger than τ1 and therefore Algorithm 8 is currently unable to synthesize control input in real-time.
The next chapter describes potential ways to improve the computational speed of Algorithm 8.

115

CHAPTER 6

General Conclusions and Future Directions

In this dissertation, we have made improvements to the properties of control synthesis methods
for bipedal robots along three dimensions: optimality, safety, and computational speed. To under-
stand if an optimal control strategy can be found for generic hybrid system, Chapter 2 develops an
algorithm to solve the hybrid optimal control problem in an ideal case, where we assume perfect
knowledge of the system but no knowledge of the optimal solution. Next in Chapter 3, we estab-
lish formal safety guarantees for 2D bipedal robots in an online fashion by performing reachability
analysis on a simplified model, where the difference between the simplified model and the true
model is assumed to be bounded. In Chapter 4, we developed a parallel algorithm capable of solv-
ing polynomial optimization problems up to arbitrary tolerance. Moreover, we derived practical
bounds on the computation time and memory usage. Finally, in Chapter 5, we develop a guaranteed
safe online MPC framework that accommodates 3D robots and obstacles.

6.1 Future Work

Although this dissertation makes significant strides in improving optimality, safety, and computa-
tional speed for control synthesis of bipedal robot models, many adaptations and extensions can be
made to improve performance. We summarize these potential directions below.

6.1.1 Real-Time Computation on GPUs

As describe in Section 5.7, the proposed trajectory optimization method is not fast enough to be
performed in an online fashion. However, to improve computational speeds, several potential im-
provements are worth exploring. First, note that evaluating the dynamics of a bipedal robot is
computationally expensive. However, by placing practical bounds on certain portions of the dy-
namics (e.g. Coriolis term) rather than computing them exactly one could reduce the computational
overhead associated with evaluating the dynamics. Second, note that the size of the error bounds

116

computed as in Section 5.3 decreases as the order of numerical integrator increases. Therefore
by choosing a numerical integrator of higher order, one may select a larger step size h such that
each evaluation of constraints requires fewer integration iterations. Finally, note that the current
implementation on GPU relies on representing the state of the robot using double precision arith-
metic. However, GPUs are currently optimized to perform single precision arithmetic and often
can achieve 4x speed improvements by just switching from double to single precision arithmetic.

6.1.2 Planning Under Uncertainty

The online MPC frameworks proposed in Chapter 3 and 5 either require perfect knowledge of
the dynamical model or rely heavily on a a bounding function that is assumed to be given a pri-
ori. However, such assumptions can often be unrealistic in practice. For example, modeling and
simulating locomotion in detail requires careful study of compliance, motor dynamics, and joint
frictions, which can add significant complexity to the planning algorithm; Generating a function
that bounds the difference between a complex model and a simplified model, on the other hand,
requires sampling over the entire state space. It is therefore of interest to instead allow for uncer-
tainty in the dynamical model and accommodate this uncertainty during trajectory planning and
control synthesis.

6.1.3 Walking on Uneven Terrains

The trajectory planning and control synthesis frameworks proposed in this dissertation are only
concerned with bipedal robots walking on flat ground. Even in the case where obstacles are present,
the robot is tasked to walk around them, rather than stepping on or over them. One challenge that
arises due to uneven terrain is that the smoothness assumptions of guards and reset maps as in
Section 5.3 may no longer be satisfied. Devising methods to accommodates such challenges will
be be critical before any of the algorithms developed in this thesis can be deployed to control
bipeds operating in the real-world.

117

APPENDIX A

Connecting Occupation Measure With Flow Map of
Smooth Vector Field

Let F : [0, T] × Rn → Rn be a pointwise bounded vector field, such that F (t, ·) is Lipschitz
for all t ∈ [0, T]. Consider a non-homogeneous PDE ∂tµt,x = σ − η − Dx · (Fµt,x), where
µt,x, σ, η ∈M([0, T]× Rn). Applying integration by parts and Lemma 8, this PDE becomes:∫

[0,T]×Rn
∂tv(t, x)dµx|t(x)dt =

∫
[0,T]×Rn

v(t, x) d
(
η(t, x)+

− σ(t, x)
)

+

∫
[0,T]×Rn

∇xv(t, x) · Fdµx|t(x) dt

(A.1)

for any v ∈ C1([0, T] × Rn). To establish a relationship between F and this PDE, let Φ satisfy
(B.3) with F̄ ε

i replaced by F . Since F is pointwise bounded and F (t, ·) is Lipschitz for all t ∈
[0, T], the solutions of the ODE are unique [Hal09, Theorem 5.3]. By differentiating the identity
Φi(t, s,Φi(s, τ, z)) = Φi(t, τ, z) with respect to s, we can show that Φ(t, ·, ·) is a solution to
d
ds

Φi(t, s, x) +∇xΦi(t, s, x) · F (s, x) = 0. This leads to:

Corollary 78. Let F : [0, T] × Rn → Rn be pointwise bounded and suppose F (t, ·) is Lipschitz

for all t ∈ [0, T]. Let σ and η satisfy (A.1), and let Φ be the a.e. solution to the ODE with vector

field F , then for any w ∈ L1(Rn),∫
[0,T]×Rn

w(Φ(T, s, x)) d (σ(s, x)− η(s, x)) = 0 (A.2)

Proof. The result for w ∈ C1
b (Rn) follows by substituting v(s, x) := w(Φ(T, s, x)) and the equa-

tion d
ds

Φ(t, s, x)+∇xΦ(t, s, x) ·F (s, x) = 0 into (A.1). Since C1
b (Rn) is dense in L1(Rn) [Bog07,

Corollary 4.2.2], the statement is true for all w ∈ L1(Rn).

We can now establish a relationship between µx|t and Φ:

118

Theorem 79. Let F : [0, T] × Rn → Rn be pointwise bounded and suppose F (t, ·) is Lipschitz

for all t ∈ [0, T]. Given σ, η ∈ M+([0, T] × Rn), the solution to (A.1) is given by µx|t =

Φ(t, ·, ·)# (σ − η) for almost every t ∈ [0, T], where Φ(t, ·, ·) : [0, t] × Rn → Rn is defined in

(B.3) with F̄ ε
i replaced by F .

Proof. We first verify µx|t = Φ(t, ·, ·)# (σ − η) satisfies (A.1). We need to check the equality only
on test functions of the form ψ(t)w(x). We substitute µx|t = Φ(t, ·, ·)# (σ − η) into the left-hand
side of (A.1) and show it is equal to the right-hand side of (A.1):∫ T

0

ψ̇(t)

∫
Rn
w(x) dµx|t(x) dt

=

∫
[0,T]×Rn

(∫ T

s

ψ̇(t)w(Φi(t, s, x))dt
)
d
(
σi(s, x)− ηi(s, x)

)
(A.3)

=

∫
[0,T]×Rn

(
ψ(T)w(Φ(T, s, x))− ψ(s)w(Φ(s, s, x))+

−
∫ T

s

ψ(t)
d

dt
w(Φ(t, s, x)) dt

)
d (σ(s, x)− η(s, x))

(A.4)

=

∫
[0,T]×Rn

ψ(s)w(x) d (η(s, x)− σ(s, x)) +

−
∫ T

0

ψ(t)

∫
[0,t]×Rn

∇xw(Φi(t, s, x)) · F (t,Φ(t, s, x)) d (σ(s, x)− η(s, x)) dt

(A.5)

=

∫
[0,T]×Rn

ψ(s)w(x) d (η(s, x)− σ(s, x)) +

∫ T

0

ψ(t)〈µx|t,∇xw · F 〉 dt (A.6)

where (A.3) follows from Fubini’s Theorem; (A.4) follows from integration by parts; (A.5) fol-
lows from Corollary 78 and Fubini’s Theorem; (A.6) follows from µx|t = Φ(t, ·, ·)# (σ − η). As a
result, µx|t = Φ(t, ·, ·)# (σ − η) is a solution to (A.1). To show the solution is unique dt-almost ev-
erywhere, suppose there exists measures µx|t,1, µx|t,2 ∈M+(Rn) defined for t ∈ [0, T] that satisfy
(A.1). Let µx|t,3 := µx|t,1−µx|t,2 ∈M(Rn), then

∫ T
0

∫
Rn (∂tv(t, x) +∇xv(t, x) · F) dµx|t,3 dt = 0,

which has the zero measure as a solution. Using the proof of [HK14, Lemma 3], such µx|t,3 is de-
fined uniquely dt-a.e. Therefore µx|t,3 is zero for a.e. t ∈ [0, T], which proves the result.

119

APPENDIX B

Proof of Theorem 9

Proof. This proof consists of several steps: in Step 1, we use a family of mollifiers parameterized
by ε to smooth the vector field and all relevant measures and establish a relationship between the
smooth measures using the solution to the smooth vector field via Theorem 79; in Step 2, we prove
that all trajectories that satisfy this smooth vector field and enter the domain, eventually leave the
domain, and vice versa; in Steps 3 and 4, we prove a connection between the time at which each
trajectory enters and leaves; since Steps 2-4 are all proven for the “smoothed” versions of the
vector field and measures, in Step 5 we prove that there exists a limiting measure as the parameter
controlling smoothness, ε, goes to zero; in Step 6, we prove that this limit satisfies (b); in Step
7, we prove (a) when the vector field is continuous; in Step 8, we approximate the discontinuous
vector field with a sequence of smooth functions and bound the approximation error; in Step 9, we
prove (a) for arbitrary bounded vector fields.

Step 1 (Regularization). We first mollify µix|t, σ
i, and ηi with respect to the space variable

using a family of strictly positive mollifiers {θε} ⊂ C∞(Rni) with unit mass, zero mean, and
uniformly bounded second moment, obtaining smooth measures µix|t;ε := µix|t ∗ θε, σiε := σi ∗ θε,
and ηiε := ηi ∗ θε. We also define a smooth vector field F̄ ε

i by

F̄ ε
i (t, ·) :=


F̄i(t,·)µix|t∗θε

µi
x|t∗θε

, if ‖µix|t‖ > 0;

0, if ‖µix|t‖ = 0.
(B.1)

Notice the smooth vector field F̄ ε
i is pointwise bounded: Let M < +∞ be a pointwise bound for

F̄i, then ∣∣F̄ ε
i (t, x)

∣∣ ≤ Mµix|t ∗ θε
µix|t ∗ θε

≤M
µix|t ∗ θε
µix|t ∗ θε

= M (B.2)

for all (t, x) ∈ [0, T]×Rni . By applying Young’s convolution inequality, one can prove ‖µix|t;ε‖ ≤
‖µix|t‖, ‖σiε‖ ≤ ‖σi‖, and ‖ηiε‖ ≤ ‖ηi‖.

Such µix|t;ε is a solution of (2.16) with respect to F̄ ε
i , σiε, and ηiε. Since F̄ ε

i is pointwise bounded
and F̄ ε

i (t, ·) is Lipschitz, Theorem 79 implies that µix|t;ε = Φε
i(t, ·, ·)# (σiε − ηiε) for a.e. t ∈ [0, T],

120

where Φε
i(t, s, x) satisfies:

Φε
i(t, s, x) = x+

∫ t

s

F̄ ε
i (τ,Φε

i(τ, s, x)) dτ, 0 ≤ s ≤ t ≤ T (B.3)

The function Φε
i(·, s, x) can be extended to [0, T] (as opposed to [s, T]) due to the regularity of F̄ ε

i .
Denote the extended version as Φ̂ε

i(·, s, x) ∈ Γi for any (s, x) ∈ [0, T]×Rni . The space of all such
functions is denoted as Γεi := {Φ̂ε

i(·, s, x) | (s, x) ∈ [0, T]×Rni} ⊂ Γi endowed with the subspace
topology. It follows by the existence and uniqueness theorem for ODE that the evaluation map
et(0, T, ·) restricted to Γεi is an isomorphism for any t ∈ [0, T]. Define Ψε : (t, x) 7→ Φ̂ε(·, t, x)

from [0, T] × Rni to Γεi , and also a projection map π1 : (s, x) 7→ s from [0, T] × Rni to [0, T].
Define

ρi,+ε :=
(
π1 ×Ψε

)
#
σiε ∈M+([0, T]× Γεi),

ρi,−ε :=
(
π1 ×Ψε

)
#
ηiε ∈M+([0, T]× Γεi).

(B.4)

Step 2 (Marginals of ρi,+ε and ρi,−ε). This step shows that all trajectories that enter the domain
via σiε leave through ηiε by proving that the γ-marginals of ρi,+ε and ρi,−ε are equal. Since ρi+ε and ρi−ε
are finite measures and R × Γεi is Radon separable metric space, using [AGS08, Theorem 5.3.1],
the measures ρi,+ε and ρi,−ε can be disintegrated as

dρi,+ε (s, γ) = dρi,+s|γ;ε(s) dρ
i,+
γ;ε (γ),

dρi,−ε (τ, γ) = dρi,−τ |γ;ε(τ) dρi,−γ;ε (γ),
(B.5)

where ρi,+s|γ;ε and ρi,−τ |γ;ε are probability measures for all γ ∈ spt(ρi,+γ;ε) and γ ∈ spt(ρi,−γ;ε), respectively.
We next show the γ-marginals are equal. Let w ∈ L1(Rni) be arbitrary. Notice

0 =

∫
[0,T]×Rni

w(Φε
i(T, s, x)) d

(
σiε(s, x)− ηiε(s, x)

)
(B.6)

=

∫
[0,T]×Γεi

w(eT (0, T, γ)) d
(
ρi,+ε (s, γ)− ρi,−ε (s, γ)

)
(B.7)

=

∫
Γεi

w(eT (0, T, γ)) d
(
ρi,+γ;ε (γ)− ρi,−γ;ε (γ)

)
(B.8)

where (B.6) follows from Corollary 78; (B.7) follows from definition of Ψε and (B.4); (B.8) follows
from (B.5). Since eT (0, T, ·) is an isomorphism and w ∈ L1(Rni) is arbitrary, ρi,+γ;ε = ρi,−γ;ε . For
convenience, we denote them both by ρiγ;ε.

Step 3 (Construct ρiε,δ). We now want to combine ρi,+ε and ρi,−ε to generate a measure ρiε ∈
M+([0, T] × [0, T] × Γεi) that describes the trajectories that evolve in the domain as well as their

121

entering and exiting time. Such a measure can be defined by pushing forward ρi,+ε through a map
that associates entering and exiting times. However, such a map may not be well defined; for
example, two trajectories can enter the domain at the same time but leave at different times. To
address such issues, we mollify the t-component and define a sequence of measures ρiε,δ first, and
then define ρiε as the limit of this sequence as δ ↓ 0 which is done in Step 4. Let {θδ} ⊂ C∞(R)

be a family of smooth mollifiers with unit mass and zero mean, and define ρi,+s|γ;ε,δ := ρi,+s|γ;ε ∗ θδ
and ρi,−τ |γ;ε,δ = ρi,−τ |γ;ε ∗ θδ. We further define measures ρi,+ε,δ , ρ

i,−
ε,δ ∈ M+(R × Γεi) as dρi,+ε,δ (s, γ) :=

dρi,+s|γ;ε,δ(s) dρ
i,+
γ;ε (γ) and dρi,−ε,δ (τ, γ) := dρi,−τ |γ;ε,δ(τ) dρi,−γ;ε (γ). For a.e. t ∈ [0, T] and any non-

negative w ∈ L1(Rni):

0 ≤ 〈µix|t;ε, w〉 (B.9)

=

∫
[0,t]×Rni

w(Φε
i(t, s, x)) d

(
σiε(s, x)− ηiε(s, x)

)
(B.10)

=

∫
Γεi

w(et(0, T, γ))
(
ρi,+s|γ;ε([0, t])− ρ

i,−
τ |γ;ε([0, t])

)
dρiγ;ε(γ), (B.11)

where (B.9) follows from the fact that µix|t;ε is an unsigned measure; (B.10) follows by substituting
in µix|t;ε = Φε

i(t, ·, ·)# (σiε − ηiε); (B.11) follows from (B.4) and (B.5).
Equivalently, given any Borel set EΓ ⊂ Γεi ,∫

EΓ

(
ρi,+s|γ;ε([0, t])− ρ

i,−
τ |γ;ε([0, t])

)
dρiγ;ε(γ) ≥ 0. (B.12)

Since the functions t 7→ ρi,+s|γ;ε([0, t]) and t 7→ ρi,−τ |γ;ε([0, t]) are absolutely continuous, ρi,+s|γ;ε([0, t]) ≥
ρi,−τ |γ;ε([0, t]) is satisfied for all t ∈ [0, T] for all γ ∈ spt(ρiε,Γ). Using the definition of convolution
and Fubini’s theorem, one can prove a similar result for the mollified measures ρi,+s|γ;ε,δ and ρi,−s|γ;ε,δ,
i.e. dρi,+s|γ;ε,δ((−∞, t]) ≥ ρi,−τ |γ;ε,δ((−∞, t]) for all γ ∈ spt(ρiγ;ε).

Since ρi,+s|γ;ε,δ and ρi,−τ |γ;ε,δ are smooth non-negative measures, the functions t 7→ ρi,+s|γ;ε,δ((−∞, t])
and t 7→ ρi,−τ |γ;ε,δ((−∞, t]) are continuous and non-decreasing. Also, 0 ≤ ρi,−τ |γ;ε,δ((−∞, t]) ≤
ρi,+s|γ;ε,δ((−∞, t])≤ρ

i,−
τ |γ;ε,δ(R) = 1, where the last equality follows because ρi,−τ |γ;ε,δ is a probability

measure; by the Mean Value Theorem, for any γ ∈ spt(ρiγ;ε) there exists a function rγ : R → R
such that rγ(t) ≥ t and ρi,+s|γ;ε,δ((−∞, t]) = ρi,−τ |γ;ε,δ((−∞, rγ(t)]) for every γ ∈ spt(ρiγ;ε). Moreover,
the function rγ is strictly increasing and therefore invertible, i.e., there exists a function r−1

γ : R→
R such that rγ(r−1

γ (t)) = r−1
γ (rγ(t)) = t. Using Step 2, ρi,+s|γ;ε,δ((−∞, t]) = ρi,−τ |γ;ε,δ((−∞, rγ(t)])

can be written as ∫
R×EΓ

1(−∞,t](s)dρ
i,+
ε,δ (s, γ) =

∫
R×EΓ

1(−∞,rγ(t)](τ)dρi,−ε,δ (τ, γ) (B.13)

122

for any t ∈ R and any Borel subset EΓ ⊂ Γεi .
We now abuse notation and define a map r : R× spt(ρiγ;ε)→ R by letting r(s, γ) := rγ(s) for

all γ ∈ spt(ρiγ;ε), and also projection maps π1 : (s, γ) ∈ R× Γεi 7→ s ∈ R, π2 : (s, γ) ∈ R× Γεi 7→
γ ∈ Γεi . We can then define a measure ρiε,δ ∈ M+(R × R × Γεi) as ρiε,δ = (π1 × r × π2)# ρ

i,+
ε,δ .

Notice for any triplet (s, τ, γ) ∈ spt(ρiε,δ) we know s ≤ τ since rγ(t) ≥ t.
We now establish the relationship between the marginals of ρiε,δ and the measures ρi,+ε,δ and ρi,−ε,δ .

We use variables (s, τ, γ) ∈ R× R× Γεi to denote any point in spt(ρiε,δ). Since π1 × π2 is identity
map, the (s, γ)-marginal of ρiε,δ is equal to ρi,+ε,δ . To show the (τ, γ)-marginal of ρiε,δ is equal to ρi,−ε,δ ,
it is then sufficient to show

∫
R×R×EΓ

1(−∞,t](τ)dρiε,δ(s, τ, γ) =
∫
R×EΓ

1(−∞,t](τ)dρi,−ε,δ (τ, γ) holds
for all t ∈ R and all Borel subsets EΓ ⊂ Γεi . The equation is true because∫

R×R×EΓ

1(−∞,t](τ) dρiε,δ(s, τ, γ)

=

∫
R×EΓ

1(−∞,r−1
γ (t)](s) dρ

i,+
ε,δ (s, γ) (B.14)

=

∫
R×EΓ

1(−∞,t](τ) dρi,−ε,δ (τ, γ), (B.15)

where (B.14) follows by the definition of ρiε,δ and because rγ is strictly monotonic and therefore
rγ(s) ∈ (−∞, t] if and only if s ∈ (−∞, r−1

γ (t)]; (B.15) follows by substituting in (B.13) and from
the fact that rγ is invertible;

Step 4 (Properties of the limiting measure of {ρiε,δ}δ). We now show that the limit of ρiε,δ exists
as δ ↓ 0 and that for this limiting measure µix|t;ε = (et)#ρ

i
ε for a.e. t ∈ [0, T]. We also show that

specific marginals of this limiting measure are equal to ρi,+ε and ρi,−ε and that for any (s, τ, γ) in
the support of this limiting measure, s ≤ τ . To prove this condition, we use the notion of tightness
of measures [Man07, pp. 605-606]:
Integral Condition for Tightness: Let X be a separable metric space. A family K ⊂M+(X) is
tight if and only if there exists a function Θ : X → [0,+∞] whose sublevel sets are compact in X
such that supµ∈K

∫
X

Θ(x) dµ(x) is finite.
Tightness Criterion: Let X , X1, X2 be separable metric spaces and let ri : X → Xi, i = 1, 2 be
continuous maps such that the product map r : r1×r2 : X → X1×X2 is proper. LetK ⊂M+(X)

be such that Ki := ri#(K) is tight inM+(Xi) for i = 1, 2. Then also K is tight inM+(X). Notice
the statement also holds for finitely many maps by induction.

Choosing maps r1, r2 defined on R × R × Γεi as r1 : (s, τ, γ) 7→ (s, γ) ∈ R × Γεi and
r2 : (s, τ, γ) 7→ τ ∈ R. Notice that r = r1×r2 is an isomorphism and therefore proper. The family
{r1

#ρ
i
ε,δ}δ is given by {ρi,+ε,δ }δ which are tight by definition, and the family {r2

#ρ
i
ε,δ}δ is given by the

first marginal of {ρi,−ε,δ }δ which are also tight. Applying the tightness criterion, the family {ρiε,δ}δ is

123

tight, and therefore narrowly sequentially relatively compact according to Prokhorov Compactness
Theorem. Let ρiε be any limit of the family {ρiε,δ} as δ ↓ 0. Since the (s, γ)-marginal of ρiε,δ is equal
to ρi,+ε,δ and the (τ, γ)-marginal of ρiε,δ is equal to ρi,−ε,δ , we let δ ↓ 0 and therefore the (s, γ)-marginal
of ρiε is equal to ρi,+ε and the (τ, γ)-marginal of ρiε is equal to ρi,−ε , i.e.,

∫
[0,T]×[0,T]×Γεi

ϕ(s, γ) dρiε(s, τ, γ) =

∫
[0,T]×Γεi

ϕ(s, γ) dρi,+ε (s, γ)∫
[0,T]×[0,T]×Γεi

ϕ(τ, γ) dρiε(s, τ, γ) =

∫
[0,T]×Γεi

ϕ(τ, γ) dρi,−ε (τ, γ)

(B.16)

for all ϕ ∈ L1(R× Γi).
Let (s, τ, γ) ∈ spt(ρiε) be arbitrary. To show s ≤ τ , let ϕ′ ∈ Cb(R2) be such that spt(ϕ′) ⊂

{(s, τ) ∈ R2 | s > τ}. Since
∫
R×R×Γi

ϕ′(s, τ) dρiε,δ(s, τ, γ) = 0 for all δ, it follows from narrow
convergence that

∫
[0,T]×[0,T]×Γi

ϕ′(s, τ) dρiε(s, τ, γ) = 0. Since 1{(s,τ)∈[0,T]2|s>τ+∆} is a limit point
of such functions ϕ′ with respect to L1(ρiε;R) for any ∆ > 0 [Bog07, Corollary 4.2.2], ρiε is
supported on (s, τ, γ) such that s ≤ τ .

For a.e. t ∈ [0, T] and any w ∈ L1(Rni),∫
Rni

w(x) dµix|t;ε(x)

=

∫
[0,t]×[0,T]×Γεi

w(et(s, T, γ)) dρiε(s, τ, γ)−
∫

[0,t]×[0,t]×Γεi

w(et(τ, T, γ)) dρiε(s, τ, γ) (B.17)

=

∫
[0,t]×[0,t]×Γεi

(w(et(s, T, γ))− w(et(τ, T, γ))) dρiε(s, τ, γ)+

+

∫
[0,t]×(t,T]×Γεi

w(et(s, T, γ)) dρiε(s, τ, γ)

(B.18)

=0 +

∫
[0,t]×[t,T]×Γεi

w(et(s, τ, γ)) dρiε(s, τ, γ)−
∫

[0,t]×{t}×Γεi

w(et(0, T, γ)) dρiε(s, τ, γ), (B.19)

where (B.17) follows from µix|t;ε = Φε
i(t, ·, ·)# (σiε − ηiε), (B.4), and (B.16); (B.18) follows by

splitting the domain of integration; Since et(t1, T, ·) = et(0, T, ·) and et(t1, T, ·) = et(t1, t2, ·)
for all 0 ≤ t1 ≤ t ≤ t2 ≤ T , the first term of (B.18) is zero because the integrand is zero,
(B.19) follows by adding and subtracting [0, t] × {t} × Γεi to the domain of integration. Since
ρiε([0, t]×{t}×Γεi) is non-zero for at most countably many t’s (otherwise ρiε would not be bounded),
µix|t;ε = (et)#ρ

i
ε for a.e. t ∈ [0, T].

Step 5 (Tightness of the family {ρiε}ε). We show that the limit of ρiε exists as ε ↓ 0. To begin,
choose maps r1, r2, r3 defined in [0, T]× [0, T]× Γi as r1 : (s, τ, γ) 7→ s ∈ [0, T], r2 : (s, τ, γ) 7→
τ ∈ [0, T], and r3 : (s, τ, γ) 7→ γ ∈ Γi. Observe that r = r1 × r2 × r3 is the identity map and

124

therefore proper. The family {r1
#ρ

i
ε}ε and {r2

#ρ
i
ε}ε are given by the first marginals of σiε and ηiε,

respectively, which are tight and are independent of ε. To establish a similar result for r3
#ρ

i
ε, let

Θ : Γi → R
⋃
{+∞} as Θ(γ) = ‖γ‖ if |γ̇(t)| ≤ M a.e., and Θ(γ) = +∞ otherwise. We next

show this function Θ satisfies the requirement of the integral condition for tightness. Let S :=

{γ ∈ Γi | Θ(γ) ≤ C}. Since any sequence {γn} ⊂ S is uniformly bounded and equicontinuous, S
is precompact according to Arzela-Ascoli Theorem. To show S is closed, let {γn} be a convergent
sequence in S, and by definition γ̇n → γ̇ in L1([0, T]). There is a subsequence of γ̇n that converges
pointwise a.e. to γ̇ [Fol13, Proposition 2.29], therefore |γ̇(t)| ≤M a.e., which implies that the set
S is closed. Notice∫

Γi

Θ(γ) d
(
r3

#ρ
i
ε

)
(γ) =

∫
[0,T]×Γiε

Θ(γ) dρi,+ε (s, γ) (B.20)

=

∫
[0,T]×Rni

(∣∣∣Φ̂ε
i(0, s, x)

∣∣∣+

∫ T

0

∣∣∣ ˙̂
Φi
ε(t, s, x)

∣∣∣ dt) dσiε(s, x) (B.21)

≤
∫

[0,T]×Rni

(
|Φ̂ε

i(s, s, x)|+
∫ s

0

∣∣∣F̄ ε
i (Φ̂i

ε(t, s, x))
∣∣∣ dt+

∫ T

0

∣∣∣F̄ ε
i (Φ̂i

ε(t, s, x))
∣∣∣ dt) dσiε(s, x)

(B.22)

≤
∫

[0,T]×Rni
|x| dσiε(s, x) + 2MT‖σiε‖ (B.23)

≤
∫

[0,T]×Rni
(|x|2 + 1) dσiε(s, x) + 2MT‖σiε‖ (B.24)

≤
∫

[0,T]×Xi

∫
Rni
|x+ y|2θε(y)dydσiε(s, x) + (1 + 2MT)‖σi‖ (B.25)

=

∫
[0,T]×Xi

|x|2 dσi(s, x) +

(∫
Rni
|y|2θε(y) dy

)
‖σi‖+

+

∫
[0,T]×Xi

∫
Rni

2xTyθε(y)dydσi(s, x) + (1 + 2MT)‖σi‖,
(B.26)

where (B.20) follows from (B.16); (B.21) follows from (B.4) and (B.3); (B.22) follows from tri-
angle inequality; (B.23) follows from (B.2); (B.24) is true because |x|2 + 1 ≥ |x| for all x ∈ Rni ,
and σiε is non-negative; (B.25) follows from the definition of convolution and ‖σiε‖ ≤ ‖σi‖; Since
σi is bounded and Xi is compact therefore |x|2 is bounded for all x ∈ Xi, the first and last term in
(B.26) are bounded. Because θε is assumed to have zero mean and bounded second moment, the
second term in (B.26) is bounded and the third term in (B.26) is zero. As a result, the left hand
side of (B.20) is bounded. Using the integral condition for tightness, {r3

#ρ
i
ε}ε is tight, and {ρiε}ε is

tight via the tightness criterion.
Step 6 (Part (b)). We prove the limit of ρiε as ε goes to zero satisfies Part (b). Using the

Prokhorov Compactness Theorem, the family ρiε is narrowly sequentially relatively compact. We

125

choose a narrowly convergent sequence in {ρiε}ε and define its limit by ρi ∈M+([0, T]× [0, T]×
Γi). For a.e. t ∈ [0, T] and all w ∈ Cb(Rni), it follows from µix|t;ε = (et)#ρ

i
ε that∫

Rni
w(x) dµix|t;ε(x) =

∫
[0,T]×[0,T]×Γi

w(et(s, τ, γ)) dρiε(s, τ, γ). (B.27)

Since et is continuous, w◦et ∈ Cb([0, T]×[0, T]×Γi). We then pass to the limit ε ↓ 0 on both sides
of (B.27) to obtain

∫
Xi
w(x) dµix|t(x) =

∫
[0,T]×[0,T]×Γi

w(et(s, τ, γ)) dρi(s, τ, γ) for a.e. t ∈ [0, T].
Since Cb(Rni) is dense in L1(Rni) [Bog07, Corollary 4.2.2], µix|t = (et)#ρ

i for a.e. t ∈ [0, T].
Step 7 (Part (a) with continuous vector field). Using a similar argument in Step 4, we may

show s ≤ τ for any triplet (s, τ, γ) ∈ spt(ρi). Moreover, it follows from µix|t = (et)#ρ
i that

γ(t) ∈ spt((et)#ρ
i) ⊂ Xi for a.e. t ∈ [s, τ]. Since γ is absolutely continuous and Xi is compact,

γ(t) stays in Xi for all t ∈ [s, τ]. To prove the rest of (a), we only need to show∫
[0,t]×[t,T]×Γi

∣∣∣∣γ(t)− γ(s)−
∫ t

s

F̄i(τ
′, γ(τ ′))dτ ′

∣∣∣∣ dρi(s, τ, γ) = 0 (B.28)

for all t ∈ [0, T]. Let v ∈ Cb([0, T]×Xi;Rni), then∫
[0,t]×[t,T]×Γi

∣∣∣∣γ(t)− γ(s)−
∫ t

s

v(τ ′, γ(τ ′))dτ ′
∣∣∣∣ dρiε(s, τ, γ)

≤
∫

[0,t]×[t,T]×Γi

∫ t

s

∣∣F̄ ε
i (τ ′, γ(τ ′))− v(τ ′, γ(τ ′))

∣∣ dτ ′dρiε(s, τ, γ) (B.29)

≤
∫ t

0

∫
[0,τ ′]×[τ ′,T]×Γi

∣∣F̄ ε
i (τ ′, γ(τ ′))− v(τ ′, γ(τ ′))

∣∣ dρiε(s, τ, γ)dτ ′ (B.30)

=

∫ t

0

∫
Rni

∣∣F̄ ε
i (τ, x)− v(τ, x)

∣∣ dµix|τ ;ε(x) dτ (B.31)

≤
∫

[0,T]×Rni

∣∣F̄i(τ, x)− v(τ, x)
∣∣ dµiτ,x(τ, x) +

(
sup
τ∈[0,T]
x∈Rni

|vε(τ, x)− v(τ, x)|
)
‖µiτ,x‖ (B.32)

for any t ∈ [0, T] where (B.29) follows by substituting in
∫ t
s
F̄ ε
i (τ ′, γ(τ ′))dτ ′ = γ(t) − γ(s) and

applying the triangle inequality for integrals; (B.30) follows by first applying Fubini’s theorem to
change the order of integration, and then relaxing the domain of integration (since ρiε is nonnega-
tive); (B.31) follows from µix|t;ε = (et)#ρ

i
ε and a change of variables τ ′ = τ ; in (B.32) we add and

subtract vε(τ, ·) :=
(v(τ,·)µi

x|τ)∗θε
µi
x|τ ;ε

, and then apply the triangle inequality and [Man07, Lemma 3.9].

Since the family {ρiε}ε is tight and the integrand is a bounded continuous function, and v is uni-

126

formly continuous vε converges to v uniformly as ε ↓ 0, and the second term of (B.32) converges
to 0, therefore for a.e. t ∈ [0, T],∫

[0,t]×[t,T]×Γi

∣∣∣∣γ(t)−γ(s)−
∫ t

s

v(τ ′, γ(τ ′))dτ ′
∣∣∣∣ dρi(s, τ, γ)

≤
∫

[0,T]×Xi
|F̄i(τ, x)− v(τ, x)| dµiτ,x(τ, x).

(B.33)

If F̄i is uniformly continuous, let v := F̄i, and (B.28) follows.
Step 8 (Error bound of vector field approximation). When there is no regularity in F̄i other than

boundedness, we choose a sequence of continuous functions converging to F̄i in L1(µit,x;Rni), and
prove an error bound of the approximation: Let {vk}k∈N ⊂ C([0, T] ×Xi;Rni) be a sequence of
continuous functions converging to F̄i in L1(µit,x;Rni), whose existence is guaranteed by [Bog07,
Corollary 4.2.2]. Given any t ∈ [0, T], we compute the following error between vk and F̄i:∫

[0,t]×[t,T]×Γi

∫ t

s

∣∣vk(τ ′, γ(τ ′))− F̄i(τ ′, γ(τ ′))
∣∣ dτ ′ dρi(s, τ, γ)

≤
∫ t

0

∫
[0,τ ′]×[τ ′,T]×Γi

∣∣vk(τ ′, γ(τ ′))− F̄i(τ ′, γ(τ ′))
∣∣ dρi(s, τ, γ) dτ ′ (B.34)

=

∫
[0,T]×Xi

∣∣vk(τ, x)− F̄i(τ, x)
∣∣ dµiτ,x(τ, x), (B.35)

where (B.34) follows by first applying Fubini’s Theorem to change the order of integrations, and
then relaxing the domain of integration (since ρi is nonnegative); (B.35) follows by substituting in
µix|t = (et)#ρ

i. Observe that as k →∞ this error goes to zero.
Step 9 (Condition (a) with bounded vector field). We may now combine Step 7 and Step 8

together and prove Part (a) in a more general setting. Using the results in Step 7 and Step 8, we
obtain for any t ∈ [0, T],∫

[0,t]×[t,T]×Γi

∣∣∣∣γ(t)− γ(s)−
∫ t

s

F̄i(τ
′, γ(τ ′))dτ ′

∣∣∣∣ dρi(s, τ, γ)

≤ 2

∫
[0,T]×Xi

∣∣F̄i(τ, x)− vk(τ, x)
∣∣ dµiτ,x(τ, x), (B.36)

where (B.36) follows by adding and subtracting the term
∫ t
s
vk(τ

′, γ(τ ′))dτ ′, applying the triangle
inequality, and using the results in Step 7 and Step 8. When we let k → ∞, (B.36) goes to zero,
therefore Part (a) holds.

127

APPENDIX C

Proof of Theorem 12

Proof. This proof consists of several steps: in Step 1 we show that trajectories defined in support
of ρi and ρj satisfy the reset map for all (i, j) ∈ E ; in Step 2 we show trajectories in each mode
can be connected to obtain hybrid trajectories that are defined on [0, T]; in Step 3 we prove that
those hybrid trajectories are admissible by showing they all start from spt(µi0) and end in spt(µiT)

thus proving (a); in Step 4 we define a measure ρ and prove that it satisfies (b) and (c); in Step 5
we prove (d) using (b) and (c).

Step 1 (Reset maps are satisfied). According to Corollary 10, it suffices to show σj = δ0 ⊗
µj0 +

∑
(i,j)∈E R̃(i,j)#η

i, ∀j ∈ I. This can be proved by using (2.13) and Assumption 2 to obtain
R̃(i,j)#η

i = R̃(i,j)#µ
S(i,j) . As a result, all trajectories in the support of ρi are reinitialized to another

trajectory in the support of ρj after it reaches the guard S(i,j); On the other hand, a trajectory can
only start in mode i either from the given initial condition x0 at time 0, or by transitioning from
another mode j if (j, i) ∈ E . We can therefore connect trajectories in each mode together to obtain
hybrid trajectories.

Step 2 (Hybrid trajectories are defined on [0, T]). This step shows that all hybrid trajectories
are defined on [0, T]. To prove this, we first show that there is a ∆t > 0 such that τ − s ≥ ∆t for
any i ∈ I and (s, τ, γ) ∈ spt(ρi), τ 6= T . Let (s, τ, γ) ∈ spt(ρi) for some i ∈ I, and let 0 ≤ s ≤
τ < T . According to Corollary 10, γ(s) ∈ {x0}

⋃
(i′,i)∈E R(i′,i)(S(i′,i)) and γ(τ) ∈

⋃
(i,i′)∈E S(i,i′).

According to Definition 1 and Assumptions 2 and 5, γ(s) and γ(τ) belong to disjoint compact sets
(since the image of a compact set under a continuous map is compact) and therefore there exists
a di > 0 such that |γ(τ) − γ(s)| ≥ di. Let Mi > 0 be a bound for F̄i(t, x) over [0, T] × Xi, and
define ∆t := mini∈I(di/Mi). Then it follows from the Fundamental Theorem of Calculus that
(τ − s) ≥ ∆t.

We can apply proof by contradiction to show all hybrid trajectories are defined on [0, T]. Let
a hybrid trajectory be defined on a strict subinterval of [0, T], then according to Corollary 10 its
endpoints must belong to either Se or Re#µ

Se for some e ∈ E . It then follows from Step 1 that
its domain can always be extended by at least ∆t due to transitioning from or to another point

128

Notice it follows from the above discussion that for any i ∈ I and (0, τ, γ) ∈ spt(ρi), τ ≥ ∆t.
As a result, spt(µSe) ⊂ [∆t, T] × Se for all e ∈ E . Then, as a result of Step 1, for all e ∈ E ,
spt(R̃e#µ

Se) ⊂ [∆t, T]×Re(Se).

Step 3 (Part (a)). For any triplet (0, τ, γ) ∈ spt(ρi), (0, γ(0)) ∈ spt(σi) according to Corollary
10. It then follows from spt(R̃e#µ

Se) ⊂ [∆t, T] × Re(Se) that γ(0) ∈ spt(µi0). Now suppose
(s, T, γ) ∈ spt(ρi) but γ(T) 6∈ spt(µiT). According to Corollary 10 and Step 1 γ is reinitial-
ized to another trajectory γ′ in some mode i′ ∈ I. As a result of Corollary 10, (T, γ′(T)) ∈
spt(σi′)

⋃
spt(ηi′), therefore as a result of Assumptions 2 and 4, γ′(T) ∈ spt(µi′T).

Step 4 (Part (b) and (c)). As a result of Step 3, there exists a measure ρ ∈ M+(X) such that
(eit)#ρ = (et)#ρ

i for all t ∈ [0, T]. Therefore, Part (b) follows from Theorem 9. To prove Part
(c), notice ρ(X) =

∑
i∈I ((ei0)#ρ) (Xi) =

∑
i∈I ρ

i({0}× [0, T]×Γi). According to Corollary 10,∫
[0,T]×[0,T]×Γi

1{0}(s) dρ
i(s, τ, γ) =

∫
[0,T]×Xi 1{0}(s) dσ

i(s, x) = σi({0} ×Xi). If
∑

i∈I µ
i
0(Xi) =

1, then ρ(X) =
∑

i∈I σ
i({0} ×Xi) =

∑
i∈I µ

i
0(Xi) = 1.

Step 5 (Part (d)). Let A×B be in the Borel σ-algebra of [0, T]×Xi, then

µit,x(A×B) =

∫
XT

∫ T

0

1A×B(t, γi(t)) dt dρ(γ), (C.1)

which follows by substituting in (eit)#ρ = µix|t and applying Fubini’s Theorem. Since ρ is a
probability measure,

∑
i∈I µ

i
t,x([0, T]×Xi) = T .

For all B in the Borel σ-algebra of Xi,

µi0(B) =

∫
[0,T]×Xi

1{0}×B(s, x) dσi(s, x) (C.2)

=

∫
X
1B(γi(0)) dρ(γ), (C.3)

where (C.2) follows from definition of δ0, from (2.13) and spt(R̃e#µ
Se) ⊂ [∆t, T] × Re(Se);

(C.3) follows from Corollary 10 and because (eit)#ρ = (et)#ρ
i. Similarly, for all B in the Borel σ-

algebra ofXTi , µ
i
T (B) =

∫
XT

1B(γi(T)) dρ(γ). Since ρ is a probability measure,
∑

i∈I µ
i
T (XTi) =

1.

129

Finally, for all (i, i′) ∈ S and A×B in the Borel σ-algebra of [0, T]× S(i,i′),

µS(i,i′)(A×B) =

∫
[0,T]×Xi

1A×B(τ, x) dηi(τ, x) (C.4)

=

∫
[0,T]×[0,T]×Γi

1A×B(τ, γ(τ)) dρi(s, τ, γ) (C.5)

=

∫
[0,T]×[0,T]×Γi

#{(t, et(s, τ, γ)) ∈ A×B} dρi(s, τ, γ) (C.6)

=

∫
X

#{t ∈ A | lim
τ→t−

γi(τ) ∈ B} dρ(γ), (C.7)

where (C.4) follows from (2.13), Assumption 4, and the fact that B ⊂ S(i,i′); (C.5) follows from
Corollary 10; (C.6) follows from Assumption 2; (C.7) follows because (eit)#ρ = (et)#ρ

i and
because all γi ∈ Γi are absolutely continuous. From Step 2, each γ ∈ spt(ρ) undergoes at most T

∆t

transitions, where ∆t is defined as in Step 2. Therefore
∑

(i,i′)∈E #{t ∈ [0, T] | limτ→t− γi(τ) ∈
S(i,i′)} ≤ T

∆t
for all γ ∈ spt(ρ). Since ρ is a probability measure,

∑
e∈E µ

Se([0, T]×Se) ≤ T
∆t

.

130

APPENDIX D

Proofs of Theorems 44, 45, and 46

D.1 Proof of Theorem 43 (Unconstrained Rate of Convergence)

Proof. The first term in (4.24) follows from Theorem 42 and guarantees |x| ≤ δ. To prove
maxBp(x) − minBp(y) ≤ ε for all y ∈ L using the second and third terms, we need to de-
fine C1 and C2. First, we use the fact that x∗ is not on the boundary of u to find R > 0 such that
x ⊂ BR(x∗) (the closed Euclidean-norm ball centered at x∗ with radius R). Using the first-order
necessary condition for optimality [NW06, Theorem 2.2] we know ∇p(x∗) = 0. Let σmax be the
maximum singular value of∇2p(x∗). Consider an arbitrary point x ∈ u and let t := x−x∗. Using
Taylor’s theorem, we have

p(x) = p(x∗) +∇p(x∗)> t+
1

2
t>∇2p(x∗) t+ o(‖t‖2) (D.1)

Since∇p(x∗) = 0, (D.1) implies that p(x)− p(x∗) ≤ 1
2
σmax‖t‖2 + o(‖t‖2). For sufficiently small

t, the second order term dominates higher order terms. That is, there exists R > 0 such that

p(x)− p(x∗) ≤ σmax‖t‖2 (D.2)

for all x ∈ BR(x∗).
Now we use R and σmax to construct C1 and C2. Let n be the current iteration number such

that
n ≥

⌈
max

{
− log2

(
R√
l

)
,−1

2
log2

(
ε

σmaxl + 2ζp

)}⌉
. (D.3)

Notice x ⊂ BR(x∗) because maxx∈x ‖x− x∗‖ ≤ |x| =
√
l · 2−n ≤ R. Therefore, (D.2) is satisfied

131

for all x ∈ x. We also have

maxB(x)−minB(y) ≤ max
x∈x

p(x)− p(x∗) + 2ζp · 2−2n (D.4)

≤ σmax max
x∈x
‖x− x∗‖2 + 2ζp · 2−2n (D.5)

≤ σmaxl · 2−2n + 2ζp · 2−2n (D.6)

≤ ε (D.7)

where (D.4) is a verbatim copy of (4.21); (D.5) follows from (D.2); (D.6) follows from Remark
36; and (D.7) follows from (D.3). This implies Algorithm 1 terminates no later than iteration n.
To conclude the proof, we define

C1 := − log2

(
R√
l

)
, C2 :=

1

2
log2 (σmaxl + 2ζp) (D.8)

D.2 Proof of Theorem 44 (Unconstrained Memory Usage)

Proof. Since m < ∞, let σmax and σmin be the maximum and minimum singular values, respec-
tively, of∇2p(x∗s) over all s = 1, · · · ,m. Notice σmax ≥ σmin > 0. Using similar arguments in the
proof of Theorem 43, an analogue of (D.2) can be obtained. That is, there exists R > 0 such that

1

4
σmin‖xs − x∗s‖2 ≤ p(xs)− p(x∗s) ≤ σmax‖xs − x∗s‖2 (D.9)

for all s = 1, · · · ,m and xs ∈ BR(x∗s).
Without loss of generality, let x∗ represent any minimizer x∗1, · · · , x∗m of (4.16). Let y ⊂

BR(x∗) be a subbox in u such that

min
y∈y
‖y − x∗‖ >

√
4(σmaxl + 2ζp)

σmin

· 2−n =: R′. (D.10)

We claim that y cannot be in the list L. To prove this, let x ⊂ BR(x∗) be the subbox that contains

132

x∗. Then

minB(y) ≥ min
y∈y

p(y)− ζp · 2−2n (D.11)

≥ p(x∗) +
1

4
σmin

(
min
y∈y
‖y − x∗‖2

)
− ζp · 2−2n (D.12)

> p(x∗) + σmax ·
(√

l · 2−n
)2

+ ζp · 2−2n (D.13)

≥ max
x∈B√l·2−n (x∗)

p(x) + ζp · 2−2n (D.14)

≥ max
x∈x

p(x) + ζp · 2−2n (D.15)

≥ maxB(x) (D.16)

where ζp is the constant in Theorem 32 corresponding to polynomial p; (D.11) follows from The-
orem 32; (D.12) follows from (D.9); (D.13) follows from (D.10) and the strict monotonicity of
quadratic functions restricted to non-negative numbers; (D.14) follows from (D.9); (D.15) follows
from Remark 36; (D.16) follows from Corollary 33. According to Theorem 40, such a subbox y

cannot be in L. In other words (by taking the contrapositive), the distance between x∗ and any
subbox contained in BR(x∗) cannot exceed R′, meaning miny∈y ‖y − x∗‖ ≤ R′ ∀ y ∈ L and y ⊂
BR(x∗). Using (D.10), we can choose a large enough n such that R′ < R. Therefore, all subboxes
contained in BR(x∗) must also be contained in a hypercube centered at x∗ with widths 2R′+2·2−n.
Since the maximum width of all subboxes is 2−n (Remark 36), the number of subboxes contained
in BR(x∗) is bounded from above by

(
2R′ + 2 · 2−n

2−n

)l
=

4

√
(σmaxl + 2ζp)

σmin

+ 2

l

=: C3. (D.17)

Since there arem global minimizers, the total number of subboxes remaining in L is bounded from
above by m · C3, which is a constant.

D.3 Proof of Theorem 45 (Constrained Rate of Convergence)

Proof. Let n ≥ 1 be the current iteration number. To prove Algorithm 1 solves (P) in nth iteration,
we must show that there exists a subbox x ∈ L that meets the stopping criterion in Definition 35.
That is, x should satisfy

(a) x ∈ L,

(b) |x| ≤ δ,

133

(c) maxBgi(x) ≤ 0 for all i = 1, · · · , α,

(d) −εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq for all j = 1, · · · , β, and

(e) maxBp(x)−minBp(y) ≤ ε for all y ∈ L.

We define such a subbox x as a function of n using the implicit function theorem, then construct
C7, C8, and C9 using these criteria.

Let α̂ (α̂ ≤ α) be the number of active inequality constraints at x∗. Without loss of generality,
suppose g1, · · · , gα̂ are active. Define

A :=
[
∇g1(x∗) · · · ∇gα̂(x∗) ∇h1(x∗) · · · ∇hβ(x∗)

]>
(D.18)

It follows from LICQ that A is full rank. Let Z be a matrix whose columns are a basis for the null
space of A; that is,

Z ∈ Rl×(l−α̂−β), Z is full rank, AZ = 0(α̂+β)×(l−α̂−β). (D.19)

For convenience, define

Ã :=

[
A

Z>

]
(D.20)

where Ã is a square matrix with full rank. Define a parameterized system of equations F : Rl ×
R→ Rl by

F (a, t) =



g1(a) + (ζg1 + Lg1
√
l) · t

...
gα̂(a) + (ζgα̂ + Lgα̂

√
l) · t

h1(a)
...

hβ(a)

Z>x


= 0l×1 (D.21)

where ζgi is the constant in Theorem 32 corresponding to polynomial gi, and Lgi is the Lipschitz
constant of gi over u. Notice in particular that F (x∗, 0) = 0. At a = x∗, t = 0, the Jacobian of F
with respect to a is

∇aF (x∗, 0) = Ã (D.22)

134

which is nonsingular by construction of Z. According to the implicit function theorem, the system
(D.21) has a unique solution x for all values of t sufficiently small; that is, there exists a number
R1 > 0 and a function ξ : [−R1, R1]→ Rl, such that

ξ(0) =x∗ (D.23)

F (ξ(t), t) =0 ∀ t ∈ [−R1, R1] (D.24)

In particular, such R1 can be obtained [CHP03] using only the bounds of the polynomials gi and
hj for all i = 1, · · · α̂, j = 1, · · · , β. We now let t := 2−n. Since |t| can be arbitrarily small as n is
increased, satisfying |t| ≤ R requires

n ≥ − log2R1. (D.25)

In the remainder of this proof we define x := ξ(2−n); that is,

F (x, 2−n) = 0, (D.26)

and denote the subbox that contains x as x. We next show in Steps 1–5 that such x satisfies
Conditions (b)–(e) for n ≥ N . The case of x 6∈ L is discussed in Step 6.

Step 1 (Condition (b)). Notice from Remark 36 that

|x| = 2−n ≤ 2−N ≤ δ (D.27)

therefore Condition (b) is satisfied.
Step 2 (Condition (c)). Notice that

maxBgi(x) ≤ max
x′∈x

gi(x
′) + ζgi · 2−2n (D.28)

≤ gi(x) + max
x′∈x

gi(x
′)− gi(x) + ζgi · 2−2n (D.29)

≤ −ζgi · 2−n − Lgi
√
l · 2−n + Lgi max

x′∈x
‖x′ − x‖ + (D.30)

+ ζgi · 2−2n

< 0 (D.31)

for all i = 1, · · · , α̂, where (D.28) follows from Corollary 33; (D.29) follows by adding and
subtracting gi(x); (D.30) follows from (D.26) and the definition of Lgi; (D.31) holds because
2−2n < 2−n. Therefore Condition (c) is satisfied.

Step 3 (Condition (d)). Let Lhj be a Lipschitz constant of hj over u. To ensure x satisfies the

135

equality constraint tolerance εeq, we require the following inequality to hold:

n ≥ max
j=1,··· ,β

{
− log2

(
εeq

ζhj + Lhj
√
l

)}
. (D.32)

Notice

maxBhj(x) ≤ max
x′∈x

hj(x) + ζhj · 2−2n (D.33)

≤ hj(x) + Lhj ·max
x′∈x
‖x′ − x‖+ ζhj · 2−2n (D.34)

≤ 0 + (Lhj
√
l + ζhj) · 2−n (D.35)

≤ εeq (D.36)

for all j = 1, · · · , β, where (D.33) follows from Corollary 33; (D.34) follows from the definition
of Lhj; (D.35) holds because 2−2n ≤ 2−n; and (D.36) follows from (D.32). Similarly, we may
prove

minBhj(x) ≥ −εeq (D.37)

for all j = 1, · · · , β. It then follows from (D.36), (D.37), Theorem 32, and Corollary 33 that

−εeq ≤ minBhj(x) ≤ 0 ≤ maxBhj(x) ≤ εeq (D.38)

for all j = 1, · · · , β. Therefore Condition (d) is satisfied.
Step 4 (First part of Condition (e)). It is difficult to directly talk about the relationship between

Bp(x) and Bp(y) for all y ∈ L. Instead, in Step 4 we bound the difference between maxBp(x)

and p(x∗) by ε/2; then, in Step 5, we bound the gap between p(x∗) and minBp(y) for all y ∈ L
also by ε/2.

Define

b :=



ζg1 + Lg1
√
l

...
ζgα̂ + Lgα̂

√
l

0
...
0


 l − α̂

. (D.39)

136

By taking the total derivative of (D.26) with respect to t at t = 0 we obtain

0 =∇aF (ξ(0), 0) · ∇tξ(0) +∇tF (ξ(0), 0) (D.40)

=Ã · ∇tξ(0) + b (D.41)

Since Ã has full rank,∇tξ(0) = −Ã−1b. Using Taylor’s theorem, x := ξ(2−n) may be written as

x = x∗ +∇tξ(0) · 2−n + o(2−n) (D.42)

where the first term follows from ξ(0) = x∗. For sufficiently small 2−n, the third term in (D.42) is
dominated by 2−n; that is, there exists a number R2 > 0, such that

‖x− x∗‖ ≤
∥∥∥1l×1 − Ã−1b

∥∥∥ · 2−n =: C4 · 2−n (D.43)

Let Lp be the Lipschitz constant of p in BR2(x∗). Suppose

n ≥ − log2

 ε

2
(
Lp
√
l + LpC4 + ζp

)
 , (D.44)

where ζp is the constant in Theorem 32 corresponding to polynomial p. We then claim maxBp(x)−
p(x∗) is bounded by ε/2. To see this, notice

maxBp(x)− p(x∗) ≤ max
x′∈x

p(x′)− p(x∗) + ζp · 2−2n (D.45)

≤ max
x′∈x
|p(x′)− p(x)|+ |p(x)− p(x∗)|+ ζp · 2−n (D.46)

≤
(
Lp
√
l + LpC4 + ζp

)
· 2−n (D.47)

≤ ε

2
(D.48)

where (D.45) follows from Corollary 33; (D.46) follows from triangle inequality and 2−2n ≤ 2−n;
(D.47) follows from (D.43) and definition of Lp; (D.48) follows from (D.32).

For Condition (e) to be satisfied, we need to show that minimum value of every other Bernstein
patch L is within ε/2 of p(x∗); we do this next.

Step 5 (Second part of Condition (e)). In this step, we bound the difference between p(x∗) and
minBp(y) for all y ∈ L. To do this, we first show that any y ∈ L solves a relaxed POP related
to the original POP and parameterized by the current iteration n. Then, we bound the difference
between the solutions of the relaxed and original POPs.

Let y ∈ L be any subbox with maximum width 2−n. Then,

137

(f) minBgi(y) ≤ 0 for all i = 1, · · · , α;

(g) minBhj(y) ≤ 0 for all j = 1, · · · , β;

(h) maxBhj(y) ≥ 0 for all j = 1, · · · , β,

from Theorem 40. Notice (f) implies

0 ≥ min
y∈y

gi(y)− ζgi · 2−2n (D.49)

≥ max
y∈y

gi(y)− Lgi
√
l · 2−n − ζgi · 2−2n (D.50)

where (D.49) follows from Theorem 32; (D.50) follows from definition of Lgi. For convenience,
denote

γgi(n) := Lgi
√
l · 2−n + ζgi · 2−2n. (D.51)

Then, (D.50) can be written as
max
y∈y

gi(y) ≤ γgi(n). (D.52)

Similarly, if we define

γhj(n) := Lhj
√
l · 2−n + ζhj · 2−2n, (D.53)

then (g) and (h) can be written as

max
y∈y

hj(y) ≤ γhj(n) (D.54)

min
y∈y

hj(y) ≥ −γhj(n). (D.55)

Now we are ready to introduce the relaxed POP:

min
y∈u

p(y) (Pn)

s.t gi(y) ≤ γgi(n) i = 1, · · · , α (D.56)

hj(y) ≤ γhj(n) j = 1, · · · , β (D.57)

hj(y) ≥ −γhj(n) j = 1, · · · , β (D.58)

Denote y∗n as the optimal solution to (Pn). Notice that (D.56), (D.57), and (D.58) are relaxations
of (D.52), (D.54), and (D.55) respectively. That is, let y ∈ L and consider any y ∈ y that satisfies

138

(D.52), (D.54), and (D.55). It also necessarily satisfies (D.56), (D.57), and (D.58). Therefore,

p(y∗n) ≤ min
y∈y

p(z) (D.59)

It can be obtained from Theorem 32 that

min
y∈L

Bp(y) ≥ min
y∈y

p(y)− ζp · 2−2n ≥ p(y∗n)− ζp · 2−2n (D.60)

To estimate the value p(y∗n), notice from [Fia78, Corollary 4.1],

∂p(y∗n)

∂γgi(n)
=− λ∗gi (D.61)

∂p(y∗n)

∂γhj(n)
=− λ∗hj (D.62)

where λ∗gi and λ∗hj are Lagrange multipliers corresponding to the constraints gi and hj in (Pn),
respectively, for all i = 1, · · · , α̂ and j = 1, · · · , β. Using Taylor’s theorem, we obtain

p(y∗n) ≥ p(x∗)−
∑

i=1,··· , α

λ∗giγgi(n)−
∑

j=1,··· , β

∣∣λ∗hjγhj(n)
∣∣+

+O

(∑
i=1,··· , α

γ2
gi(n) +

∑
j=1,··· , β

γ2
hj(n)

)
,

(D.63)

for sufficiently small γgi(n) and γhj(n).
Since γgi(n) and γhj(n) can be made arbitrarily small by increasing n, there exists a constant

C5 such that

p(y∗n) ≥ p(x∗)− 1

2

(∑
i=1,··· , α

λ∗giγgi(n) +
∑

j=1,··· , β

∣∣λ∗hjγhj(n)
∣∣) (D.64)

for all n ≥ C5. It then follows from (D.60) and (D.64) that

p(x∗)−min
y∈L

Bp(y) ≤1

2

(∑
i=1,··· , α

λ∗giγgi(n) +
∑

j=1,··· , β

∣∣λ∗hjγhj(n)
∣∣)+ ζp · 2−2n (D.65)

Suppose n satisfies

n ≥ − log2 ε+ log2(C6 + 2ζp) (D.66)

139

where

C6 :=
∑

i=1,··· , α

λ∗gi(Lgi
√
l + ζgi) +

∑
j=1,··· , β

∣∣∣λ∗hj(Lhj√l + ζhj)
∣∣∣ (D.67)

Then it follows from (D.65) that

p(x∗)−min
y∈L

Bp(y) ≤ ε

2
. (D.68)

By applying the triangle inequality to (D.48) and (D.68), we fulfill Condition (e).
Step 6 (Condition (a)). If x ∈ L in the above discussion, then such x satisfies Conditions

(a)–(e) and therefore the proof is finished. When x 6∈ L, however, we need to show there exists
another subbox z ⊂ u that satisfies Conditions (a)–(e). This can be done using the Cut-Off Test in
Theorem 40.

Suppose x 6∈ L. Notice such x is not infeasible per Definition 37. According to Theorem 40,
such x must be suboptimal so that it is removed from the list L; that is, there exists a feasible z ∈ L
such that

maxBp(z) < minBp(x) (D.69)

Per Definition 37, such z satisfies Conditions (a)–(d). To show z satisfies Condition (e), notice
from (D.48), (D.68), and (D.69) that

maxBp(z)−minBp(y) < maxBp(x)−minBp(y) ≤ ε (D.70)

for all y ∈ L.
To conclude the proof, define constants

C7 := max{− log2R1, C5} (D.71)

C8 := max
j=1,··· ,β

log2

(
ζhj + Lhj

√
l
)

(D.72)

C9 := max
{

log2

(
2
(
Lp
√
l + LpC4 + ζp

))
, log2(C6 + 2ζp)

}
(D.73)

The result then follows.

140

D.4 Proof of Theorem 46 (Constrained Memory Usage)

Proof. Consider an arbitrary global minimizer x∗ ∈ u. It follows from (D.47) (in the proof of
Theorem 45) that for sufficiently large n there exists a subbox x ∈ L such that

maxBp(x)− p(x∗) ≤
(
Lp
√
l + LpC4 + ζp

)
· 2−n (D.74)

where C4 is defined as in (D.43). Consider another feasible point z ∈ u of (P), and let z ⊂ u be
the subbox that contains z. Such z is necessarily feasible to the relaxed problem (Pn). According
to [NW06, (12.71)], we know

p(z) ≥ p(y∗n) + ‖z − y∗n‖
∑

i=1,··· ,α̂

λ∗gi∇gi(y∗n)>d+ o(‖z − y∗n‖) (D.75)

where y∗n is the optimal solution to (Pn); λ∗gi are the Lagrange multipliers corresponding to gi in
(Pn) for all i = 1, · · · , α̂; and d is any unit vector such that

∇gi(y∗n)>d ≥ 0 ∀ i = 1, · · · , α̂, (D.76)

∇hj(y∗n)>d = 0 ∀ j = 1, · · · , β. (D.77)

Since the critical cone of (Pn) at y∗n is nonempty, for any d there exists i ∈ {1, · · · , α̂} such that

λ∗gi∇gi(y∗n)>d > 0 (D.78)

For notational convenience, define

J(d) =
∑

i=1,··· ,α̂

λ∗gi∇gi(y∗n)>d (D.79)

with minimum q := mind J(d). In particular, it follows from the extreme value theorem that such
minimum exists, since J(d) is continuous with respect to d, and the set of unit vectors defined by
(D.76) and (D.77) is closed and bounded (therefore compact according to Heine-Borel theorem). It
also follows from (D.78) that q > 0. For any z that is sufficiently close to y∗n, we may then rewrite
(D.75) as

p(z) ≥ p(y∗n) +
q

2
‖z − y∗n‖ (D.80)

141

We claim for sufficiently large n and all z ∈ u such that

‖z − y∗n‖ ≥
2
(

2Lp
√
l + LpC4 + C6/2 + 2ζp

)
q

· 2−n =: C10 · 2−n, (D.81)

the subbox z cannot be in the list L. To prove this, notice

minB(z) ≥min
z′∈z

p(z′)− ζp · 2−2n (D.82)

≥p(z)− Lp
√
l · 2−n − ζp · 2−2n (D.83)

≥p(y∗n) +

(
qC10

2
− Lp

√
l − ζp

)
· 2−n (D.84)

≥p(x∗) +

(
qC10

2
− Lp

√
l − C6

2
− ζp

)
· 2−n (D.85)

≥maxBp(x) +

(
qC10

2
− 2Lp

√
l − LpC4 −

C6

2
− 2ζp

)
· 2−n (D.86)

≥maxBp(x) (D.87)

where Lp is the Lipchitz constant of p over u, and C6 is defined as in (D.67). In particular, (D.82)
follows from Theorem 32; (D.83) follows from definition of Lp; (D.84) follows from (D.80);
(D.85) follows from (D.64); (D.86) follows from (D.74); (D.87) follows from (D.81). According
to Theorem 40, z cannot be in the list L.

To conclude this proof, notice the above claim implies that for sufficiently large n, all subboxes
in a neighborhood of x∗ must also be contained in a hypercube centered at y∗n with widths (2C10 +

2) · 2−n. Since the maximum width of all subboxes is 2−n (Remark 36), the number of subboxes
contained in a neighborhood of x∗ is bounded from above by(

(2C10 + 2) · 2−n

2−n

)l
= (2C10 + 2)l . (D.88)

Since there are m global minimizers, the number of subboxes remaining in L is bounded above by
m · (2C10 + 2)l, which is a constant

142

APPENDIX E

A List of Polynomial Optimization Problems

E.1 Benchmark Problems

The following problems are all from [NA11], with minor changes. To report the global optima
values and locations, we solved each problem 1000 times using MATLAB’s fmincon, with opti-
mality and constraint tolerances set to 10−10, and random initial guesses.

P1:

min − x1 − x2

s.t. − 2x4
1 + 8x3

1 − 8x2
1 + x2 − 2 ≤ 0

− 4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0

where x1 ∈ [0, 3] and x2 ∈ [0, 4]. The best optimal value we found is −5.5080132636 at the
location x = (2.3295201981, 3.1784930655).

P2:

min 658500x3
1 + 68121x2

1 + 2349x1+

+ 1000000x3
2 − 600000x2

2 + 120000x2 − 7973

s.t. − 7569x2
1 − 1392x1 − 10000x2

2 + 1000x2 + 11 ≤ 0

7569x2
1 + 1218x1 + 10000x2

2 − 1000x2 − 8.81 ≤ 0

where x1 ∈ [0, 1] and x2 ∈ [0, 1]. The best optimal value we found is −6961.8138816446 at
x = (0.0125862069, 0.0084296079).

143

P3:

min x1

s.t. x2
1 − x2 ≤ 0

x2 − x2
1(x1 − 2) + 10−5 ≤ 0

where xi ∈ [−10, 10] for i = 1, 2. The best optimal value we found is 3.0000011115 at x =

(3.0000011115, 9.0000066709).
P4:

min − 2x1 + x2 − x3

s.t. x1 + x2 + x3 − 4 ≤ 0

3x2 + x3 − 6 ≤ 0

− xTATAx+ 2yTAx− ‖y‖2 + 0.25 ‖b− z‖2 ≤ 0

A =

 0 0 1

0 −1 0

−2 1 −1


b = (3, 0,−4)T

y = (1.5,−0.5,−5)T

z = (0,−1,−6)T

where x1 ∈ [0, 2], x2 ∈ [0, 10], and x3 ∈ [0, 3]. The global optimum is −4 at x = (0.5, 0, 3).
P5:

min x3

s.t. 2x2
1 + 4x1x2 − 42x1 + 4x3

1 − x3 − 14 ≤ 0

− 2x2
1 − 4x1x2 + 42x1 − 4x3

1 − x3 + 14 ≤ 0

2x2
1 + 4x1x2 − 26x1 + 4x3

1 − x3 − 22 ≤ 0

− 2x2
1 − 4x1x2 + 26x1 − 4x3

1 − x3 + 22 ≤ 0

where xi ∈ [−5, 5] for i = 1, 2, 3. The best optimum found is 0 at x = (−0.305,−0.913, 0).

144

P6:

min 0.6224x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x1x3

s.t. − x1 + 0.0193x3 ≤ 0

− x2 + 0.00954x3 ≤ 0

− πx2
3x4 −

4

3
πx3

3 + 750.1728 ≤ 0

− 240 + x4 ≤ 0

where x1 ∈ [1, 1.375], x2 ∈ [0.625, 1], x3 ∈ [47.5, 52.5], and x4 ∈ [90, 112]. The global optimum
is 6395.5078 (to the same number of decimal places as used in the cost function) at the location
x = (1, 0.625, 47.5, 90.0) ;

P7:

min x4

s.t. x4
1x

4
2 − x4

1 − x4
2x3 = 0

1.4− 0.25x4 − x1 ≤ 0

− 1.4− 0.25x4 + x1 ≤ 0

1.5− 0.2x4 − x2 ≤ 0

− 1.5− 0.2x4 + x2 ≤ 0

0.8− 0.2x4 − x3 ≤ 0

− 0.8− 0.2x4 + x3 ≤ 0

where xi ∈ [0, 5] for i = 1, 2, 3, 4. The best optimal value we found is 1.0898639714 at the location
x = (1.1275340071, 1.2820272057, 1.0179727943, 1.0898639714).

145

P8:

min 54.528x2x4 + 27.624x1x3 − 54.528x3x4

s.t. 61.01627586− I ≤ 0

8x1 − I(x) ≤ 0

x1x2x4 − x2x
2
4 + x2

1x3 + x3x
2
4 − 2x1x3x4 − 3.5x3I(x) ≤ 0

x1 − 3x2 ≤ 0

2x2 − x1 ≤ 0

x3 − 1.5x4 ≤ 0

0.5x4 − x3 ≤ 0

I(x) = 6x2
1x2x3 − 12x1x2x

2
3 + 8x2x

3
3 + x3

1x4 − 6x2
1x3x4+

+ 12x1x
2
3x4 − 8x3

3x4

where x1 ∈ [3, 20], x2 ∈ [2, 15], x3 ∈ [0.125, 0.75], and x4 ∈ [0.25, 1.25]. The best optimal value
we found is 42.4440570797 at the location x = (4.9542421008, 2, 0.125, 0.25).

E.2 Increasing Constraints Problems

ElAttar-Vidyasagar-Dutta (E-V-D) [Gav19]:

(x2
1 + x2 − 10)2 + (x1 + x2

2 − 7)2 + (x2
1 + x3

2 − 1)2

where xi ∈ [−100, 100] for i = 1, 2. The global optimum is 1.712780354 at x = (3.41,−2.17).
Powell [Gav19]:

(x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

where xi ∈ [−10, 10] for i = 1, 2, 3, 4. The global optimum is 0 at x = 0.
Wood [Gav19]:

(100(x2 − x2
1))2 + (1− x1)2 + 90(x4 − x2

3)2 + (1− x3)2+

+10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1)

where xi ∈ [−10, 10] for i = 1, 2, 3, 4. The global optimum is 0 at x = (1, 1, 1, 1).

146

Dixon-Price (D-P) [Gav19]:

(x1 − 1)2 +
d∑
i=2

i(2x2
i − xi−1)2

where xi ∈ [−10, 10] for i = 1, . . . , d. The global optimum is 0 at xi = 2−
2i−2

2i for i = 1, . . . , d.
Beale:

(x1x2 − x1 + 1.5)2 + (x1x
2
2 − x1 + 2.25)2+

+(x1x
3
2 − x1 + 2.625)2

where xi ∈ [−10, 10] for i = 1, 2. The global optimum is 0 at x = (3, 0.5).
Bukin02 [Gav19]:

100(x2
2 − 0.01x2

1 + 1) + 0.01(x1 + 10)2

where x1 ∈ [−15,−5], x2 ∈ [−3, 3]. The global optimum is −124.75 at x = (−15, 0).
Deckkers-Aarts (D-A):

105x2
1 + x2

2 − (x2
1 + x2

2)2 + 10−5(x2
1 + x2

2)4

where xi ∈ [−20, 20] for i = 1, 2. The global optimum is −24777 at x = (0,±15).

147

APPENDIX F

Proof of Theorem 49

We first assume the joint angles always stay within certain ranges:

Assumption 80. During the entire experiment, Cassie’s joint angles satisfy

q4L, q4R ∈ [−156◦,−42◦], (F.1)

Notice such bounds are reasonable because (F.1) represents the physical joint limit of Cassie. We
may now give a formal proof of Theorem 49.

Proof. (of Theorem 49)
Without loss of generality, we only consider the left limbs of Cassie, and the arguments for the

right limbs should follow in a similar way. The rest of this proof can then be outlined as follows:
first, we define 3D balls around each limb joint of Cassie (shown in Fig. F.1) and argue that Cassie
does not collide with the ground if certain balls stay strictly above the ground; second, we use
kinematics of Cassie to prove these balls stay above the ground if the hip height stays above 0.75
[m].

We now define balls around each joint, as shown in Fig. F.1. These balls are denoted as
Bs,B3, . . . ,B7 and centered at the joints qsL, q3, . . . , q7, respectively. Denote the radii of these
balls as Rs, R3, . . . , R7. By choosing proper radii we can make sure the body of Cassie (excluding
the feet) is fully contained in the convex hulls of adjacent balls, as shown in Fig. F.1. As a result, if
none of the balls Bs,B3, . . . ,B6 touches the ground, the body of Cassie (excluding the feet) stays
strictly above the ground and therefore no collision with the ground happens (Definition 48). In

148

Figure F.1: Left limbs of Cassie are contained in convex hulls of adjacent balls.

practice, these radii are chosen to be

Rs = 0.1 (F.2)

R3 = 0.5 (F.3)

R4 = 0.3 (F.4)

R5 = 0.3 (F.5)

R6 = 0.5 (F.6)

R7 = 0.2 (F.7)

We now prove each center of these balls, denoted as (xi, yi, zi) for all i ∈ {s, 3, . . . , 6}, stay above
Ri. Using rigid body transformations provided in [Rob18], we may compute the 3D distances
between joint q3 and other joints as functions of the joint angles q4 and q5. It then follows from

149

elementary trigonometry that

‖z3 − zs‖ ≤ 0.546 (F.8)

‖z3 − z4‖ = 0.121 (F.9)

‖z3 − z5‖ ≤ 0.197 (F.10)

‖z3 − z6‖ ≤ 0.615 (F.11)

Let z3 ≥ 0.75, it follows from triangle inequality that

zs ≥ 0.75− 0.546 > R3 (F.12)

z4 ≥ 0.75− 0.121 > R4 (F.13)

z5 ≥ 0.75− 0.197 > R5 (F.14)

z6 ≥ 0.75− 0.615 > R6 (F.15)

This concludes the proof.

150

APPENDIX G

Derivation of a Balancing Controller u0 for Cassie

Consider dynamics of Cassie

M(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ τc (G.1)

with configuration variables q ∈ Q ⊂ R20. The system is subject to holonomic constraint h : Q →
R12 such that

Q̃ := {q ∈ Q | h(q) = 0} (G.2)

is non-empty. τc are the external forces corresponding to the constraints. We assume for simplicity
that the holonomic constraint can be expressed as

qc = hd(qf) (G.3)

for a choice of configuration variables (qc, qf), with the constrained coordinates qc ∈ Qc ⊂ R12,
the free coordinates qf ∈ Qf ⊂ R8, and such that a diffeomorphism F : Qc ×Qf → Q exists. In
this case, the mapping Fc : Qf → Q given by

Fc : qf 7→ F (hd(qf), qf) (G.4)

is am embedding. Moreover, its image defines the constraint manifold in the configuration space,
namely

Q̃ := {q ∈ Q | q = Fc(qf), qf ∈ Qf}, (G.5)

which is diffeomorphic to Qf under Fc.

151

Using the chain rule, we have

q̇ =
∂Fc(qf)

∂qf
q̇f =: Jc(qf)q̇f (G.6)

where Jc(qf) is the Jacobian of Fc at qf ∈ Qf . Taking the time derivative of (G.6) yields

q̈ = Jc(qf)q̈f + J̇c(qf , q̇f)q̇f (G.7)

where J̇c(qf , q̇f) is the time derivative of Jc(qf).
To eliminate the constraint force τc in the equation of motion, it suffices to Substituting (G.6),

(G.7) into (G.1) and then left-multiplying Jc(qf)> on both sides. Since Jc(qf)>τc = 0 due to the
principle of virtual work, the constrained dynamics can be written as

Jc(qf)
>M(q)Jc(qf)q̈f + Jc(qf)

>M(q)J̇c(qf , q̇f)q̇f+

Jc(qf)
>(C(q, q̇)q̇ +G(q)) = Jc(qf)

>Bu
∣∣∣ q=Fc(qf)
q̇=Jc(qf)q̇f

(G.8)

Consider a tracking controller of the form

u0(qf , q̇f) :=
(
Jc(qf)

>B
)†
Jc(qf)

> (G−Kp

(
Fc(qf)− qdes

)
−KdJc(qf)q̇f

)
(G.9)

where Kp ∈ R20×20 is symmetric and positive definite; Kd ∈ R20×20 is symmetric and positive
semidefinite; † is the pseudo-inverse of matrix; qdes is a constant desired configuration (that is,
q̇des = 0). For notational convenience, let the tracking error be e := Fc(qf)− qdes.

Choose a Lyapunov function candidate V : R20 × R20 → R defined as

V (qf , q̇f) :=
1

2
q̇>f Jc(qf)

>M(Fc(qf))Jc(qf)q̇f +
1

2
e>Kpe (G.10)

Such V is positive definite for ε sufficiently small since Kp is positive definite. Based on (G.4) and
(G.6), evaluating V̇ along constrained trajectories of (G.1) under the feedback control law (G.9)

152

gives

V̇ =q̇>f Jc(qf)
>M(q)

(
Jc(qf)q̈f + J̇c(qf , q̇f)q̇f

)
+

1

2
q̇>f Jc(qf)

>Ṁ(q, q̇)Jc(qf)q̇f + q̇>Kpe

(G.11)

=q̇>f

(
−Jc(qf)>M(q)J̇c(qf , q̇f)q̇f − Jc(qf)>(C(q, q̇)Jc(qf)q̇f +G(q)) + Jc(q)

>
f Bu

)
+

+ q̇>f Jc(qf)
>M(q)J̇c(qf , q̇f)q̇f +

1

2
q̇>f Jc(qf)

>Ṁ(q, q̇)Jc(qf)q̇f + q̇>f Jc(qf)
>Kpe

(G.12)

=
1

2
q̇>f Jc(qf)

>
(
Ṁ(q, q̇)− 2C(q, q̇)

)
Jc(qf)q̇f + q̇>f Jc(qf)

>(Bu−G(q) +Kpe) (G.13)

=− q̇>f Jc(qf)>KdJc(qf)q̇f (G.14)

�0 (G.15)

where (G.11) follows from product rule and chain rule; (G.12) follows from (G.8); (G.13) is a
regrouping of terms; (G.14) follows from (G.9) and the fact that Ṁ(q, q̇) − 2C(q, q̇) is skew-
symmetric for all q ∈ Q; (G.15) is true becauseKd is positive semidefinite. According to Lyapunov
stability theorem, the constrained system is stable under the feedback controller (G.9) if (G.3) is
satisfied and the input does not exceed torque limits.

153

BIBLIOGRAPHY

[ACG+18] Taylor Apgar, Patrick Clary, Kevin Green, Alan Fern, and Jonathan W Hurst. Fast
online trajectory optimization for the bipedal robot cassie. In Robotics: Science and
Systems, 2018.

[AGS08] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric
spaces and in the space of probability measures. Springer Science & Business Me-
dia, 2008.

[AGSG14] Aaron D Ames, Kevin Galloway, Koushil Sreenath, and Jessy W Grizzle. Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero dynamics. IEEE
Transactions on Automatic Control, 59(4):876–891, 2014.

[AM14] Amir Ali Ahmadi and Anirudha Majumdar. Dsos and sdsos optimization: Lp and
socp-based alternatives to sum of squares optimization. In 2014 48th annual confer-
ence on information sciences and systems (CISS), pages 1–5. IEEE, 2014.

[AN87] Edward J Anderson and Peter Nash. Linear programming in infinite-dimensional
spaces: theory and applications. John Wiley & Sons, 1987.

[ApS17] MOSEK ApS. MOSEK MATLAB Toolbox. Release 8.0.0.53., 2017.

[ATJ+17] Aaron D Ames, Paulo Tabuada, Austin Jones, Wen-Loong Ma, Matthias Rungger,
Bastian Schürmann, Shishir Kolathaya, and Jessy W Grizzle. First steps toward for-
mal controller synthesis for bipedal robots with experimental implementation. Non-
linear Analysis: Hybrid Systems, 25:155–173, 2017.

[Atk08] Kendall E Atkinson. An introduction to numerical analysis. John wiley & sons,
2008.

[AZGS06] Aaron D Ames, Haiyang Zheng, Robert D Gregg, and Shankar Sastry. Is there life
after zeno? taking executions past the breaking (zeno) point. In American Control
Conference, 2006, pages 6–pp. IEEE, 2006.

[BBM98] Michael S Branicky, Vivek S Borkar, and Sanjoy K Mitter. A unified framework for
hybrid control: Model and optimal control theory. IEEE transactions on automatic
control, 43(1):31–45, 1998.

154

[BCC93] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0–1 programs. Mathematical programming, 58(1-3):295–324,
1993.

[BEGFB94] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory, volume 15. Siam, 1994.

[Ber95] Dimitri P Bertsekas. Dynamic programming and optimal control, volume 1. Athena
Scientific Belmont, MA, 1995.

[BGV+15] Samuel A Burden, Humberto Gonzalez, Ramanarayan Vasudevan, Ruzena Bajcsy,
and S Shankar Sastry. Metrization and simulation of controlled hybrid systems.
IEEE Transactions on Automatic Control, 60(9):2307–2320, 2015.

[Bog07] Vladimir I Bogachev. Measure theory, volume 1, 2. Springer Science & Business
Media, 2007.

[BSS15] Mohamed Amin Ben Sassi and Sriram Sankaranarayanan. Stability and stabilization
of polynomial dynamical systems using Bernstein polynomials. In Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
pages 291–292, 2015.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge univer-
sity press, 2004.

[CAA+03] Christine Chevallereau, Gabriel Abba, Yannick Aoustin, Franck Plestan, Eric West-
ervelt, Carlos Canudas De Wit, and Jessy Grizzle. Rabbit: A testbed for advanced
control theory. IEEE Control Systems Magazine, 23(5):57–79, 2003.

[CHP03] HC Chang, W He, and N Prabhu. The analytic domain in the implicit function
theorem. JIPAM. J. Inequal. Pure Appl. Math, 4:1–5, 2003.

[CS14] Mathieu Claeys and Rodolphe Sepulchre. Reconstructing trajectories from the mo-
ments of occupation measures. In 53rd IEEE Conference on Decision and Control,
pages 6677–6682. IEEE, 2014.

[DKLP06] Etienne De Klerk, Monique Laurent, and Pablo A Parrilo. A ptas for the minimiza-
tion of polynomials of fixed degree over the simplex. Theoretical Computer Science,
361(2-3):210–225, 2006.

[DLMO07] Geir Dahl, Jon Magne Leinaas, Jan Myrheim, and Eirik Ovrum. A tensor product
matrix approximation problem in quantum physics. Linear algebra and its applica-
tions, 420(2-3):711–725, 2007.

[DN17] PS Dhabe and PSV Nataraj. A parallel bernstein algorithm for global optimization
based on the implicit bernstein form. International Journal of System Assurance
Engineering and Management, 8(2):1654–1671, 2017.

155

https://dl.acm.org/doi/abs/10.1145/2728606.2728639
https://dl.acm.org/doi/abs/10.1145/2728606.2728639

[DR05] Sheetal Dharmatti and Mythily Ramaswamy. Hybrid control systems and viscosity
solutions. SIAM Journal on Control and Optimization, 44(4):1259–1288, 2005.

[Dyn18] Boston Dynamics. Parkour atlas. https://www.youtube.com/watch?v=
_sBBaNYex3E, 2018.

[EL00] Michael B Elowitz and Stanislas Leibler. A synthetic oscillatory network of tran-
scriptional regulators. Nature, 403(6767):335–338, 2000.

[FFT19] D. Fridovich-Keil, J. F. Fisac, and C. J. Tomlin. Safely probabilistically complete
real-time planning and exploration in unknown environments. In 2019 International
Conference on Robotics and Automation (ICRA), pages 7470–7476, May 2019. View
online.

[Fia78] Anthony V Fiacco. Nonlinear programming sensitivity analysis results using strong
second order assumptions. Technical report, George Washington University, 1978.
View online.

[FK99] Robert J Full and Daniel E Koditschek. Templates and anchors: neuromechani-
cal hypotheses of legged locomotion on land. Journal of experimental biology,
202(23):3325–3332, 1999.

[Fol13] Gerald B Folland. Real analysis: modern techniques and their applications. John
Wiley & Sons, 2013.

[Gar85] Jürgen Garloff. Convergent bounds for the range of multivariate polynomials. In
International Symposium on Interval Mathematics, pages 37–56. Springer, 1985.

[Gar93] Jürgen Garloff. The bernstein algorithm. Interval computations, 2(6):154–168, 1993.

[Gav19] Andrea Gavana. Global optimization benchmarks and ampgo, 2019. View online.

[GG15] Brent Griffin and Jessy Grizzle. Walking gait optimization for accommodation of
unknown terrain height variations. In American Control Conference (ACC), 2015,
pages 4810–4817. IEEE, 2015.

[GH12] Jesse A Grimes and Jonathan W Hurst. The design of atrias 1.0 a unique monopod,
hopping robot. In Adaptive Mobile Robotics, pages 548–554. World Scientific, 2012.

[GHD+19] Yukai Gong, Ross Hartley, Xingye Da, Ayonga Hereid, Omar Harib, Jiunn-Kai
Huang, and Jessy Grizzle. Feedback control of a cassie bipedal robot: Walking,
standing, and riding a segway. In 2019 American Control Conference (ACC), pages
4559–4566. IEEE, 2019.

[Gur03] Leonid Gurvits. Classical deterministic complexity of edmonds’ problem and quan-
tum entanglement. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 10–19. ACM, 2003.

156

https://www.youtube.com/watch?v=_sBBaNYex3E
https://www.youtube.com/watch?v=_sBBaNYex3E
https://ieeexplore.ieee.org/abstract/document/8793905
https://ieeexplore.ieee.org/abstract/document/8793905
https://apps.dtic.mil/dtic/tr/fulltext/u2/a058633.pdf
http://infinity77.net/global_optimization/index.html

[HA17] Ayonga Hereid and Aaron D Ames. Frost: Fast robot optimization and simulation
toolkit. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 719–726. IEEE, 2017.

[Hal09] Jack K Hale. Ordinary differential equations. Courier Corporation, 2009.

[Ham18] Tareq Hamadneh. Bounding Polynomials and Rational Functions in the Tensorial
and Simplicial Bernstein Forms. PhD thesis, University of Konstanz, 2018. View
online.

[HCH+17] Sylvia L Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F Fisac, and Claire J
Tomlin. Fastrack: a modular framework for fast and guaranteed safe motion plan-
ning. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages
1517–1522. IEEE, 2017.

[HCHA16] Ayonga Hereid, Eric A Cousineau, Christian M Hubicki, and Aaron D Ames. 3d
dynamic walking with underactuated humanoid robots: A direct collocation frame-
work for optimizing hybrid zero dynamics. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, pages 1447–1454. IEEE, 2016.

[HFKG06] Philip Holmes, Robert J Full, Dan Koditschek, and John Guckenheimer. The dy-
namics of legged locomotion: Models, analyses, and challenges. Siam Review,
48(2):207–304, 2006.

[HK13] Didier Henrion and Milan Korda. Convex computation of the region of attraction of
polynomial control systems. IEEE Transactions on Automatic Control, 59(2):297–
312, 2013.

[HK14] Didier Henrion and Milan Korda. Convex computation of the region of attraction of
polynomial control systems. IEEE Transactions on Automatic Control, 59(2):297–
312, 2014.

[HKZ+20] Patrick Holmes, Shreyas Kousik, Bohao Zhang, Daphna Raz, Corina Barbalata,
Matthew Johnson-Roberson, and Ram Vasudevan. Reachable sets for safe, real-time
manipulator trajectory design. arXiv preprint arXiv:2002.01591, 2020.

[HLS08] Didier Henrion, Jean B Lasserre, and Carlo Savorgnan. Nonlinear optimal control
synthesis via occupation measures. In 2008 47th IEEE Conference on Decision and
Control, pages 4749–4754. IEEE, 2008.

[HLZ10] Simai He, Zhening Li, and Shuzhong Zhang. Approximation algorithms for homoge-
neous polynomial optimization with quadratic constraints. Mathematical Program-
ming, 125(2):353–383, 2010.

[HSCN07] AC Van Der Heijden, AFA Serrarens, MK Camlibel, and Henk Nijmeijer. Hy-
brid optimal control of dry clutch engagement. International Journal of Control,
80(11):1717–1728, 2007.

157

https://kops.uni-konstanz.de/handle/123456789/41052
https://kops.uni-konstanz.de/handle/123456789/41052

[HW03] Eldon Hansen and G William Walster. Global optimization using interval analysis:
revised and expanded, volume 264. CRC Press, 2003.

[HXA15] S. C. Hsu, X. Xu, and A. D. Ames. Control barrier function based quadratic programs
with application to bipedal robotic walking. In 2015 American Control Conference
(ACC), pages 4542–4548, July 2015.

[KF11] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894, 2011.
View online.

[KGNSZ19] Xiaolong Kuang, Bissan Ghaddar, Joe Naoum-Sawaya, and Luis F Zuluaga. Alter-
native sdp and socp approximations for polynomial optimization. EURO Journal on
Computational Optimization, 7(2):153–175, 2019.

[KHJ16] Milan Korda, Didier Henrion, and Colin N Jones. Controller design and value func-
tion approximation for nonlinear dynamical systems. Automatica, 67:54–66, 2016.

[KHV19] Shreyas Kousik, Patrick Holmes, and Ramanarayan Vasudevan. Safe, aggres-
sive quadrotor flight via reachability-based trajectory design. arXiv preprint
arXiv:1904.05728, 2019.

[KP14] Reza Kamyar and Matthew Peet. Polynomial optimization with applications
to stability analysis and control-alternatives to sum of squares. arXiv preprint
arXiv:1408.5119, 2014.

[KPT16] Twan Koolen, Michael Posa, and Russ Tedrake. Balance control using center of mass
height variation: limitations imposed by unilateral contact. In Humanoid Robots
(Humanoids), 2016 IEEE-RAS 16th International Conference on, pages 8–15. IEEE,
2016.

[Kuo07] Arthur D Kuo. Choosing your steps carefully. IEEE Robotics & Automation Maga-
zine, 14(2):18–29, 2007.

[Kuw07] Yoshiaki Kuwata. Trajectory Planning for Unmanned Vehicles using Robust Reced-
ing Horizon Control. PhD thesis, Massachusetts Institute of Technology, 02 2007.
View online.

[KVB+18] Shreyas Kousik, Sean Vaskov, Fan Bu, Matthew Johnson-Roberson, and Ram Va-
sudevan. Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots. arXiv preprint arXiv:1809.06746, 2018.

[KVJRV17] Shreyas Kousik, Sean Vaskov, Matthew Johnson-Roberson, and Ram Vasudevan.
Safe trajectory synthesis for autonomous driving in unforeseen environments. In
ASME 2017 Dynamic Systems and Control Conference, pages V001T44A005–
V001T44A005. American Society of Mechanical Engineers, 2017.

[Las01] Jean B Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on optimization, 11(3):796–817, 2001.

158

https://journals.sagepub.com/doi/abs/10.1177/0278364911406761
https://dspace.mit.edu/handle/1721.1/38643

[Las09] Jean Bernard Lasserre. Moments, positive polynomials and their applications, vol-
ume 1. World Scientific, 2009.

[LHPT08] Jean B Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat. Nonlin-
ear optimal control via occupation measures and lmi-relaxations. SIAM journal on
control and optimization, 47(4):1643–1666, 2008.

[LNQY09] Chen Ling, Jiawang Nie, Liqun Qi, and Yinyu Ye. Biquadratic optimization over unit
spheres and semidefinite programming relaxations. SIAM Journal on Optimization,
20(3):1286–1310, 2009.

[LST12] John Lygeros, Shankar Sastry, and Claire Tomlin. Hybrid systems: Foundations, ad-
vanced topics and applications. under copyright to be published by Springer Verlag,
2012.

[LTY17] Jean B Lasserre, Kim-Chuan Toh, and Shouguang Yang. A bounded degree sos hier-
archy for polynomial optimization. EURO Journal on Computational Optimization,
5(1-2):87–117, 2017.

[LZ10] Zhi-Quan Luo and Shuzhong Zhang. A semidefinite relaxation scheme for multi-
variate quartic polynomial optimization with quadratic constraints. SIAM Journal on
Optimization, 20(4):1716–1736, 2010.

[LZG+19] Jinsun Liu, Pengcheng Zhao, Zhenyu Gan, Matthew Johnson-Roberson, and Ram
Vasudevan. Leveraging the template and anchor framework for safe, online robotic
gait design. arXiv preprint arXiv:1909.11125, 2019.

[LZG+20] Jinsun Liu, Pengcheng Zhao, Zhenyu Gan, Matthew Johnson-Roberson, and Ram
Vasudevan. Leveraging the template and anchor framework for safe, online robotic
gait design. In 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020.

[Man07] Stefania Maniglia. Probabilistic representation and uniqueness results for measure-
valued solutions of transport equations. Journal de mathématiques pures et ap-
pliquées, 87(6):601–626, 2007.

[Mat19] Matlab optimization toolbox, 2019. The MathWorks, Natick, MA, USA. View on-
line.

[MLD03] Boris Mariere, Zhi-Quan Luo, and Timothy N Davidson. Blind constant modu-
lus equalization via convex optimization. IEEE Transactions on Signal Processing,
51(3):805–818, 2003.

[MLEV19] Joshua G Mangelson, Jinsun Liu, Ryan M Eustice, and Ram Vasudevan. Guaran-
teed globally optimal planar pose graph and landmark SLAM via sparse-bounded
sums-of-squares programming. In 2019 International Conference on Robotics and
Automation (ICRA), pages 9306–9312. IEEE, 2019.

159

https://www.mathworks.com/help/optim/ug/fmincon.html
https://www.mathworks.com/help/optim/ug/fmincon.html
https://ieeexplore.ieee.org/abstract/document/8794454
https://ieeexplore.ieee.org/abstract/document/8794454
https://ieeexplore.ieee.org/abstract/document/8794454

[MLV17] Shankar Mohan, Jinsun Liu, and Ram Vasudevan. Synthesizing the optimal
luenberger-type observer for nonlinear systems. In 2017 IEEE 56th Annual Con-
ference on Decision and Control (CDC), pages 3658–3663. IEEE, 2017.

[MMTG92] Stefano Malan, Mario Milanese, Michele Taragna, and Jürgen Garloff. B/sup 3/algo-
rithm for robust performances analysis in presence of mixed parametric and dynamic
perturbations. In [1992] Proceedings of the 31st IEEE Conference on Decision and
Control, pages 128–133. IEEE, 1992.

[Moo66] Ramon E Moore. Interval analysis, volume 4. Prentice-Hall Englewood Cliffs, 1966.

[MR93] Kenneth R. Muske and James B. Rawlings. Model predictive control with linear
models. AIChE Journal, 39(2):262–287, 1993. View online.

[MT17a] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback
motion planning. The International Journal of Robotics Research, 36(8):947–982,
2017.

[MT17b] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback
motion planning. The International Journal of Robotics Research, 36(8):947–982,
2017. View online.

[MVP16] Mohamad Shafiee Motahar, Sushant Veer, and Ioannis Poulakakis. Composing limit
cycles for motion planning of 3d bipedal walkers. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 6368–6374. IEEE, 2016.

[MVTT14] Anirudha Majumdar, Ram Vasudevan, Mark M Tobenkin, and Russ Tedrake. Con-
vex optimization of nonlinear feedback controllers via occupation measures. The
International Journal of Robotics Research, page 0278364914528059, 2014.

[NA07] Paluri SV Nataraj and M Arounassalame. A new subdivision algorithm for the bern-
stein polynomial approach to global optimization. International journal of automa-
tion and computing, 4(4):342–352, 2007.

[NA11] Paluri SV Nataraj and M Arounassalame. Constrained global optimization of multi-
variate polynomials using bernstein branch and prune algorithm. Journal of global
optimization, 49(2):185–212, 2011.

[NHG+16] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath. 3d dynamic
walking on stepping stones with control barrier functions. In 2016 IEEE 55th Con-
ference on Decision and Control (CDC), pages 827–834, Dec 2016.

[Nie13] Jiawang Nie. An exact jacobian sdp relaxation for polynomial optimization. Mathe-
matical Programming, 137(1-2):225–255, 2013.

[NS15] Quan Nguyen and Koushil Sreenath. Optimal robust control for bipedal robots
through control lyapunov function based quadratic programs. In Robotics: Science
and Systems, 2015.

160

https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690390208
https://journals.sagepub.com/doi/full/10.1177/0278364917712421

[NS16] Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for en-
forcing high relative-degree safety-critical constraints. In American Control Confer-
ence (ACC), 2016, pages 322–328. IEEE, 2016.

[NW06] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry meth-
ods in robustness and optimization. PhD thesis, California Institute of Technology,
2000.

[PB17] Andrew M Pace and Samuel A Burden. Piecewise-differentiable trajectory outcomes
in mechanical systems subject to unilateral constraints. In Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control, pages 243–
252. ACM, 2017.

[PC17] Ali Pakniyat and Peter E Caines. On the relation between the minimum principle and
dynamic programming for classical and hybrid control systems. IEEE Transactions
on Automatic Control, 62(9):4347–4362, 2017.

[PCT14] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory op-
timization of rigid bodies through contact. The International Journal of Robotics
Research, 33(1):69–81, 2014.

[PJ04] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using bar-
rier certificates. In International Workshop on Hybrid Systems: Computation and
Control, pages 477–492. Springer, 2004.

[PKK09] Mihail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field Robotics, 26(3):308–
333, 2009. View online.

[PKT17] Michael Posa, Twan Koolen, and Russ Tedrake. Balancing and step recovery cap-
turability via sums-of-squares optimization. In 2017 Robotics: Science and Systems
Conference, 2017.

[PLSB11] Benjamin Passenberg, Marion Leibold, Olaf Stursberg, and Martin Buss. The min-
imum principle for time-varying hybrid systems with state switching and jumps. In
Decision and Control and European Control Conference (CDC-ECC), 2011 50th
IEEE Conference on, pages 6723–6729. IEEE, 2011.

[PR14] Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadrature col-
location methods and sparse nonlinear programming. ACM Transactions on Mathe-
matical Software (TOMS), 41(1):1, 2014.

[PY19] Dávid Papp and Sercan Yildiz. Sum-of-squares optimization without semidefinite
programming. SIAM Journal on Optimization, 29(1):822–851, 2019.

161

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20285

[QT03] Liqun Qi and Kok Lay Teo. Multivariate polynomial minimization and its application
in signal processing. Journal of Global Optimization, 26(4):419–433, 2003.

[QWY04] Liqun Qi, Zhong Wan, and Yu-Fei Yang. Global minimization of normal quartic
polynomials based on global descent directions. SIAM Journal on Optimization,
15(1):275–302, 2004.

[RC95] Dietmar Ratz and Tibor Csendes. On the selection of subdivision directions in inter-
val branch-and-bound methods for global optimization. Journal of Global Optimiza-
tion, 7(2):183–207, 1995.

[RCBL19] David M Rosen, Luca Carlone, Afonso S Bandeira, and John J Leonard. SE-Sync:
A certifiably correct algorithm for synchronization over the special Euclidean group.
The International Journal of Robotics Research, 38(2-3):95–125, 2019.

[Rob18] Agility Robotics. Cassie kinematic model. https://github.com/
agilityrobotics/agility-cassie-doc/wiki/Kinematic-Model,
2018.

[Rob19a] Agility Robotics. Agility robotics. http://www.agilityrobotics.com/,
2019.

[Rob19b] Agility Robotics. Cassie: Dynamic planning on stairs. https://www.youtube.
com/watch?v=qV-92Bq96Co, 2019.

[SA90] Hanif D Sherali and Warren P Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems. SIAM
Journal on Discrete Mathematics, 3(3):411–430, 1990.

[SAGVR17] Nils Smit-Anseeuw, Rodney Gleason, Ram Vasudevan, and C David Remy. The
energetic benefit of robotic gait selection: A case study on the robot ramone. IEEE
Robotics and Automation Letters, 2017.

[SARV19] Nils Smit-Anseeuw, C David Remy, and Ram Vasudevan. Walking with confidence:
Safety regulation for full order biped models. arXiv preprint arXiv:1903.08327,
2019.

[SC07] M Shahid Shaikh and Peter E Caines. On the hybrid optimal control problem: theory
and algorithms. IEEE Transactions on Automatic Control, 52(9):1587–1603, 2007.

[SCEM07] Angela Schollig, Peter E Caines, Magnus Egerstedt, and Roland Malhamé. A hybrid
bellman equation for systems with regional dynamics. In Decision and Control, 2007
46th IEEE Conference on, pages 3393–3398. IEEE, 2007.

[So11] Anthony Man-Cho So. Deterministic approximation algorithms for sphere con-
strained homogeneous polynomial optimization problems. Mathematical program-
ming, 129(2):357–382, 2011.

162

https://journals.sagepub.com/doi/full/10.1177/0278364918784361
https://journals.sagepub.com/doi/full/10.1177/0278364918784361
https://github.com/agilityrobotics/agility-cassie-doc/wiki/Kinematic-Model
https://github.com/agilityrobotics/agility-cassie-doc/wiki/Kinematic-Model
http://www.agilityrobotics.com/
https://www.youtube.com/watch?v=qV-92Bq96Co
https://www.youtube.com/watch?v=qV-92Bq96Co

[SOS10] Manuel Soler, Alberto Olivares, and Ernesto Staffetti. Hybrid optimal control ap-
proach to commercial aircraft trajectory planning. Journal of Guidance, Control,
and Dynamics, 33(3):985–991, 2010.

[SS15] Mohamed Amin Ben Sassi and Sriram Sankaranarayanan. Bernstein Polynomial
Relaxations for Polynomial Optimization Problems, 2015.

[Sus99] Héctor J Sussmann. A maximum principle for hybrid optimal control problems. In
Decision and Control, 1999. Proceedings of the 38th IEEE Conference on, volume 1,
pages 425–430. IEEE, 1999.

[SVBT14a] V. Shia, R. Vasudevan, R. Bajcsy, and R. Tedrake. Convex computation of the reach-
able set for controlled polynomial hybrid systems. In 53rd IEEE Conference on
Decision and Control, pages 1499–1506, Dec 2014.

[SVBT14b] Victor Shia, Ram Vasudevan, Ruzena Bajcsy, and Russ Tedrake. Convex computa-
tion of the reachable set for controlled polynomial hybrid systems. In Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on, pages 1499–1506. IEEE,
2014.

[SYA19] S.W. Smith, H. Yin, and M. Arcak. Continuous abstraction of nonlinear systems
using sum-of-squares programming. In 58th Conference on Decision and Control,
2019.

[TBM17] J. Z. Tang, A. M. Boudali, and I. R. Manchester. Invariant funnels for underactuated
dynamic walking robots: New phase variable and experimental validation. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 3497–
3504, May 2017.

[TCHL19] Matteo Tacchi, Carmen Cardozo, Didier Henrion, and Jean Lasserre. Approximat-
ing regions of attraction of a sparse polynomial differential system. arXiv preprint
arXiv:1911.09500, 2019.

[TCL93] I Thng, Antonio Cantoni, and Yee Hong Leung. Derivative constrained optimum
broad-band antenna arrays. IEEE Transactions on Signal Processing, 41(7):2376–
2388, 1993.

[TG17] Jihad Titi and Jürgen Garloff. Fast determination of the tensorial and simplicial
bernstein forms of multivariate polynomials and rational functions. 2017. View
online.

[VEH94] R Vaidyanathan and M El-Halwagi. Global optimization of nonconvex nonlinear
programs via interval analysis. Computers & Chemical Engineering, 18(10):889–
897, 1994.

[Vin93] Richard Vinter. Convex duality and nonlinear optimal control. SIAM journal on
control and optimization, 31(2):518–538, 1993.

163

https://arxiv.org/abs/1509.01156
https://arxiv.org/abs/1509.01156
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-410198
http://nbn-resolving.de/urn:nbn:de:bsz:352-0-410198

[VKL+19] Sean Vaskov, Shreyas Kousik, Hannah Larson, Fan Bu, James Ward, Stewart Worrall,
Matthew Johnson-Roberson, and Ram Vasudevan. Towards provably not-at-fault
control of autonomous robots in arbitrary dynamic environments. arXiv preprint
arXiv:1902.02851, 2019.

[VP18] Sushant Veer and Ioannis Poulakakis. Safe adaptive switching among dynami-
cal movement primitives: Application to 3d limit-cycle walkers. arXiv preprint
arXiv:1810.00527, 2018.

[VS72] Miomir Vukobratović and J Stepanenko. On the stability of anthropomorphic sys-
tems. Mathematical biosciences, 15(1-2):1–37, 1972.

[WCC+07] Eric R Westervelt, Christine Chevallereau, Jun Ho Choi, Benjamin Morris, and
Jessy W Grizzle. Feedback control of dynamic bipedal robot locomotion. CRC
press, 2007.

[WG15] Tyler Westenbroek and Humberto Gonzalez. Optimal control of hybrid systems using
a feedback relaxed control formulation. arXiv preprint arXiv:1510.09127, 2015.

[WGC+07] Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi, and Ben-
jamin Morris. Feedback control of dynamic bipedal robot locomotion, volume 28.
CRC press, 2007.

[WGC+18] Eric R Westervelt, Jessy W Grizzle, Christine Chevallereau, Jun Ho Choi, and Ben-
jamin Morris. Feedback control of dynamic bipedal robot locomotion. CRC press,
2018.

[WGK03] Eric R Westervelt, Jessy W Grizzle, and Daniel E Koditschek. Hybrid zero dynamics
of planar biped walkers. IEEE transactions on automatic control, 48(1):42–56, 2003.

[Wie02] Pierre-Brice Wieber. On the stability of walking systems. In Proceedings of the
international workshop on humanoid and human friendly robotics, 2002.

[WKW08] Derek L Wight, Eric G Kubica, and David W Wang. Introduction of the foot place-
ment estimator: A dynamic measure of balance for bipedal robotics. Journal of
computational and nonlinear dynamics, 3(1):011009, 2008.

[WO13] Patrick M Wensing and David E Orin. High-speed humanoid running through control
with a 3d-slip model. In 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5134–5140. IEEE, 2013.

[YG05] Kerim Yunt and Christoph Glocker. Trajectory optimization of mechanical hybrid
systems using sumt. In Advanced Motion Control, 2006. 9th IEEE International
Workshop on, pages 665–671. IEEE, 2005.

[YGF+16] B. Yi, S. Gottschling, J. Ferdinand, N. Simm, F. Bonarens, and C. Stiller. Real time
integrated vehicle dynamics control and trajectory planning with mpc for critical
maneuvers. In 2016 IEEE Intelligent Vehicles Symposium (IV), pages 584–589, June
2016. View online.

164

https://ieeexplore.ieee.org/abstract/document/7535446

[ZG98] Michael Zettler and Jürgen Garloff. Robustness analysis of polynomials with poly-
nomial parameter dependency using bernstein expansion. IEEE Transactions on Au-
tomatic Control, 43(3):425–431, 1998. View online.

[ZMV16] Pengcheng Zhao, Shankar Mohan, and Ram Vasudevan. Control synthesis for non-
linear optimal control via convex relaxations. arXiv preprint arXiv:1610.00394,
2016.

[ZMV17a] Pengcheng Zhao, Shankar Mohan, and Ram Vasudevan. Control synthesis for non-
linear optimal control via convex relaxations. In 2017 American Control Conference
(ACC), pages 2654–2661. IEEE, 2017.

[ZMV17b] Pengcheng Zhao, Shankar Mohan, and Ram Vasudevan. Optimal control for nonlin-
ear hybrid systems via convex relaxations. arXiv preprint arXiv:1702.04310, 2017.

[ZMV19] Pengcheng Zhao, Shankar Mohan, and Ramanarayan Vasudevan. Optimal control of
polynomial hybrid systems via convex relaxations. IEEE Transactions on Automatic
Control, 2019.

[ZV19] Pengcheng Zhao and Ram Vasudevan. Nonlinear hybrid optimal control with switch-
ing costs via occupation measures and lmi-relaxations. In 2019 American Control
Conference (ACC), pages 4293–4300. IEEE, 2019.

165

https://ieeexplore.ieee.org/document/661615

	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	Abstract
	Introduction
	Motivation
	State of the Art
	Contributions and Thesis Outline

	Solving Optimal Control Problems with Guaranteed Performance
	Introduction
	Problem Formulation
	The Hybrid Liouville Equation
	Infinite Dimensional Linear Program
	Numerical Implementation
	Results
	Conclusion

	Real-Time Safe Control for A Planar Bipedal Robot Model
	Introduction
	Preliminaries
	Outputs to Describe Successful Walking
	Enforcing N-Step Safe Walking
	Results
	Conclusion

	Efficiently Solving Polynomial Optimization Problems
	Introduction
	Preliminaries
	Parallel Constrained Bernstein Algorithm
	Complexity Analysis
	PCBA Evaluation
	Hardware Demonstrations
	Conclusion

	Fast, Safe Control Synthesis for a 3D Bipedal Robot
	Introduction
	Dynamic Models and Environments
	Error Bound for Hybrid System Simulations
	Representing Safety for Online Optimization
	Online Trajectory Optimization
	Implementation
	Results

	General Conclusions and Future Directions
	Future Work

	Appendices
	Connecting Occupation Measure With Flow Map of Smooth Vector Field
	placeholder
	Proof of Theorem 12
	Proofs of Theorems 44, 45, and 46
	Proof of Theorem 43 (Unconstrained Rate of Convergence)
	Proof of Theorem 44 (Unconstrained Memory Usage)
	Proof of Theorem 45 (Constrained Rate of Convergence)
	Proof of Theorem 46 (Constrained Memory Usage)

	A List of Polynomial Optimization Problems
	Benchmark Problems
	Increasing Constraints Problems

	Proof of Theorem 49
	Derivation of a Balancing Controller u0 for Cassie
	Bibliography

