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ABSTRACT 

 

In recent years, rapid urbanization has imposed greater load demands on physical 

infrastructure while placing stressors (e.g., pollution, congestion, social inequity) on social 

systems.  Despite these challenges, opportunities are emerging from the unprecedented 

proliferation of information technologies enabling ubiquitous sensing, cloud computing, 

and full-scale automation.  Together, these advancements enable “intelligent” systems that 

promise to enhance the operation of the built environment.  Even with these advancements, 

the ability of professionals to “sense for decisions” —data-driven decision processes based 

on sensed data that have quantifiable returns on investment—remains unrealized for an 

entire class of problems.  In response, this dissertation builds a rigorous foundation 

enabling stakeholders to use sensor data to inform decisions in two applications: 

infrastructure asset management and community-engaged decision making. 

 This dissertation aligns sensing strategies with decisions governing infrastructure 

management by extending the role of reliability methods to quantify system performance.  

First, the reliability index is used as a scalar measure of the safety (i.e., failure probability) 

that is extracted from monitoring data to assess structural condition relative to a failure 

limit state.  As an example, long-term data collected from a wireless sensing network 

(WSN) installed on the Harahan Bridge (Memphis, TN) is used in a reliability framework 

to track the fatigue life of critical eyebar assemblies.  The proposed reliability-based SHM 

framework is then generalized to formally and more broadly link SHM data with condition 
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ratings (CRs) because inspector-assigned CRs remain the primary starting point for asset 

management decisions made in practice today.  While reliability methods historically 

quantify safety with respect to a single failure limit state, this work demonstrates that there 

exist measurable reliability index values associated with “lower” limit states below failure 

that more richly characterize structural performance and rationally map to CR scales.  

Consequently, monitoring data can be used to assign CRs based on quantitative information 

encompassing the measurable damage domain, as opposed to relying on visual inspection.  

This work reflects the first-ever SHM framework to explicitly map monitoring data to 

actionable decisions and is validated using a WSN on the Telegraph Road Bridge (TRB) 

(Monroe, MI). 

 A primary challenge faced by solar-powered WSNs is their stringent energy 

constraints.  For decision-making processes relying on statistical estimation of 

performance, the utility of data should be considered to optimize the data collection process 

given these constraints.  This dissertation proposes a novel stochastic data collection and 

transmission policy for WSNs that minimizes the variance of a measured process’ 

estimated parameters subject to constraints imposed by energy and data buffer sizes, 

stochastic models of energy and event arrivals, the value of measured data, and temporal 

death.  Numerical results based on one-year of data collected from the TRB illustrate the 

gains achieved by implementing the optimal policy to obtain response data used to estimate 

the reliability index. 

 Finally, this dissertation extends the work performed in WSN and sense-for-

decision frameworks by exploring their role in community-based decision making.  This 

work poses societal engagement as a necessary entry point to urban sensing efforts because 
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members of under-resourced communities are vulnerable to lack of access to data and 

information.  A novel, low-power WSN architecture is presented that functions as a user-

friendly sensing solution that communities can rapidly deploy.  Applying this platform, 

transformative work to “democratize” data is proposed in which members of vulnerable 

communities collect data and generate insights that inform their decision-making 

strategies. 
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CHAPTER 1 

Introduction 

 

1.1  The Emerging Physical-Economic-Social System Nexus 

Since the beginning of the profession, civil and environmental engineering professionals 

have served as stewards of the built environment.  Although ensuring the common good of 

society remains at the heart of the field’s mission, the challenges faced by the profession 

have changed rapidly in recent years.  Civil and environmental engineers designed, built, 

and maintained the foundations for modern society from the ground up.  Now, 

unprecedented grand challenges—urbanization, aging infrastructure, and climate change—

threaten the integrity of the built environment.  In response to these challenges, civil and 

environmental engineers are being asked to expand the life of aging infrastructure, unlock 

capacity in infrastructure systems to accommodate population growth, and be adaptive in 

the face of climate change.  These grand challenges, as well as the grand opportunities born 

out of the proliferation of low-cost sensing technologies, increases in computational 

capabilities, digitalization, and the development of automation tools, are radically changing 

the engineering landscape and require civil and environmental engineers to draw upon tools 

and technologies from across disciplines to devise forward-looking and scalable solutions. 

At the forefront of these solutions is a need to design and manage infrastructure to 

be resilient in the face of these grand challenges.  In addition to protecting public safety, 
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infrastructure is a necessary input to every social and economic output (ASCE 2016).  

Well-managed infrastructure protects populations against natural and man-made hazards 

that increasingly threaten urban centers, enables the mobility of populations and the 

transport of goods, water, and energy resources through air, road, rail, and maritime 

transport systems, and facilitates critical evacuation and external relief support before and 

after disasters (UNU 2016).  However, the neglect of aging infrastructure in the United 

States—ranging from dams, to wastewater treatment facilities and sewers, to bridges—

leaves societies vulnerable as they become increasingly dependent on the transport of vital 

resources.  The rehabilitation of aging dams, wastewater infrastructure, and bridges alone 

requires an investment of $439 billion (ASCE 2017).  As climate change increases the 

frequency and intensity of natural hazards that threaten aging infrastructure, maintenance, 

rehabilitation, and replacement may not be enough.  For example, as sea levels rise and 

storms intensify along the nation’s coastal regions, civil and environmental engineers need 

to not only design and maintain more robust infrastructure, but also offer solutions that 

enable communities to adapt to these changes.  While the built environment has historically 

been the focal point of civil and environmental engineering efforts, the economy, culture, 

security, and quality of life of populations are becoming increasingly dependent on the 

performance of civil and environmental infrastructure systems (Jacobs 1961).  The 

aforementioned grand challenges will not only accentuate complex physical problems 

within the built environment, but also impose stressors on social and economic systems 

that force society to change the ways it designs, manages, values, and uses infrastructure. 

 In addition to monitoring and controlling traditional physical assets, rigorous 

methods to solve and adapt to these grand challenges will require a new quantitative 
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understanding of the relationship between social systems and the built and natural 

environments, as well as the economic implications of this relationship.  The convergence 

of physical, economic, and social systems is increasingly evident across the domain of civil 

and environmental engineering.  For example, societal resilience requires an understanding 

of the interaction between infrastructure changes and community response when stressors 

impact one—or both—of these systems (Guidotti 2019).  Additionally, technological 

advancements introduce new components of social interaction when services are embedded 

within infrastructure systems.  For instance, the sharing economy (e.g., ridesourcing) takes 

advantage of the connectivity between users, the internet, and mobile apps to enable 

individuals and businesses to monetize mobility services in new ways (USDOT 2017).  

Despite—or perhaps because of—these interdependencies, social systems are not yet well-

defined from a quantitative engineering perspective.  Urban cities are complex systems 

with highly interdependent social, infrastructure (inclusive of physical and natural 

systems), and economic systems; the inability to quantify human behavior within these 

systems inhibits the ability of academics, professionals, and communities to confront and 

mitigate these grand challenges. 

1.1.1  Grand Challenges 

The rapid pace of urbanization poses a global challenge.  In 1950, 30% of the world’s 

population lived in cities.  In contrast, 2010 marked the tipping point in which half of the 

world’s population resided in cities; this number is expected to increase to 68% by 2050 

(UN 2019).  Although today’s urbanization contributes to increased productivity and 

economic growth while facilitating increased system connectivity between economic 

sectors, urbanization comes at a cost.  Indeed, urbanization can lead to negative impacts on 
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public and environmental health (e.g., pollution, fast-spreading disease), congestion, 

climate change, and constrained resource availability.  In addition, as more people flock to 

cities, they place increasing demand on the built environment and its associated 

infrastructure (UN 2019). 

As urbanization trends impose greater load demands on infrastructure, that 

infrastructure only continues to naturally deteriorate with age.  The deterioration of the 

nation’s infrastructure has potentially catastrophic outcomes since the economy, culture, 

security, and quality of life of populations rely heavily on the performance of urban 

infrastructure systems.  Dams serve as integral means of protection to surrounding 

communities as well as a service for the economy.  Yet 17% of dams have high-hazard 

potential—meaning their failure will cause significant economic losses—and require $45 

billion in repairs (ASCE 2017).  Freight railroads operate over 138 thousand rail miles 

across the United States; these railroads are forecasted to see a 40% increase in freight 

shipments by 2040 which exceeds existing capacity (ASCE 2017).  Treatment plants 

process wastewater collected from over 1.3 million miles of public and private sewers that 

are susceptible to overflows, blockages, and structural failure.  Wastewater treatment plants 

are critical to protecting the environment and public health by reducing toxins, and are 

expected to support demand from over 56 million new users (i.e., a 23% increase) by 

2032—this will require a $271 billion investment (ASCE 2017). 

The structural health of bridges is particularly important to the nation’s well-being 

due to the interdependencies between transportation, economic, and social systems.  Age-

induced damage and deterioration acutely affects bridges nationwide. Nearly 10% of the 

nation’s 614 thousand bridges require significant maintenance, rehabilitation, or 
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replacement efforts (ASCE 2017).  According to National Bridge Inventory data, the 

average bridge in the United States is 43-years old, just shy of the average intended design 

life of 50 years (ASCE 2017).  The Federal Highway Administration (FHWA) continues 

to rely on the nationally mandated National Bridge Inspection (NBI) program to manage 

inspection schedules, implement inspection quality control, and establish a common scale 

for asset management decision making (Frangopol 2001).  During regular (e.g., biennial) 

visual inspections, inspectors rate bridge components and assign condition ratings on a 

numeric scale to describe the level of deterioration they observe in a bridge component 

(MDOT 2016).  Asset management decisions about infrastructure upkeep and replacement 

are subsequently made directly from these assigned condition ratings.  The frequency of 

inspections (i.e., months to years, in general) and qualitative nature of assigning discrete 

condition ratings using visual assessment are insufficient and uneconomical.  Based on 

these inspections, the most recent federal estimate puts a price tag of $123 billion on the 

nation’s necessary bridge rehabilitation efforts.  In recent years, annual investments at all 

government levels have ranged from $11.5 billion in 2006 to $18 billion in 2010 (ASCE 

2017).  Increasing financial constraints (AASHTO 2007) coupled with increasing travel 

demands on aging bridge inventories (FHWA 2004) present significant challenges to 

developing and implementing automated and scalable strategies to continuously quantify 

damage in bridges and improve methods of asset management. 

At the same time, naturally occurring hazards continue to threaten infrastructure 

and populations.  Climate change is expected to increase the frequency and intensity of 

extreme weather events, coastal flooding, wildfires, droughts, flooding, and landslides, as 

well as increase air pollution (USGCRP 2017).  The global average annual cost of climate-
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induced disasters (including, storms, droughts, floods, and heat waves) increased from $64 

billion between 1985-1994 to $154 between 2005-2014; natural hazards have a more 

devastating impact with population growth and rapid urbanization.  This cost is expected 

to be much higher once the slow-onset impacts of climate change can be quantified and 

accounted for (UN 2016).  While these hazards have a direct global impact, they 

disproportionately affect under-resourced communities and are likely to decrease 

economic growth, increase food insecurity, have a greater impact on the physical 

environment, reduce the reliability of local water supplies, and cause health problems, 

among others (UN 2016).  Consequently, climate change and inequality are engaged in a 

vicious cycle: climate change exacerbates existing underlying inequalities present in 

society that in turn increase vulnerabilities to natural hazards.  This suggests that societal 

resilience is not just a function of the robustness of the physical environment and the ability 

of a population to return to normal operational levels after a disruptive event.  Resilience 

is also a function of inequality and access (i.e., inequity), employment, education, 

discrimination (both cultural and institutional), and a community’s ability to have a voice 

and representation in governance (UN 2016). 

1.1.2  Grand Opportunities 

Despite these grand challenges, equally grand opportunities are emerging due to the 

unprecedented proliferation of low-cost sensing technologies, computational capabilities, 

and advancements in tools enabling automation and actuation.  The explosion of 

computational power beginning in the mid-1900s revolutionized and expanded the role of 

computation in engineering.  This increase in processing power is best embodied by 

Moore’s Law in which computational speed doubled every 18 months from the 1960s up 
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until the early 2000s (Strawn and Strawn 2015).  This led to the development of low-cost 

and miniaturized, yet high-performing, sensors that enable sensing in the natural and 

physical environments including in transportation systems, health care (e.g., wearable 

devices), and environmental systems, to name a few.  Sensing and computation have also 

been aided by wireless communication that has lowered costs, improved communication 

latency, permitted varying protocols, facilitated sensor fusion between heterogeneous data 

types, and enabled cloud computing.   

Together, these technological trends have led to the emergence of “intelligent” 

systems, which comprise the synergistic combination of sensing, computing, and action 

(e.g., actuation).  Within engineering, intelligent systems are generally synonymous with 

cyber-physical systems (CPS).  In civil engineering specifically, CPS enables professionals 

to drive the performance and resilience of infrastructure and cities.  For example, 

earthquake early warning systems process data collected from distributed strong ground 

motion systems and initiate protocol to shut down and protect critical infrastructure (e.g., 

high-speed trains) in the event of an earthquake (Nakamura and Saita 2007).  “Smart cities” 

are emerging in which cloud computing platforms access enormous amounts of urban data 

from a diverse array of sensor networks and information technology to enhance the 

experiences of citizens and the performance of urban systems (Ismagilova 2019).  Water 

depth sensors are being distributed throughout watersheds and valves are being used as 

actuators to control storm water systems (Wong and Kerkez 2017).  Additionally, sensing 

and control play an increasingly important role in harnessing renewable sources of energy 

(Sil et al. 2017). 
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1.2  Limitations of Existing Intelligent Systems to Sense for Decisions 

Despite the abundance of technological advances that enable sensing efforts and the 

implementation of intelligent systems across the civil and environmental engineering 

domain, the ability to “sense for decisions”—data-driven decision processes based on 

sensed data that have quantifiable returns on investment—remains unrealized for an entire 

class of problems.  These problems lie on a spectrum of wide-ranging complexity from 

effectively managing single-asset infrastructure, to managing governance over data in 

smart cities, to increasing overall objective city-wide societal resilience (it is assumed 

herein that societal resilience includes rigorous consideration of system dependencies). 

Decision-making strategies functioning within the most complex problems on this 

spectrum—that is, objective societal resilience in urban cities—can only be realized once 

scalable technological and analytical strategies are able to quantify the complex 

interdependencies between physical, economic, and social systems.  These complex 

interdependencies cannot be rigorously quantified until the system components are first 

well understood.  Yet, methodologies that truly enable sensing for decisions in many 

critical physical and social systems have yet to be realized even on a component level.  For 

example, infrastructure management lacks universal structural health monitoring (SHM) 

strategies and post-processing algorithms that can quantitatively, continuously, and 

economically inform maintenance, repair, and replacement decision-making strategies 

used in practice today (Cawley 2018).  Despite the proven track record of effective 

decisions being made by condition ratings assigned during visual inspections, proposed 

SHM methodologies continue to operate independent of condition ratings.  At an urban 

system scale, there is a reliance on the government sector (in collaboration with the private 
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sector) to select sensors, deploy sensors, and be the first consumers of urban data (Hancke 

et al. 2013).  As a result, data does not benefit communities equally across smart cities as 

there is limited community-governed decision making before and after deployments.  

Without a community-based cyber-physical-social system (CPSS) architecture to expand 

the scope of governance over data to enable members of under-resourced communities to 

collect data, generate insights, and actuate change on system-wide issues that tie directly 

to their needs, these communities are likely to be left out of these processes.  Already, these 

communities are being left out of the majority of urban sensing efforts (Hancke et al. 2013). 

 Figure 1-1 illustrates the necessary progression that must occur to better enable a 

future of decision making across city-scale urban sensing systems comprised of 

interdependent physical, economic, and social systems.  This progression includes gaining 

a better understanding of sensing for decisions in physical and social systems, CPSS at the 

intersection of physical (CPS) and social systems, as well as overcoming the technological 

and analytical barriers to scaling out.  Section 1.2.1 and Section 1.2.2 provide a deeper 

discussion of the limitations that inhibit sensing for decisions in these foundational 

domains and identify the primary obstacles that must be overcome. 

1.2.1  Decision Making for Infrastructure Asset Management 

For structures like bridges, upkeep decisions are based on federally mandated NBI 

condition ratings assigned during periodic (e.g., biennial) visual inspections.  During visual 

inspections, inspectors rate bridge components and assign condition ratings on a numeric 

scale (e.g., 0 through 9) to describe the level of deterioration they see in the component 

(MDOT 2016).  This qualitative method of inspection fosters reactive decision making in 

which repairs are made based on periodic visual examination of existing damage or 



 

10 

 

deterioration.  In this approach, damage is crudely described by discrete condition states 

assigned by an inspector.  Furthermore, visual inspections may not uncover underlying 

deterioration (Agrawal et al. 2009).  Due to these drawbacks, there is a general consensus 

within the engineering community that asset management decisions could be aided by 

quantitative monitoring data in order to reduce uncertainty in assessing structural condition 

(Frangopol et al. 2001).  Monitoring can also be continuous, allowing asset managers to 

more regularly, if not continuously, track the condition of a structure, especially between 

biannual inspections. 

Consequently, the proverbial “holy grail” of SHM is the quantitative linkage 

between data and decisions to guide continuous and quantitative asset management 

decisions in practice.  SHM entails installing sensors on civil infrastructure to monitor 

structural responses to loadings and infer their health (i.e., detect damage).  SHM of aging 

 

Figure 1-1.  Illustration of the progression from enabling sensing for decisions at the level of 

single-asset infrastructure to the city scale, including primary barriers. 
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infrastructure has shown continued growth in academia as well as in the private sector, and 

monitoring systems have been installed on structures for decades (Seo et al. 2016, Lynch 

et al. 2004, Kim et al. 2007, Kurata et al. 2012, Jang et al. 2010, Feltrin et al. 2010).  Despite 

these efforts, there are very few examples of true SHM systems being used for widespread 

decision making today (Cawley 2018). 

This discontinuity is in part due to the historical SHM paradigm cast as a problem 

of estimating structural state and detecting damage by monitoring changes in structural 

properties such as modal properties.  The fundamental principle of frequency-based 

damage detection methods is that modal parameters are functions of physical properties 

such as mass and stiffness.  Vibration-based data collected from SHM systems have been 

proposed to be used to quantify changes in modal properties associated with damage-

induced changes in mass, or more commonly, stiffness.  For most operational structures, 

long-term damage and deterioration may not necessarily correspond to mass or stiffness 

changes (i.e., structures often operate in their elastic regimes even when deteriorated), 

making many of these physics-based SHM methods ineffective and potentially misleading.  

Because existing SHM methods largely operate independent of condition ratings, the state-

of-the-art (i.e., SHM) and the state-of-practice (i.e., visual inspection) remain two 

independent processes, relying on visual inspection to maintain the nation’s critical 

infrastructure.  Rather than operating as two separate processes, there is a need to develop 

an SHM framework that reconciles the state-of-practice and the state-of-the-art by formally 

linking structural monitoring data with condition ratings; this respects the proven track 

record of effective decisions being made by condition ratings assigned during visual 

inspections. 
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1.2.2  Community-Governed Decision Making 

While the scientific foundation and engineering of CPS has rapidly advanced in recent 

years (NIST 2016), comparatively less research has been devoted to the direct inclusion of 

the human element within the CPS framework.  So termed cyber-physical-social systems 

(CPSS), these expanded CPS  architectures explicitly integrate humans including their 

ability to observe and take action in relation to physical and cyber CPS elements (Wang 

2010).  The advancement of CPSS architectures has been explored in a variety of 

applications including in intelligent transportation systems, building automation systems, 

and health care (Crowley et al. 2013, Zhang et al. 2017).  While CPSS holds tremendous 

promise in connecting urban citizens to their cities, there remain many technical challenges 

including how to integrate human-centric data and human-in-the-loop control solutions 

into CPS frameworks.   

Equally—or perhaps more—important are the large number of social challenges 

that must be surmounted before the implementation of CPSS solutions in urban 

environments.  The proliferation of sensors and the aggregation of urban data has 

disproportionately focused on improving city cores with less attention paid to residential 

areas.  A related issue is that city governments and the private sector are aggregating large 

amounts of data that allow them to be more efficient in governing and conducting business 

within cities.  This inherent asymmetry in control over data has limited community 

engagement in governance over data and decision making both before and after system 

deployments.  One particularly relevant example is nationwide community push-back on 

data-driven policing.  While data-driven (predictive) policing may reduce policing costs, it 

has been questioned as an indirect means of racial profiling (Patel 2015).  Consequently, 
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the data collected in emerging smart city applications is not always benefitting society 

equally and ultimately failing to increase community resilience and facilitate social 

mobility (i.e., enable access) in vulnerable, under-resourced communities. 

A CPSS framework that empowers community representation in governance over 

data (both its collection and use) is necessary to enable decision making in any city, but 

especially in under-resourced communities.  Community-governed decision making 

honors the wealth of knowledge and culture that vulnerable populations bring to the table, 

and empowers citizens to work in a more meaningful partnership with city governments 

leading to more resilient modes of governance.  There are several technological obstacles 

that impede the emergence of a successful general-purpose urban sensing architecture for 

widespread use. These include the development of a sensing platform that supports 

interoperability among diverse arrays of heterogeneous internet of things (IoT) devices, 

preserves privacy and trust among citizens, is user friendly and accessible to even the 

members of society who are least prepared to adapt to new technologies, supports cloud-

based analytics, and supports low-power and low-cost sensing and communication, which 

is particularly difficult to achieve with platforms that require a continuous source of energy 

(Mehmood et al. 2017).  For example, the Array of Things (AoT) deployment in Chicago 

provides environmental and air quality sensors tied to a Linux-based sensing node (AOT 

2015). The high-power demand of the hardware requires access to power sources supplied 

by street furniture (e.g. light poles) which limits its deployment potential in less populated 

areas as well as in residential neighborhoods where power sources are severely limited. In 

addition, Placemeter is a novel camera-based sensing solution designed to track vehicles 

and pedestrians in city spaces (Placemeter 2015). While Placemeter promises to anonymize 
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data by processing video footage using automated data processing tools, many 

communities might be resistant to camera-based monitoring due to infringements on 

privacy and overarching notions of “Big Brother” within the community. 

1.3  Research Goals and Objectives 

In response to the limitations presented in Section 1.2, this dissertation builds a rigorous 

technological, analytical, and methodological background necessary to sense for decisions 

in response to two of the field’s prevailing challenges: infrastructure asset management 

and community-engaged decision making.  An emphasis is placed on addressing the 

foundational components necessary to enable future city-scale urban sensing efforts 

(Figure 1-1); this includes consideration of both CPS (i.e., data-driven decisions in the 

context of physical systems) and CPSS (i.e., data-driven decisions in the context of 

community needs) applications.  The main challenges and goals of the research presented 

herein are developed in detail in Section 1.3.1 through Section 1.3.5. 

Figure 1-2 outlines the primary research objectives of this dissertation and 

illustrates the deliberateness of the path taken.  The first objective of this dissertation is to 

consider the management of single-asset infrastructure and use long-term monitoring data 

to assess structural condition using reliability methods with respect to a single failure limit 

state.  Here, outputs trigger maintenance decisions to improve safety.  In addition to 

developing the methodological framework, this work is implemented on the Harahan 

Bridge using 16 months of long-term response data collected on the bridge using a wireless 

monitoring system.  Second, this framework is generalized to more formally and broadly 

link SHM data with condition ratings, which are the starting point for bridge management 

decision-making processes used across the United States today.  In this work, “lower” limit 
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states are introduced within the reliability framework to characterize structural 

performance and rationally map data to condition rating scales.  This framework is 

 

Figure 1-2.  Primary research objectives. 
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validated using a wireless sensing system installed on the Telegraph Road Bridge (TRB) 

(Monroe, MI).  Third, this dissertation addresses the difficulties associated with scaling out 

wireless sensing networks that are subject to stringent energy constraints.  Specifically, this 

dissertation describes the development of a stochastic policy controlling data collection 

and transmission that optimizes the operation of a sensing node to improve the quality of 

the parameter estimates of a measured process used in decision-making strategies.  Fourth, 

this optimal policy is implemented using one year of data collected from the Telegraph 

Road Bridge (Monroe, MI) to illustrate how it improves the quality of the decision-making 

strategy linking data to condition ratings.  Fifth, in addition to addressing the resource 

constraints that are barriers to scaling out cyber-physical systems, this work addresses user 

constraints and provides an overview of the development of a low-power embedded 

wireless sensing architecture that functions as a user-friendly sensing solution accessible 

to diverse stakeholders.  Last, the developed embedded wireless sensing architecture is 

used to extend the sense-for-decision frameworks developed for cyber-physical systems to 

those of cyber-physical-social systems by engaging social systems as users and actuators.  

Through this work, data is “democratized” and feedback mechanisms are enabled by the 

introduced technology to give citizens full autonomy over sensing and governance over 

data and decision making in their communities.  The following notation is used in Figure 

1-2: physical systems are denoted 𝑃, economic systems are denoted 𝐸, social systems are 

denoted 𝑆, and constraints (either physical, economic, or social) are denoted 𝐶. 

1.3.1  Advancements in SHM Enabling Decision-Driven Monitoring of Physical Assets 

In Chapter 2, this dissertation begins by illustrating how state-of-the-art SHM technologies 

can be used to sense for decisions with respect to a real-world problem that has far-reaching 
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physical, economic, and social implications for the United States.  The 103-year old 

Harahan Bridge (Memphis, TN) is a critical piece of railroad infrastructure linking Union 

Pacific Railroad’s nation-wide operations on the east side of the Mississippi River in 

Tennessee to operations on the west side of the river in Arkansas.  Regular maintenance of 

the bridge is a primary concern for the owner because the Harahan Bridge is a fracture-

critical, long-span railroad bridge exposed to multiple hazards.  Fatigue is a primary 

concern for the bridge owner because railroad bridges have high live load to dead load 

ratios and high stress cycle frequencies. However, existing inspection methods and post-

inspection analyses are unable to accurately consider the full influence of bridge behavior 

on the fatigue life of bridge components. 

This dissertation develops a reliability-based SHM framework that provides 

structural owners with actionable information associated with the safety of their assets 

given the current (potentially deteriorated) condition of their structures.  The purely data-

driven framework proposed relies on long-term monitoring data to offer a quantitative 

assessment of structural safety.  This framework advances on prior work in the integration 

of SHM data and reliability methods by tailoring the SHM sensing strategy to offer 

response data that can reveal the complete behavior of a structural component including 

behavior at the component boundaries.  This minimizes the need to make a priori 

assumptions of ideal component behavior (assuming ideal boundary conditions) that can 

lead to inaccurate reliability analysis results. 

A case study is included to illustrate the proposed probabilistic fatigue assessment 

methodology for monitored railroad bridge components using only continuous, long-term 

response data in a purely data-driven reliability framework that is compatible with existing 
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inspection methods.  As an illustrative example, this work quantifies the safety profile 

(corresponding to fatigue life) of a fracture-critical assembly comprising of six parallel 

eyebars on the Harahan Bridge.  The monitored eyebars are prone to fatigue because 

changes in the boundary conditions can cause some eyebars to carry a greater proportion 

of the total assembly load than assumed during design and analysis; existing manual 

inspection practices aim to maintain an equal loading distribution across the eyebars.  

Consequently, the limit state function derived in this analysis accounts for the coupled 

behavior between fatigue and relative tautness of the parallel eyebars as well as 

dependencies between the carried eyebar loads.  The reliability index values for both the 

element (i.e., individual eyebars) and system (i.e., full eyebar assembly) reliability 

problems are assessed and indicate that, under the conservative assumption that progressive 

failure is brittle, first failure within the parallel eyebar system is generally equivalent to 

system failure.  The proposed method also serves as an intervention strategy that can 

quantify the influence of eyebar realignment maintenance efforts on the future evolution 

of the reliability index. 

1.3.2  General Framework for Decision-Driven Infrastructure Monitoring 

Recall from Section 1.1.1 that for structures like bridges, upkeep decisions are based on 

federally mandated condition ratings assigned during visual inspection.  During regular 

(e.g., biennial) visual inspections, inspectors rate bridge components and assign condition 

ratings on a numeric scale to describe the level of deterioration they observe in a bridge 

component (MDOT 2016).  Asset management decisions about infrastructure upkeep and 

replacement are subsequently made directly from these assigned condition ratings.  The 

frequency of inspections (i.e., months to years, in general) and qualitative nature of 
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assigning discrete condition ratings using visual assessment are insufficient and 

uneconomical.  Consequently, the ultimate goal of SHM is to augment visual inspection 

by explicitly quantifying the linkage between monitoring data and decisions.  Quantitative 

monitoring data reduces uncertainty in assessing structural condition and, when collected 

continuously, allows asset managers to more regularly, if not continuously, track the 

condition of a structure (Frangopol et al. 2001).  

The second objective of this dissertation is to draw on the advancements made—

and lessons learned—in developing the decision-driven monitoring system implemented 

on the Harahan Bridge to develop a more generalized SHM framework to sense for 

decisions across diverse infrastructure assets.  While SHM has shown continued growth 

over the past several decades, there is a persistent chasm between SHM and the ability of 

structure owners to make asset management decisions based on SHM data.  This is in part 

due to the historical SHM paradigm cast as a problem of estimating structural state and 

detecting damage by monitoring changes in structural characteristic properties (namely, 

reduced stiffness).  For most operational structures, deterioration does not necessarily 

correspond to changes in structural properties with structures operating in their elastic 

regimes even when deteriorated.  This is reflected in the United States’ extensive history 

of codified decision-making practices in which actionable decisions on upkeep are made 

entirely in the elastic regime based on condition ratings (MDOT 2016). 

Since condition ratings are widely accepted in practice and actionable decisions are 

made directly from assigned condition ratings, this dissertation proposes that, rather than 

operating as two separate processes, the state-of-practice and SHM be reconciled such that 

structural monitoring data be explicitly linked to condition ratings.  This approach respects 
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that 1) there is a proven track record between effective decisions being made by condition 

ratings assigned by visual inspections, and 2) quantitative monitoring data can reduce 

uncertainty in assessing structural condition.  In order to link these two processes, condition 

ratings serve as lower limit states (i.e. limit states below yielding) with long-term 

monitoring data used to quantify these lower limit states in terms of the reliability index.  

A primary objective of this work is to develop a method to quantify the reliability index 

values corresponding to the lower limit states described by condition ratings.  Once the 

reliability index threshold values are established, the data-driven reliability index of the in-

service asset can be monitored continuously and explicitly mapped to a condition rating at 

any time.  As an illustrative example, the proposed framework for tracking structural 

performance is implemented in full using long-term monitoring data collected on a pin-

and-hanger assembly on the Telegraph Road Bridge (TRB), a highway bridge located in 

Monroe, MI. 

This chapter illustrates the development and successful implementation of the first 

ever SHM framework to explicitly map monitoring data to actionable decisions that are 

made in practice today.  This human-independent, data-driven decision-making strategy 

allows monitoring data to be used to trigger decisions based on quantitative information 

that encompasses the entire measurable domain of damage that may exist in an asset, as 

opposed to those only informed by visual inspection.  A quantitative and continuous 

method of assigning condition ratings based on the probability of failure also facilitates a 

risk-based future of asset management that extends existing decision-making strategies to 

those that are economically informed. 
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1.3.3  Stochastic Data Collection and Transmission Policy for Resource-Constrained 

Sensing Architectures 

Recall from Figure 1-1 that limited access to energy presents a number of technical and 

analytical barriers to scaling out wireless sensing networks (WSNs) to enable city-scale 

urban sensing.  Historically, the government and private sectors have focused on sensing 

in urban centers, which have access to fixed power sources (e.g., light poles, powered street 

furniture, outlets installed by the city).  Outside of city centers, the lack of access to public 

power sources in residential communities severely limits the potential to carry out mobile 

and stationary sensing node deployments.  This lack of connection between citizens and 

smart city initiatives is particularly pronounced in depopulated American cities (e.g., 

Detroit, Flint, St. Louis, Baltimore) where there has been no notable success in using smart 

city technologies to connect populations to their larger communities.  In the pursuit of 

democratizing data within a greater societal resilience framework, there is a need to 

overcome the technical and analytical barriers associated with sensing in energy-

constrained environments.  Such sensing efforts will require that WSNs rely on energy 

harvested from the environment and necessitate consideration of energy as an uncertain 

and limited resource. 

 Since decision-making practices are often reliant on statistical representations of 

measured processes as inputs, the limited availability of energy in WSNs is particularly 

problematic when WSNs are used for remote parameter estimation because only a subset 

of the measured information can be wirelessly transmitted to the estimator for processing.  

This leads to a tradeoff between the quality of the parameter estimates and the energy-

constrained communication.  While much attention has been paid to 1) communication 
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schemes for energy-aware data transmission in WSNs under resource constraints and 2) 

controlled parameter estimation over WSNs separately, there has yet to emerge a stochastic 

data collection and transmission policy that minimizes the variance of estimated 

component parameters of a measured process subject to constraints imposed by a WSN 

node’s energy and data buffer sizes, stochastic models of the incoming energy and event 

arrivals, the value of data, and temporal death.  In order to enable the implementation of 

WSNs in energy-constrained communities and areas, this dissertation presents the 

derivation and implementation of just such an optimal policy.  By controlling data 

collection within a transmission subsystem to optimize an objective governed by remote 

parameter estimation, data collection and transmission is automated to facilitate decision 

making.  This work models a replenishable WSN node as a continuous-time Markov chain 

and derives a single unique threshold value governing an event-based policy that is 

independent of the energy buffer’s state of charge (SoC) and places no restrictions on the 

size of the energy and data buffer sizes.  The derived optimal threshold value produces the 

best possible estimate (i.e., minimum component variance) of the process parameters using 

Maximum Likelihood Estimation (MLE) given the system constraints.  Numerical results 

are presented to reflect the objectives of the theoretical results and to illustrate that the 

proposed framework is robust against uncertainty in estimates of the process’ parameter 

estimates at the outset of the monitoring period.  Implementation of the proposed optimal 

stochastic policy within SHM and urban systems enables decision makers and stakeholders 

to make decisions and take action as frequently and accurately as possible given the system 

constraints. 
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This work differentiates itself from, and improves upon, existing literature in two 

notable ways.  First, the proposed policy accounts for—and places no restrictions on the 

size of—a WSN architecture’s data storage buffer.  Data transmission is often the most 

significant source of energy consumption in a wireless sensing node; accounting for the 

storage of (potentially) large amounts of data in a buffer that are communicated to the 

remote estimator in batch transmissions—as opposed to transmitting each value 

individually immediately upon collection—leads to significant gains in the transmission 

rate.  Consequently, the proposed policy can be used in diverse applications requiring wide-

ranging hardware specifications, from sampling continuous measured processes at high 

rates (>100 Hz) in SHM applications to low-rate environmental applications.  Second, this 

work represents the first effort to derive a stochastic policy that governs data collection and 

transmission with the purpose of explicitly linking optimal remote parameter estimation to 

a rigorous stochastic energy recharging model that accounts for all significant hardware 

constraints. 

1.3.4  Optimal Stochastic Data Collection and Transmission Policy for Self-

Sustaining SHM Systems Used for Asset Management 

Data acquisition methods for SHM—such as those presented in Section 1.3.1 and Section 

1.3.2—historically rely on schedule-based or transmit-all data collection strategies.  In the 

context of this dissertation, a deterministic schedule-based policy refers to a WSN 

architecture that transmits all data collected periodically on a pre-defined and regular 

schedule with fixed monitoring periods and fixed periods between monitoring.  A transmit-

all policy refers to the attempted transmission of all measurements.  For sensing systems 

that are self-sustaining (e.g. those relying on harvested energy as described in Section 
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1.3.3), these data collection methods are unable to explicitly account for the availability of 

energy and the value of data.  As a result, sensing systems often fail to capture and transmit 

key data to end users and require an excessive amount of time to characterize statistical 

parameters describing response data.  As structural monitoring data is being increasingly 

incorporated into decision-making processes for asset management using reliability 

methods, there is a need for an automated data collection and transmission strategy that 

facilitates the characterization of the statistical parameters of structural response data with 

minimum variance so that bridge owners can frequently and accurately track structural 

condition.  This work revisits the stochastic data collection and transmission policy 

introduced in Section 1.3.3 and extends the optimal data collection and transmission policy 

to an SHM application on the Telegraph Road Bridge, which is the standard pin-and-hanger 

steel girder highway bridge located in Monroe, MI that is considered in Section 1.3.2.  The 

TRB’s monitoring system utilizes sensing nodes that operate using harvested solar energy 

and are subject to stringent energy constraints due to the size of the solar panels and 

availability of incoming energy, geographic location, and battery size.  This work advances 

the general framework for decision-driven infrastructure monitoring described in Section 

1.3.2.  Since the optimal data collection and transmission policy minimizes the component 

parameter estimates of a measured process, implementation of the optimal policy on the 

TRB enables monitoring data to be used to assign condition ratings more frequently and 

accurately than the existing SHM system installed on the bridge.  Numerical results based 

on one year of monitoring data are presented and illustrate the gains achieved using the 

optimal policy as compared to the best schedule-based and transmit-all policies.   
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1.3.5  CPSS Architecture for Smart and Connected Communities  

To fully and more broadly reap the promise of smart cities, there is a need to expand the 

use of sensing, especially by the general public, through the development of a more 

democratized approach to urban data collection and post-collection data uses.  This, in part, 

entails engaging urban youth and citizens with their communities by architecturally 

embedding them within a smart city’s urban CPSS.  The third objective of this dissertation 

is to develop a community-governed CPSS framework (Figure 1-3) that expands a CPS 

architecture to directly integrate human action by taking into account a citizen’s ability to 

observe and take action in response to CPS elements (Wang 2010). 

At the core of this framework is an embedded urban sensing architecture developed 

by the author.  This platform, termed Urbano1, was designed to overcome the technological 

 
1 Urbano: From the Latin urbanus (“of or belonging to a city”), derived from urbs (“city”) 

 

Figure 1-3.  CPSS framework for community-governed sensing. 
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challenges that have impeded the emergence of a successful general-purpose urban sensing 

architecture for widespread use; these challenges emerge from the additional constraints 

imposed in under-resourced communities.  This includes the development of a sensing 

platform that supports interoperability among diverse arrays of heterogeneous IoT devices, 

preserves privacy and trust among citizens, supports cloud-based analytics, has a user-

friendly design, and supports low-power and low-cost sensing and communication to free 

nodes from a fixed power source; the latter is especially difficult to achieve with platforms 

that require a continuous source of energy (Mehmood et al. 2017).   

The proposed CPSS framework is implemented at full-scale in Detroit, MI.  While 

most urban cities in the United States have undergone sustained periods of economic 

growth since the 1940s, a small number of cities have seen dramatic drops in population 

and economic activity (Ryan 2012).  For example, Detroit experienced population 

reductions from 1.8 million people in 1950 to less than 700,000 in 2015 (The Detroit News 

2016).  While major revitalization efforts in Detroit’s business core are starting to rapidly 

transform the city, the residential areas and neighborhoods of Detroit remain under-

populated with scarce access to important city services.  Shrinking cities have resulted in 

extreme levels of poverty and inequality that result in stressors that disproportionately 

impact urban youth, who are at risk of losing connectivity to their cities and communities 

(Luthar 1991).  By involving Detroit youth (grades 8-12), the proposed CPSS framework 

aims to encourage young, vulnerable populations to engage with their communities as 

citizen scientists.  Youth engage in problem-based inquiry, devise sensing solutions, and 

interpret collected data drawn from their own urban settings.  By empowering communities 

to collect their own data in their neighborhoods and cities using the Urbano platform, city 
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governments, local organizations and citizens work in a more meaningful partnership with 

each other, leading to more resilient modes of smart city governance.  The program 

described herein includes an assessment of the effectiveness of the CPSS framework in 

engaging citizens in governance over their urban systems. 

1.4  Organization of the Dissertation 

This dissertation is organized as follows: 

• Chapter 2 demonstrates how sensing strategies can be aligned with decisions governing 

infrastructure management by extending the role of reliability methods to quantify 

system performance.  Here, the reliability index is used as a scalar measure of the safety 

(i.e., probability of failure) that is extracted from monitoring data to assess structural 

condition relative to a failure limit state.  As an example, 16 months of long-term data 

collected from an SHM system installed on the Harahan Bridge (Memphis, TN) is used 

in a reliability framework to track the fatigue life of critical eyebar assemblies. 

• In Chapter 3, the proposed reliability-based SHM framework from Chapter 2 is 

generalized to formally and more broadly link SHM data with condition ratings because 

inspector-assigned condition ratings remain the primary starting point for asset 

management decisions made in practice today.  While reliability methods historically 

quantify safety with respect to a single failure limit state, this chapter demonstrates that 

there exist measurable reliability index values associated with “lower” limit states 

below failure that more richly characterize structural performance and rationally map 

to condition rating scales.  Consequently, monitoring data can be used to assign 

condition ratings based on quantitative information encompassing the measurable 
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damage domain, as opposed to relying on visual inspection.  This work reflects the 

first-ever SHM framework to explicitly map monitoring data to actionable decisions 

and is validated using a wireless SHM system installed on pin-and-hanger assemblies 

on the Telegraph Road Bridge (TRB) (Monroe, MI). 

• Chapter 4 addresses one of the foremost challenges faced by solar-powered WSNs: 

stringent resource constraints due to the limited and uncertain availability of energy.  

For decision-making processes relying on statistical estimation of performance, the 

utility of data should be considered to optimize the data collection process given these 

constraints.  This chapter proposes a novel stochastic data collection and transmission 

policy for WSNs that minimizes the variance of a measured process’ estimated 

parameters subject to constraints imposed by energy and data buffer sizes, stochastic 

models of energy and event arrivals, the value of measured data, and temporal death. 

• Chapter 5 draws on the theoretical basis presented in Chapter 4 and extends the optimal 

data collection and transmission policy to an SHM application on the Telegraph Road 

Bridge, which is introduced in Chapter 3.  The monitoring system on the TRB utilizes 

sensing nodes that operate using harvested solar energy and are subject to stringent 

energy constraints due to the size of the solar panels and availability of incoming 

energy, geographic location, and battery size.  Numerical results are presented based 

on one-year of data collected from the TRB and illustrate the gains achieved by 

implementing the optimal policy to obtain response data used to estimate the reliability 

index. 
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• Chapter 6 extends the work performed in wireless sensing and sense-for-decision 

frameworks by exploring their role in community-based decision making.  This chapter 

poses societal engagement as a necessary entry point to urban sensing efforts in smart 

cities.  Members of under-resourced communities are often stakeholders who are the 

challenged with technology and those most vulnerable to lack of access to data and 

information.  This chapter offers a novel, low-power wireless sensing architecture that 

functions as a user-friendly urban sensing solution that communities can rapidly deploy 

to understand urban processes that are critical to informing their views and guides their 

decision making.  Applying this platform, this chapter presents transformative work to 

“democratize” data by enabling members of vulnerable communities to easily use these 

generic urban sensors that can collect data and generate insights on issues that tie 

directly to their needs and the diverse ways in which they use their cities.  

• Chapter 7, the final chapter, presents a dissertation summary, overview of key 

intellectual contributions achieved, and a discussion focused on future extensions of 

the research. 

Table 1-1.  Breakdown of the components necessary to enable objective societal resilience. 

 

 

Physical 

system 

component 

Economic 

system 

component 

Social 

system 

component 

Resource 

constraints 

Community 

and user 

constraints 

City-scale 

urban sensing 

Chapter 2 ✓ ✓     

Chapter 3 ✓ ✓     

Chapter 4 ✓ ✓  ✓   

Chapter 5 ✓ ✓  ✓   

Chapter 6 ✓ ✓ ✓ ✓ ✓  

Chapter 7 ✓ ✓ ✓ ✓ ✓ ✓ 
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Table 1-1 presents a breakdown of the physical, economic, and social components, as well 

as the barriers to scaling out, that each chapter addresses. 
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CHAPTER 2  

Probabilistic Fatigue Assessment of Monitored Railroad Bridge Components Using 

Long-Term Response Data in a Reliability Framework 

 

2.1  Introduction 

Fatigue is a prevalent deterioration mechanism influencing the safety profile of aging steel 

structures.  Tensile elements in steel truss railroad bridges are especially susceptible to 

fatigue-induced damage; the high live load to dead load ratio and repeated high stress 

cycles induced by long and heavy trains can accelerate fatigue damage and cause failure to 

occur below the allowable stress level (Imam et al. 2006).  Over half of the railroad bridges 

in the United States were constructed prior to 1950 with many of these bridges displaying 

signs of deterioration as well as approaching their designed fatigue life (Rakoczy et al. 

2016).  For many of these aging structures, loading estimates have increased compared to 

the assumed loading when the bridges were first designed (Moreu and Spencer 2015).  

Consequently, fatigue is a primary concern for railroad owners.  Many older steel truss 

railroad bridges designed before World War II rely on the use of parallel eyebar elements 

as tensile components in their truss systems to introduce redundancy in critical 

components.  The popularity of eyebar assemblies was due to their structural efficiencies 

and easy installation during construction.  However, there have been a number of notable 

fatigue-induced eyebar failures such as the catastrophic failure of the Silver Bridge in 1967 

(WVDOT 2019) and the fracture of an eyebar element on the San Francisco-Oakland Bay 
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bridge in 2009 (Gostautas and Tamutus 2015, Reid 2010).  Despite the threat of fatigue-

induced damage on railroad bridge components, existing inspection-based maintenance 

strategies and remaining fatigue life estimations based solely on deterministic S-N curves 

and assumptions of total stress cycles and equivalent stress range are unable to accurately 

consider the full influence of bridge behavior on the fatigue life of railroad bridge 

components (AREMA 2016). 

As railroad infrastructure continues to age, there is a need for asset management 

decision-making strategies that accurately consider the influence of a wider domain of 

deterioration mechanisms, such as fatigue.  An accurate assessment of the in-service 

parameters influencing the estimation of remaining fatigue life is necessary to inform 

upkeep, repair, and replacement decision-making strategies in practice.  Reliability-based 

probabilistic fatigue analysis methods have gained favor in the civil engineering 

community because uncertainty in parameters such as environmental conditions, material 

properties, and variable-amplitude stress cycles influence remaining fatigue life estimation 

(Kunz and Hirt 1994).  The use of monitoring data to characterize the distributions of these 

uncertain inputs can further increase the accuracy of fatigue life estimates (Zhou 2006).  

Monitoring data accurately reflects the distribution of the live load response of a structure 

exposed to varying environmental conditions and traffic load patterns.  The most accurate 

estimation of remaining fatigue life requires long-term monitoring over the lifetime of the 

asset.  The field of structural health monitoring (SHM) has advanced structural monitoring 

technologies to a point where they are an affordable option for asset owners.  The research 

community has embraced the use of long-term monitoring data within reliability 

frameworks; a number of past studies have proposed data-driven probabilistic fatigue 
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assessment methods for steel bridges using SHM data.  However, these prior studies 

introduce some uncertainties into their analysis methods.  For example, Chen et al. (Chen 

and Xu 2012), Kim et al. (Kim et al. 2001), and Li et al. (Li et al. 2016) use assumed 

probabilistic models of traffic loading (e.g., train length, weight, and response) and finite 

element (FE) models to estimate fatigue life.  In the case of Li et al. (Li et al. 2016), the 

assumed loading model is based on short-term controlled loading tests.  These fatigue life 

analyses are not actually based on continuous, long-term measured loads intended to be 

permanent fixtures on the structure.  In addition to introducing uncertainty, the use of 

approximate methods requiring detailed modeling or controlled experimentation can be a 

bottleneck that hinders method scalability and inhibits their translation to general, 

widespread use in practice.  Other works, such as Frangopol et al. (Frangopol et al. 2008) 

and Kwon et al. (Kwon and Frangopol 2010), make assumptions of ideal component 

behavior and ignore dead load effects.  This introduces additional uncertainties when assets 

have secondary stresses, such as those resulting from unexpected behavior at the boundary 

conditions or considerable static mean stress. 

This chapter presents a probabilistic fatigue assessment framework that can be 

applied to continuously monitored steel structures.  The goal of the work is to develop a 

reliability-based SHM framework that provides structural owners with actionable 

information associated with the safety of their assets given the current—potentially 

deteriorated—condition of their structure.  The purely data-driven framework relies on 

long-term monitoring data to offer a quantitative assessment of structural safety.  This 

framework advances on prior work in the integration of SHM data and reliability methods 
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by tailoring the SHM sensing strategy to offer response data that can reveal the complete 

behavior of a structural component (due to both dead and live loads) including behavior at 

the component boundaries.  This minimizes the need to make a priori assumptions of ideal 

component behavior (i.e., assuming ideal boundary conditions) that can lead to inaccurate 

reliability analysis results. 

As an illustrative example, this work quantifies the safety profile of a fracture-

critical set of tensile parallel eyebars on the Harahan Bridge—herein referred to as the US0-

  

(a) (b) 

Figure 2-1.  (a) View of the Harahan Bridge’s truss and parallel tracks spanning the Mississippi 

River; (b) monitored US0-LS0 tensile truss member consisting of six pin-connected vertical 

eyebars. 
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LS0 eyebar assembly—with respect to a limit state function governed by fatigue.  The 

Harahan Bridge opened for operation in July 1916 and is an in-service, long-span, steel 

truss railroad bridge spanning the Mississippi River near Memphis, TN (Figure 2-1).  The 

US0-LS0 assembly was selected to be monitored continuously because it is fracture critical 

and changes in the boundary conditions at the pin-eyebar connections can cause some of 

the eyebars to carry a greater proportion of the total assembly load than originally designed 

for; this leads to accelerated fatigue damage accumulation.  This work leverages the fact 

that these assemblies are already a primary concern for the bridge owner and tailors a 

sensing strategy to measure the safety of the assemblies in a way that is consistent with 

existing decision-making strategies.  Consequently, the probabilistic fatigue analysis 

presented in this chapter accounts for the coupled behavior between fatigue and relative 

tautness of the eyebars as well as the practical system-level constraints imposed by the 

mechanics of the system.  This probabilistic framework is purely data driven and carried 

out without the need for approximate methods (e.g., train parameter estimates, FE model 

simulations, controlled loading tests) during the monitoring period.  While an FE model is 

used to confirm the bridge owner’s concern that the US0-LS0 assemblies are fracture 

critical and a high priority, the FE model presented herein is not used within the proposed 

probabilistic methodology.  The study illustrates the use of the proposed data-driven 

probabilistic fatigue analysis using 16 months of long-term monitoring data collected using 

a wireless sensing system installed by the author on the Harahan Bridge.  While the first 

16 months of data are used for the illustrative purposes of this chapter, the installed long-

term monitoring system is intended to be a permanent fixture on the bridge and was turned 
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over to the bridge owner for use in their management processes upon completion of the 

project. 

2.2  Harahan Bridge Monitoring System 

2.2.1  Harahan Bridge Description 

The Harahan Bridge opened for operation in 1916 and is a steel truss bridge that carries 

railroad traffic across the Mississippi River near Memphis, TN.  The bridge has a total span 

of 1497.5m and comprises of five spans including an anchor arm (A), three cantilever arms 

(C), two spans (S), one fixed span (F), and one deck span (D) (Figure 2-2).  The bridge 

carries two railroad tracks that each operate in both directions as well as a single pedestrian 

walkway along the north truss.  The Harahan Bridge is part of Union Pacific’s Memphis 

 

Figure 2-2.  Span design and instrumentation plan for the long-term monitoring system installed 

on the Harahan Bridge (Memphis, TN). 



 

39 

 

subjunction and serves as a critical part of the railroad’s transportation infrastructure 

because it links railroad operations on the east and west sides of the Mississippi River.  The 

bridge has a unique risk profile because its location exposes it to a number of natural and 

man-made hazards; at the same time, it serves as a critical network component within a 

regional supply chain network.  The Harahan Bridge is the only point of connection 

between the railroad’s operations on the east side and west side of the river thereby 

requiring the rerouting of rail traffic in the case of bridge closure (e.g., for maintenance or 

due to bridge failure).  Consequently, bridge managers must be able to make quantitatively 

informed asset management decisions in the face of hazards.  The bridge is potentially 

exposed to a number of external hazards including seismic activity (due to its location 

within the New Madrid Fault zone), barge collisions, and scour, in addition to load- and 

weather-induced “aging hazards” such as fatigue.  External and aging hazards can alter the 

 
 

(a) (b) 

Figure 2-3.  (a) Labeling scheme for the Harahan Bridge north truss’ US0-LS0 assembly’s six 

parallel eyebars; (b) illustration of a change in boundary conditions causing an uneven distribution 

of the total load, 𝐹𝑇, across the six eyebars. 
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safety profile of the structure at a component or system level at any point in time between 

scheduled maintenance inspections. 

2.2.2  Fracture-Critical Eyebar Assemblies 

The Harahan Bridge’s tensile truss members—including its tensile eyebar assemblies—

undergo repeated high live load cycles due to long and heavy freight trains crossing the 

bridge daily.  Consequently, the eyebars are especially susceptible to failure resulting from 

accelerated fatigue damage (Gostautas and Tamutus 2015, Reid 2010).  The Harahan 

Bridge consists of 67 eyebar assemblies, each comprising of four or six parallel eyebar 

plates (Figure 2-3).  These eyebar assemblies serve as upper chord, lower chord, diagonal 

truss, and vertical truss assemblies throughout the bridge.  The configuration of the north 

truss’ US0-LS0 eyebar assembly is detailed in Figure 2-3 and its location within the greater 

truss system is identified in Figure 2-2.  The north and south US0-LS0 eyebar assemblies 

connect the easternmost cantilever arm (Span C in Figure 2-2) to the main span (Span S in 

Figure 2-2) and are fracture-critical structural assemblies that can lead to span failure.  This 

is confirmed using the FE model presented in Section 2.2.3.  Each US0-LS0 assembly has 

one upper pin connection and one lower pin connection.  As illustrated in Figure 2-3, 

changes in the boundary conditions at the pin connections can cause some eyebars to carry 

a greater proportion of the total axial assembly load distributed across all six eyebars than 

expected (AREMA 2016).  Here, 𝑃1, 𝑃2, … , 𝑃6 ∈ [0, 1] is the proportion of the total 

assembly load, 𝐹𝑇, carried by each eyebar, subject to the constraint ∑ 𝑃𝑖 = 16
𝑖=1 .  An 

increase in the proportion of the total assembly load carried by an eyebar is directly 

correlated to a decrease in remaining fatigue life (i.e., accelerated fatigue accumulation) 

(AASHTO 2012, Flanigan et al. 2017).  Since this behavior is not explicitly accounted for 
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in the design process, the alignment of parallel eyebar plates is a priority for the bridge 

owner.  This is reflected in the bridge owner’s existing inspection methods, which require 

inspectors to estimate eyebar tautness manually during periodic inspections.  While the 

proposed framework is applied to a specific assembly type, the methodology can be 

naturally extended to any truss element of concern. 

Standard protocol for eyebar inspection on any truss bridge—including the Harahan 

Bridge—dictates that inspectors estimate eyebar tautness manually during periodic 

inspections in order to identify imbalances leading to an uneven distribution of the 

assembly load across the parallel eyebar plates (Flanigan et al. 2017).  Inspectors are trained 

to manually induce a lateral out-of-plane vibration in each eyebar and count the number of 

vibration cycles over a defined period.  Eyebar plates vibrating with a higher frequency 

compared to the other parallel plates implies they are carrying a greater portion of the 

assembly’s total axial tensile load.  Eyebar plates are categorized into defect classes based 

on their measured frequencies.  Any imbalances, when significant, can prompt a decision 

to rebalance the eyebar pins to redistribute the axial load equally across all of the eyebar 

plates. 

However, quantitatively informed prognostics are difficult to achieve based on 

these current management strategies.  Infrequent manual inspections allow for accelerated 

fatigue damage to occur before changes in the pin boundary conditions are detected and 

corrected.  Additionally, manual inspection lacks a quantitative measure of how much 

fatigue has actually occurred.  This means decisions made based on visual inspection 

remain decoupled from codified estimation of remaining fatigue life based on S-N curves 

or probabilistic fatigue assessment.  Due to these drawbacks, the primary goal of the 
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implemented sensing program is to quantitatively measure the coupled behavior between 

fatigue and relative tautness continuously using automatic sensing in a probabilistic 

analytical framework. 

2.2.3  Harahan Bridge Data Collection Program and Instrumentation 

The author deployed a long-term wireless structural monitoring system on the Harahan 

Bridge in 2016.  Data collected from July 2016 through October 2017 is used in this 

chapter; after October 2017, the system was turned over to the bridge owner for use in their 

management processes.  The primary purpose of the wireless structural monitoring system 

is to collect and transmit structural response information that is necessary to quantify bridge 

performance under routine train loads, thereby offering the bridge owner pertinent 

information on bridge behavior that can augment their visual inspection processes and aid 

in their decision making.  The structural monitoring system is designed to accomplish three 

objectives.  First, the monitoring system is designed to observe the global behavior of the 

bridge under routine loading (e.g., train traffic, wind loads).  Specifically, vibrations of the 

bridge are sought to extract modal parameters for updating an FE model of the bridge.  

Second, the monitoring system is designed to observe the local behavior of critical bridge 

members.  In consultation with the bridge owner, the US0-LS0 eyebar assemblies are 

identified as some of the bridge’s most critical tensile truss members and are monitored for 

condition assessment by tracking fatigue accumulation under routine live loading.  Given 

that fatigue damage will be primarily caused by repeated stress cycles induced by train 

loads, the third monitoring system objective is to capture the assembly behavior under all 

train loads.  Towards this end, the monitoring system is designed to turn on and initiate 

data collection when measured vertical vibrations of the bridge’s main span exceed a 
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predefined threshold.  In addition, the monitoring system is designed to extract train load 

parameters including train speed, direction (i.e., eastbound versus westbound), and a crude 

estimate of train and car bogie weights. 

2.2.3.1  Data Collection and Wireless Communication Program 

The wireless monitoring system installed on the Harahan Bridge uses the Narada wireless 

sensing technology developed at the University of Michigan (Swartz et al. 2005).  This 

 

(a) 

 

(b) 

Figure 2-4.  (a) Narada wireless sensing node; (b) base station installed on the pedestrian walkway 

fence. 
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high-fidelity monitoring technology has been used to monitor a wide variety of bridges in 

permanent deployments over the past decade including on the New Carquinez Bridge 

(Kurata et al. 2013), Telegraph Road Bridge (O’Connor et al. 2017), and Newburg Road 

Bridge (Hou et al. 2019).  The Narada wireless sensing node is used as the primary data 

collection unit to collect and wirelessly transmit time-synchronized data to a base station 

installed on the pedestrian walkway along the north truss of the Harahan Bridge.  The 

Narada’s 16-bit analog-to-digital converter supports data collection on four channels and 

its 8-bit embedded processor enables node-based data interrogation.  Each node also has a 

2.4 GHz IEEE802.15.4 transceiver used to transmit and receive data with the network base 

station.  Each Narada node—pictured in Figure 2-4(a)—contains a solar controller 

connected to a 10W solar panel and a 12V rechargeable battery for solar harvesting and 

energy storage, respectively. 

The base station—pictured in Figure 2-4(b)—contains a PC-104 single-board 

computer, a CC2420 RB transceiver that communicates with Narada nodes over the 2.4 

GHz frequency band using the IEEE 802.15.4 standard, and an LTE cellular modem that 

offers the base station Internet access.  The purpose of the base station is to initiate time-

synchronized data collection among the network’s Narada units installed on the bridge.  

The base station uses the cellular modem to transmit collected data via the IEEE802.15.4 

transceivers to an off-site SQL server for storage and processing.  Since the base station 

and sensing nodes operate using harvested solar energy, it is necessary to minimize power 

consumption of the monitoring system.  Rather than collecting data on a schedule—which 

does not ensure that all train loading events are captured—a trigger system was designed 

to initiate data collection only during active loading events (such as when trains are 
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crossing the bridge, seismic events occur, or a barge collides with a bridge pier) with the 

nodes remaining in a low-power state otherwise.  This enables the wireless sensing system 

 

Figure 2-5.  FE model of the Harahan Bridge (modeled in CSiBridge). 

 

Table 2-1.  Summary of the sensing transducers used in the Harahan Bridge’s monitoring system. 

Equipment 

type 
Model 

Type of 

measurement 

Primary function within 

framework 

Number 

deployed 
Location 

Weldable 

strain gage 

Hitec HBWF-

35-125-6-

10GP-TR 

Local strain 
Measure stress cycles1; 

monitor axle loads 
8 

US0-LS0, 

UC5-LC5 

Uniaxial 

accelerometer 

Silicon 

Design 2012-

002 

Local 

acceleration 

Measure total load 

carried by each eyebar 

(relative tautness)1 

12 US0-LS0 

Triaxial 

accelerometer 

Silicon 

Design 2422-

005 

Global 

acceleration 
FE model development2 4 

US0-LS0, 

US2-LS2 

Geophone 

GeoSpace 

Geo-11D 4.5-

380 VT 

Global 

velocity 
Initiate data collection1 1 

UC5-LC5 

Pedestrian 

walkway 

fence 
1Used in proposed probabilistic fatigue analysis 
2Not used in proposed probabilistic fatigue analysis 

 

Table 2-2.  Comparison of the modal frequencies extracted from the finite element (FE) model and 

measured data. 

Mode # Mode type Simulated modal freq. (Hz) Measured modal freq. (Hz) Percent error (%) 

1 Transverse1 0.679 0.683 0.59 

2 Transverse 0.878 0.917 4.3 

3 Transverse 1.08 – – 
1Modal assurance criterion (MAC) value = 0.83 



 

46 

 

to collect and transmit data in 30-second polling cycles for every train that passes.  The 

trigger system operates using a geophone installed within the base station to measure 

vertical velocity continuously.  As trains approach the bridge, their ground vibrations cause 

the bridge to vibrate.  When the geophone measurement exceeds a predefined threshold 

velocity of 3.15cm/s, the base station is triggered to send a “wake-up” command to the 

Narada wireless units and initiates the data collection process.  The threshold is set to be 

low enough such that the structural response due to every train passing over the bridge is 

recorded, regardless of the configuration and size of the train. 

2.2.3.2  Sensing System Design and Instrumentation 

The installed wireless structural monitoring system measures a number of local and global 

structural properties.  Figure 2-2 presents the system instrumentation plan which includes 

four triaxial accelerometers (sampled at 200Hz), twelve uniaxial accelerometers (sampled 

at 200Hz), eight strain gages (sampled at 200Hz with x500 signal gain), one geophone, and 

one base station (Table 2-1).  Flanigan et al. (Flanigan et al. 2017) presents the development 

of an FE model of the Harahan Bridge using CSiBridge (CSI 2016).  The FE model 

discussed herein is not used to carry out the probabilistic fatigue analysis.  Rather, it is used 

in this application to validate the sensing instrumentation plan and confirm that the selected 

eyebars are in fact fracture critical and a primary concern for the bridge owner.  The FE 

model—shown in Figure 2-5—was constructed based on detailed engineering design 

drawings provided by the bridge owner.  Experimental data collected from the triaxial 

accelerometers is used to calculate the modal properties (i.e., modal frequencies, modal 

damping, and mode shapes) of the in-service structure and confirm that the FE model’s 

boundary conditions are modeled properly by comparing experimental modes to those 
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analytically estimated by the FE model.  The FE model’s boundary conditions are modeled 

based on the original engineering drawing descriptions.  Table 2-2 indicates that the FE 

model’s modal characteristics are well aligned with those empirically extracted from bridge 

response data.  Strain gages are installed on the UC5-LC5 vertical hanger assemblies on 

the north and south truss systems to gain insight into the train car and locomotive axle loads 

(Figure 2-2).  These vertical hangers are suspended by upper and lower longitudinal chords 

and theoretically carry the entire axle loads of each passing train.  Since the UC5-LC5 

members are adjacent to the US0-LS0 assemblies, time-synchronized vertical strain 

measurements in both members combined with information on standard train car 

geometries allows each train’s direction and speed to be accurately estimated.  While 

beyond the scope of this chapter, these measurements are also capable of estimating the 

vertical load of each passing car bogie. 

The primary purpose of the instrumented sensing program is to measure the coupled 

behavior between relative tautness and fatigue of the north truss’ US0-LS0 eyebar 

assembly.  This requires: 1) measurement of all stress cycles; 2) measurement of the 

proportion of the total assembly load carried by each of the six eyebars.  Rather than 

monitor fatigue and relative tautness as two separate limit states using strain, an alternative 

approach of using acceleration and strain sensing modalities in parallel is used to inform a 

single limit state function (as will be fully discussed in Section  2.3).  First, since stress 

cycles govern fatigue, strain gages are installed on the lower box section of the US0-LS0 

assembly directly below the lower eyebar pin to measure the US0-LS0 assembly’s axial 

strain cycles (Figure 2-6).  Second, uniaxial accelerometers are installed on each of the 

US0-LS0 assembly’s six eyebar plates near mid-height (Figure 2-6).  The measured lateral 
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acceleration of each vibrating eyebar is used to calculate each eyebar’s loaded natural 

frequency.  Given the known geometric and material properties of each eyebar, the natural 

frequencies are used in a physics-based model to calculate the total load in each eyebar.  

Consequently, the uniaxial acceleration data explicitly informs the proportion of the total 

US0-LS0 assembly load carried by each of the parallel eyebar elements.  This approach is 

commonly adopted to estimate the tautness of in-service axially loaded steel cables and 

hangers (Fang and Wang 2012, Nugroho et al. 2014, Priyosulistyo and Ferdina 2014).  

Acceleration-based relative tautness assessment of each eyebar is used instead of strain 

 

Figure 2-6.  Uniaxial accelerometers and strain gages installed on the US0-LS0 eyebars.  Also 

shown are sample frequency spectra (derived from lateral acceleration data, 𝑥̈(𝑡)) and sample axial 

strain response data collected at these locations over a 25-second period. 
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measurements because measured frequencies correlate to the total combined axial dead 

and live load, whereas strain measurements only capture the live load response.  Further, 

acceleration-based measurements are consistent with visual inspection practices in which 

inspectors visually count vibration cycles of manually excited eyebar plates to estimate 

axial tautness.  This makes the adoption of an automated and quantitative asset 

management framework more feasible. 

2.3  Long-Term Reliability-Based Condition Monitoring 

The methodology proposed herein uses long-term monitoring data to quantify the 

remaining fatigue life of monitored railroad bridge components in a probabilistic analytical 

framework that continuously and automatically processes data.  Unlike existing literature, 

this framework is purely data-driven and is carried out using 16 months of continuous, 

long-term structural response data collected for each passing train on the Harahan Bridge.  

Additionally, this methodology implements a novel holistic approach to tracking fatigue 

accumulation in which the sensing design empowers full consideration of the dead and live 

loads and associated changes in boundary conditions.  This is critical for monitoring assets 

with secondary stresses due to high static mean stress levels or unexpected behavior at the 

boundary conditions that are not considered in idealized mechanical systems.  The 

proposed analytical framework accounts for the coupled behavior between fatigue and 

relative tautness of a set of critical parallel eyebars subject to both dead and live loads. 

2.3.1  Fatigue Reliability Method 

The goal of reliability methods is to calculate a component or system’s reliability index, 

β𝑟, which is an objective measure of the level of safety corresponding to a specific limit 
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state function (Nikolaidis et al. 2004).  Given an n-dimensional vector of random variables, 

𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑛]
𝑇, a limit state function, 𝐺(𝑿), is defined as 𝐺(𝑿) = 𝑅 − 𝑆, where 𝑅 

denotes the resistance and 𝑆 denotes the load effects.  In general, the probability of failure, 

𝑃𝑓 = 𝑃(𝑿 ∈ Ω), is defined as 

𝑃𝑓 = ∫ 𝑓𝑿(𝑿)𝑑𝑿Ω
                                                        (2.1) 

where 𝑓𝑿(𝑿) is the joint probability density function (PDF) of 𝑿 and the failure domain, 

Ω, is defined as Ω ≡ 𝐺(𝑿) ≤ 0 for the single component reliability problem (Nikolaidis et 

al. 2004).  For the series system reliability problem in which the failure domain is described 

by the union of 𝑐 component failure events, the failure domain is defined as Ω ≡

⋃ 𝐺𝑖(𝑿)
𝑐
𝑖=1 ≤ 0.  Similarly, for the parallel system problem (i.e., one with redundancy) in 

which the failure domain is described by the intersection of 𝑐 component failure events, 

the failure domain is defined as Ω ≡ ⋂ 𝐺𝑖(𝑿)
𝑐
𝑖=1 ≤ 0 (Nikolaidis et al. 2004).  The level of 

safety associated with a limit state function is characterized by the reliability index, β𝑟.  

When the limit state function is linear in the independent standard normal space (ISNS), 

the reliability index is defined as the minimum distance between the origin and the limit 

state function’s failure domain in the independent standard normal space.  When the limit 

state function is not linear in the ISNS, first-order approximations can be used to 

approximate the reliability index, β𝑟, in which case the reliability index is defined as the 

approximate, rather than absolute, minimum distance.  The reliability index, β𝑟, is a 

powerful scalar metric because the probability of failure is fully described by the reliability 

index as 

𝑃𝑓 ≌ Φ(−β
𝑟)                                                       (2.2) 
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where Φ(∙) is the standard normal cumulative distribution function (CDF).  The equality 

in Equation (2.2) holds if the limit state function is linear in the ISNS. 

Fatigue-induced failure can be framed as a reliability problem where uncertainty is 

modeled in the resistance and load effects (Rakoczy et al. 2016, Kim and Mha 2001, Li et 

al. 2016, Tobias and Foutch 1997).  The goal of the proposed method is to formulate a 

single limit state function that assesses the probability of failure considering both the 

operational condition of the eyebar (i.e., relative tautness) and fatigue accumulation.  First, 

Section 2.3.2 formulates the component reliability problem where the eyebars are 

considered independent of each other and the objective is to calculate the reliability index 

for each eyebar individually.  However, in reality, the loads carried by each of the eyebars 

are correlated and all six of the eyebar plates in the US0-LS0 assembly must fail for the 

entire parallel system to fail.  Consequently, Section 2.3.3 formulates the parallel system 

 

Figure 2-7.  Outline of the mapping between sensor inputs (i.e., strain and uniaxial acceleration) 

and measured deterministic and random variable outputs.  Here, 𝐷𝐿 denotes dead load and 𝐿𝐿 

denotes live load. 
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reliability problem in which the objective is to calculate the reliability index for the entire 

US0-LS0 assembly system.  This section also outlines the data-driven method to calculate 

the distribution parameters of random variables derived from monitoring data that are 

necessary inputs to the two reliability problems. 

2.3.2  Component Reliability 

The failure domain for fatigue is characterized by 𝐷 ≥ ∆, where ∆ is Miner’s critical 

fatigue damage index and 𝐷 is the fatigue damage accumulation index (Miner 1945).  

According to Miner’s Rule, failure due to fatigue occurs when 𝐷 ≥ 1.  However, Sobczyk 

and Spencer (Sobczyk and Spencer 1992) found that the fatigue damage accumulation 

index, 𝐷, at failure can range from 0.5 to 2.0 and Wirsching (Wirsching 1984) extended 

the definition of failure due to fatigue to 𝐷 ≥ ∆, where Miner’s critical fatigue damage 

index, ∆, is modeled as a lognormal random variable with a mean of 1.0 and a coefficient 

of variation (COV) of 0.3.  Based on this failure domain, the limit state function governing 

each eyebar of the US0-LS0 assembly is 

𝐺𝑖(𝑿) = 𝑅 − 𝑆 = ∆ − 𝐷 = ∆ −
𝑁𝑡∙(𝑆𝑟𝑒∙𝑃𝑖)

𝑚

𝐴
, 𝑖 = 1,2,… ,6                       (2.3) 

where 𝑖 = 1,2, … ,6 designates the limit state function corresponding to each of the six 

parallel eyebar plates as labeled in Figure 2-3(a).  Here, 𝑆𝑟𝑒 is the equivalent stress range, 

𝑃𝑖 is the proportion of the total assembly load carried by each eyebar, 𝑁𝑡 is the total number 

of stress cycles, 𝐴 is the fatigue-strength coefficient defined by the American Railway 

Engineering and Maintenance-of-Way Association (AREMA) (AREMA 2016), and 𝑚 is 

a material constant assigned by AREMA (AREMA 2016).  The equivalent stress range, 

𝑆𝑟𝑒, load proportion carried by each eyebar, 𝑃𝑖, and total number of stress cycles, 𝑁𝑡, are 
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calculated using monitoring data, whereas the fatigue-strength coefficient, 𝐴, and material 

constant, 𝑚, are adopted from S-N curves within AREMA design specifications and are 

introduced here as random and deterministic variables, respectively (AREMA 2016).  The 

remainder of Section 2.3.2 derives a closed-form solution for the reliability index and 

discusses how to characterize the statistical parameters of the deterministic and random 

variables based on measurement data (Sections 2.3.2.1 through 2.3.2.3) and design 

specifications (Section 2.3.2.4).  Figure 2-7 illustrates the methodology used to derive the 

data-driven deterministic and random variables in Sections 2.3.2.1 through 2.3.2.3.  The 

resulting distribution parameters are presented in Table 2-3. 

 

(a) 

  
(b) (c) 

Figure 2-8.  (a) Time series strain response of the north and south US0-LS0 eyebar assemblies as 

a train enters the Harahan Bridge on the north track and loads the bridge; (b) transverse eyebar 

acceleration when the bridge is unloaded; (c) transverse eyebar acceleration when the bridge is 

loaded and a train is crossing. 
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There are two notable observations that help to simplify the reliability index 

calculation with respect to the limit state function defined in Equation (2.3).  First, the 

random variables outlined in Table 2-3 are all lognormally distributed.  Second, two limit 

state functions are equivalent if they share the same failure surface, namely, 𝐺(𝑿) = 0 for 

the purposes of this work (Barker and Puckett 2013).  Consequently, the limit state function 

governing fatigue presented in Equation (2.3) is reformulated using an equivalent 

representation in order to drastically simplify the reliability analysis and produce a closed-

form solution for the reliability index, β𝑟.  Letting the resistance and load effects derived 

in Equation (2.3) be governed by 𝐺(𝑿) = ln (
𝑅

𝑆
) = ln(𝑅) − ln(𝑆), the original limit state 

function can be equivalently represented as 

𝐺𝑖(𝑿) = ln(∆ ∙ 𝐴) − ln[𝑁𝑡 ∙ (𝑆𝑟𝑒 ∙ 𝑃𝑖)
𝑚] = ln(∆) + ln(𝐴) − [ln(𝑁𝑡) +𝑚 ∙ ln(𝑆𝑟𝑒) +𝑚 ∙ ln(𝑃𝑖)]  

(2.4) 

Table 2-3.  Deterministic and random variable parameters. 

Parameter Distribution Value Mean 
Standard 

deviation 
Source 

Miner’s critical damage 

accumulation index, ∆ 

Lognormal – 1.0 0.3 (Wirsching 1984) 

Fatigue detail coefficient, 𝐴 MPa3 Lognormal – 3.61(1012) 1.62(1012) (AREMA 2016) 

Equivalent stress range, 𝑆𝑟𝑒 MPa Lognormal – 15.3 31.2 Monitoring data 

Material constant, 𝑚 Deterministic 3.0 – – (AREMA 2016) 

Total number of stress cycles1, 

𝑁𝑡,𝑑𝑎𝑡𝑎 

Deterministic 1,725,727 – – Monitoring data 

Load proportion in eyebar 1, 𝑃1 Lognormal – 0.171 0.0152 Monitoring data 

Load proportion in eyebar 2, 𝑃2 Lognormal – 0.180 0.0060 Monitoring data 

Load proportion in eyebar 3, 𝑃3 Lognormal – 0.170 0.0051 Monitoring data 

Load proportion in eyebar 4, 𝑃4 Lognormal – 0.150 0.0037 Monitoring data 

Load proportion in eyebar 5, 𝑃5 Lognormal – 0.160 0.0042 Monitoring data 

Load proportion in eyebar 6, 𝑃6 Lognormal – 0.172 0.0054 Monitoring data 
1Number of stress cycles collected over 16-month monitoring period 
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An exact closed-form solution of the reliability index, β𝑖
𝑟, is derived directly from the mean, 

𝜆𝐺𝑖, and standard deviation, 𝜁𝐺𝑖, of the reformulated limit state function in Equation (2.4) 

as 

β𝑖
𝑟 =

𝜆𝐺𝑖

𝜁𝐺𝑖
=

𝜆∆+𝜆𝐴−[ln(𝑁𝑡)+𝑚∙𝜆𝑆𝑟𝑒+𝑚∙𝜆𝑃𝑖] 

[(𝜁∆)2+(𝜁𝐴)2+(𝑚∙𝜁𝑆𝑟𝑒)
2+(𝑚∙𝜁𝑃𝑖)

2]

1
2

                              (2.5) 

This simplification eliminates any need for approximate reliability methods such as first-

order reliability methods (FORM), second-order reliability methods (SORM), or Monte 

Carlo methods. 

2.3.2.1  Equivalent Stress Range 

The random variable 𝑆𝑟𝑒 is the equivalent stress range assuming the entire assembly load, 

𝐹𝑇, is applied to a single eyebar.  Here, 𝐹𝑇, is the total axial load on the box section of the 

US0-LS0 assembly below the lower pin (see Figure 2-3).  The equivalent stress range, 𝑆𝑟𝑒, 

is derived from the measured strain response at the box section and is modeled as a 

lognormal random variable to account for variable-amplitude stresses.  A 30-second 

sample of strain time series data collected at the US0-LS0 north and south eyebar box 

sections is shown in Figure 2-8.  The live load strain data in Figure 2-8 reflects the 

assembly’s structural response to a train—beginning with the heavy leading locomotives—

entering the Harahan Bridge on the north track and subsequently passing the US0-LS0 

strain gage location at approximately 25 seconds.  The train’s leading locomotives enter 

Span C at around 17 seconds, causing an increase in the box section’s live load strain 

response.  The US0-LS0 box sections typically experience the highest amplitude strain 

cycles when the locomotives pass directly adjacent to the monitored assemblies; as 
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expected, the strain cycles for the US0-LS0 north truss assembly undergo higher amplitude 

cycles since the train is crossing along the northernmost track.  The box section experiences 

a short period of slight relative compression during the first 15 seconds, meaning the 

assemblies are still in tension due to the dead load but the compressive live load is 

decreasing the overall tension because the train is entering the bridge on Span A.  When 

the train enters Span A, the adjacent cantilever span (Span C) comprising of the US0-LS0 

assemblies experiences slightly reduced tensile loads.  Once the leading locomotives enter 

Span C at around 17 seconds, the box section remains in relative tension for the remainder 

 

(a) 

  

(b) (c) 

Figure 2-9.  (a) Rainflow counting results for a 30-second sample monitoring period; (b) equivalent 

stress-range histogram for the 16-month monitoring period (July 2016 through October 2017); (c) 

the corresponding lognormal PDF characterizing the equivalent stress-range. 
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of the train crossing.  A rainflow counting algorithm is implemented based on the ASTM 

E 1049 Standard (ASTM 2017) in order to calculate the amplitudes of fully reversible and 

half cycles from the strain data each time a train crosses the bridge (Figure 2-9(a)).  The 

number of applied stress cycles and equivalent stress range are the primary mechanisms 

contributing to fatigue damage.  Although a secondary factor, mean stress is also correlated 

to fatigue damage (Lee et al. 2005) and is considered in this study because steel railroad 

bridges experience a high live load to dead load ratio as trains often fully load the bridge 

during crossings, resulting in a high mean live load component (Unsworth 2010).  This is 

evident in Figure 2-8(a) in which the mean strain response in the US0-LS0 assemblies 

increases as the train continues to load the bridge.  By 25 seconds, the stress cycles induced 

by train axle loads appear as harmonic signals superimposed on the mean.  The Goodman 

Method (Lee et al. 2005) is used as a total mean stress correction technique within the 

rainflow counting algorithm to compensate for the effects of normal tensile mean stress on 

high-cycle fatigue strength.  The Goodman Method defines the relationship 

𝑆𝑎

𝑆𝑒
+
𝑆𝑚

𝑆𝑢
= 1                                                       (2.6) 

where 𝑆𝑢 is the ultimate tensile strength and the equivalent completely reversed stress 

amplitude, 𝑆𝑒, is the stress that is expected to result in the same fatigue life as the stress 

amplitude 𝑆𝑎 at mean stress 𝑆𝑚.  Figure 2-9(b) shows the resulting stress-range bin 

histogram for strain data collected over the 16-month monitoring period as well as the 

associated lognormal PDF characterizing the random variable parameters (Figure 2-9(c)).  
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2.3.2.2  Relative Tautness Across the Parallel Eyebar System 

Recall from Figure 2-3 that 𝐹𝑇 is the total load carried by the US0-LS0 assembly and that 

𝑃𝑖 ∈ [0, 1] is the proportion of the total assembly load carried by each eyebar, subject to 

the constraint ∑ 𝑃𝑖 = 16
𝑖=1 .  In other words, the axial load carried by the 𝑖𝑡ℎ eyebar is 𝑃𝑖 ∙

𝐹𝑇.  As is the case of the equivalent stress, 𝑆𝑟𝑒, the proportion of the total assembly load in 

each eyebar, 𝑃𝑖, is a lognormal random variable with distribution parameters derived from 

monitoring data; the proportion of the total assembly load carried by an eyebar will never 

be below zero.  While the six parallel eyebar plates are designed to carry equal proportions 

of the total assembly load, changes in the boundary conditions at the pins can lead to 

unequal load proportions across the eyebars.  As discussed in Section 2.2.3, uniaxial 

accelerometers are installed near the mid-span of each eyebar plate in order to measure the 

out-of-plane (lateral) acceleration.  These vibration measurements are used to inform a 

frequency-based analysis to calculate the relative tautness of each of the six eyebars during 

loading events. 

The following methodology outlines how monitoring data is used in a physics-

based framework to calculate the proportion of the assembly load carried by each eyebar.  

First, the total load carried by each eyebar, 𝑁𝑖, is calculated as (Kollár 2003) 

𝑁𝑖 = 𝑁𝐸 ∙ (
ω𝑖

2

ω0
2 − 1)                                                   (2.7) 

A positive value of 𝑁𝑖 denotes tension and a negative value denotes compression.  Here, 

ω𝑖 is the transverse natural frequency of each loaded eyebar calculated from acceleration 

measurements.  The natural frequency is derived by transforming acceleration time series 

data for each 30-second polling cycle—beginning when the train enters Span C and ending 
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when it exits Span C—into the frequency domain using the Fast Fourier Transform (FFT) 

and identifying the first dominant frequency.  It is analytically confirmed that the first 

natural frequency corresponds to transverse vibrations.  This is done by representing the 

mechanics of each eyebar as a continuous plate fixed at both ends with an applied axial 

tensile load (as estimated in the original engineering design drawings) and calculating the 

corresponding natural frequencies in each direction.  To illustrate the influence of increased 

loading on the measured frequencies, Figure 2-10(a) and Figure 2-10(b) present sample 

frequency response spectra for the eyebars when the bridge is unloaded (i.e., no train event) 

and loaded, respectively.  As expected, there is a clear increase in the transverse natural 

frequency when a train loads the bridge.  Here, ω0 is the natural frequency of the unloaded 

eyebar.  The natural frequency, ω0, is calculated based on the geometry of each eyebar 

under the assumption that the eyebars have fixed-fixed boundary conditions in the out-of-

plane direction.  This assumption is justified based on direct observation of the as-built 

structure and structural design drawings, which reveal that plates inserted between the 

eyebars near the lower and upper box sections hold the eyebar ends in place with rotational 

and out-of-plane lateral fixity (Figure 2-1(a)).  Since all six of the eyebars have identical 

geometric and material properties, the unloaded natural frequency for each eyebar is 

calculated as (Blevins 2016) 

ω0 = 𝑘
2 ∙ (

𝐸∙𝐼

𝐴𝑔∙𝜌∙𝐿
4)

1

2
                                                 (2.8) 

where 𝑘 is a constant based on the boundary conditions (𝑘 = 4.730 for fixed-fixed 

supports), 𝐿 = 12.8m is the pin-to-pin length of the eyebars, 𝐴𝑔 = 0.0181m2 is the gross-

section area of an eyebar (i.e., the uniform width of the eyebar between the upper and lower 
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pins), and 𝐼 = 2.97(10-6)m4 is the moment of inertia.  The Harahan Bridge’s truss system 

comprises of both carbon steel and alloy steel; the eyebars are constructed from alloy steel 

that was made especially for the project.  The alloy steel eyebars were shipped and stored 

separately and testing occurred both on-site and during the pouring of each melt to ensure 

consistent mineral, material, and strength properties.  The assumed material and geometric 

constants reported by the engineers during construction are taken to be deterministic.  This 

is supported by the fact that the eyebars are made of alloy steel which reduces the threat of 

corrosion-induced section loss.  Additionally, visual inspection confirms the absence of 

  

(a) (b) 

 

(c) 

Figure 2-10.  Sample frequency response (derived from acceleration data, 𝑥̈(𝑡) during one polling 

cycle)  when the bridge is (a) unloaded and (b) loaded; (c) the PDF characterizing the load 

proportion carried by the six eyebars over the monitoring period. 
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corrosion.  That being said, one should be thoughtful of the influence of corrosion on the 

geometric properties of the structural members in applications when this assumption cannot 

be made.  Hence, in Equation (2.8), the density used is 𝜌 = 0.284kg/m3 and the modulus 

of elasticity used is 𝐸 = 200GPa. 

Since the total load carried by the US0-LS0 assembly is 𝐹𝑇 = ∑ 𝑁𝑖
6
𝑖=1 , the 

proportion of the total assembly load carried by each eyebar is 

𝑃𝑖 =
𝑁𝑖

𝐹𝑇
=

𝑁𝑖

∑ 𝑁𝑖
6
𝑖=1

                                                    (2.9) 

It should be noted that 𝑁𝑖 is the total load carried by each eyebar including dead and live 

loads.  Additionally, since the Euler buckling load, 𝑁𝐸, in Equation (2.7) cancels out in 

Equation (2.9), it will not be defined in this chapter.  The process for calculating 𝑃𝑖 is 

repeated for each polling cycle over the entire duration of each train loading.  The resulting 

lognormal PDFs describing the load proportion, 𝑃𝑖, for each eyebar over the 16-month data 

collection period are presented in Figure 2-10(c). 

2.3.2.3  Total Stress Cycles 

Recall from Section 2.2.3 that a trigger system is configured to wake the sensing system 

up from a low-power sleep state and initiate data collection each time a train approaches.  

Consequently, the total number of stress cycles measured during the 16-month monitoring 

period, 𝑁𝑡,𝑑𝑎𝑡𝑎, is considered to be deterministic over the monitoring period and is 

generated directly from the rainflow counting algorithm presented in Section 2.3.2.1.  The 

deterministic value, 𝑁𝑡,𝑑𝑎𝑡𝑎, is a subset of 𝑁𝑡, which is the total number of stress cycles 
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that occurs over the asset’s entire loading history (beginning when it opened for operation 

in July 1916). 

2.3.2.4  Variables Derived from Design Specifications 

The AREMA (AREMA 2016) and American Association of State Highway and 

Transportation Officials (AASHTO) (AASHTO 2012) codes outline provisions for 

railroad and steel highway bridge fatigue design, respectively.  Both specifications use the 

same set of experimental data to derive S-N curves for steel, which correlates the number 

of cycles to failure for a given stress-range magnitude (Zhou 2006, Keating and Fisher 

1986).  Within these provisions, eyebars are categorized as Category E elements, meaning 

the corresponding value of 𝑚 in Equation (2.3) is deterministic and equals 3.0.  𝐴𝑑 is the 

design value of 𝐴 and equals 3.61(1011)MPa3.  Since there is a 95% confidence level 

associated with 𝐴𝑑, the mean value, 𝜇𝐴, standard deviation, 𝜎𝐴, and COV, 𝛿𝐴, of the 

lognormal random variable parameters characterizing 𝐴 are derived from 𝐴𝑑 = 𝜇𝐴 − 2 ∙

𝜎𝐴 = 𝜇𝐴 ∙ (1 − 2 ∙ 𝛿𝐴), where the COV is assumed to equal 0.45 (Wirsching et al. 1987, 

Zhao et al. 1994). 

2.3.3  System Reliability of the Eyebar Assembly 

Recall from Section 2.3.2 that the failure domain under consideration is governed by 𝐷 ≥

∆ and the corresponding limit state function for each eyebar is formulated in Equation (2.3).  

Equation (2.5) derives the closed-form solution for the reliability index, β𝑖
𝑟, for each eyebar 

component separately.  In reality, the US0-LS0 assembly’s parallel plate configuration 

leads to a parallel system reliability problem with a number of factors complicating the 

analysis.  First, all six of the eyebars have to fail for the entire US0-LS0 parallel system to 
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fail (Constraint 1).  Second, after an eyebar fails, the load carried by the failed eyebar is 

transferred to the remaining eyebars (Constraint 2).  Third, the loads carried by each of the 

eyebars are correlated and the sum of the proportion of the load carried by all intact eyebars 

must always equal one (Constraint 3).  That is, even as eyebars fail and loads are 

redistributed, the sum of the load proportion across all remaining eyebars must equal one. 

Failure due to fatigue typically undergoes three stages: 1) cracks initiate around 

stress concentrations; 2) cracks propagate incrementally; 3) cracks reach a critical size and 

propagate rapidly (TRB 2014).  The stress levels leading to fatigue-induced failure are 

typically significantly lower than those stresses causing failure under static loading 

conditions (TRB 2014).  The limit state function considered in this chapter (Equation (2.3)) 

is based on remaining fatigue life which is the sum of the cycles in the first and second 

stages (i.e., crack initiation and incremental propagation).  While failure with respect to the 

limit state function occurs after the first two stages of fatigue-induced failure, there may be 

reserve capacity in the cracked eyebar(s) leading to ductile, rather than brittle, system 

failure (TRB 2014).  The redundant parallel eyebar plates comprising the US0-LS0 

assembly allow for the excess stresses in a cracked plate to be redistributed (TRB 2014).  

This means that there is likely a period of time before the eyebar(s) with fatigue cracks 

undergo the third stage of fatigue-induced failure.  When this time period is measured in at 

least weeks or months, the time lag would permit the owners to identify the local damage 

and perform maintenance.  To remain conservative though, the following analysis assumes 

that the failure is brittle and that when an eyebar violates the limit state function (i.e., 

𝐺(𝑿) ≤ 0), the eyebar is no longer in service and the loads are redistributed to the 

remaining eyebars immediately. 
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For a parallel system, safety estimation under multiple limit states and failure 

modes must be considered.  The failure domain is defined as Ω ≡ ⋂ 𝐺𝑖(𝑿)
𝑐
𝑖=1 ≤ 0 where 

𝑐 = 6 for the case of the US0-LS0 member’s six parallel eyebar plates.  The reliability 

index calculation for the proposed parallel system problem is reformulated as follows.  For 

the limit state function presented in Equation (2.3) 

β𝑠𝑦𝑠
𝑟 = −Φ−1(∫…∫ 𝐼𝑝 (𝑿)𝑓𝑿(𝑿)𝑑𝑿) where 𝐼𝑃 = {

1 if⋂ 𝐺𝑖(𝑿) ≤ 0
6
𝑖=1

0 if⋂ 𝐺𝑖(𝑿) > 0
6
𝑖=1

           (2.10) 

The system described by Equation (2.10) is subject to Constraint 3, meaning that 

∑ 𝑃𝑖 = 1
𝑗
𝑖=1                                                        (2.11) 

where 𝑗 ∈ [1,2, … ,6] is the number of remaining eyebars that have not failed.  That is, the 

sum of the proportion of the loads carried by all eyebars that have not yet failed must 

always be equal to one. 

Because there is no closed-form solution for Equation (2.10) subject to Constraint 

3, Monte Carlo methods are used to approximate the reliability index.  The estimator, 𝐽, of 

this system-level failure probability is defined as  

𝑃𝑓 ≈ 𝐽 =
1

𝑁
∙ ∑ 𝐼𝑃

𝑁
𝑤=1 (⋂ 𝐺𝑖(𝑿̂𝑤)

6
𝑖=1 )                                   (2.12) 

where 𝑁 is the total number of trials and samples 𝑤 = 1,2, … ,𝑁 are drawn from 𝑿̂𝑤 =

[∆̂𝑤, 𝐴̂𝑤,  𝑆̂𝑟𝑒𝑤, 𝑃̂1𝑤, 𝑃̂2𝑤, … , 𝑃̂6𝑤] using the statistical model parameters defined in Table 

2-3.  Samples drawn from the distributions of  𝑃̂𝑖 are subject to Constraint 3.  Given that 𝑢 

is a uniformly distributed random variable between zero and one, 𝐴̂𝑤 = 𝐹𝐴
−1(𝑢̂𝑤), ∆̂𝑤=

𝐹∆
−1(𝑢̂𝑤), and 𝑆̂𝑟𝑒𝑤 = 𝐹𝑆𝑟𝑒

−1(𝑢̂𝑤), where 𝐹(∙) is the CDF characterized by 𝐴, ∆, and 𝑆𝑟𝑒, 
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respectively.  In order to satisfy Constraint 3 (or equivalently, Equation (2.11)), let 𝑓𝑷(∙) 

be the PDF of a 6-dimensional multivariate normal distribution where 

𝑓𝑷(𝑷|𝝀, 𝚺) =
1

(2𝜋)
6
2|𝚺|

1
2

𝑒𝑥𝑝 [−
1

2
∙ (𝑷 − 𝝀)𝑇 ∙ 𝚺−1 ∙ (𝑷 − 𝝀)]                   (2.13) 

The multivariate distribution is characterized by the mean, 𝝀 = [𝜆𝑃1 , 𝜆𝑃2 , … , 𝜆𝑃6]
𝑇, and 

covariance matrix, 𝚺, where 𝚺 = 𝐃𝐑𝐃.  The correlation coefficient matrix, 𝐑, quantifies 

the correlation between the proportion of the total assembly load carried by each of the six 

eyebars.  Each component of 𝐑, denoted 𝐑𝑠ℓ for 𝑠, ℓ = 1,2, … ,6, describes the linear 

dependence between monitoring data observations for eyebars 𝑠 and ℓ (Figure 2-11).  The 

diagonal matrix, 𝐃, has diagonal elements 𝜁𝑃𝑖.  Let 𝑃̂𝑖
𝑁
𝑤

 be the elements of a vector, 𝑷̂𝑤
𝑁 , 

chosen from the multivariate distribution described in Equation (2.13).  Then, 

𝑃̂𝑖𝑤 = exp (𝑃̂𝑖
𝑁
𝑤
)                                                  (2.14) 

Given the aforementioned process for drawing random samples from 𝑿̂𝑤 subject to 

Constraint 1, Figure 2-12 outlines the procedure for conducting the system-level Monte 

Carlo reliability analysis.  The path that ultimately results in system failure and increments 

the number of failure events, 𝑛𝑓, in the Monte Carlo simulation is highlighted in bold.  

Following Constraints 2 and 3, system failure only occurs if failure of one or more eyebars 

ultimately results in the cascading failure of all six eyebars where the loads carried by failed 

eyebars are redistributed to the remaining eyebars upon failure. 

2.4  Results 

Section 2.3.2 and Section 2.3.3 formulate the reliability method for the component- (i.e., 

single eyebar) and system- (i.e., parallel eyebar assembly) level analysis for the US0-LS0 
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assembly’s set of parallel eyebar plates with respect to a failure limit state governed by 

fatigue.  For the component reliability problem, the reliability index for each of the US0-

LS0 assembly’s eyebars is evaluated separately, where each eyebar is considered to be 

independent of the others.  For the system reliability problem, the loads carried by each of 

the six eyebars are correlated and all of the parallel eyebar plates in the US0-LS0 assembly 

must fail under the system-level constraints imposed by the mechanics of the US0-LS0 

assembly for the entire system to fail.  The proposed method develops and evaluates a limit 

state function that couples fatigue and relative tautness; this methodology is implemented 

with a scalable long-term monitoring program instrumented on the Harahan Bridge in 

which the sensing design empowers full consideration of the dead and live loads and 

associated changes in boundary conditions.  Strain and acceleration response data collected 

by the monitoring system are used to characterize the deterministic and random variable 

 

Figure 2-11.  Sample data illustrating the correlation between the proportion of the total assembly 

load carried by Eyebar 1 and the other five eyebars during train events. 
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parameters necessary to evaluate the limit state functions.  This includes the equivalent 

stress range, proportion of the total assembly load carried by each of the six eyebars, and 

the total number of stress cycles.  The proposed methodology and long-term monitoring 

program are translatable across steel truss railroad bridges.  If a structural monitoring 

system is installed at the beginning of a structure’s life, the total number of stress cycles 

during the monitoring period, 𝑁𝑡,𝑑𝑎𝑡𝑎 (see Table 2-3), equals the total number of stress 

cycles that occurs over the bridge’s lifetime, 𝑁𝑡 (see Equation (2.3)), and this work serves 

as an accurate way to continuously assess the safety of a structure. 

 

Figure 2-12.  Monte Carlo simulation process satisfying Constraints 1 through 3.  The failure path 

that increments the number of failure events is highlighted. 
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For the case study presented in this chapter, the structural monitoring system 

installed on the Harahan Bridge began collecting data in July 2016, exactly one hundred 

years after the opening of the bridge.  While the monitoring system is used to accurately 

determine the equivalent stress range bin histogram and the total number of stress cycles 

that occur within the 16-month monitoring period between July 2016 and October 2017 

(i.e., 𝑆𝑟𝑒 and 𝑁𝑡,𝑑𝑎𝑡𝑎, respectively), the loading history and the total number of stress cycles 

that occur over the bridge’s entire lifespan beginning in July 1916 is unknown.  The 

cumulative number of lifetime stress cycles and equivalent stress range are governed by 

the frequency of trains (including their length) and their loads.  Consequently, the known 

number of stress cycles during the monitoring period, 𝑁𝑡,𝑑𝑎𝑡𝑎, is a subset of 𝑁𝑡, 

Despite the lack of detailed historical loading information, a conservative 

assumption can be made about the demand and corresponding equivalent stress range.  The 

first national structural design specification for steel railroad bridges was published by 

AREMA in 1905 (Unsworth 2010).  Since the establishment of these regulations, the 

design and rating capacity for railroad bridges based on Cooper E series loading doubled 

over the subsequent decades.  The increase in capacity was accompanied by a rapid 

increase in the demand (i.e., weight per car) on railroad bridges that quickly approached 

the doubled capacity specifications, resulting in capacities being exceeded in older bridges 

(Moreu and Spencer 2015, Unsworth 2010).  Loads have generally not increased over the 

past several decades and are not likely to increase in the foreseeable future as railroads 

have realized that the gap between capacity and demand has already been closed or even 

exceeded (Moreu and Spencer 2015).  Consequently, it is justified to assume that the 

demand (i.e., weight per car) on the Harahan Bridge before the monitoring period was less 
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than or equal to the demand during the monitoring period.  A conservative assumption can 

be made that the equivalent stress range characterized by the 16-month monitoring period 

is representative of the past and future loading response. 

For the purpose of illustrating the proposed methodology, it is assumed that the 

number of stress cycles occurring each year since the opening of the Harahan Bridge has 

increased at a rate, 𝑟 (i.e., 𝑟 = 0.01 for a 1% annual increase), due to increasing use of the 

bridge, which is a critical network component within a growing regional supply chain 

network.  Given the annual increase rate, 𝑟 (Constraint 4), and knowledge that the number 

of stress cycles during the 16-month monitoring period from July 2016 through October 

2017 is 𝑁𝑡,𝑑𝑎𝑡𝑎 (Constraint 5), then the number of stress cycles that occur during each year 

and the cumulative stress cycles 𝑦 years after the opening of the bridge in July 1916 are 

shown in Table 2-4.  Given Constraint 4 and Constraint 5, the number of cycles that 

occurred during the first year the Harahan Bridge was operational is 𝑁1 = 𝑁𝑡,𝑑𝑎𝑡𝑎 ∙

Table 2-4.  Total stress cycles accumulating each year and cumulative cycles occurring since the 

bridge opening. 

Year 

Monitoring 

duration 

(years) 

Total cycles during year Cumulative cycles 

July 1916 – June 1917 1 𝑁1 𝑁1 

July 1917 – June 1918 2 𝑁1 ∙ (1 + 𝑟) 𝑁1 + 𝑁1 ∙ (1 + 𝑟) 

⋮ ⋮ ⋮ ⋮ 

July 2016 – June 2017 101 𝑁1 ∙ (1 + 𝑟)
100 = 𝑁𝑡,𝑑𝑎𝑡𝑎 ∙

12

16
 𝑁1 ∙ [

(1 + 𝑟)100 − 1

𝑟
] 

⋮ ⋮ ⋮ ⋮ 

July 1916+𝑦 – June 

1917+𝑦 
𝑦 + 1 𝑁1 ∙ (1 + 𝑟)

𝑦 𝑁1 ∙ [
(1 + 𝑟)𝑦 − 1

𝑟
] 
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(
12

16
) /(1 + 𝑟)100.  From Table 2-4, the cumulative number of stress cycles, 𝑁𝑡, that occurs 

through 𝑦 years after the bridge opening in July 1916 is, 

𝑁𝑡(𝑦) =
𝑁𝑡,𝑑𝑎𝑡𝑎∙(

12

16
)

(1+𝑟)100
∙ [
(1+𝑟)𝑦−1

𝑟
]                                         (2.15) 

Equation (2.15) ensures that the number of stress cycles that occurs each year increases at 

the assumed rate of annual increase, 𝑟, and that given 𝑟, the number of stress cycles that 

occur between July 2016 and June  2017 is equal to the number of stress cycles measured 

by the monitoring system (i.e., 𝑁𝑡,𝑑𝑎𝑡𝑎 ∙
12

16
).  Figure 2-13(a) and Figure 2-13(b) show the 

increase in total stress cycles during each year for the first 200 years as well as the 

cumulative stress cycles over the first 200 years, respectively, assuming 𝑟 = 0.01. 

Carrying out the methodology proposed in this chapter, Figure 2-14 shows the 

evolution of the component reliability index for each of the six eyebars of the US0-LS0 

assembly given that the number of stress cycles occurring each year increases at a rate, 𝑟.  

These results are based on the conservative assumption that the distribution parameters of 

the equivalent stress range (Figure 2-9) and relative tautness (Figure 2-10(c)) accurately 

characterize the past loading behavior and response of trains prior to the installation of the 

structural monitoring system.  Equation (2.15) is used to calculate the total number of stress 

cycles over the lifetime of the Harahan Bridge.  Figure 2-14(a)-(c) show the evolution of 

the component reliability index values for assumed yearly traffic increase rates of 𝑟 = 0%, 

1%, and 2% respectively.  Figure 2-14(d)-(f) highlight the reliability index values near the 

year 2019 to illustrate that eyebars carrying a greater proportion of the load than expected 

undergo accelerated fatigue accumulation which decreases the safety of the element (i.e., 

reduces the reliability index, β𝑖
𝑟).  That is, Eyebar 4 carries the lowest proportion of the 
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total assembly load (i.e., it is the least taut) and Eyebar 2 carries the greatest proportion of 

the total assembly load (i.e., it is the tautest). 

Similarly, Figure 2-15(a) shows the evolution of the system reliability index values 

for assumed yearly traffic increase rates of 𝑟 = 0%, 1%, and 2%.  The reliability index 

values for the system reliability problem shown in Figure 2-15(a) closely resemble the 

 

(a) 

 

(b) 

Figure 2-13.  (a) Total number of stress cycles that occur during each year following the opening 

of the bridge in July 1916 (e.g., during the year July 2016 – June 2017); (b) cumulative number of 

stress cycles that occur since the opening of the Harahan Bridge in July 1916. 
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results for the component reliability problem shown in Figure 2-14.  Close comparison of 

these two results reveals that when the conservative assumption is made that the US0-LS0 

assembly’s parallel eyebar system is brittle—meaning that when an eyebar violates the 

limit state function (i.e., 𝐺(𝑿) ≤ 0) the eyebar is no longer in service and the loads are 

redistributed to the remaining eyebars immediately—then first failure is tantamount to 

system failure.  That is, extreme load events in the tail of the equivalent stress range, 𝑆𝑟𝑒, 

ultimately govern the failure limit state function and progressive failure initiates when the 

eyebar carrying the greatest proportion of the total assembly load fails.  Even though the 

parallel set of eyebars is intended to increase system resilience by introducing redundancy 

into this fracture-critical assembly, the failure of a single eyebar leads to failure of the  

entire parallel system.  This result exposes an unintended vulnerability in the system’s 

structural design—under the condition that it has brittle behavior—that reduces its 

resilience.  Consequently, the described system-level probabilistic fatigue assessment 

method can be used to enable bridge owners and designers to better design eyebar 

assemblies subject to their most conservative behavior to ensure redundancy in the parallel 

system given that parallel eyebar assemblies are prone to uneven loading distributions that 

can result in accelerated fatigue rates in some members.  This includes determining the 

number of parallel eyebar plates necessary to introduce redundancy in the parallel system 

under extreme loading conditions and quantifying a threshold on the proportion of the total 

assembly load carried by a single eyebar that initiates eyebar assembly realignment.  In 

reality, it is expected that system failure would occur in a much more ductile manner in 

which there is reserve capacity in eyebar(s) with fatigue cracks offering a period of time 

before the eyebar(s) experience rapid, rather than incremental, crack growth and 
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redistribute loads to the remaining eyebars.  When this time period is measured in at least 

weeks or months, the time lag would permit the owners to identify the local behavior based 

on monitoring data or see cracks during visual inspection allowing maintenance to be 

prescribed before system failure could occur. 

To illustrate the impact of existing asset management practices (i.e., eyebar 

assembly realignment) on the evolution of the system-level safety profile of the eyebars, 

consider the system reliability results in Figure 2-15(a).  The bridge owner can initiate 

standard maintenance practices to realign the six US0-LS0 eyebars at any point in time in 

order to redistribute the assembly load uniformly across the eyebars.  Let 𝑦𝑚 denote the 

number of years that occur between the bridge opening and the realignment.  Based on 

Equation (2.3) and Equation (2.15) the limit state function governing the two time periods 

(i.e., before and after maintenance) is 

𝐺𝑖(𝑿) = ∆ −
𝑁𝑡(𝑦)∙(𝑆𝑟𝑒∙𝑃𝑖

1)
𝑚

𝐴
, 𝑖 = 1,2, … ,6 for 𝑦 ≤ 𝑦𝑚                      (2.16) 

𝐺𝑖(𝑿) = ∆ −
𝑁𝑡(𝑦𝑚)∙(𝑆𝑟𝑒∙𝑃𝑖

1)
𝑚

𝐴
−
[𝑁𝑡(𝑦)−𝑁𝑡(𝑦𝑚)]∙(𝑆𝑟𝑒∙𝑃𝑖

2)
𝑚

𝐴
, 𝑖 = 1,2,… ,6 for 𝑦𝑚 < 𝑦    (2.17) 

Here, 𝑦 is the number of years that occur between the bridge opening and the time at which 

the reliability index is being evaluated.  𝑃𝑖
1 and 𝑃𝑖

2 are random variables characterizing 

the proportion of the total assembly load carried by each eyebar before and after the 

realignment, respectively.  Following the procedure outlined in Section 2.3.3 to calculate 

the system reliability index, Figure 2-15(b)-(c) illustrate the impact of realignment on the 

safety profile of the system assuming 𝑦𝑚 = 34, 64, 84, and 104—meaning that 
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maintenance takes place in 1950, 1980, 2000, or 2020.  Because the limit state function 

  
(a) (d) 

 
 

(b) (e) 

 
 

(c) (f) 

Figure 2-14.  Evolution of component reliability index for an increase in annual traffic of (a) 𝑟 = 

0%, (b) 𝑟 = 1%, and (c) 𝑟 = 2%.  Current reliability index (zoomed in) for (d) 𝑟 = 0%, (e) 𝑟 = 

1%, and (f) 𝑟 = 2%. 
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derived in this chapter captures the dependency between fatigue and relative tautness, the 

 
(a) 

 

(b) 

 

(c) 

Figure 2-15.  Evolution of the system reliability index (a) without maintenance, (b) with 

maintenance for 𝑟 = 1%, and (c) with maintenance for 𝑟 = 1% (zoomed in). 
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slope of the system reliability index decreases after the realignment, thus increasing the 

amount of time until a bridge owner’s lower safety threshold is reached.  As expected, the 

reliability index continues to decrease even after realignment—albeit at a slower rate—

because fatigue damage continues to accumulate under the evenly distributed expected 

loads.  Let ∆β𝑀
𝑟  denote the slope of the reliability index trajectory for the year immediately 

following the realignment in Figure 2-15(b) and let ∆β𝑁𝑀
𝑟  denote the slope of the reliability 

index trajectory for that same year assuming no maintenance occurs.  Even though each of 

the eyebars carries a proportion of the total assembly load that deviates within just a few 

percent of what is expected under ideal conditions (see Figure 2-10(c)), the immediate ratio 

of the change in slope of the safety profile, ∆β𝑁𝑀
𝑟 /∆β𝑀

𝑟 , is approximately 0.75 for 

maintenance conducted in 1950, 1980, 2000, or 2020.  This result suggests that the 

proposed method can be used as in intervention strategy to inform asset management 

decisions in the future in which the owner seeks to keep the reliability index above a safety 

threshold over a desired time horizon. 

2.5  Conclusions 

Despite the fact that fatigue damage in fracture-critical tensile members is a primary 

concern for railroad bridge owners, existing code- and inspection-based maintenance 

techniques do not sufficiently assess remaining fatigue life.  As railroads continue to age, 

there is a need for data-driven methods to reduce uncertainty and continuously quantify the 

safety profile of structural elements.  Due to the history of codified decision making in 

practice, the most feasible strategies are those that complement existing management 

strategies. 
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This chapter presents the application of a scalable and fully automated wireless 

sensing system on the Harahan Bridge that is used to assess probabilistic fatigue life 

coupled with relative tautness of the US0-LS0 tensile eyebar assembly.  A significant 

contribution of this work is that it implements a novel holistic approach to tracking fatigue 

accumulation in which the sensing design empowers full consideration of the dead and live 

loads and associated changes in boundary conditions.  The contribution of changes in 

boundary conditions and secondary deterioration mechanisms on structural safety is 

critically important, yet often ignored due to the emphasis of existing sensing strategies on 

monitoring global structural behavior.  There is a need to strategically implement sensing 

systems that are tailored to the mechanics of the monitored structural component in order 

to capture the full behavior of structural components.  The proposed method is purely data-

driven and is carried out using 16 months of continuous, long-term structural response data 

collected for each passing train.  Consequently, the proposed probabilistic methodology 

operates without the need for train parameter estimates, FE models, or controlled loading 

tests.  This method is synergistic with existing maintenance strategies because it accounts 

for the influence of changes in the boundary conditions of the elements on the safety of the 

asset with respect to fatigue; the acceleration data used to inform the relative tautness 

analysis is consistent with existing visual inspection techniques. 

Both the component and system reliability problems are formulated and evaluated 

using the proposed data-driven approach.  The system-level fatigue reliability analysis 

requires careful consideration of a number of complicating constraints that are induced by 

the physical system configuration and load path.  The resulting evolutions of the 

component and system reliability index values indicate that under the conservative 
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assumption that progressive failure is brittle, first failure within the parallel eyebar system 

is generally equivalent to system failure.  This analysis also illustrates that the relative 

tautness among the parallel eyebars influences the evolution of the component or system’s 

safety profile with respect to the fatigue-induced failure limit state.  Specifically, the 

proposed methodology can quantify the impact of existing asset management practices 

(i.e., eyebar assembly realignment) on the current and future evolution of the system-level 

safety profile.  Consequently, this work provides the foundation for informing data-driven 

intervention strategies for decision making. 

An exact calculation of the reliability index requires knowledge of the full loading 

history and the accumulated lifetime stress cycles.  Since the sensing system presented in 

this chapter was installed on the Harahan Bridge nearly a century after the bridge’s 

opening, future work will include obtaining historical track usage and loading estimates 

from the bridge owner.  While beyond the scope of this chapter, loading information such 

as the frequency and length of trains collected from alternative data sources such as the 

bridge owner’s manifest data and wheel impact load detector data can inform the total 

number of stress cycles that occur over the bridge’s lifetime, 𝑁𝑡.  Despite the lack of 

measured monitoring data prior to the sensing system installation, Section 2.4 justifies 

conservative assumptions for estimating the total stress cycles and loads occurring over the 

assembly’s lifetime.  Also, the chapter presents a conservative lower bound on the parallel 

eyebar system’s reliability index assuming that if one eyebar exceeds its limit state, then 

its load would immediately redistribute to the other eyebars leading to a seemingly brittle 

failure mechanism.  As previously mentioned, there remains axial load capacity in the 

cracked eyebar past the limit state resulting in a ductile failure mechanism.  Future work 
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should explore the parallel eyebar system after crack initiation to more accurately identify 

the reliability of the parallel eyebar component.  Such future work would lead to an even 

more realistic approach to assessing the component reliability and would also offer some 

insight to the time scales over which progressive failure of the component would occur, 

allowing for inspection cycles to be optimally timed.  Additionally, future work aimed at 

modelling repeated eyebar realignment will help to inform optimally timed maintenance 

efforts that maximize the remaining fatigue life of the bridge. 
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CHAPTER 3  

Quantitatively Linking Long-Term Monitoring Data to Condition Ratings Through 

a Reliability-Based Framework 

 

3.1  Introduction 

Structural health monitoring (SHM) of aging highway infrastructure has shown continued 

growth over the past several decades in an effort to guide data-driven asset management 

decisions (Seo et al. 2016).  Despite this growth, there is a persistent discontinuity between 

algorithmic strategies used in SHM and the ability of bridge managers to make immediate 

and long-term asset management decisions in practice (Figure 3-1).  This is in part due to 

the focus of physics-based SHM methods on estimating structural state and detecting 

damage by monitoring changes in structural properties such as global modal parameters 

(i.e. modal frequencies and mode shapes) (Cawley and Adams 1979, Doebling et al. 1998, 

Peeters and De Roeck 2001, Kim et al. 2003, Whelan and Janoyan 2010).  The fundamental 

principle of frequency-based damage detection methods is that modal parameters are 

functions of physical properties such as mass and stiffness.  Vibration-based data collected 

from SHM systems have been proposed to be used to quantify changes in modal properties 

associated with damage-induced changes in mass, or more commonly, stiffness.  However, 

for many operational structures, long-term damage and deterioration may not necessarily 

correspond to mass or stiffness changes, making many of these physics-based SHM 

methods ineffective.  Damage and deterioration can lead to changes in an element’s 
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boundary conditions that can change the very nature of a system or component’s safety 

profile without that system or component leaving the linear response regime.  For example, 

corrosion, scour, fatigue, and spalling can change a system or component’s safety without 

causing any measurable change in stiffness (MDOT 2016).  This is reflected in the United 

States’ extensive history of codified decision-making practices in which actionable upkeep 

decisions are made based on condition ratings (CR) with the bridge behaving entirely in 

the elastic regime (Ettouney and Alampalli 2016).   

The Federal Highway Administration (FHWA) has relied on the nationally 

mandated National Bridge Inventory (NBI) program to manage inspection schedules, 

implement inspection quality control, and establish a common scale for asset management 

 

Figure 3-1.  Proposed framework (highlighted by the shaded region) linking the state of practice 

and state of the art in bridge asset management. 
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decision making (Frangopol et al. 2001).  During regular (e.g., biennial) visual inspections, 

inspectors rate bridge components and assign condition ratings on a numeric scale (e.g., 0 

through 9, where the condition rating number decreases with increasing damage) to 

describe the level of deterioration they see visually in a bridge component (MDOT 2016).  

Asset management decisions surrounding upkeep and maintenance are subsequently made 

directly from the assigned condition ratings.  This process is illustrated as the “State of 

practice” in Figure 3-1.  This qualitative method of inspection fosters reactive decision 

making where repairs are made based on periodic visual examination of existing damage 

or deterioration.  Following this approach, damage is crudely described by discrete 

condition states assigned by an inspector.  Furthermore, visual inspections may not uncover 

underlying deterioration (Agrawal et al. 2009).  Due to these drawbacks, there is a general 

consensus within the engineering community that asset management decisions could be 

aided by quantitative monitoring data in order to reduce uncertainty in assessing structural 

condition (i.e. “State of the art” in Figure 3-1) (Frangopol et al. 2001).  Monitoring can 

also be continuous, allowing asset managers to more regularly, if not continuously, track 

the condition of a structure, especially between biennial inspections.  However, the state of 

practice (i.e. visual inspection) and state of the art (i.e. SHM) continue to remain as two 

independent processes.  Because existing SHM methods largely operate independent of 

condition ratings, upkeep decisions based on monitoring data are not generally made in 

practice, leading to limited commercial adoption of SHM for bridges.  

The author proposes in this study that rather than operating as two separate 

processes, the current state of practice and SHM be reconciled (i.e. “Linking state of 
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practice and state of the art” in Figure 3-1). The strategy proposed herein aims to formally 

link structural monitoring data with condition ratings.  The benefit of such a mapping is 

that it allows monitoring data to be used to make decisions based on quantitative 

information that encompasses the entire measurable domain of damage that may exist in 

an asset, as opposed to those only informed by visual inspection.  This approach respects 

that 1) there is a proven track record between effective decisions being made by condition 

ratings assigned by visual inspections, and 2) quantitative monitoring data can reduce 

uncertainty in assessing structural condition.  As shown in Figure 3-1, the proposed 

framework explicitly links visual inspection practice and SHM approaches using reliability 

methods, which have matured in civil engineering applications over the past several 

decades and are used to define structural design codes (Elishakoff 1983, Estes and 

Frangopol 1991, Frangopol and Estes 1997, Frangopol et al. 2008, Nowak and Zhou 1990, 

  

(a) (b) 

Figure 3-2.  (a) Relationship between condition ratings, capacity, and demand for the same load 

profile but with increasing structural deterioration over time; (b) an equivalent representation that 

reflects how the reliability index (which corresponds to specific condition ratings) decreases as 

deterioration increases. 
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Rausand 2004, Tabsh and Nowak 1991).  Reliability methods rigorously consider the 

effects of uncertainty in an asset’s capacity and demand, and provide a scalar measure of 

the safety of a system or component as measured by the reliability index, β𝑟 (Nikolaidis et 

al. 2004).  A higher reliability index value, β𝑟, represents a higher level of safety (i.e., 

lower probability of failure) than a lower value.  The ability of reliability methods to 

quantify structural safety based on changes in the structure as it operates in its elastic range 

is necessary to link state-of-practice and state-of-the-art approaches.  Condition ratings can 

then be thought of as decision points for the asset manager (as the structure operates in the 

elastic regime) that correlate to the reliability of the structure.  In this manner, lower 

condition ratings implicitly suggest a higher probability of failure. 

Ettouney and Alampalli (2016) defines the theoretical limit states within the elastic 

range for which bridge managers make asset management decisions based on codified 

condition ratings as “lower limit states” (Figure 3-2(a)).  Since condition ratings are often 

specified by physical  deterioration descriptions (e.g., percent section loss), these 

quantitative descriptions can be used to define the loss of structural integrity associated 

with each condition rating leading to the definition of lower limit states in terms of the 

capacity and demand.  Figure 3-2(a) illustrates that under the same load profile, an asset’s 

condition rating decreases over time as deterioration accumulates, thereby increasing 

demand on the element without changing the structural capacity.  This is equivalently 

represented by Figure 3-2(b), which illustrates that as deterioration increases there is a 

corresponding decrease in condition rating and increase in demand resulting in the 

reliability index, β𝑟, decreasing.  Consequently, there theoretically exist quantitative 

reliability index values, β𝑖
𝑟, associated with lower limit states described by each existing 
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condition rating, 𝑖, for 𝑖 = 0,1, … ,9 (assuming a 10-level rating scale).  Given the asset’s 

load profile, the reliability index values, β𝑖
𝑟, are quantitative measures of the safety of an 

asset with a physical condition state described by each condition rating.  These values, β𝑖
𝑟, 

serve as thresholds that quantify the accepted probability of failure (as defined by the limit 

 

(a) 

 

(b) 

Figure 3-3.  (a) The state of practice assigns condition ratings and repair actions based on 

qualitative visual assessment of an asset’s physical condition, while (b) the proposed framework 

assigns equivalent condition ratings corresponding to reliability index thresholds, β𝑖
𝑟, and repair 

actions based on an asset’s current safety level, β𝑚
𝑟 . 
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state) for which maintenance, repair, and replacement decisions are made for each 

condition rating in practice today.  

 The method of linking structural monitoring data with existing condition ratings 

using reliability methods discussed herein comprises two primary stages.  In the first stage, 

the author presents a method to objectify lower limit states by quantifying the reliability 

index thresholds, β𝑖
𝑟, corresponding to existing condition ratings.  This is conceptually 

illustrated by the dashboards in Figure 3-3, where the physical descriptions of damage in 

Figure 3-3(a) are replaced by associated quantitative reliability index thresholds in Figure 

3-3(b).  In the second stage, we introduce a method to continuously calculate the reliability 

index of an in-service asset based only on long-term monitoring data (we refer to this as a 

“data-driven” approach because the only input is bridge response data); this is conceptually 

illustrated by the moving dial in Figure 3-3(b) which replaces visual inspection in Figure 

3-3(a).  Since reliability index thresholds are already established for establishing condition 

ratings as lower limit states in the first stage, the measured reliability index, β𝑚
𝑟 , calculated 

in the second stage serves a direct indicator of the in-service asset’s condition rating.  By 

replacing qualitative condition assessment practice with a quantitative (and automated) 

assessment metric, bridge owners would be able to continuously track the structural 

condition of the asset at any point in time, and the same decision output that is derived 

from the state of practice today is achieved, albeit with the repair action guided by 

quantitative rather than qualitative assessment methods.  Additionally, since the reliability 

index threshold values, β𝑖
𝑟, correspond to the probability of failure governing each 

condition rating, the data-driven performance, β𝑚
𝑟 , corresponding to any measurable limit 

state function can be assigned to a condition rating, not just a limit state corresponding to 
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the deterioration and failure mechanisms traditionally assessed using visual inspection.  

This is justified because the reliability index, and corresponding probability of failure, is a 

universal measure across any failure limit state.  After detailing the theoretical background, 

this chapter implements the full two-stage data-driven reliability framework for tracking 

structural performance on an instrumented pin-and-hanger assembly on the Telegraph 

Road Bridge (TRB), which is a steel girder highway bridge located in Monroe, MI. 

3.2  Methodology 

This section outlines the methodology for quantitatively linking long-term monitoring data 

and condition ratings through a reliability-based framework.  The following section 

comprises three primary components.  First, Section 3.2.1 presents the necessary data-

driven first-order reliability method (FORM) used to calculate the reliability index 

throughout this chapter.  An emphasis is placed on accounting for correlation between 

measured, non-normal random variables (RV) within the FORM analysis, which is a 

condition that is imposed when there is correlation between random variables measured 

from monitoring data due to dependencies in the structural response at the sensor locations.  

Section 3.2.2.1 then outlines the first stage of the proposed framework in which the 

reliability index threshold values, β𝑖
𝑟, associated with condition rating lower limit states are 

determined.  Section 3.2.2.2 introduces the second stage of the proposed framework and 

describes the procedure for measuring the in-service reliability index of the asset, β𝑚
𝑟 , using 

long-term monitoring data; the measured safety of the asset, β𝑚
𝑟 , maps directly to the 

condition ratings defined in Section 3.2.2.1.  
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3.2.1  Overview of Reliability Methods 

The goal of structural reliability is to calculate the reliability index, β𝑟, which is a scalar 

measure of safety of a system or component with respect to a failure limit state (Nikolaidis 

et al. 2004).  A limit state function, 𝐺(𝑿) = 𝐶 − 𝐷, is described by an n-dimensional vector 

of random variables, 𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑛]
𝑇, the load effect, 𝐷, and the resistance, 𝐶.  For 

the single component reliability problem, the probability of failure, 𝑃𝑓 = 𝑃(𝑿 ∈ Ω), is 

defined as 

𝑃𝑓 = ∫ 𝑓𝑿(𝑿)𝑑𝑿Ω
                                                   (3.1) 

where 𝑓𝑿(𝑿) is the joint probability density function (PDF) of 𝑿, and Ω ≡ 𝐺(𝑿) ≤ 0 is the 

failure domain.  When the limit state function is linear in the independent standard normal 

space (ISNS), the reliability index, β𝑟, is defined as the minimum distance from the origin 

to the failure domain of the limit state function, Ω, in the ISNS.  When the limit state 

function is not linear in the ISNS, first-order approximations can be used to approximate 

the reliability index, β𝑟, in which case the reliability index is defined as the approximate, 

rather than absolute, minimum distance.  The reliability index, β𝑟, is a direct indicator of 

the probability of failure, where 

𝑃𝑓 ≌ Φ(−β
𝑟)                                                      (3.2) 

and Φ(∙) is the standard normal cumulative distribution function (CDF) (Nikolaidis et al. 

2004).  The equality in Equation (3.2) holds if the limit state function is linear in the ISNS. 

When no closed-form solution exists for the integral in Equation (3.1), FORM can 

be used to approximate the probability of failure by linearizing the limit state function at 
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an optimal point in the ISNS (Nikolaidis et al. 2004).  While the use of FORM to evaluate 

structural reliability has become ubiquitous across the field of civil engineering, there are 

very few examples of data-driven reliability assessments that use long-term monitoring 

data, especially ones that account for correlation between non-normal random variables 

measured from monitoring data (Frangopol et al. 2008, Catbas et al. 2008).  The iterative 

FORM procedure utilized in this chapter is presented in Algorithm 3-1 in order to introduce 

notation and to elaborate on how correlation between non-normal random variables is 

accounted for within the analysis (such as is the case in Section 3.5).  For limit state 

functions that are highly nonlinear in the standard normal space, second-order reliability 

methods are necessary to approximate the probability of failure with higher accuracy.  The 

FORM results presented herein are compared to those generated by Monte Carlo 

simulations to confirm that first-order methods (namely, FORM) are sufficient. 

Algorithm 3-1.  FORM algorithm procedure for calculating the reliability index assuming 1) 

independent random variables, 2) dependent (possibly) non-normal random variables. 
 

Step 1: 

Identify the limit state function, 𝐺(𝑿), and transform 𝐺(𝑿) into the standard normal space, 𝐺𝑈(𝑼), 

𝐺(𝑿) = 𝐺(𝑋1, 𝑋2, … , 𝑋𝑛) → 𝑼 = 𝑇(𝑿) → 𝐺𝑈(𝑼) = 𝐺𝑈(𝑈1, 𝑈2, … , 𝑈𝑛) 

where 𝑼 = 𝑇(𝑿) is a one-to-one transformation of 𝑿 to the standard normal space. 

Case 1.1 

For the case of independent random variables, 

𝑼 = Φ−1(𝐹𝑿(𝑿))                                                  (3.3) 

where 𝐹𝑋𝑖(𝑋𝑖) is the CDF. 
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Case 1.2 

For the case of dependent (possibly) non-normal random variables, there are two primary 

methods that can be used to uncorrelate the random variables: the Rosenblatt 

Transformation and the Nataf Transformation (Nikolaidis et al. 2004).  The Nataf 

Transformation is well suited for the analysis in this chapter because the dependent random 

variables considered herein (Table 3-5), with prescribed marginal CDFs and correlation 

coefficients, are jointly normal when marginally transformed.  To transform the correlated 

non-normal random variables into the uncorrelated standard normal space using the Nataf 

Transformation, the lower Cholesky decomposition, 𝑳, of 𝑹 is utilized such that, 

𝑼 = 𝑳−1Φ−1(𝐹𝑿(𝑿))                                                (3.4) 

where 𝑹 is the matrix of correlation coefficients and 𝑹 = 𝑳𝑳𝑇. 

Step 2: 

Evaluate the gradient ∇𝐺𝑈(𝑼) = [
𝜕𝐺𝑈(𝑼)

𝜕𝑈1
,
𝜕𝐺𝑈(𝑼)

𝜕𝑈2
, … ,

𝜕𝐺𝑈(𝑼)

𝜕𝑈𝑛
]. 

Step 3: 

Begin an iterative process with 𝑖 = 0. 

Step 4: 

Assume the design point’s initial value, 𝑿∗(𝑖) = [𝑋1
∗(𝑖), 𝑋2

∗(𝑖), … , 𝑋𝑛
∗(𝑖)
] to obtain 𝑼∗(𝑖) = 𝑇(𝑿∗(𝑖)). 

Step 5: 

Estimate the direction cosines, 𝛂(𝑖), of the normalized gradient ∇𝐺𝑈(𝑼) evaluated at 𝑼∗(𝑖).  That 

is, 𝛂(𝑖) =
∇𝐺𝑈(𝑼

∗(𝑖))

‖∇𝐺𝑈(𝑼
∗(𝑖))‖

, where ‖∙‖ denotes the 𝑙2–norm. 
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Step 6: 

Let 𝑼∗(𝑖) = −𝜶(𝑖)β𝑟(𝑖) and solve 𝐺𝑈(𝑼
∗(𝑖)) = 0 for β𝑟(𝑖). 

Step 7: 

If β𝑟
(𝑖)

 has converged, then 𝑃𝑓 ≌ Φ(−β
𝑟(𝑖)).  If not, update 𝑼∗(𝑖+1) = −𝛂(𝑖)β𝑟

(𝑖)
, increment 𝑖 

(such that 𝑖 = 𝑖 + 1), and return to Step 5 until convergence. 

 

3.2.2  Proposed Methodology 

The methodology proposed in this study consists of two primary steps, which are illustrated 

in Figure 3-4.  The first step, termed “Step 1” in Figure 3-4, is outlined in Section 3.2.2.1 

and serves as the framework for quantifying reliability index threshold values, β𝑖
𝑟, 

associated with lower limit states described by condition ratings.  Section 3.2.2.2 outlines 

the second step, termed “Step 2” in Figure 3-4, which is the procedure for measuring the 

reliability index, β𝑚
𝑟 , of the in-service asset using long-term monitoring data and assigning 

its condition rating to track the structural condition of the asset.  The proposed methodology 

applies regardless of whether or not the monitoring system is installed at the beginning of 

the structure’s operational life (as opposed to being installed mid-life). 

3.2.2.1  Step 1: Establish Reliability Index Thresholds on Condition Rating Lower 

Limit States 

The following discussion of the methodology for Step 1 parallels the block diagram in 

Figure 3-4.  Figure 3-4 illustrates that the inputs of the proposed process are long-term 

monitoring data and physical deterioration descriptions of an asset’s condition ratings; both 
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inputs correspond to a given failure limit state.  The output is a set of reliability index 

thresholds, β𝑖
𝑟, that measure the level of safety of the condition rating lower limit states.  In 

order to create an explicit linkage between the inputs and outputs, a finite element (FE) 

model of the asset must be developed and calibrated using monitoring data to reflect the 

conditions of the asset in its in-service state.  The demand effect for each condition rating, 𝑖, 

is then simulated by modeling the physical deterioration described by each condition rating 

in the FE model and subjecting the modeled asset to load distributions derived from the 

long-term monitoring data.  The output data collected at the sensor locations of the FE 

model inform the random variable parameters of the demand and are used to calculate the 

reliability index values, β𝑖
𝑟, describing each condition rating lower limit state.  A detailed 

discussion of this process is described below. 

Condition ratings are defined by descriptions of physical deterioration that can 

progressively lead to well-documented modes of failure.  For example, net-section yielding 

is a threat to pin-connected hanger plates (AASHTO 2012) because corrosion can lead to 

reduced net-section area at the pin-plate connection.  Consequently, condition ratings for 

such elements are described by varying levels of percent net-section loss (MDOT 2016).  

The first step towards establishing reliability index thresholds on condition rating lower 

limit states is to identify the failure limit state governing an asset’s condition rating 

parameters and to let the physical deterioration described by each condition rating be 

denoted 𝐷𝐺 = {𝐷0, 𝐷1, … , 𝐷9}.  Deterioration is a physical parameter that can be quantified, 

and hence 𝐷𝐺  can be quantitatively modeled. 
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Given the quantitative physical deterioration, 𝐷𝐺 , governed by the limit state 

function, 𝐺(𝑿) = 𝐶 − 𝐷, a sensing program can be devised to collect long-term monitoring 

data capable of characterizing the limit state function, 𝐺(𝑿).  Given the sensing 

instrumentation strategy, a subset of the n-dimensional vector of random variables, 𝑿, will 

be random variables characterized by monitoring data collected at the sensor locations, 

denoted 𝑆1, 𝑆2, … , 𝑆𝑝 for 𝑝 sensors.  The remaining random variables in 𝑿 will be those that 

are not characterized by long-term monitoring data, such as uncertainty in material 

properties and the capacity (e.g., modulus of elasticity, yield strength), which are assumed 

to be independent random variables.   These random variables are taken from literature 

based on experimental test data. 

The next step is to develop a FE model of the asset and to calibrate the boundary 

conditions (e.g., coefficient of friction at interfaces with surface-to-surface contact) using 

monitoring data to reflect the conditions of the asset in its in-service state.  Use the long-

 

Figure 3-4.  Two-step process for quantitatively linking long-term monitoring data to decisions 

through condition ratings.  Here, 𝑡𝑚 is the time at which β𝑚
𝑟  is being evaluated.  
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term monitoring response data of the asset in its in-service state to infer load history inputs 

to the FE model.  If the asset is not in its undamaged condition (i.e. the condition rating is 

less than 9), use nondestructive evaluation techniques to rigorously assess the condition 

rating of the in-service asset at the time that Step 1 is performed.  This is necessary to 

facilitate the accurate calibration of the FE model’s boundary conditions for its given 

physical state and condition rating.  When the FE model reflects the asset in its in-service 

state, the input loads should result in response data at the sensor locations of the model that 

match the response data collected from monitoring data.  The purpose of the FE model is 

to represent the asset at its current condition rating subject to loading histories derived from 

monitoring data, and then simulate physical deterioration, 𝐷𝐺 , corresponding to each 

condition rating in order to quantify how the demand effect changes (as manifested by the 

reliability index, β𝑖
𝑟).  To simulate the demand effect for each condition rating, create ten 

FE models subjected to the same load inputs derived from long-term monitoring data, 

where each model reflects the physical deterioration described by one of the ten condition 

ratings, 𝐷𝐺 = {𝐷0, 𝐷1, … , 𝐷9}.  For each of the FE models, 𝑖 = 0,1, … ,9, characterize the 

output measurements at the sensor locations within the model as random variables, denoted 

𝑺𝐷0 , 𝑺𝐷1 , … , 𝑺𝐷9, where 𝑺𝐷𝑖, is an p-dimensional vector of random variables characterizing 

the outputs at the sensor locations associated with 𝑆1, 𝑆2, … , 𝑆𝑝 and corresponding to 

deterioration described by condition rating 𝑖. 

The response data characterized by the random variable distributions for each 

model, 𝑺𝐷𝑖 , 𝑖 = 0,1, … ,9, can then be used as inputs to a FORM analysis (Algorithm 3-1) 

to calculate the reliability index values, β𝑖
𝑟, corresponding to each model of condition rating 

deterioration state 𝐷𝐺 = {𝐷0, 𝐷1, … , 𝐷9}.  The resulting reliability index thresholds, β𝑖
𝑟, are 
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measures of the level of safety of the lower limit states corresponding to each condition 

rating, 𝑖 = 0,1, … ,9.  The reliability index values, β𝑖
𝑟, serve as the bounds on each condition 

rating such that, 

CR9: β𝑚
𝑟 ≥ β9

𝑟 , CR8: β9
𝑟 > β𝑚

𝑟 ≥ β8
𝑟 , … , CR1: β2

𝑟 > β𝑚
𝑟 ≥ β1

𝑟 , CR0: β𝑚
𝑟 < β1

𝑟            (3.5) 

If the physical deterioration description for a condition rating is predominantly qualitative 

and not sufficiently quantitative to inform the FE model, a shape-preserving spline can be 

fit to the neighboring reliability index values, β𝑖
𝑟, in order to interpolate the missing 

threshold value not informed by quantitative descriptors (e.g. section loss).  The reliability 

index values, β𝑖
𝑟, are quantitative measures of the effect of deterioration described by each 

existing condition rating on the demand and an objective measure of the accepted safety 

threshold at which preexisting decisions are made.  The temporal representation of Step 1 

in Figure 3-4 illustrates that Step 1 need only be carried out a single time.  This is due to 

the fact that the objective of Step 1 is to quantify bounds on the safety of each condition 

rating for an asset in terms of the reliability index, β𝑖
𝑟, and serve as an objective metric and 

scale to continuously assess the condition of the asset into the future.  The author denotes 

the time that Step 1 is carried out as 𝑡 = 0.   

3.2.2.2  Step 2: Calculate the Reliability Index of an In-Service Asset to Assign a 

Condition Rating 

The following discussion of the methodology for Step 2 parallels the block diagram in 

Figure 3-4.  Figure 3-4 illustrates that the input of the proposed process is long-term 

monitoring data and the output is the current reliability index of the in-service asset, β𝐺𝑗,𝑚
𝑟 , 

corresponding to limit state function 𝐺𝑗(𝑿𝑗) for 𝑘 limit states, 𝑗 = 1,2, … , 𝑘.  Reliability 
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methods (i.e. FORM introduced in Algorithm 3-1) are used to create an explicit linkage 

between the inputs and outputs.  A condition rating is assigned to each limit state function 

𝐺𝑗(𝑿𝑗), through the reliability index value of the in-service asset, β𝐺𝑗,𝑚
𝑟  (Figure 3-3(b)). 

Section 3.2.2.1 requires implementing a monitoring program to collect long-term 

data capable of characterizing the limit state function governing the deterioration and 

failure mechanism described by an asset’s set of condition ratings.  In reality, deterioration 

typically reduces safety with respect to a number of failure limit states, not just the failure 

limit state and deterioration mechanisms considered by condition ratings.  Consequently, 

it is desirable to measure the safety of an asset with respect to any failure limit state of 

concern in order to assess a wider domain of damage (both expected and unexpected) that 

may influence the performance and safety of an asset.  The reliability index threshold 

values, β𝑖
𝑟, derived in Step 1 inform the probability of failure governing each condition 

rating for a particular asset and reflect the level of safety that decision makers are 

comfortable with for each condition rating.  Consequently, the measured, data-driven 

structural performance, β𝑚
𝑟 , corresponding to any measurable limit state function can be 

assigned a condition rating based on the defined lower limit states, β𝑖
𝑟.  This is justified 

because the reliability index, and corresponding probability of failure, is a universal 

measure across any failure limit state.  If Step 1 is implemented when the structure first 

becomes operational, then any limit state function can be assessed in Step 2.  This includes 

limit state functions governing modes of failure such as fatigue, which requires measuring 

cumulative parameters such as total lifetime stress cycles.  If Step 2 is implemented mid-

life, only limit state functions whose random variable are not characterized by data 

collected over the asset’s entire lifespan can be accurately assessed. 
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After collecting long-term monitoring data, the in-service reliability index is 

calculated for any number of the measurable failure limit states, 

𝐺1(𝑿1), 𝐺2(𝑿2), … , 𝐺𝑘(𝑿𝑘), where 𝑘 limit states are monitored.  Given the total array of 

sensors installed on the asset to measure the 𝑘 limit states (where the response data 

collected from some sensors may be used to inform multiple failure limit states), let 𝑺𝐺𝑗  be 

a vector of the random variables characterizing the response for each of the sensor locations 

necessary to evaluate limit state function  𝐺𝑗(𝑿𝑗), where 𝑗 = 1,2, … , 𝑘.  𝑺𝐺𝑗  represents all 

of the random variables derived from monitoring data that are used to evaluate the limit 

state function  𝐺𝑗(𝑿𝑗), and is a subset of 𝑿𝑗 .  Given the vector of random variables, 𝑿𝑗, 

Algorithm 3-1 is used to calculate the measured reliability index values of the in-service 

bridge, β𝐺1,𝑚
𝑟 , β𝐺2,𝑚

𝑟 , … , β𝐺𝑘,𝑚
𝑟 , corresponding to each failure limit state, 

𝐺1(𝑿1), 𝐺2(𝑿2), … , 𝐺𝑘(𝑿𝑘).  Each reliability index value of the in-service asset, β𝐺𝑗,𝑚
𝑟 , is 

then explicitly assigned a condition rating using Equation (3.5), where CR9: β𝐺𝑗,𝑚
𝑟 ≥

β9
𝑟 , CR8: β9

𝑟 > β𝐺𝑗,𝑚
𝑟 ≥ β8

𝑟 , … , CR1: β2
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β1
𝑟 , CR0: β𝐺𝑗,𝑚 < β1

𝑟.  The temporal 

representation of Step 2 in Figure 3-4 illustrates that Step 2 can be carried out and evaluated 

at any point in time after Step 1, as many times as desired.  Since the measured reliability 

index, β𝐺𝑗,𝑚
𝑟 , corresponding to limit state function 𝐺𝑗(𝑿𝑗) is a metric that can be tracked 

using continuous, long-term data, asset managers can more regularly, if not continuously, 

track the condition of a structure, especially between biennial inspections. 

3.3  Illustrative Example: Telegraph Road Bridge 

The proposed reliability-based framework for tracking structural performance using long-

term monitoring data is applied to the Telegraph Road Bridge (TRB).  The TRB (Monroe, 
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MI) is a standard steel girder highway bridge with pin-and-hanger assemblies, included as 

integral structural elements in its design.  The bridge has been monitored continuously 

since 2011.  The American Association of State Highway and Transportation Officials 

load-and-resistance factor design (AASHTO-LRFD) of pin-connected assemblies assumes 

pin-and-hanger assemblies to be purely tensile elements whose design is governed by net-

section yielding (AASHTO 2007).  As such, the FHWA stipulates the condition ratings 

summarized in Table 3-1 for Michigan’s pin-and-hanger assemblies, which primarily 

consider deterioration resulting in section loss.  While pin-and-hanger assemblies are 

designed to be purely tensile elements (and evaluated as such using condition ratings), the 

safety and performance of pin-and-hanger assemblies on the bridge is a primary concern 

for bridge owners due to the well-documented history of bridge failures associated with 

corroding pin-and-hanger assemblies in the past (Fisher and Yuceoglu 1981, Juntunen 

1998, NTSB 1984, South et al. 1992).  These deterioration mechanisms are described in 

detail in Section 3.3.1 and include damage due to unexpected in-plane and out-of-plane 

bending, as well as damage due the expected axial deformation.  Consequently, this 

assembly stands to benefit greatly from the proposed framework because the structural 

Table 3-1. Summary of FHWA condition ratings for pin-and-hanger assemblies (MDOT 2016). 

Code Condition Description 

9 New No deficiencies that affect long term performance. 

8 Good Protective coatings are sound and functioning but with minor weathering. 

7 Good Full section properties and functions as designed with limited deterioration. 

6 Fair 
Full section properties and functions as designed with minor deterioration or 

superficial impact damage. 

5 Fair Moderate deterioration, minor section loss, and functions as designed. 

4 Poor 
Considerable deterioration affecting members with up to 10% section loss.  

Substantial impact damage may be present. 

3 Serious 
Considerable deterioration affecting members with up to 25% section loss.  

Threat to design capacity.   

2 Critical Member will not support design loads. 

1 Imminent failure Potential for superstructure failure. 

0 Failed Failed condition. 

 



 

102 

 

performance corresponding to the well-documented failure limit states not currently 

assessed by existing visual inspection-based condition ratings can be quantitatively 

tracked.  The remainder of Section 3.3 presents an overview of the pin-and-hanger detail, 

TRB instrumentation plan, and long-term data collection program.  The structural condition 

assessment of the in-service pin-and-hanger assembly on the TRB is presented and follows 

the methodology proposed in Section 3.2.  Section 3.4 and Section 3.5 apply Step 1 and 

Step 2 of the methodology to the illustrative example, respectively. 

3.3.1  Pin-and-Hanger Detail 

Several design advantages of pin-and-hanger bridges led to an increase in the frequency of 

their use in bridge design in the United States from 1940 to 1980.  Pin-and-hanger 

connections (Figure 3-5(a)) accommodate thermal expansion, reduce moments at supports, 

and reduce corrosion at bearing elements by locating expansion joints away from piers.  

However, over time, aging pin-and-hanger assemblies demonstrated a number of 

deficiencies that jeopardize structural safety.  While the design of hanger plates assumes 

that such connections are purely tensile elements (AASHTO 2007), corrosion-induced 

changes in the assembly boundary conditions can violate this assumption by introducing 

  

(a) (b) 

Figure 3-5.  (a) An in-service pin-and-hanger assembly; (b) the inside face of a hanger plate with 

severe corrosion-induced section loss.  
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stresses around the pins, leading to failure (Juntunen 1998, Nowak and Zhou 1990).  For 

example, the Mianus River Bridge (Greenwich, CT) collapsed in 1983 due to the failure of 

a non-redundant pin-and-hanger assembly that had corrosion-induced lateral displacement 

of the hanger plate resulting in pin shear (NTSB 1984).  In 1978 the deck of the St. Clair 

Avenue Bridge (French Village, IL) dropped by 19mm because several hanger plates 

fractured due to high in-plane bending stresses caused by corrosion-induced pin-plate fixity 

(Fisher and Yuceoglu 1981).  While the design and construction of pin-and-hanger bridges 

was discontinued in Michigan around 1983, many in-service bridges remain operational.  

Specifically, of the 2,914 steel beam bridges owned by the Michigan Department of 

Transportation (MDOT), around 25 percent have pin-and-hanger assemblies in their design 

(Jansson 2008).  

Deterioration of pin-and-hanger assemblies typically initiates when salt and water 

leak through expansion joints and corrode the pin-hanger connection.  Dirt and sand behind 

the plate can absorb moisture, thereby accelerating corrosion, especially at the bottom pin 

of the plate.  It can be difficult to identify the onset of corrosion induced pitting behind 

hanger plates at the plate-girder interface through visual inspection.  For example, the back 

side of a hanger plate taken out of service is shown in Figure 3-5(b).  It is evident that a 

significant amount of corrosion-induced section loss has occurred near the lower pin at the 

net-section area and propagates toward the gross-section area.  As a result of these 

challenges, nondestructive ultrasonic inspection often supplements visual inspection in 

order to better detect cracks and section loss in hanger plates (Clark et al. 1999, Graybeal 

et al. 2007, Moore et al. 2004).  Corrosion-induced damage typically yields three primary 

responses that can lead to failure: 1) partial, or complete fixity at the pin-plate interface 
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which increases both stress at the hanger plate net-section area and shear stress in the pin, 

2) displacement of the hanger plate towards the open end of the pin when coupled with 

transverse swaying of the span (common in skewed bridges), and 3) section loss that 

typically initiates at the net-section’s pin-plate interface (Juntunen 1998).  

3.3.2  Telegraph Road Bridge Instrumentation Plan and Data Collection Program 

The TRB is a skewed (33 degrees) steel and concrete highway bridge with pin-and-hanger 

assemblies that was constructed in 1973.  The bridge has three spans with a 20 cm concrete 

deck, seven girders, and carries three lanes (two lanes and one merging lane) of traffic on 

Michigan’s northbound Interstate 275.  Figure 3-6 provides information about the primary 

span dimensions and structural configuration.  The bridge consists of three spans, where 

the center span is suspended between the two end spans and is entirely supported by pin-

and-hanger assemblies.  The bridge has two pin-and-hanger assemblies at the two ends of 

each of the seven center span girders (i.e. 28 hanger plates in total).  Based on the 

documented degradation mechanisms listed in Section 3.3.1, strain gages are instrumented 

on a hanger plate located at the east end of the center span’s Girder 2 (Figure 3-6) to 

monitor stresses that could be induced by damage due to long-term deterioration and 

corresponding changes in plate boundary conditions.  Six Tokyo Sokki 120Ω uni-axial 

strain gages are installed on the hanger plate (Figure 3-7) in order to monitor the plate’s 

response corresponding to limit state functions associated with axial, in-plane bending, and 

out-of-plane bending stresses, and torsional forces applied to the hanger plate pins 

(O’Connor et al. 2017).  Strain gages are sampled at 100 Hz for 100 seconds every two 

hours using the Narada wireless sensor (Swartz et al. 2005) from June 2016 through May 

2017.  Monitoring data provides quantitative information about the loading history and 
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structural response of the plate.  Figure  3-8 provides a sample of the time series data 

collected at all six strain gage locations.  The peak strain corresponds to a truck crossing 

the bridge and is highlighted.  Some smaller responses are also observed in Figure 3-8 and 

likely correspond to cars that also load the bridge.  Peak strain values of truck events are 

extracted in order to study the extreme values of long-term strain measurements using the 

 

Figure 3-6.  Girder elevation including center and end span dimensions. 

 

   

(a) (b) (c) 

Figure 3-7.  (a) Strain gage layout with major dimensions; (b) expected behavior (i.e. axial 

deformation) and unexpected behavior (i.e. in-plane and out-of-plane bending) of the plate 

response; (c) strain gages installed on an instrumented TRB hanger plate. 
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Block Maxima Approach (Dey and Yan 2016).  Consequently, the response data collected 

at strain gage locations H1 through H6 are characterized by the Generalized Extreme Value 

(GEV) distribution, which has the following probability density function 

𝑓(𝑥) =
1

𝜅
∙ 𝑒𝑥𝑝 {− [1 + 𝜉 ∙ (

𝑥−𝜂

𝜅
)]
−
1

𝜉
} ∙ [1 + 𝜉 ∙ (

𝑥−𝜂

𝜅
)]
−1−

1

𝜉
                        (3.6) 

for 

1 + 𝜉 ∙
(𝑥−𝜂)

𝜅
> 0                                                     (3.7) 

Here, 𝜂 is denotes the location parameter, 𝜅 is the scale parameter, and 𝜉 ≠ 0 is the shape 

parameter.  Strain measurements for each 100-second interval of data collection are 

assumed to be independently and identically distributed because it only takes a vehicle 

approximately 2.2 seconds to cross the bridge when driving at the posted speed limit. 

3.4  Establish Reliability Index Thresholds on the TRB Pin-and-Hanger Assembly 

(Step 1)  

This section applies Step 1 to the illustrative example of the instrumented pin-and-hanger 

assembly on the TRB.  First, an overview of the development, calibration, and validation 

of an FE model of the TRB’s in-service pin-and-hanger assembly is presented.  Under load 

response histories informed by long-term monitoring data, physical deterioration specified 

by the condition ratings is then simulated using the FE model.  Output data extracted at the 

sensor locations of the FE model is used in a FORM analysis (Algorithm 3-1) to calculate 

the reliability index value thresholds, β𝑖
𝑟, associated with each condition rating.  This 

explicitly assigns a quantifiable level of safety and performance to each decision that is 

currently made in practice after inspection for the TRB’s pin-and-hanger assembly. 
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3.4.1  FE Model Development 

A high-fidelity FE model of the in-service, undamaged instrumented pin-and-hanger 

assembly is developed in ABAQUS (Hibbitt 2013).  The dimensions and material 

properties of the assembly are derived from original design drawings provided by MDOT 

and are used to inform the pin-and-hanger assembly’s configuration, which consists of two 

hanger plates, two pins, and two girders.  The hanger plates and girders are meshed using 

8-node linear brick reduced integration elements (C3D8R) and the pins are meshed using 

linear wedge elements (C3D6).  The entire assembly, including the plates, pins, and girders, 

 

Figure 3-8.  Time series data for all six strain gage locations collected during an event on May 28, 

2017.  The strain response produced by a passing truck is highlighted. 
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comprises of 60,612 elements.  The fully assembled and meshed model is shown in Figure 

3-9(a).  Since the interface at the pin-plate boundary at the upper and lower pins is integral 

to this study, the hanger plates and pins are partitioned to enable well-structured and 

symmetric meshing around this sensitive region (Figure 3-9(b)).  Additionally, the 

partitioned regions of the hanger plate surrounding the upper and lower pins are meshed 

with a denser grid than the rest of the assembly because these areas are subject to contact 

between the plates, pins, and girders, and undergo an increased rate of change in stress 

under applied loads.  Coulomb friction is introduced between components that undergo 

surface-to-surface contact.  The inner surface of the plate hole and outer surface of the pin 

are defined as the slave and master contact surfaces, respectively, experiencing a hard-

normal interaction, tangential friction interaction, and finite sliding.  The FE model serves 

two primary purposes.  First, the FE model validates the sensor instrumentation plan by 

confirming the influence of corrosion and unexpected bending, such as in-plane and out-

of-plane bending, on the sensor locations.  Second, as described in Step 1 of the 

methodology, the FE model plays an important role in quantifying the reliability index 

threshold values, β𝑖
𝑟, corresponding to each condition rating’s lower limit state by 

simulating physical deterioration.  

Three criteria of the undamaged pin-and-hanger assembly are assessed as a 

preliminary validation of the modeled pin-plate interaction when the assembly is treated as 

a purely tensile element.  First, the expected bridge dead load is derived from the 

engineering design drawings and applied to the girders in the FE model.  The stress at the 

FE model’s gross-section is confirmed in order to validate that the load transfers as 

expected between the modeled girders, pins, and hanger plates.  Second, the stress 
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concentration at the net-section area near the pin-plate interface of the model is compared 

to the theoretical stress concentration.  The expected stress concentration, 𝑘, is lower 

bounded by 𝑘 = 2.16 (Young and Budynas 2002) and upper bounded by 𝑘 = 2.50 (Pilkey 

2005) which correspond to open-hole and tight-fitting pin-loaded stress concentration 

values, respectively.  It is recommended to ignore stress concentrations when monitoring 

yielding at the net-section area of hanger plates (Jansson 2008).  The FE model complies 

with this recommendation because sensor location H4 is located far enough away from the 

 
 

(a) (b) 

  

(c) (d) 

Figure 3-9.  (a) Meshed FE model of pin-and-hanger assembly; (b) partitioned FE model of pin-

and-hanger assembly; sensitivity of strain to interface tangential friction at the proposed sensor 

locations for (c) in-plane bending and (d) out-of-plane bending. 

 



 

110 

 

pin that the stress concentrations fully dissipate at the sensor location.  Third, the first mode 

for out-of-plane bending of the modeled hanger plate is compared to results from 

experimental tests.  Impulse hammer tests are conducted manually on the TRB pin-and-

hanger assembly in the field during installation of the sensors.  Comparing the results of 

the three aforementioned criteria in Table 3-2, the FE model, analytical, and experimental 

results are in close agreement given that the boundary condition of the hanger plate is a 

partially fixed support in the out-of-plane direction. 

3.4.2  Sensing Instrumentation Plan Validation for Limit State Functions 

Following the preliminary FE model validation, the FE model is used to justify the sensor 

instrumentation plan proposed in Figure 3-7.  That is, the author validates that the proposed 

sensing strategy can measure the sensitivity of data-driven input parameters used in this 

illustrative study (i.e. random variables characterized by monitoring data that inform the 

net-section stress and pin shear stress limit states) to corrosion-induced progressive locking 

modeled by tangential friction.  In-plane and out-of-plane bending are simulated while the 

Table 3-2. FE model preliminary validation results. 

Validation step Analytical result FE result Experimental result 

Gross-section stress from dead 

load (MPa) 

22.1 22.1 N/A 

Net-section stress from dead 

load (MPa) 

95.8 (𝑘 = 2.16) – 111 (𝑘 = 2.50) 96.5 (𝑘 = 2.18) N/A 

First Mode (Hz) 105 – 240 175.2 189 

 

Table 3-3. Strain measurements collected at sensor locations H3 and H4 compared to FE model 

outputs after calibrating the pin-plate boundary conditions. 

GEV distribution 

parameter 

Axial force In-plane prescribed 

displacement 

H3 

(data) 

H3 

(model) 

H4 

(data) 

H4 

(model) 

Location parameter, 𝜂 11557 N 1.39∙(10-5) m 3.59 μɛ 3.59 μɛ 6.26 μɛ 6.27 μɛ 

Scale parameter, 𝜅 8271 N 7.17∙(10-5) m 2.56 μɛ 2.56 μɛ 4.80 μɛ 4.96 μɛ 

Shape parameter, 𝜉 0.16 5.14 0.16 0.16 0.31 0.31 
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interface tangential friction between the pin and plate is varied incrementally from μ = 0.1 

to μ = 1.0, where μ = 1.0 corresponds to complete pin-plate locking.  The strains extracted 

at the sensor locations of the FE model are centered at μ = 0.1 in order to evaluate changes 

in relative strain with respect to free rotation.  Based on the results in Figure 3-9(c)-(d), the 

net-section axial (H4) and in-plane (H1-H2) sensing configurations are sensitive to in-plane 

bending, while the net-section axial (H4) and out-of-plane (H5-H6) sensing configurations 

are most sensitive to out-of-plane bending under progressive corrosion-induced pin- plate 

locking (namely, increasing μ).  As expected, the gross-section axial sensing configuration 

shows little sensitivity to both in-plane and out-of-plane bending.  These results confirm 

that the sensing instrumentation plan can measure limit states that are a function of the 

structural response of any combination of axial deformation, in-plane bending, and out-of-

plane bending on the plate, and torsional forces applied to the plate pins with responses 

sensitive to changes in boundary conditions that are not considered during visual 

inspections (e.g., interface friction).  

3.4.3  FE Model Calibration to Reflect In-Service Structural Response Behavior 

Long-term monitoring data is used to calibrate the corrosion-induced locking (modeled as 

interface tangential friction, μ) at the pin-plate interfaces to reflect the boundary conditions 

of the in-service, undamaged pin-and-hanger assembly.  To accomplish this, monitoring 

data is first used to infer the live loads transferred to the in-service assembly during the 

one-year monitoring period.  Under these loads, the interface friction at the pin-plate 

interfaces is adjusted until the strain response at the sensor locations in the FE model match 

the responses characterized by the experimental monitoring data.  Since there should be 

little to no impact from in-plane or out-of-plane bending at sensor location H3 (i.e. the 
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gross-section area), strain measurements from sensor location H3 are used to estimate the 

axial live load applied to the pins.  The distribution of measured peak strain at sensor 

location H3 is shown in Figure 3-10.  Additionally, strain measurements from sensor 

locations H1 and H2 indicate that there is a small amount of in-plane bending in response 

to each event that must be considered if the true in-service behavior of the assembly is to 

be modeled.  Under the derived axial and in-plane loads directly modeled from the 

measured strain response at sensor locations H3, H1, and H2, the interface friction at the 

top, μtop, and bottom, μbot, pins is adjusted following convex optimization such that the 

strain output from the FE model at sensor location H4 matches the strain measurement data 

collected from sensor location H4 on the in-service bridge.  The distribution of measured 

peak strain at sensor location H4 is shown in Figure 3-10.  Static friction coefficients 

typically range from 0.1 to 0.8, which correspond to steel-on-steel lubricated and dry 

contact, respectively (Engineering Toolbox 2018).  Following this procedure, interface 

tangential friction values of μtop = 0.4 and μbot = 0.4 at the top and bottom pins, 

respectively, result in an accurate representation of the structural response of the in-service 

assembly.  Table 3-3 reflects these results.  As expected, the response at the gross-section 

(i.e. sensor location H3) is not sensitive to in-plane bending.  The distribution of the strain 

at sensor location  H4 of the FE model is in close agreement with the experimental data 

collected from the monitoring system at sensor location H4.  The small discrepancy in the 

distribution parameters is likely due to measurement noise and global effects on the 

boundary conditions that cannot be measured with the existing instrumentation plan. 
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3.4.4  Calculate Reliability Index Threshold Values 

Recall that the descriptions of physical deterioration in Table 3-1 provide 

quantitative information about the level of deterioration that is tolerable for each condition 

rating.  The FHWA condition ratings for pin-and-hanger assemblies are equivalently 

represented in Table 3-4 in terms of the bounds on the percent net-section loss.  Condition 

ratings 6 through 9 correspond to 0% section loss with increasing levels of superficial 

 

(a) 

 

(b) 

Figure 3-10.  Distributions of peak strain at sensor locations (a) H3 (gross-section) and (b) H4 

(net-section) with superimposed GEV fit. 
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deterioration.  As the section loss increases, the condition rating decreases and the 

reliability index values corresponding to the net-section yielding limit state decrease.  

These quantitative descriptions enable the quantification of the reliability index thresholds, 

β𝑖
𝑟, by providing sufficient information to model each condition rating and simulate the 

effect of deterioration on the demand using the FE model.  Output data extracted at the 

sensor locations of the FE model for each condition rating’s physical deterioration is used 

in a FORM analysis (Algorithm 3-1) to calculate the reliability index threshold values, β𝑖
𝑟, 

associated with each condition rating with respect to the net-section yielding limit state.  

The objective of this subsection is to calculate the reliability index threshold values, β𝑖
𝑟, 

which serve as a metric to continuously assess the condition of the asset with respect to a 

measured limit state function 𝐺𝑗(𝑿𝑗) and corresponding reliability index, β𝐺𝑗,𝑚
𝑟 .  This is 

reflected in Table 3-4, where each existing condition rating is bounded by reliability index 

threshold values, β𝑖
𝑟, and corresponds to a repair action (Estes and Frangopol 2001) to 

ensure safety (at a cost, 𝑐𝑖). 

Table 3-4. Updated representation of the FHWA condition ratings for pin-and-hanger assemblies 

to include the reliability index threshold values, β𝑖
𝑟, that bound each condition rating. 

Code % Section loss Condition Qualitative repair action Cost 

9 

0% + Superficial 

Damage 

β𝐺𝑗
𝑟 ≥ β9

𝑟 None 𝑐9 

8 β9
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β8
𝑟 None 𝑐8 

7 β8
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β7
𝑟 Minor maintenance 𝑐7 

6 β7
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β6
𝑟 Major maintenance 𝑐6 

5 > 0%,≪ 10% β6
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β5
𝑟 Minor repair 𝑐5 

4 ≫ 0%,≤ 10% β5
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β4
𝑟 Major repair 𝑐4 

3 > 10%,≤ 25% β4
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β3
𝑟 Rehabilitate 𝑐3 

2 > 25%,≤ 85% β3
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β2
𝑟 Replace 𝑐2 

1 
≥ 85% 

β2
𝑟 > β𝐺𝑗,𝑚

𝑟 ≥ β1
𝑟 Close bridge and evacuate 𝑐1 

0 β𝐺𝑗,𝑚
𝑟 < β1

𝑟 Beyond corrective action 𝑐0 
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The assumed net-section stress limit state function governing the pin-and-hanger 

assembly’s condition ratings is denoted 𝐺1(𝑿1), where 

𝐺1(𝑿1) = 𝐹𝑦 −
𝐷𝐿

𝐴𝑛
− 𝜀𝐻4 ∙ 𝐸                                           (3.8) 

Here, the distribution parameters for yield stress, 𝐹𝑦, and elastic modulus, 𝐸, are taken from 

literature (Hess et al. 2002).  Under the assumption that the deck and parapet weights are 

evenly distributed across the seven girders, the dead load, 𝐷𝐿, is estimated from 

engineering design drawings and the coefficient of variation is taken from literature 

(Nowak 1993).  The statistical parameters for the net-section area, 𝐴𝑛, are extracted from 

measured data.  Since corrosion-induced pitting and section loss typically initiate at the 

lower pin and move upward (for example, Figure 3-5(b)), it can be safely assumed that the 

gross-section area at the middle of the plate maintains its full section properties.  Since the 

gross-section area, 𝐴𝑔 = 80.6 cm2, remains constant, a ratiometric measure of strains from 

sensor locations H3 and H4 is used to characterize the net-section area, 𝐴𝑛, as 

𝐴𝑛 = 𝐴𝑔 ∙
ε𝐻3

ε𝐻4
                                                       (3.9) 

The random variable distribution parameters for the yield stress, 𝐹𝑦, elastic modulus, 𝐸, 

dead load, 𝐷𝐿, and net-section area, 𝐴𝑛, are provided in Table 3-5.   
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In order to calculate the reliability index threshold values, β𝑖
𝑟, using Equation (3.8), 

the output distributions of peak strain at sensor locations H3 and H4 of the FE model (i.e. 

ε𝐻3 and ε𝐻4) need to be  characterized for each condition rating’s level of physical 

deterioration.  Following the procedure outlined in Figure 3-11, first, model the physical 

deterioration described by CR𝑖 (Table 3-1) in the FE model.  Under these conditions, apply 

the axial loads derived in Section 3.4.3 (Table 3-3).  Next, characterize the GEV 

distribution random variable parameters of the output strain response data at sensor 

locations H3 and H4 in the FE model.  At this point, all random variable parameters 

necessary to inform 𝑿1 and evaluate the net-section stress limit state function (Equation 

(3.8)) are defined.  Use Algorithm 3-1 to calculate the reliability index threshold value, β𝑖
𝑟, 

 

Figure 3-11.  Process for modeling condition rating physical deterioration descriptions and 

calculating the corresponding reliability index threshold value, β𝑖
𝑟. 
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with respect to the net-section stress limit state function in Equation (3.8).  Repeat this 

procedure for all condition ratings, 𝑖 = 0,1, … ,9.  If the physical deterioration description 

for a condition rating is predominantly qualitative and not sufficiently quantitative to 

inform the FE model (e.g., condition ratings 6, 7, and 8 for pin-and-hanger  assemblies), a 

shape-preserving piecewise cubic interpolation of the values at neighboring known values 

can be used to interpolate the missing threshold values.  

The results of this procedure implemented on the instrumented TRB pin-and-

hanger assembly are illustrated in Figure 3-12.  Figure 3-12(a) plots the reliability index 

threshold values, β𝑖
𝑟, corresponding to twenty analyses in which section loss at the net-

section area of the FE model is increased incrementally from 0% to 95%.  Figure 3-12(b) 

provides a plot of the reliability index threshold values, β𝑖
𝑟, corresponding to each of the 

ten condition ratings (𝑖 = 0,1, … ,9) for pin-and-hanger assemblies.  These values, β𝑖
𝑟, in 

Figure 3-12(b) are used to populate the threshold values of β0
𝑟 through β9

𝑟 in Table 3-4.  

Table 3-5. Random variable distribution parameters used in the FORM analysis for Step 1. 

Random variable Mean       COV         Distribution type Source 

Yield stress, 𝐹𝑦 (MPa) 342       0.0890         Lognormal (Hess et al. 2002) 

Shear yield stress, 𝐹𝑣 (MPa) 205       0.0890         Lognormal (Hess et al. 2002) 

Elastic modulus, 𝐸 (GPa) 205       0.0179         Lognormal (Hess et al. 2002) 

Dead load, 𝐷𝐿 (kg) 19.5∙(103)       0.100         Normal 
Monitoring data, 

(Nowak 1993) 

Net-section area, 𝐴𝑛 (cm2) 41.2       0.0455         Normal Monitoring data 

Random variable 
Location 

parameter, η 

Scale 

parameter, ξ 

Shape 

parameter, κ 

Distribution 

type 
Source 

Gross-section strain, ε𝐻3 3.59 μɛ 2.56 μɛ 0.16 GEV Monitoring data 

Net-section strain, ε𝐻4 6.26 μɛ 4.80 μɛ 0.31 GEV Monitoring data 

In-plane-bending strain, 

εH1 − εH2 
1.90 μɛ 1.51 μɛ 0.15 GEV Monitoring data 
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The result in Figure 3-12(b) provides an explicit measure of the quantitative level of safety 

and performance that bridge decision makers (e.g., MDOT) currently use as thresholds for 

condition ratings to make asset management decisions for pin-and-hanger assemblies. This 

process also provides decision makers with a quantitative assessment metric to objectively 

reevaluate and improve the criteria that currently define condition ratings.     

 

(a) 

 

(b) 

Figure 3-12.  Reliability index values for (a) varying section loss, and (b) condition ratings. 
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3.5  Assessing the In-Service TRB Pin-and-Hanger Assembly Reliability (Step 2) 

Given the lower limit states established in Section 3.4, data collected from the in-service 

assembly can now be used to monitor any limit state and assign a condition rating to each 

limit state at any point in time.  To illustrate this concept, consider Figure 3-13, where 𝐷 

represents the domain of all types and magnitudes of damage that are deteriorating a pin-

and-hanger assembly.  These might include, for example, damage due to in-plane and out-

of-plane stresses that result from changes in boundary conditions, corrosion-induced 

locking at the pin-plate interface, and section loss at the net-section area.  Different limit 

state functions, denoted as 𝐺1(𝑿1) through 𝐺𝑘(𝑿𝑘), can be impacted by any or all types of 

deterioration, and result in respective condition ratings, β𝐺1,𝑚
𝑟  through β𝐺𝑘,𝑚

𝑟 .  The current 

safety and performance of a limit state is assigned to an existing condition rating based on 

its reliability index using Table 3-4, where the values β0
𝑟 through β9

𝑟 are shown in Figure 

3-12(b).  The following two subsections demonstrate the data-driven mapping of two 

distinct limit states of the TRB’s pin-and-hanger assembly into the quantitative condition 

ratings identified in Section 3.4.  

3.5.1  Monitoring Net-Section Stress of the In-Service Assembly 

Consider the net-section stress limit state function, 𝐺1(𝑿1), presented in Equation (3.8).  

As previously discussed in Section 3.4.2, the distribution parameters of the random 

variables for yield stress, 𝐹𝑦, elastic modulus, 𝐸, dead load, 𝐷𝐿, and net-section area, 𝐴𝑛, 

are provided in Table 3-5.  The net-section peak strain, ε𝐻3, and gross-section peak strain, 

ε𝐻4, GEV distribution parameters based on the monitoring data collected on the TRB 

during the one-year monitoring period are also provided in Table 3-5.  Implementing 



 

120 

 

FORM (Algorithm 3-1) with respect to the net-section stress limit state function, 𝐺1(𝑿1), 

for the instrumented hanger,  the reliability index, β𝐺1,𝑚
𝑟 , equals to 4.91.  As summarized 

in Table 3-6, this result indicates that the probability of failure for the measured limit state 

of the in-service assembly is equivalent to the probability of failure corresponding to 

condition rating 9 (Figure 3-12(b)), and no repair action is necessary.  In order to verify 

that FORM is sufficient, and that second-order reliability methods are not necessary to 

increase the accuracy of the approximation, the reliability index is also calculated using 

Monte Carlo methods.  The author concludes that it is justified to use FORM to estimate 

the probability of failure for this limit state function because the reliability index generated 

from the Monte Carlo simulation with 5(10)8 iterations is 4.90, which is within 0.2% of 

the FORM results. 

In order to highlight the importance of making decisions based on quantitative data 

rather than visual or ultrasonic inspection, once again consider net-section yielding as the 

failure mechanism.  The long-term monitoring system described in this chapter calculates 

condition ratings based on the net-section stress limit state function, 𝐺1(𝑿1).  It is important 

 

Figure 3-13.  Domain of entire damage profile is quantified by a single set of quantified condition 

ratings. 
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to note that due to the use of a sensing strategy that captures the targeted deterioration, use 

of data alone is sufficient to estimate β𝐺1,𝑚
𝑟 . Unlike in Step 1, Step 2 does not require 

assumptions on section loss nor pin-plate locking because the impact of those deterioration 

states are implicit to the measurements ε𝐻3 and ε𝐻4.  Visual and ultrasonic inspection might 

capture of the deterioration (such as section loss), it may fail to quantitatively assess other 

deterioration types (e.g., corrosion-induced locking at the pin-plate interface) and their 

impact on the safety and performance of the pin-and-hanger assembly.   

To illustrate this distinction, Figure 3-14 shows the results of seventy-seven FE 

model simulations following the process in Figure 3-11 for which both the percent section 

loss at the net-section and the interface friction coefficient of the lower pin-plate boundary 

are adjusted, where μ = 0.4 is the interface friction coefficient of the undamaged pin-and-

hanger assembly.  Consider the case where the hanger plate has 20% section loss and 

corrosion is modeled as μ = 1.0, which corresponds to complete pin-plate locking.  Based 

on the results illustrated in Figure 3-14, the influence of both section loss and interface 

 

Figure 3-14.  Reliability index values for varying percent section loss and interface friction 

coefficient for the net-section stress limit state. 
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friction are considered and the assembly has a reliability index of 4.30 (𝑃𝑓 = 8.54(10)−6) 

with respect to the net-section yielding limit state (Location B in Figure 3-14).  This 

reliability index corresponds to a condition rating of 2 based on Figure 3-12(b).  On the 

other hand, using traditional visual and ultrasonic inspection methods that, as specified by 

condition ratings, only consider section loss and cannot quantify locking, the same hanger 

plate with 20% section loss has a reliability index of 4.73 (𝑃𝑓 = 1.12(10)−6) and would 

be assigned a condition rating of 3 (Location A in Figure 3-14).  In addition to resulting in 

different condition ratings, the results derived through visual and ultrasonic inspection lead 

decision makers to believe that the probability of failure is 7.6 times lower than it actually 

is when corrosion-induced locking is considered.  Consequently, this case study illustrates 

that data-driven inspection using monitoring data captures the effects of damage that 

cannot be perceived using visual inspection when assessing structural performance and 

assigning condition ratings. 

3.5.2  Monitoring Pin Shear Stress of the In-Service Assembly 

When corrosion at the pin-plate interface initiates locking, the dead and live loads 

transferred from the suspended middle span to the pin result into two shear planes.  Full or 

partial fixity between the pin and plate introduces torsional stress, 𝜏, where 𝜏 = 𝑇𝑥/𝐽.  

Here, 𝑇 is the applied torque, 𝑐 is the outer radius of the pin, 𝐽 =
𝜋

2
∙ 𝑐4 is the polar moment 

of inertia, and x is the radial location.  The maximum shear, 𝜏𝑚𝑎𝑥, at the pin neutral axis 

Table 3-6. Structural condition monitoring of in-service assembly with respect to net-section stress 

and pin shear stress limit states. 

Measured Limit State FORM Result Condition Rating Repair Action 

Net-section stress, 𝐺1(𝑿1) 4.91 9 No repair action necessary 

Pin shear stress, 𝐺2(𝑿2) 6.80 9 No repair action necessary 
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due to the parabolically distributed shear stress resulting from axial load in the plate is 

𝜏𝑚𝑎𝑥 =
4

3
∙ 𝜏𝑎𝑣𝑔, where 𝜏𝑎𝑣𝑔 is the average shear stress.  A second limit state function, 

𝐺2(𝑿2), is formulated for failure due to corrosion-induced pin shear stress.  This limit state 

cannot be assessed using traditional visual inspection-based evaluation methods and is not 

considered by existing condition ratings.  The assumed limit state function 𝐺2(𝑿2) is 

𝐺2(𝑿2) = 0.6 ∙ 𝐹𝑦 −
𝐷𝐿+𝐿𝐿

𝐴𝑝𝑖𝑛
∙
4

3
−
𝑇∙𝑐

𝐽
= 0.6 ∙ 𝐹𝑦 −

𝐷𝐿+ε𝐻3∙𝐸∙𝐴𝑔

𝐴𝑝𝑖𝑛
∙
4

3
−
(ε𝐻1−ε𝐻2)∙𝐸∙𝑏∙ℎ

2∙𝑐

12∙𝐽
     (3.10) 

Here, the monitoring data collected at strain gage location H3 is used to estimate the live 

load, 𝐿𝐿, carried by the pin-and-hanger assembly, and the strain gages at locations H1 and 

H2 are used to determine the moment in the hanger near the pin connection, 𝑀, where 𝑇 =

𝑀.  Since ε𝐻1, ε𝐻2, and ε𝐻3 are dependent non-normal random variables, the Nataf 

Transformation (Nikolaidis et al. 2004) presented in Case 1.2 of Algorithm 3-1 is used to 

uncorrelated the random variables.  The shear yield stress, 𝐹𝑣 = 0.6 ∙ 𝐹𝑦, and has the same 

coefficient of variation as 𝐹𝑦 (Hess et al. 2002).  The distribution parameters necessary to 

define the random variables in 𝑿2 are provided in Table 3-5.  The area of the exposed pin 

face, 𝐴𝑝𝑖𝑛 = 127 cm2, gross-section area, 𝐴𝑔 = 80.6 cm2, thickness of the hanger plate, 𝑏 = 

3.18 cm, width of the hanger plate, ℎ = 25.4 cm and pin radius, 𝑐 = 6.35 cm are taken to be 

deterministic.  Implementing FORM (Algorithm 3-1) with respect to the pin shear stress 

limit state function, 𝐺2(𝑿2), for the instrumented hanger, the reliability index, β𝐺2,𝑚
𝑟 , 

equals 6.80.  As summarized in Table 3-6, this result indicates that the probability of failure 

for the measured limit state of the in-service assembly is equivalent to the probability of 

failure corresponding to condition rating 9 (Figure 3-12(b)), and no repair action is 

necessary. 
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3.6  Conclusions 

This chapter presents a method to explicitly link long-term monitoring data to condition 

ratings through a reliability-based framework.  In order to link structural monitoring data 

with existing condition ratings using reliability methods, a method is offered to quantify 

the reliability index values, β𝑖
𝑟, corresponding to the lower limit states described by 

condition ratings.  This explicitly assigns a quantifiable level of safety and performance to 

each decision that is currently made in practice after inspection.  Once the reliability index 

threshold values, β𝑖
𝑟, are established for a set of condition ratings, the data-driven reliability 

index, β𝑚
𝑟 , of the in-service asset (measured from monitoring data) can be monitored 

continuously and explicitly mapped to a condition rating to track the structural condition 

of the asset at any point in time and to trigger upkeep decisions based on condition ratings.  

The results in Figure 3-12 demonstrate that a human-independent, SHM-based operation 

can successfully quantify existing condition ratings and facilitate monitoring-based 

decision making using quantitative condition ratings.  This method creates a truly data-

driven decision-making strategy that is synergistic with the existing state of practice, 

eliminates risks associated with periodic (rather than continuous) inspections, and expands 

condition ratings to encompass the entire measurable domain of damage that may exist in 

a system or component.   

The proposed framework is successfully implemented with long-term monitoring 

data collected from the TRB, which is a standard steel girder highway bridge with pin-and-

hanger assemblies.  The application of the proposed framework to the TRB pin-and-hanger 

assembly demonstrates that long-term monitoring is necessary to assess the influence of 

diverse types of damage on the safety of a structural assembly.  For hanger plates, these 
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damage cases are historically tied to corrosion-induced locking at the pin-plate interface, 

and in-plane and out-of-plane bending.  To illustrate the importance of this finding, the 

author compares the reliability index value and corresponding condition rating derived 

from the proposed methodology to the conclusions drawn from existing visual and 

ultrasonic-based methods of inspection when the net-section stress limit state is considered 

with both section loss and locking at the pin-plate interface.  The results indicate that 

current inspection methods can fail to quantify and assess the impact that underlying 

damage and changes in boundary conditions can have on the safety and performance of the 

pin-and-hanger assembly.  As a result, deterioration that increases the probability of failure 

of a pin-and-hanger assembly can go unnoticed during condition rating inspections. 

Moving forward, the author will tie the proposed data-driven condition ratings more 

concretely to owners’ decisions by quantifying the cost implications of actions that are 

associated with each condition rating (i.e. 𝑐𝑖 in Table 3-4).  This will extend the existing 

reliability-based framework to a more general risk-based decision-making framework 

where each element has to be assessed for risk, where risk is based on both the probability 

of failure tied to condition ratings, as defined in this chapter, and consequences (i.e. cost 

of action or inaction).  Such an extension would enable stakeholders to concretely 

understand which asset management decisions are considered financially optimal given an 

asset’s current condition rating.  While decoupled from condition ratings, a preliminary 

theoretical basis for such a decision-making process has been investigated by Cappello et 

al. (Cappello et al. 2016) and Thöns (Thöns 2018).  The proposed method investigated in 

this chapter also sets the foundation for implementing better decision-making strategies 

based on risk—and even setting new, quantitatively informed criteria for condition ratings 
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themselves—without needing to change the already established, and nationally mandated 

bridge management system that is founded on condition ratings.  Future work will also 

include exploring the potential difficulties of extending the proposed methodology to other 

bridge components that require less straightforward analytical modeling. 
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CHAPTER 4  

Optimal Stochastic Data Collection and Transmission Policy for Remote Parameter 

Estimation in Wireless Sensing Architectures Under Resource and Hardware 

Constraints 

 

4.1  Introduction 

The proliferation of low-cost and miniaturized, yet high-performing, sensors has enabled 

sensing in the natural and built environments across a broad range of applications including 

in civil and transportation systems, health care (e.g., wearable devices), surveillance, 

industrial control, and environmental systems, to name a few.  Within these domains, 

sensing and computation have been aided by advancements in wireless communication that 

have lowered costs, improved communication latency, permitted varying protocols, and 

enabled cloud computing in wireless sensor networks (WSNs).  Despite these advances, 

the availability of energy remains a bottleneck in WSNs that do not have access to fixed 

power to enable continuous and reliable operation; such WSNs often rely on energy 

harvesting (EH) from the environment.  Consideration of harvested energy as a limited, 

and uncertain, resource makes the optimal operation of WSNs challenging.  This is 

especially pronounced in WSN architectures that are used to collect and transmit measured 

data to a remote estimator.  Since only a subset of the measured information can be 

wirelessly transmitted to the estimator for processing, there is an inherent tradeoff between 

the quality of the parameter estimates and the energy-constrained communication.  Such 

sensing architectures should transmit high-value data that increases the quality of the 
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parameter estimates at the expense of discarding low-value data.  This is in contrast to 

deterministic data collection methods such as schedule-based and “transmit-all” data 

collection methods.  In the context of this chapter, a deterministic schedule-based policy 

refers to a WSN architecture that initiates and terminates data collection periodically on a 

pre-defined and regular schedule, and a transmit-all policy refers to the attempted 

transmission of all measurements. 

 The problems of 1) energy-aware data transmission in WSNs under resource 

constraints and 2) controlled parameter estimation over WSNs, have gained considerable 

traction in the wireless communication and signal processing communities, respectively.  

Communication schemes for WSNs with wide-ranging energy recharging models and 

objectives have emerged in recent years to augment advances in the efficiency of energy 

harvesting hardware circuits and design.  These communication schemes improve upon 

schedule-based and transmit-all strategies by considering the availability of energy and 

differentiating the importance of measured data.  Seyedi and Sikdar (Seyedi and Sikdar 

2008) proposes a unified Markov-based model for energy harvesting nodes in WSNs that 

determines the state of the node based on the remaining energy supply and the state of the 

energy harvesting process.  In Uysal-Biyikoglu et al. (Uysal-Biyikoglu et al. 2002) the 

transmission of data packets is scheduled to minimize energy depletion subject to a delay 

constraint or deadline.  Other works explicitly account for the reward or value 

corresponding to the transmission of data where the primary objective is to maximize 

rewards.  For example, Michelusi et al. (Michelusi et al. 2012) derives a transmission 

policy characterized by a threshold vector that maximizes the average reward per slot for 

a slotted-time system with independent and identically distributed (i.i.d.) Bernoulli energy 
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arrivals under the condition that data arrivals are deterministic, the device can measure the 

exact energy level in its battery, and each data packet has a random importance value.  Lei 

et al. (Lei and Yates 2009) also introduces a transmission policy that maximizes the 

expected reward rate of data transmitted from a replenishable sensing architecture, but 

instead considers a continuous-time system.  However, the optimal policy derived in Lei 

et al. (Lei and Yates 2009) assumes that each collected data packet is transmitted 

immediately—meaning there is no storage buffer utilized—and implementation requires 

prefect knowledge of the state of charge (SoC).  Tang and Tan (Tang and Tan 2017) 

expands upon the work of Lei et al. (Lei and Yates 2009) by using a multi-layer Markov 

fluid queue model to account for the rejection of any data that arrives when a sensing node’s 

energy buffer is fully depleted.  Ozel et al. (Ozel at al. 2015) and Ulukus et al. (Ulukus et 

al. 2015) provide detailed reviews of recent advances in EH WSNs.  None of these 

representative works consider the quality of parameter estimates that are generated 

remotely from data collect according to their proposed scheduling policies. 

 Considerable work has also been carried out to develop controlled parameter 

estimation policies for WSNs.  One class of problems that is considered widely for optimal 

remote estimation in WSNs is that of event-based scheduling.  In event-based scheduling, 

a threshold or transmission criterion is derived that optimizes the tradeoff between 

communication rate and quality of the estimate (such as reducing the variance of parameter 

estimates).  Event-based policies control whether data is transmitted or discarded after the 

event occurs and the importance or value of the data is known.  Wu et al. (Wu et al. 2013) 

and You et al. (You et al. 2013) each propose an event-based scheduler for linear dynamical 

systems in which an appropriate event-triggering threshold is used to ensure quality 
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estimation under communication rate constraints; while Wu et al. (Wu et al. 2013) only 

assesses the estimator’s stability under the proposed schedule, You et al. (You et al. 2013) 

evaluates its performance.  Han et al. (Han et al. 2015) presents an event-based stochastic 

scheduling policy that reduces the transmission rate while preserving acceptable estimation 

accuracy when compared to the standard maximum likelihood estimator (MLE) with full 

measurements.  Shi et al. (Shi et al. 2011) proposes an event-based sensor scheduler that 

minimizes the average estimation error given a deterministic constraint governing the 

number of times the sensing architecture can communicate with the remote estimator over 

finite time horizon.  In these works, objective constraints (e.g., transmission rate) are 

assumed a priori, as opposed to being derived from stochastic energy harvesting and 

recharging models that account for a WSN’s primary resource and hardware constraints.  

Consequently, while the areas of optimal energy-aware data transmission in WSNs and 

controlled remote parameter estimation over WSNs are closely related, they remain 

decoupled in the existing literature. 

 This chapter reconciles these two problems and presents the derivation and 

implementation of an optimal data collection and transmission policy for remote parameter 

estimation in wireless sensing architectures under resource constraints.  The goal of the 

proposed event-based policy is to derive a single optimal threshold value 𝜏𝑠
∗ (with * 

denoting optimal) that maximizes the collected data’s average reward rate such that, given 

a measured process 𝑓(𝑦; 𝛉0) with true (but unknown) parameters 𝛉0 (where, in general, 

𝑓(𝑦; 𝛉) denotes the probability density function (PDF) of a random variable 𝑌 

parameterized by 𝛉 ∈ Θ in the parameter space Θ ⊂ ℝ𝑝), candidate data 𝑦 is stored and 

transmitted if and only if 𝑦 ≥ 𝜏𝑠
∗.  The event values assigned to candidate data, 𝑣 = ℎ𝑠(𝑦), 
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follow a Bernoulli distribution such that 𝑣 = 1 if 𝑦 ≥ 𝜏𝑠
∗ and 𝑣 = 0 if 𝑦 < 𝜏𝑠

∗.  Since the 

value of each transmitted measurement is equal to one, maximizing the collected data’s 

average reward rate is equivalent to maximizing the average transmission rate.  Under this 

policy, the missingness of non-transmitted data is nonignorable and depends on the 

observed values: it is known that data, 𝑦, is missing because either 1) the sensing 

architecture’s energy buffer is depleted and unable to measure the arriving message, 2) the 

sensing architecture measures the data and rejects it because 𝑦 < 𝜏∗, or 3) the message is 

already stored in the data buffer but discarded before it is transmitted because the energy 

buffer is fully depleted.  The subset of data successfully transmitted to the remote estimator 

according to the proposed optimal policy minimizes the variance of the measured process’ 

parameter component estimates given the system constraints.  The proposed policy 

accounts for system constraints imposed by the WSN architecture’s energy and data buffer 

sizes, stochastic models of energy and event arrivals, the value of data, and temporal death.  

Here, temporal death refers to the rejection of any incoming data and the loss of any data 

that is already in the data buffer that has not yet been transmitted when a sensing node’s 

energy buffer is fully depleted.  Because this policy is governed by a single threshold value, 

𝜏𝑠
∗, its implementation does not require knowledge of the SoC. 

 

Figure 4-1.  Event-based parameter estimation framework based on an energy recharging model. 
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Following the problem formulation in Section 4.2 and the derivation of the optimal 

threshold, 𝜏𝑠
∗, in Section 4.3, Section 4.4 introduces a modified likelihood function that 

accounts for the missingness of data that results from the implementation of the optimal 

policy.  We show that under regulatory conditions the modified MLE retains desirable 

properties that are characteristic of the standard full-information MLE (e.g., consistency, 

asymptotic normality) and minimizes the variance of parameter component estimates given 

the imposed constraints.  Finally, numerical results are presented in Section 4.5 in which 

the proposed theoretical framework is used to control data collection and transmission in 

an EH WSN architecture subject to stringent energy constraints imposed by the availability 

of incoming energy and battery size.  We illustrate that implementation of the optimal 

threshold produces the best possible estimate of the process parameters given the system 

constraints. 

This work differentiates itself from, and improves upon, existing literature in two 

notable ways.  First, the proposed policy accounts for—and places no restrictions on the 

size of—a WSN architecture’s data storage buffer.  Data transmission is often the most 

significant source of energy consumption in a wireless sensing node (Gastpar and Vetterli 

2005); accounting for the storage of (potentially) large amounts of data in a buffer that are 

communicated to the remote estimator in batch transmissions—as opposed to transmitting 

each value individually immediately upon collection (as seen in Seyedi and Sikdar 2008; 

Uysal-Biyikoglu et al. 2002; Michelusi et al. 2012; Lei and Yates 2009; Tang and Tan 

2017)—leads to significant gains in the transmission rate.  Second, to the best of the 

author’s knowledge this is the first chapter to derive a stochastic policy that governs data 

collection and transmission with the purpose of explicitly linking optimal remote parameter 
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estimation to a rigorous stochastic energy recharging model that accounts for all significant 

hardware constraints. 

4.2  Problem Formulation 

The proposed framework guiding the energy-aware stochastic scheduling policy for remote 

parameter estimation discussed herein comprises of a transmission subsystem and a remote 

parameter estimator (Figure 4-1).  Within the transmission subsystem, a sensing 

architecture measures a process with true parameters, 𝛉0.  A binary value, 𝑣 ∈ {0,1}, is 

assigned to each realization of the measured process, 𝑦, through the function 𝑣 = ℎ𝑠(𝑦) 

such that 

𝑣 = ℎ𝑠(𝑦) = {
0, if 𝑦 < 𝜏𝑠

∗

1, if 𝑦 ≥ 𝜏𝑠
∗                                              (4.1) 

If 𝑣 = 0 the candidate data 𝑦 is discarded and if 𝑣 = 1 the candidate data 𝑦 is stored in the 

data buffer, regardless of the SoC of the energy buffer.  Once the data buffer is full, all 

stored data (denoted by the vector 𝚲s) is communicated to the remote parameter estimator 

in a single batch transmission.  The subscript 𝑠 = 1,2, … , 𝑠𝑡 is introduced herein as an index 

to indicate that data collected and transmitted in batch 𝑠, 𝚲s, corresponds to the optimal 

threshold, 𝜏𝑠
∗, where 𝑠 = 1 represents the first batch transmission after monitoring initiates 

and 𝑠 = 𝑠𝑡 represents the most recent batch transmission.  The proposed model utilizes 

batch transmission because the energy overhead of packet transmission is relatively high 

regardless of the payload size (Han et al. 2015).  If the energy buffer is fully depleted at 

any point in time, temporal death occurs; the sensing node shuts down, all stored data is 

discarded, and all candidate data that arrive when the sensing node is powered down are 

rejected.  Upon receiving the collected data, 𝚲𝑠, the remote parameter estimator updates 
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the maximum likelihood estimate, 𝛉̂𝑠+1, recalculates the optimal threshold based on the 

updated estimate, and returns the updated threshold to the sensing node.  When 𝑠 = 1 (at 

monitoring initiation), the prior estimate is selected by the user, whereas the subsequent 

estimates, 𝛉̂𝑠 for 𝑠 = 2,3, … , 𝑠𝑡, used to calculate the optimal threshold for period 𝑠 are the 

maximum likelihood estimates calculated from the previous period.  Given this event-

based parameter estimation framework, the goal is to derive the unique optimal threshold 

value, 𝜏𝑠
∗, that maximizes the collected data’s average transmission rate given a WSN 

architecture’s energy and data buffer sizes, stochastic models of energy and event arrivals, 

the value of data, and consideration of temporal death.  Recall from Equation (4.1) that 

maximizing the expected transmission rate is equivalent to maximizing the expected 

reward rate because the reward (or value) of each transmitted measurement is one. 

4.2.1  Transmission Subsystem Model 

Consider a replenishable sensing architecture with finite-size energy and data storage 

buffers.  While the system has a continuous state space (i.e., remaining energy) and a 

continuous parameter space (i.e., time), the state space is approximately modeled as a 

discrete state space.  Let 𝑋(𝑡) ∈ {0,1, … ,𝑁 + 𝑘 − 1} be a finite continuous-time Markov 

chain with 𝑁 + 𝑘 states as shown in Figure 4-2, where 𝑘 is the number of candidate data 

measurements the storage buffer can hold.  For 𝑋(𝑡) = 𝑘 − 1 ≤ 𝑛 ≤ 𝑁 + 𝑘 − 1, the state 

at time 𝑡, 𝑋(𝑡) = 𝑛, represents the remaining energy which can support the transmission 

of 𝑛 − (𝑘 − 1) data packets.  Given the maximum capacity of the finite-size energy storage 

buffer is 𝐸𝑚𝑎𝑥 and the amount of energy required to transmit the full data buffer of 𝑘 values 

is 𝐸𝑇 (this includes operational overhead of the  embedded sensing architecture), then 𝑁 =
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⌊
𝐸𝑚𝑎𝑥∙𝑘

𝐸𝑇
⌋ where ⌊𝑥⌋ is an operator rounding 𝑥 to the nearest integer less than 𝑥 for 𝑥 > 0.  

This implies that the energy necessary for the batch transmission of 𝑘 values is divided 

equally among the 𝑘 stored values and “spent” as soon as each value is accepted and stored 

(i.e., the state transitions from 𝑋(𝑡) = 𝑛 to 𝑋(𝑡) = 𝑛 − 1).  In reality, the energy necessary 

to transmit all 𝑘 values in the data buffer is spent all at once during the single batch 

transmission once the data buffer is full, not incrementally as each value is collected.  This 

modelling assumption is justified because the proposed optimal policy is independent of 

the current SoC, meaning that implementation of the proposed policy does not require 

 

Figure 4-2.  Markov chain rate transition diagram representing the energy renewal system. 

 

 

Figure 4-3.  Comparison between the state transitions modeled by the proposed Markov chain and 

the state of charge. 
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continuous measurement of the SoC to control the event-based decision making (i.e., 

accept or reject the candidate data).  Additionally, let ℓ denote the number of values stored 

in the data buffer at time 𝑡.  When the data buffer is empty ℓ = 0, and when it is full ℓ = 𝑘 

and all data is transmitted.  Upon each batch transmission when ℓ = 𝑘, the modeled current 

state 𝑋(𝑡) = 𝑛 is always equal to the actual state corresponding to the SoC.  As long as 

𝑋(𝑡) ≠ 0 ≤ 𝑛 ≤ 𝑘 − 1 upon transmission when ℓ = 𝑘, then the transmission is successful.  

If 𝑋(𝑡) = 0 ≤ 𝑛 ≤ 𝑘 − 1 upon transmission when ℓ = 𝑘, the energy buffer runs out of 

energy and all data in the data buffer is discarded.  Consequently, the Markov chain used 

to represent the energy renewal system and the actual physical model will have the same 

steady-state result.  This is illustrated in Figure 4-3.  Figure 4-3 serves as a representative 

example and compares the state transitions modeled by the Markov chain and the actual 

state of charge.  As expected, the modeled state is always equal to the state of charge after 

every batch transmission.  Figure 4-4 provides an overview of the aforementioned key 

components of the transmission subsystem and illustrates the process for either storing and 

transmitting data, storing and later discarding data due to temporal death, rejecting data 

according to the optimal policy, or rejecting data due to temporal death. 

 Candidate data, 𝑦, arrives as a memoryless Poisson process with rate 𝜆 (events per 

unit time).  The energy storage buffer recharges based on arriving energy which arrives as 

a Poisson process with rate β (energy level per unit time).  If 𝑋(𝑡) = 𝑘 ≤ 𝑛 ≤ 𝑁 + 𝑘 − 1 

∀ℓ or 𝑋(𝑡) = 2 ≤ 𝑛 < 𝑘 for ℓ < 𝑘, the state transitions from 𝑛 to 𝑛 − 1 when candidate 

data is collected and stored.  Here, the transition rate from state 𝑛 to state 𝑛 − 1 is 𝛼𝑠 = 𝜆 ∙

𝑃[𝑦 ≥ 𝜏𝑠
∗] = 𝜆 ∙ 𝐹̅(𝜏𝑠

∗; 𝛉̂𝑠) where 𝐹̅(∙) denotes the complementary cumulative distribution 

function (CDF).  The expected reward corresponding to the optimal threshold, 𝜏𝑠
∗, is 𝑅𝑠 =
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𝑃[𝑦 ≥ 𝜏𝑠
∗].  Formulating the reward process as a discrete-time Markov chain in which state 

transitions are made at infinitesimal time steps, Δ, the expected reward during each time 

step is 𝜆 ∙ Δ ∙ 𝑅𝑠 for states 1 ≤ 𝑛 < 𝑘 − 1 and 𝑘 − 1 < 𝑛 ≤ 𝑁 + 𝑘 − 1, and 𝜆 ∙ Δ ∙
𝑘−1

𝑘
∙ 𝑅𝑠 

for state 𝑛 = 𝑘 − 1., where 𝜆 ∙ Δ is the probability that an event will occur during the next 

 

Figure 4-4.  Transmission subsystem highlighting key components as well as the possible terminal 

conditions for candidate data. 
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time step, Δ.  The time step, Δ, is assumed to be so small that at most one event can occur 

during the time step.  A cost is incurred when the energy storage buffer is fully depleted 

and enters state 𝑛 = 0 because all stored data is discarded when the sensing node shuts 

down.  Based on the method of discretization of the finite-size battery—and consistent with 

the Markov chain in Figure 4-2—a state transition into state 𝑛 = 0 can only occur when 

ℓ = 𝑘, meaning that if the sensing architecture shuts down because there is not sufficient 

energy to complete the batch transmission, then it is known that 𝑘 messages are lost.  When 

this happens, the expected amount of time spent in state 𝑛 = 0 is 
1

β
 (or 

1

β∙Δ
 time steps).  If 

we denote the expected cost incurred during a single time step, Δ, as 𝐶, then the expected 

total cost incurred in state 𝑛 = 0 over time period 
1

β
 is 

1

β∙Δ
∙ 𝐶.  The total expected cost 

incurred during the sojourn time in state 𝑛 = 0 should equal the expected loss of the reward 

that would have been gained by the 𝑘 discarded values that were discarded when the energy 

buffer was depleted.  As a result, 

𝐶 = −𝑘 ∙ β ∙ Δ ∙
𝑅𝑠

𝑃[𝑦≥𝜏𝑠
∗]

                                               (4.2) 

where 
𝑅𝑠

𝑃[𝑦≥𝜏𝑠
∗]

 is the conditional expected value of a transmitted realization of the measured 

process; 𝐶 is not a function of 𝜏𝑠
∗ because 

𝑅𝑠

𝑃[𝑦≥𝜏𝑠
∗]
= 1 given the mapping between candidate 

data and value in Equation (4.1).  Given the expected reward during each time step over 

states 1 ≤ 𝑛 ≤ 𝑁 + 𝑘 − 1 and the expected cost incurred during each time step in state 

𝑛 = 0, the reward vector is 

𝒓𝑠(𝑁+𝑘)x1 = 𝜆 ∙ Δ ∙ [
𝐶

𝜆∙Δ
,   𝑅𝑠 ∙ 𝒆1x(𝑘−2) ,   

𝑘−1

𝑘
∙ 𝑅𝑠,   𝑅𝑠 ∙ 𝒆1x𝑁]

𝑇
                  (4.3) 
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The transition matrix corresponding to the Markov chain in Figure 4-2 is 

𝑷𝑠(𝑁+𝑘)x(𝑁+𝑘)=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛾0 0 0 0  ⋯ 0 0 0 β 0 ⋯ 0 0 0 0
𝛼𝑠 𝛾1 β 0  ⋯ 0 0 0 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

2
𝛼𝑠∙

1

2
𝛾2 β  ⋱ 0 0 0 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

3
0 𝛼𝑠∙

2

3
𝛾3  ⋱ 0 0 0 0 0 ⋯ 0 0 0 0

⋮ ⋮ ⋱ ⋱  ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

𝛼𝑠∙
1

𝑘−3
0 0 0  ⋯ 𝛾𝑘-3 β 0 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

𝑘−2
0 0 0  ⋯ 𝛼𝑠∙

𝑘−3

𝑘−2
𝛾𝑘-2 β 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

𝑘
0 0 0  ⋯ 0 𝛼𝑠∙

𝑘−2

𝑘
𝛾𝑘-1 β 0 ⋯ 0 0 0 0

0 0 0 0  ⋯ 0 0 𝛼𝑠 𝛾𝑘 β ⋱ 0 0 0 0
0 0 0 0  ⋯ 0 0 0 𝛼𝑠 𝛾𝑘+1 ⋱ 0 0 0 0
⋮ ⋮ ⋮ ⋮  ⋱ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0  ⋯ 0 0 0 0 0 ⋯𝛾𝑁+𝑘-4 β 0 0
0 0 0 0  ⋯ 0 0 0 0 0 ⋯ 𝛼𝑠 𝛾𝑁+𝑘-3 β 0
0 0 0 0  ⋯ 0 0 0 0 0 ⋯ 0 𝛼𝑠 𝛾𝑁+𝑘-2 β
0 0 0 0  ⋯ 0 0 0 0 0 ⋯ 0 0 𝛼𝑠 𝛾𝑁+𝑘-1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∙ Δ  

(4.4) 

where Δ is sufficiently small such that the self-transitions (i.e., from state 𝑛 to 𝑛) are 𝑃𝑛,𝑛 ≥

0.  Here, 

𝛾𝑛 =

{
 
 
 
 

 
 
 
 
1

∆
− β,                                for                                      𝑛 = 0

1

∆
− β − 𝛼𝑠,                       for                                     𝑛 = 1

1

∆
− β − 𝛼𝑠,                       for                      2 ≤ 𝑛 < 𝑘 − 1

1

∆
− β − 𝛼𝑠∙

𝑘−1

𝑘
,              for                             𝑛 = 𝑘 − 1

1

∆
− β − 𝛼𝑠,                       for             𝑘 ≤ 𝑛 ≤ 𝑁 + 𝑘 − 2

1

∆
− 𝛼𝑠,                               for                     𝑛 = 𝑁 + 𝑘 − 1

  

The goal is to derive an optimal threshold vector, 𝝉𝑠
∗
(𝑁+𝑘−1)x1

= 𝜏𝑠
∗ ∙ 𝒆 —where 𝒆 

is a vector of ones—that is optimal in the sense that the policy maximizes the recurrent 

class’ average reward rate (i.e., average transmission rate) given the recharge rate, β, 

candidate data arrival rate, 𝜆, the size of the energy and data buffers, 𝑁 and 𝑘, respectively, 
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and a prior estimate of the estimated process parameters, 𝛉̂1.  This entails calculating the 

value of a single optimal threshold value, 𝜏𝑠
∗, such that regardless of the current state, 

𝑋(𝑡) = 𝑛 for states 1 ≤ 𝑛 ≤ 𝑁 + 𝑘 − 1, it is optimal to transmit data if and only if the 

candidate value 𝑦 is greater than or equal to 𝜏𝑠
∗.  Note that we are able to evaluate the 

infinite horizon problem discussed herein because we are considering the average reward 

rate. 

4.3  Deriving the Optimal Data Collection and Transmission Policy 

4.3.1  Expected Aggregate Reward 

For the Markov chain under consideration, let the aggregate expected reward be denoted 

𝒗𝑠(𝑁+𝑘)x1 = 𝒓𝑠 + 𝑷𝑠 ∙ 𝒓𝑠 +⋯+ 𝑷𝑠
𝑚−1 ∙ 𝒓𝑠 = ∑ 𝑷𝑠

ℎ ∙ 𝒓𝑠
𝑚−1
ℎ=0                     (4.5) 

where 𝒓𝑠 and 𝑷𝑠 are defined in Equation (4.3) and Equation (4.4), respectively.  Since 

Equation (4.5) does not have a limit as 𝑚 → ∞, we introduce a relative-gain vector, 𝒘, 

which has a limit given by 

𝒘(𝑁+𝑘)x1 = 𝑙𝑖𝑚
𝑚→∞

[𝒗𝑠 −𝑚 ∙ 𝑔𝑠 ∙ 𝒆 ] = 𝑙𝑖𝑚
𝑚→∞

[∑ (𝑷𝑠
ℎ − 𝒆 ∙ 𝝅𝑠) ∙ 𝒓𝑠

𝑚−1
ℎ=1 ]             (4.6) 

Here, 𝑔𝑠 ∙ 𝒆 is the steady-state reward for the Markov chain’s recurrent class (where 𝑔𝑠 ∙

𝒆 = lim
𝑚→∞

𝑷𝑠
𝑚 ∙ 𝒓𝑠 = 𝒆 ∙ 𝝅𝑠 ∙ 𝒓𝑠) and 𝝅𝑠 is the steady-state vector (i.e., 𝝅𝑠 = 𝝅𝑠 ∙ 𝑷𝑠).  A 

proof for the existence of the limits in Equation (4.6) can be found in Gallager (Gallager 

2013).  There is certainly a single unique steady-state vector, 𝝅𝑠, for the Markov chain 

shown in Figure 4-2 because the Markov chain has finite states and is ergodic. 
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Due to the complexity of calculating 𝒘 from Equation (4.6) when there are a large 

number of states, we multiply both sides of Equation (4.6) by the transition matrix, 𝑷𝑠, to 

get the following set of value-determination equations 

𝑷𝑠 ∙ 𝒘 = 𝑙𝑖𝑚
𝑚→∞

∑ (𝑷𝑠
ℎ − 𝒆 ∙ 𝝅𝑠) ∙ 𝒓𝑠

𝑚
ℎ=0 − (𝑷𝑠

0 − 𝒆 ∙ 𝝅𝑠) ∙ 𝒓𝑠 = 𝒘− 𝒓𝑠 + 𝑔𝑠 ∙ 𝒆         (4.7) 

Since there are 𝑁 + 𝑘 equations and 𝑁 + 𝑘 + 1 unknowns in Equation (4.7) and only the 

relative values of 𝒘 are important, one component of 𝒘 can be set to zero.  The relative-

gain vector, 𝒘, then satisfies the equation 𝒘+ 𝑔𝑠 ∙ 𝒆 = 𝒓𝑠 + 𝑷𝑠 ∙ 𝒘 with 𝑤0 = 0 and has 

a single unique solution.  Analytically, the objective is to determine the unique optimal 

threshold value, 𝜏𝑠
∗, that maximizes the steady-state reward, 𝑔𝑠, in Equation (4.7). 

4.3.2  Policy Improvement 

Howard’s Policy Improvement algorithm is used to determine the necessary and sufficient 

conditions that must be imposed on the value-determination equations in Equation (4.7) to 

derive the optimal policy that maximizes the average reward rate (Howard 1960).  The use 

of Howard’s Policy Improvement algorithm has been used widely in literature, such as in 

Lei et al. (Lei and Yates 2009).  Howard’s Policy Improvement algorithm consists of two 

primary stages which are applied sequentially and iteratively: the value-determination 

stage (Step 1) and the policy-improvement stage (Step 2 and Step 3).  This procedure is 

outlined in Algorithm 4-1.  Section 4.3.2.1  and Section 4.3.2.2 carry out Algorithm 4-1 

for the energy renewal system under consideration in this chapter. 
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4.3.2.1  Value Determination for the Energy Renewal System 

Starting with an arbitrary policy, 𝝉𝑨 = 𝜏𝐴 ∙ 𝒆, and implementing Equation (4.7) we get the 

following set of value determination equations 

𝒘𝐴 + 𝑔𝐴 ∙ 𝒆 = 𝒓𝑠 + 𝑷𝑠 ∙ 𝒘
𝐴                                          (4.10) 

For 𝑛 = 0:  

𝑔𝐴 = 𝐶 + β ∙ ∆ ∙ 𝑤𝑘
𝐴                                              (4.10a) 

For 𝑛 = 1:  

𝑤2
𝐴 +

𝜆

β
∙ (𝑅𝑠 −

𝐶

𝜆∙Δ
−
𝛼𝑠

𝜆
∙ 𝑤1

𝐴) = 𝑤1
𝐴 +𝑤𝑘

𝐴                             (4.10b) 

Algorithm 4-1.  Howard’s Policy Improvement algorithm. 

Step 1: 

Start with an arbitrary policy, 𝝉𝐴 = [𝜏𝐴, 𝜏𝐴, … , 𝜏𝐴]𝑇, and calculate 𝒘𝐴 and 𝑔𝐴 from Equation 

(7). 

Step 2: 

Evaluate an alternate policy, 𝝉 = [𝜏, 𝜏, … , 𝜏]𝑇, by defining a contraction mapping 𝑇: ℝ𝑛 → ℝ𝑛 

as (Gedergruen et al. 1978) 

𝑇(𝝉)𝒘𝐴 = 𝒓𝑠(𝝉) + 𝑷𝑠(𝝉) ∙ 𝒘
𝐴                                           (4.8) 

Step 3: 

An optimal policy is achieved when, for all policies 𝝉, 

𝑇(𝝉)𝒘∗ = 𝒓𝑠(𝝉) + 𝑷𝑠(𝝉) ∙ 𝒘
∗ ≤ 𝑇(𝝉𝑠

∗)𝒘∗ = 𝒓𝑠(𝝉𝑠
∗) + 𝑷𝑠(𝝉𝑠

∗) ∙ 𝒘∗               (4.9) 
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For 2 ≤ 𝑛 < 𝑘 − 1: 

𝑤𝑛+1
𝐴 +

𝜆

β
∙ {𝑅𝑠 −

𝐶

𝜆∙Δ
−
𝛼𝑠

𝜆
∙ [𝑤𝑛

𝐴 − (1 −
1

𝑛
) ∙ 𝑤𝑛−1

𝐴 ]} = 𝑤𝑛
𝐴 +𝑤𝑘

𝐴             (4.10c) 

For 𝑛 = 𝑘 − 1: 

𝜆

β
∙ [𝑅𝑠 −

𝐶

𝜆∙Δ
−
𝛼𝑠

𝜆
∙ (
𝑘−1

𝑘
∙ 𝑤𝑘−1

𝐴 −
𝑘−2

𝑘
∙ 𝑤𝑘−2

𝐴 )] = 𝑤𝑘−1
𝐴                   (4.10d) 

For 𝑘 ≤ 𝑛 < 𝑁 + 𝑘 − 1: 

𝑤𝑛+1
𝐴 +

𝜆

β
∙ [𝑅𝑠 −

𝐶

𝜆∙Δ
−
𝛼𝑠

𝜆
∙ (𝑤𝑛

𝐴 −𝑤𝑛−1
𝐴 )] = 𝑤𝑛

𝐴 +𝑤𝑘
𝐴                    (4.10e) 

For 𝑛 = 𝑁 + 𝑘 − 1: 

𝜆

β
∙ [𝑅𝑠 −

𝐶

𝜆∙Δ
−
𝛼𝑠

𝜆
∙ (𝑤𝑁+𝑘−1

𝐴 −𝑤𝑁+𝑘−2
𝐴 )] = 𝑤𝑘

𝐴                         (4.10f) 

4.3.2.2  Policy Iteration for the Energy Renewal System 

We define a contraction mapping 𝑇: ℝ𝑛 → ℝ𝑛 (Equation (4.8)) to evaluate an alternate 

policy, 𝝉.  Since an optimal policy is achieved when, for all policies 𝝉, Equation (4.9) 

holds, then 

[𝑇(𝝉)𝒘∗]′ = 0                                                   (4.11) 

at 𝝉 = 𝝉𝑠
∗, where (∙)′ denotes the derivative with respect to 𝜏.  The necessary and sufficient 

conditions imposed by Howard (Howard 1960) are characterized by Equation (4.11) and 

imposed on the value-determination equations in Equation (4.10).  Because the optimal 

policy must be a function of a single threshold value, 𝜏𝑠
∗, carrying out the policy iteration 

stage is complicated by the fact that all 𝑁 + 𝑘 equations described by Equation (4.10) have 

a common dependency on 𝜏𝐴.  To simplify the value-determination equations, we 
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consolidate Equation (4.10e) and Equation (4.10f) into a single equation using backward 

recursion from the terminal condition in Equation (4.10f) such that 𝑤𝑘
𝐴 is only a function 

of 𝑤𝑘−1
𝐴 , 𝜏𝐴, and known inputs, where 

𝑤𝑘
𝐴 = [

𝜆

𝛼𝑠
∙ (𝑅𝑠 −

𝐶

𝜆∙Δ
) +

𝑤𝑘−1
𝐴

∑ (
β

𝛼𝑠
)𝑁−1

𝑗=0

𝑗] ∙ [
1

∑ (
β

𝛼𝑠
)𝑁−1

𝑗=0

𝑗 +
β

𝛼𝑠
]

−1

                        (4.12) 

This reduces Equation (4.10) from 𝑁 + 𝑘 equations to the 𝑘 equations shown in Equation 

(4.13), where 𝑤𝑘
𝐴 can be solved for explicitly as a function of only 𝜏𝑠

𝐴 and known input 

parameters. 

[
 
 
 
 
 
 
 
 
 
 
𝛼𝑠 + β −β 0 ⋯ 0 0 β

−𝛼𝑠 ∙
1

2
𝛼𝑠 + β −β ⋱ 0 0 β

0 −𝛼𝑠 ∙
1

3
𝛼𝑠 + β ⋱ 0 0 β

⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ 𝛼𝑠 + β −β β

0 0 0 ⋱ −𝛼𝑠 ∙
𝑘-2

𝑘
𝛼𝑠 ∙

𝑘-1

𝑘
+ β 0

0 0 0 ⋯ 0 −
1

∑ (
β

𝛼𝑠
)𝑁−1

𝑗=0

𝑗

1

∑ (
β

𝛼𝑠
)𝑁−1

𝑗=0

𝑗 +
β

𝛼𝑠
]
 
 
 
 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
𝑤1
𝐴

𝑤2
𝐴

𝑤3
𝐴

⋮
𝑤𝑘−2
𝐴

𝑤𝑘−1
𝐴

𝑤𝑘
𝐴 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 𝜆 ∙ 𝑅𝑠 −

𝐶

Δ

𝜆 ∙ 𝑅𝑠 −
𝐶

Δ

𝜆 ∙ 𝑅𝑠 −
𝐶

Δ

⋮

𝜆 ∙ 𝑅𝑠 −
𝐶

Δ

𝜆 ∙
𝑘-1

𝑘
∙ 𝑅𝑠 −

𝐶

Δ
𝜆

𝛼𝑠
∙ (𝑅𝑠 −

𝐶

𝜆∙Δ
)]
 
 
 
 
 
 
 
 
 
 

  

(4.13) 

Returning to Equation (4.11), we note that since the optimal threshold is the same across 

all states, we need only calculate the optimal threshold such that one component of 

Equation (4.11) equals zero.  Consequently, 

[𝑇(𝝉)𝑤0
∗]′ = 𝐶 + β ∙ ∆ ∙ (𝑤𝑘

𝐴)
′
= 0                                    (4.14) 

where 𝑤𝑘
𝐴 comes directly from Equation (4.13).  An explicit solution for the optimal 

threshold, 𝜏𝑠
∗, is calculated from Equation (4.14); further simplification of the expression 

for the optimal threshold, 𝜏𝑠
∗, requires knowledge of the characterization of 𝑓(𝑦; 𝛉0) (i.e., 
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the process distribution type).  It follows that the optimal policy calculated from Equation 

(4.14) has a maximum average reward rate of 
𝐶

Δ
+ β ∙ 𝑤𝑘

∗. 

4.4  Remote Parameter Estimation (MLE) Using a Modified Likelihood Function 

The optimal policy derived in Section 4.3 maximizes the expected transmission rate of 

candidate data measured from a process, 𝑓(𝑦; 𝛉0).  If there is unlimited energy supplied to 

the WSN—meaning all candidate data are transmitted—then the standard likelihood 

function given full information is 

𝐿(𝛉) = ∏ [∏ 𝑓(Λ𝑠,𝑖; 𝛉)
𝑘
𝑖=1 ]

𝑠𝑡
𝑠=1                                         (4.15) 

For the case of WSNs under energy constraints, the information that is collected and sent 

to the remote parameter estimator during batch transmission 𝑠 reflects only a subset of 

candidate.  By implementing the optimal policy, 𝜏𝑠
∗, the missingness of non-transmitted 

data is classified as not missing at random (NMAR) (Arnab 2017) because it depends on 

the observed values: it is known that data, 𝑦, is missing because either 1) the sensing 

architecture’s energy buffer is depleted and unable to measure the arriving message, 2) the 

sensing architecture measures the data and rejects it because 𝑦 < 𝜏𝑠
∗, or 3) the message is 

already stored in the data buffer but discarded before it is transmitted because the energy 

buffer is fully depleted.  Because the rejected and discarded data that is never transmitted 

to the remote estimator is categorized as NMAR, the missing data is nonignorable and the 

likelihood function characterizing transmitted data must account for consideration of left- 

and right-censored data.  Given the optimal threshold, 𝜏𝑠
∗, corresponding to batch 

transmission 𝑠, we introduce the following modified likelihood function that allows us to 

have a maximizer even when data is censored 
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𝐿(𝛉) = ∏ [∏ 𝑓(Λ𝑠,𝑖; 𝛉)
𝑘
𝑖=1 ∙ ∏ 𝐹(𝜏𝑠

∗; 𝛉)
𝑙𝑐,𝑠
𝑖=1 ∙ ∏ 𝐹̅(𝜏𝑠

∗; 𝛉)
𝑟𝑐,𝑠
𝑖=1 ]

𝑠𝑡
𝑠=1                   (4.16) 

Here, 𝑙𝑐,𝑠 is the number of candidate data measurements that are left censored and 𝑟𝑐,𝑠 is 

the number of candidate data measurements that are right censored, where 

𝑟𝑐,𝑠 = 𝑘 ∙ 𝑁𝐷,𝑠 + 𝑇𝑠 ∙ 𝜆 ∙ 𝐹̅(𝜏𝑠
∗, 𝛉) ∙ (𝜋0 +

𝜋𝑘−1

𝑘−1
)                            (4.17a) 

𝑙𝑐,𝑠 = 𝑘 ∙ (1 + 𝑁𝐷,𝑠) ∙
𝐹(𝜏𝑠

∗,𝛉)

𝐹̅(𝜏𝑠
∗,𝛉)

+ 𝑇𝑠 ∙ 𝜆 ∙ 𝐹(𝜏𝑠
∗, 𝛉) ∙ (𝜋0 +

𝜋𝑘−1

𝑘−1
)                (4.17b) 

In Equation (4.17), 𝑁𝐷,𝑠 is the number of times the sensing unit runs out of energy during 

data collection period 𝑠, 𝑇𝑠 is the amount of time between the start and finish of data 

collection for batch transmission 𝑠, and 𝜋0 and 𝜋𝑘−1 are the first and 𝑘𝑡ℎ components of 

the steady-state vector, 𝝅𝑠.  The first term in Equation (4.17a) accounts for the number of 

accepted messages that are stored but ultimately discarded before batch transmission 

occurs, and the first term in Equation (4.17b) accounts for the expected number of rejected 

messages.  The second terms in Equation (4.17a) and Equation (4.17b) account for the loss 

of candidate data that could not be measured because messages arrived while the sensing 

architecture’s energy buffer was fully depleted.  

 Under regulatory conditions, the standard full-information MLE described by the 

likelihood function in Equation (4.15) is a consistent, asymptotically normal, and efficient 

estimator.  In this section we show that for the modified likelihood function characterized 

by Equation (4.16), the MLE is the maximizer, there exists a Cramer-Rao bound (CRB) on 

the covariance matrix of the estimator, the MLE is consistent, asymptotically unbiased, and 

asymptotically normal, and minimum variance of the MLE components is achieved under 

the optimal data collection and transmission policy given the system constraints.  For ease 
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of notation we will consider 𝑠𝑡 = 1 for all proofs since the following discussion extends 

naturally for 𝑠𝑡 > 1. 

Assumptions: 

We consider the following regularity conditions herein.  Let 𝛉 ∈ Θ be a 𝑝 x 1 vector and 

assume: 

A1.  𝚯 is an open subset of ℝ𝑝 

A2.  𝑓(𝑦; 𝛉) is smooth (Ibragimov and Has’minskii 1981) and differentiable in 𝛉 

A3.  The covariance matrix, cov𝛉(𝛉̂), and the Fisher information matrix, 𝐅(𝛉) (defined in 

Theorem 1), are non-singular matrices 

A4.  The support of 𝑦, {𝑦: 𝑓(𝑦; 𝛉) > 0}, does not depend on 𝛉 

A5.  The model is identifiable, meaning that for every 𝛉 ∈ Θ, there does not exist another 

𝛉̃ ∈ Θ such that 𝑓(𝑦; 𝛉) = 𝑓(𝑦; 𝛉̃) for all 𝚲𝑠 in the sample space  

Theorem 1: 

If the modified log-likelihood of 𝑦, ℓ(𝛉), satisfies the regulatory conditions, then the 

modified log-likelihood is a concave function. 

Proof:  The modified log-likelihood function, ℓ(𝛉), is a concave function if −∇𝛉
2ℓ(𝛉) is a 

positive semi-definite matrix.  Let ∇𝛉 and ∇𝛉
2 denote the gradient and Hessian operators 

with respect to 𝛉, respectively.  The modified log-likelihood function for a single 

observation is 

ℓ(𝛉) = (1 − 𝑃𝐷) ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙ ln𝑓(𝑦; 𝛉) + 𝐹(𝜏𝑠

∗; 𝛉0) ∙ ln𝐹(𝜏𝑠
∗; 𝛉) + 𝑃𝐷 ∙ 𝐹̅(𝜏𝑠

∗; 𝛉) ∙ ln𝐹̅(𝜏𝑠
∗; 𝛉) 
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(4.18) 

where 𝑃𝐷 is the probability that candidate data is discarded due to temporal death (which 

is not a function of 𝚲𝑠,𝑖). 

Step 1:  First, we show that the gradient of the expectation of the modified log-likelihood 

function is maximum at the true parameter and is the unique maximum. 

𝐸𝛉[∇𝛉ℓ(𝛉)] 

    = 𝐸𝛉[(1 − 𝑃𝐷) ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙ ∇𝛉ln𝑓(𝑦; 𝛉) + 𝐹(𝜏𝑠

∗; 𝛉0) ∙ ∇𝛉ln𝐹(𝜏𝑠
∗; 𝛉) + 𝑃𝐷 ∙ 𝐹̅(𝜏𝑠

∗; 𝛉0) ∙

         ∇𝛉ln𝐹̅(𝜏𝑠
∗; 𝛉)]  

    = 𝐸𝛉 [(1 − 𝑃𝐷) ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙

∇𝛉𝑓(𝑦;𝛉)

𝑓(𝑦;𝛉0)
+ 𝐹(𝜏𝑠

∗; 𝛉0) ∙
∇𝛉𝐹(𝜏𝑠

∗;𝛉)

𝐹(𝜏𝑠
∗;𝛉0)

+ 𝑃𝐷 ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙

∇𝛉𝐹̅(𝜏𝑠
∗;𝛉)

𝐹̅(𝜏𝑠
∗;𝛉0)

]  

    = ∇𝛉𝟏 

     = 𝟎                                                                                                                           (4.19) 

Step 2:  Second, we let 𝛉̂ denote an unbiased estimator of 𝛉 and demonstrate that the 

correlation between the estimator and the gradient of the log-likelihood is constant. 

𝐸𝛉 [∇𝛉ℓ(𝛉) ∙ (𝛉̂ − 𝛉)
𝑇
] 

    = 𝐸𝛉[∇𝛉ℓ(𝛉) ∙ 𝛉̂
𝑇] − 𝐸[∇𝛉ℓ(𝛉)] ∙ 𝛉

𝑇  (where 𝐸𝛉[∇𝛉ℓ(𝛉)] = 𝟎 from Step 1)  

    = 𝐸𝛉 [(1 − 𝑃𝐷) ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙ ∇𝛉ln𝑓(𝑦; 𝛉) ∙ 𝛉̂

𝑇 + 𝐹(𝜏𝑠
∗; 𝛉0) ∙ ∇𝛉ln𝐹(𝜏𝑠

∗; 𝛉) ∙ 𝛉̂𝑇 + 𝑃𝐷 ∙

         𝐹̅(𝜏𝑠
∗; 𝛉0) ∙ ∇𝛉ln𝐹̅(𝜏𝑠

∗; 𝛉) ∙ 𝛉̂𝑇] 

    = 𝐸𝛉 [(1 − 𝑃𝐷) ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙

∇𝛉𝑓(𝑦;𝛉)

𝑓(𝑦;𝛉0)
∙ 𝛉̂𝑇 + 𝐹(𝜏𝑠

∗; 𝛉0) ∙
∇𝛉𝐹(𝜏𝑠

∗;𝛉)

𝐹(𝜏𝑠
∗;𝛉0)

∙ 𝛉̂𝑇 + 𝑃𝐷 ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0) ∙

         
∇𝛉𝐹̅(𝜏𝑠

∗;𝛉)

𝐹̅(𝜏𝑠
∗;𝛉0)

∙ 𝛉̂𝑇]  
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    = ∇𝛉 ∙ 𝐸𝛉(𝛉̂
𝑇)    

    = 𝐈                                                                                                                                                          (4.20) 

Step 3:  The covariance matrix of the concatenated estimator error and gradient gives the 

relation between the estimator covariance and the Fisher information matrix.  Define a 

random vector 𝑼 as 

𝑼 = [
𝛉̂ − 𝛉
∇𝛉ℓ(𝛉)

]                                                    (4.21) 

Since any matrix expressed as an outer product of two vectors is non-negative definite, 

𝐸𝛉[𝑼𝑼
𝑇] ≥ 0                                                    (4.22) 

Using the results of Steps 1 and 2, we have 

𝐸𝛉[𝑼𝑼
𝑇] = [

cov𝛉(𝛉̂) 𝐈
𝐈 𝐅(𝛉)

] ≥ 0                                     (4.23) 

Since 𝐸𝛉[𝑼𝑼
𝑇] is a partitioned symmetric matrix that is positive semi-definite and it is 

assumed that 𝐅(𝛉) is a non-singular matrix, then cov𝛉(𝛉̂) is positive semi-definite, 𝐅(𝛉) is 

positive semi-definite, and  

cov𝛉(𝛉̂) − 𝐅
−1(𝛉) ≥ 0                                             (4.24) 

Since, by definition, 

𝐅(𝛉) = −𝐸𝛉[∇𝛉
2ℓ(𝛉)]                                              (4.25) 

and 𝐅(𝛉) ≥ 0, the modified log-likelihood function, ℓ(𝛉), is a concave function and there 

exists a unique maximum likelihood estimator 𝛉̂. 
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Theorem 2:  Suppose that the modified log-likelihood of 𝑦, ℓ(𝛉), satisfies the regulatory 

conditions.  There exists a Cramer-Rao bound (CRB) on the covariance matrix of the 

estimator. 

Proof:  The result comes directly from Equation (4.24) in Theorem 1. 

Theorem 3:  If the modified log-likelihood of 𝑦, ℓ(𝛉), satisfies the regulatory conditions, 

then the MLE is consistent, where consistency is defined as 

𝛉̂𝓃
𝑃
→ 𝛉0 as 𝓃 → ∞                                                 (4.26) 

where 𝓃 is the number of samples. 

Proof:  In Theorem 1 we prove that 𝛉̂ is the value of 𝛉 which maximizes the modified log-

likelihood in Equation (4.18).  We now note that for any 𝛉 ∈ Θ the Law of Large Numbers 

implies the convergence in probability of 

1

𝓃
∙ ℓ(𝛉)

𝑃
→𝐸𝛉0[ℓ(𝛉)]                                               (4.27) 

Since, by Theorem 1, 𝐸𝛉[ℓ(𝛉)] is uniquely maximum at 𝛉0, then 𝛉̂𝓃
𝑝
→ 𝛉0. 

Theorem 4:  If the modified log-likelihood of 𝑦, ℓ(𝛉), satisfies the regulatory conditions, 

then the MLE is asymptotically unbiased and normal, where asymptotic normality is 

defined as 

√𝓃 ∙ (𝛉̂𝓃 − 𝛉0)
𝑑
→𝓝𝑝(0, 𝑭(𝛉)

−1) as 𝓃 → ∞                              (4.28) 

Here, 𝑭(𝛉) is the single sample Fisher information matrix. 
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Proof:  In Theorem 1 we prove that 𝛉̂ maximizes the modified log-likelihood function, 

meaning that ∇𝛉ℓ(𝛉̂) = 𝟎.  From Theorem 3, consistency of the MLE ensures convergence 

in probability of 𝛉̂𝓃 to 𝛉0 as 𝓃 → ∞.  This justifies the application of a first-order Taylor 

expansion to ∇𝛉ℓ(𝛉̂) = 𝟎 around 𝛉̂ = 𝛉0 such that 𝟎 ≈ ∇𝛉ℓ(𝛉0) + (𝛉̂ − 𝛉0) ∙ ∇𝛉
2ℓ(𝛉0) 

and 

√𝓃 ∙ (𝛉̂ − 𝛉0) ≈ −[
1

√𝓃
∙ ∇𝛉ℓ(𝛉0)] ∙ [

1

𝓃
∙ ∇𝛉

2ℓ(𝛉0)]
−1

                       (4.29) 

By the Law of Large Numbers, the second term in Equation (4.29) is 

1

𝓃
∙ ∇𝛉

2ℓ(𝛉0)
𝑃
→𝐸𝛉0[∇𝛉

2ℓ(𝛉)] = −𝑭(𝛉0)                                 (4.30) 

in probability.  Further, by the Central Limit Theorem, since ∇𝛉ℓ(𝛉0) has mean 0 and 

covariance 𝑭(𝛉0), the first term in Equation (4.29) can be expressed as 

1

√𝓃
∙ ∇𝛉ℓ(𝛉0)

𝑑
→𝓝𝑝(0, 𝑭(𝛉0))                                        (4.31) 

in distribution.  We can conclude by substituting Equations (4.30)-(4.31) into Equation 

(4.29) that by the Continuous Mapping Theorem and Slutsky’s Lemma, Equation (4.28) 

holds and the MLE is asymptotically unbiased and asymptotically normal. 

Lemma 1:  Suppose that the modified log-likelihood of 𝑦, ℓ(𝛉), satisfies the regulatory 

conditions.  Let 𝑋 = 𝐻(𝑦) be some statistic with arbitrary dimension of the original data.  

Let ℓ𝐻(𝑦)(𝑋; 𝛉) denote the log-likelihood of 𝑋 = 𝐻(𝑦).  Then  

𝑭(𝛉) − 𝑭𝐻(𝑦)(𝛉) ≥ 0                                              (4.32) 

where 
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𝑭𝐻(𝑦)(𝛉) = −𝐸𝛉[∇𝛉
2ℓ𝐻(𝑦)(𝛉)]                                        (4.33) 

Proof:  Refer to Rao (Rao 2017) and Ly et al. (Ly et al. 2017) for the complete proof. 

Theorem 5:  Minimum variance of the MLE parameter components is achieved under the 

optimal data collection and transmission policy, given the system constraints. 

Proof:  Let 𝑃𝑇 denote the probability that candidate data is accepted and transmitted.  From 

Equation (4.18), 

𝑃𝑇 = (1 − 𝑃𝐷) ∙ 𝐹̅(𝜏𝑠
∗; 𝛉0)                                           (4.34) 

Since the optimal policy maximizes the average transmission rate, 
𝑔𝑠

Δ
, then 

argmax
𝜏∈ℝ>0

(
𝑔𝑠

Δ
) = 𝜏𝑠

∗ ⇔ argmax
𝜏∈ℝ>0

(𝑃𝑇) = 𝜏𝑠
∗                                  (4.35) 

where the steady-state reward, 𝑔𝑠, is defined in Equation (4.7).  By Lemma 1, a transmitted 

measurement 𝑦 contains more information about 𝛉 than a censored measurement.  It 

follows directly from Equation (4.35) and Lemma 1 that 

𝑭(𝛉) − 𝑭𝐴(𝛉) ≥ 0                                                (4.36) 

where 𝑭𝐴(𝛉) is the Fisher Information Matrix corresponding to any alternate policy that is 

not the optimal policy.  Since 𝑭(𝛉) and 𝑭𝐴(𝛉) are symmetric matrices and 𝑭(𝛉) ≥

𝑭𝐴(𝛉) ⇔ 𝑭(𝛉)−1 ≤ 𝑭𝐴(𝛉)−1, then 𝑭(𝛉)𝑖𝑖
−1 ≤ 𝑭𝐴(𝛉)𝑖𝑖

−1 ∀𝑖.  Consequently, we conclude 

that the scalar lower bounds on the variance of each component of 𝛉̂ of the CRB are 

minimized under the optimal policy. 
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4.5  Numerical Results 

Consider an energy renewal system modeled by the Markov chain in Figure 4-2 with the 

following parameters: 

• The total monitoring period is 50 hours  

• Energy arrives with rate β = 0.8 (energy-level/minute) 

• Candidate data arrive with rate 𝜆 = 8 (events/minute) 

• The measured process follows a Generalized Pareto distribution (GPD) characterized 

by 

𝑓(𝑦; 𝛉0) =
1

𝜎0
∙ [1 + 𝜉0 ∙

𝑦

𝜎0
]
−
1

𝜉0
−1

                                 (4.37) 

with true parameters 𝛉0 = [𝜉0, 𝜎0]
𝑇, where 𝜉0 = 0.2 and 𝜎0 = 5 

• The energy storage buffer can support four transmissions with 𝑘 = 5 messages each 

(i.e., 𝑁 = 20) 

 

Figure 4-5.  Comparison of the average reward rate corresponding to varying threshold values for 

WSNs with limited (β = 0.8) and unlimited (β = ∞) available energy assuming 𝜉1 = 0.2 and 

𝜎1 = 5. 
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• The original belief about the measured process before the monitoring period begins 

follows a GPD with parameters 𝛉̂1 = [𝜉1, 𝜎1]
𝑇 (various initial parameters are 

considered and specified in the subsequent plots) 

Given the input parameters characterizing the energy renewal system, Figure 4-5 shows 

the average reward rate corresponding to varying threshold values for the WSN assuming 

 

(a) 

 

(b) 

Figure 4-6.  Comparison of the mean square error (MSE) of the (a) shape parameter and (b) scale 

parameter corresponding to varying threshold values for 1000 iterations of the first four hours of 

the monitoring period. 
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𝜉1 = 0.2 and 𝜎1 = 5 (i.e., the measured process’ parameters are known).  Figure 4-5 

compares the average reward rate corresponding to varying threshold values for the case 

of limited energy  to that of unlimited energy to illustrate that as 𝜏𝑠 ≫ 𝜏𝑠
∗, the probability 

of storing candidate data decreases and the limited energy and unlimited energy average 

reward rates converge.  Conversely, as 𝜏𝑠 ≪ 𝜏𝑠
∗, the availability of energy becomes a 

bottleneck when energy is limited because the probability of storing candidate data 

increases, leading to repeated depletion of the energy buffer. 

  In Figure 4-6 we compare the mean square error (MSE) of the GPD’s estimated 

shape and scale parameters corresponding to varying threshold values for 1000 iterations 

over the first four hours of the monitoring period.  As expected based on the results of 

Theorem 5 in Section 4.4, the MSE of the MLE components is minimized at the optimal 

threshold, 𝜏𝑠
∗, which is illustrated in Figure 4-5 and computed analytically from Equation 

(4.14) in Section 4.3.  In order to assess the robustness of the proposed method to 

(potentially large) uncertainty in the estimate of the measured process parameters before 

the monitoring period begins, Figure 4-7(a) illustrates the convergence of the shape 

parameter MSE over the entire monitoring period for 1000 iterations given different initial 

estimates of the measured process parameters.  Despite having incorrect estimates of the 

process parameters that govern data collection during the first batch transmission period, 

the estimates rapidly converge.  This is confirmed in Figure 4-7(b) which shows  the 

convergence of the implemented threshold value towards the optimal threshold value 

corresponding to 𝛉0. 
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4.6  Conclusion 

This chapter presents the derivation and implementation of an optimal data collection and 

transmission policy for remote parameter estimation in wireless sensing architectures under 

resource constraints.  Given a WSN architecture’s energy and data buffer sizes, stochastic 

models of energy and event arrivals, the value of data, and temporal death, the proposed 

policy controls the storage and transmission of candidate data such that the variance of the 

estimated measured process’ parameter components is minimized.  Because this work 

models a replenishable WSN node as a continuous-time Markov chain for which a single 

unique threshold value is optimal across the entire state space for 𝑋(𝑡) = 1 ≤ 𝑛 ≤ 𝑁 +

𝑘 − 1, the implemented policy is independent of the energy buffer’s SoC and does not 

place assumptions on exact knowledge or the ability to measure the energy level in real 

time.  The proposed policy also accounts for—and places no restrictions on the size of—a 

WSN architecture’s data storage buffer, which broadens the scope of its possible 

applications.   

 Based on the optimal policy, only a subset of the measured information is wirelessly 

transmitted to the estimator for processing; candidate data that are not transmitted are 

missing because the sensing architecture’s energy buffer is depleted and unable to measure 

the arriving message, the sensing architecture measures the data and rejects it because 𝑦 <

𝜏𝑠
∗, or the message is already accepted and stored in the data buffer but discarded before it 

is transmitted because the energy buffer is fully depleted.  A modified likelihood function 

is proposed that accounts for this missingness of data.  We show that under regulatory 

conditions the modified MLE retains desirable properties that are characteristic of the full-

information MLE assuming unlimited energy (i.e., all data is transmitted).  
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 Numerical results are presented and reflect the objectives of the theoretical results: 

given the proposed EH WSN architecture is subject to stringent energy constraints imposed 

by the availability of incoming energy and battery size, implementation of the optimal 

threshold, 𝜏𝑠
∗, produces the best possible estimate of the process parameters given the 

system constraints.  The numerical results also indicate that the proposed framework for 

 

(a) 

 

(b) 

Figure 4-7.  Convergence of the (a) estimated shape parameter MSE and (b) implemented 

threshold value over the entire monitoring period for 1000 iterations given different initial 

estimates of the measured process parameters. 
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optimal remote parameter estimation under resource constraints is robust against even 

significant amounts of uncertainty in the parameter estimates at the outset of the monitoring 

period. 

 Since energy arrival and event arrival rates are rarely constant over long periods of 

time when WSNs rely on EH from the environment, this research would benefit from future 

work that incorporates predictive estimation of the recharge rate, β, and event arrival rate, 

𝜆.  Short-term forecasting will also enable the integration of online supervisory control 

schemes that dynamically control whether the sensing architecture is accepting 

measurements or in a low-power sleep state in which all incoming data is rejected, even 

when the energy buffer is not fully depleted.  Next steps should also include expanding this 

theoretical framework from a single-hop to network-level scale. 
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CHAPTER 5  

Optimal Stochastic Data Collection and Transmission Policy for Self-Sustaining 

SHM Systems Guiding Asset Management 

 

5.1  Introduction 

The proliferation of low-cost and high-performing sensors has led to sensing in the built 

environment across a broad range of civil engineering applications.  The applicability of 

such sensing technologies has been profoundly impacted by advancements in wireless 

communication and cloud computing, which have enabled the implementation of wireless 

sensing networks (WSNs) in structural, transportation, geotechnical, and environmental 

systems, to name a few.  Within the civil engineering domain, the research community has 

widely embraced the use of long-term monitoring data for use in structural health 

monitoring (SHM).  SHM systems using WSNs emerged in the mid-1990’s and have been 

growing in popularity as a lower cost and easily deployable alternative to traditional wired 

sensing systems (Kane et al. 2014).  Despite these advances, the availability of energy 

remains a bottleneck in SHM WSNs that rely on energy harvesting (EH) from the 

environment and can hinder their continuous and reliable operation. 

 Due to the limited and uncertain nature of EH, WSNs used for SHM have 

historically employed deterministic schedule-based or “transmit-all” sensing strategies to 

inform data collection protocol (see, for example, Hou et al. 2019, Kim et al. 2007, 

O’Connor et al. 2017, Flanigan et al. 2020a).  In the context of this chapter, a deterministic 
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schedule-based policy refers to a sensing architecture that transmits all data collected 

periodically on a pre-defined and regular schedule, where 𝑇𝑂𝑁 denotes the fixed monitoring 

period length and 𝑇𝑂𝐹𝐹 denotes the fixed time between monitoring periods.  A transmit-all 

policy refers to the attempted transmission of all measurements (this is equivalent to a 

schedule-based policy where 𝑇𝑂𝐹𝐹 = 0).  These two data collection strategies have been 

used almost exclusively within the field of SHM because their implementation is 

straightforward and because the statistical properties of a stationary ergodic process can be 

deduced from realizations of the process over a sufficiently long period of time—meaning 

all data that is not transmitted is missing at random.  Despite their widespread 

implementation, schedule-based and transmit-all sensing strategies are suboptimal because 

they do not account for resource constraints, hardware constraints, the stochastic nature of 

energy and event arrivals, or the value of data.  For a schedule-based sampling scheme, if 

𝑇𝑂𝑁

𝑇𝑂𝐹𝐹
 is too large, then the sensing architecture is at risk of rapidly and repeatedly running 

out of energy, resulting in temporal death.  Here, temporal death refers to the rejection of 

all incoming data and the loss of any data in the data buffer that has not yet been transmitted 

when a sensing architecture’s energy buffer is fully depleted.  If 
𝑇𝑂𝑁

𝑇𝑂𝐹𝐹
 is too small, then the 

sensing architecture will require an excessively long period of time to collect enough data 

to sufficiently characterize the measured process’ statistical parameters—especially the 

parameters governing the extreme value behavior.   

 This is problematic because the quality of the estimate of a measured process’ 

parameters is critical to accurately assessing the probability of failure of a monitored asset 

using reliability methods; parameter estimates should be updated as frequently as possible 

to track structural condition.  Reliability methods account for uncertainty in an asset’s 
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capacity and demand and quantify the reliability index, β𝑟, which is a scalar measure of 

the safety of a system or component and directly related to the probability of failure 

(Nikolaidis et al. 2004).  An asset with a higher reliability index value has a higher level of 

safety (i.e., lower probability of failure) than an asset with a lower reliability index value.  

Reliability methods have matured in civil engineering applications over the past several 

decades and are playing an increasingly critical role in bridging the gap between SHM and 

decision-making practices.  For example, Estes and Frangopol (Estes and Frangopol 1991) 

and Frangopol and Estes (Frangopol and Estes 1997) use reliability methods to develop 

lifetime bridge maintenance strategies that inform optimal repair actions on deteriorating 

bridges.  Additionally, in Chapter 3, reliability methods are used to explicitly link bridge 

response data collected from a long-term monitoring system to condition ratings, which are 

the starting point for infrastructure asset management decisions made in practice today.  

Due to conservatism in structural design—for which the designed probability of failure is 

very low—the reliability index is particularly sensitive to the quality of the parameter 

estimates governing extreme value behavior; the demand will only exceed the capacity 

when realizations of the structural response are near the distribution’s extremum.  

Consequently, there is a need for an automated data collection method that produces a high-

quality estimate of a component or system’s reliability index by minimizing the variance 

of the measured process’ parameter component estimates under energy and hardware 

constraints imposed by EH WSNs. 

 Chapter 4 presents the derivation of an optimal data collection and transmission 

policy for remote parameter estimation in wireless sensing architectures under resource 

constraints.  In this work, the author proposes an event-based policy and derive a single 
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optimal threshold value, 𝜏𝑠
∗ (with * denoting optimal), that maximizes the collected data’s 

average reward rate such that, given a measured process 𝑓(𝑦; 𝛉0) with true (but unknown) 

parameters 𝛉0 (where, in general, 𝑓(𝑦; 𝛉) denotes the probability density function (PDF) 

of a random variable 𝑌 parameterized by 𝛉 ∈ Θ in the parameter space Θ ⊂ ℝ𝑝), candidate 

data 𝑦 is stored and transmitted if and only if 𝑦 ≥ 𝜏𝑠
∗.  This work considers constraints 

imposed by the WSN architecture’s energy and data buffer sizes, stochastic models of 

energy and event arrivals, the value of data, and temporal death.  Because the proposed 

policy is governed by a single optimal threshold value, its implementation does not require 

knowledge of the state of charge (SoC).  Additionally, the policy places no restrictions on 

the size of the WSN architecture’s data storage buffer.  Since only a subset of the candidate 

data can be transmitted when a WSN relies on EH, Chapter 4 introduces a modified 

likelihood function that accounts for the missingness of data that result from the 

implementation of the optimal policy.  The author shows that under regulatory conditions, 

the modified MLE retains desirable properties that are characteristic of the standard full-

information MLE assuming unlimited energy (i.e., all data is transmitted).  Implementation 

of the optimal threshold produces the best possible estimate of the process parameters given 

the system constraints. 

 This chapter draws on the theoretical basis presented in Chapter 4 and extends this 

framework to an SHM application in which the WSN relies on solar energy harvesting.  

The Telegraph Road Bridge (TRB) is a steel girder highway bridge located in Monroe, MI 

that has been continuously monitored since 2011.  Since monitoring initiated nearly a 

decade ago, the SHM system on the TRB has been the subject of numerous research efforts 

(Flanigan et al. 2020b, O’Connor et al. 2017, Jeong et al. 2019).  This chapter focuses its 



 

166 

 

attention on one of the bridge’s monitoring subsystems that measures the strain response 

of a pin-and-hanger assembly.  The pin-and-hanger assembly is an integral structural 

element within the bridge’s design, and also a primary concern for the bridge owner due to 

the well-documented history of bridge failures associated with corroding pin-and-hanger 

assemblies in the past (Fisher and Yuceoglu 1981, Juntunen 1998, NTSB 1984, South et 

al. 1992).  This chapter extends the optimal data collection and transmission policy 

proposed in Chapter 4 to estimate the parameters characterizing the net-section strain 

response of one of the TRB hanger plates.  The estimated parameters are then used as inputs 

to a first-order reliability method (FORM) analysis to calculate the reliability index (i.e., 

probability of failure) associated with the net-section yielding limit state function; the 

American Association of State Highway and Transportation Officials load-and-resistance 

factor design (AASHTO-LRFD) of pin-connected assemblies assumes net-section yielding 

to be the dominant failure mechanism (AASHTO 2007). 

 In order to illustrate the gains achieved using the optimal policy on the TRB to 

characterize the net-section strain response, the author simulated the data collection and 

transmission process over the monitoring period assuming 1) the optimal policy is 

implemented, 2) the best schedule-based policy is implemented, and 3) the transmit-all 

policy is implemented over a one-year period.  Strain response data measured at the TRB 

hanger plate’s net-section area is used in each simulation to reflect the actual in-service 

bridge response.  As expected, implementation of the derived optimal stochastic data 

collection and transmission policy for the self-sustaining SHM system on the TRB 

minimizes the variance of the estimated component parameters.  This enables the bridge 

owner to increase the frequency with which structural condition is tracked and asset 
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management decisions are made based on the reliability index (using, for example the 

reliability-based decision-making practice outlined in Chapter 3) without compromising 

accuracy, as compared to existing schedule-based and transmit-all data collection methods.  

While the proposed framework is applied to a specific type of element on the TRB, the 

proposed methodology extends naturally to any SHM application. 

5.1.1  Chapter Outline 

 The remainder of this chapter is outlined as follows.  Section 5.2 introduces the 

TRB and provides an overview of pin-and-hanger assemblies, including the well-

documented failure mechanisms that ultimately led to their discontinued use.  These 

deficiencies motivate the TRB’s instrumentation plan and data collection program, which 

are also detailed in Section 5.2 and focus on tracking the safety of the pin-and-hanger 

assembly with respect to the net-section yielding failure limit state.  The goal of the 

monitoring system is to collect maximum strain response measurements at the net-section 

area due to passing trucks and characterize the random variable describing the long-term 

response data, ε𝐻4.  These parameter estimates should be updated as frequently as possible 

to track structural condition using reliability methods.  To this end, Section 5.3 models the 

SHM system’s data collection and transmission processes as an energy renewal system and 

uses Weigh-in-Motion (WIM) data, weather information, hardware specifications, and 

monitoring response data to define the system parameters.  Using this modeled system, 

Section 5.3 derives an optimal data collection and transmission policy that maximizes the 

transmission rate given constraints imposed by the WSN node’s energy and data buffer 

sizes, stochastic models of the incoming energy and event arrivals, the value of data, and 

temporal death.  Section 5.3 then introduces a modified likelihood function used for remote 
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parameter estimation.  In this section, we prove that the stochastic data collection and 

transmission policy minimizes the variance of estimated component parameters of the 

measured process (e.g., net-section strain, ε𝐻4), which serve as measured inputs to 

reliability-based decision-making practices.  Section 5 provides an overview of reliability 

methods and illustrates how reliability methods can be used to monitor the net-section 

stress of the in-service TRB pin-and-hanger assembly based on the measured random 

variable describing the long-term response data, ε𝐻4.  The reliability index is tracked based 

on transmitted data collected according to simulation of the optimal, schedule-based, and 

transmit-all policies on the TRB for the one-year monitoring period.  These results illustrate 

the gains achieved using the optimal policy on the TRB and confirm that implementation 

of the optimal policy enables bridge owners to track structural condition as frequently as 

possible without compromising accuracy.  Finally, Section 5.6 presents conclusions and 

introduces key directions for future work. 

 

Figure 5-1.  Girder elevation including primary span dimensions. 
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5.2  Telegraph Road Bridge 

The proposed optimal stochastic scheduling policy for SHM systems under resource 

constraints is applied to the TRB, which carries two lanes of highway traffic north along 

Interstate 275.  The TRB is a standard steel girder highway bridge (skewed by 33 degrees) 

that was constructed in 1973.  The bridge has three spans with a 20 cm concrete deck, seven 

girders, and 28 pin-and-hanger assemblies, which are integral structural elements in its 

design.  As shown in Figure 5-1, each of the TRB’s seven girders comprises two sets of 

hanger plates (there is a hanger plate on the north and south faces of each girder) to suspend 

the center span between the two end spans.  The two end spans are each supported by 

abutment structures and interior piers.  The TRB’s girder elevation and major span 

dimensions are included in Figure 5-1.  The TRB is representative of a large portion of the 

Michigan Department of Transportation’s (MDOT) highway bridge inventory.  Of the 

 

               (a)                                                     (b)                                   (c) 

Figure 5-2.  (a) Strain gage layout including major dimensions and identification of corresponding 

strain gages installed on an instrumented TRB hanger plate; (b) expected behavior of the plate 

response (i.e. axial deformation); (c) the inside face of a hanger plate with severe corrosion-induced 

section loss. 
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2,914 steel beam bridges owned by MDOT, around 25 percent have pin-and-hanger 

assemblies in their design (Jansson 2008).  While the design and construction of pin-and-

hanger bridges was discontinued in Michigan around 1983, many in-service bridges—such 

as the TRB—remain operational. 

5.2.1  Pin-and-Hanger Detail 

A number of design advantages of pin-and-hanger assemblies led to an increase in the 

frequency of their use in bridge design in the United States from 1940 to 1980.  When 

integrated into bridge designs, pin-and-hanger connections (Figure 5-2(a)) reduce moments 

at supports, allow for thermal expansion between spans,  and decrease corrosion-induced 

damage in bearing elements by enabling expansion joints to be located away from the piers 

and abutments.  Despite these gains, over time it became apparent that pin-and-hanger 

assemblies exhibit a number of deficiencies as they age, which can jeopardize the structural 

safety of the entire structure. 

 Deterioration of pin-and-hanger assemblies can initiate when salt and water leak 

through expansion joints and corrode the pin-hanger connection.  Dirt and sand behind the 

plate can absorb moisture, thereby accelerating corrosion, especially at the bottom pin.  

Corrosion-induced changes in the assembly boundary conditions and net-section loss can 

introduce stresses around the pins at the net-section area, leading to failure (Juntunen 1998; 

Nowak and Zhou 1990).  Since pin-connected assemblies are designed based on the 

assumption that they are purely tensile elements whose primary failure mechanism is 

governed by net-section yielding (AASHTO 2007), this chapter focuses its attention on 

deterioration that manifests as corrosion-induced section loss at the net-section area, which 

is the section of the hanger plate with the least area (i.e., the cross-section of the hanger 
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plate along the centroid of each pin as identified in Figure 5-2(b)).  Because deterioration 

typically initiates between the plate and girder, it can be difficult to identify the onset of 

corrosion-induced pitting through visual inspection.  For example, the back side of a hanger 

plate taken out of service is shown in Figure 5-2(c).  It is evident that a significant loss of 

section caused by corrosion has occurred near the lower pin at the net-section area and 

propagates toward the gross-section area.  Because nationally mandated visual inspections 

are infrequent (e.g., biennial) and may not uncover underlying deterioration, this assembly 

stands to benefit greatly from an automated monitoring system that can use measured 

response data to track structural performance using reliability methods. 

5.2.2  Telegraph Road Bridge Instrumentation Plan and Data Collection Program 

Strain gages are instrumented on a hanger plate located at the east end of the center span’s 

Girder 2 (Figure 5-1) to monitor stresses that could be induced by damage due to long-term 

deterioration and corresponding changes in plate boundary conditions.  Six Tokyo Sokki 

120Ω uni-axial strain gages are installed on the hanger plate in order to monitor the plate’s 

response corresponding to limit state functions associated with axial, in-plane bending, and 

out-of-plane bending stresses, and torsional forces applied to the hanger plate pins (Figure 

5-2(a)) (O’Connor 2017).  Because this chapter is investigating structural condition 

associated with net-section stress, only the strain measured at location H4 is considered 

herein.  However, interested readers can refer  to Chapter 3 for an extended discussion of 

how all six strain gages comprising the hanger plate’s monitoring subsystem can be used 

to track structural performance with respect to other deterioration mechanisms that result 

from unexpected in-plane and out-of-plane bending.  The strain gages are sampled using 

an analog-to-digital converter (ADC) with 16-bit resolution at 100 Hz for 100 seconds 
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every two hours using the Narada wireless sensor (Swartz et al. 2005) from June 2016 to 

June 2017.  Each Narada node—pictured in Figure 5-3(a)—contains a solar controller 

connected to a 10-W solar panel and a rechargeable battery for solar harvesting and energy 

storage, respectively.  Monitoring data provides quantitative information about the loading 

history and structural response of the plate.  For example, Figure 5-4 provides a 100-second 

sample of the time series data collected at strain gage location H4.  The maximum peak 

strain corresponding to a truck crossing the bridge is highlighted.  A histogram comprising 

all truck-induced maximum strain values at location H4 measured over the entire 

monitoring period from June 2016 to June 2017 is shown in Figure 5-5.  The corresponding 

Generalized Pareto distribution (GPD) fit is superimposed on the histogram, where the 

GPD has a probability density function (PDF) of the following form 

𝑓(𝑦; 𝛉) =
1

𝜎
∙ (1 + 𝜉 ∙

𝑦

𝜎
)
−
1

𝜉
−1

                                         (5.1) 

Here, 𝜉 is the shape parameter and 𝜎 is the scale parameter.  We let 𝛉0 = [𝜉0, 𝜎0]
𝑇 denote 

the “true” process parameters that are informed by data collected over the one-year 

monitoring period, where 𝜉0 = 0.311 and 𝜎0 = 2.80.  In the remaining sections, we show 

that over the fixed monitoring period, implementation of the proposed optimal policy leads 

to minimum variance parameter estimates given the system constraints. 

5.3  Problem Formulation 

The proposed energy-aware stochastic scheduling policy for remote parameter estimation 

discussed herein comprises a transmission subsystem and a remote parameter estimator.  

Within the transmission subsystem, a wireless sensing node measures the peak strain 

response of each passing truck.  The peak strain responses induced by passing trucks 
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constitute the measured process, which follows a GPD and has true parameters denoted by 

the 2-dimensional vector 𝛉0.  A binary value 𝑣 ∈ {0,1} is assigned to each realization of 

the measured process, 𝑦, through the function 𝑣 = ℎ𝑠(𝑦) such that 

𝑣 = ℎ𝑠(𝑦) = {
0, if 𝑦 < 𝜏𝑠

∗

1, if 𝑦 ≥ 𝜏𝑠
∗                                            (5.2) 

If 𝑣 = 0 the candidate measurement 𝑦 is discarded and if 𝑣 = 1 the candidate measurement 

𝑦 is stored in external SRAM, regardless of the current SoC of the battery.  Once the data 

buffer is full, all stored data (denoted by the vector 𝚲s) is communicated to the remote 

 

                                                     (a)                                                             (b) 

Figure 5-3.  (a) Narada wireless sensing node; (b) allocation of external memory for storing 

measured structural response data. 

 

 

Figure 5-4.  Time series data at strain gage location H4 collected during an event on May 28, 2017. 
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parameter estimator in a single batch transmission.  The subscript 𝑠 = 1,2,3, … , 𝑠𝑡 is 

introduced herein as an index to indicate that data collected and transmitted in batch 𝑠, 𝚲s, 

corresponds to the optimal threshold, 𝜏𝑠
∗, where 𝑠 = 1 represents the first batch 

transmission after monitoring initiates and 𝑠 = 𝑠𝑡 represents the most recent batch 

transmission.  The proposed model utilizes batch transmission because the energy overhead 

of packet transmission is relatively high regardless of the payload size (Han et al. 2015).  

If the sensing node’s battery is fully depleted at any point in time, temporal death occurs; 

the sensing node shuts down, all stored data is discarded, and all candidate data that arrive 

when the sensing node is powered down are rejected.  Upon receiving the collected data, 

𝚲𝑠, the remote parameter estimator located on an external server updates the maximum 

likelihood estimate, 𝛉̂𝑠+1, recalculates the optimal threshold based on the updated estimate, 

and returns the updated optimal threshold to the sensing node.  Each time the parameter 

estimates are updated, the reliability index corresponding to the limit state governed by 

net-section yielding is updated based on the measured process at strain gage location H4 

 

Figure 5-5.  GPD fit overlaying the histogram of maximum truck-induced strain responses 

measured at strain gage location H4 over the one-year monitoring period. 
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(this will be described in greater detail in Section 5.4.1).  Figure 5-6 illustrates this event-

based parameter estimation framework for SHM applications and highlights the process 

for either storing and transmitting data, storing and discarding data, or rejecting data 

according to the optimal policy.  Also shown in Figure 5-6, the bridge owner and field 

inspectors have access to the continuously monitored reliability index, which is a scalar 

metric for the safety of the asset.  Given this framework, the goal is to derive the unique 

 

Figure 5-6.  Event-based parameter estimation framework for applications in SHM. 
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optimal threshold value, 𝜏𝑠
∗, that maximizes the collected data’s average transmission rate 

given a WSN architecture’s energy and data buffer sizes, stochastic models of energy and 

event arrivals, the value of data, and consideration of temporal death.  Here, maximizing 

the expected transmission rate is equivalent to maximizing the expected reward rate 

because the reward (or value) of each transmitted measurement is one (recall Equation (5-

2)). 

5.3.1  Transmission Subsystem Model 

Recall from Section 5.2.2 that the wireless sensing node has a replenishable, finite-size 

battery, as well as a data storage buffer.  While the system has a continuous state space 

(i.e., remaining energy) and a continuous parameter space (i.e., time), the state space is 

approximately modeled as a discrete state space.  Let 𝑋(𝑡) ∈ {0,1, … ,𝑁 + 𝑘 − 1} be a 

finite continuous-time Markov chain with 𝑁 + 𝑘 states as shown in Figure 5-7, where 𝑘 is 

the number of candidate measurements the storage buffer can hold and ℓ denotes the 

number of values stored in the data buffer at time 𝑡.  Since there is 120kB of available 

external SRAM (ExSRAM) on the Narada’s 8-bit embedded processor, 𝑘 = 5 because 

five 100-second measurement periods can be stored before transmission is triggered 

 

Figure 5-7.  Markov chain representing the energy renewal system. 
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(Figure 5-3(b)).  Consistent with the system requirements on the TRB, the 100-second 

measurement period is sampled at 100 Hz and each measurement requires two bytes of 

storage in the ExSRAM.  Rather than only storing and transmitting the maximum strain 

response to each truck at the sensor location (when 𝑦 ≥ 𝜏𝑠
∗), the 50 seconds leading up to 

and following the peak strain response are also stored and transmitted.  This allows for the 

time series data to be used in other post-processing applications.  The remaining 20kB of 

storage in the ExSRAM is reserved for storing header information and for aiding in the 

execution of on-board processing functions.  For 𝑋(𝑡) = 4 ≤ 𝑛 ≤ 24, the state at time 𝑡, 

𝑋(𝑡) = 𝑛, represents the remaining energy which can support the transmission of 𝑛 − 4 

data packets.  Given the maximum capacity of the finite-size battery is 𝐸𝑚𝑎𝑥 and the 

amount of energy required to transmit the full data buffer of 5 values is 𝐸𝑇, then 𝑁 =

⌊
𝐸𝑚𝑎𝑥∙5

𝐸𝑇
⌋ where ⌊𝑥⌋ is an operator rounding 𝑥 to the nearest integer less than 𝑥 for 𝑥 > 0.  

Here, 𝐸𝑚𝑎𝑥 and 𝐸𝑇 are dependent on a number of factors that are unique to the implemented 

SHM system, such as current consumption of attached transducers, operational overhead 

of the embedded sensing architecture, and battery capacity.  For the sensing system 

considered in this chapter, 𝑁 = 20.  Interested readers can refer to Chapter 4 for a detailed 

description of the Markov chain representing the energy renewal system. 

 Trucks arrive as a memoryless Poisson process with rate 𝜆𝑠 (trucks per minute).  

The energy storage buffer recharges based on harvested energy which arrives as a 

memoryless Poisson process with rate β𝑠 (energy level per minute).  If 𝑋(𝑡) = 5 ≤ 𝑛 ≤

24 ∀ℓ or 𝑋(𝑡) = 2 ≤ 𝑛 < 5 for ℓ < 𝑘, the state transitions from 𝑛 to 𝑛 − 1 when candidate 

data is collected and stored.  Here, the transition rate from state 𝑛 to state 𝑛 − 1 is 𝛼𝑠 =

𝜆𝑠 ∙ 𝑃[𝑦 ≥ 𝜏𝑠
∗] = 𝜆𝑠 ∙ 𝐹̅(𝜏𝑠

∗; 𝛉̂𝑠) where 𝐹̅(∙) denotes the complementary cumulative 
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distribution function (CDF).  The expected reward corresponding to the optimal threshold, 

𝜏𝑠
∗, is 𝑅𝑠 = 𝑃[𝑦 ≥ 𝜏𝑠

∗].  Formulating the reward process as a discrete-time Markov chain in 

which state transitions are made at infinitesimal time steps, Δ, the expected reward during 

each time step is 𝜆𝑆 ∙ Δ ∙ 𝑅𝑠 for states 1 ≤ 𝑛 < 4 and 4 < 𝑛 ≤ 24, and 𝜆𝑠 ∙ Δ ∙
4

5
∙ 𝑅𝑠 for 

state 𝑛 = 4, where 𝜆𝑠 ∙ Δ is the probability that an event will occur during the next time 

step, Δ.  The time step, Δ, is assumed to be so small that at most one event can occur during 

the time step.  A cost is incurred when the energy storage buffer is fully depleted and enters 

state 𝑛 = 0 because all stored data is discarded when the sensing node shuts down.  Based 

on the method of discretization of the finite-size battery—and consistent with the Markov 

chain in Figure 5-7—a state transition into state 𝑛 = 0 can only occur when ℓ = 5, 

meaning that if the sensing architecture shuts down because there is not sufficient energy 

to complete the batch transmission then it is known that 5 messages are lost.  When this 

happens, the expected amount of time spent in state 𝑛 = 0 is 
1

β𝑠
 (or 

1

β𝑠∙Δ
 time steps).  If we 

denote the expected cost incurred during a single time step, Δ, as 𝐶𝑠, then the expected total 

cost incurred in state 𝑛 = 0 over time period 
1

β𝑠
 is 

1

β𝑠∙Δ
∙ 𝐶𝑠.  The total expected cost incurred 

during the sojourn time in state 𝑛 = 0 should equal the expected loss of the reward that 

would have been gained by the 𝑘 discarded values that were discarded when the energy 

buffer was depleted.  As a result, 

𝐶𝑠  = −5 ∙ β𝑠 ∙ Δ ∙
𝑅𝑠

𝑃[𝑦≥𝜏𝑠
∗]

                                               (5.3) 

where 
𝑅𝑠

𝑃[𝑦≥𝜏𝑠
∗]

 is the conditional expected value of a transmitted realization of the measured 

process; 𝐶𝑠 is not a function of 𝜏𝑠
∗ because 

𝑅𝑠

𝑃[𝑦≥𝜏𝑠
∗]
= 1 given the mapping between candidate 
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data and value in Equation (5-2).  Given the expected reward during each time step over 

states 1 ≤ 𝑛 ≤ 24 and the expected cost incurred during each time step in state 𝑛 = 0, the 

reward vector is 

𝒓𝑠(𝑁+𝑘)x1 = 𝜆𝑠 ∙ Δ ∙ [
𝐶𝑠

𝜆𝑠∙Δ
,   𝑅𝑠 ∙ 𝒆1x(𝑘−2) ,   

4

5
∙ 𝑅𝑠,   𝑅𝑠 ∙ 𝒆1x𝑁]

𝑇
                   (5.4) 

where 𝒆 is a vector of ones.  The transition matrix corresponding to the Markov chain in 

Figure 5-7 is 

𝑷𝑠25x25=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛾0 0 0 0 0 β𝑠 0 ⋯ 0 0 0 0
𝛼𝑠 𝛾1 β𝑠 0 0 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

2
𝛼𝑠∙

1

2
𝛾2 β𝑠 0 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

3
0 𝛼𝑠∙

2

3
𝛾3 β𝑠 0 0 ⋯ 0 0 0 0

𝛼𝑠∙
1

5
0 0 𝛼𝑠∙

3

5
𝛾4 β𝑠 0 ⋯ 0 0 0 0

0 0 0 0 𝛼𝑠 𝛾5 β𝑠 ⋱ 0 0 0 0
0 0 0 0 0 𝛼𝑠 𝛾6 ⋱ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 ⋯ 𝛾21 β𝑠 0 0
0 0 0 0 0 0 0 ⋯ 𝛼𝑠 𝛾22 β𝑠 0
0 0 0 0 0 0 0 ⋯ 0 𝛼𝑠 𝛾23 β𝑠
0 0 0 0 0 0 0 ⋯ 0 0 𝛼𝑠 𝛾24]

 
 
 
 
 
 
 
 
 
 
 
 
 

∙ Δ   (5.5) 

where Δ is sufficiently small such that the self-transitions (i.e., from state 𝑛 to 𝑛) are 𝑃𝑛,𝑛 ≥

0.  Here, 

𝛾𝑛 =

{
 
 
 
 

 
 
 
 
1

∆
− β𝑠,                          for                           𝑛 = 0

1

∆
− β𝑠 − 𝛼𝑠,                for                            𝑛 = 1

1

∆
− β𝑠 − 𝛼𝑠,                for                    2 ≤ 𝑛 < 4

1

∆
− β𝑠 − 𝛼𝑠∙

4

5
,           for                            𝑛 = 4

1

∆
− β𝑠 − 𝛼𝑠,                for                   5 ≤ 𝑛 ≤ 23

1

∆
− 𝛼𝑠,                          for                           𝑛 = 24
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When the transmission subsystem is implemented on a sensing architecture on an in-

service structure, the recharge and truck arrival rates can be obtained directly from the 

measured bridge response (i.e., truck arrival) and environmental conditions (i.e., recharge 

rate).  However, since we are using historical data collected from June 2016 to June 2017 

to illustrate the gains that are achieved by implementing the proposed optimal policy, we 

do not have measured recharge and event arrival rates during the monitoring period.  In the 

following three subsections, we model the recharge and event arrival rates based on 

continuous WIM station data collected along Interstate 275 to the north of the TRB as well 

as surface weather observations recorded by the National Oceanic and Atmospheric 

Administration (NOAA) at a nearby station. 

 

 

(b) 

 

(a) (c) 

Figure 5-8.  (a) Locations of the TRB and WIM station along Interstate 275; (b) WIM station 

embedded in roadway; (c) view of the instrumented TRB. 
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5.3.1.1  Characterizing the Event Arrival Rate 

The truck arrival rate (trucks per minute) is calculated based on data collected from an 

MDOT WIM station located at Pennsylvania Road along Interstate 275 to the north of the 

TRB in Romulus, MI (Figure 5-8).  WIM stations are used by transportation officials to 

monitor the movement of freight and to track adherence to freight weight limits (McCall 

and Vodrazka 1997).  WIM stations are an attractive alternative to traditional weigh 

stations because they do not require vehicles to exit the highway; WIM stations are 

embedded into the roadway (Figure 5-8(b)) and measure key attributes such as each truck’s 

load profile (e.g., gross weight, axle spacing, weight carried by each axle), vehicle speed, 

and time.  There are no major on or off ramps between the WIM station and TRB; according 

to Hou et al. (Hou et al. 2020) around 70% of trucks that pass over the TRB also pass over 

the WIM station.  Consequently, we assume that the truck arrival rate recorded at the WIM 

station is representative of the truck arrival rate at the TRB.  Figure 5-9 shows the hourly 

truck arrival rate measured at the WIM station during the monitoring period from June 

 

Figure 5-9.  Hourly truck arrival rate measured at the WIM station during the one-year 

monitoring period. 
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2016 to June 2017.  Figure 5-9 illustrates that there is a strong temporal correlation between 

truck arrival rates and the time of day, with three distinct profiles occurring on weekdays, 

Saturdays, and Sundays.  While this point process is generally inhomogeneous, it behaves 

as a homogeneous Poisson process over sufficiently short intervals.  Consequently, the 

truck arrival rate is considered constant over one-hour intervals, which is reflected in 

Figure 5-9. 

 

Figure 5-10.  Hourly recharge rate based on surface weather observations during the one-year 

monitoring period. 

 

Table 5-1.  Look-up table to calculate the recharge rate based on hourly weather and sky condition 

information. 

  Sky conditions 
  Clear Sky clear Few Scattered Broken Overcast 

W
ea

th
er

 t
yp

e
 None 

0.6 0.6 0.6 ∙ 𝒰(0.85,0.95) 0.6 ∙ 𝒰(0.85,0.95) 0.6 ∙ 𝒰(0.80,0.90) 0.6 ∙ 𝒰(0.70,0.80) 

0.02 0.02 0.02 ∙ 𝒰(0.85,0.95) 0.02 ∙ 𝒰(0.85,0.95) 0.02 ∙ 𝒰(0.80,0.90) 0.02 ∙ 𝒰(0.70,0.80) 

Rain 
X X 0.6 ∙ 𝒰(0.085,0.875) 0.6 ∙ 𝒰(0.085,0.875) 0.6 ∙ 𝒰(0.085,0.875) 0.6 ∙ 𝒰(0.085,0.875) 

X X 0.02 ∙ 𝒰(0.085,0.875) 0.02 ∙ 𝒰(0.085,0.875) 0.02 ∙ 𝒰(0.085,0.875) 0.02 ∙ 𝒰(0.085,0.875) 

Snow 
X X 0.6 ∙ 𝒰(0.085,0.875) 0.6 ∙ 𝒰(0.085,0.875) 0.6 ∙ 𝒰(0.085,0.875) 0.6 ∙ 𝒰(0.085,0.875) 

X X 0.02 ∙ 𝒰(0.085,0.875) 0.02 ∙ 𝒰(0.085,0.875) 0.02 ∙ 𝒰(0.085,0.875) 0.02 ∙ 𝒰(0.085,0.875) 

         

     :  Day     

     :  Night     
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5.3.1.2  Characterizing the Recharge Rate 

Like truck arrivals, the energy recharge rate is highly correlated to the time of day and 

weather conditions.  Consequently, the energy arrival rate (energy level per minute) is 

calculated based on data collected from a NOAA METAR surface weather observation 

station in Monroe, MI (NOAA 2020a).  A number of types of weather conditions (e.g., 

none, rain snow), sky conditions (e.g., clear, few, scattered, broken, overcast), and the time 

of day (e.g., day, night) are defined by NOAA (NOAA 2020b).  Given the weather 

conditions, sky conditions, and time of day for each hour during the monitoring period, the 

recharge rate is scaled based on Table 5-1 (Ho 2010).  In Table 5-1, 𝒰(𝑎, 𝑏) denotes a 

random realization drawn from the uniform distribution bounded by 𝑎 and 𝑏.  The solar 

controller and battery configuration, as well as the wattage of the solar panel used will 

contribute greatly to the recharge rate.  For the energy harvesting system installed on the 

TRB, the assumed hourly recharge rates based on Table 5-1 are shown in Figure 5-10 for 

a sample 200-hour period. 

5.3.1.3  Characterizing the Prior Maximum Strain Response to Trucks 

Implementation of the optimal policy requires a prior estimate, 𝛉̂𝑠, of the process 

parameters characterizing the maximum strain response to passing trucks.  When 𝑠 = 1 at 

monitoring initiation, the prior estimate is selected by the user, whereas the subsequent 

estimates, 𝛉̂𝑠 for 𝑠 = 2,3, … , 𝑠𝑡, used to calculate the optimal threshold for period 𝑠 is equal 

to the maximum likelihood estimate calculated from the previous period.  Chapter 4 shows 

that the optimal policy is robust against even large amounts of uncertainty in the prior 

estimate of the process parameters for 𝑠 = 1, since the accuracy of the threshold, 𝜏𝑠
∗, 
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improves with each transmission.  The original belief about the measured process 

parameters at 𝑠 = 1 is selected by recording the maximum strain response measured for 

each passing truck using a schedule-based policy over a five-hour period, where 𝑇𝑂𝑁 = 50 

seconds and 𝑇𝑂𝐹𝐹 = 500 seconds.  Given the hourly truck arrival rates and hourly recharge 

rates over the one-year monitoring period (from Section 5.3.1.1 and Section 5.3.1.2), 

𝑇𝑂𝑁 = 50 seconds and 𝑇𝑂𝐹𝐹 = 500 seconds represent the best schedule-based policy.  

Here, the “best” schedule-based policy refers to the schedule-based sensing policy that 

results in the highest expected transmission rate over the entire monitoring period.  

Implementing the schedule-based policy for five hours at the beginning of the monitoring 

period, the initial GPD parameters corresponding to 𝛉̂1  are 𝜉1 = 0.301 and 𝜎1 = 2.84. 

5.3.2  Optimal Data Collection and Transmission Policy 

Given the recharge rate, β𝑠, truck arrival rate, 𝜆𝑠, size of the energy and data buffers, 𝑁 

and 𝑘, respectively, a prior estimate of the estimated process parameters at the beginning 

of period 𝑠, 𝛉̂𝑠, and the energy renewal system, the goal is to derive an optimal threshold 

vector, 𝝉𝑠
∗
24x1

= 𝜏𝑠
∗ ∙ 𝒆 that is optimal in the sense that the policy maximizes the recurrent 

class’ average reward rate (i.e., average transmission rate)  This entails calculating the 

value of a single optimal threshold value, 𝜏𝑠
∗, such that regardless of the current state, 

𝑋(𝑡) = 𝑛 for states 1 ≤ 𝑛 ≤ 24, it is optimal to transmit data if and only if the candidate 

value 𝑦 is greater than or equal to 𝜏𝑠
∗.  Note that we are able to evaluate the infinite horizon 

problem discussed herein because we are considering the average reward rate. 

 Chapter 4 shows how to use Howard’s Policy Improvement algorithm (Howard 

1960) to derive the optimal policy that maximizes the average reward rate given the 
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transmission subsystem model in Section 5.3.1.  In summary, Howard’s Policy 

Improvement algorithm consists of two primary stages which are applied sequentially and 

iteratively: the value-determination stage and the policy-improvement stage.  We start with 

an arbitrary policy, 𝝉𝐴 = [𝜏𝐴, 𝜏𝐴, … , 𝜏𝐴]𝑇, and calculate the relative gain vector, 𝒘𝐴, and 

steady-state reward, 𝑔𝐴, associated with this arbitrary policy from the following value 

determination equations, 

𝒘𝐴 + 𝑔𝐴 ∙ 𝒆 = 𝒓𝑠 + 𝑷𝑠 ∙ 𝒘
𝐴                                           (5.6) 

We then evaluate an alternate policy, 𝝉 = [𝜏, 𝜏, … , 𝜏]𝑇, by defining a contraction mapping 

𝑇: ℝ𝑛 → ℝ𝑛 as (Gedergruen et al. 1978) 

𝑇(𝝉)𝒘𝐴 = 𝒓𝑠(𝝉) + 𝑷𝑠(𝝉) ∙ 𝒘
𝐴                                         (5.7) 

An optimal policy is achieved when, for all policies 𝝉, 

𝑇(𝝉)𝒘∗ = 𝒓𝑠(𝝉) + 𝑷𝑠(𝝉) ∙ 𝒘
∗ ≤ 𝑇(𝝉𝑠

∗)𝒘∗ = 𝒓𝑠(𝝉𝑠
∗) + 𝑷𝑠(𝝉𝑠

∗) ∙ 𝒘∗            (5.8) 

Following the results of Chapter 4 for the input parameters derived for the SHM system 

installed on the TRB, the optimal threshold, 𝜏𝑠
∗, is calculated explicitly by solving for the 

𝑘𝑡ℎ component of the relative-gain vector, 𝑤5
𝐴, from the following reduced value 

determination equations, 

[
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     (5.9) 

and then substituting 𝑤5
𝐴 into Equation (5-10) to solve for the optimal threshold, where 
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𝐶𝑠 + β𝑠 ∙ ∆ ∙ (𝑤5
𝐴)
′
= 0                                              (5.10) 

Here, (∙)′ denotes the derivative with respect to the threshold.  As discussed in Chapter 4, 

Equation (5-10) reflects the implementation of Howard’s Policy Improvement algorithm, 

which is used to determine the necessary and sufficient conditions that must be imposed 

on the value-determination equations in Equation (5-9) to derive the optimal threshold 

value.  An infinite-horizon policy is used herein over one-hour time intervals, despite the 

fact that the policy will be implemented and updated over finite-time periods.  The infinite 

and finite-horizon problems are comparable in this problem because there is no cost 

imposed for the number of events that have occurred—or even a requirement that data be 

collected at all—meaning that minimal time is not a requirement for this system (as is the 

case for most finite-horizon problems). 

5.3.3  Remote Parameter Estimation Using a Modified Likelihood Function 

The optimal policy presented in Section 5.3.2 maximizes the expected transmission rate of 

candidate strain data measured from the process characterized by the PDF 𝑓(𝑦; 𝛉0).  If 

there is unlimited energy supplied to the WSN—meaning all candidate data are 

transmitted—then the standard likelihood function given full information is 

𝐿(𝛉) = ∏ [∏ 𝑓(Λ𝑠,𝑖; 𝛉)
5
𝑖=1 ]

𝑠𝑡
𝑠=1                                          (5.11) 

For the case of WSNs under energy constraints, the information that is collected and sent 

to the remote parameter estimator during batch transmission 𝑠 reflects only a subset of 

candidate data of the measured process.  By implementing the optimal policy, 𝜏𝑠
∗, the 

missingness of non-transmitted data is classified as not missing at random (NMAR) (Arnab 

2017) because it depends on the observed values: it is known that data, 𝑦, is missing 
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because either 1) the sensing architecture’s energy buffer is depleted and unable to measure 

the arriving message, 2) the sensing architecture measures the data and rejects it because 

𝑦 < 𝜏𝑠
∗, or 3) the message is already stored in the data buffer but discarded before it is 

transmitted because the energy buffer is fully depleted.  Because the rejected and discarded 

data that is never transmitted to the remote estimator is categorized as NMAR, the missing 

data is nonignorable and the likelihood function characterizing transmitted data must 

account for consideration of left- and right-censored data. 

 Given the optimal threshold, 𝜏𝑠
∗, corresponding to batch transmission 𝑠, we 

introduce the following modified likelihood function that allows us to have a maximizer 

even when data is censored 

𝐿(𝛉) = ∏ [∏ 𝑓(Λ𝑠,𝑖; 𝛉)
5
𝑖=1 ∙ ∏ 𝐹(𝜏𝑠

∗; 𝛉)
𝑙𝑐,𝑠
𝑖=1 ∙ ∏ 𝐹̅(𝜏𝑠

∗; 𝛉)
𝑟𝑐,𝑠
𝑖=1 ]

𝑠𝑡
𝑠=1                (5.12) 

Here, 𝑙𝑐,𝑠 is the number of candidate data measurements that are left censored and 𝑟𝑐,𝑠 is 

the number of candidate data measurements that are right censored, where 

𝑟𝑐,𝑠 = 5 ∙ 𝑁𝐷,𝑠 + 𝑇𝑠 ∙ 𝜆𝑠 ∙ 𝐹̅(𝜏𝑠
∗, 𝛉) ∙ (𝜋0 +

𝜋4

4
)                           (5.13a) 

𝑙𝑐,𝑠 = 5 ∙ (1 + 𝑁𝐷,𝑠) ∙
𝐹(𝜏𝑠

∗,𝛉)

𝐹̅(𝜏𝑠
∗,𝛉)

+ 𝑇𝑠 ∙ 𝜆𝑠 ∙ 𝐹(𝜏𝑠
∗, 𝛉) ∙ (𝜋0 +

𝜋4

4
)                 (5.13b) 

In Equation (5-13), 𝑁𝐷,𝑠 is the number of times the sensing unit runs out of energy during 

data collection period 𝑠, 𝑇𝑠 is the amount of time between the start and finish of data 

collection for batch transmission 𝑠, and 𝜋0 and 𝜋4 are the first and 𝑘𝑡ℎ components of the 

steady-state vector, 𝝅𝑠.  Chapter 4 proves that for the modified likelihood function 

characterized by Equation (5-12), the MLE is the maximizer, there exists a Cramer-Rao 

bound (CRB) on the covariance matrix of the estimator, the MLE is consistent, 
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asymptotically unbiased, and asymptotically normal, and minimum variance of the MLE 

components is achieved under the optimal data collection and transmission policy given 

the system constraints. 

5.4  Overview of Reliability Methods 

The goal of structural reliability is to calculate the reliability index, β𝑟, which is a scalar 

measure of safety of a system or component with respect to a failure limit state (Nikolaidis 

et al. 2004).  A limit state function, 𝐺(𝑿) = 𝐶 − 𝐷, is described by an 𝑛-dimensional vector 

of random variables, 𝑿 = [𝑋1, 𝑋2, … , 𝑋𝑛]
𝑇, the load effect, 𝐷, and the resistance, 𝐶.  For 

the single component reliability problem, the probability of failure, 𝑃𝑓 = 𝑃(𝑿 ∈ Ω), is 

defined as 

𝑃𝑓 = ∫ 𝑓𝑿(𝑿)𝑑𝑿Ω
                                                   (5.14) 

where 𝑓𝑿(𝑿) is the joint PDF of 𝑿, and Ω ≡ 𝐺(𝑿) ≤ 0 is the failure domain.  The reliability 

index, β𝑟, is defined as the minimum distance from the origin to the failure domain of the 

limit state function, Ω, in the independent standard normal space (ISNS)—specifically, 

when the limit state function is linear in the ISNS.  When the limit state function is not 

linear in the ISNS, first-order approximations can be used to estimate β𝑟, in which case the 

reliability index is defined as the approximate, rather than absolute, minimum distance.  

The reliability index, β𝑟, is a direct indicator of the probability of failure, where 

𝑃𝑓 ≌ Φ(−β
𝑟)                                                     (5.15) 

and Φ(∙) is the standard normal cumulative distribution function (CDF) (Nikolaidis et al. 

2004).  The equality in Equation (5-15) holds if the limit state function is linear in the ISNS.  
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When no closed-form solution exists for the integral in Equation (5-14), FORM can be 

used to approximate the probability of failure by linearizing the limit state function at an 

optimal point in the ISNS (Nikolaidis et al. 2004).  Interested readers can refer to Chapter 

3 for a complete discussion about FORM as well as the step-by-step procedure for 

calculating the reliability index. 

5.4.1 Monitoring Net-Section Stress of the In-Service TRB Pin-and-Hanger 

Assembly 

The assumed net-section stress limit state function governing the pin-and-hanger 

assembly’s condition ratings is denoted 𝐺(𝑿), where 

𝐺(𝑿) = 𝐹𝑦 −
𝐷𝐿

𝐴𝑛
− 𝜀𝐻4 ∙ 𝐸                                           (5.16) 

Here, the distribution parameters for yield stress, 𝐹𝑦, and elastic modulus, 𝐸, are taken from 

literature (Hess et al. 2002).  Under the assumption that the deck and parapet weights are 

evenly distributed across the seven girders, the dead load, 𝐷𝐿, is estimated from 

engineering design drawings and the coefficient of variation is taken from literature 

(Nowak 1993).  These random variables and their associated properties are detailed in 

Table 5-2.  Because the net-section area, 𝐴𝑛, can be measured directly, its value is assumed 

to be deterministic in this case study with a value of 40.3 cm2 for this study.  The location 

parameter, 𝜉𝑠, and scale parameter, 𝜎𝑠, characterizing the net-section strain response at 

strain gage location H4, 𝜀𝐻4, are calculated and updated after each batch transmission.  

Implementation of the optimal policy minimizes the variance of these estimated 

parameters, which leads to a more accurate assessment of the safety of the pin-and-hanger 

assembly (via the reliability index) over a fixed period of time.  Figure 5-11 illustrates the 
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sensitivity of the reliability index and associated probability of failure to variations in the 

location and scale parameter estimates.  As expected, the reliability index is particularly 

sensitive to the quality of the parameter estimate governing its extreme value behavior as 

characterized by the shape parameter. 

5.5  Numerical Results 

Consider the TRB’s energy renewal system modeled by the Markov chain in Figure 5-7.  

In Section 5.3 we derive the input parameters necessary to obtain and implement the 

Table 5-2. Random variable distribution parameters characterizing the limit state function. 

Random Variable Mean            COV Distribution Type Source 

Yield stress, 𝐹𝑦 (MPa) 342            0.0890 Lognormal [27] 

Shear yield stress, 𝐹𝑣 (MPa) 205            0.0890 Lognormal [27] 

Elastic modulus, 𝐸 (GPa) 205            0.0179 Lognormal [27] 

Dead load, 𝐷𝐿 (kg) 19.5(103)            0.100 Normal 
Monitoring 

Data, [8] [27] 

 

 

Figure 5-11.  Sensitivity of the reliability index and associated probability of failure to variations 

in the GDP shape and scale parameters. 
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proposed optimal policy on the TRB’s long-term SHM system.  We provide a summary of 

these input and model parameters below: 

• The total monitoring period runs from June 2016 to June 2017. 

• Trucks arrive as a memoryless Poisson process with rate 𝜆𝑠 (trucks per minute).  The 

truck arrival rate is considered constant over one-hour intervals, which are shown in 

Figure 5-9. 

• Energy arrives as a memoryless Poisson process with recharge rate β𝑠 (energy level per 

minute).  The recharge rate is considered constant over one-hour intervals, which are 

shown in Figure 5-10. 

• The measured process reflects the maximum strain response to each truck at sensor 

location H4, and follows a GPD characterized by 

𝑓(𝑦; 𝛉0) =
1

𝜎0
∙ [1 + 𝜉0 ∙

𝑦

𝜎0
]
−
1

𝜉0
−1

                                   (5.17) 

with true parameters 𝛉0 = [𝜉0, 𝜎0]
𝑇, where 𝜉0 = 0.311 and 𝜎0 = 2.80. 

• The battery can support four transmissions with 𝑘 = 5 messages each (i.e., 𝑁 = 20). 

• The original belief about the measured process before the monitoring period begins 

follows a GPD with parameters 𝜉1 = 0.301 and 𝜎1 = 2.84. 

• After each batch transmission the remote parameter estimator updates the parameter 

estimates and calculates the measured reliability index, β𝑟, using the FORM algorithm 

presented in Chapter 3, where the assumed limit state function is defined in Equation 

(5-16). 

 Given these input parameters, we simulate the data collection and transmission 

process over the monitoring period assuming 1) the optimal policy is implemented, 2) the 
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best schedule-based policy is implemented, and 3) the transmit-all policy is implemented.  

For these simulations, the strain response measurement corresponding to each truck is 

drawn from the GPD distribution representing the true process described in Figure 5-5.  

The results of these three simulations are presented in Figure 5-12.  The first 750 hours are 

shown so that that the different convergence rates corresponding to the three different 

policies can be more easily distinguished.  As expected, these numerical results illustrate 

the gains achieved using the optimal policy as compared to the best schedule-based and 

 

(a) 

 

(b) 

Figure 5-12.  MSE of the (a) location parameter and (b) scale parameter calculated after each batch 

transmission.  The optimal, best schedule-based, and transmit-all policies are considered. 
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transmit-all policies.  Based on the results of Chapter 4, the implemented optimal policy 

minimizes the variance of the estimated component parameters subject to the system 

constraints.  Consequently, bridge owners can update the reliability index more frequently 

without compromising accuracy; as shown in Figure 5-13, the MSE of the reliability index 

achieved using the optimal policy after a 200-hour monitoring  period would not be reached 

using the best schedule-based policy until after a nearly 750-hour monitoring period. 

5.6  Conclusion 

This chapter draws on an optimal data collection and transmission policy for remote 

parameter estimation in WSNs under resource constraints that was derived in Chapter 4 

and extends the proposed framework to an SHM system installed on the TRB.  The 

extension of such an optimal policy to control data collection in SHM systems is motivated 

by the observation that structural monitoring data is being increasingly incorporated into 

decision-making processes for asset management using reliability methods.  Consequently, 

 

Figure 5-13.  MSE of the reliability index calculated after each batch transmission.  The optimal 

and best schedule-based policies are considered. 
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there is a need for an automated data collection and transmission strategy that facilitates 

the characterization of the statistical parameters of structural response data as quickly and 

accurately as possible so that bridge owners can track structural condition regularly.  Given 

the TRB WSN architecture’s battery and ExSRAM sizes, stochastic models of energy and 

truck arrivals based on NOAA weather station data and MDOT WIM station data, 

respectively, the measured strain response to passing trucks, and temporal death, the 

proposed policy controls the storage and transmission of measured strain data such that the 

variance of the measured process’ parameter components is minimized. 

 Given the optimal policy, only a subset of the measured information is wirelessly 

transmitted to the remote estimator for processing; candidate data that are not transmitted 

are missing because either data is rejected when 𝑦 < 𝜏𝑠
∗ (i.e., left censored), or stored data 

is discarded when 𝑦 ≥ 𝜏𝑠
∗ and the energy buffer is fully depleted (i.e., right censored).  A 

modified likelihood function is implemented that accounts for the missingness of data.  

Under regulatory conditions, the modified MLE retains desirable properties that are 

characteristic of standard MLE based on a likelihood function given full-information.  

 When applied to the EH WSN architecture installed on the TRB, the optimal policy 

produces the best possible estimate of the process parameters given the system constraints.  

The presented numerical results illustrate the gains achieved using the optimal policy as 

compared to the best deterministic schedule-based and transmit-all policies.  The numerical 

results show how implementation of the optimal policy results in faster convergence 

towards the true reliability index value quantifying the safety of the asset.  This means that 

reliability-based decision-making practices can be used to track structural condition with 

higher frequency and accuracy in post-processing applications. 
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 This research would benefit from future work that incorporates predictive 

estimation of the recharge rate, β𝑠, and event arrival rate, 𝜆𝑠, at the beginning of each epoch, 

𝑠.  This would also help to inform varying lengths of epochs 𝑠 that adapt to dynamically 

changing conditions.  Next steps should also include expanding this theoretical framework 

from a single-hop to network-level scale.  This will be facilitated by moving the 

computation of the optimal threshold from a remote server to a WSN node’s local 

embedded processor.  To facilitate this transition, a surrogate model should be 

implemented to simplify the solution for the optimal threshold value to facilitate less 

complex on-board embedded processing. 
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CHAPTER 6  

Community Engagement Using Urban Sensing – Technology Development, 

Deployment Studies, and CPSS Architecture 

 

6.1  Introduction 

6.1.1  Smart Cities and Current Limitations 

There has been considerable interest globally in smart cities due to the emergence of game-

changing technologies including IoT platforms, cloud computing, and powerful 

automation architectures.  The application of heterogeneous IoT technologies and network 

services to sensing in urban environments enables the development of smart cities, which 

are those cities in which the use of IoT sensor networks, massive sets of urban data, and 

ubiquitous access to cloud computing enhance the performance of urban systems and 

experiences of citizens.  Already, a host of smart city applications have been deployed 

including connected and autonomous vehicles, controlled urban watersheds, environmental 

sensing, pedestrian and vehicle tracking using cameras, among many others (AOT 2015, 

Mehmood et al. 2017, Placemeter 2015).  In addition to the realization of these applications 

in cities, various conceptual criteria have also been proposed regarding the integration of 

IoT technologies into smart cities (Ganchev et al. 2013, Jin et al. 2014, Mitton et al. 2012, 

Zanella et al. 2014). 

However, a general-purpose urban sensing architecture has not yet emerged that is 

diverse enough to enable the management of wide arrays of heterogeneous IoT 
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technologies and empower all stakeholders in a city to partake in data collection and data-

driven decision making (Mehmood et al. 2017).  This may be in large part due to the 

commercial sector and its marketing approach tailored to government stakeholders.  

Consequently, the proliferation of sensors and government-centric data aggregation in 

urban cities has disproportionately focused on improving city cores, with less attention paid 

to residential neighborhoods and areas.  This is worsened by technological obstacles 

associated with current IoT platforms, such as the high power demand of existing hardware 

which requires access to power sources (e.g. light poles, electrical trash receptacles, and 

other powered street furniture), thus limiting the potential of mobile sensors and 

deployments in cities like Detroit where community access to power sources is severely 

limited in residential areas.  This lack of connection between citizens and smart city 

initiatives is particularly pronounced in depopulated American cities (e.g., Detroit, Flint, 

St. Louis, Baltimore) where there has been no notable success in using smart city 

technologies to connect populations to their larger communities. 

While most urban cities in the United States have undergone sustained periods of 

economic growth since the 1940s, a small number of cities have seen dramatic drops in 

population and economic activity (Ryan 2012).  For example, Detroit experienced 

population reductions from 1.8 million people in 1950 to less than 700,000 in 2015 (The 

Detroit New 2016).  However, major revitalization efforts in Detroit’s business core are 

starting to rapidly transform the city.  However, the residential areas and neighborhoods of 

Detroit remain underpopulated, with scarce access to important city services.  Shrinking 

cities have resulted in extreme levels of poverty and inequity that result in stressors that 

disproportionately impact urban youth, who are at risk of losing connectivity to their cities 
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and communities (Luthar 1991).  As a result, there is a need to expand the use of sensing, 

especially by the general public, through the development of a more democratized 

approach to urban data collection and post-collection data uses to fully and more broadly 

reap the promise of smart cities.  This, in part, entails engaging urban youth and citizens 

with their communities by architecturally embedding them within a smart city’s urban 

CPSS.  As seen in Figure 1-3, this expanded CPS architecture directly integrates humans 

into the CPS framework by taking into account a citizen’s ability to observe and take action 

in response to physical and CPS elements (Wang 2010).  By empowering communities to 

collect their own data in their neighborhoods and cities, city governments, local 

organizations and citizens can work in a more meaningful partnership with each other, 

leading to more resilient modes of smart city governance. 

In addition to the lack of current urban sensing strategies that can empower all 

stakeholders in a city to partake in data collection and data-driven decision making, there 

are several technological obstacles that impede the emergence of a successful general-

purpose urban sensing architecture for widespread use.  These include the development of 

a sensing platform that supports interoperability among diverse arrays of heterogeneous 

IoT devices, preserves privacy and trust among citizens, supports cloud-based analytics, 

and supports low-power and low-cost sensing and communication, which is particularly 

difficult to achieve with platforms that require a continuous source of energy (Mehmood 

et al. 2017).  For example, the Array of Things (AoT) deployment in Chicago provides 

environmental and air quality sensors tied to a Linux-based sensing node (AOT 2015).  The 

high power demand of the hardware requires access to power sources supplied by street 

furniture (e.g. light poles) which limits its deployment potential in less populated areas and 
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residential neighborhoods where power sources are severely limited.  In addition, 

Placemeter is a novel camera-based sensing solution designed to track vehicles and 

pedestrians in city spaces (Placemeter 2015).  While Placemeter promises to anonymize 

data by processing video footage using automated data processing tools, many 

communities might be resistant to camera-based monitoring due to infringements on 

privacy and overarching notions of “Big Brother” within the community. 

6.1.2  Introduction to the Urbano IoT Platform 

 In response to these needs, this chapter describes the development of the Urbano 

sensing node which is designed for dense and rapid deployment in cities for a wide variety 

of smart city applications (Figure 6-1).  In particular, the design of the architecture is based 

on the belief that urban sensing can play a major role in empowering communities to collect 

data on urban processes of interest, and can transform how communities engage with other 

city stakeholders to make decisions.  Hence, the design of Urbano emphasizes ease of use 

 

Figure 6-1.  Overview of the implementation of the Urbano IoT platform. 
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and minimizes dependence on required infrastructure for which a stakeholder may have 

limited or no access.  Urbano is designed as an ultra-low power, low-cost, wireless sensor 

node that is capable of collecting diverse and heterogeneous sensor measurements, 

supporting embedded computing, and communicating using cellular or wireless 

communication, such as long-range radio (LoRa).  A major differentiator of Urbano from 

other smart city IoT platforms is that it does not require a persistent power source (e.g., 

grid power available from street furniture) nor a wired communication medium (e.g., fiber 

network), yet can still meet standards necessary to sample, store data, and transmit 

information for use in SHM.  Rather, it is designed to operate using solar energy and 

leverages a cellular radio to push data to the cloud.  The case studies presented in this 

chapter avoid the use of cameras in order to respect the anonymity of citizens.  For example, 

passive infrared (PIR) sensors are used for pedestrian counting instead of using cameras or 

Bluetooth, and GPS modules are only integrated into Urbano nodes with the consent of the 

relevant parties (e.g. food truck vendors). 

 Due to Urbano’s low-power design, low cost, and independence from continuous 

power sources, nodes can be densely and rapidly deployed as stationary or mobile sensing 

units anywhere in a city.  Urbano has analog and digital sensing interfaces, and a wide 

variety of sensing transducers have already been integrated with Urbano and deployed in 

urban cities.  These include digital sensors such as air quality sensors (NO2, SO2, O3, and 

particulate matter (PM)) and GPS receivers, in addition to analog sensors such as 

geophones for vibration measurements, strain gages, accelerometers, PIR sensors for 

pedestrian tracking, and temperature sensors.  Sensors are connected to Urbano’s analog 

and digital sensing interfaces (Figure 6-2, Figure 6-3) and are either housed inside of the 
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node enclosure or connected to the Urbano externally through a water tight connection 

through the enclosure. 

 To emphasize its ability to support community uses, Urbano has been assembled 

in a user-friendly packaging with all components integrated, and consists of a variety of 

libraries of data processing blocks that support the different sensing applications (including 

those that require onboard data analytics); community members can simply deploy, turn 

on the device, and see the data stream to a data portal of their choice.  Urbano nodes are 

designed to push their data to a database server hosted in a commercial cloud environment.  

A variety of data portals are exposed.  The cellular modem integrated with Urbano can be 

used to issue data and alerts in the form of SMS messages and Twitter posts to allow nodes 

to essentially tweet alerts and updates to users subscribed to their feed.  This specific 

approach to data dissemination is well suited to presenting urban data and information 

using a user-friendly interface.  The second approach adopts a more robust cloud-based 

data management platform well suited for storage and management of time history series.  

Here, Exosite’s One Platform (Exosite 2017) is adopted as a time series database that is 

ideally suited to collect and manage Urbano data streams.  Graphical representations of the 

data are provided using Exosite’s internal standard and customizable visualization portals.  

This chapter details the hardware design, software architecture, and data processing 

approaches implemented in an analytics layer that queries data from the database. 

 The Urbano sensor node has been deployed in a number of smart city engagements 

in Michigan.  These applications incorporate a wide variety of stakeholders including city 

governments, local organizations, urban youth, and communities.  All of the applications 

described in this chapter are carried out using the Urbano cloud-based sensing IoT 
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platform.  The first test case highlights the use of GPS-enabled Urbano nodes to track food 

trucks in Grand Rapids, MI to assess compliance with permit rules and curbside 

management by city planning officials.  The second application deploys Urbano nodes to 

monitor pedestrian traffic along the Detroit waterfront; this data is desired by the Detroit 

Riverfront Conservancy to understand utilization of public spaces to guide future 

investments.  The third test case packages Urbano nodes for community deployment in 

southwest Detroit as part of the Sensors in a Shoebox program.  One of five iterations of 

this program is discussed in this chapter, in which youth explore why a local park is under-

utilized by the community as compared to surrounding areas, as well as how the space 

might be improved to address the community’s needs.  Additionally, the youth measure air 

quality at the park because residents in southwest Detroit reside in one of the most polluted 

regions of Michigan.  As a result of poor air quality there have been high rates of youth 

asthma and long-term cardiovascular disease in the community (EPA 2015). 

6.2  Hardware Architecture 

The hardware of the Urbano wireless sensing node is separated into three primary 

subsystems: analog and digital sensing interface, computational core, and wireless 

communication.  The flexible sensing interface is compatible with a diverse array of 

heterogeneous analog and digital sensing transducers.  The computational core is 

programmed to operate the hardware and carry out on-chip data processing. The wireless 

communication system incorporates a cellular modem to push and pull data to and from 

the cloud.  In addition to an overview of wireless sensing, the following sub-sections 

provide a detailed overview of the hardware design, cellular communication design, and 
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packaging of the Urbano wireless sensing node to demonstrate how the hardware satisfies 

the needs identified in Section 6.1.  The general architecture of the hardware design is 

shown in Figure 6-2. 

6.2.1  Introduction to Wireless Sensing 

Wireless sensing has emerged as a major platform for collecting and transmitting data both 

within and outside of cities over the past several decades.  Wireless sensing has been 

particularly prominent within the context of SHM, in which wireless sensing systems are 

installed on infrastructure in order to detect damage and use data to help guide decisions to 

repair, rehabilitate, or replace a structure (Straser et al. 1998).  Wireless sensing 

technologies for monitoring infrastructure originally emerged as an alternative to existing 

wired systems, which require high upfront costs due to material procurement, and labor 

intensive installation, not to mention extensive installation times (Swartz et al. 2007).  

 

Figure 6-2.  Hardware design for sensing interface, computational core, and wireless 

communication. 
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Using commercial off-the-shelf electrical components, researchers have successfully 

developed and deployed wireless systems for use in monitoring infrastructure (Lynch and 

Loh 2006).  However, there remain several limitations to current wireless sensing 

platforms.  Specifically, limited ranges of wireless transceivers and the dependence of 

wireless sensing nodes on connections to wireless communication infrastructure, such as 

local base stations (that house single-board computers), hinder low-cost dense and rapid 

deployments over large areas, and the ability to have mobile sensors. 

 The limitations associated with current wireless sensing platforms used for 

monitoring single-asset infrastructure are particularly important to recognize as more 

attention turns toward monitoring multi-asset infrastructure, physical systems, and 

environmental parameters within urban environments where connectivity and automation 

are inherent features.  Due to the need for a wireless sensing platform for which 

stakeholders with sensing needs in a city can deploy dense networks (possibly up to 

hundreds of sensors) of stationary and mobile sensors rapidly for data collection, wireless 

sensing nodes must be completely autonomous with no dependence on additional 

communication infrastructure (such as base stations). 

 While smart city IoT applications continue to emerge that are reliant on short-range 

technologies such as Bluetooth, Zigbee, and Wi-Fi (Mehmood et al. 2017), it quickly 

becomes less feasible for citizens to engage in and initiate smart city applications in under-

resourced areas of cities, such as in neighborhoods outside of city centers, where power 

and access to additional communication infrastructure necessary to enable these means of 

communication, are scarce.  On the other hand, with typical coverage of 5-30 km 

(Mehmood et al. 2017), long-range technologies such as cellular modems and LoRa are 
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much more feasible and autonomous methods of communication that give city 

governments, local organizations, and citizens the flexibility to sense a diverse array of 

parameters throughout a city.  A drawback to using cellular communication for data 

transmission is that cellular modems have high energy consumption during active 

communication.  However, as outlined in the following subsections, the hardware and 

software architectures of the Urbano IoT cloud-based flexible sensing platform are 

designed to minimize power consumption such that each node is able to use solar energy 

harvesting with a small solar panel to realize full autonomy from access to power and 

communication infrastructure aside from a cellular network (applications in this chapter 

use various solar panels between 3.4-10W). 

6.2.2  Hardware Design 

6.2.2.1  Computational Core 

The computational core is programmed to carry out three main functions: the operation of 

the hardware, data interrogation and on-chip processing, and network communication.  At 

the center of the computational core of the Urbano node is an Atmel AVR ATmega 2561V 

8-bit microcontroller with 8MHz system clock, which operates with a 3.3V supply voltage.  

An 8-bit microcontroller was selected to avoid the significantly higher power consumption 

and costs associated with 16- and 32-bit microcontrollers.  In addition, an 8-bit internal 

data bus is sufficient for the required on-chip processing.  The ATmega 2561V is a low 

power microcontroller that has a current consumption of 7.3mA in active mode.  Strategic 

software manipulation of the microcontroller’s sleep modes allows for reduced power 

consumption when the node is not actively collecting data, as the microcontroller consumes 
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4.5μA in power-save mode, and 0.18μA in power-down mode.  As a result, the 

microcontroller is able to perform data processing computations and operate the sensing 

and communication subsystems using very little power. 

 The ATmega 2561V has more than sufficient read-only memory, with 256kB of 

flash and 4kB of EEPROM, which reduces constraints on data interrogation and on-chip 

processing.  The microcontroller has 8kB of internal SRAM.  Since 8kB of internal SRAM 

is not sufficient when large amounts of data need to be stored, the microcontroller is 

configured to include an extended 512kB of external SRAM to augment the internal 

memory using the Cypress CY62148EV30.  Since Urbano nodes do not require a 

continuous power source and the cellular modem consumes the most power in the system, 

additional SRAM is valuable so that it is possible to execute embedded data-processing 

algorithms on large amounts of data and only transmit necessary, pre-processed 

information.  Using the solar harvesting configuration, the Urbano node is capable of the 

periodic transmission of both raw continuous time-series data and pre-processed data.  In 

 

Figure 6-3.  Urbano node with key components highlighted. 
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the case where the node has access to a power source (i.e. solar harvesting is not necessary), 

there is no limit on the frequency of data transmission. 

6.2.2.2  Analog and Digital Sensing Interface 

Controlled by pre-programmed data collection schemes in the microcontroller, the sensing 

interface includes four analog and four digital sensing channels.  The sensing channels 

support heterogeneous sensing transducers so that each node can sense a diverse array of 

parameters, such as environmental and physical parameters.  An internal 10-bit 200kHz 

analog-to-digital converter (ADC) in the microcontroller is used for digitizing analog 

signals to enable embedded processing and transmission of data to the cloud using the 

cellular modem.  For sensing infrastructure systems such as bridges and buildings (i.e. 

structural health monitoring), a higher resolution 16-bit ADC would be more appropriate.  

However, for sensing urban parameters such as mobility (e.g. vehicle and pedestrian 

movement), and various environmental parameters, 10-bits is sufficient.  While an external 

16-bit ADC can be easily integrated into the Urbano node, it is desirable to avoid the 

additional power consumption and cost that accompany higher resolution external ADCs. 

6.2.2.3  Cellular Wireless Communication 

Wireless communication is achieved using the Nimbelink Skywire 4G/LTE Cat 1 Cellular 

Embedded Modem.  A standard XBee hardware interface is used to connect the cellular 

modem to the printed circuit board (PCB) (Figure 6-3).  The cellular modem connects to 

Verizon or AT&T’s 4G LTE network and is the lowest power fully developed LTE 

technology available in the market (Nimbelink 2017).  The Nimbelink Cat 1 modem 

consumes 616mA of current during active cellular communication and 48mA when idle, 
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but the utilization of sleep modes can reduce current consumption to 8.6mA in low power 

mode and 44μA when it is off.  To minimize the amount of power consumed by the cellular 

modem, the computational core is programmed with robust timing and interrupt schemes 

to ensure the cellular modem remains off whenever active read and write transmissions are 

not necessary.  In addition, the modem is Federal Communications Commission (FCC) and 

end-device pre-certified, meaning that it does not require carrier certification, which 

significantly reduces the cost and eliminates the time associated with the certification 

process (which can take up to months in the United States).  In addition, the cell modem 

supports multiple LTE bands (B4(1700) and B13(750)) with fallback capabilities, and has 

a small U.FL port for antenna flexibility.  The Nimbelink Cat 1 is based on the Gemalto 

ELS31 chipset and achieves excellent speeds of 10Mbps download and 5Mbps upload.  

The Gemalto ELS31 is designed for power optimization and speed which make it an 

excellent candidate for machine-to-machine and IoT applications.  In addition, the 

Nimbelink Cat 1 has a commercially available development kit that allows users to connect 

the cell modem to a PC via a USB-to-UART converter, and send AT commands to the 

modem through any serial terminal application.  This direct and simple method of 

communication enables rapid development and debugging. 

6.2.3  Packaging 

To emphasize its ability to support community uses, Urbano has been assembled in a user-

friendly packaging (smaller than the size of a shoebox).  All components are integrated into 

a single enclosure, and the Urbano node is programmed with a variety of libraries of data 

processing blocks that support the different sensing applications.  Without making 

significant changes to the physical structure of the node, community members can simply 
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deploy, turn on the device, and see the data stream to a data portal of their choice 

(visualization portals discussed in Section 6.3).  For the three applications discussed in 

Section 6.4, two different methods of packaging are used.  For deployments by the City of 

Grand Rapids planning officials and the Detroit Riverfront Conservancy, these two 

stakeholders desired a compact assembly.  As seen in Figure 6-4(a), the Urbano node, 

sensing components, rechargeable lithium ion battery, solar controller, and a small 3.4W 

  
(a) (b) 

 
(c) 

Figure 6-4.  (a) Urbano node assembled for studying food truck curbside management; (b) Urbano 

node installed on the roof of a food truck with solar panel mounted to top of packaging; (c)  sensing 

kit for pedestrian sensing. 
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solar panel were assembled in a small 20.32cm x 10.16cm x 7.62cm weatherproof box.  

Figure 6-4(b) shows the Urbano node installed on the roof of a food truck in Grand Rapids, 

MI, complete with solar panel.  On the other hand, an alternative packaging scheme (Figure 

6-4(c)) is used for pedestrian sensing (Section 6.4.3), which allows for more room to house 

the PIR sensor.  For educational purposes, a clear lid is included with the kit so that students 

and community members can observe the contents of the box even when it is deployed and 

collecting data. 

6.3  Software Architecture 

The success of a diverse sensing solution for smart city applications relies on the 

implementation of a scalable cloud-based database system for the storage, processing, and 

analysis of sensor data transmitted from the Urbano nodes.  In response to this need, 

Urbano nodes are designed to push collected data to a database server hosted in a 

commercial cloud environment.  An additional requirement is that data be accessible and 

able to be interpreted by all stakeholders, including city governments, local organizations, 

and citizens, regardless of their education level or familiarity with IoT technologies and 

cloud computing.  As a result, a variety of data portals are exposed.  For example, pre-

programmed code on Urbano’s microcontroller (computational core) enables the 

Nimbelink Cat 1 cellular modem to send data and issue alerts in the form of SMS messages 

and Twitter posts to allow the nodes to tweet their notifications to users subscribed to their 

feed.  This specific approach to data dissemination is well suited for presenting urban data 

and information using a user-friendly interface.  The second approach adopts a more robust 
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data management web server platform that is well suited for storage, cloud-based analytics, 

and management of time history data. 

 Urbano’s software architecture utilizes Exosite’s commercially available One 

Platform as a time series database that is ideally suited to store and manage data collected 

and transmitted by each Urbano node.  Exosite was selected due to its manageable system 

development, user friendly visualization tools, and primary focus as an IoT software 

platform.  As seen in Figure 6-5, each user maintains a client, which consists of several 

resources such as data ports, data rules, meta, dispatch functions, and visualization portals.  

Each client is identified by an assigned Client Identifier Key (CIK) that is used  for 

accessing application programming interface (API) calls to the One Platform and mapping 

to a client’s resource identifier (RID).  Data that is written from a device (Urbano node) is 

tagged with an alias that is used to map the data to a corresponding data port in the One 

Platform database.  The data is then stored in the appropriate data port’s data-store.  Each 

 

Figure 6-5.  Data flow between Urbano nodes and the cloud. 
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data port can subscribe to user-defined algorithms, known as data rules, which are scripts 

and logical statements that are written in the Lua language to process data.  Data rules are 

also used to call dispatches, which are outputs from the One Platform in forms such as 

HTTP, XMPP, SMS, email, and Twitter.  This means that data can even be seamlessly 

integrated to another robust server or cloud service, such as Amazon Web Services, or to a 

user-friendly interface such as Twitter. 

 The software that is embedded onto Urbano’s microcontroller (C language) is 

programmed to issue and receive AT commands through the Nimbelink Cat 1 cell modem 

to connect and interact with the server.  For data transmission, the Urbano network utilizes 

unconstrained protocol stacks where requests and responses between the devices and web 

server are managed by HTTP application layer protocols.  Under the HTTP protocol, TCP 

is used as a transport layer protocol to handle the HTTP traffic.  For the network layer 

protocol, the Nimbelink Cat 1 is an IP capable device and the microcontroller is 

programmed to utilize an IPV4V6 dual stack PDP context that simultaneously supports 

both IPv6 and IPv4 using the cellular modem. 

 Graphical representations of the data are provided using Exosite’s internal standard 

and customizable visualization portals so that data can be easily interpreted by all 

stakeholders.  The applications described in this chapter (Section 6.4) leverage several of 

these portals.  For example, Exosite’s GIS tools are leveraged to track the movement of 

food trucks throughout the city of Grand Rapids, numerous data time series associated with 

environmental parameters are plotted, and Twitter dispatches are enabled to tweet data to 

subscribers.  In addition, portals are leveraged to show the current air quality associated 

with several pollutants (e.g. NO2, SO2, O3, and PM), which are automatically colored 
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green, yellow, or red, to indicate the value’s relationship to pre-defined “Safe Level,” 

“Warning Level,” and “Alert Level” thresholds as defined by the Environmental Protection 

Agency (EPA). 

6.4  CPS Applications 

The Urbano sensing node has been deployed in a number of smart city engagements in 

Michigan.  The three applications described in the following subsections incorporate a wide 

variety of stakeholders including city governments, local organizations, urban youth, and 

communities.  These diverse applications demonstrate the flexibility of the Urbano 

platform, as a wide variety of analog and digital sensors are interfaced on both mobile and 

stationary sensing nodes using only the single Urbano platform. 

6.4.1  Food Trucks as Mobile Sensors 

Using the Urbano platform, an array of GPS-enabled mobile Urbano nodes were deployed 

on food trucks (Figure 6-4(b)) in the city of Grand Rapids in order to observe the behavior 

and locations of these mobile assets for two months.  This first test case was desired by the 

city’s planning and transportation officials in order to assess compliance with permit rules 

and to explore novel curbside management models.  Monitoring the food trucks was 

mutually beneficial for both the city’s officials and the food truck vendors.  Food truck 

vendors readily volunteered for this pilot programs, as it allows them to provide 

information in real-time to their customer base regarding their current location. 

 In addition to storing GPS output data in the One Platform’s database, an Exosite 

trail map portal is used to visualize each truck’s movement within the past 24 hours (Figure 

6-6(a), Figure 6-7(a)).  In addition, Matlab is leveraged to help visualize the duration of 
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time each truck spends parked at various curbside locations.  The time that a food truck 

spends stationary at a known curbside location is proportional to the area of each circle 

associated with that location (Figure 6-6(b), Figure 6-7(b)).  In addition to leveraging the 

One Platform’s server, database, and user-friendly visualization tools, the Urbano platform 

 

                                       (a)                                                                        (b) 

Figure 6-6.  Patty Matters food truck (a) 24-hour tracking period; (b) duration spent parked at 

curbside locations for one month. 

 

 

                                          (a)                                                                          (b) 

Figure 6-7.  Gettin’ Fresh food truck (a) 24-hour tracking period; (b) duration spent parked at 

curbside locations. 
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is flexible enough to be directly integrated into the City of Grand Rapid’s existing GIS 

platform.  In upcoming engagements with the City, dispatch scripts will be configured to 

output data from the relevant data ports (corresponding to various food trucks) to an 

existing ArcGIS server that is currently used by the City.  Collected data showed that the 

food trucks spend a considerable amount of time at a wide range of locations, including 

colleges, community parks, downtown business areas, and residential neighborhoods.  As 

a result, a diverse array of air quality sensors, including NO2, SO2, O3, and PM, will be 

added to each mobile Urbano node to monitor air pollution throughout the city.  This 

allows for air quality to be monitored in areas outside of the city core that are often 

neglected because power and access to additional communication infrastructure necessary 

to enable existing smart city technologies, are scarce. 

6.4.2  Pedestrian Counting Along the Detroit Riverfront 

Depopulation of the residential sectors of Detroit has left many public spaces and 

parks neglected.  Of the city’s 307 parks, the city is quietly closing some of them (NPR 

2015).  As the city decides on its plan for public spaces, various stakeholders are interested 

in observing and assessing the use of their public and park spaces.  For the second 

application, Urbano nodes are deployed along the Detroit Riverfront to monitor pedestrian 

traffic in this popular park area along the Detroit River.  While the data collection 

approaches described in this study are applicable to any public space, the author partnered 

with the Detroit Riverfront Conservancy (DRFC) for demonstration. The DRFC manages 

the development, operations, and improvement of the Detroit Riverfront along the Detroit 

River and the Dequindre Cut greenway, which runs perpendicular to the Detroit River and 

provides pedestrian access to the Riverfront (DRFC 2013).  Around three million people 
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visit these two areas annually (DRFC 2018).  In addition to serving as a social space where 

patrons can exercise and enjoy natural experiences, these parks are assets that serve as 

engines of economic growth in the residential communities north of the river. 

The DRFC is currently making major investments to create two new greenways 

parallel to the Dequindre Cut: the Jos Campau Cut and the Beltline Cut (Figure 6-8).  The 

majority of the insight into park usage patterns is based on sparsely collected surveys and 

visual observation.  The DFRC previously used commercially available pedestrian 

counting technology to monitor the use of public spaces in several parks throughout Detroit 

(Eco Counter 2017).  However, the costs associated with the existing commercial 

technology, in particular, the cost to continuously replace the device-specific battery, were 

too high.  Consequently, the DRFC would like to understand how these spaces are used 

 

Figure 6-8.  Map of the Detroit Riverfront including adjacent vulnerable neighborhoods, 

Dequindre Cut, Jos Campau Cut, location of security cameras, and location of urban sensing nodes. 
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and where to invest future resources to make these areas more accessible.  With the Jos 

Campau and Beltline greenways nearing development, the DRFC wants to understand how 

people from communities use these new connections to reach the waterfront.  In 

collaboration with the DRFC, twelve Urbano nodes with PIR sensors are installed along 

the Dequindre Cut and the Jos Campau Cut in order to gain quantitative insight into patron 

use.  Low-power PIR sensors connected to autonomous Urbano sensing nodes are installed 

on light poles to record, timestamp, and transmit the number of pedestrians passing key 

park fixtures while maintaining full anonymity (Figure 6-9).  The One Platform’s Twitter 

output dispatch is used to Tweet live pedestrian count updates for the nodes distributed 

along the Riverfront (Figure 6-5). 

 

Figure 6-9.  Urbano sensing node measuring pedestrian traffic along the Dequindre Cut in Detroit, 

MI. 
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The Dequindre Cut is a renovated greenway that is well-maintained and connects 

neighborhoods in Detroit’s East Side to the Detroit Riverfront.  The first phase of the 

 

(a) 

 

(b) 

Figure 6-10.  (a) Cumulative pedestrian counts from March 16, 2018 through July 18, 2018; (b) a 

one-week subset of this data illustrating the daily trends (i.e., weekend versus weekday). 



 

221 

 

installation was carried out along the Dequindre Cut during March 2018 and data collection 

continues today.  Sample data for three months (from spring through summer) is shown in 

Figure 6-10(a) for Node 7 (denoted as N7 in Figure 6-8). The slope, 𝑚 (pedestrians per day), 

is calculated for each one-month period (Figure 6-10(a)).  Intuitively, as the weather improves 

from March through July, the number of pedestrians using the greenway increases drastically.  

The data in Figure 6-10(a) quantitatively supports this intuition.  During the same three 

months, the number of pedestrians using the Dequindre Cut each day increases as the weather 

becomes warmer and precipitation decreases, and the pedestrians per day decreases when the 

temperature becomes too high (Figure 6-11).  At a one-week resolution, the data shown in 

Figure 6-10(b) illustrates the increase in usage during the weekends compared to weekdays. 

At a one-day scale, holidays (e.g., Memorial Day weekend, fourth of July weekend) 

correspond to increased park usage (Figure 6-11). 

Unlike the Dequindre Cut, the Jos Campau Cut has not been renovated and is 

nearing preparation for further development.  The second phase of the installation was 

carried out along the Jos Campau Cut in July 2018 and data collection continues today.  

 

Figure 6-11.  Comparison of the number of pedestrians per day, temperature, and precipitation. 
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Sample data for a one week period is shown in Figure 6-12(a) for Nodes 1, 2, and 3 

(denoted as N1, N2 and N3 in Figure 6-8).  Comparing Figure 6-12(a) and Figure 6-10, 

even though the these two greenways run parallel to each other and are located less than a 

quarter of a mile apart, nearly ten times the number of people use the renovated Dequindre 

Cut per day than the Jos Campau Cut.  Further inspection of Figure 6-12(a) indicates that 

even though N1, N2 and N3 are on the same path, the three locations experience different 

 

(a) 

 

(b) 

Figure 6-12.  (a) Cumulative pedestrian counts along the instrumented Jos Campau Cut corridor; 

(b) flooding along the Jos Campau Cut renders the pathway unusable during the winter and after 

heavy rainfall. 
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pedestrian use.  In order to better understand this phenomenon, prominent landmarks along 

the Jos Campau Cut are highlighted in Figure 6-13.  N3 sees the highest pedestrian traffic 

and is located next to a school, community center, park, and playground.  N1 experiences 

the second highest amount of pedestrian traffic and is located near a park within an 

apartment complex.  N2 is not located next to any significant social spaces, but it monitors 

the segment of the greenway between N1 and N3.  The author returned to the location of 

N2 and observed that the entire path in this segment of the greenway is covered in mud and 

 

Figure 6-13.  Instrumented pedestrian corridor along the Jos Campau Cut in Detroit, MI. 
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dirt.  As Figure 6-12(a) indicates, pedestrian counts decrease after it rains because water 

several inches deep collect on the path.  Figure 6-12(b) provides a picture of the pathway 

at N2 during the winter. Pooled water freezes into ice about three inches thick and renders 

the path unusable. 

While assessing the use of public park spaces is of particular importance to the 

DRFC, the same platform can easily be implemented in other parts of the city to help 

quantify community mobility more generally.  As Detroit communities begin to fortify and 

rebound, communities would benefit from understanding the mobility of their neighbors.  

In particular, quantitative data on the utilization of roads and pedestrian pathways could 

inform them in the quest to secure transportation infrastructure investments. 

6.5  Sensors in a Shoebox: CPSS Application to Strengthen Community Resilience 

In order to move towards the realization of smart cities, there is a need to support citizens 

and, importantly, urban youth in developing the basic skills necessary to engage with 

sensing technologies so that they can be connected to their communities in a meaningful 

way.  This section provides an overview of the design and development of a community-

governed, place-based educational program called Sensors in a Shoebox that is 

implemented at full scale in Detroit.  This program aims to address issues related to equity 

and governance over decision making in communities.  In contrast to engineering processes 

that initiate from technology and sensing, the engineering process within the Sensors in a 

Shoebox program centers on understanding and designing sensing strategies based on the 

needs of the community and human users.  This program leverages the Urbano IoT 

platform and expands a traditional CPS architecture to directly integrate human action by 
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taking into account a citizen’s ability to observe and take action in response to CPS 

elements. 

 The overarching goal of this program is to support young peoples’ existing 

connections to their communities through problem solving and to empower them as citizen 

scientists.  Guiding the design of the educational programming is an emphasis on 

participatory action—or meaningfully working with youth and communities in the 

engineering process—to promote youth autonomy in engineering work and to engage them 

in engineering-rich work in community places with tangible outcomes.  Given the goal of 

developing a sustained CPSS, this work draws on human-centered design models situated 

in community to guide the content of the educational programming.  A historical design 

tradition within engineering, human-centered design is “an ongoing search for what can be 

done to support and strengthen the dignity of human beings as they act out their lives in 

varied social, economic, political, and cultural circumstances” (Buchanan 2001).  It is a 

 

Figure 6-14.  Overview of the educational programming using the Urbano IoT platform. 
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constant engineering process that centers on understanding and designing for the needs of 

human users, rather than starting from technology (Cross 2001).  It establishes the purpose 

of engineering as understanding and solving problems that humans have, rather than using 

technology for technology’s sake.  As an engineering process, human-centered design 

requires designers to fully scope and define their engineering problem as understood by the 

full stakeholder community, conduct research to better understand the community problem 

space, and continue to bring human uses into each aspect of the solution design work (Cross 

2001, Dym et al. 2005, Zoltowski et al. 2012).  To support this work, the program leveraged 

an array of research methods alongside the Urbano IoT platform, including survey, 

observation, and interviewing methods.  A schematic outlining how engineering is 

conceptualized in the programming is shown in Figure 6-14. 

 To show how a CPSS was enabled through the Sensors in a Shoebox programming, 

the remainder of this section illustrates the project specifics for one iteration of the 

educational programming.  The focus of this explanative analysis is the fourth iteration of 

the program, which ran from July through August of 2018.  The researchers worked with 

a youth summer camp program that is part of a well-known community organization 

serving a predominately Latinx population in Detroit.  The partnership with this 

organization was paramount because 1) it continues to be a trusted community organization 

that serves a population of youth historically marginalized in traditional engineering 

contexts; 2) it has a pre-established summer program for youth with flexibility in the 

schedule to allow for projects; and 3) it has an interest in developing youths’ science, 

technology, engineering, and math (STEM) skills.  During the summer camp, youth 

selected a programming option that they attended for five weeks.  The group met Monday 
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through Wednesday for three hours a day.  Together, the youth and research team defined 

and refined a problem the youth felt compelled to address in their community using 

engineering and research.  During this iteration of the program, the youth decided to 

explore why a local park located across the street from the organization was under-utilized 

by the community as compared to surrounding areas, as well as how the space might be 

improved to address the community’s needs.  Additionally, the youth measured air quality 

at the park because residents in southwest Detroit reside in one of the most polluted regions 

of Michigan due to the presence of heavy industries including steel mills, oil refining, and 

coal fired power plants.  As a result of the poor air quality, there have been elevated rates 

of cardiovascular disease and youth asthma (EPA 2015); many of the youth have been 

directly impacted by this. 

 The Sensors in a Shoebox program comprises four primary stages: 1) youth identify 

and define problems; 2) youth conduct community research and observe these problems 

using observation data, interview data, and sensor data; 3) youth intervene and devise 

solutions; and 4) youth collaborate with diverse stakeholders to communicate their findings 

publicly and actuate change in their community (Figure 6-14). 

6.5.1  Identify Problem 

Drawing from principles of human-centered design, the youth in the Sensors in a Shoebox 

program and the research team first worked together to define and scope a problem they 

were interested in pursuing.  The first day of the programming involved three key features: 

1) a community walk in which the youth and research team physically explored the 

surrounding neighborhood and engaged in open observation; 2) an introduction to the 

Urbano IoT platform in which the youth were introduced to the innerworkings of the 
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technology and some of its potential functions; and 3) a community problem or interest 

brainstorming session in which students drew or wrote problem spaces of interest for the 

summer work.  The programming was intentionally designed in this order to facilitate 

natural connections between the community space and sensing work.  This work generated 

long lists of potential problem spaces.  In the subsequent days, the youth and research team 

worked to narrow down the focus by using the “five-whys” critical thinking strategy, asset 

scoping, and engaging in some preliminary conversations with stakeholders.  During the 

fourth iteration of the Sensors in a Shoebox program discussed in this section, this resulted 

in the youth forming a collective interest in the park across the street because 1) some youth 

had previously explored it; 2) it is under-utilized for no easily discernable reason; and 3) 

the sensor technology offered some benefits to exploring and designing within the space.  

In this way, the purpose of the emerging CPSS was driven by community interest and 

shaped by access to progressive technology. 

6.5.2  Community Research and Data Analysis 

The scoping process then guided a targeted data collection process related to the identified 

problems in which the youth worked as a team to design a coherent research plan.  To begin 

this process, the youth considered the benefits and tradeoffs between the different types of 

data collection tools, including surveys, interviews, observation, and sensing.  This 

discussion was aimed at helping the youth to understand both the limitations and 

capabilities of social science tools and sensing technologies for learning about community 

needs and problems.  The youth and research team then worked to construct a plan using 

all of these data collection methods and detailed the logistical considerations for each 

method.  The youth wrote interview questions and developed survey tools, and then edited 
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them accordingly before initiating the community data collection effort.  The youth then 

determined what type of sensing data would be helpful for their work (namely, pedestrian 

traffic and air quality) and assembled the Urbano sensing kits accordingly.  Using a satellite 

image of the park, the youth mapped where they wanted to install the sensing nodes to 

collect foot traffic data (P1 through P4 in Figure 6-15(a)) and to measure air quality (A1 in 

Figure 6-15(a)).  The youth also built a paralleled observation protocol to track user 

behaviors in order to support and enrich the data they would collect with the sensors. 

 To collect data, part of the youth went to the park and surrounding establishments 

to observe and survey those who might be or become stakeholders in the park.  Other youth 

called local business owners to interview them about their hopes for the space in the context 

of their business.  Finally, other youth deployed the PIR and air quality sensors to collect 

data over the course of a week.  Figure 6-15(b) shows one of the Urbano nodes installed at 

location P1 that is used for pedestrian tracking.  Similar to the data discussed in Section 

6.4.2, these sensing nodes transmit timestamped pedestrian counting data wirelessly to the 

cloud.  Additionally, air quality sensors were installed at location A1.  The air quality 

sensors were housed inside of a 3D printed chamber within the node that exposed the air 

quality sensors to the outside environment while keeping the node’s internal circuitry 

weatherproof (Figure 6-15(c)).  For this deployment, youth installed air quality sensors 

inside of Urbano nodes (measuring NO2, SO2, and O3) and installed the sensing nodes on 

light poles at the park. 

 Given the timing constraints of the summer programming, social science data was 

collected for two programming sessions, a limitation that the youth would later articulate 

in their analysis with the team.  The benefit of the sensors being relatively hands-off once 
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they were deployed was that it allowed for longer data collection and greater opportunity 

to establish the necessary social science skills to develop and sustain a community-driven 

 

(a) 

 
 

(b) (c) 

Figure 6-15.  (a) Sensing plan including pedestrian counting sensors (P1-P4), sensing bench (B1), 

and air quality sensors (A1); (b) pedestrian counting sensors installed at location P1; (c) Urbano 

node configured to sense air quality. 
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CPSS.  That is, it was important to pair the sensing data with social science research to 

holistically analyze the needs of the people using the park.  One of the aims of the 

programming was to highlight the use of sensor technology as a powerful tool among other 

tools that the youth can use to explore and understand their surrounding communities. 

6.5.3  Solution Development 

Analyzing the data collected in the research phase then informed the solution development 

process.  The goal of the programming was to present solution development as both a 

creative process and data driven.  As such, in the park project, youth and the research team 

worked together to analyze the community data collected, understand the limitations of the 

data collected, and think about the different types of data as a whole set.  These 

conversations put the data collected by the Urbano IoT platform in conversation with 

  

(a) (b) 

Figure 6-16.  (a) Urbano nodes built into the “Super Bench” are accessed by removing the back 

panel; (b) PIR sensors are strategically installed to measure up to two people sitting on the bench. 
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interviews with local business owners or surveys from park-goers.  Using the data, youth 

asserted that a lack of comfortable, inviting seating was one of the driving concerns in the 

park.  The time constraints of the summer programming necessitated youth focusing on 

one focal project, although they also outlined others they were interested in pursuing.  This 

prompted the development of “Super Bench,” a bench built in collaboration with a 

community leader from Sit On It Detroit who salvaged wood from demolition around the 

city to make temporary seating.  Wanting to better understand how additional seating 

would be used and to see its impact on the park usage, the youth built a bench with the 

Urbano IoT system embedded into it to track how many people sat on the bench and to 

continue to monitor foot traffic in the park to see if the bench increases the park usage.  As 

shown in Figure 6-16, the Urbano sensing nodes were secured in an enclosed compartment 

within the bench’s back, and solar panels were embedded into the top of the bench.   

Attending to community feedback indicating interest in color and art in the park, the bench 

was then colorfully painted.  Working with the commitments of the community 

organization and the community leader, a small, enclosed library was built into the bench 

and stocked with books in both English and Spanish languages.  In this way, the solution 

development was inspired by data collected from all sources, which guided the 

development of the bench’s features.  Further, its features supported an ongoing research 

system, supporting the youth in further understanding how the community used the park 

seating. 

6.5.4  Public Communication 

To conclude their time in the programming, the youth presented their findings and their 

design work to community stakeholders and civic leaders in a format of their choosing, 
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communicating both their process and results of their design.  The youth developed their 

presentation materials and practiced the ways they might discuss their work with various 

types of stakeholders.  Given time constraints, the youth developed a written memo and 

proposal to further elaborate data-driven suggestions for projects within the space.  The 

youth chose to develop posters characterizing the narrative of their design process.  They 

presented these posters outside at the park, near the bench and sensing network they had 

installed.  Leaders of community organizations, members of the surrounding community, 

local business owners, and park-goers were invited to interact with youth around their 

posters at the park.  The youth also developed a potential improvement plan for the park, 

with suggestions ranging from more permanent seating options, secured recycling and trash 

bins, more shaded areas and colorful landscaping.  Ultimately, these final presentations 

created an opportunity for community members to engage with the research and design 

work the youth had done and to encourage meaningful action.   

6.5.5  Results and Impact 

Introducing and situating the IoT Urbano platform within a larger community engineering 

educational program offers one potential map through which we can begin to develop a 

sustainable CPSS (Figure 6-17).  Looking across this iteration of the Sensors in a Shoebox 

program, the youth were meaningfully engaged in the engineering design and research 

process, from beginning to end.  By creating programming in which the youth were 

engaged in and drove the entirety of a design cycle situated in their communities, more 

opportunity was created for students to see engineering and technology as relevant to their 

lives and transformative in their communities.  As a result of the fourth iteration of the 

program, the City renovated the park and a new bike repair and tire pump station, colorful 
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gardens, a covered picnic area, manicured trees, benches, recycle bins, trashcans, a pet 

waste station, and barbeque grills were added to the park. 

 Of the eight youth who participated in Iteration 4 of the programming, two youth 

were returning from the previous summer’s programming exploring the park (Iteration 2, 

Figure 6-14).  In Iteration 5 the following summer, four of the eight youth returned.  On 

returning to the program, the youth highlighted the connection between their work with the 

Sensors in a Shoebox program and helping their community, which situates their 

participation as a contributing factor to positively impacting to their local area.  These 

youth expressed interest in continuing their work on the park, suggesting that the data 

supported their work.  This suggests that youth made connections between their research 

work, their design work, and city action that ultimately led to the park’s renovation.  

Further, it suggests the need for more widespread structures that help to establish these 

connections by creating educational programming foundations (through clubs, community 

organizations, service centers etc.) that provide user-friendly technological innovation (i.e., 

 

Figure 6-17.  Integration of the Urbano platform within a larger community program offers a 

powerful mapping through which a sustainable CPSS emerges. 
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the Urbano IoT platform) with the infrastructure through which to support meaningful 

change in a community. 

6.6  Conclusions 

The Urbano IoT cloud-based sensing node proposed in this chapter serves as a flexible 

sensing platform that can be densely and rapidly deployed throughout cities.  The hardware 

and software architecture of Urbano nodes are designed to ensure ultra-low power 

consumption so that they can rely solely on solar energy harvesting to be self-sustaining.  

Since Urbano nodes are not reliant on continuous power sources (e.g. light poles or 

powered street furniture) and operate autonomously aside from connection to a cellular 

network, they can be deployed as stationary or mobile sensing  units not only in city centers, 

but also in residential neighborhoods and areas where access to power and communication 

infrastructure can be scarce.  This design architecture is based on the belief that urban 

sensing can play a major role in empowering communities to collect data on urban 

processes of interest, and can transform how communities engage with other city 

stakeholders to make decisions.  To demonstrate the utility of the Urbano platform to a 

wide range of city stakeholders, three preliminary deployments studies were successfully 

carried out that engaged city governments, local organizations, urban youth, and 

communities.  All three stakeholders were able to use a variety of analog and digital sensors 

to deploy both stationary and mobile sensing nodes, all using the same Urbano platform.  

While stakeholders have access to data in a time series database, a variety of user friendly 

visualization portals were leveraged to make data easy to interpret and accessible to 

community members.  This platform offers a scalable and sustainable solution for enabling 

communities to help strengthen their city neighborhoods.  In addition to helping to connect 
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citizens to their communities, this platform provides a scientific and technological 

foundation to the extension of CPS to include humans. These CPSS human-in-the-loop 

systems have the potential to transform a variety of application areas including 

transportation, building energy management, among others. 
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CHAPTER 7  

Conclusions and Future Research Directions 

 

7.1  Conclusions 

In recent years, urbanization trends have imposed greater load demands on infrastructure 

and placed stressors on social urban systems.  At the same time, naturally occurring hazards 

continue to threaten infrastructure and populations.  Despite these challenges, opportunities 

are emerging out of the unprecedented proliferation of technologies enabling low-cost 

sensing, high-power computing, and actuation.  Together, these advancements enable 

“intelligent,” or cyber-physical, systems, which promise to greatly enhance the 

performance of the built environment.  However, even with these advancements, the ability 

of professionals to “sense for decisions”, which this dissertation defined as data-driven 

decision processes based on sensed data that have quantifiable returns on investment, 

remains a bottleneck across an entire class of problems such as infrastructure management, 

societal resilience, and smart cities. 

 The focus of the research presented in this dissertation was to build a broad and 

rigorous technological, analytical, and methodological background necessary to sense for 

decisions with respect to two of the field’s prevailing challenges: decision making for 

infrastructure asset management and community-governed decision making.  This 

necessitated developing deliberate pathways to sense for decisions in physical and social 
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systems as well as in CPSS systems at the intersection of physical (CPS) and social 

systems.  Sections 7.1 through 7.1.3 summarize the key findings presented in this 

dissertation. 

7.1.1  Sensing for Decisions in Single-Asset Intelligent Infrastructure 

First, this work aligned targeted sensing strategies with decisions governing infrastructure 

asset management by extending reliability methods—which have matured in civil 

engineering applications over the past several decades and are used to define structural 

design codes—to enable data-driven decision-making practices that reflect those used in 

practice today.  First, the reliability index was used as a scalar measure of the safety of an 

asset (i.e., probability of failure) to track structural condition and trigger upkeep decisions 

in structures where fatigue is a controlling failure mechanism.  As an illustrative example, 

a wireless SHM system was installed on the Harahan Bridge and long-term response data 

was used in a reliability framework to continuously track the fatigue life of critical eyebar 

assemblies.  The proposed reliability-based SHM framework was then generalized to 

formally and more broadly link structural monitoring data with condition ratings, which 

are the starting point for infrastructure asset management decisions made in practice today.  

While reliability methods have historically quantified safety with respect to a single limit 

state (e.g., yielding), this dissertation demonstrated that there exist measurable reliability 

index values associated with “lower” limit states well below failure that can be described 

by each existing condition rating.  This allowed for monitoring data to be used to assign 

condition ratings based on quantitative information encompassing the entire measurable 

domain of damage, as opposed to those informed only by visual inspection.  The proposed 

methodology served as the first-ever SHM framework to explicitly map monitoring data to 
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actionable decisions and was validated using a wireless SHM system installed on the 

Telegraph Road Bridge (TRB) (Monroe, MI). 

 Chapter 2 presented a reliability-based SHM framework that provides structural 

owners with actionable information associated with the safety of their assets given the 

current (potentially deteriorated) condition of their structures.  This purely data-driven 

framework relies on long-term monitoring data to offer a quantitative assessment of 

structural safety with respect to remaining fatigue life.  A significant contribution of this 

work was that it implemented a novel holistic approach to tracking fatigue accumulation 

in which the sensing design empowers full consideration of the dead and live loads and 

associated changes in boundary conditions.  The contribution of changes in boundary 

conditions and secondary deterioration mechanisms on structural safety is critically 

important, yet often ignored due to the emphasis of existing sensing strategies on 

monitoring global structural behavior.  Additionally, the proposed framework can be 

carried out without the need for approximate methods (e.g., train parameter estimates, FE 

model simulations, controlled loading tests) during the monitoring period.  To augment 

this theoretical framework, Chapter 2 presented the application of a fully automated 

wireless sensing system on the Harahan Bridge that was used to assess probabilistic fatigue 

life coupled with relative tautness of a critical tensile eyebar assembly.  The reliability 

index values for both the element (i.e., individual eyebars) and system (i.e., full eyebar 

assembly) reliability problems were assessed and indicate that, under the conservative 

assumption that progressive failure is brittle, first failure within the parallel eyebar system 

is generally equivalent to system failure.  The proposed method also serves as an 
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intervention strategy that can quantify the influence of eyebar realignment maintenance 

efforts on the future evolution of the reliability index. 

Chapter 3 then drew upon the advancements made in the development of the 

decision-driven monitoring system implemented on the Harahan Bridge in Chapter 2 to 

develop a more generalized SHM framework to sense for decisions across diverse 

infrastructure assets.  This work was motivated by the observation that while SHM has 

shown continued growth over the past several decades, there is a persistent chasm between 

SHM and the ability of structure owners to make asset management decisions based on 

SHM data in practice.  This is in part due to the historical SHM paradigm cast as a problem 

of estimating structural state and detecting damage by monitoring changes in structural 

characteristic properties (namely, reduced stiffness).  In reality, for most operational 

structures, deterioration does not necessarily correspond to changes in structural properties 

with structures operating in their elastic regimes even when deteriorated.  For structures 

like bridges, upkeep decisions are based on federally mandated condition ratings assigned 

during visual inspection.  Since condition ratings are widely accepted in practice, this 

dissertation proposed that condition ratings serve as lower limit states (i.e. limit states 

below yielding) with long-term monitoring data used to quantify these lower limit states in 

terms of the reliability index.  In order to link structural monitoring data with existing 

condition ratings using reliability methods, a method was offered to quantify the reliability 

index values, β𝑖
𝑟, corresponding to the lower limit states described by condition ratings (if 

there are ten condition ratings, 𝑖 = 0,1, … ,9).  This explicitly assigns a quantifiable level 

of safety and performance to each decision that is currently made in practice after 

inspection.  Once the reliability index threshold values are established for a set of condition 
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ratings, the data-driven (measured) reliability index, β𝑚
𝑟 , of the in-service asset can be 

monitored continuously and explicitly mapped to a condition rating to track the structural 

condition of the asset at any point in time and to trigger upkeep decisions based on 

condition ratings. 

The proposed framework was successfully carried out using long-term monitoring 

data collected from the Telegraph Road Bridge.  The application of the proposed 

framework to one of the TRB’s pin-and-hanger assemblies demonstrated that long-term 

monitoring is necessary to assess the influence that diverse types of damage have on the 

safety of a structural assembly.  For hanger plates, these damage cases are historically tied 

to corrosion-induced locking at the pin-plate interface, and in-plane and out-of-plane 

bending.  To illustrate the importance of this finding, the author compared the reliability 

index value and corresponding condition rating derived from the proposed data-driven 

method to the conclusions drawn from existing visual and ultrasonic-based methods of 

inspection when the net-section stress limit state is considered with both section loss and 

locking at the pin-plate interface.  The results indicated that current inspection methods can 

fail to quantify and assess the impact that underlying damage and changes in boundary 

conditions can have on the safety and performance of the pin-and-hanger assembly.  As a 

result, deterioration that increases the probability of failure of a structural assembly can go 

unnoticed during condition rating inspections. 

7.1.2  Overcoming Technological and Analytical Barriers to Scaling Out 

One of the foremost challenges faced by wireless SHM systems whose operation relies on 

energy harvested from the environment (such as the solar-powered SHM systems installed 

on the Harahan Bridge and TRB) is that such systems are subject to stringent energy 
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constraints.  There is an inherent tradeoff between the quality of a measured process’ 

parameter estimates and the energy-constrained communication.  Consequently, when 

decision-making processes rely on statistical estimations of performance, the utility of data 

should be considered to optimize the data collection and transmission processes given the 

system constraints.  In order to enable sensing for decisions in applications where energy 

is an uncertain and limited resource, this dissertation derived a novel stochastic data 

collection and transmission policy for wireless sensing networks that minimizes the 

variance of estimated component parameters of a measured process subject to system 

constraints.  Numerical results based on one year of data collected from the TRB illustrate 

the gains achieved by implementing the optimal policy to obtain response data used to 

estimate the reliability index. 

 Chapter 4 derives a stochastic data collection and transmission policy that 

minimizes the variance of estimated component parameters of a measured process subject 

to constraints imposed by a WSN node’s energy and data buffer sizes, stochastic models 

of the incoming energy and event arrivals, the value of data, and temporal death.  By 

controlling data collection within a transmission subsystem to optimize an objective 

governed by remote parameter estimation, data collection and transmission is automated 

to facilitate decision making.  This work modeled a replenishable WSN node as a 

continuous-time Markov chain and derived a single unique threshold value governing an 

event-based policy that is independent of the energy buffer’s SoC and places no restrictions 

on the size of the energy and data buffer sizes.  The derived optimal threshold value 

produces the best possible estimate (i.e., minimum component variance) of the process 

parameters using MLE given the system constraints.  Numerical results are presented to 
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reflect the objectives of the theoretical results and to illustrate that the proposed framework 

is robust against uncertainty in estimates of the process’ parameter estimates at the outset 

of the monitoring period. 

 This work differentiates itself from, and improves upon, existing literature in two 

notable ways.  First, the proposed policy accounts for—and places no restrictions on the 

size of—a WSN architecture’s data storage buffer.  Data transmission is often the most 

significant source of energy consumption in a wireless sensing node; accounting for the 

storage of (potentially) large amounts of data in a buffer that are communicated to the 

remote estimator in batch transmissions—as opposed to transmitting each value 

individually immediately upon collection—leads to significant gains in the transmission 

rate.  Consequently, the proposed policy can be used in diverse applications requiring wide-

ranging hardware specifications, from sampling continuous measured processes at high 

rates (>100 Hz) in SHM applications to low-rate environmental applications.  Second, this 

work represents the first effort to derive a stochastic policy that governs data collection and 

transmission with the purpose of explicitly linking optimal remote parameter estimation to 

a rigorous stochastic energy recharging model that accounts for all significant hardware 

constraints. 

 Chapter 5 then drew upon the primary result from Chapter 3: structural monitoring 

data can be directly incorporated into decision-making processes for asset management 

using reliability methods, where the response data at each sensor location is characterized 

by its statistical parameters.  This suggests that there is a need for an automated data 

collection and transmission strategy that facilitates the characterization of the statistical 

parameters of structural response data with minimum variance so that bridge owners can  



 

245 

 

increase the frequency with which they track structural condition without compromising 

accuracy.  In the context of Chapter 3, this refers to the ability of bridge owners to update 

data-driven condition ratings based on the highest quality parameter estimates of the 

measured input processes. 

 The work presented in Chapter 5 drew upon the theoretical basis presented in 

Chapter 4 and extended the optimal data collection and transmission policy to an SHM 

application on the TRB, which was introduced in Chapter 3.  The monitoring system on 

the TRB stands to benefit from the implementation of such a policy because the WSN 

utilizes sensing nodes that operate using harvested solar energy and are subject to stringent 

energy constraints due to the size of the solar panels and availability of incoming energy, 

geographic location, and battery size.  Because the optimal policy was simulated based on 

historical data collected from June 2016 to June 2017—for which there was no measured 

data to inform the recharge and event arrival rates during the monitoring period—the 

recharge and event arrival rates were modeled based on continuous WIM station data 

collected along Interstate 275 to the north of the TRB as well as surface weather 

observations recorded by NOAA at a nearby station.  In order to illustrate the gains 

achieved by implementing the proposed optimal policy, the transmit-all, best schedule-

based, and optimal policies governing data collection and transmission processes were 

simulated over the one-year monitoring period, where the strain response measurements 

corresponding to each truck were drawn from the true process measured by bridge response 

data.  The results confirmed that the implemented optimal policy minimizes the variance 

of the estimated component parameters subject to the system constraints.  Consequently, 

bridge owners can update the reliability index more frequently and accurately. 
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7.1.3  Sensing for Decisions in Social Urban Systems 

Finally, this dissertation extended the work performed in wireless sensing and sense-for-

decision frameworks by exploring their role in community-based decision making.  This 

dissertation posed societal engagement as a necessary entry point to urban sensing efforts 

in smart cities.  Members of under-resourced communities are often stakeholders who are 

the most challenged with technology and the most vulnerable to lack of access to data and 

information.  This dissertation offered a novel, low-power wireless sensing architecture 

that functions as a user-friendly urban sensing solution that communities can rapidly 

deploy to understand urban processes that are critical to informing their views and to guide 

their decision making.  Applying this platform, this dissertation presented transformative 

work to “democratize” data by enabling members of vulnerable communities to easily use 

these generic urban sensors to collect data and generate insights on issues that tie directly 

to their unique needs and the diverse ways in which they use their cities. 

 Chapter 6 detailed the development of the Urbano sensing platform, which supports 

interoperability among diverse arrays of heterogeneous IoT devices, preserves privacy and 

trust among citizens, supports cloud-based analytics, has a user-friendly design, and 

supports low-power and low-cost sensing and communication to free nodes from a fixed 

power source.  In order to illustrate the applicability and usability of the Urbano to diverse 

stakeholders, a number of smart city engagements using the Urbano sensor node were 

presented.  These applications incorporated a wide variety of stakeholders including city 

governments, local organizations, urban youth, and communities.  The first test case 

highlighted the use of GPS-enabled Urbano nodes to track food trucks in Grand Rapids, 

MI to assess compliance with permit rules and curbside management by city planning 
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officials.  The second application deployed Urbano nodes to monitor pedestrian traffic 

along the Detroit waterfront; this data is desired by the Detroit Riverfront Conservancy to 

understand utilization of public spaces to guide future investments. 

 Given these successful deployments, a program called Sensors in a Shoebox was 

developed and implemented at full-scale in Detroit, MI.  By involving Detroit youth 

(grades 8-12), Sensors in a Shoebox aimed to encourage young, vulnerable populations to 

engage with their communities as citizen scientists.  Students engaged in problem-based 

inquiry, devised sensing solutions, and interpreted collected data drawn from their own 

urban settings.  Students collected their own data in their neighborhoods and cities using 

the Urbano platform and partnered with city governments and local organizations to 

address the challenges faced.  Introducing and situating the IoT Urbano platform within a 

larger community engineering educational program offered one potential map through 

which we can begin to develop a sustainable CPSS.  Looking across one iteration of the 

Sensors in a Shoebox program, the youth were meaningfully engaged in the engineering 

design and research process, from beginning to end.  By creating programming in which 

the youth were engaged in and drove the entirety of a design cycle situated in their 

communities, more opportunity was created for students to see engineering and technology 

as relevant to their lives and transformative in their communities.  This suggests that youth 

made connections between their research work, their design work, and resulting actions 

made by the City.  Further, it suggests the need for more widespread structures that help to 

establish these connections by creating educational programming foundations (through 

clubs, community organizations, service centers etc.) that provide user-friendly 
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technological innovation (i.e., the Urbano IoT platform) with the infrastructure through 

which to support meaningful change in a community. 

7.2  Future Research 

7.2.1  Intelligent Infrastructure 

Consider the reliability-based SHM framework that was presented in Chapter 2.  A key 

assumption is made to facilitate the development of the proposed framework: a 

conservative lower bound is placed on the parallel eyebar system’s reliability index, which 

assumes that if one eyebar exceeds its limit state, then its load immediately redistributes to 

the other eyebars leading to a seemingly brittle failure mechanism.  In reality, there remains 

axial load capacity in the cracked eyebar past the limit state resulting in a ductile failure 

mechanism.  While lessening this conservative assumption may lead to economic gains, 

conservatism is ubiquitous across structural engineering due to the catastrophic 

consequences of failure.  With this tradeoff in mind, future work should entail investigating 

the parallel eyebar system after crack initiation to more accurately identify the reliability 

of the parallel eyebar component.  This will lead to an even more realistic approach to 

assessing the component reliability and will also offer some insight to the time scales over 

which progressive failure of the component would occur, allowing for inspection cycles to 

be optimally timed.  Additionally, future work aimed at modelling the relationship between 

the reliability index and repeated eyebar realignment will help to inform optimally timed 

maintenance efforts that maximize the remaining fatigue life of the bridge. 

In both the Chapter 2 and Chapter 3, the reliability index serves as a powerful metric 

because it is a direct indicator of the probability of failure of a component or system.  The 
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explicit linkage between structural condition and the reliability index has far-reaching 

implications enabling the translation of the proposed methodologies into widespread 

practice.  The proposed data-driven condition ratings from Chapter 3 can be tied more 

concretely to owners’ decisions by quantifying the cost implications of actions that are 

associated with each condition rating.  This will extend the existing reliability-based 

framework to a more general risk-based decision-making framework where each element 

has to be assessed for risk.  Here, risk is based on both the probability of failure tied to 

condition ratings, as defined in this dissertation, and consequences (i.e. cost of action or 

inaction).  Such an extension will enable stakeholders to concretely understand what asset 

management decisions are considered financially optimal given an asset’s current 

condition rating.  While decoupled from condition ratings, a preliminary theoretical basis 

for such a decision-making process has been investigated by Cappello et al. (Cappello et 

al. 2016) and Thöns (Thöns 2018).  The proposed method investigated in this dissertation 

sets the foundation for implementing better decision-making strategies based on risk—and 

even setting new, quantitatively informed criteria for condition ratings themselves—

without needing to change the already established, and nationally mandated bridge 

management system that is founded on condition ratings.  Future work will also include 

exploring the potential difficulties of extending the proposed methodology to other bridge 

components that require less straightforward analytical modeling.  This is critically 

important because the method for assigning lower limit states to condition ratings relies on 

the development of a high-fidelity FE model. 
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7.2.2  Social Urban Systems 

For WSNs within large-scale systems such as transportation and building energy systems 

that are subject to resource constraints, the optimal policy and theoretical framework 

derived in Chapter 4 should be extended from a single-hop to network-level scale.  As the 

value of information becomes increasingly dependent on multiple wireless sensing nodes 

across a network, the embedded microcontroller will be used for extensive data processing 

as part of a larger edge-computing architecture associated with sensing in smart cities.  This 

will necessitate moving the computation of the optimal threshold from a remote server to 

a WSN node’s local embedded processor.  To facilitate this transition, a surrogate model 

should be implemented to simplify the solution for the optimal threshold value to enable 

less complex on-board embedded processing on an 8-bit microcontroller.  Additionally, the 

energy-aware sensing strategy should account for the fact that energy arrival and event 

arrival rates are rarely constant over long periods of time when WSNs rely on EH from the 

environment.  This research would benefit from future work that incorporates predictive 

estimation of the recharge rate, β, and event arrival rate, 𝜆.  Short-term forecasting will 

also enable the integration of online supervisory control schemes that dynamically control 

whether the sensing architecture is accepting measurements or in a low-power sleep state 

in which all incoming data is rejected, even when the energy buffer is not fully depleted. 

 The CPSS platform presented in this dissertation offers a scalable and sustainable 

solution for enabling communities to help strengthen their city neighborhoods.  In addition 

to helping to connect citizens to their communities, this platform provides a scientific and 

technological foundation aiding the extension of CPS to include humans.  However, while 

CPSS holds tremendous promise in connecting urban citizens to their cities, there remain 



 

251 

 

many challenges including how to integrate human-centric data and human-in-the-loop 

control solutions into CPS frameworks. 

 Moving forward, future work will necessitate understanding the role that sensing, 

data, and actuation can play in promoting equity and enabling social mobility by deeply 

rooting policy-making, urban planning, and governance within community-driven data 

collection.  This will require the fusion of data produced by interdependent systems 

(including rigorous consideration of human action within these systems) and require 

addressing a number of technical and analytical challenges due to the increased demands 

on automated sensing, computation, and control in under-resourced areas.  This ties directly 

to the idea of sensing for decisions because the field of civil and environmental engineering 

is becoming increasingly centered on understanding and designing engineering systems 

based on the needs of the human users and the ways they use infrastructure services and 

make decisions in their communities.  Since human development is highly dependent on 

feedback mechanisms that are enabled by both social (e.g., education) and physical (e.g., 

public spaces) components, a primary extension of this work will focus on 1) identifying 

and quantifying critical feedback mechanisms that exist within the built environment that 

are either directly or indirectly related to factors impacting social mobility; and 2) using 

intelligent systems (i.e., sensing, data, and actuation) to close these feedback loops when 

existing mechanisms are not sufficient to enable a stakeholder (e.g., student, community) 

to reach its desired output. 
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