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Abstract

High-fidelity optimization of aircraft has the potential to produce more efficient

designs and to further reduce the risk of late design changes. For the optimization

to generate a useful design, all the relevant constraints must be considered, including

flutter. This is especially important in the high-fidelity aerostructural optimization

of commercial aircraft, which is likely to result in high-aspect-ratio wing designs that

are prone to flutter. To address this issue, we develop a flutter constraint formulation

suitable for gradient-based aerostructural optimization with accurate and efficient ad-

joint derivatives. This approach scales well with the number of design variables and

considers both structural sizing and aerodynamic planform variables. An effective

bounding curve defines the flutter-free flight envelope, prevents discontinuities in the

flutter constraint, and allows for minimum flutter speed to be specified implicitly.

The flutter constraint formulation utilizes an efficient non-iterative p-k method, an

effective bounding curve, and an aggregation technique that results in a single con-

straint in the optimization problem. Accurate and efficient derivatives of the flutter

constraint value with respect to structural sizing variables and aerodynamic planform

variables are computed. Furthermore, to enable changes in planform, derivatives of

the mode shapes are also computed efficiently. The derivatives are computed us-

ing a combination of analytic and automatic differentiation methods in reverse mode

(adjoint) and rigorously validated using the complex-step method. We perform a

multipoint, high-fidelity aerostructural optimization of a wing and full configuration

aircraft with and without the flutter constraint, subject to stress and buckling con-

xv



straints. With the flutter constraint, we obtain a stiffer, lower aspect ratio wing with

stark differences in structural sizing, but without a significant reduction in objective.

These results demonstrate the importance of including flutter constraints in wing de-

sign optimization. The proposed approach can be used to enforce such constraints in

other applications and could be adapted to constrain other types of phenomena with

the same form.
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CHAPTER 1

Introduction, Background and Objectives

1.1 Introduction

Flutter is a dynamic aeroelastic instability that causes divergent oscillatory vibra-

tions [3]. It is an undesirable phenomenon in aircraft because it can cause structural

damage or failure, performance and ride comfort degradation, or loss of control. Flut-

ter computations are typically performed only after an initial detailed design of the

aircraft is completed, because they require the vehicle stiffness, mass, and aerody-

namic models to be available [4]. If the design does not satisfy the flutter require-

ments at this stage, a redesign is necessary, which adds costs and delays to the aircraft

development cycle. Thus, it is desirable to consider flutter concurrently with the air-

craft design and the wing design in particular. Such a process would not only shorten

the design cycle, but also allow for advantageous design trade-offs between the flutter

requirements, the other constraints, and the aircraft performance.

Performing multidisciplinary design optimization (MDO) that considers both aero-

dynamic shape and structural sizing simultaneously while enforcing flutter constraints

is a way to address this issue [5, 6]. Structural optimization alone, even if includ-

ing aerostructural analyses for enforcing flutter constraints, yields design solutions

with suboptimal performance compared to the optimal designs resulting from MDO,

where structural and aerodynamic sizing variables are optimized simultaneously [6, 7].
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MDO can minimize structural weight, fuel consumption, or a combination of these two

objectives with respect to wing shape, internal structure arrangements, and sizing,

while accounting for the interactions between aerodynamics, structures, and other

disciplines, and satisfying various constraints. MDO with flutter constraints results

in designs with optimal aeroelastic tailoring. Omitting flutter constraints in the

MDO process when minimizing fuel consumption tends to yield light-weight, high-

aspect-ratio wing (HARW) designs that despite being highly efficient may not be

feasible [8, 9].

After the aircraft has been designed and a prototype has been built, certification

requires flight tests to demonstrate that the aircraft be free from flutter in the flight

envelope with a 15% safety margin beyond the dive speed. If flutter is discovered at

the flight test certification stage, it requires redesign to address it, incurring additional

costs. The redesign effort typically increases the structural weight, reducing the

performance originally anticipated for the aircraft.

The trend towards HARW aircraft is driven by better fuel efficiency, but their

increased flexibility makes it all the more important to consider flutter accurately and

early in the design process [10]. Another recent trend is the increasing use of control

surfaces to suppress flutter. Active flutter suppression systems can be incorporated

late in the design process when aeroelastic instabilities are encountered and a passive

solution such as redesign is impractical and expensive [11, 12]. Alternatively, MDO

provides a way to obtain the best possible configuration by co-designing the wing

shape and internal structure, which contribute to passive flutter suppression that can

then be augmented with an active flutter control system.

While there has been extensive work in methods for flutter analysis, integrating

flutter constraints into design optimization requires additional considerations. Models

used for flutter prediction should capture the relevant physics with adequate accuracy

to correctly drive the optimizer, and inevitably there is a compromise between model
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fidelity and computational cost. To include flutter analysis in a numerical optimiza-

tion cycle, speed of execution is particularly important to make sure that the overall

optimization process is tractable.

Another important characteristic for integrating flutter analysis into the optimiza-

tion process is the robustness of the flutter prediction method. Since the optimization

process automatically samples the design space, it is likely to request for the anal-

ysis of designs that would normally not be chosen by a human designer. Thus, it

is important that the flutter analysis converges for such designs so that the overall

optimization process is not interrupted.

Gradient-based optimization algorithms are needed to optimize practical aircraft

configurations parameterized with a large number of design variables [13]. When using

gradient-based algorithms, it is important to consider the smoothness of the objective

and constraint functions, as well as the accuracy and efficiency of the derivative

computations.

Optimizing HARW configurations subject to flutter constraints is even more chal-

lenging because it requires capturing couplings between aeroelasticity and flight dy-

namics along with geometric nonlinearities that arise in the presence of low natural

vibration frequencies and significant structural flexibility [14, 15].

Nonlinearities in the structure (large deflections, free-play of control surfaces, fol-

lower loading) or the aerodynamics (shock waves and flow separation) can cause

self-sustained oscillations of limited amplitude that remain constant in time, known

as limit cycle oscillations (LCOs). For certain types of nonlinearities, LCOs may

exist at flight conditions below the flutter point [16]. When nonlinear effects become

important, post-flutter analysis should be integrated into the design process in the

form of constraints to make sure that the optimal design is feasible.

There have been several review papers and textbooks on flutter and post-flutter

analysis. Livne [17, 18] reviewed the state-of-the-art and future challenges in aeroe-
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lasticity of conventional and unconventional vehicles. A recent review by the same

author focused on active flutter suppression control systems [12]. Friedmann [19]

reviewed the general challenges in nonlinear aeroelasticity, where the applications fo-

cused on rotary wings. Dowell et al. [16] classified nonlinear aeroelastic behaviors and

discussed theoretical, computational, and experimental analysis efforts. de C. Hen-

shaw et al. [20] discussed traditional industrial linear flutter prediction and recent

efforts for including nonlinear effects, particularly due to transonic flows. More re-

cently, Afonso et al. [10] reviewed nonlinear aeroelasticity of HARWs. Dimitriadis [21]

discussed nonlinear post-flutter behaviors in aeroelastic systems and the related anal-

ysis methods. Beran et al. [22] reviewed methods for uncertainty quantification in

aircraft aeroelasticity and their application to formulate nondeterministic optimiza-

tion problems. However, the field lacks a review on the integration of flutter and

post-flutter analysis as constraints in aircraft design optimization.

In this chapter, we address this shortcoming by reviewing methods for flutter pre-

diction, and we discuss their advantages and disadvantages in the context of aircraft

design optimization. We refer the reader to Jonsson et al. [2] for discussion on struc-

tural nonlinearities in flutter analysis and post-flutter analysis and their integration

into design optimization.

First, we provide a brief background on multidisciplinary design optimization in

Section 1.2 and on flutter modeling in Section 1.3. These sections emphasize the

key aspects relevant to aircraft design and are beneficial for readers not familiar with

either of these topics. These methods and examples of their application in aircraft

design optimization problems are then discussed in Section 1.4. The chapter concludes

with remarks on the state of this field and the open challenges to be addressed for

integrating flutter considerations into the optimal design of aircraft configurations.
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1.2 Background on Multidisciplinary Design Op-

timization

Multidisciplinary design optimization couples the relevant disciplines of an engineer-

ing system and performing a numerical optimization to aid the design of that sys-

tem [23]. MDO considers several disciplines simultaneously such that their interac-

tions can be leveraged, resulting in a better optimum than if each discipline were

optimized sequentially [24]. Thus, considering MDO early in the design process al-

lows engineers not only to improve the design, but also to minimize development time

and cost of the overall design.

Performing MDO of aircraft configurations by describing its outer mold line (OML)

and structural sizing with high fidelity requires a large number of design variables.

Detailed aerodynamic optimization of wings requires hundreds of shape variables [25]

and structural sizing based on a detailed finite-element wingbox model that is best

utilized with an equally large number of sizing variables [26]. Gradient-based opti-

mization methods are the feasible way to solve for high-dimensional problems within

a reasonable computational time, especially when using high-fidelity analyses [13, 27].

Gradient-based methods require derivatives of the objective and constraint functions

with respect to the design variables to help the optimization algorithm find the most

promising search directions and establish rigorous optimality conditions.

While gradient-free algorithms are typically more robust and some of them ex-

plore the design space more widely, their cost is prohibitive when the number of design

variables is large. Although gradient-based methods only guarantee convergence to a

local optimum, this can be mitigated by using a multi-start technique [28]. Further-

more, recent studies failed to find multiple local minima (multimodality) in airfoil

and wing shape design optimization [13, 25], except the case of planform optimiza-

tions where expected local minima were found related to choices such as upwards or
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downwards winglets [29].

The efficacy of gradient-based algorithms relies on accurate and efficient gradient

computations. The gradient accuracy directly affects the ability to converge to the

optimum with a specified tolerance and the order of convergence of the optimization.

In the best case, inaccurate gradients increase the number of iterations required for

convergence and in the worst case cause early stopping due to numerical issues. Effi-

ciency gradient computation is also important because this computation is sometimes

the bottleneck in the optimization cycle.

When it comes to methods for computing gradients, the finite-difference method

is a popular choice because it is easy to implement and can always be used, even with

black-box codes. The major drawbacks of the finite-difference method is that it is in-

accurate and its computational cost scales poorly with the number of design variables.

Unlike the finite-difference method, the complex-step method [30] is accurate, but its

cost still scales unfavorably with the number of design variables, making it prohibitive

for wing design applications. Another option for computing gradients is automatic

differentiation (AD), which uses a software tool to parse the code of an analysis to

produce a new code that computes derivatives of that analysis [31, 32]. Although AD

can scale well with the number of variables, it does not handle iterative simulations

efficiently in general. Finally, analytic methods are the most desirable because they

are both accurate and efficient, especially for iterative simulations [33]. However,

they require significant implementation effort. There are two main approaches within

the analytic methods: the direct approach and the adjoint approach. The adjoint

approach is attractive because the computational cost is dependent on the number

of outputs of interest (objectives and constraints) but independent of the number of

design variables [33, 34]. A coupled-adjoint approach can be solved for solve static

aeroelastic problems [7, 8, 35] and can be generalized to any multidisciplinary prob-

lem [36, 37].
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In the context of aircraft design optimization subject to flutter or post-flutter

constraints, most of the early efforts used gradient-based optimization with gradients

computed with either finite differences or the direct analytic method. However, recent

efforts implemented the more efficient adjoint approach, and some also used AD

techniques. These applications are further discussed in Section 1.4.2.

1.3 Background on Flutter Modeling

For aircraft designs to be useful and practical, the underlying models used in the

flutter and post-flutter analysis need to capture the correct physics involved. However,

a simplification of the phenomena is often necessary to make problems tractable to

solve. Therefore, the choice of model should balance the fidelity needed to obtain

accurate predictions and the mathematical or computational tractability for design

applications.

This section highlights the modeling aspects to be considered in flutter analysis,

which is discussed in more detail in Section 1.4 for obtaining meaningful results in

a design optimization. By flutter, we mean the onset of divergent oscillations as the

flight conditions of aircraft cross the critical stability boundary (flutter boundary).

Mathematically, flutter occurs at a Hopf bifurcation point [38] beyond which the

system is in the post-flutter regime. Several post-flutter behaviors are possible, as

discussed in detail by Dimitriadis [21] for a two-dimensional aeroelastic system with

stiffness and damping nonlinearities. Among these behaviors, we are particularly

interested in self-sustained oscillations with limited amplitude that remains constant

in time, known as LCOs.

LCOs typically develop beyond the flutter boundary; however, for certain types of

nonlinearities, they can also occur before reaching the flutter boundary [14]. Integrat-

ing post-flutter analyses into the design process can prevent this undesirable situation.
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Time

Flutter response

Limit cycle oscillation

Diverging linear response
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Figure 1.1: Aeroelastic system response before and past the flutter point. Prior
to reaching the flutter point, the aeroelastic response is damped. At the flutter
point, the system response is an oscillation with a small constant amplitude. Past
the flutter point, a linear system response diverges, while a system with structural
or aerodynamic nonlinearities develops a stable response with finite amplitude that
remains constant in time, known as LCO.

For details on post-flutter analysis methods and their application in optimization we

refer the reader to Jonsson et al. [2].

Flutter is defined as a self-exciting dynamic instability that is associated with the

interaction of inertial, elastic, and aerodynamic forces [3]. At the onset of flutter, this

aeroelastic instability can be physically described as an oscillation with a small ampli-

tude that is constant in time triggered by a small-amplitude disturbance, as shown in

Fig. 1.1. The flight condition in which the system damping vanishes, resulting in this

self-sustained oscillation, represents the flutter point (or flutter boundary). For linear

systems, the flutter point is defined as the minimum dynamic pressure at which at

least one of the modes becomes unstable [3]. The dynamic pressure can be replaced

by equivalent airspeed, and is a function of altitude and Mach number.

Past the flutter point, in the absence of restraining nonlinearities from the aerody-
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namics, the structure, or both, the amplitude of the oscillations grow exponentially.

Fluid-structure interactions may also result in a static instability called divergence [3],

which is not associated with oscillations. As for flutter, the structural response grows

unbounded past the onset point, eventually reaching a limited-amplitude oscillation

if restraining nonlinearities are present.

In the following discussion, we focus mainly on flutter phenomena, because for

many practical configurations flutter occurs before divergence. However, accounting

for divergence and the associated post-critical response in the design process shares

many of the modeling and analysis aspects associated with flutter. Furthermore,

some of the analysis methods and constraints discussed in Section 1.4 are applicable

to divergence as well as flutter. Moreover, in this work we focus on global wing or

component flutter rather than localized effects such as panel flutter that typically

occurs at supersonic flow conditions.

The possible flutter characteristics are illustrated in Fig. 1.2, which shows the

variation of the modal damping with flight speed at a fixed altitude. This is known

as V−g diagram, which is a classical tool used in linear flutter analyses for determining

the flutter point and interpreting the flutter characteristics. A similar representation

can be obtained by varying dynamic pressure at a fixed Mach number.

Damping changes with flight speed in different ways among different designs,

leading to different flutter behaviors. Soft flutter occurs when the damping decreases

gradually with increasing flight speed, while hard flutter occurs when this decrease

is abrupt. Another possibility is that there is a gradual decrease in damping with

increasing flight speed, all the way to cross the zero value and beyond, followed by

a damping increase. This phenomenon is known as a hump mode. These concepts

are important when considering how to formulate a smooth and continuous flutter

constraint for gradient-based optimization and are discussed in Section 1.4.

In flutter analysis, the physics described above is often represented by less expen-
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Damping Hard flutter
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Speed

Soft flutter

Figure 1.2: V − g diagrams for different types of flutter. Soft flutter is a gradual loss
of damping with increased speed while hard flutter occurs abruptly and violently. A
hump mode manifests itself as a damping decrease followed by an increase, which
may result in considerably lower flutter speed.

sive linear models due to the number of conditions to be considered for certification.

However, nonlinear structural and aerodynamic effects or the interaction between

elastic and rigid-body degrees of freedom (DOF), which become important in the

presence of low structural vibration frequencies, may significantly impact the flutter

point. Therefore, the flutter prediction accuracy depends on the appropriate modeling

of nonlinear effects and boundary conditions.

Furthermore, nonlinear effects impact not only the models used in flutter analysis,

but also the analysis methods themselves. For linear systems, flutter characteristics

do not depend on the deformation state. Therefore, flutter is typically analyzed by

considering the unloaded and undeformed structure. For nonlinear systems, stability

characteristics vary with the deformation configuration. Therefore, flutter analysis

must be performed by computing the eigenvalues of the aeroelastic system linearized

around equilibrium points for each flight condition to identify at what point the

damping vanishes [14]. The eigenvalues can be computed by considering both the

elastic and rigid-body DOFs (flutter in free flight) or by retaining only the elastic

DOFs (traditional flutter) or the rigid-body DOFs (flight dynamic stability).

10



Many possible sources of nonlinearities can be present simultaneously in aeroelas-

tic systems [10, 16, 21]. Here, we focus on aerodynamic nonlinearities due to transonic

flow regimes and geometric structural nonlinearities due to large deflections, both of

which are critical in the design of next-generation transport aircraft.

Aerodynamic nonlinearities due to shock waves and flow separation significantly

impact the flutter speed. This decreases dramatically in the transonic regime, a

phenomenon known as the transonic dip [39–43] illustrated in Fig. 1.3. Low-order,

linear unsteady aerodynamic models commonly used in flutter analysis are in general

accurate enough for subsonic and supersonic flows, but they severely overestimate the

flutter speed for transonic conditions [44–46].

As shown in Fig. 1.3 for a hypothetical wing, linear theory is non-conservative

when compared to nonlinear viscous models. Nonlinear inviscid models based on

Euler equations can capture shock waves but they still fail to accurately predict

the flutter boundary [47]. In many cases, the nonlinear inviscid theory predicts a

highly conservative flutter speed at the dip, even though it is generally closer to

viscous theory predictions. Depending on the severity of shocks, models based on

Navier–Stokes equations (which include viscous and turbulence effects like boundary

layer thickening, flow separation, and interactions between shocks and regions of

separated flow) are necessary to obtain accurate flutter points [45]. Studies on various

geometries demonstrated that taking into account viscous phenomena in the transonic

flow regime improves the numerical prediction of transonic dip [48–51].

A common approach to improve the accuracy of transonic flutter computations

while minimizing the increase in computational cost is to use numerical or experimen-

tal corrections applied to potential-flow linear models [52]. However, the correction

data may not be available for optimization, either because it requires high-fidelity

computations that are too expensive or because it is obtained from wind-tunnel mea-

surements. This problem can be addressed by analyzing flutter using time-accurate
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Figure 1.3: Characteristic transonic dip of a transport wing. Aerodynamic nonlin-
earities due to shock waves and flow separation have a significant impact on the
flutter speed, which may decrease dramatically. Linear theory (e.g., DLM) is non-
conservative when compared to nonlinear viscous theory (e.g., RANS). Nonlinear
inviscid theory (e.g., Euler) predicts highly conservative flutter speed at the dip, but
it is generally closer to viscous theory predictions.

dynamic simulations and higher-fidelity aerodynamic models. On the other hand,

flutter prediction based on time-accurate computational fluid dynamics (CFD) is a

challenge even for just analyzing the final configuration and is currently prohibitive

for design space exploration.

Methods exist that try to preserve the computational efficiency of lower-fidelity

methods while retaining the nonlinear physics modeled by the higher-fidelity CFD

methods. One possibility is to use time-linearized transonic small disturbance (TSD)

equations. Linear small-disturbance theory is inadequate for capturing strong tran-

sonic shocks, but small-disturbance solutions about the steady nonlinear background

flow computed using high-fidelity CFD can provide acceptable performance and accu-

racy [53]. Another possibility is to use the transonic equivalent strip (TES) theory [54]

and a provided pressure distribution from either experimental data or a high-fidelity

CFD code to compute the small-disturbance transonic aerodynamic loads for flutter

analysis [55]. Furthermore, several efforts have applied the time-linearization directly
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to CFD solvers. This approach is appealing since is retains nonlinear effects, provides

accurate results in the transonic regime, and intrinsically accounts for geometric prop-

erties of the body such as thickness and camber.

Kreiselmaier and Laschka [56] developed an unsteady method based on the small-

disturbance Euler equations, which was later extended to small disturbance Navier–

Stokes equations to include viscous effects [57]. The proposed method produced good

results in the transonic flow regime [58, 59]. Thormann and Winghalm [60] developed

a linear frequency domain (LFD) solver taking advantage of preconditioned Krylov

GMRES [61] solution method. Later, Widhalm and Thormann [62] improved the

algorithm and provided the analytic derivatives needed in the solution, improving

the solver efficiency. The method was shown to be accurate when compared to full

unsteady time-marching solutions.

These approaches consider unsteady aerodynamic models linearized about non-

linear equilibrium states and thus can capture the impact of static nonlinear effects

on flutter. Moreover, they demonstrate computational savings well beyond an order

of magnitude compared to fully unsteady time-marching solutions [56, 60]. However,

computing derivatives of such methods for optimization is challenging due to the need

for second-order derivative information.

Motivated by the interest in capturing key transonic flow physics with low compu-

tational cost, recent efforts also developed low-order unsteady transonic aerodynamic

models suitable for integrating transonic flutter analyses into aircraft design.

Skujins and Cesnik [63] proposed a reduced-order unsteady aerodynamic model for

multiple Mach regimes based on linear convolution with a nonlinear static correction.

The methodology included error estimation capabilities based on the newly developed

method of segments, which represents a flexible wing as a collection of rigid spanwise

segments subject to local angle of attack and Mach number conditions. The method

of segments was also applied to transonic flutter analysis of a transport vehicle by
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Kitson and Cesnik [64].

Mallik et al. [65] developed a reduced-order model for HARW configurations

by combining time-linearized Leishman indicial functions [66] with lift-curve and

moment-curve slopes obtained by solving the RANS equations around airfoils at

various Mach number and angle of attack conditions and for various thickness ra-

tios. They obtained a state-space formulation for the airfoil unsteady aerodynamics

to be used for eigenvalue analysis, which was extended to three-dimensional HARW

discretized in spanwise strips by accounting for sweep correction. Flutter results

were compared with wind-tunnel experiments for a truss-braced wing (TBW) con-

figuration. The low-order model captured the transonic dip that was not predicted

by potential-flow theory and presented good agreement with experiments at signif-

icantly lower computational cost compared to unsteady RANS simulations. These

results showed the method suitability for conceptual HARW aircraft design including

transonic flutter constraints.

Opgenoord et al. [67] developed a physics-based two-dimensional low-order model

for transonic airfoils using the perturbations of the lowest-order volume-source and

vorticity moments with respect to a known nonlinear background flow solution as

the states. Evolution equations for these perturbations were derived and calibrated

using data from high-fidelity Euler CFD simulations. A state-space unsteady aero-

dynamic model was obtained for airfoil flutter analysis which was later extended to

three-dimensional HARW configurations [68] using strip theory and sweep correction,

as done by Mallik et al. [65]. The method was applied in conceptual design and

optimization problems including transonic flutter considerations [68, 69].

In addition to capturing transonic effects, a more recent flutter modeling need is to

take into account geometric structural nonlinearities. These are particularly impor-

tant in the analysis of HARW configurations, which achieve higher energy efficiency

at the cost of increased structural flexibility and thus experience large deflections un-
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der normal operating load conditions. The changes in geometric shape and stiffness

properties due to these deflections significantly affect the flutter boundary [15]. When

deformations are large, traditional flutter analysis based on the vehicle undeformed

shape does not capture the actual behavior of the aircraft during flight.

Studies on isolated HARWs [70], high-altitude long-endurance (HALE) flying-

wing configurations [14, 71, 72], and commercial transport vehicles [64] pointed out

the need to analyze very flexible aircraft in statically deformed configuration at trim,

which varies with the flight condition. Including structural nonlinearities in flutter

prediction is challenging for both analysis and design due to the high computational

cost of nonlinear aeroelastic simulations and the flutter boundary dependency on the

deformation state, which is not considered in linear approaches.

Finally, classical wing flutter analyses typically assume the vehicle to be clamped

at the wing root. While this may be an acceptable simplification for some vehicles, it

does not reflect the vehicle behavior in free flight [17, 18]. For some configurations,

simply including rigid-body DOFs influences the flutter solution substantially [14].

This occurs due to the coupling between rigid-body motion and structural dynamics

that arise in the presence of low natural vibration frequencies. These interactions

usually result in lower flutter points than the cantilevered configurations or different

flutter mechanisms like body-freedom flutter (BFF) [73]. Therefore, it is imperative to

understand the effect of boundary conditions and state variables on flutter prediction.

Mazidi et al. [74] investigated the effect of engine placement and roll maneuver

on flutter results. They observed that the roll maneuver has a destabilizing effect

on the flutter boundary dependent on the bank angle. Additionally, the location of

the engine or external store greatly affects the flutter boundary and the roll-induced

effects. Nearly all vehicles perform roll maneuvers during turns, making the inclusion

of these conditions relevant to the aircraft design process.

There has been further work on the effect of rigid-body DOFs on the flutter
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problem. Niblett [73] investigated the causes of BFF for a conventional wing-fuselage

configuration using a linear analytical flutter method. Su and Cesnik [14] investigated

the flutter behavior of a blended wing-body (BWB) aircraft both for cantilevered and

free-flying conditions using the University of Michigan’s Nonlinear Aeroelastic Simu-

lation Toolbox (UM/NAST). They observed a reduction in the flutter speed when the

rigid body DOFs were included compared to the cantilever case. Moreover, the flut-

ter mode changed to include pitch and plunge motions, resulting in BFF. Similarly,

Jones and Cesnik [75] investigated the BFF characteristics of the X-56A experimental

aircraft, describing the entire modeling process used for the flutter prediction. Cesnik

and Su [76] analyzed the University of Michigan’s X-HALE very flexible aeroelastic

testbed [77] and observed that significant wing deformations can drive lateral BFF

due to the coupling of the Dutch roll and asymmetric wing bending modes. Su

and Cesnik [72] investigated the stability and dynamic response of a highly flexible

flying wing for different payload configurations and gust disturbances. They found

that wing deflections can lead to an unstable phugoid mode and an aperiodic short-

period mode. Similar behaviors were observed by Patil and Hodges [71] and Patil

and Taylor [78]. Richards et al. [79] also analyzed the coupled flight dynamics and

aeroelasticity of flying wings. They noted that BFF occurred due to a coupling of

the short period pitching mode and the first elastic bending mode. They compared

different inertial configurations of the aircraft and noted that BFF depends largely

on the inertia about the pitch axis. They found a boundary value for pitch inertia

that uncoupled the pitch and bending modes, thus replacing BFF with a more con-

ventional flutter. After parameter studies, they concluded that BFF was caused by

low fuselage inertia, which could be mitigated by redistributing the fuselage mass.

BFF is not exclusive to flying-wing configurations; conventional tube-and-wing

aircraft can also encounter this type of instability. Cavallaro et al. [80] investigated

the flutter behavior of a Prandtl Plane (boxed wing aircraft) including rigid-body
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DOFs using MSC Nastran. Similarly to Richards et al. [79], they observed a depen-

dence on the fuselage mass in causing BFF: while the baseline configuration encoun-

tered flutter without rigid-body contributions, increasing the fuselage mass resulted

in BFF. Therefore, capturing these phenomena in flutter analyses is advisable even

for conventional configurations and imperative when investigating non-conventional

ones [17, 18].

1.4 Flutter Analysis in Aircraft Design Optimiza-

tion

Because flutter is a safety-critical phenomenon, analyses and experimental investiga-

tions are required for vehicle certification. Analyzing a configuration for flutter late

in the development cycle is likely to result in an inefficient design solution or pose

challenges mitigating unexpected instabilities, resulting in performance decrease, fi-

nancial losses, or both. For this reason, flutter should be integrated into the design

process early in the form of a constraint.

In this section, we review flutter prediction methods and previous research that

addressed optimization subject to flutter constraints. Past work has focused primar-

ily on flutter analyses using linear structures and linear aerodynamic models. Further

work considered transport aircraft operating in the transonic regime and thus used

linear structures and nonlinear aerodynamics. The recent trend towards more flex-

ible aircraft has led to research on constraining flutter for geometrically nonlinear

structures.

Due to the sheer number of design variables typically used in practical aircraft

optimization, most of the previous work reviewed here used gradient-based methods.

However, studies on geometrically nonlinear configurations were limited to simple

structures parametrized by few design variables. For this reason, efforts that consid-
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ered gradient-free optimizations are also included.

1.4.1 Prediction Methods

Flutter computations are typically performed in the frequency domain by solving

an eigenvalue problem. Well-established eigenvalue-analysis methods exist for flut-

ter analysis of linear aeroelastic systems (e.g., k-, p-, pk- and g-method) [81–85].

These methods are also applicable to nonlinear systems by linearizing the equations

of motion about the nonlinear equilibrium configuration at each flight condition for

capturing static nonlinearities due to the structure (large deflections) or the aerody-

namics (background transonic flow). Direct methods, based on the Hopf-bifurcation

theory, can also be used to predict the flutter point of nonlinear aeroelastic systems

directly in the frequency domain [20].

It is also possible to predict flutter in the time domain, but this incurs a much

higher computational cost. When analyzing the stability of a system in the time

domain, the flutter point is typically evaluated by perturbing equilibrium configura-

tions at different flight conditions and by time-marching the equations of motion in

order to verify the decay or growth of the response, or to extract damping values in

a post-processing stage [86–93].

The computational cost of time-domain flutter analysis based on transient simu-

lations is currently prohibitive for optimization, particularly in the presence of aero-

dynamic or structural nonlinearities. The high computational cost is due to the large

number of computations required to evaluate the flutter speed by means of flight

speed (or dynamic pressure) sweep or bisection. Additionally, ascertaining the sta-

bility close to the flutter point requires long integration times due to small damping

values.

For gradient-based optimization, another challenge is the efficient computation of

derivatives for time-marched systems. Adjoint methods are advantageous for opti-
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mizations with many design variables, but they are computationally expensive when

applied to time marching solvers [94]. This is because the adjoint solution requires

a reverse time integration following the forward integration for computing the sys-

tem response [95], which results in large computational times, storage, and memory

requirements [96]. Due to the above limitations, frequency-domain flutter prediction

methods are more prevalent in literature, but some fully coupled unsteady aeroelastic

adjoint implementations are found in the literature [97–102].

For a more detailed and general discussion on eigenvalue-based and direct methods

we refer the reader to Jonsson et al. [2].

1.4.2 Application to Optimization

Despite early work by researchers such as Haftka [5, 103] and Hajela [104] optimization

subject to flutter constraints is still not a standard design practice. More recently,

several authors have integrated flutter constraints into design and investigated their

effect on the optimal solutions. These efforts are summarized in Table 1.1 and re-

viewed below. They differ in the use of eigenvalue analysis (EV), direct (Hopf),

or time-domain (TD) prediction methods for flutter analysis, the fidelity of struc-

tural and aerodynamic models, and the optimization problem formulation in terms

of objective, type and number of design variables, and use of gradient-based (GB) or

gradient-free (GF) solution algorithms. Efforts that used gradient-based algorithms

also differ in the methods used for computing derivatives with respect to design vari-

ables. Finally, previous work shown in Table 1.1 differs in the types and number

of design variables that were considered in the optimization problem. Most of the

efforts included only structural sizing variables without considering changes in the

aerodynamic shape. Fewer efforts optimized the airfoil or planform shapes. Including

planform shape variables is challenging because changes in the mode shapes and the

corresponding natural frequencies need to be considered when computing derivatives,
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incurring additional computational cost.
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Table 1.1: Summary of efforts on optimization or derivative computation considering flutter [2].

Design variables
Models Shape

Effort Method* Aerodynamics† Structure‡ Objective§ Structural Airfoil Planform N Algorithm‖

Turner [105] EV Strip theory Panel Min mass 3 GB-Analytic
Bhatia and Rudisill [106] EV – Beam Min mass 12 GB-Analytic
Rudisill and Bhatia [107] EV – Beam Min mass 12 GB-Analytic
Gwin and Taylor [108] EV DLM Beam Min mass 33 GB-Analytic
Ringertz [109] EV DLM Composite Min mass 9 GB-Analytic
Mallik et al. [110] EV Strip theory Beam Min FB, Max TOGW 19 GF-Genetic
Stanford et al. [111] EV TSD+Euler Shell Min mass 92000 GB-Adjoint
Chen et al. [112] EV Euler Shell – Derivative computation only – GB-Complex-step
Bartels and Stanford [113] EV RANS Shell Min mass 711 GB-Adjoint
Variyar et al. [9] EV Lifting line NL beam Min FB 12 GB-Finite difference
Xie et al. [114] EV DLM NL beam Min mass 44 GF-Direct
Bhatia and Beran [115] EV Euler NL beam Min mass 8 GB-Analytic
Lupp and Cesnik [116] EV Strip theory NL beam Min FB 5 GB-Adjoint
Kennedy et al. [117] Direct Panel Shell – Derivative computation only – GB-Adjoint
Beran et al. [118] Direct ONERA stall NL beam – Derivative computation only – GB-Adjoint
Mani and Mavriplis [97] TD Euler Mass-spring Max fl. speed 32 GB-Adjoint
Zhang et al. [99] TD RANS Mass-spring Max fl. speed 48 GB-Adjoint
Zhang et al. [100] TD RANS FEM Max fl. speed 120 GB-Adjoint

* Methods: EV—Eigenvalue method, TD—Time-domain
† Aerodynamics: DLM—Doublet lattice method, TSD—Transonic small disturbance, RANS—Reynolds averaged Navier–Stokes
‡ Structures: NL—Nonlinear
§ Objective: FB—Fuel burn, TOGW—Takeoff gross weight
‖ Algorithm: GB—Gradient based, GF—Gradient free
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In one of the early efforts to constrain flutter, Turner [105] formulated a mass min-

imization problem by considering distribution of material rather than the structure

topology to meet a specified flutter speed. Later, Bhatia and Rudisill [106] developed

a numerical procedure to minimize wing mass while satisfying a flutter constraint.

They applied the procedure to a uniform cross-section box beam consisting of three

bays in order to minimize the mass while maintaining the flutter speed. Rudisill

and Bhatia [107] improved the rate of convergence of this procedure by computing

second-order derivatives of the eigenvalues and of the flutter speed with respect to the

design variables. Gwin and Taylor [108] developed the method of feasible directions

for the mass minimization of a structure subject to a minimum flutter speed. They

were able to handle up to 33 structural design variables in a supersonic problem.

Due to the limited computational capabilities of the time, these early efforts used

simple aerodynamic and structural models and employed a similar strategy to en-

force the flutter constraint. They all formulated the flutter problem in the frequency

domain as an eigenvalue problem, which was then differentiated with respect to the

design variables. The derivatives of the eigenvalues were obtained using the left and

right eigenvectors and one of these efforts also considered second-order derivatives to

better guide the optimization process and improve the rate of convergence [107].

Ringertz [109] applied the k-method to minimize the weight of a cantilevered wing

in incompressible flow subject to flutter and divergence constraints. The structure

was modeled as a composite FEM model, while the unsteady aerodynamic loads were

computed using the doublet lattice method (DLM) [119, 120]. The eigenvalue problem

was analytically differentiated in the modal space. A continuous flutter constraint

was formulated using a boundary to constrain the damping values, which resulted in

a large number of constraints. The method was demonstrated on a rectangular wing

and on a swept wing with taper, where the objective was to minimize weight with

respect to element group thicknesses subject to flutter and divergence constraints. In
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both cases, a considerably lighter design was achieved.

Mallik et al. [110] investigated the impact of a previously developed flutter con-

straint [121] on the MDO of a TBW aircraft. The flutter speed was computed using

the k-method applied to a linear pre-stressed structural model. The unsteady aero-

dynamic loads were computed using Theodorsen theory [122] with a Prandtl–Glauert

compressibility correction. They implemented an iterative procedure to ensure consis-

tency of the flutter speed, Mach number, and altitude, and optimized a representative

TBW configuration for minimum takeoff weight and fuel burn using a genetic algo-

rithm. The flutter constraint was formulated by enforcing a minimum flutter Mach

number and was added to several other mission constraints. Comparing the opti-

mization results with those obtained by removing the flutter constraint, they showed

that this is necessary to obtain a flutter-free optimal solution.

Several authors have focused on including aerodynamic nonlinearities in flutter

analysis to optimize transonic configurations. Stanford et al. [111] evaluated six

different novel tailoring schemes employed in mass minimization optimization. They

analyzed the flutter characteristics using the pk method and the commercial software

ZTRAN [53] to retain aerodynamic nonlinearities. The nonlinear higher-fidelity Euler

code, ZEUS, was used to compute steady background flow at multiple transonic Mach

numbers for a fixed cruise shape. Using these steady-state CFD solutions as an input,

the linearized unsteady loads were computed for a range of reduced frequencies using

time-linearized transonic small disturbance (TSD) analyses about the equilibrium

solutions.

The system damping values were forced to be under a stability boundary, similarly

to the approach by Ringertz [109]. The transonic aerodynamic loads were computed

offline before the optimization and their derivatives were obtained by differentiating

the eigenvalue problem [123]. Flutter, stress, and buckling constraints computed

in this study were all aggregated using a KS function [124]. They considered the
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fixed-mode derivatives to improve computational efficiency, an approach that does

not allow for shape changes.

They studied the undeflected Common Research Model (uCRM) wing [125] and

obtained six different optimal wing structures corresponding to different tailoring

schemes, all for the same operating condition and setup. The six tailoring schemes

considered for the structural design were metallic thickness variations, functionally

graded materials, balanced or unbalanced composite laminates, curvilinear tow steer-

ing, and distributed trailing edge control surfaces. While there was a structural wing

mass reduction for every case , many of the lighter designs had an active flutter

constraint, while the buckling constraint was active for the heavier cases.

Chen et al. [112] extended their previous work [126] by computing derivatives

of flutter constraints with respect to shape variables using ZEUS coupled with a

boundary layer code. The derivatives with respect to shape were computed using the

complex-step approach [30, 33], which is numerically exact. The flutter constraint

was formulated using the g-flutter method [85], which was differentiated analytically

with respect to the design variables. The approach was verified for a cantilevered

planform, similar to the F-5 geometry [127, 128], where a structure consisting of 10

spars, 10 ribs, and upper and lower skins was modeled using MSC Nastran. While

no optimization results were presented, the flutter derivatives were verified against

exact results.

Bartels and Stanford [113] proposed an approach to enforce a CFD-based flut-

ter constraint for gradient-based structural optimization of transonic vehicles. The

flutter analysis was performed as a standard eigenvalue analysis on the state-space

representation of the aeroelastic system obtained via RFA [129]. The generalized

aerodynamic force (GAF) matrix of the baseline structure was identified from time-

linearized unsteady RANS simulations about nonlinear steady-state solutions [130].

The GAF matrix of the updated design was then computed by projecting the updated
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modes onto the baseline modes. The methodology was used to minimize the uCRM

mass subject to structural and aeroelastic constraints. The flutter was constrained by

requiring that the real part of the system eigenvalues be below a bounding curve [104].

The optimization assumed a fixed-mode approximation. The authors compared the

optimal solutions obtained using unsteady RANS and DLM aerodynamics in the op-

timization loop. They showed that the DLM-based solution was not conservative

and had a significantly different thickness distribution compared to the CFD-based

optimal design.

Opgenoord et al. [68] extended a low-order two-dimensional transonic flutter pre-

diction model [67] to wings and implemented the model into a conceptual aircraft

design tool to investigate the impact of geometric parameters and Mach number on

the flutter boundary. Furthermore, they optimized the D8 configuration by minimiz-

ing the maximum take-off weight and fuel burn with and without a transonic flutter

constraint. Enforcing the flutter constraints resulted in lower optimal aspect ratio and

a weight penalty or lower fuel burn reduction compared to the case when the flutter

constraint was omitted. Opgenoord et al. [69] also used the developed flutter model

to optimize the internal lattice structure of a wing by minimizing weight with and

without enforcing a flutter constraint in addition to stress and buckling constraints.

The optimal design including the flutter constraint showed only a slight mass increase

thanks to the appropriate aeroelastic tailoring of the lattice structure.

While several authors have performed flutter-constrained optimizations using non-

linear aerodynamic models, examples of flutter constraints considering nonlinear

structures are more rare due to the more recent interest in optimizing very flexible

aircraft. Variyar et al. [9] developed a framework for MDO of geometrically nonlinear

aircraft subject to flutter constraints by coupling the SUAVE design tool [131] with

the ASWING nonlinear aeroelastic solver [132]. They developed an interface to con-

vert the arbitrary aircraft designs output by SUAVE into equivalent nonlinear beam
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models for ASWING to drive structural and aeroelastic analyses and to post-process

the results. The flutter speed was obtained iteratively by computing the eigenvalues

of the statically deformed aircraft at different flight conditions.

This MDO framework was used to optimize the Sugar VOLT strut-braced air-

craft [133] for minimum fuel burn subject to mission, maneuver, gust, and flutter

constraints. The flutter constraint was implemented by imposing a minimum flutter

speed, and derivatives with respect to the design variables were obtained via finite

differences. The authors performed three MDO cycles by adding the maneuver, gust,

and flutter constraints to the mission constraints. Despite having better performance,

the optimal solution achieved with only maneuver and gust constraints experienced

flutter within the flight envelope, highlighting the need for a flutter constraint in the

design process.

Lupp and Cesnik [116] studied the effect of a flutter constraint including geo-

metrical nonlinearities on the design of a BWB. They extended the University of

Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) to utilize AD in

reverse mode to determine coupled aeroelastic derivatives including geometrical non-

linearities. They proposed an algorithm to increase the computational efficiency of

the gradient evaluation for a geometrically nonlinear aeroelastic analysis. The sam-

ple optimization formulation included a geometrically nonlinear beam-based flutter

constraint using a KS aggregation [134] to obtain a scalar constraint for the entire

flight envelope. The authors ran three fuel burn minimization cases: with a strength

constraint, with a linear flutter constraint, and with a geometrically nonlinear flut-

ter constraint with the wing chord distribution, wing box size, and wing box thick-

ness as design variables. While the linear flutter constraint became active over the

strength constraint, it was not conservative compared to the geometrically nonlinear

constraint. They concluded that a geometrically nonlinear flutter constraint is needed

for very flexible aircraft.
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Xie et al. [114] used a flutter constraint to minimize the weight of a very flexible

wind tunnel model. The purpose of this constraint was to ensure flutter within

the wind tunnel speed range. The optimization problem coupled a geometrically

nonlinear beam solver with a vortex lattice code for the static aeroelastic analysis,

while a doublet lattice code was used to compute the unsteady loads. Since they use a

gradient-free algorithm, no derivatives were computed. They compared optimization

results based on linear and geometric nonlinear beam models subject to a flutter

constraint. In addition to flutter, tip displacement and torsion angle constraints were

also enforced. The linearly optimized configuration resulted in a wing lighter than

the optimal solution obtained with the nonlinear flutter constraint. Furthermore,

the flutter and displacements constraints were violated when the linear optimized

configuration was analyzed considering geometric nonlinear effects. The difference in

the results highlighted the need for a flutter constraint when optimizing very flexible

vehicles and the importance of using nonlinear flutter prediction methods not only

for analysis, but in design optimization as well.

Bhatia and Beran [115] developed a framework to optimize thermally stressed non-

linear structures subject to transonic flutter constraints. They showed that including

aerothermoelastic static nonlinearities in the flutter analysis impacts the optimal

design. These effects are particularly important for high-speed vehicles, which are

subject to significant thermoelastic stresses when flying through the transonic regime

during reentry [135]. The authors optimized a skin panel with respect to the thickness

and density distributions to minimize the mass subject to a flutter constraint. The

structure was modeled using a Timoshenko beam finite element with nonlinear von

Krmn strain, while the transonic flow was solved via a finite-element discretization of

the Euler equations. The structure was linearized around the static thermoelastic re-

sponse and the aerodynamics was linearized around the background steady transonic

flow past the baseline geometry. Flutter was analyzed in the frequency domain as an
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iterative V -g solution [3] considered the system linearized around the nonlinear equi-

librium configuration for each operating condition. The flutter speed was constrained

directly. The optimal solution obtained by linearizing around the thermally stressed

equilibrium configuration showed a mass lower than the result using an unstressed

analysis.

The Hopf-bifurcation method has also been applied in design optimization. Kennedy

et al. [117] proposed a variant of previous bifurcation approaches [136, 137] to opti-

mize an aeroelastic system subject to a flutter constraint, which was formulated in

terms of flight speed rather than damping. The proposed method had the benefit of

not requiring a search of the flutter point (which may be located well outside of the

flight envelope) at each design iteration. The KS function [124] was used to smooth

the effect of mode switching in the constraint value by aggregating the less damped

modes, which yielded smooth gradients. The authors presented preliminary results

for a medium fidelity three-dimensional aerodynamic panel code coupled with the

structural finite-element code TACS [138]. Although no detailed optimization was

performed, they performed a preliminary study on the uCRM benchmark [125].

Beran et al. [118] developed a fast adjoint method to compute derivatives of flut-

ter points computed via the Hopf-bifurcation method for gradient-based MDO. The

approach was applied to the highly flexible cantilevered wing studied by Tang and

Dowell [139, 140]. Both geometric nonlinearities due to the structure and aerodynamic

effects described using the ONERA stall model [140] were considered when computing

the flutter point and its derivatives with respect to aerodynamic and structural de-

sign variables. While no optimization study was presented, the authors outlined the

future work required to apply the methodology: validate the derivatives, assess the

computational cost compared to alternate time- and frequency-domain flutter pre-

diction methods, and develop the handling of mode switching to avoid discontinuous

flutter points.
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Some rare examples of optimizations with flutter constraints based on time-accurate

analyses are also found in the literature, but they have been restricted to simple prob-

lems. In an early work, Holden [141] applied a collocation method to constrain the

aeroelastic response envelope for a wing optimization problem. More recently, Mani

and Mavriplis [97] were among the first to present a fully coupled unsteady adjoint

for aeroelastic optimization. They demonstrated their method successfully in a shape

optimization of two-dimensional airfoil section to suppress flutter, using a total of

32 design variables in the form of Hicks–Henne bump functions [142]. Later, Mishra

et al. [98] extended previous work and presented the fully coupled unsteady adjoint

for three-dimensional aeroelastic problems, which was demonstrated in a shape opti-

mization of a flexible rotorcraft configuration.

Zhang et al. [99] developed a coupled adjoint method for unsteady aerostructural

problems solved via time simulations. The method was applied to an airfoil shape

optimization problem with the goal of suppressing flutter. The aerodynamics was

computed with an Euler CFD code coupled with a boundary layer code to account

for viscous effects. Both the continuous and discrete coupled adjoint were developed

for steady-state analyses. The discrete approach proved more promising and only

this version was developed for unsteady cases. A damping objective function was

proposed that used a Hilbert transform [90] of the nonlinear unsteady time-history.

To achieve the required flutter boundary, the damping objective function was mini-

mized to obtain a neutral response, indicating the flutter point. The authors applied

the methodology to the optimization of the two-dimensional (2D) Isogai airfoil [40, 41]

to suppress flutter. Only derivatives with respect to shape variables were computed

and the airfoil shape was parametrized using 48 Hicks–Henne bump functions [142].

A neutrally stable (zero-damping) configuration was obtained for a given flight con-

dition.

Zhang et al. [100] extended their previous work [99], where the coupled adjoint
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was developed for time-marching simulations. Two objective functions were used:

one that maximized the flutter boundary and another that matched a given flutter

boundary. To maximize the flutter boundary, they minimized the squared and time

averaged history of the lift coefficient. To match a given flutter boundary, the damp-

ing value of a given time history was minimized to obtain a neutral response. B-spline

curves were chosen as a parametrization method due the large number of Hicks–Henne

functions that were previously needed. The authors presented steady-state optimiza-

tion results for a 2D airfoil optimized to match a given pressure distribution and for

the 3D ONERA M6 case [143], where the objective was a composite function of lift

and drag. Configurations considered in the unsteady optimization consisted of the 2D

Isogai airfoil and the Goland wing as modeled by Kurdi et al. [144]. For the unsteady

2D airfoil, two optimization cases were considered: flutter margin maximization and

a flutter boundary matching (i.e., a neutral response for the given flight condition).

The design variables were the plunge and pitch stiffness values. For the Goland wing,

they optimized the aerodynamic shape to maximize the flutter speed with respect to

120 shape variables. A structural optimization of the Goland wing was also performed

to maximize the flutter speed with respect to the skin thickness. No optimization was

performed using simultaneously structural sizing and aerodynamic shape variables.

Kiviaho et al. [145] developed a flutter constraint using their previously devel-

oped unsteady aeroelastic framework with adjoint sensitives [101, 102]. The flutter

constraint is based on a matrix pencil method [88] applied to a time-history, which

estimates the damping based on most critical aeroelastic modes. Two methods are

proposed, a direct flutter point evaluation which finds the flutter point where the

dynamic pressure lower bound is specified as the design flight condition, and a flutter

margin or clearance approach where the dynamic pressure times some tolerance is

fixed. The direct method was demonstrated in a single design variable optimization

of an airfoil were the dynamic pressure is minimized subject to the flutter constraint
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in order to identify the flutter point.

1.4.3 Open Problems

Now that we reviewed methods for flutter prediction and their applications to op-

timization (see Table 1.1), we can summarize the open problems and challenges of

integrating flutter constraints into aircraft design optimization.

Gradient-based optimization is the preferred choice for optimizations with respect

to large numbers of design variables. When enforcing a flutter constraint in a gradient-

based optimization, a serious challenge is varying structural and aerodynamic design

variables simultaneously to optimize the aircraft external shape, planform, and inter-

nal sizing. Most of previous work optimized only structural sizing, and only a few

efforts included airfoil shape and wing planform design variables as well. Furthermore,

simplifying assumptions like the fixed-mode approximation were frequently used when

computing derivatives to limit computational cost [113, 146, 147]. These assumptions

are adequate for a structural optimization, but they can lead to inaccurate results

when varying aerodynamic properties because this can cause significant changes in

the mode shapes at each design iteration. Therefore, gradient-based optimizations

with respect to structural, planform, and shape variables need approaches that take

into account the derivatives of the mode shapes when computing the derivatives of

the flutter constraints. Few examples of these approaches applied to simplified con-

figurations or using lower-fidelity models are available in the literature [9, 116, 134].

However, they still have to be demonstrated on practical configurations parametrized

by large number of structural and aerodynamic design variables.

A second major challenge is developing efficient flutter analysis models and meth-

ods applicable in the presence of aerodynamic or structural nonlinearities. In previous

aircraft optimizations including linear flutter constraints, the natural choice was to

analyze flutter in the frequency-domain due to the availability of well-established
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and computationally efficient eigenvalue-analysis methods. The computational cost

of these methods is a big challenge when including aerodynamic or structural non-

linearities because the flutter point depends on the equilibrium state. For each flight

condition considered in the flutter search, the steady background flow solution (in

the case of aerodynamic nonlinearities) or the coupled aerostructural equilibrium (in

the case of both aerodynamic and structural nonlinearities) needs to be determined

first. Next, the linearized model about each equilibrium point must be identified for

computing the aeroelastic eigenvalues and determine at which point modal damp-

ing vanished. This process must be repeated for each flight condition, while linear

methods analyze flutter by considering the undeformed configuration at zero angle

of attack for each flutter search point. Moreover, in the presence of nonlinear effects

multiple equilibrium points may also exist for each flight condition, which further

increases complexity and computational cost. Stability must be analyzed about all

equilibrium points, otherwise critical constraint values may be missed.

For large high-fidelity models with both structural and aerodynamic nonlineari-

ties, computing the aerostructural equilibrium points and the corresponding linearized

systems may be computationally prohibitive. For moderately flexible configurations,

structural nonlinearities can be neglected, so eliminating the need to solve a nonlinear

static aeroelastic problem at each flight condition. However, transonic aerodynamic

nonlinearities still require identifying a linearized unsteady aerodynamic model for

each steady background flow solution. Computing and retaining aerodynamic non-

linearities to accurately predict the flutter point in the transonic regime remains a

big challenge due to the large computational cost associated with CFD. To address

this problem, some efforts tried to preserve the computational efficiency of lower-

fidelity methods while retaining the nonlinear physics modeled by the higher-fidelity

CFD methods [53, 55]. Other works proposed time-linearized CFD solvers [56, 60] or

reduced- or low-order models calibrated using CFD [65, 67]. Despite these progresses,
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optimizing aircraft subject to transonic flutter constraints is still an open problem,

particularly when using gradient-based methods and when seeking both structural

sizing and aerodynamic shape changes.

Due to these challenges, previous work mainly optimized linear aircraft configura-

tions or included only aerodynamic nonlinearities while limiting to structural sizing.

Aerostructural optimizations considering both aerodynamic and geometric structural

nonlinearities used low-order models or optimized simple configurations to limit the

computational cost [9, 116]. No previous work considered both structural and aerody-

namic nonlinearities in a high-fidelity MDO setting. Additionally, rigid-body DOFs

were never included in the flutter constraints, which may lead to unfeasible designs

for configurations prone to coupled rigid-elastic instabilities.

Few studies used alternatives to frequency-domain eigenvalue analysis methods

for nonlinear flutter prediction, like the Hopf-bifurcation method or time-domain

simulations. Such studies are rare because the high computational cost of time-

accurate analyses makes them prohibitive to optimize complex configurations. For

this reason, these applications were limited to simple configurations and frequently

two-dimensional problems.

1.5 Thesis Objectives

In the previous section we reviewed the state-of-the-art in flutter analysis, its appli-

cation in design optimization, and finally providing a summary of open challenges.

In this work we focus on the first major challenge identified, developing a flutter

constraint that is suitable for large scale high-fidelity aerostructural optimization,

considering both structural and aerodynamic design variable.

We address the above in this work with the following intermediate milestones:

1. Develop a robust, efficient, and continuous flutter analysis methodology that
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can be used to constrain flutter in a large scale high-fidelity aerostructural opti-

mization, considering both structural sizing and aerodynamic design variables.

2. Compute derivatives of the proposed flutter constraint using methods that are

accurate, efficient, and independent of the number of design variables. No

simplifications or approximations, such as the fixed mode approximation, should

be applied.

3. Demonstrate the proposed flutter constraint in a large scale high-fidelity aerostruc-

tural optimizations, and study its effect on representative wing geometries,

demonstrating the need for such constraint.

1.6 Thesis Outline

To achieve the stated objectives, the multidisciplinary design optimization for aircraft

configurations with high fidelity (MACH) framework is expanded by implementing

several new components to enforce a flutter constraint that can be applied in high-

fidelity design optimization.

A brief introduction of existing components in MACH framework that are used

in this work are discussed in Chapter 2. To address objective 1, the flutter analysis

methodology and constraint formulations is discussed in detail in Chapter 3. This

includes theory, algorithms, and integration considerations necessary for a successful

flutter constraint suitable for high-fidelity gradient based design. The subsequent

chapter, Chapter 4, discusses the derivative strategy in order to compute the deriva-

tives efficiently and accurately, addressing objective 2. In particular, we discuss algo-

rithmic differentiation (AD) in reverse as well as analytic approaches that are suitable

for AD, and verify the accuracy of the implementation.

Finally, objective 3 is addressed in a series of chapters, increasing in problem size

and complexity, demonstrating the need for including a flutter constraint in high-
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fidelity design. Chapter 5 demonstrates the constraint on an idealized wing (plate).

A design space study is performed, demonstrating the continuity of the constraint that

is finally demonstrated in an optimization without CFD. In Chapter 6 the proposed

flutter constraint is applied and demonstrated using a rectangular subsonic wing.

Two multipoint high-fidelity aerostructural optimizations are conducted, with and

without the flutter constraint, maximizing the range. Finally, in Chapter 7 the flutter

constraint is applied in a large scale multipoint aerostructural optimization on a

full configuration aircraft, namely the XRF1. Here, O(1000) design variables and

constraints are applied demonstrating the capabilities of the constraint.

Chapter 8 concludes the thesis summarizing the key results and contributions.

Suggestions for possible future work are then discussed. This includes discussion on

improving the proposed methodology and capabilities, and including larger set of

problems such as transonic aerodynamics and geometrically nonlinear effects.
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CHAPTER 2

Existing Computational Tools

In this section, we briefly describe existing components from the multidisciplinary de-

sign optimization for aircraft configurations with high fidelity (MACH) framework [7]

that are employed in static aerostructural optimization. An overview of the pro-

cess is detailed in Fig. 2.1. This framework has been extensively used in aerody-

namic [25, 148–153] and aerostructural [7, 8, 125, 154–156] optimization.

36



Initial design

0: Pre-processing FFD points
Aerodynamic

volume mesh
Structural mesh

Optimal design
1, 11→ 2 :

Optimizer

FFD

displacements

Aerodynamic

& structural variables

2: Geometry

parametrization

Aerodynamic

surface coordinates

Structural

coordinates

Geometric constraints

& derivatives

3: Volume

mesh warping

Aerodynamic

volume coordinates

4, 8→ 5 :

Aerostructural MDA

Structural

displacements

Aerostructural

state variables

Aerostructural

output quantities

5: Volume

mesh warping

Aerodynamic

volume coordinates

6: Aerodynamic

solver
Surface loads

Structural

displacements

7: Structural

solver

9: Adjoint

solver

Derivatives of

aerostructural

output quantities

Objective, constraints,

and corresponding

derivatives

10: Objective

& constraints

Figure 2.1: XDSM [1] overview of the aerostructural optimization process using MACH.
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2.1 Geometric Parametrization

The geometric parametrization of the aerodynamic surfaces and structure is done

using a free form deformation volume (FFD) approach [157], which has its origins in

computer graphics applications [158].

Using this approach, the geometry of interest is embedded within an FFD volume

that can be though of as a flexible volume. The FFD volume is then deformed using

a number of B-spline control points. As the control points are moved in space, the

embedded coordinates are deformed in a continuous fashion. This method is well

suited for aerostructural optimization because it provides a unified way of treating

aerodynamic surfaces and the internal structure. Global design variables, such as span

or sweep, are implemented by moving multiple points according to suitable functions.

Airfoil cross-sectional shapes are controlled by individual B-spline control points.

2.2 CSM Solver

The computation structural mechanics (CSM) solver used in this work is the Toolkit

for the Analysis of Composite Structures (TACS) [138].1 TACS is an open-source

parallel finite-element (FEM) solver that can handle poorly conditioned problems,

which is common in the thin-walled structures found in transport aircraft. For such

cases, the stiffness matrix condition numbers may exceed O(109), but through the use

of a Schur-complement based parallel direct solver, TACS is able to effectively solve

these poorly conditioned problems. Sensitivities of structural functions of interest

with respect to structural and geometric design parameters are computed efficiently

using the adjoint method [138]. The load and displacement transfer scheme used

here is the rigid link approach [7], which follows the work of Brown [159]. In this

approach, rigid links extrapolate the displacements from the structural surface to the

1https://github.com/gjkennedy/tacs
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aerodynamic surface. These rigid links, which are suitable for non-matching surfaces,

are constructed between the aerodynamic surface mesh points and the points on the

structural model lying closest to this set of points.

2.3 CFD Solver

In this work, we use the open-source CFD solver ADflow, a parallel, finite-volume,

cell-centered, multi-block solver, which solves the Euler and the Reynolds averaged

Navier–Stokes (RANS) equations in either steady, unsteady, or time spectral modes [35].2

The mean flow equations and the one-equation Spalart–Allmaras turbulence model

are solved in a coupled fashion by an approximate Newton–Krylov method [160]. A

discrete adjoint method for the Euler and RANS equations is implemented within

ADflow, enabling the efficient computation of gradients of functions of interest with

respect to any number of design variables [35]. This solver has been extensively

verified and validated against experimental results [161, 162].

2.4 Mesh Deformation

The mesh warping scheme used here is a robust inverse distance method, which has

been used extensively in aerodynamic and aerostructural optimization [156, 163, 164].

Given an updated set of surface mesh nodes, the warping scheme uses an inexact

explicit interpolation scheme to update the volume mesh nodes [165]. The derivative

computation is implemented using the reverse mode AD method.

2https://github.com/mdolab/adflow
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2.5 Aerostructural Solver

The aerostructural solver facilitates the solution of the nonlinear aerostructural equa-

tions, and the linear adjoint equations. For the nonlinear system a block Gauss–Seidel

(NLBGS) with Aitken acceleration scheme is employed. The adjoint system is solved

using a coupled-Krylov (CK) method, which has been shown to be significantly faster

than a commonly used linear block Gauss–Seidel (LBGS) approach [7]. The above

solution approach has proven sufficiently robust for a range of aerostructural problems

at various flight conditions [7, 8, 125, 154–156].

2.6 Optimizer

The optimization package used in this work is SNOPT (Sparse Nonlinear OPTi-

mizer) [166]. SNOPT is a gradient-based optimizer that implements a sequential

quadratic programming (SQP) algorithm. SNOPT uses an augmented Lagrangian

merit function and the Hessian of the Lagrangian is approximated using a quasi-

Newton approach. This optimizer is designed to perform well for optimization prob-

lems featuring many sparse nonlinear constraints. SNOPT is wrapped with py-

OptSparse, a sparse implementation of pyOpt [167].3

3https://github.com/mdolab/pyoptsparse
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CHAPTER 3

Flutter Prediction and Constraint

Formulation

As discussed in the introduction, the goal is to develop a flutter constraint that is

suitable for high-fidelity aerostructural optimization. In this chapter, we describe the

techniques and components necessary to enable such a flutter constraint. Figure 3.1

gives a high-level overview of the overall flutter analysis process developed in this

work. Numerous new components are developed as part of this work. This includes

the Lanczos eigenvalue solution method, doublet lattice method (DLM), flutter anal-

ysis, and constraint aggregation strategy suitable for gradient based optimization.

All new components developed in this work are implemented in Python and Fortran

with communication done efficiently in memory. In the following sections, we outline

the characteristics of these components that are needed to enable flutter analysis and

present a flutter constraint applicable to gradient-based optimization with structural

and aerodynamic changes. Additionally, a component that handles communication

between these components is also implemented. The methodology described here

is independent of specific components or methods, i.e., different components can be

used and substituted in, without any need for updating the formulation, nor the

usage of the constraint in an aerostructural optimization. For example, to obtain

higher fidelity generalized aerodynamic forces that capture transonic effects the aero-

dynamic component, in this case the DLM, can be replaced with CFD. This is due to
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Figure 3.1: XDSM [1] of the proposed flutter analysis process and constraint formu-
lation.

the fact that inputs and outputs have been clearly defined and identified. Similarly,

derivatives needed are also defined.

The chapter is structured as follows, Section 3.1 discusses theory and equations

used in this work to predict the flutter characteristics. To solve the flutter equations,

a robust non-iterative solution strategy is introduced in Sections 3.2 and 3.3. Finally,

Sections 3.4 and 3.5 describes the constraint formulation and aggregation strategy

used which is suitable for high-fidelity gradient based optimization.

3.1 Flutter Analysis

Aeroelasticity consists of the interaction of aerodynamics, structures and inertial

forces and are often depicted by the Collars triangle Fig. 3.2.

The discrete equation of motion for a generic linear aeroelastic system can be

written as:

M(x)ü(t) + C(x)u̇(t) + K(x)u(t) = F(x, t), (3.1)
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where Ns is the number of structural DOFs, M(x),C(x),K(x) ∈ RNs×Ns are the

mass, damping, and stiffness matrices resulting from the finite-element discretization

and are a function of the design variables x ∈ RNx . u(t) ∈ RNs is the displacement

vector including all degrees of freedom of the system, translations and rotations. In

general the forces F(x, t) ∈ RNs can be split into external forces Fext(x, t), which we

assume to be zero in this work, and the unsteady aerodynamic forces Faero(u(t)). The

equations of motions can then be written as,

Mü(t) + Cu̇(t) + Ku(t)− Faero(t) = 0. (3.2)

For the sake of conciseness, Eq. (3.2) omits the dependency of the structural matrices

and aerodynamic loads on the design variables x. Therefore, flutter analysis methods

are presented for a fixed design and all the structural and aerodynamic quantities are

updated at each optimization step based on the current values of the design variables.

3.1.1 Load and Displacement Transfer

The aerodynamic forces presented Eq. (3.2) are given in the structural degrees of

freedom. An aeroelastic interface is required that is capable of transferring aerody-

namic loads and then structural displacement using a suitable interpolation strategy.
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Furthermore, in practice, the aerodynamic mesh does typically not coincide with the

structural mesh. For the displacement transfer, the structural DOF u can be related

to the aerodynamic DOF h ∈ RNa by

h = Tu, (3.3)

where T ∈ RNa×Ns , is a linear operator, and a displacement transfer interpolation

matrix and Na is the number of aerodynamic DOF.

The aerodynamic forces on the aerodynamic mesh, Fa ∈ CNa , can be interpolated

using

Faero = TTFa (3.4)

Equation (3.4) can be derived using the principle of virtual work. By imposing the

equivalence of the virtual work done by the aerodynamic forces Fa and the equivalent

structural forces we can write,

δL = δhTFa = δuTFaero, (3.5)

where δh, δu are virtual displacements. By substituting Eq. (3.3) into Eq. (3.5) we

obtain

δuT (TTFa − Faero) = 0. (3.6)

Since the virtual deformations δu 6= 0 are arbitrary, the terms inside the paren-

thesis must equal to zero, therefore giving Eq. (3.4).

3.1.2 Generalized Structural Matrices

Due to the sheer number of structural DOFs, it is common to reduce the computa-

tional effort by rewriting Eq. (3.2) in terms of a reduced set of Nr generalized coor-
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dinates (modal amplitudes) where Nr � Ns. This is referred as a modal approach.

The displacement field can be then approximated by

u(x, y, z; t) ≈ Qr(x, y, z)q(t) , (3.7)

where q ∈ RNr is the vector of retained generalized coordinates and Qr ∈ RNs×Nr is

a matrix whose columns contain the corresponding eigenvectors (mode shapes).

The natural mode shapes are obtained by setting any loads to zero, assume har-

monic motion substituting u = ūeiωt in Eq. (3.2) and solve the following eigenvalue

problem, [
K− ω2

iM
]
ūi = 0, (3.8)

where ωi is the natural frequency.

To obtain the lowest natural modes and mode shapes, Eq. (3.8) is solved us-

ing a shift-and-invert Lanczos method [168]. The Lanczos algorithm, discussed in

Appendix B.1, uses an M-orthonormal subspace, written as Vm ∈ RNs×Nm , such

that VT
mMVm = Im, where Ns is the size of the square mass and stiffness matri-

ces, and Nm the size of the subspace chosen. We use an expensive, but effective,

full-orthonormalization procedure (Gram–Schmidt) that enforces M-orthonormality.

The Lanczos implementation is shown to produce good approximation and has been

verified against the commercial software MSC/Nastran [169].

The eigenvectors (mode shapes) ūi are then computed from the constructed sub-

space Vm. The ūi for i = 1, . . . , Nr < Nm are collected in the matrix Qr ∈ RNs×Nr ,

Qr =


| | |

ū1 ū2 · · · ūNr

| | |

 (3.9)
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where Nr is the number of column vectors in the reduced mode shape matrix. These

eigenvectors are M-orthonormal, such that QT
r MQr = Ir. To obtain good approxi-

mations for the first Nr number of natural modes and mode shapes, the subspace size

Nm is chosen to be at least Nm > 2Nr.

Substituting Eq. (3.7) into Eq. (3.2) and pre-multiplying by QT
r we obtain the

EoM in a generalized form,

Mrq̈(t) + Crq̇(t) + Krq(t)−QT
r Faero(t) = 0. (3.10)

The eigenvectors are M-orthonormal, such that QT
r MQr = Ir. The reduced general-

ized mass, damping, and stiffness matrices take the form:

Mr = QT
r MQr = Ir ∈ RNr×Nr ,

Cr = QT
r CQr ∈ RNr×Nr ,

Kr = QT
r KQr = diag{ω2

i } ∈ RNr×Nr

(3.11)

The final expression of Cr depends on how the damping matrix is constructed.

3.1.3 Generalized Aerodynamic Loads

From Eq. (3.10) the generalized aerodynamic forces (GAFs) on the structure are

written as

Faero,r = QT
r Faero ∈ RNr (3.12)

or in terms of the scalar modal forces for the i-th mode

Faero,r,i = ūi · Faero (3.13)

Using the pressure coefficient Cp and the dynamic pressure q∞, the forces in the
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time-domain can be obtained by integrating the surface area, scaled by a mode shape

Faero,r,i = q∞

∫
S

Cp(t)ūi · dS (3.14)

By assuming we have a linear time invariant system (LTI) then an arbitrary input

and output signal can be described by the convolution integral,

Faero,r = q∞

∫ t

0

H(t− τ)q(τ)dτ = q∞(H ∗ q)(t), (3.15)

where the H is a transfer matrix and is the system response due to an input impulse.

This is under the assumptions that linear relations describe the generalized aerody-

namic forces due to a deflection in one of the mode shapes. Now transforming into

the frequency domain we obtain,

Faero,r(s) = q∞H(s)q̄(s) (3.16)

where H(s) is aerodynamic transfer function and q̄(s) is the Laplace transform of

q(t) and s is the Laplace variable.

3.1.3.1 Aerodynamic Loads

The aerodynamic forces on the aerodynamic mesh can be written as

Fa = q∞AIC(ik)h, (3.17)

where q∞ is the dynamic pressure, AIC(ik) ∈ CNa×Na is the aerodynamic influence

coefficient load matrix, where k = ωb/U is the reduced frequency, ω is angular fre-

quency, b is the reference semi-chord, and U is the freestream velocity. Combing
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equations Eqs. (3.4) and (3.17), the forces in the structural DoFs become,

Faero = q∞TTAIC(ik)Tu. (3.18)

Pre-multiplying the mode shapes, QT
r , and using Eq. (3.7) we obtain the reduced

generalized forces

Faero,gen(ik) = QT
r Faero

= q∞QT
r TTAIC(ik)TQrq

= q∞Ar(ik)q

(3.19)

(3.20)

(3.21)

where we have defined

Ar(ik) = QT
r TTAIC(ik)TQr ∈ CNr×Nr . (3.22)

The aerodynamic mode shapes obtained by interpolating the structural mode shapes

using

Qra = TQr ∈ RNa×Nr . (3.23)

and thus we can write the generalized forces matrix in terms of the aerodynamic mode

shapes as

Ar(ik) = QT
raAIC(ik)Qra (3.24)

3.1.3.2 Aerodynamic Loads - DLM

In this work, we use the doublet-lattice method (DLM) [119, 120] to generate the

unsteady aerodynamic loads. It consists of a lifting surface method that is formulated

in the frequency domain. A substantial body of literature exists on the DLM. An

excellent reference worth mentioning is the work done by Blair [170]. The DLM has

been widely adopted in the aeroelastic community and has been a valuable tool for
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the flutter analysis of subsonic aircraft. Commercial software tools such as Nastran

have adopted the DLM [171]. The implementation is based in part on the method of

Albano and Rodden [119], and the extension by Rodden et al. [120]. For more details

we refer interested readers to the Appendix A.

Using the Doublet-Lattice Method (DLM) the unsteady pressure coefficient can

be computed as follows,

Cp =
∆p

q∞
= D−1w̄ ∈ CNa (3.25)

where the D−1 ∈ CNa×Na is the inverted aerodynamic influence coefficient (AIC)

matrix computed by the DLM, and w ∈ CNa is the normalwash. Na is the number of

panels used in the aerodynamic mesh. Recalling from Appendix A.1.4 and repeating

Eq. (A.22) in vector form the normalwash in the frequency domain is written as

w̄ = ik̂h̄ + h̄x (3.26)

The displacement h̄ is then written in terms of generalized coordinates as

h̄ = Tū

= TQrq̄

= Qraq̄

(3.27)

(3.28)

(3.29)

where we have used Eqs. (3.3), (3.7) and (3.23). Substituting we obtain

w =

(
ik̂Qra +

∂Qra

∂x

)
q̄ (3.30)
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The aerodynamic forces can then be written as

Fa = q∞SCp

= q∞SD−1w

= q∞SD−1

(
ik̂Qra +

∂Qra

∂x

)
q̄

(3.31)

(3.32)

(3.33)

where S ∈ RNa×Na is the area of individual panels and distributes the forces from the

collocation point to the nodes of the panel. The generalized forces matrix is then

Ar(ik) = QT
raSD−1

(
ik̂Qra +

∂Qra

∂x

)
(3.34)

where the generalized forces are written as

Faero,r(ik) = q∞Ar(ik)q̄ (3.35)

3.1.4 Generalized Equations of Motion

All matrices have now been defined in generalized coordinates using a reduced set of

mode shapes. Taking the Laplace transform of the equations of motion Eq. (3.10)

yields, [
s2Mr + sCr + Kr − q∞Ar(s)

]
q̄(s) = 0 , (3.36)

by assuming motion of q(t) = q̄est where s = γ + iω. This equation can also be

written in terms of non-dimensional Laplace parameter p = sb/U = g + ik,

[(
U

b

)2

p2Mr +
U

b
pCr + Kr − q∞Ar(p)

]
q̄(p) = 0 , (3.37)
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where, b is the reference half chord, g is the nondimensional damping, and k is the

reduced frequency [81].

Equation (3.37) requires computing the GAF in the Laplace domain. However,

the GAF is typically given as a transcendental function, Ar(ik), of the reduced fre-

quency. Two approaches are used for overcoming this problem [12]. One approach

is to approximate Ar(p) ≈ Ar(ik) and solve the flutter equation, Eq. (3.36), or an

equivalent form by computing the GAF matrix in the reduced frequency domain while

enforcing the condition =(p) = k. An alternate approach is to obtain a rational func-

tion approximation (RFA) of Ar(ik) and use analytic continuation [172] to extend

its domain from the imaginary axis (reduced frequency) to the entire complex plane

(nondimensional Laplace variable). The aeroelastic system can be recast in state-

space form by introducing additional aerodynamic states, such that flutter can be

analyzed using a standard eigenvalue analysis.

When the GAF is represented as a transcendental function of k, flutter analysis

is performed using iterative or non-iterative methods that either compute the true

damping only at the flutter point (k-method) or at all flight speeds or dynamic pres-

sure values (root locus, p-, pk-, and g-methods) [81–83, 85, 173]. Here, we use the

pk-method, assuming purely oscillatory aerodynamic forces Ar(p) ≈ Ar(ik), then

Eq. (3.37) is rewritten as [81],

[(
U

b

)2

p2Mr +
U

b
pCr + Kr − q∞Ar(ik)

]
q̄(p) = 0

Fr(p, k)q̄(p) = 0 .

(3.38)

This is a second-order nonlinear eigenvalue problem, where the nonlinearity stems

from the dependency of Ar on the imaginary part of p.

Several decompositions of the GAF Ar in Eq. (3.38) exist in the literature. Stan-

ford [174] summarized these decompositions and showed that they predict the same
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flutter speed, but that the mode migration and characteristics may be very different.

This directly impacts the optimization, resulting in different optimal designs.

The GAF are split into its real and imaginary parts as Ar = AR
r + iAI

r order

to improve the approximation of the damping. Assuming small damping, p/(ik) ≈

1 [169], the forces can be written as,

Ar = AR
r + p/kAI

r. (3.39)

Finally, Eq. (3.38) can be rewritten in first-order form as the generalized nonlinear

eigenvalue problem [82, 134, 147],

p

Ir 0

0
(
U
b

)2
Mr


 q̄

pq̄

−
 0 Ir

−(Kr − q∞AR
r ) −

(
U
b
C− q∞

k
AI
)

 q̄

pq̄

 = 0 ,

(3.40)

where Ir ∈ RNr×Nr is an identity matrix. All matrices are real but due to the non-

symmetric nature of the aerodynamic loads, the eigenvalues and eigenvectors are

complex. The real part of the eigenvalue, p, dictates the stability of the system,

where a positive value corresponds to an unstable system, a zero value represents a

neutrally stable system, and a negative value represents a stable one.

The matrix Ar is dense in general, while Mr and Kr are diagonal. The structural

viscous damping can be approximated by Rayleigh damping, Cr = αMr +βKr [175],

as proposed by Stanford and Dunning [146], but is omitted here for simplicity. While

rigid-body modes are not considered in this study, the above system of equations

could be extended without affecting the proposed flutter aggregation strategy [2].

The reduced generalized eigenvalue problem, Eq. (3.40), of size 2Nr×2Nr is solved

with LAPACK [176]. However, valid roots need to satisfy the equivalence =(p) = k.

A robust flutter solution strategy is discussed in the next section.
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Note that the computational cost scales with double the number of mode shapes,

i.e., the eigenvalue problem size is doubled. Industrial applications for the analysis of

full configuration aircraft may consider up to 100 natural modes, thus placing an upper

bound on the problem size. While LAPACK is capable of solving such problems,

parallel eigenvalue solution methods, such as SLEPc [? ] could be considered to

improve performance.

3.2 Non-iterative Flutter Solution Method

In flutter analysis, when solving Eq. (3.40) (or Eq. (3.38)), iterative procedures are

usually applied because the aerodynamic matrix depends on the reduced frequency,

k, the imaginary part of the eigenvalue, p. Valid roots need to satisfy the equivalence

=(p) = k.

One such procedure is the determinant iteration proposed by Hassig [81]. This

method is a secant method applied to the determinant of Eq. (3.38),

∆(p) = det (Fr(p, k)) . (3.41)

Given initial guesses p1, and p2, the method computes pk+2 as follows,

pk+2 =
pk+1∆(pk)− pk∆(pk+1)

∆(pk)−∆(pk+1)
. (3.42)

The iteration is continued until |∆(pk+2)| ≤ εtol for some specified tolerance.

Another popular method is found in commercial software such as MSC/Nas-

tran [169, 171], where the eigenvalue problem is solved based on an assumed reduced

frequency ki. The resulting computed eigenvalue, p(ki), for the mode under study is

identified and its imaginary part is compared to the assumed reduced frequency. If

the difference, |=(p(ki))− ki| ≤ εtol, exceeds some predefined tolerance, the iteration
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continues using the imaginary part of the new eigenvalue as the reduced frequency,

ki+1 = =(p(ki)), computing new aerodynamic loads repeating the process.

Iterative methods however may in general experience convergence issues, such as

slow convergence rate, non convergence, and convergence to incorrect values. For

the basic iterative algorithm, ki+1 = =(p(ki)), to converge locally, the following must

hold, ∣∣∣∣d=(p)

dk
(k∗)

∣∣∣∣ < 1 , (3.43)

where k∗ is solution to k − =(p) = 0 [177]. It can be shown that the asymptotic

convergence rate is at best linear. Convergence rate is slow for magnitudes close to

one, requiring numerous small dynamic pressure increments. For values greater than

one, it does not converge. Further, if the aeroelastic eigenvalue changes rapidly with

dynamic pressure, the convergence rate can be slow because of a large number of

dynamic pressure increments. In addition, an incorrect eigenvalue can be picked up

if two eigenvalues are close to each other in frequency. This results in mode hopping,

such that a discontinuity appears in the damping, which is detrimental for gradient-

based optimization.

Basic iterative methods do not distinguish aerodynamic lag roots from structural

modes. If an aerodynamic lag root becomes unstable, these methods may converge

to the lag root over the structural mode or not converge at all. Further, neither of

the aforementioned iterative methods are able to add or remove aerodynamic roots.

A more sophisticated and robust root finding method is thus needed for integrating

the flutter process in an optimization process. In addition, a robust mode tracking

algorithm is also needed to avoid mode hopping.

To improve the convergence rate of flutter analysis, a Newton method with safe-

guards was proposed by Back and Ringertz [177]. While such method offers superior

convergence rate, it may still suffer from poor initial conditions and failure to con-

verge. In contrast, a non-iterative method is not subject to such limitations. During
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Reduced Frequency k

=(p)

k1k0 k3k2

=(p) = k

Mode 2

Mode 1

Figure 3.3: Hypothetical system with two modes. Black dots represent a valid solu-
tion, i.e., where the modes intersect the diagonal line, =(p) = k, depicted in black.

gradient-based optimization a wide range of designs and operating conditions may be

analyzed. Thus, for a successful optimization robust convergence properties of the

analysis methods is vital. In addition, it is important that the objective and con-

straint functions be continuous and smooth. Several methods have been proposed in

the literature [85, 178, 179]. The proposed flutter solution method used in this work

aims to satisfy these requirements.

In this work we implement a similar non-iterative method as proposed by van Zyl

[179]. The method is as follows. At each dynamic pressure increment, qi, Eq. (3.40)

is solved for a range of reduced frequencies, k. The eigenvalues are valid roots of the

flutter equation if the imaginary part of the eigenvalue equals the assumed k value,

i.e., a matched point solution where =(p) = k. A change in sign of the difference

=(p) − k thus signifies the existence of a valid root. The root is determined by a

linear interpolation. This non-iterative method places no restriction on the number

of roots that can be found.

For a hypothetical system with two modes, Fig. 3.3 shows qualitatively the re-

duced frequency sweep for a single dynamic pressure qi. The black dots represent
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an intersection of a mode with the black diagonal line, =(p) = k, which is found by

linear interpolation. There are five valid roots for this particular system, four from

the first mode and one from second mode. For the first mode, there are two real

roots at k = k0 = 0, and two complex roots at k = k1 and k = k2. The second

mode is complex throughout the reduced frequency sweep, and has only one valid

root at k = k3. An iterative method would have issues converging to k = k1 because

Eq. (3.43) is not satisfied and would converge to k = k2. Similar behavior is noted by

Rodden and Bellinger [180] where the iterative method converges to a real root when

it should converge to an oscillatory complex root.

3.3 Mode Tracking

Mode tracking is an important component in the success of a p-k-type flutter analy-

sis. The primary function of this tracking is to provide a correlation functionality be-

tween two consecutive iterations during mode migration (e.g. with increasing dynamic

pressure), and reduced frequency sweep, to prevent mode hopping. Such tracking is

typically performed by utilizing the mode shapes (eigenvectors) computed.

3.3.1 Existing Methods

Several mode tracking methods have been proposed and one of the early and popular

methods is the modal assurance criterion (MAC) proposed by Allemang and Brown

[181]. Later, due to its popularity, Allemang [182] discusses its original development

and various extensions to the method. The general form of the MAC correlation

metric for real and complex vectors is:

Cij =
|q̄∗i q̄j|2

(q̄∗i q̄j)(q̄
∗
i q̄j)

, (3.44)
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where q̄i, q̄j are the i-th previous and j-th current eigenvectors, and ∗ represents the

Hermitian for complex numbers and transpose for real numbers. Equation (3.44)

computes the Cij entry in the correlation matrix C.

van Zyl [183] proposed a similar version correlating modes based on complex

inner products between current and previous eigenvalues. The scalar product of two

complex eigenvector must be defined to be independent of scaling and phase. A

definition that satisfies these conditions is

X ·Y =

√
S2

1 + S2
2√

S3S4

= Cij (3.45)

where

S1 =
n∑
k=1

<(Xk)<(Yk)−=(Xk)=(Yk) (3.46)

S2 =
n∑
k=1

<(Xk)=(Yk)−=(Xk)<(Yk) (3.47)

S3 =
n∑
k=1

||Xk||2 (3.48)

S4 =
n∑
k=1

||Yk||2 (3.49)

Using this method a full correlation matrix C is constructed between two sets of

mode shapes from the previous and current iteration. The matrix is then searched

for the largest elements in which its position then relates previous iteration (line)

with current iteration (column). Once a mode has been selected the corresponding

line and column are excluded from the selection process and this process continues

until all the current modes have been correlated with the previous set of modes.

Eldred et al. [184] proposed a mode tracking method applicable for real eigenvalue

problems, demonstrated in structural optimization with free vibration constraints.

Later Eldred et al. [185] proposed two mode tracking methods for complex eigenvalue
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problems and demonstrated its usefulness in flutter analysis.

Other mode tracking methods exist that do not use the eigenvector information

for eigenvalue tracking. One such method proposed by Chen [85] is a predictor-

corrector scheme for the eigenvalue tracking in the g method [85]. This method uses

a linear extrapolation to predict the new eigenvalue using the current eigenvalue and

gradient. Another class of methods builds on the piecewise quadratic interpolation

(PQI) method proposed by Eller [186]. Huang et al. [187] later improved the method

using shape-preserving cubic spline for mode tracking that uses available data to

compute polynomial coefficients.

However, many of these methods require small increments to successfully track

modes. Furthermore, if multiple modes interact within a small frequency range,

methods utilizing spline or interpolation techniques may have difficulties tracking the

modes. More recently, Hang et al. [188] proposed a mode tracking technique utilizing

the orthogonality of left hand eigenvectors, demonstrating the method on both linear

and geometrically nonlinear flutter analyses.

3.3.2 Mode Tracking Algorithm

In this work we implement a variation of the mode tracking method proposed by van

Zyl [183]. As mentioned previously, to prevent mode hopping, the modes must be

tracked at two stages in the analysis process: 1) During the reduced frequency sweep,

which finds all the roots (eigenvalues) for a given dynamic pressure, qi, and 2) during

the migration of the modes between dynamic pressure increments, qi and qi+1.

The tracking of the modes during the first stage, the frequency sweep, is simpler

to handle and implement rather than the second stage. This is because the number

of eigenvectors are the same for the previous and current reduced frequency, resulting

in a one-to-one mapping of eigenvectors, or a square correlation matrix. The tracking

of the modes during the second stage, the mode migration, is more challenging and
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requires extra care. This is due to the fact that any number of new modes can show

up, as well as disappear, resulting in a rectangular correlation matrix. In the case of

new modes appearing, for example in the case of a bifurcation, some modes are not

correlated to any previous mode. Thus, the mode tracking algorithm need to handle

such events.

To address this, a correlation metric is implemented to determine if the computed

set eigenvalues are “too far” away from the previously computed values (at qi) for

the current dynamic pressure increment, qi+1 = ∆qstep + qi. Based on this value the

eigenvalues and eigenvectors from the frequency sweep computed at qi+1 are either

accepted or rejected. If accepted the process continues to the next dynamic pressure.

If rejected and the dynamic pressure step is halved and the reduced frequency sweep

is rerun computing new roots. The halving process is controlled by a minimum

allowed for ∆qmin increment and if reached the current roots are accepted and process

continues to the next dynamic pressure. In case of failure where minimum increment

is reached, the roots are accepted and the dynamic pressure is incremented using a

normal step size.

3.4 Flutter Constraint Formulation

For effective gradient-based optimization the constraint function should be at least

C1 continuous. Jonsson et al. [2] discuss many of the considerations necessary to

formulate an efficient and continuous flutter constraint suitable for a gradient-based

optimization framework.

For linear systems, the flutter point is defined as the minimum dynamic pressure

where at least one of the modes becomes unstable [189]. A naive approach to con-

strain flutter is to specify the flutter point directly. However, this may introduce

discontinuities in the constraint value between two consecutive design iterations, xi
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and xi+1, due to mode switching or to a hump mode becoming active at a signifi-

cantly lower dynamic pressure [5]. Therefore, additional steps are required to ensure

a continuous constraint.

Mode switching occurs when the mode that first becomes unstable (that is, at

the lower dynamic pressure) changes between two consecutive design iterations xi

and xi+1. An example of mode switching is shown in Fig. 3.4a, where the hypothet-

ical damping of a system with two modes is plotted with respect to speed. Mode

switching causes a C1 discontinuity of the flutter point, which poses a challenge to

gradient-based optimizers [109]. The imaginary part of the eigenvalue (frequency)

also switches, and in many cases the frequencies coalesce, causing a mode to become

unstable. A more serious problem is when a hump mode is present in design (xi)

and it becomes the critical mode in the new design (xi+1), as shown in Fig. 3.4b.

The constraint demonstrates C0 discontinuity, which is even more challenging for

gradient-based optimizers.

Techniques exist to mitigate these problems and they are summarized by Stanford

et al. [146]. Frequency-separation constraints proposed by Langthjem and Sugiyama [190]

and also by Odaka and Furuya [191] can prevent mode switching by enforcing the

critical mode to remain the same. This approach is illustrated in Fig. 3.5 (left) for a

hypothetical case. The disadvantage of this method is that Nm − 2 constraints are

needed for a case with Nm modes (with the expectation that two modes coalesce, and

hence no constraint is needed for two modes). Furthermore, specifying the unstable

mode could over-constrain the optimization process. A more serious flaw with this

approach is that a hump mode is still possible.

Other techniques exist to handle both mode switching and hump modes. One

approach is to enforce the real part of each eigenvalue—the damping—to remain

below a preset bounding curve. The area above this bounding curve, also known

as flutter margin [113], is now defined as the unstable region were no modes should
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(a) Critical flutter mode switching with small changes in the design causing a C1 disconti-
nuity in the flutter point value.

<(p) <(p) xi+1xi

Mode 1

Mode 2

Mode 1

Mode 2

q q

(b) Hump mode becoming active with small changes in the design, causing a C0 disconti-
nuity in the flutter point value.

Figure 3.4: Possible sources of discontinuities in the flutter constraint. Mode 1,
critical at design xi, switches with mode 2 as the critical mode in design xi+1 [2].

q

q

=(p) <(p) G(q)

Mode 1

Mode 2

Mode 3

Figure 3.5: Two possible methods to prevent discontinuities in the flutter constraint:
frequency-separation method (left) and damping boundary (right, solid black) [2].
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cross into. Several variations of such a bounding curve have been proposed and

employed [109, 113, 174, 192, 193], and implemented in commercial software [194].

This curve, G(q) in Fig. 3.6, spans the operating conditions of interest from wind-off

to some maximum speed. This approach mitigates the aforementioned issues and has

the following additional benefits:

1. No constraint is placed on the flutter point itself. Thus, there is no need to

compute it explicitly because it is implicitly set by the intersection of the curve

with the dynamic pressure axis.

2. Modes that become unstable abruptly (hard flutter) and have steeper slope than

the boundary are handled.

3. Hump modes can be pushed into the negative damping to make the design more

robust.

In this work, we use a modified version of the bounding curve proposed by Stanford

et al. [113, 193], where we introduce a new shifting parameter g+. The curve, G(q),

is a piecewise cubic and quadratic function and is defined as,

G(q) =


g∗ (3q2q∗ − 2q3) /(q∗)3 + g+ 0 ≤ q < q∗

β(q − q∗)2 + g∗ + g+ q ≥ q∗
(3.50)

where g∗, g+, q∗, and β are constants that control the shape and position of the curve

and are chosen based on the criteria of the problem at hand. The g∗ parameter

controls the depth of the transition location of cubic and quadratic functions and is

primarily used configure the boundary for marginally stable hump modes. The g+

parameter shifts the entire boundary along the damping axis. For instance, g+ could

be used to compensate or shift the boundary appropriately when structural damping

is included in Eq. (3.40) or dealing with marginally stable in-plane modes as discussed
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g∗

β

qF

G(q)

Figure 3.6: Bounding curve and configurable constants applied to mitigate issues with
discontinuities due to hump and mode swaps. The intersection of the bounding curve
and the zero axis implicitly defines the minimum flutter speed qF .

in the next section. The q∗ parameter sets the location of the implicit flutter point.

Assuming that g∗ + g+ < 0, the implicit flutter point can then be computed as,

qF = q∗ +

√
−(g∗ + g+)

β
. (3.51)

Finally, the β parameter controls the slope of the quadratic function, limiting how

hard modes can flutter. These parameters help improve the overall safety and ro-

bustness of the design. Figure 3.6 shows qualitatively the bounding curve and its

configurable parameters.

A system is considered stable only if the damping, gij = <(pij), is below G(qi) for

every mode j at every dynamic pressure of interest i, i.e.,

gij ≤ G(qi) i = 1, . . . , Nq j = 1, . . . , Nm (3.52)

where, Nq, Nm are the total number of dynamic pressure increments and modes,

respectively. In other words, for system stability we require,

gG,ij = gij −G(qi) ≤ 0 ∀ i, j. (3.53)
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If the bounding curve is not used, then G(qi) = 0, such that, gG,ij = gij ≤ 0 ∀ i, j,

which simply enforces all damping values to be less than zero.

3.5 Flutter Constraint Aggregation

Although the bounding curve approach mitigates discontinuity issues, it requires a

constraint for each velocity increment and mode as Eq. (3.53) suggests. Thus, Nq dy-

namic pressure increments and Nm modes results in Nm ×Nq constraints, increasing

the total number of constraints dramatically. In these circumstances, the active set

method could be used. This consists of considering the full set of points but, based on

the constraint value, reduces them to a smaller set before evaluating derivatives [109].

This approach was applied by Ringertz [109] and was also applied in the time domain

by Kang et al. [195]. An alternate approach was proposed by Haftka [103], who sug-

gested replacing parametric constraints by minimum-value constraints. This reduces

the number of constraints to the total number of modes for the entire flight envelope.

Using an active set method would reduce the cost of gradient computation for such

constraints even further, as mentioned above.

To reduce the number of constraints resulting from the proposed bounding curve

to a single scalar constraint that can be used in an optimization, we apply a constraint

aggregation approach. We employ the discrete Kreisselmeier–Steinhauser (KS) func-

tion [124, 196–198] to aggregate the constraints into a single composite function.

While alternative aggregation functions exist that are more accurate than the KS

function, such as the induced exponential function [198], we take advantage of the

KS function conservative property. The KS function is C1 continuous and gives a

conservative estimate of the maximum for a given set of constraints. However, the

KS function does not come without limitations, as discussed later. The KS function
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can be defined as,

KS(g(x)) =
1

ρKS

ln

(
m∑
j=1

eρKSgj(x)

)
. (3.54)

To avoid numerical difficulties due to overflow, we use an alternate form of the KS

function,

KS(g(x)) = gmax(x) +
1

ρKS

ln

(
m∑
j=1

eρKS[gj(x)−gmax(x)]

)
, (3.55)

where g(x) is a set of constraints, gmax(x) is the maximum of all constraints evaluated

at the current design at a design point x, and ρKS is the KS parameter. This KS

parameter is used as a margin and is analogous to a penalty parameter used in con-

strained optimization. As ρKS →∞, the KS function approaches the true maximum.

However, large values of ρKS results in a high curvature in the constraint function,

which can make optimization more challenging.

Here, we apply the KS function twice in sequence: once for each mode over all

dynamic pressures resulting in Nm KS constraints values, and then again over all the

modes. The end result is the single constraint,

KS(gG,ij, ρKS)flutter = KS ([KS(gG,i1, ρKS),KS(gG,i2, ρKS), . . . ,KS(gG,iNm , ρKS)] , ρKS) ≤ 0.

(3.56)

The KS function is indifferent to the order of aggregation if the aggregation parameter

ρKS is chosen to be the same for both aggregation steps. Although aggregating all

damping values into a single constraint hides information from the optimizer, this

allows for any number of modes to show up in the analysis process. In general, we only

need to know if any one mode violates the constraint boundary during optimization.

For a given design to be flutter free, the double aggregated KS value has to be less

than zero, as defined in Eq. (3.56), indicating that the constraint is inactive.

Due to the conservative behavior of the KS function, it is sometimes found neces-

sary to provide a positive g+ value such that the boundary does not adversely interfere
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with any marginally stable in-plane modes during optimization. This is because when

an in-plane mode (for which all damping values are zero) is aggregated using a KS

aggregation, the aggregated value is greater than zero. Figure 3.7 demonstrates this

issue: When vectors of different sizes containing only zeros are aggregated, the ag-

gregation yields a positive value for practical KS parameter choices.

100 101 102 103 104

Number of entries in zero vector

0.0000

0.3070

0.0921

0.0461

0.0184

KS Value

ρKS = 30

ρKS = 100

ρKS = 200

ρKS = 500

True max

Figure 3.7: KS aggregation of vectors containing only zeros gives a positive value. It
is important to compensate for this effect if in-plane modes are present by shifting
the bounding curve G(q).

Given this conservative behavior of the KS function, the flutter constraint is vio-

lated, even though no mode intersects or crosses into the area defined by the bounding

curve. This causes problems for the optimizer because it may not be able to alter

the design such that these in-plane modes are sufficiently affected, resulting in a

premature termination of the optimization due to numerical difficulties. Thus, it

is important to compensate for in-plane modes if they are present by choosing an

appropriate KS parameter value and by shifting the boundary. This behavior is anal-

ogous to the mesh-dependency behavior of a KS or p-norm function, as discussed by

Kennedy and Hicken [198].
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3.6 Integration into MACH

The proposed flutter analysis is integrated into MACH as shown in Fig. 3.8. The

flutter analysis is run in parallel to the static aerostructural computation. Thus,

similar to the static aerostructural analysis a component that handles communications

of data between different components such as the structural code and aerodynamic

code is also implemented. The same component is also responsible for propagating

reverse mode derivatives and computing the total derivative of the flutter constraint

with respect to the design variables.
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Figure 3.8: XDSM [1] of the proposed flutter analysis process and constraint formulation integrated into the high-fidelity
aerostructural optimization MACH framework.
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While MACH utilizes the Message Passing Interface (MPI) library that enables

parallelization, the current implementation is not parallel. This means that the flutter

analysis and the associated derivatives are executed on a single processor during the

optimization. However, this is not found to be limitation in an optimization as the

CFD is the most expensive component in terms of computational cost.
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CHAPTER 4

Flutter Constraint Derivative

Implementation

To apply the flutter constraint described in Chapter 3 in a high-fidelity gradient-

based optimization, efficient and accurate gradients are needed. The finite-difference

method is a popular choice because it is easy to implement and can always be used,

even with black-box codes. For a function of interest I(x), the second order finite-

difference stencil is

dI

dx
=
I(x+ h)− I(x− h)

2h
+O(h2), (4.1)

with a step-size ranging from h = 10−3 to h = 10−6 determined from a step-size

study, depending on the function under consideration. However, finite differences

are inaccurate and their computational cost scales poorly with the number of design

variables.

Unlike the finite-difference method, the complex-step method [30] is accurate. For

the complex-step method the derivative of a function is computed as,

dI

dx
=
=[I(x+ ih)]

h
+O(h2), (4.2)

where i =
√
−1. The step-size can be made very small, e.g. h = 10−40, hence the

O(h2) truncation error becomes negligible. The complex-step method does not suffer
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from a subtractive cancellation errors unlike the finite-difference method. However,

its cost still scales poorly with the number of design variables, making it prohibitive

for detailed design optimization. Furthermore, the complex-step method cannot be

directly applied to programs that already use complex numbers. Such programs

need to be made complex-step compatible by modifying them so that the real and

imaginary part of the complex number are represented as two real numbers.

Analytic methods are desirable because they are both accurate and efficient, es-

pecially for iterative simulations [33]. However, they require significant implementa-

tion effort. There are two main approaches within the analytic methods: the direct

approach and the adjoint approach. The adjoint approach is especially attractive be-

cause the computational cost is independent of the number of design variables [33, 34].

Finally, automatic differentiation (AD) can be applied to analysis codes to produce a

new code that computes derivatives of that analysis [31, 32]. Two modes exist (for-

ward and reverse) that are equivalent to the direct and adjoint in terms of efficiency

and accuracy [33].

Typically, for an aerostructural optimization the functions of interest are very

few compared to number of design variables such as, panel thickness. For a realistic

aircraft configuration there are tens to thousands of design variables. This yields a

high ratio of input variables to output variables and thus strongly favors the to use

the adjoint equations or reverse-mode AD approach, where the latter is applied in

this work.

4.1 Automatic Differentiation

Automatic differentiation, also known as algorithmic differentiation, is a well estab-

lished method that systematically applies the differentiation chain rule to source code.

This method uses source transformation tools that takes in the original computer pro-
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gram, augments it, and generates a new code, such that it computes the analytical

derivatives along with the original program [199, 200]. Two modes exist, the forward

mode and the reverse mode. For a generic system with scalar input x and output y

we can write it as:
System x→ F (x) → y

Forward AD ẋ→ F ′(x) → ẏ

Reverse AD x̄← F ′∗(x) ← ȳ

where the arrows represent the flow of information, the box represents the system

or a function. The forward mode, know as the tangent, is denoted with a dot ˙( )

over the variable. Given some small variations on the input (independent) variables x

we can compute the resulting variations of the output (dependent) variables y. The

Jacobian matrix J contains the partial derivatives of each dependent variable yj with

respect to each independent variable xi. The forward mode thus computes dy = Jdx

for each given dx or

dy = Jdx

ẏ1

ẏ2

...

ẏn


=



∂y1

∂x1

∂y1

∂x2
· · · ∂y1

∂xm

∂y2

∂x1

∂y2

∂x2
· · · ∂y2

∂xm

...
...

. . .
...

∂yn
∂x1

∂yn
∂x2

· · · ∂yn
∂xm





ẋ1

ẋ2

...

ẋm


.

Conversely, the reverse mode, known as the adjoint, is denoted by a bar ¯( )

over the variable. The order of operations reverses and we compute the transposed

72



Jacobian product dx = JTdy for each given dy or

dx = JTdy

x̄1

x̄2

...

x̄n


=



∂y1

∂x1

∂y2

∂x1
· · · ∂yn

∂x1

∂y1

∂x2

∂y2

∂x2
· · · ∂yn

∂x2

...
...

. . .
...

∂y1

∂xm

∂y2

∂xm
· · · ∂yn

∂xm





ȳ1

ȳ2

...

ȳm


.

In other words, the gradient of the independent variable is a linear combination of the

variation in the dependent variable. This is a very important observation, particularly

in the case with fewer output variables than input variables. Since many aerodynamic

optimization formulations contain many more design variables than outputs of interest

(or nx >> nI) we use the reverse mode or the adjoint mode in order to obtain the

derivatives as efficiently as possible. The AD source-transformation tool, Tapenade

[201, 202] is used in this work.

4.2 Component Derivative Implementation

Derivatives of the entire flutter constraint process presented in Fig. 3.1 are required.

Since we allow change in planform through the chord and span design variables,

the natural modes and mode shapes are impacted. This means that the fixed-mode

derivative approximation [123] is not valid, and thus we require derivatives of the

modes and mode shapes (Kr,Qr), the interpolated aerodynamic mode shapes (QA
r ),

the aerodynamic and structures meshes (XA,XS), and the reference semi-chord (b).

Since we have only one output (the aggregated flutter constraint value) and a large

number of design variables, we use a combination of analytic and reverse mode AD

to obtain the total derivative dKSflutter/dx as efficiently as possible.

A high-level overview of derivatives implemented and computed is presented in
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x̄

Geometry (FFD)

X̄S FEM (TACS)

K̄, M̄ Lanczos

X̄A Q̄r Displacement Transfer (TACS)

X̄A, b̄ Q̄A
r DLM

b̄ K̄r Ār Flutter Analysis

<(p̄) Bounding Curve

ḡG KS K̄Sflutter

Figure 4.1: XDSM [1] of derivatives required for the proposed flutter analysis and
constraint formulation presented in reverse mode. The derivatives are computed by
a combination of analytic adjoint and automatic differentiation (AD) in reverse.

Fig. 4.1. Reverse-mode compatible derivatives are required for all components. The

bar ¯( ) over the variable represent reverse derivative seed. Since the derivatives are

back-propagated, the initial seed is K̄Sflutter.

All new components implemented in this work, namely the Lanczos algorithm,

DLM, flutter analysis algorithm, bounding curve, and aggregation functions are all

implemented using a combination of AD and analytically differentiated code in re-

verse [203]. Matrix operation such as LAPACK’s [176] complex and real linear solvers,

matrix inversion, and eigenvalue solvers are not automatically differentiated, but must

instead differentiated analytically in reverse. For instance, for a linear solver of the

form Ax = b, the analytic derivative in reverse mode is obtained in a two-step

process [203],

b̄ = A−T x̄ ,

Ā = −b̄xT .

(4.3)

(4.4)

Equation (4.3) is first solved using the input seed x̄, and then Eq. (4.4) is solved to

obtain the output seed.
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The two reference semi-chord seeds, b̄, are aggregated before they are used in the

geometry FFD module. For increased efficiency, the K,M matrices are not explicitly

formed. The resulting derivatives are propagated from the reverse mode Lanczos

method through the FEM solver and directly accumulated onto the design variables.

4.3 Derivative Verification

To verify that the reverse derivatives are consistent and accurate we perform a rig-

orous verification. Each function is unit tested, where derivatives are computed

and compared using a second-order central finite-difference stencil, the complex-step

method [30], forward, and reverse mode AD. A similar procedure is performed for all

analytically differentiated code in reverse.

For the finite difference verification we apply the second order stencil defined in

Eq. (4.1). Note that in order to get a reasonable prediction with finite-difference, a

step-size study was performed to get the most accurate gradient possible. Since the

finite difference method requires no implementation it is used here are as a reference

for the complex-step and forward mode derivative implementation.

To accommodate and use the complex-step approach to verify the reverse deriva-

tives the underlying implementation is modified such that the programs are complex-

step safe. This is done by representing the complex numbers as two real numbers, one

for the real part and one for the imaginary part. Complex arithmetic is performed

using manually defined functions since it cannot be done using intrinsic functions.

While this adds complexity and increases development time the benefit of accurate

derivative is outweighs the development cost. Here, all codes that uses complex num-

ber, for instance the DLM and flutter analysis method, are modified such that only

real numbers are utilized for complex calculations. In general a step size of h = 10−40

in Eq. (4.2) is used in all derivative tests in this work.
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While not used in optimization, the forward mode derivative implementation

serves an important role for derivative verification and debugging the reverse mode.

Forward mode AD is simpler to implement and easier to debug and in code, can be

compared line by line with values computed by finite difference or the complex-step

approach. The forward AD computed derivative is compared to the complex-step

method, where it should match to machine precision,

=[I(x + ihẋ)]

h
= Jẋ = ẏ, (4.5)

where ẋ is the derivative seed.

Furthermore, the forward mode is used to verify the reverse mode AD implemen-

tation through a dot product test. The dot product test [204] can be written as:

x̄∗ẋ = (J∗ȳ)∗ ẋ

= ȳ∗ (Jẋ)

= ȳ∗ẏ set ȳ = ẏ

= ẏ∗ẏ

(4.6)

This equality should match to machine precision. This demonstrates that the reverse

mode implementation is consistent with the forward mode implementation, but this

does not prove that the derivatives are correct. To verify the correctness of the

derivatives, the forward mode should be compared against a method that provides

accurate reference values, such as the complex-step method. Derivative verification

is presented in the following sections. While derivative verification is done on a much

lower level, here we perform collective verification involving a sequence of derivative

computations.
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Table 4.1: Intermediate sensitivities of the aggregated flutter constraint, KS, with
respect to a single value in the reduced stiffness Kr matrix, aerodynamic mesh points
XA matrix and the reduced aerodynamic mode shapes QA

r . Finite difference step size
of h = 10−6 gave overall the best results.

∂KSflutter

∂Kr

∂KSflutter

∂XA
∂KSflutter

∂QA
r

Finite Difference 0.00220121232353 0.0921885550120 -0.000394003940585

Complex-step 0.00220122045797 0.0921885466706 -0.000394004582749

AD (Reverse) 0.00220122045797 0.0921885466706 -0.000394004582749

4.3.1 Intermediate Derivatives

Here we present derivative results of the flutter constraint with respect to the reduced

stiffness matrix Kr, the aerodynamic mesh nodes XA and QA
r which are the reduced

mode shapes, Qr, transferred on to the aerodynamic mesh. This includes derivatives

computation of the generalized loads in the DLM, the flutter analysis implementation,

and aggregation. This includes most of the new code implemented in this work. As

shown in Table 4.1 the reverse AD sensitivities developed match to machine precision

when compared to complex-step. As expected, the second order finite difference

method does not perform as well, and is sensitive to variation in step-size. In order

to get the best finite difference derivative the step-size was varied from h = 10−3 to

h = 10−7 depending on which derivative was being calculated.

4.3.2 Total Derivatives

Total sensitivities of the flutter constraint with respect to the design variables are

presented in Table 4.2. These are sensitivities of the entire analysis process. As be-

fore, finite difference offers less accuracy compared to AD or complex-step despite

performing a step-size study using values from h = 10−3 to h = 10−7. The num-

ber of matching digits for the full derivative chain is somewhat less than what is
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Table 4.2: Sensitivities of flutter constraint, KS, with respect to design variables,
chord, span and material thickness. Finite difference step size of h = 10−3 for geo-
metric variables (chord, span) and h = 10−6 for structure variables gave overall the
best results.

dKSflutter

dxchord

dKSflutter

dxspan

dKSflutter

dxthickness

Finite Difference 0.536986799217 -1.04625065236 177.140039513

Complex-step 0.536985041094 -1.04624172821 177.200299680

AD (Reverse) 0.536985160000 -1.04624205000 177.200209304

presented in Table 4.1. Once passed through the reverse implementation of TACS

accuracy appears to be lost. However, the same behavior is reported in literature for

aerostructural optimization (c.f. Table 2 in [7]). This stems from the large condition

numbers of the structural matrices when employing thin shell structures. Despite

this reduction, the accuracy of the implemented adjoint sensitivities are sufficient for

high-fidelity aerostructural optimization.
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CHAPTER 5

Aerostructural Optimization of Plate

The purpose of this chapter is to demonstrate the flutter constraint formulation capa-

bilities in an multidisciplinary optimization and verify its continuity. The geometry

used here is an idealized wing, a rectangular flat plate, which is chosen specifically for

verification purposes due to its simplicity and short optimization turnaround. The

proposed constraint is demonstrated in a simple but representative optimization, for-

mulated to verify the constraint behavior in a gradient based optimization, including

structural sizing and aerodynamic planform variables.

5.1 Baseline Model Description

The geometry, shown in Fig. 5.1, consists of a flat plate structure, shown in red, that

is embedded within a larger flat aerodynamic mesh, shown in gray. The red spheres

are control points of the FFD volume, which both meshes have been embedded in.

The black lines connecting the spheres show the outer edges of the FFD.

The structural model consists of 12 elements in the streamwise direction and 40

elements in the spanwise direction a total of 480 finite MITC shell elements. Initial

element thickness is chosen to be t = 0.0012 m. The aerodynamic model consists of

12 elements in the streamwise direction and 20 elements in the spanwise direction.

Material properties, dimensions, and discretization for the baseline flat plate are

summarized in Table 5.1.
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Figure 5.1: Flat plate structural and aerodynamic mesh shown in red and black
respectively. The plate is cantilevered at the left edge. A Free-Form-Deformation
(FFD) volume is also shown with 8 control points which are depicted as red spheres
connected by solid black lines.

Table 5.1: Flat plate mechanical properties, dimensions, and discretization of the
structure and the aerodynamic surface.

Variable Symbol Value

Mechanical properties Density ρs 2800 kg/m3

Modulus of elasticity E 70 GPa

Poisson ratio ν 0.3

Yield stress σy 400 MPa

CSM Thickness t 0.0012 m

Structure span bs 0.85 m

Structure chord cs 0.21 m

Finite elements, streamwise nFEM
x 12

Finite elements, spanwise nFEM
y 40

DLM Span b 1.0 m

Chord c 0.3 m

DLM elements, streamwise nDLM
x 12

DLM elements, spanwise nDLM
y 20

Planform area Ainit 0.3 m2
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Table 5.2: Flat plate operating conditions under investigation used in the baseline
analysis.

Variable Symbol Value

Operating conditions Mach M∞ 0

Lift coefficient CL 0.5

Air density ρ∞ 1.225 kg/m3

Air speed range U∞ 2 – 15 m/s

Reduced frequency range k 0 – 20

Figure 5.2: First 4 modes shapes for the baseline geometry.

For the flat plate analysis and optimization the air density is kept fixed and

the Mach number is set to zero (incompressible flow). The velocity range to be

analyzed is from 2 to 15 m/s. The flight conditions are summarized in Table 5.2.

The aerodynamic loads generated by the DLM are generated using 50 values for the

reduced frequency, k. These values are sampled non-uniformly using a quadratic

or cubic stencil. In order to be consistent with previous work [168], we apply the

constraint aggregation presented in Section 3.4 to the first 4 flutter modes. The first

r = 6 natural modes and mode shapes are computed using the Lanczos algorithm,

with a subspace of size m = 20, and are used as a basis for the flutter solution.

A large subspace size ensures that the first 6 modes are accurate and orthonormal

modes. Figure 5.2 shows the first 4 natural mode shapes.
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5.1.1 Baseline Model Flutter Analysis

We investigate the flutter and divergence characteristics of the baseline geometry

under the given operating conditions. Figure 5.3 shows the flutter and divergence

characteristics for the baseline geometry where damping and frequency are given in

dimensional units. The unstable region is highlighted in a faded red color. In Fig. 5.3a

the unstable region is the entire positive damping region. Aeroelastic divergence and

flutter occur at Ud = 13.99 and Uf = 14.07 m/s, respectively.

In Fig. 5.3b the boundary in Eq. (3.50) has been applied with g∗ = −1, g+ = 0

rad/s, U∗ = 13 m/s, and β = 1 rad · s/m2. Note that Eq. (3.50) assumes dynamic

pressure, but it can be equivalently written in terms of speed. The boundary is

shown in light gray and defines the beginning of the unstable damping region. The

selection of current parameters sets the minimum implicit allowable flutter speed

to 14 m/s. Due to 0 > g∗ the boundary extends into the negative damping area,

creating different mode intersection points. The boundary divergence speed occurs

at UG,d = 12.00 m/s, but the boundary flutter speed has increased and is UG,f =

14.30 m/s. Note that these are not the physical divergence or flutter velocities, but

the values where modes intersect the constraint boundary G(U). The physical flutter

and divergence speeds Uf , Ud are the ones reported above. Frequency migration is

shown in Fig. 5.3c. The aeroelastic mode emerging from the first 1st bending mode

diverges whereas the fluttering mode emerges from the 2nd bending mode.

5.2 Problem Statement

To maintain simplicity for this flat plate problem, the design variables chosen are as

follows: plate thickness of the entire plate xthickness, span xspan and chord length xchord.

While no sweep, taper or dihedral are considered here, the developed constraint and

derivatives support such design variables. The objective is to maximize range using
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(a) Damping shown without constraint boundary. Divergence and flutter occur at Ud =
13.99 and Uf = 14.07 m/s, respectively.
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(b) Damping shown with constraint boundary applied on figure (shown in gray). Diver-
gence and flutter (boundary intersection) occur at UG,d = 12.00 and UG,f = 14.30 m/s,
respectively.
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(c) Frequency migration

Figure 5.3: Flutter analysis of the flat plate baseline geometry. The unstable area is
highlighted with a pink color in a), b). Frequency migration is shown in c).
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the Breguet range equation,

R =
V

cT

CL
CD

ln

(
Winit

Wfinal

)
, (5.1)

where R is range, V/cT is the flight speed to thrust-specific fuel consumption ratio,

CL/CD is the lift to drag ratio, and Winit/Wfinal is the initial to final cruise weight

ratio. For simplicity we assume that V/cT = 1, and we define the cruise weights as

Wfinal = Wfixed +Wplate,

Winit = Wfinal +Wfuel,

(5.2)

where the Wfixed is a fixed weight and Wfuel is the fuel weight. Here we choose,

Wfixed = 1.0 kg and Wfuel = 0.25 kg.

Since we do not compute any aerodynamic lift, we choose and set the target lift

coefficient to CL = 0.5. The drag coefficient computed here consists only of the lift

induced drag,

CD =
C2
L

πeAR
, (5.3)

where the wing span efficiency factor is set to e = 1 for simplicity. AR is the aspect

ratio defined as AR = b2/S where b is the span and S is the planform area. Thus, the

objective is maximized by reducing the drag coefficient or the thickness of the plate.

The drag coefficient is reduced by increasing the aspect ratio as other parameters are

fixed.

The chord and span directly affect the aspect ratio so we want to formulate the

problem in terms of the aspect ratio rather than directly the chord and the span. By

adding an area equality constraint we ensure that there is a link between the chord

and span, allowing us to instead look at the trade-off between thickness and aspect

ratio. Further, this allows for visualization, which can provide valuable information
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Table 5.3: Optimization formulation of the flat plate problem.

Function/variable Description Quantity

maximize Range Breguet equation

with respect to xspan Plate span 1

xchord Plate chord 1

xthickness Plate thickness 1

Total design variables 3

subject to A - Ainit = 0.0 Fixed plate area 1

KS(gG,ij)flutter ≤ 0 KS aggregate of damping
values for all modes

1

Total constraints 2

about the design space . The initial area is given in Table 5.1.

We consider two scenarios to evaluate the proposed flutter constraint, one without

applying the constraint curve, and a second one where the constraint curve is active,

using the same parameters as presented in the baseline analysis. In the former we

require that no flutter or divergence must occur for the entire velocity range of 2-15

m/s. For the latter case, minimum flutter or divergence speed is set implicitly by the

parameters chosen for the constraint curve in the baseline analysis. Hence, the range

2-14 m/s must then be flutter and divergence free. In addition to pushing modes

further into the design space making for a more robust design, it also controls how

rapidly modes can flutter, further improving the safety. The flutter KS aggregation

parameter is set to ρKSflutter
= 100.

The design variable bounds are as follows. Chord and span are specified such that

the aspect ratio is allowed to vary from 1 ≤ AR ≤ 6, and the material thickness of

the plate is allowed to vary from 0.0012 ≤ t ≤ 0.0025 m. The optimization problem

is summarized in Table 5.3 and Fig. 5.4 shows the flutter analysis implementation as

it is applied in the optimization.
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r
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9: KS KSflutter
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& corresponding

derivatives

11: Objective

& Constraints

Figure 5.4: XDSM [1] showing the flutter constraint as applied in the optimization.

5.3 Design Space Analysis

Before running an optimization, its valuable to investigate the design space. A contour

plot is generated by sweeping over both the aspect ratio range 1 ≤ AR ≤ 6 and the

thickness range 0.0012 ≤ t ≤ 0.0025 m. A grid of 32 steps in each variable is

used giving a total of 1024 analysis points. Figure 5.5 shows contour plots of the

objective function in the feasible design space with and without the constraint curve

G(U) active. Where the aggregated flutter constraint value is greater than zero,

KSflutter > 0, the objective function value has been blanked out, as this part of the

design space is infeasible.

Comparing Figs. 5.5a and 5.5b it is evident that with the constraint curve active

the feasible region is smaller. Furthermore, the constraint curve results in a smoother

feasible design space, demonstrating the continuity property of the constraint curve

formulation. The objective function is smooth and continuous with a clear maximum.

By visual inspection the optimal aspect ratio is AR∗ ≈ 6, with a plate thickness of

t∗ ≈ 0.00153 m and t∗ ≈ 0.00165 m without and with the constraint curve active,

respectively. Note that here the range is presented as a negative quantity, due to
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(a) Without constraint curve. (b) With constraint curve.

Figure 5.5: Contour plot of the objective function, range, shown with the flutter
constraint applied to the contour plot. Blanked out regions represent values of where
the constraint is violated or KSflutter > 0. To generate the contour, the design space
is sampled using 32 points in both variables for a total of 1024 design points.

objective being a maximization. Without and with the constraint curve active, the

maximum range is approximately -5.0 and -4.8, respectively.

In both figures, the infeasible design space consists of two disjoint regions, one

with low aspect ratio, spanning the entire thickness bounds, and the second one at

higher aspect ratio with relatively thin plate thickness. These regions indicate that

either a mode has fluttered or bifurcated and diverged. In order to investigate the

infeasible regions further and determine the cause of these regions being infeasible,

we fix the thickness of the plate to t = 0.001619 m and perform sweep over the aspect

ratio 1 ≤ AR ≤ 6, using 256 points. This thickness value is chosen since it is close to

the optimum thickness value. Here we perform the analysis without the constraint

curve active.

Inspecting Fig. 5.6 we observe that the aggregated constraint value is smooth and

continuous, except when the wing design changes from aspect ratio 2.176 to 2.196.

At low aspect ratio the damping is positive, thus unstable. As aspect ratio grows
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the wing becomes stable at AR ≈ 3, remaining stable throughout. At AR ≈ 5 the

damping increases again, tending towards zero, but this increment is investigated

later. At the discontinuity, Figs. 5.7a and 5.7b show the damping and frequency

migration for each design. Solid and dashed lines represent the wing design at aspect

ratio 2.176 and 2.196 respectively. We observe that the damping characteristics of

mode 4 seem to have changed significantly despite marginal changes in frequency for

all modes. Other damping modes change marginally between designs, as expected.

1 2 3 4 5 6

AR

−0.6

−0.4

−0.2

0.0
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K
S

(g
(x

))

AR 2.176

AR 2.196

AR 5.235

AR 5.706

Figure 5.6: Aggregated damping value, KSflutter, for a slice through the design space
at t = 0.001619 m. Small change in the design, increasing the aspect ratio from 2.176
to 2.196, results in a discontinuity.

This discontinuity is caused by a swap in natural mode shapes computed for each

design. As the wing design changes, a higher frequency natural mode approaches

and then becomes lower than natural mode 4, i.e. natural mode 5 and mode 4 trade

places between these two designs. This becomes evident in Fig. 5.8 where the first five

natural mode shapes are shown for these two designs. Since the natural modes are

applied in the computation of the generalized matrices, this affects the flutter modes

directly such that a different damping behavior may appear. However, in Fig. 5.7

mode 4 has fluttered at a very low velocity, which is non-physical. This is believed
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Figure 5.7: Small change in the design from aspect ratio from 2.176 to 2.196, shown
in solid and dashed lines respectively, results in a large change in the damping. Fre-
quency changes minimally as expected.

to be caused by the insufficient DLM resolution as the reduced frequency at such low

flow velocities can be very large for the higher natural modes. This results in a non-

physical behavior. With well behaved aerodynamics the continuity of the constraint

is not compromised.

Figure 5.8: First five mode shapes for designs at aspect ratio 2.169 and 2.196. Mode
4 and 5 swap between the two designs.

To investigate the increase in the aggregated damping value at higher aspect ratio

in Fig. 5.6 we select two designs at aspect ratio 5.235 and 5.706. Damping and
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frequency plots for these designs are shown in Figs. 5.9a and 5.9c, respectively. The

increase in damping is caused by the bifurcated mode 1 where, for the higher aspect

ratio design, the bifurcation occurs at a lower velocity. The constraint curve is shown

in Fig. 5.9b, where the bifurcated mode 1, at the higher aspect ratio design, is close

to crossing into the unstable region. This is why the blanked out region in Fig. 5.5b

at higher aspect ratio is larger than the one without it active. The effect is that the

constraint curve pushes the bifurcated mode further into the damping region. Thus,

in order to be flutter free (as indicated by Fig. 5.5b) a thicker plate is needed, which

will increases the wing stiffness resulting in a more robust design.

5.4 Optimization Results

In this section we present the results from the optimization problem presented in

Section 5.2. The baseline and optimized plate flutter and divergence characteristics

are presented in Fig. 5.10 and the optimized modes and mode shapes are shown in

Fig. 5.11.

Inspecting the mode migration in Fig. 5.10a we see that mode 1 is the critical

mode, the active mode. However, no mode is close to being active for the chosen flight

conditions, and has been pushed out of the range considered. This indicates that the

diverging mode is driving the design in the optimization. Similarly, Fig. 5.10b shows

that the optimized wing has better overall frequency separation than the baseline.

The optimized mode shapes, given in Fig. 5.11, are found to be the same as the

baseline i.e. in order, 1st bending, 2nd bending, 1st torsion and 3rd bending.

Figure 5.12 shows the major iterations that the optimizer superimposed on the

design space and the baseline and optimized planform. The optimum aspect ratio

and thickness is AR∗ = 6 and t∗ = 0.00166 m, respectively. The maximum range is

found have increased by 60%, 38% thicker structure, and 82% increase in aspect ratio.
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(b) Damping shown with constraint boundary,
expanding the unstable region into the negative
damping region.
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Figure 5.9: Damping and frequency plots for designs with aspect ratio 5.235 (solid)
and 5.706 (dashed) for a fixed thickness. Increasing the aspect ratio shifts the bifur-
cation of mode 1 to a lower velocity. Frequency changes minimally as expected.
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Figure 5.10: Baseline (dashed) and optimized (solid) frequency and damping charac-
teristics.

Figure 5.11: First 4 modes shapes for the optimized geometry.
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Figure 5.12: Optimization results showing the major iterations (left) taken by the
optimizer and the initial and optimized wing planform (right). Optimum aspect ratio
and thickness are AR∗ = 6, t∗ = 0.00166 m, respectively

Table 5.4: Numerical comparison of baseline and optimized wing.

Baseline Optimized Rel. Diff. [%]

Aspect ratio [-] 3.29522 6.00000 +82.1

Thickness [m] 0.00120 0.00166 +38.3

Range [m] -3.00636 -4.81924 +60.3

Table 5.4 compares the numerical values of the thickness, aspect ration, and range.

Figure 5.13 shows the convergence history for of the optimization. Observer that

a quadratic convergence is obtained for this smooth problem. Minimum feasibility

and optimality was specified as < 10−6 and was reached in both cases. Exceptional

feasibility is demonstrated as it reaches machine zero.
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Figure 5.13: Optimization convergence history.

5.5 Summary

In this chapter the proposed flutter constraint formulation was successfully demon-

strated on an idealized wing using a multidisciplinary objective, namely the Breguet

range equation. The problem is specifically tailored to include both structural sizing

and aerodynamic planform design variables. The bounds are specifically chosen to

demonstrate a substantial change in planform, highlighting capabilities of the pro-

posed constraint. Furthermore, the simplicity of the problem allows for a design space

study, which demonstrates that the proposed constraint formulation is smooth and

continuous. While an exception to this is observed at very low velocities, it is de-

termined that this behavior is non-physical and numerical in nature. An optimized

design is obtained efficiently, finishing successfully in only few steps. Compared to

the baseline, the range is increased by 60% while maintaining a divergence and flutter

free design. While the final optimized range has limited significance, the capabilities

and continuity of the constraint are demonstrated successfully.
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CHAPTER 6

Aerostructural Optimization of Wingbox

In this chapter, we demonstrate the proposed flutter constraint in a multipoint high-

fidelity aerostructural optimization. We perform a multipoint high-fidelity aerostruc-

tural optimization of a wing with and without the flutter constraint subject to failure

(stress) and buckling constraints. The objective is to maximize range with respect

to structural sizing and aerodynamic planform variables. The geometry under study

is a high-fidelity representation of a subsonic rectangular wing. First, the baseline

aerodynamic and structural model parametrization is introduced, followed by a base-

line characteristics analysis. Then, we describe the problem in detail (objective,

multipoint flight conditions, design variables, and constraints). Finally, we compare

two optimal aerostructural design results, obtained with and without the flutter con-

straint.

This chapter is structured as follows. Section 6.1 describes the aerodynamic and

structural models and their parametrization. Following that Section 6.2 describes a

structural pre-optimization to obtain a baseline sizing prior to the aerostructural op-

timization. Section 6.3 describes the optimization problem formulation, flight condi-

tions, design variables, and constraints. We then demonstrate the proposed methodol-

ogy in Section 6.4, where we compare high-fidelity aerostructural optimization results

with and without the flutter constraint. Section 6.5 summarizes our findings.
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6.1 Wing Model Description

6.1.1 Aerodynamic Models

The geometry under consideration is a rectangular wing with NACA 0012 cross-

section, no dihedral, with a semi-span of 4 m and a chord of 0.765 m. This corresponds

to an aspect ratio of 10.45 and a planform area of Ainit = 3.06 m2.

The CFD mesh is generated using an in-house developed open-source hyperbolic

volume mesh generator pyHyp, which is extruded from the surface mesh shown in

Fig. 6.1a.1 In general a mesh size study should be conducted such that aerodynamic

loads are predicted accurately and are mesh independent. However, the goal in this

work is to demonstrate the flutter constraint in a high-fidelity design optimization,

and the effect such constraint has on the optimized design, so this study is omitted

here. Furthermore, CFD computational cost is commonly the most computationally

expensive component in an aerostructural optimization. Therefore, we choose a rela-

tively coarse CFD volume mesh of 47,177 elements, which suffices for demonstrating

the methods developed in this work. The computational domain is a semisphere

farfield, which extends approximately 100 spans away from the wing and a symmetry

plane boundary conditions defined at the wing root.

The DLM aerodynamic surface has the same dimensions as the CFD mesh. The

mesh consists of 20 spanwise and 12 chordwise elements, for a total of 240 elements,

and is shown in Fig. 6.1b. Similarly, as with the CFD mesh, a symmetry boundary

condition is defined at the wing root. The CFD and DLM meshes and their physical

dimension is summarized in Table 6.1.

1https://github.com/mdolab/pyhyp
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(a) CFD surface mesh. Volume mesh con-
sists of 47,177 elements.

(b) DLM mesh consists of 20 spanwise and
12 chordwise elements, for a total of 240 el-
ements.

Figure 6.1: CFD and DLM surface meshes used in this work.

Table 6.1: Aerodynamic geometry, CFD, and DLM mesh summary.

Variable Symbol Value Unit

Geometry Semi-span ba 4 m

Chord ca 0.765 m

Planform area Sref 3.06 m2

Aspect ratio ARinit 10.45 -

CFD mesh # Elements - 47177 -

DLM mesh # elements, streamwise nDLM
x 12 -

# elements, spanwise nDLM
y 20 -

# elements, total nDLM
total

240 -

6.1.2 Structural Model

The wingbox geometry used in this work is generated using an in-house code pyLayout

and is shown in Fig. 6.2a. It has a rectangular planform, it is fitted to the NACA 0012

airfoil cross-section, has 8 ribs, 2 spars (front and rear), and 14 skin panels (7 upper

and 7 lower). The chord and span are 0.3825 m and 3.89 m, respectively.The structural

model is discretized using MITC4 second-order shell elements, consisting of 2,688

nodes (16,128 DOFs) for the half-span model. The wingbox material is aluminum

AL2024, whose mechanical properties are summarized in Table 6.2.
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(a) Exploded view showing the upper and
lower skins, the two spars, and the eight ribs.
Each colored panel represents a design vari-
able group.

(b) Winbox shown with the CFD surface
mesh. Wingbox cross-sectional shape is fit-
ted to the NACA 0012 airfoil.

Figure 6.2: Wingbox structural model.

Table 6.2: Mechanical properties, dimensions, and discretization of the wingbox struc-
ture.

Variable Symbol Value Unit

Mechanical properties (AL2024) Density ρs 2780 kg/m3

Modulus of elasticity E 72.4 GPa

Poisson ratio ν 0.33 -

Yield stress σy 420 MPa

Geometry (fitted NACA0012) Semi-span bs 3.89 m

Chord cs 0.3825 m

FEM # Nodes - 2688 -

# DOFs - 16128 -

6.1.3 Structural Parametrization

Including stiffeners in wingbox design, is essential to provide lightweight but stiff

structure. In this work we use a smeared stiffness approach instead of modeling

the stiffeners explicitly [205]. Explicit stiffeners can be difficult to model accurately

due to their small size, requiring often large number of elements, which increases

computational cost. In contrast, using the smeared stiffener approach the effect of the

implicit stiffeners on a given panel stiffness is modeled directly through the material
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properties. This approach is computationally efficient and removes the need to model

discrete stiffeners explicitly. Furthermore, it can model stiffeners in any direction and

works well when panel length to stiffener pitch ratio is reasonably large, implying

large number of stiffeners [206]. All components in the wingbox are modeled using

a smeared stiffness approach. A cross-section of such panel geometry is shown in

Fig. 6.3.

X

Y

Z

L

tstb

tw

bwb

hs

Figure 6.3: Panel geometry and the design variables available in the smeared stiffness
model.

The design variables available in this smeared approach are, the panel thickness

ts, the stiffener height hs, the stiffener thickness tw, the stiffener pitch b, stiffener

base width wb, stiffener base thickness tb, and panel length L. Each panel shown

in Fig. 6.2a is modeled using its own set of design variables as depicted in Fig. 6.3.

These variables can be used to compute an equivalent thickness value. This value is

a measure on how thick a panel needs to be (if modeled only using a thickness value)

to have the same stiffness properties as the smeared approach. Note that the panel

length is made a design variable to simplify buckling constraint computations. This

is done since each panel geometry changes during the optimization. Additionally, a

nonlinear geometric consistency constraint is needed that ensures the physical panel

length matches the panel length variable of each component.
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Using this parametrization, each panel is assumed to be approximately flat and

can be analyzed and designed based on stress states resulting from a collection of

different loading conditions. Over the span of the wingbox the loading range can be

large, being the smallest at the tip and largest at the root. This large variation in

loading influences panel sizing, where the most heavily loaded components have the

greatest impact on wingbox mass.

Finally, strength and buckling constraints can be enforced, as well as adjacency

constraints that impose limits on the variation of the design variables between adja-

cent panels. The sizing of the panel is based on the simplified stiffness calculations

and buckling criteria proposed by Stroud and Agranoff [206].

6.1.3.1 Smeared Panel Stiffness Calculations

The assumed overall layout of each panel is shown in Fig. 6.3. The stiffness of the

overall panel is determined by accounting for the effect of the discrete stiffeners by

adding additional bending and shear stiffness to the skin stiffness. The panel stiffness

can be determined based on the panel thickness ts, the stiffener height hs, the stiffener

width tw, the stiffener pitch b, and the stiffness of the skin and stiffener Q(p) and Q(s).

The smeared panel stiffness matrices are:

A = tsQ
(p) + A(s), B = B(s),

D =
t3s
12

Q(p) + D(s), As = A(p)
s + A(s)

s .

(6.1)

The non-zero components of the matrices A(s), B(s), D(s), and A
(s)
s are:

A
(s)
11 =

EsAs
sp

, B
(s)
11 = − hs

2sp
EsAs,

D
(s)
11 =

Es(h
2
sAs + 4Is)

4b
, A(s)

s 11 =
5GsAs

6sp
,
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where, Es = Qs
11 −

Qs
21Q

s
12

Qs
66

is the extension modulus of the stiffener, As is the area

of the stiffener, and Is is the second moment of area of the stiffener.

6.1.3.2 Panel-Level Buckling and Failure Analysis

The panel-level buckling and failure (stress) analysis is commonly conducted under

the maneuver loading conditions, which are used to enforce buckling and failure con-

straints during optimization. Every panel in the structure is constrained such that

under a given loading condition, its response is within a predefined operating enve-

lope. For metallic structures the failure constraint is based on von Mises stress failure

criterion.

The buckling constraint considers several independent modes: buckling of the

panel section between stiffeners, buckling of the stiffeners, and overall panel buckling

(including stiffeners and skins). The overall critical buckling loads are determined

based on the approach of Stroud and Agranoff [206]. The skin and stiffener buckling

loads are determined as follows. Panel ends are assumed to be simply supported along

the lines of attachment with adjacent structural components. The critical loads are

computed assuming a nearly flat panel, ignoring any curvature effects.

We assume that the interaction between the longitudinal and shear buckling modes

collapses into the following buckling envelope:

B(N1, N12) =
N2

12

N2
12,cr

+
N1

N1,cr

≤ 1, (6.2)

where N1 and N12 are the longitudinal and shear loads respectively, and N1,cr and

N12,cr are the critical longitudinal and shear buckling loads. Note that N1 and N12 are

computed in a locally aligned panel axis. Equation (6.2) is applied separately to the

overall panel buckling, stiffener buckling and inter-stiffener skin buckling. The critical

loads, N1,cr and N12,cr are determined based on the equations given in Table 6.3.
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Overall buckling Skin buckling

N1,cr
π2EIs
bL2

x

2π2

b2

(√
D11D22 +D12 + 2D66

)
EIs = z2n(tsbEp + tshsfbEs) + Es

(
ts
h3s
12

+ tshs

(
zn −

hs
2

)2
)

zn =
Cn

An
Cn = Es

h2s
2
ts An = Epbts + Eshsts(1 + fb)

N12,cr ξ =

√
D1D2

D3
ξ =

√
D11D22

D12 + 2D66

If ξ > 1
4

L2
x

(D3
1D2)0.25

(
8.125 +

5.045

ξ

)
4

b2
(D11D

3
22)0.25

(
8.125 +

5.045

ξ

)
If ξ ≤ 1

4

L2
x

√
D1D3(11.7 + 0.532ξ + 0.938ξ2)

4

b2

√
D22(D12 + 2D66)(11.7 + 0.532ξ + 0.938ξ2)

Table 6.3: A summary of the critical load computations for the overall and skin
buckling constraints. Note that An and Cn are the modulus-weighted zeroth and first
moments of area of the panel and stiffener, and zn is the modulus-weighted centroid.
The bending stiffness EIs can then be used to determine the critical buckling load.

6.2 Structural Pre-Optimization

6.2.1 Problem Statement

Before performing an aerostructural optimization, we perform a structural sizing opti-

mization of the wingbox. The objective is to minimize mass, operated under maneuver

flight conditions, to determine its sizing, mass, and stiffness distribution. Such struc-

tural optimization has the following benefits: 1) The starting point in terms of mass

and stiffness is closer to the aerostructural optimum; 2) The structural constraints

start feasible and are more easily satisfied during the aerostructural optimization;

3) It accelerates the optimization and reduces the possibility of optimizer exiting

prematurely.

The loads are computed from an aerostructural analysis at the maneuver flight

conditions for a given structural sizing. This is because as the wingbox mass and

stiffness properties change during the optimization the aerodynamic loads are in turn

affected. Therefore, the structural optimization alone is multidisciplinary, requiring
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the aerostructural loads to be updated at every design iterations. However, in order

to reduce the computational cost we apply a lagged strategy to limit the number

of costly aerostructural analysis. The structural optimization algorithm used here is

described in Section 6.2.1.

1: Lagged structural optimization

2: Initialize structure sizing: x1

3: for k ← 1, kmax do

4: Perform aerostructural analysis using the maneuver load case with structural sizing xk

5: Extract and save the aerostructural loads

6: Perform the structural optimization described in Table 6.5 using the fixed loads computed

in previous step until convergence

7: Update the structural sizing xk+1 for next iteration

8: end for

The number of aerostructural analysis iteration needed for the structural optimiza-

tion to converge is generally small and is set to kmax = 5 in this work. During each

iteration k a structural optimization is performed where the objective is to minimize

the mass of the structure.

6.2.2 Design Variables

The structural design variables for the smeared stiffener approach need to be chosen

carefully. Thin panels with low stiffness may exhibit local behavior (as opposed to

global) in a modal analysis. This is illustrated in Fig. 6.4, where local panel modes

are dominant, which is an unwanted behavior in the context of this study.

The stiffener pitch and stiffener height are kept fixed and set to b = 0.15 m

and hs = 0.05 m, respectively. These values are chosen in conjunction with lower

bounds on the remaining design variables, such that local behavior is minimized

at the panel level during optimization. The remaining design variables are panel

thickness xpanel thick, stiffener thickness xstiff thick, and panel length L. As previously

mentioned, the panel length is needed in the smeared stiffener approach due the

change in geometry. The bounds on these design variables are large enough to allow
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the optimizer to freely size the structure without the local behavior as previously

described. The lower and upper bounds for the structural design variables are set to

0.0015 m and 0.25 m, respectively.

Figure 6.4: Modal analysis of a panel with low stiffness, demonstrating the need to
increase panel thickness. A smeared stiffness approach is used to avoid excessively
thick panels.

6.2.3 Constraint Definition

Each panel is constrained not to exceed the failure or buckling criterion discussed

in Section 6.1.3.2, but this results in large number of constraints. To minimize the

number of constraints used in the optimization, an aggregation technique is adopted.

Here, a KS aggregation function is used to reduce the constraints by aggregating

multiple panel failure and buckling constraints into groups. The KS aggregation

parameter is set to a recommended value of ρKSstress = ρKSbuckling
= 100 [26].

Several KS failure and buckling constraints are enforced and are summarized in

Table 6.4. Three buckling constraints groups are used, one for the upper skins, one

for both spars, and one for the ribs. Four failure constraints groups are used, one

for the upper skins, one for the lower skins, one for both spars, and one for the ribs.
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These KS constraints are generally difficult for the optimizer to satisfy due to their

highly nonlinear behavior.

In addition to the maneuver loading, a safety factor of 1.5 is applied in the failure

and buckling computation.

Table 6.4: Total of 4 failure and 3 buckling constraints are used in this work.

Failure Buckling

Upper skins

Lower skins

Spars

Ribs

# Constraints 4 3

Linear adjacency constraints are enforced to limit large variation in the design

variables between two adjacent panels. This constraint is applied on the panel and

stiffener thickness design variables for the spars and the skins. Furthermore, panel

length is added as a constraint that the optimizer matches based on the panel length

design variable computed.

The optimization problem statement is summarized in Table 6.5.

6.2.4 Results

The cumulative convergence history of these 5 sequential structural optimizations

is shown in Fig. 6.5. The orange markers indicate where aerostructural loads are

updated. Convergence tolerances for feasibility and optimality are set to 10−4. As

shown, only 2 outer iterations are needed as the later 3 iterations converge immedi-

ately. Note that both major and minor iterations are shown. Furthermore, the large

spikes in the KS history is due the very nonlinear nature of this type of constraint.

The optimized wingbox mass is 37.4 kg, where the mass breakdown by component is
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Table 6.5: Optimization problem formulation for the structural mass minimization.

Function/variable Description Quantity

minimize mass Structure mass (kg)

with respect to xpanel thick Panel thickness Skins/Spars/Ribs 36

xstiff thick Panel stiffener thickness Skins/Spars/Ribs 36

xpanel length Panel length Skin/Spars/Ribs 36

Total design variables 108

subject to KSstress ≤ 1 2.5 g Yield stress 4

KSbuckling ≤ 1 2.5 g Buckling 3∣∣∣xstiff heighti
− xstiff heighti+1

∣∣∣ ≤ 0.001 Skin stiffener height adjacency 12∣∣∣xstiff thicki
− xstiff thicki+1

∣∣∣ ≤ 0.001 Skin stiffener thickness adjacency 12∣∣∣xpanel thicki
− xpanel thicki+1

∣∣∣ ≤ 0.001 Skin thickness adjacency 12∣∣∣xpanel thicki
− xpanel thicki+1

∣∣∣ ≤ 0.0015 Spar thickness adjacency 12∣∣xstiff thick − xpanel thick

∣∣ < 0.001 Maximum stiffener-skin difference 36

Lpanel − xpanel length = 0 Target panel length 36

Total constraints 128

given in Table 6.6. All the buckling constraints for the specified groups, ribs, upper

skins, and spars are active (at 1.0). These constraints are the most difficult con-

straints for the optimizer to satisfy. The lower skins group failure constraint is active,

whereas all others are not close to being active.

6.2.4.1 Modal and Flutter Characteristics

The first eight modes of the optimized structure are shown in Fig. 6.6. Natural

mode shapes 1, 3, 5, and 7 are the 1st, 2nd, 3rd, and 4th out-of-plane bending modes,

respectively. Natural mode shapes 2 and 6 are the 1st and 2nd in-plane bending modes,

respectively. Finally, natural mode shapes 4 and 8 are the 1st and 2nd torsion modes,

respectively.

As shown in Fig. 6.6 some higher mode shapes, such as mode eight, show some

local effects as discussed in Section 6.2.2. However, these effects are sufficiently small

compared to the global behavior, such that they do not adversely affect the flutter

analysis or optimization.

The flutter analysis for the flight conditions given in Table 6.7 is shown in Fig. 6.7.
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Figure 6.5: Cumulative convergence history of the 5 structural optimizations. The
orange markers represent a start of a new structural optimization. The buckling
constraints prove to be more difficult satisfy than the failure constraints.

The bounding curve parameters for G(q) presented here are the same as discussed

in Section 6.3.3, resulting in a minimum flutter dynamic pressure of 98 kPa, show in

Fig. 6.7a. This analysis demonstrates that no flutter or divergence occurs, since no

modes cross into the positive damping space resulting in an inactive flutter constraint.
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Table 6.6: Structural optimum mass distribution of the final design based on compo-
nent group.

Component Mass [kg]

Upper skins 20.06

Lower skins 11.48

Front spar 2.31

Rear spar 1.72

Ribs 1.83

Total 37.40

Figure 6.6: First eight natural mode shapes of the structural optimum.

A bifurcation the 1st bending mode (mode 1) appears at around 40 kPa, but does

not lead to divergence. The in-plane bending modes do demonstrate some positive

damping at the upper end of the dynamic pressure range, indicating that they are not

perfectly in-plane. The optimized baseline model is thus neither flutter nor divergence

critical.
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(a) Damping (b) Frequency

Figure 6.7: Flutter damping and frequency characteristics of the structural optimum.
This structural design is not flutter critical, since none of the modes cross into the
region defined by the bounding curve G(q).

6.3 Aerostructural Optimization

6.3.1 Objective Function and Flight Conditions

To demonstrate the proposed flutter constraint in a high-fidelity multipoint aerostruc-

tural optimization, we need a multidisciplinary objective that is influenced both by

aerodynamic and structural properties. As before we use the Breguet range equation,

R =
V

cT

CL
CD

ln

(
Winit

Wfinal

)
, (6.3)

where R is range, V/cT is the flight speed to thrust-specific fuel consumption ratio,

CL/CD is the lift to drag ratio at cruise, and Winit/Wfinal is the initial to final cruise

mass ratio. In this work we assume that V/cT = 170.0/(0.5/3600), and we define the

cruise mass as

Wfinal = Wfixed +Wwingbox,

Winit = Wfinal +Wfuel,

(6.4)
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where the fixed and fuel mass are Wfixed = 400 kg and Wfuel = 75 kg, respectively. In

the static aeroelastic analyses performed in this work, self-weight loads are included.

The objective is to maximize the range with respect to aerodynamic planform and

structural sizing variables.

Three flight conditions are defined for these two optimizations: cruise, maneuver,

and flutter. The operating Mach number is M∞ = 0.5 for all flight conditions. The

cruise altitude is 10,000 m and the maneuver conditions is run at sea level. Cruise lift

and drag coefficients are used in the objective function, while the maneuver case is

used to size the structure. For both conditions, a lift coefficient is estimated based on

the total mass and is given in Table 6.7. For the cruise and maneuver conditions a load

factor of nc = 1.0g and nm = 2.5g are used, respectively. Prior to the optimization, a

coupled aerostructural CL solve is performed to ensure the specified lift is obtained.

This process will perform a coupled multidisciplinary analysis (MDA) by solving the

coupled aerostructural problem for a given CL by changing the angle of attack. For

the flutter flight condition, the density is fixed at sea level standard atmosphere value,

ρf = 1.225 kg/m3, and the velocity is varied, resulting in a operating dynamic pressure

range of 3–130 kPa. This is done since the dynamic pressure from the matched point

sweep through altitudes is not great enough to incur flutter or divergence for the

given design. Thus, in order to demonstrate the flutter constraint in a high-fidelity

optimization a large enough dynamic pressure range is thus chosen such that flutter

or divergence occurs. All flight conditions are summarized in Table 6.7.

Table 6.7: Operating conditions considered in this work.

Name Mach Altitude [m] q∞ [kPa] Target CL,i α Load factor

Cruise 0.5 10000 4.6 0.45 Design1 1.0

Maneuver 0.5 0 17.7 0.30 Design2 2.5

Flutter 0.5 0 3.0 – 130 - - 1.0
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6.3.2 Design Variables and Bounds

The design variables can be split into three types: geometric, aerodynamic, and

structural design variables. The geometric parametrization influences simultaneously

all aerodynamic surfaces and the structure directly. The aerodynamic and struc-

tural variables influence its discipline directly, and indirectly though coupling effects.

O(100) design variables are used in this multipoint aerostructural optimization and

they are summarized in Table 6.8.

The wing planform is controlled through the movement of FFD control points, as

explained in Section 2.1. Two global design variables are used: chord and span. Since

both aerodynamic and the structural meshes are embedded within an FFD volume,

these two variables influence both models. The bounds on these variables are large

enough that they are not active at the optimum.

The aerodynamic variables are the angle of attack, α, at each flight condition.

This allows the design to meet the specified cruise and maneuver lift constraints.

The structural parametrization and design variables and bounds are the same

as used in the structural optimization. We refer the reader to the discussion in

Section 6.2.2 for details.

6.3.3 Constraints

For the optimization to give a design that is both physical and meaningful, a number

of constraints need to be defined. In this section we describe all the constraints used in

this work. O(100) constraints are used in this multipoint aerostructural optimization

and they are summarized in Table 6.8.

A planform area equality constraint is enforced, which maintains the initial base-

line planform area during the optimization. Due to the planform area constraint,

the chord and span design variables are linked, effectively reducing the two design

variables to an aspect ratio variable. A lift coefficient equality constraint is enforced
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for both the cruise and maneuver flight conditions.

The structural constraints used here are identical are the same as used in the

structural optimization. Three buckling constraints groups are used, one for the

upper skins, one for both spars, and one for the ribs. Four failure constraints groups

are used, one for the upper skins, one for the lower skins, one for both spars, and one

for the ribs. Linear adjacency constraints are enforced to limit large variation in the

design variables between two adjacent panels. We refer the reader to the discussion

in Section 6.2.3 for further details.

In addition to the constraints above, the previously described flutter constraint is

enforced only in one of the two aerostructural optimization to study its effect on the

wing design. For the bounding curve parameters used in this work we set g∗ = 0 rad/s,

g+ = 0.08 rad/s, q∗ = 98 kPa, and β = 10−7 rad/(Pa2 · s). The value of q∗ is chosen

by scaling the flutter dynamic pressure of the optimum design obtained without the

flutter constraint, qf,w/o FC, by a factor of 1.3. This is approximately 75% of the

considered dynamic pressure range (see Table 6.7). The value of β is chosen such

that hard flutter modes are limited. The g+ = 0.08 value shifts the entire boundary

vertically into the positive damping space. The flutter KS aggregation parameter is

set to ρKSflutter
= 500. These values are chosen based on the discussion in Sections 3.4

and 3.5 to compensate for the conservative behavior of the KS function. In particular,

these values are chosen such that in-plane modes do not affect the optimization. No

further attention is required regarding in-plane modes beyond what was previously

defined. The optimizer should size the structure such that the in-plane modes remain

in-plane for the flight envelope of interest.

The complete problem consists of 112 design variables and 131 constraints, in-

cluding the flutter constraint. The optimization problem statement is summarized

in Table 6.8. As mentioned previously, we perform two aerostructural optimizations,

one with and one without the flutter constraint active, in an otherwise identical setup.
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Table 6.8: Aerostructural optimization problem statement.

Function/variable Description Quantity

maximize Range Breguet equation

with respect to xpanel thick Panel thickness (skin, spars, ribs) 36

xstiff thick Panel stiffener thickness (skin, spars, ribs) 36

xpanel length Panel length (skin, spars, ribs) 36

xspan Wing span 1

xchord Wing chord 1

xalphai
Angle of attack at each flight condition 2

Total design variables 112

subject to KSflutter ≤ 0 KS aggregate of gG,ij 1

KSstress ≤ 1 2.5 g yield stress 4

KSbuckling ≤ 1 2.5 g buckling 3

CL = CL,i Lift constraint at each flight condition 2

A - Ainit = 0.0 Fixed planform area 1∣∣∣xstiff heighti
− xstiff heighti+1

∣∣∣ ≤ 0.001 Skin stiffener height adjacency 12∣∣∣xstiff thicki
− xstiff thicki+1

∣∣∣ ≤ 0.001 Skin stiffener thickness adjacency 12∣∣∣xpanel thicki
− xpanel thicki+1

∣∣∣ ≤ 0.001 Skin thickness adjacency 12∣∣∣xpanel thicki
− xpanel thicki+1

∣∣∣ ≤ 0.0015 Spar thickness adjacency 12∣∣xstiff thick − xpanel thick

∣∣ < 0.001 Maximum stiffener-skin difference 36

Lpanel − xpanel length = 0 Target panel length 36

Total constraints 131

6.4 Results

The two optimal designs and the baseline are compared in Table 6.9. Without any

significant reduction in range or mass, we obtain a stiffer, lower aspect ratio wing de-

sign, with stark differences structural sizing, highlighting the importance of including

such a constraint in the design optimization process. In both cases, the optimizer tries

to minimize the induced drag by increasing the aspect ratio, which in turn increases

range. However, while reducing the induced drag, the higher aspect ratio causes

larger bending moments, resulting in a structural mass increase to satisfy failure and

buckling constraints. With the flutter constraint, a lower aspect ratio design is ob-

tained, resulting in a higher drag, which in turn will impact the objective. Planform

comparison between the two optimum designs and the baseline is shown in Fig. 6.8.

While the final mass of both structures is similar, with the flutter constrained optimal
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Table 6.9: Aerostructural range maximization final designs, with and without the
flutter constraint (FC) compared to the baseline shape.

Baseline (B) Opt. w/o FC (O1) Opt. w/ FC (O2) (O1-B)/B [%] (O2-B)/B [%] (O2-O1)/O1 [%]

Range [km] 4393.9 4552.9 4537.2 +3.62 +3.26 -0.34

Semi-span [m] 4.00 4.85 4.75 +21.25 +18.75 -2.06

Chord [m] 0.765 0.631 0.644 -17.52 -15.82 +2.06

Aspect ratio 10.45 15.39 14.78 +47.27 +41.44 -3.96

Upper skins [kg] 20.06 20.09 19.33 +0.17 -3.64 -3.80

Lower skins [kg] 11.48 13.03 13.12 +13.52 +14.26 +0.65

Front spar [kg] 2.31 2.99 3.45 +29.43 +49.21 +15.29

Rear spar [kg] 1.72 1.81 1.99 +5.44 +15.63 +9.66

Ribs [kg] 1.83 1.24 1.33 -32.07 -27.53 +6.68

Total [kg] 37.40 39.17 39.21 +4.74 +4.83 +0.09

design being slightly heavier, the internal mass distribution is different between the

two designs. To understand where this difference is coming from, we can compare the

structural sizing of those two optimal designs.

Figure 6.8: Planform comparison of the baseline and the two aerostructural optimal
designs, with and without the flutter constraint.

The structural design variables and the failure and buckling element values is

shown in Fig. 6.9. Each figure shows three contour plots, where the top and mid

are the optimal aerostructural solutions obtained without and with the flutter con-

straint, respectively. Using a diverging color map, the bottom contour plot shows

the difference of those two solutions computed using, (x∗w/ FC − x∗w/o FC)/x∗w/o FC for

the stiffener and panel thickness and x∗w/ FC − x∗w/o FC for the failure and buckling.

The difference in stiffener and panel thickness shown in Figs. 6.9a and 6.9b reveal the

following insights for the spar, skins, and rib components.

The front spar optimal stiffener and panel thickness without the flutter constraint
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is close to the lower bound for many of the elements, which is not the case for the

optimal design with the flutter constraint. In particular, the front spar stiffener and

panel thickness is reduced from the mid span towards the root, while from mid span

towards the tip it is found to increase. The thickness at the tip is more than double

compared to the optimal design obtained without the flutter constraint. However,

the increase is not monotonic, as seen on the thickness at the second to last panel at

the tip, where the optimizer increases the thickness slightly, compared to the adjacent

panels. The rear spar stiffener thickness shows less change between the two optimal

designs overall than the front spar. In particular, most elements are close to the lower

bound except the root panel, which demonstrates increase in thickness between the

designs. For the rear spar panel thickness, the three panels closest to the root increase

in thickness, with no other change present.

The skin stiffener and panel thickness is greatest at the root, as expected, and

then decreases along the span, reaching the lower bound at the tip. A small reduction

in both stiffener and panel thickness is visible for upper and lower skins, except for

the skin at the tip, which demonstrates an increase in thickness. Additionally, panel

thickness increases on the lower skins at mid span.

All the rib design variables converge to the lower bound, except for the second

and third rib from the root, and the one at the tip. Overall the ribs show the smallest

change between the two optimal designs. While the ribs close to the root show a slight

decrease in thickness, the rib at the tip shows a significant increase in thickness.

The change in thickness distribution between these two optimum designs is solely

due to the addition of the flutter constraint. It is clear from the thickness changes, that

the optimizer is shifting the center of gravity of the structure forward and outboard

by increasing the thickness and thus the mass. The main contribution comes from the

front spar, as indicated in Table 6.9, with an increase of over 15% between the two

designs. Shifting the center of gravity outboard lowers the natural modes, which may
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adversely influence divergence and flutter characteristics. However, shifting the center

of gravity of the structure upstream has well-known aeroelastic benefits: It provides

stabilizing effects, which help satisfy the flutter constraint [189]. While these design

tradeoffs are non intuitive they overall result in an improved divergence and flutter

characteristics.

The failure and buckling values for each element of the two optimal designs are

shown in Figs. 6.9c and 6.9d. As expected, the lower skins are failure critical and

the upper skins, spars, and ribs are buckling critical. The failure values between the

two designs increase on the front spar and decrease on the lower skins at the mid

span. This is directly linked to the change in thickness of the stiffeners and panels at

those locations. Similarly, the difference in buckling is directly related to the change

in thickness between the two designs.

The change in thickness between the two optimal solutions is further reflected in

the deflection of the aerodynamic surfaces shown in Figure 6.10, for both the cruise

and maneuver flight conditions. While the optimal design obtained with the flutter

constraints is slightly shorter, it is stiffer and thus deflects less, as shown by the

reduced tip deflection. This reduction in deflection is attributed to the increase in

thickness of the lower skins and spar thickness changes. Furthermore, these thickness

changes affect how mass is distributed in the structure, affecting the gravity loads,

which are added in the static aeroelastic analysis.

6.4.1 Modal Analysis

The first eight natural mode shapes of the two optimal aerostructural solutions are

shown in Fig. 6.11. The natural mode shape order is the same for the two solutions,

except for mode shapes 5 and 6, which trade places. Overall, the natural frequencies

are slightly higher for the optimal solution obtained when enforcing the flutter con-

straint. Since both optimal structures have similar total mass, this is likely due to a
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(a) Stiffener thickness (b) Panel thickness

(c) Failure local distribution (d) Buckling local distribution

Figure 6.9: Stiffener thickness, panel thickness, local failure, and buckling values
shown for the two optimal designs, without and with flutter constraint. A diverging
color map highlights the difference between the designs.

combination of a smaller aspect ratio, how mass is distributed, and a stiffer structure.
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Figure 6.10: Tip deflection comparison between the two optimal solutions under the
cruise and maneuver flight conditions. The deflection is normalized with respect to
the semi-span.

(a) Optimal natural mode shapes obtained without the flutter constraint.

(b) Optimal natural mode shapes obtained with the flutter constraint.

Figure 6.11: First eight natural mode shapes from the two optimal aerostructural
solutions obtained without (a) and with (b) the flutter constraint.

6.4.2 Flutter Analysis

The flutter characteristics of the two optimal aerostructural designs are presented in

Fig. 6.12. The optimizer successfully satisfies the flutter constraint by moving the

critical mode out of the infeasible space, as shown in Figs. 6.12a and 6.12b. In both
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cases, the critical flutter mode is the 1st torsion mode, and overall other characteristics

are similar. When comparing the frequency characteristics (Figs. 6.12c and 6.12d),

we can see that the torsion mode frequency approaches that of the 2nd bending mode

(mode 3).

(a) Damping without flutter constraints. (b) Damping with flutter constraints.

(c) Frequency without flutter constraints. (d) Frequency with flutter constraints.

Figure 6.12: Flutter damping and frequency characteristics of the two aerostructural
optimal designs without and with a flutter constraint.
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6.5 Summary

The proposed flutter constraint is demonstrated successfully in a high-fidelity aerostruc-

tural optimization of a representative geometry, and compared against an optimal

solution obtained without the flutter constraint. With the flutter constraint we ob-

tain a stiffer, less slender wing, without any significant reduction in range (less than

1% between the two designs). The wing aspect ratio decreases by 4%, and structural

design variables show significant differences. The optimizer redistributes the mass by

changing the panel and stiffener thicknesses. This changes the flutter characteristics

while maintaining roughly the same total mass (less than 0.1% between the two de-

signs). The center of gravity of the structure is moved upstream, which is known to

have a stabilizing aeroelastic effect. Finally, the increase in stiffness of the flutter-

constrained structure is evident from the reduced tip deflection. Overall, we obtain

a feasible and optimal design without significant compromise in range and structural

mass.

This wing aerostructural optimization demonstrates the necessity of adding and

enforcing a flutter constraint in the high-fidelity aerostructural design process. The

flutter-constrained optimum exhibits different shape and sizing features, which alter

and improve the wing aeroelastic characteristics. The proposed flutter constraint

complements commonly enforced structural constraints such as failure, buckling, and

adjacency constraints, making the overall optimal design more robust.
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CHAPTER 7

Aerostructural Optimization of XRF1

In previous chapter the flutter constraint formulation was demonstrated in a high-

fidelity aerostructural optimization on a rectangular idealized wing planform. We

showed that such constraint can be applied in the design of a simplified geometry

with O(100) design variables and O(100) constraints. With the flutter constraint,

we obtained a stiffer, lower aspect ratio wing with stark differences structural sizing,

without a significant reduction in range (objective). These results demonstrated the

importance of including flutter constraints in wing design optimization.

The goal of this work is to apply the proposed constraint to a large scale aerostruc-

tural optimization of the XRF1 geometry with O(1000) design variables, including

the aerodynamic shape variables. To do so, two aerostructural optimization are per-

formed, without and with the flutter constraint. The baseline geometry used here is

based on the work done previously by Kenway and Martins [207].

This chapter is outlined as follows: Section 7.1 describes the structural and aero-

dynamic geometry and models used in this study. Following that Section 7.2 describes

the point mass implementation and development necessary to model masses such as

fuel and engine. Section 7.3 describes the optimization problem formulation, flight

conditions, design variables, and constraints. Finally, in Section 7.4 we describe the

results and compare and contrasts the design differences between the two optimized

designs. Section 7.5 concludes the report with a summary and discussion of the effect
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of adding a flutter constraint has on aerostructural optimization.

7.1 XRF1 Model

7.1.1 Geometry

The XRF1 geometry is representative of a modern transport aircraft configuration,

provided by Airbus to its research collaborators. In this work we use a modified

wing-body-tail configuration that has been previously developed. These modifica-

tions are minimal, but necessary, to accommodate the MACH computational tools,

both in terms of structural wingbox and aerodynamic mesh. An in-house wingbox is

constructed as well as multiblock RANS CFD mesh. Full set of modifications to the

structural and aerodynamic models are detailed in a previous report [207]. The XRF1

Figure 7.1: XRF1 configuration. The wingbox is shown on the left and the aerody-
namic surface on the right. The outline shown is the undeformed shape.

baseline geometry, nominal flight conditions, and weight is summarized in Table 7.1.
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Table 7.1: XRF1 Specifications

Parameter Value Units

Cruise Mach number 0.83 -

Cruise lift coefficient (nominal) 0.5 -

Cruise altitude 35000 ft

Span 58.0 m

Aspect ratio 9.12 -

Reference wing area 368.8 m2

Sweep (1/4 chord) 30.0 °
Design range 8000 nm

Thrust-specific fuel consumption 15.57 g/kN-s

Design payload 23950 kg

Reserve fuel 8000 kg

Fixed weight 97300 kg

7.1.2 Aerodynamic Model

Two CFD meshes are employed in this work that are approximately 908k and 282k

cells for the cruise and maneuver conditions, respectively. These meshes are coarser

than used by Kenway and Martins [207]. The cruise mesh is denoted as L2 and the

maneuver mesh is generated specifically for this study and is denoted as L2.5. This

L2.5 is a coarsened version of the L1.5 mesh referenced in Kenway and Martins [207].

While the meshes are coarser than used in the original aerostructural optimization,

the goal here is not to predict accurate drag estimates. The goal is to demonstrate

the recently developed flutter constraint in a large scale high-fidelity design opti-

mization and the effect that such a constraint may have on the optimized design.

Furthermore, the CFD computational cost is the most expensive component in an

aerostructural optimization, thus using reduced sized meshes shortens turnaround

time. The computational domain is a semi-sphere with a symmetry plane defined at

the center fuselage.
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The DLM mesh location and size is carefully chosen. While the DLM mesh can

be used to model the fuselage of the aircraft, we are only interested in the unsteady

effects of the wing. This means that any mesh elements inside the fuselage may create

unwanted or artificial unsteady effects. Thus, the DLM mesh is set to start at the

side of body. The DLM mesh is flat, i.e. parallel to the flow, but follows in general

the centerline of the wingbox and aerodynamic surface. The mesh is composed of 3

panels that all have 12 elements in the chordwise direction with 6, 11, and 11 elements

in the spanwise direction, a total of 336 elements. The first panel starts at the side

of body and ends at the break in the wing. The second panel starts at the break and

ends at the outboard break in the wingbox, and the third panel extends to the tip.

All panels have a slight dihedral, with the first panel having with the most.

7.1.3 Structural Model

The structural model is in-house generated and is the same as used in previous study

by Kenway and Martins [207]. The wingbox is discretized using approximately 23k

2nd order MITC-shell elements, resulting in approximately 131k DOFs. For improved

accuracy a 3rd order shell elements could be employed for the same number of ele-

ments. This however increases the DOFs approximately by a factor of 4, increasing

the overall computational cost, both in terms of aerostructural solutions and modal

analysis used for the flutter analysis and is not done here.

While TACS is capable of modeling composites, we use a metallic wingbox, where

the material chosen is representative for aluminum AL7075. Material properties,

dimensions, and element discretization for the wingbox structure are summarized in

Table 7.2.
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Table 7.2: Structure mechanical properties.

Variable Symbol Value Unit

Density ρs 2780 kg/m3

Modulus of elasticity E 70.0 GPa

Poisson ratio ν 0.3 -

Yield stress σy 420 MPa

(a) Cruise CFD surface mesh shown on the
left, and DLM and wingbox on the right.

(b) Closeup of DLM mesh and the wingbox.
Note the DLM mesh starting at the side of
body.

Figure 7.2: XRF1 configuration.

7.1.4 Structural Parametrization

The structural parametrization applied here is the smeared stiffness approach dis-

cussed in Section 6.1.3. Using the smeared stiffener approach the effect of the im-

plicit stiffeners on a given panel stiffness is modeled directly through the material

properties. This approach is computationally efficient and removes the need to model

discrete stiffeners explicitly. All components in the wingbox are modeled using a

smeared stiffness approach. This includes skins, spars, ribs, and engine mount. For

more details, see Section 6.1.3.
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7.2 Mass Element Implementation

In many applications non-structural masses are important to consider due to their

impact on the dynamics of the system. In aircraft design such masses could include

engine mass, leading and trailing edge devices, and fuel mass. Modeling these non-

structural masses can be achieved either by explicit models, or by an approximation.

For example, explicit detailed FEM model of the engine and pylon can be approx-

imated and replaced by its rigid body inertial properties and a point mass. The

resulting point mass is then connected to the wingbox by either other simplified ele-

ments, such as beam elements, or more frequently, rigid body elements (e.g. RBE3s in

NASTRAN). Despite the name, the RBE3 does not add any stiffness to the structure

and behaves like an interpolation element.

To address this need of modeling non-structural masses in TACS, a mass element

in TACS is implemented. A brief element definition is first presented, followed by

verification against NASTRAN. Then fuel and engine mass modeling capabilities and

implementation is discussed. Finally, we discuss and demonstrate this new capability

in TACS with simple use cases.

7.2.1 Element Definition

A point mass is placed at an arbitrary location in space as shown in Fig. 7.3. The

center of gravity of this point mass is located at CG and has a mass of m. This point

mass could represent a rigid body with mass moments of inertia tensor ICG, which is

computed in the x′−y′−z′ coordinate system. Defining g as a grid point in the FEM

mesh, we compute the delta displacement from the center of gravity as d = rCG− rg.

The distance from the node g to the CG is constant meaning that derivatives are zero

and thus not computed. For 6 DOF the local mass matrix for the point mass can be
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Figure 7.3: Point mass in space relative to global coordinate system and a grid node
reference frame.

written as,

Ml =

 M11 M12

M21 M22

 , (7.1)

where M21 = MT
12 due to symmetry. The first matrix is simply the acceleration at g,

M11 = m


1 0 0

0 1 0

0 0 1

 . (7.2)

The sum of moments about point g can be written as the time derivative of angular

momentum

ΣMg = Ḣg, (7.3)

where angular momentum can be written as,

Hg = d×mv = d×mḋ . (7.4)
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Then by differentiating we have

ΣMg = Ḣg = ḋ×mḋ + d×md̈

= d×md̈,

(7.5)

(7.6)

where we have used that ḋ ×mḋ = m(ḋ × ḋ) = 0. We can write the cross product

as a skew symmetric matrix,

ΣMg = Ḣg = m

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

d1 d2 d3

d̈1 d̈2 d̈3

∣∣∣∣∣∣∣∣∣∣
= m

[
(d2d̈3 − d3d̈2)̂i− (d1d̈3 − d3d̈1)̂j + (d1d̈2 − d2d̈1)k̂

]

= m


0 d3 −d2

−d3 0 d1

d2 −d1 0



d̈1

d̈2

d̈3

 ,

(7.7)

(7.8)

(7.9)

where d1, d2, d3 are the x, y, z components of d. We thus obtain the mass matrix as,

M21 = m


0 d3 −d2

−d3 0 d1

d2 −d1 0

 , (7.10)

and since M21 = MT
12 we have,

M12 = m


0 −d3 d2

d3 0 −d1

−d2 d1 0

 . (7.11)

The angular momentum of a rigid body in 3D space about point g can be written
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as,

Hg = Igω, (7.12)

where Ig is mass moment of inertia tensor, written in matrix form. We can write the

last mass matrix as,

M22 =


(Ixx)g −(Ixy)g −(Ixz)g

(Iyy)g −(Iyz)g

sym. (Izz)g

 , (7.13)

where the diagonal terms are defined as,

(Ixx)g = Ixx +m(d2
2 + d2

3)

(Iyy)g = Iyy +m(d2
1 + d2

3)

(Izz)g = Izz +m(d2
1 + d2

2)

(7.14)

(7.15)

(7.16)

(7.17)

and the off diagonal terms are defined as,

(Ixy)g = (Iyx)g = Ixx +md1d2

(Ixz)g = (Izx)g = Ixz +md1d3

(Iyz)g = (Izy)g = Iyz +md2d3

(7.18)

(7.19)

(7.20)

(7.21)

Here Ixx, Iyy, Izz, Ixy, Ixz, Iyz are the components of ICG the mass moment of inertia

of the rigid body computed in the x′ − y′ − z′ coordinate system.
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The full local mass matrix is thus defined as,

Ml =

 M11 M12

M21 M22

 =



m 0 0 0 −md3 md2

m 0 md3 0 −md1

m −md2 md1 0

(Ixx)g −(Ixy)g −(Ixz)g

sym. (Iyy)g −(Iyz)g

(Izz)g


. (7.22)

7.2.2 Implementation Verification

The verification geometry selected is a cantilevered (left side) flat plate. The structure

span is 0.85 m and chord 0.21 m and is discretized with 480 2nd order MITC shell

elements. Material is aluminum with a uniform thickness of 1 mm.

We perform 4 modal analyses, where the mass is placed either on a node or away

from the plate. In all cases the mass is 1 kg and we assume this to be a point mass,

i.e. we assume ICG = 0 in the mass moment of inertia tensor Ig. In addition, we run

one modal analysis without any mass added. The purpose of this is to establish a

baseline difference between the solvers. Results are compared with a reference output

obtained by NASTRAN in Table 7.3. The point mass is shown with a red sphere.

The black sphere represents the node which the mass is associated with and the delta

d is computed from. Regardless of the placement of the mass, either directly on a

node or away from the plate, results agree well with NASTRAN and show similar

differences as without a mass.

7.2.3 Fuel and Engine Mass Implementation

In the aerostructural optimization we may be interested in including the fuel or engine

masses, or both. In the case of the fuel mass, each bay allocated as fuel bay can hold
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Table 7.3: Mass element implementation verification results. Flat plate modal anal-
ysis results from TACS compare well with NASTRAN.

Test case # NASTRAN [Hz] TACS [Hz] Rel. Diff. [%]

No mass 1 1.13 1.14 0.06

2 7.09 7.11 0.26

3 9.18 9.27 0.98

4 19.91 20.03 0.61

5 28.32 28.64 1.14

6 39.13 39.58 1.13

7 49.63 50.36 1.47

8 64.85 66.03 1.82

Mass placed at node, at wingtip 1 0.37 0.37 0.03

2 5.09 5.10 0.15

3 9.18 9.27 0.98

4 16.08 16.15 0.43

5 28.32 28.64 1.14

6 33.06 33.34 0.85

7 49.63 50.36 1.47

8 55.40 56.18 1.40

Mass away from node, d = (0.1, 0, 0) 1 0.37 0.37 0.05

2 4.22 4.24 0.41

3 8.03 8.08 0.61

4 15.42 15.59 1.16

5 22.64 22.88 1.08

6 32.34 32.85 1.56

7 41.08 41.66 1.40

8 53.15 54.15 1.87

Mass away from node, d = (0, 0.1, 0) 1 0.32 0.32 0.05

2 4.01 4.03 0.35

3 9.18 9.27 0.98

4 12.43 12.54 0.91

5 25.78 26.13 1.36

6 28.32 28.64 1.14

7 44.90 45.68 1.75

8 49.63 50.36 1.47

Mass away from node, d = (0.1, 0.1, 0) 1 0.32 0.32 0.07

2 3.62 3.64 0.46

3 8.39 8.45 0.72

4 13.10 13.26 1.21

5 23.49 23.77 1.16

6 29.98 30.39 1.37

7 42.66 43.32 1.54

8 51.09 51.94 1.66
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a certain amount of fuel mass based on its volume. This allocation is determined by

the user who defines this fuel mass distribution. Using this fuel mass distribution

the local fuel volumes are computed for each bay as well as the total fuel volume

capacity for the wingbox. In this volume computation, each bay is approximated as

a quadrilateral with flat surfaces, as opposed following the curvature of the wingbox,

such as the skins. The fuel mass can then be approximated as a point mass at the

center of each fuel bay quadrilateral. The local fuel mass is computed based on the

local-to-total fuel volume times total fuel mass or,

mBay =
VBay

VTotal

mTotal. (7.23)

Similarly, the engine mass can be approximated by a point mass either with or without

mass moment of inertia given with the point mass.

To apply either a fuel or an engine mass to the structure, RBE3s may be used to

connect the mass and the nodes or components on the structure. In many situations

this is the preferred option. An alternative solution implemented in this work where

we divide and split the larger point mass based on some weighting function, wi, into

smaller, coinciding point masses. Resulting masses are then associated with a single

node in the structure. The masses are computed as follows,

mi = wimobject, (7.24)

where the
∑

imi recovers the mass of the object being modeled. In this case the

object could be a fuel or an engine. The weighting function and the split of the mass

can be performed in two ways, depending on the application.
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7.2.3.1 Equal Weights

The first and simplest option is to split the mass equally, i.e. wi = 1/N , where N is

the total number of nodes in all components associated with this mass defined by the

user. This option is ideal for applying the mass of the fuel to the structure. The user

can choose to include any number of components for a given fuel bay, splitting and

distribution the larger mass further onto those components. The resulting smaller

equal sized masses are then translated directly onto the nodes (i.e. d = 0) of the

specified components. By default, only nodes from the lower skin component are

used for each bay. This approach is similar to how fuel loads are modeled in a static

aeroelastic optimization. For instance, for a 1g cruise condition the fuel loads are

applied to the lower skins as traction. Examples of this capability is shown in figure

Fig. 7.4, where we assume all bays hold fuel that needs to modeled. Each bay can be

treated differently depending on the desired configuration. Verification of this method

was already covered in Section 7.2.2.

Figure 7.4: Rectangular wingbox. All bays are defined to hold fuel. User configured
distribution scheme shown with different colors. Each fuel bay mass has user defined
components.
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7.2.3.2 Inverse Distance Weights

For the second option the weights are computed based on the inverse distance of the

objects point mass to each node for the given components. The weights are computed

as,

wi =
1

N − 1

∑
j dj − di∑

j dj
=

1

N − 1

(
1− di∑

j dj

)
, (7.25)

where di = is the L2 norm of di which is the distance from the mass to each node

i, and N is the number of nodes the mass is connected to. This means that larger

weights are associated with nodes with a smaller distance from the mass. Similar

operation can be used to split the moment of inertia tensor if it is provided. This

option is more suitable for modeling engine masses away from the structure than fuel

mass. As before, the user can choose any number of components that the mass is

associated to and influences.

To verify the implementation we use the same flat plate problem as previously

used and perform a frequency analysis that we compare with NASTRAN. Two cases

are run, one mass connected to two nodes, and two masses, connected to three and

two nodes. All masses are 1 kg. The NASTRAN BDF is generated by hand by

manually computing the weights and splitting the masses. The results are shown in

Table 7.4, and compare favorably with NASTRAN. However, few modes have more

error that others, e.g. mode 2 of case 1.

A possible application of the masses is shown in Fig. 7.5. Two masses, engine or

leading edge masses, are connected to components selected by the user, here the front

spar only and ribs only.
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Table 7.4: Flat plate frequency analysis using NASTRAN and TACS with weights
computed using the inverse distance.

# NASTRAN [Hz] TACS [Hz] Rel. Diff. [%]

Case 1: Mass, 1 kg, divided onto 1 0.32 0.32 0.05

2 nodes 2 3.53 3.65 3.30

3 4.12 4.15 0.86

4 9.19 9.28 0.98

5 12.64 12.74 0.77

6 26.31 26.63 1.23

7 28.36 28.69 1.16

8 45.72 46.49 1.68

Case 2: Masses, 1 kg each, divided to 1 0.23 0.23 0.04

3 and 2 nodes 2 2.20 2.23 1.19

3 3.53 3.65 3.53

4 3.98 4.00 0.53

5 4.87 5.05 3.69

6 7.47 7.77 3.94

7 13.05 13.13 0.60

8 16.45 16.86 2.50

(a) Two engine masses assigned to two front
spar elements.

(b) Two engine masses assigned to nodes on
three ribs each.

Figure 7.5: Examples of the engine or leading edge devices (red sphere) applied to
components defined by the user.
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7.3 Optimization Problem

In this section we describe the optimization problem setup, flight conditions, design

variables, and constraints. The optimization problem used here is based on Case 3 in

the report by Kenway and Martins [207], which is a multipoint aerostructural wing

design optimization problem including planform. The goal of this large scale opti-

mization is to provide a robust design, maximizing its performance for the operational

range of interest, while still providing useful performance over a range of other flight

conditions.

To evaluate the effect on the optimal design by including and enforcing a flutter

constraint, we perform two optimizations, one without and one with the flutter con-

straint enforced. The details of the optimization formulation, design variables, and

constraints are presented below.

7.3.1 Objective Function and Flight Conditions

The multipoint optimization objective is to minimize fuel burn for the nominal

8000 nm flight. Fuel burn from taxi, take-off climb, and descent of the flight is

ignored. The fuel burn and takeoff-gross-weight (TOGW) are evaluated at the given

L/D for a range of flight conditions. Here we assume the mission is a single cruise-

climb stage, but a more correct approach would be to model multiple cruise-climb

stages. By rearranging the Breguet range equation, we can use it to compute the fuel

burn for each cruise conditions,

TOGWi = LGW exp

(
RTSFC

Vi (L/D)i

)
FBi = TOGWi − LGW,

(7.26)

where FBi is the fuel burn, LGW is the aircraft landing weight, R is the design

mission range, TSFC is the thrust-specific fuel consumption, Vi is the cruise speed,
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and (L/D)i is the lift-to-drag ratio computed at the i-th cruise design point. To

account for drag from components that are not explicitly modeled, such as engine

nacelle, pylon, and vertical tail, a correction of 30 drag counts is added to the drag

value computed by the CFD model.

The optimization objective is then a weighted average of all the cruise points,

FBojb =

Ncruise∑
i=1

piFBi, (7.27)

where pi are the weights for the i-th cruise condition. In this work we use equal

weights pi = 1/5. The landing weight in the objective is computed using,

LGW = 1.25×Wwing + Area Weight
Wing Area

Ref Wing Area

+ Fixed Weight + Payload + Reserve Fuel Weight,

(7.28)

where Wwing is the weight computed by the structural finite-element model. The

factor of 1.25 accounts for additional weight associated with fasteners, overlaps, and

other components not modeled in the idealized wingbox. The “Area Weight” is the

additional mass associated with the leading and trailing edges, as well as the necessary

actuation equipment. Since we are varying the planform, this value is linearly scaled

by the exposed wing area. The value for area weight is set to 6000 kg.

All operating conditions used in the multipoint aerostructural optimization are

given in Table 7.5. They consist of a 5 point cruise stencil, 2 buffet conditions, 3

maneuver conditions, and finally 1 flutter condition.

The objective is computed based on the cruise flight conditions 1-5 only. The

nominal design altitude is not specified here since it is made a design variable in the

optimization. This allows for the fulfillment of the physical lift constraint indepen-

dently of the lift coefficient. Cruise flight condition 4 and 5, are specified ±3000 ft

relative to the design altitude. By including these design conditions the aircraft is
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Table 7.5: Flight conditions used in the multipoint aerostructural optimization.

Operating condition # Mach Altitude α Fuel fraction Load factor

Cruise 1 0.83 Design Design1 0.50 1.0
2 0.83 Design Design1 + 0.25 deg 0.50 1.0
3 0.83 Design Design1 − 0.25 deg 0.50 1.0
4 0.82 Design−3000 ft Design2 0.95 1.0
5 0.84 Design+3000 ft Design3 0.10 1.0

Buffet 6 0.83 Design Design4 0.50 1.3
7 0.87 Design Design5 0.50 1.0

Maneuver 1 0.78 16000 ft Design6 1.0 2.5
2 0.78 22000 ft Design7 1.0 −1.0
3 0.84 27000 ft Design8 1.0 1.0

Flutter 1 0.80 (range) - 1.0 1.0

designed in a CL-Mach space rather than at a single flight condition. This strategy

has been shown to produce more robust overall designs, with fuel burn that is less

sensitive to varying aircraft weight and flight conditions [154, 208].

The angle of attack, α, is also made a design variable in order to satisfy the lift

constraints. This applies to all flight conditions except for cruise 2 and 3, which are

analyzed at angles of attack ±0.25 degrees relative to cruise condition 1. This is done

to compute the static margin constraint and to estimate CLα of the aircraft for the

gust computation. Flight conditions 1-3 use a fuel fraction of 0.5, indicating that the

analysis point is done approximately half way through the trip, while 4 and 5 use 0.95

and 0.1, signifying the early and late stages of the cruise-climb segment, respectively.

The FAA regulation require that transonic transport aircraft meet buffet onset

minimums. Thus, flight conditions 6 and 7 are used to compute the buffet onset, but

are not included in the objective computation. Condition 6 is a high loading condition,

with load factor of 1.3g at cruise, and conditions 7 is a high Mach condition. The

buffet onset is computed base on a separation sensor which estimates separated flow

on the wing surface. Computing and enforcing buffet constraints has been shown to

be important in improving design robustness [152].
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In addition to the design flight conditions, three maneuver flight conditions are

specified. The primary function of these conditions is to facilitate sizing the structure

such that failure and buckling loads are not exceeded. The conditions used here are a

2.5g pull up maneuver and a -1g push over maneuver. The third maneuver condition

is a 1g cruise pseudo gust load case for the FAA Part 23.343/Part 25.341 gust criteria.

The main purpose of a gust condition is to size the structure based on a load, which

occurs over a short amount of time, such that passive load alleviation is not possible.

Finally, the flutter condition is specified over a range of dynamic pressures, ef-

fectively an altitude sweep, at Mach 0.8. As with buffet, the FAA regulation also

require that transonic transport aircraft meet flutter requirements. Using the stan-

dard atmospheric model the matched points computed here reflect a sweep through

altitudes, which corresponds to changes in the speed and density as a function of

dynamic pressure. These relations are show in Fig. 7.6. The dynamic pressure range

is specified approximately from 0.4 – 35 kPa, and as it increases the altitude reduces,

density increases, and speed varies for this fixed Mach number.

7.3.2 Design Variables

The design parametrization of the optimization problem defines the design variables

that are exposed to the optimization algorithm. The design variables can be split into

three types: geometric, aerodynamic, and structural design variables. The geometric

parametrization influences simultaneously all aerodynamic surfaces and the structure

directly. The aerodynamic and structural variables influence its discipline directly,

and indirectly though coupling effects. O(1000) design variables are used in this

multipoint aerostructural optimization and they are summarized in Table 7.8.
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Figure 7.6: Flutter flight conditions.

7.3.2.1 Geometric Design Variables

The geometric design variables manipulate all aerodynamic surfaces and the structure

directly which have been embedded inside an FFD. These design variables are the

FFD b-spline control points and moving them individually, or collectively, we can

manipulate the shape and planform, continuously, in great detail.

The wing shape is parametrized using 9 sections of 24 control points, which can

be controlled independently, a total of 216 shape design variables. These numbers

have been shown provide a good balance between number of shape design variables

and optimized design performance [209].

To control the spanwise twist distribution, each of the 9 sections define a local

twist design variable. Each twist variable rotates its entire section by simultaneously

and rigidly rotating the FFD control points about a central reference axis. For the

wing planform we define 4 design variables, chord, span, sweep, and dihedral. These

planform variables are applied though the same central reference axis that manipu-
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lates all the sections at once. The horizontal tail has its own FFD and reference axis.

We define one design variable for the tail rotation, for each flight conditions, which

rotates the entire tail. This is necessary to satisfy the trim constraint at a given flight

condition during the optimization. Finally, the reference point, about which the pitch

moment is computed, is also made a design variable.

Figure 7.7 shows the geometric and structural parameterizations.

Figure 7.7: Geometric and structural design variables overview.

7.3.2.2 Aerodynamic Design Variables

The aerodynamic design variables are the angle of attack α for each flight condition,

and a design altitude h. The angle of attack is allowed to change and is used to

satisfy the lift constraint at a given operating condition, except for cruise points 2

and 3, which are shifted around cruise point 1. Additionally, the tail angle is allowed

to change in order to trim the aircraft, enforced through a moment constraint.

For the altitude, only a single master design variable is specified for all cruise

conditions. This master altitude influences the on the entire cruise point stencil. All

cruise points operate on the same altitude, with cruise points 4 and 5 being offset
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by a constant from this master altitude. A Mach number is specified for each flight

conditions and is fixed during the optimization.

7.3.2.3 Structural Design Variables

The structural parametrization for each component was discussed in detail in Sec-

tion 7.1.4. In structural design, generally by adding more design variables gives the

optimizer greater freedom to size the structure precisely where it is needed and thus

reduce the overall weight. However, large number of design variables may increase to-

tal optimization solution time. For simplicity and in order to reduce the total number

of design variables, we set tb = tw, and wb = hs for all structural components. The re-

maining design variables, panel thickness ts, stiffener height hs, stiffener thickness tw,

stiffener pitch b, and panel length L are exposed to the optimizer. However, to further

reduce the design variables, some components are grouped together and controlled

by a single design variable per group. For instance, one stiffener pitch design variable

is used for all components in the upper skins group, and one for the components in

the lower skins group. This number of design variables per components grouping is

illustrated in Table 7.6. Note that the engine mount is a single component thus is

fully parametrized using the 5 design variables. Total number of sizing structural

design variables is 934. The skin stiffeners are oriented parallel to the sweep angle,

while the rib and spar stiffeners are oriented parallel to the z-axis. The reference

axis direction is fixed throughout the optimization, but should ideally be updated to

match the changes in sweep angle.

Fuel loads resulting from the volume in each fuel bay are also added as design

variables. The fuel loads are modeled as tractions on the lower surface, and are

updated as the volume changes with geometric changes. The fuel bay distribution

is shown in Fig. 7.8a. For the flutter analysis the fuel mass in each bay is modeled

as point masses which are split and translated onto the lower skin of the structure
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Table 7.6: Structural design variables and their grouping. Note that components in a
given group, e.g. upper skin stiffener pitch, is controlled with a single design variable

Symbol U/L Skins F/M/R Spars Ribs Engine Mount Total

Length L 56/56 43/14/42 58 1 270
Stiffener Pitch b 1/1 1/1/1 1 1 7
Stiffener Height hs 56/56 1/1/1 1 1 117
Stiffener Thickness tw 56/56 43/14/42 58 1 270
Panel Thickness ts 56/56 43/14/42 58 1 270

Total 450 303 176 5 934

as shown in Fig. 7.8b. This process is further described in Section 7.2.3. The total

fuel mass considered in the optimization is 48750 kg, and in the dynamic analysis

is fixed throughout the optimization. While there will be some discrepancy between

the final optimized fuel mass and the fixed value used for the dynamic analysis in the

optimization, it is usually small such that this a reasonable approximation.

In the static aerostructural analysis the engine loads are included and added di-

rectly on the one member of the front spar and the engine mount. These loads

remain fixed throughout the optimization. For the flutter analysis considerable effort

was spent on trying to include the engine mass using the techniques discussed in

Section 7.2.3. However, this resulted in a number of local modes appearing, making

this hard to apply in optimization. The engine mass is thus omitted in the flutter

computations. However, in terms of total mass, while not insignificant, the engine is

an order of magnitude smaller than the fuel mass. Including a mass that is offset from

the main body, such as the engine mass, is expected to impact the modal analysis by

lowering the torsional natural mode. How significantly this will impact the dynamic

analysis and ultimately the final design is a topic of future study.
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(a) Fuel volumes used to compute the fuel
bay mass.

(b) Fuel masses split for each bay translated
onto lower skins.

Figure 7.8: Fuel mass for each bay split into multiple point masses that are then
translated onto lower skins, show in red.

7.3.3 Constraint Definition

For the optimization to give a design that is both physical and meaningful, a number

of constraints need to be defined. In this section we describe all the constraints

used in this work. O(1000) constraints are used in this multipoint aerostructural

optimization and they are summarized in Table 7.8.

7.3.3.1 Geometric Constraints

A number of geometric constraints are added to ensure the final shape is realistic and

lends itself to manufacturing processes. A constraint is placed on the leading edge

radius that ensures no reduction beyond the initial value. Omitting such constraint

has been shown to result in unrealistic, sharp leading edges [25]. Furthermore, for

low-speed high-lift conditions, such as landing, sharp leading edges may compromise

performance. The trailing edge thickness is constrained in a similar manner, prevent-

ing any reduction from the initial value. This is done to prevent very thin trailing

edges, which may lead to manufacturing and structural issues.

Finally, the leading and trailing edge FFD control points are constrained to move

in an equal and opposite z direction. As mentioned in the previous section a twist

variable is defined at each station, which performs twist by a nonlinear rotation. These

linear constraints are necessary to prevent the shape variables emulating a shearing
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twist and guarantee that these the shape and twist variables are independent.

7.3.3.2 Aerodynamic Constraints

We apply lift constraints for all cruise and maneuver conditions, expect for cruise

points 2 and 3. For the enforced lift constraints we require the physical lift to be

equal to the aircraft weight times a given flight condition load factor. The aircraft

weight is computed using,

W = LGW + γiFB1, (7.29)

where the γi is the fuel fraction for the i-th flight condition and FB1 is the fuel burn

from the first cruise condition. Furthermore, we require that the aircraft is trimmed

for the same cruise and maneuver points. Separation based buffet constraints are

added to ensure that flow remains attached for both the buffet and maneuver flight

conditions. Here we constrain the separation to be less than 4% of the reference area.

Longitudinal stability constraint is added based on static margin. The static

margin is computed for each constraint using,

sm = −CMα

CLα
= −∂CM/∂α

∂CL/∂α
(7.30)

where the derivatives CMα , CLα are estimated with finite differences. Since we have

two perturbed flight conditions, we can form two constraints using data from the

nominal flight condition 1 and then the perturbed angle of attack cruise conditions 2

and 3. A lower limit of 10% is enforced for both constraints, which is based on the

cruise CG position of 35% MAC.

7.3.3.3 Structural Constraints

Number of constraints are applied to the structure, linear and nonlinear, which apply

to performance or manufacturing, or both. During optimization, panel-level buckling
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and failure (stress) KS aggregation constraints are enforced under a given maneu-

ver loading conditions. The KS aggregation technique is important to minimize the

number of constraints used in the optimization. For the 2.5g maneuver and 1g cruise

conditions we apply four KS material failure constraints, one for each group: ribs,

spars, upper skins, and lower skins. Three buckling KS aggregation constraints are

applied for these flight condition, one for each group: ribs, spars, and upper skins.

A buckling constraint for the lower skins is not necessary as these components are

always in tension for the respective flight conditions. For the remaining flight condi-

tion, -1g, we enforce three buckling constraints, one for each group: ribs, spars, and

finally the lower skins. No failure constraints are necessary for this flight conditions

since this condition is not critical for sizing. The KS aggregation parameter for all

functions is set to a recommended value of ρKSstress = ρKSbuckling
= 100 [26]. These

KS constraints are generally difficult for the optimizer to satisfy due to their highly

nonlinear behavior. In addition to the maneuver load factor, a safety factor of 1.5

is applied in the failure computation as required by regulations. For the -1g case an

additional safety factor of 1.95 is used.

Table 7.7: Buckling and failure KS aggregation constraints used for each maneuver
flight condition.

2.5g -1g 1g

Buckling Failure Buckling Failure Buckling Failure

Ribs
Spars
Upper Skins
Lower Skins

Linear adjacency constraints are enforced to limit large variation in the design

variables between two adjacent panels. This constraint is applied on the panel and

stiffener thickness design variables for the spars and the skins. Finally, as discussed in
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Section 7.1.4, nonlinear consistency constraint is added for the panel length to match

geometric length.

Fuel constraints are included to ensure that the structure internal volume is suf-

ficient to store the necessary fuel, including reserve fuel, for the mission. Note the

interesting implications of such constraint. By reducing the fuel burn, less fuel vol-

ume is needed, reducing the wing thickness and drag, which in turn reduces the fuel

burn, The fuel bays are shown in Fig. 7.8a.

Finally, the previously described flutter constraint is enforced only in one of the

two aerostructural optimization to study its effect on the wing design.

For the bounding curve parameters used in this work we set g∗ = 0 rad/s, g+ =

0.02 rad/s, q∗ = 20 kPa, and β = 10−7 rad/(Pa2 · s). The combination of parameters

set the implicit minimum flutter speed to 20kPa and limit any hard flutter modes

governed by the small parabolic growth parameter β. The g+ = 0.02 parameter

shifts the entire boundary vertically into the positive damping space. In particular,

these values are chosen such that in-plane modes do not affect the optimization. No

further attention is required regarding in-plane modes beyond what was previously

defined. The optimizer should size the structure such that the in-plane modes remain

in-plane for the flight envelope of interest. The flutter KS aggregation parameter is

set to ρKSflutter
= 500. These values are chosen based on the discussion in Sections 3.4

and 3.5 to compensate for the conservative behavior of the KS function.

The complete problem consists of around 1200 design variables and 1200 con-

straints. While we have numerous constraints, the majority are linear constraints.

The optimization problem statement is summarized in Table 7.8. As mentioned pre-

viously, we perform two aerostructural optimizations, one without and one with the

flutter constraint active, in an otherwise identical setup.
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Table 7.8: Aerostructural optimization formulation.

Function/variable Description Quantity
minimize Fuel Burn

with respect to xairfoil FFD control points 216
xtwist Wing twist 9
xalphai

Angle of attack for each flight condition 8
xηi Tail rotation angle for each flight condition 8
xxref Reference point in x about which pitch mo-

ment is computed
1

xaltitude Nominal design altitude 1
xspan Span 1
xsweep Sweep 1
xdihedral Dihedral 1
xchord Full chord scaling 1
xpanel length Panel length skins/spars/ribs/engine 270
xstiff pitch Panel stiffener pitch skins/spars/rib-

s/engine
7

xstiff height Panel stiffener height skins/spars/rib-
s/engine

117

xstiff thick Panel stiffener thickness skins/spars/rib-
s/engine

270

xpanel thick Panel thickness skins/spars/ribs/engine 270
xfuel traction Fuel loads/traction per bay 49
xfuel mass Total fuel mass 1

subject to Li = niW Lift constraint 8
CMyi

= 0.0 Trim constraint 8

sep ≤ 4%Aref Amount of separation at buffet or maneu-
ver

5

Static margin ≥ 10% Sufficient static margins 2
xxref − (xLE + 0.35MAC) = 0 Reference trim point location in x direction 1
tLE/tLEInit

≥ 1.0 Leading edge radius 20
tTE/tTEInit

≥ 1.0 Trailing edge thickness 20
∆zTE,upper = −∆zTE,lower Fixed trailing edge 8
∆zLE,upper = −∆zLE,lower Fixed leading edge 8
Lpanel − xpanel length = 0 Target panel length 270
KSbuckling ≤ 1 2.5 g buckling 3
KSstress ≤ 1 2.5 g yield stress 4
KSbuckling ≤ 1 1.0 g gust buckling 3
KSstress ≤ 1 1.0 g gust yield stress 4
KSbuckling ≤ 1 −1.0 g buckling 3∣∣∣xpanel thicki

− xpanel thicki+1

∣∣∣ ≤ 0.0005 Skin thickness adjacency 217∣∣∣xstiff thicki
− xstiff thicki+1

∣∣∣ ≤ 0.0005 Stiffener thickness adjacency 217∣∣∣xstiff heighti
− xstiff heighti+1

∣∣∣ ≤ 0.0005 Stiffener height adjacency 217

xstiff thick − xpanel thick < 0.0025 Maximum stiffener-skin difference 186
Vwing > Vfuel Minimum fuel volume 1
KSflutter ≤ 0 KS aggregate of gG,ij 1

7.4 Optimization Results

The initial design, i.e. shape, aerodynamic, and structural sizing is based on Case 2

presented by Kenway and Martins [207]. First an aerostructural optimization with

only one cruise and maneuver condition is performed. This strategy provides a good
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initial high-aspect ratio design for the full stencil optimization, and is computationally

cheaper than the full stencil. The full stencil aerostructural optimization without

the flutter constraint then starts from this design, reaching the optimized design in

approximately 17 hours using 648 processors. Each cruise and maneuver condition

use 72 and 48 cores, respectively. The optimization with the flutter constraint is then

started from the previous optimized design and completes in approximately 14 hours,

with the same number of processors used as before.

The optimization history for both cases is presented in figure Fig. 7.9. The ob-
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Figure 7.9: Optimization convergence history.

jective (fuel burn) is scaled and presented here as a fraction of the MTOW. The

feasibility is a measurement on the constraint violation and the optimality indicates

how well the first-order KKT condition is satisfied. The feasibility and optimality

for each case is set to 5× 10−5 and 10−6, respectively, shown with a gray line in the

figure. It can be observed that in both cases the fuel burn is reduced while making
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the constraints feasible. In the case of the optimization without the flutter constraint

the optimizer comes close to the specified tolerances, but is unable to reach them and

exits. The optimization with the flutter constraint meets the specified tolerances and

exits successfully.

The two optimal designs and the baseline are compared in Table 7.9. Without

any significant increase in fuel burn, we obtain a stiffer, heavier, lower aspect ratio

wing design, with the structural sizing showing the largest differences between the

two designs. While some of these differences are not substantial, they nonetheless

highlight the importance of including a flutter constraint in the design optimization

process.

Table 7.9: Comparisons of the two optimized designs, without and with the flutter
constraint active.

w/o FC w/ FC Diff. Rel Diff. %

Fuel burn [kg] 92494.09 92602.41 108.33 0.12
AR 11.97 11.90 -0.07 -0.61
Semi span [m] 34.47 34.41 -0.06 -0.18
MAC [m] 6.40 6.43 0.03 0.41
Projected Area [m2] 178.42 178.82 0.41 0.23
Wimpress Area [m2] 198.47 198.97 0.51 0.25
Trapezoidal Area [m2] 196.75 197.25 0.50 0.25
Taper ratio 0.26 0.26 0.00 0.31
1/4 chord Sweep [°] 34.73 34.68 -0.05 -0.14
LE Sweep [°] 36.78 36.74 -0.04 -0.10
Average cruise L/D 23.71 23.79 0.07 0.30
Fuel mass [kg] 49920.35 49980.84 60.49 0.12
Wing mass (total) [kg] 43246.61 43915.19 668.58 1.55

7.4.1 Design Differences

Overall planform changes for both optimized design are similar and show minor differ-

ences. In both cases, the optimizer increases the aspect ratio from the initial design,

to minimize the induced drag, which in turn decreases the fuel burn. For the flutter
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constrained design a lower aspect ratio is obtained. This design has a smaller span,

but a larger MAC, resulting in an overall larger area.

Through these geometric differences a marginally larger L/D ratio is obtained

for the design where the flutter constraint is active. While a larger L/D impacts

the objective favorably, the final fuel burn is larger, indicating that the fuel burn

is penalized by the increased mass of the structure. Fuel mass is thus increased to

compensate for the increased fuel burn of the mission. The reduced wing sweep is

also an indication that the wing is heavier and the optimizer unsweeps the wing in

order to reduce structural weight.

The increase in fuel burn is primarily attributed to the increase in wingbox mass.

The wingbox mass distribution, per group of components is given in Table 7.10. The

Table 7.10: Structural mass by groups of components for both optimized designs. All
values are given in kg.

w/o FC w/ FC Diff. Rel Diff. %

Upper skin 6111.61 6222.83 111.22 1.82
Lower skin 4966.69 5075.53 108.84 2.19
Ribs 1666.91 1684.73 17.82 1.07
Front spar 602.34 616.16 13.82 2.29
Mid spar 862.74 868.89 6.15 0.71
Rear spar 280.15 283.34 3.19 1.14
Engine Mount 8.73 8.72 -0.02 -0.20

Total 14499.18 14760.20 261.02 1.80

flutter constrained optimized design is 1.8% heavier, with each component group

showing an increase in structural mass, except for the engine mount. The group

with the largest increase in structural mass is the front spar, which increases by

approximately 2.3%.

By investigating the structural design variables directly we gain a better under-

standing and insights into where the optimizer chooses to increase material thickness.
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Figure 7.10 shows the equivalent thickness, where the top and mid are the optimal

aerostructural solutions obtained without and with the flutter constraint, respectively.

Using a diverging color map, the bottom contour plot shows the difference of those two

solutions computed using, (x∗w/ FC − x∗w/o FC)/x∗w/o FC ∗ 100. By investigating the dif-

ference plot we see that the largest change occurs in the outboard section of the wing,

where the optimizer doubles the lower skin thickness. The upper skin is increased

substantially also in a similar location. Other panels show less drastic changes. Plots

for individual design variable, the stiffener pitch, stiffener height, stiffener thickness,

and panel thickness, are provided in the in Figs. C.1 and C.2 in Appendix C.

Figure 7.10: Equivalent thickness shown for the two optimal designs, without and
with flutter constraint. A diverging color map highlights the difference between the
designs.
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The change in thickness distribution between these two optimized designs is solely

due to the addition of the flutter constraint. It is clear from these thickness changes,

that the center of gravity of the structure is shifted forward and outboard, which

directly impacts the wing flutter characteristics. For instance, shifting the center of

gravity outboard lowers the natural modes, which may adversely influence divergence

and flutter characteristics. However, shifting the center of gravity of the structure

upstream has well-known aeroelastic benefits: It provides stabilizing effects, which

help satisfy the flutter constraint [189]. The increased thickness results in a stiffer

structure that may further improve stabilizing effects. While some of these design

tradeoffs are non-intuitive, they ultimately result in a flutter free design.

The failure and buckling for each component group is reported in Table 7.11.

Active constraints are shown with solid circle and inactive with an empty circle. As

expected for the 2.5g maneuver case, all buckling and failure constraints are active.

For the -1g case only the lower skins are buckling critical, while the ribs and spars are

inactive. Finally, the 1g case the ribs, spars, and uppers skins are buckling critical,

and the spars, upper and lower skins failure critical. The ribs are inactive, which is

somewhat expected from the 2.5g maneuver sizing.

Table 7.11: The state of the buckling and failure KS aggregation constraints for each
maneuver flight conditions. Both designs demonstrate the same state, thus only one
dot shown for both cases. Active and inactive constraints are shown with filled or
empty circle, respectively.

2.5g -1g 1g

Buckling Failure Buckling Failure Buckling Failure
Ribs
Spars
Upper Skins
Lower Skins

A detailed buckling and failure map for each maneuver flight conditions 2.5g, -1g,
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and 1g is presented in Figs. C.3 to C.5 in the Appendix C. The buckling and failure

values between the two designs show the largest increase in the outboard section of

the wingbox, particularly the upper and lower skins and front spar. This is directly

linked to the change in the panel variable thickness at those locations.

This difference in thickness impacts the stiffness of the structure. This is evident

from the deflection for the nominal cruise, 2.5g, and the -1g maneuver cases shown

in Fig. 7.11. Additionally, the DLM mesh is shown for reference. Both designs show

similar deflection for the inboard section, but for the outboard section the flutter

constrained design has a smaller deflection, indicating a stiffer structure. Note that

the DLM mesh does not deflect and follows the jig shape.

Figure 7.11: Wing span and tip deflection comparison.

The spanwise lift, twist, and thickness distributions are presented in Fig. 7.12a for

both optimal designs. The normalized lift does not show any significant differences

between the two designs for the nominal cruise, nor the 2.5g maneuver condition. The

largest difference occurs outboard for the -1g maneuver conditions, where the flutter

constrained design demonstrates a larger lift. For both designs a non-elliptical lift

distribution is obtained, which will impact the induced drag detrimentally. The out-

board section produces less lift, meaning that the inboard section tries to compensate

by increasing lift.

The twist distribution of the flying shape does overall show minimal differences
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between the two optimized designs. The largest difference is observed in the outboard

section of the wing for the -1g maneuver condition, where the optimized design with

the flutter constraint demonstrates less tip twist. Similarly, for the 2.5g case less

twist is observed. This reduced twist can be attributed to the optimizer increasing

structural thickness, hence stiffness in the outboard section of the wingbox.

The t/c distribution shows minor difference between the two designs, except for

the outboard section. The optimizer reduces the airfoil thickness of the flutter con-

strained design, which is likely due to increased material thickness, stiffening the

structure, allowing for a more slender profile. In turn smaller t/c will decrease the

drag, improving the fuel burn through an improved L/D. Furthermore, a lower t/c

also mitigates buffet onset.

The airfoil cross-section and nominal cruise pressure coefficient, shown for several

span-stations y/b, for both optimized designs is shown in Fig. 7.12b. As expected,

the airfoil shape shows minor differences between the two designs. This is because

airfoil shape changes are not captured properly with the flat mesh of the DLM or

the small mesh deformation changes in the FFD. Shape changes thus have very little

impact on the dynamic solution, hence the constraint.

The optimizer is able to eliminate any shock on the wing surface by manipulating

the airfoil shape, removing the wave drag, which improves the fuel burn. Furthermore,

separation constraint for the buffet flight conditions are active, indicating a separation

of 4% of the reference area, Aref. However, the separation constraints for all maneuver

conditions are inactive.

7.4.2 Modal Differences

The first twelve natural mode shapes of the two optimized aerostructural designs are

shown in Fig. 7.13. The natural mode shape order is the same for the two solutions,

except for mode shape 12, which demonstrates local panel modes. This local mode
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(a) Spanwise lift and twist distributions are similar, except for the outboard section where
the largest change in thickness occurs.

(b) Normalized airfoil section comparison (left) and nominal cruise pressure coefficient
(right) at several span-stations y/b. The flutter constraint does not have a significant
impact on the shape.

Figure 7.12: Aerodynamic and geometric properties of the two optimized designs.
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however does not influence the optimization in any adverse way, highlighting the

robustness of the proposed flutter constraint formulation. Local panel modes are in

general unwanted in the detailed design optimization process.

Overall, the natural frequencies are slightly higher for the optimized design ob-

tained when enforcing the flutter constraint. This is despite of the heavier structure,

in particular the outboard section, where the upper and lower skins thickness in-

creased. This increase is likely due to a combination of a smaller aspect ratio, mass

distribution, and a stiffer structure.

7.4.3 Flutter Differences

The flutter characteristics of the two optimal aerostructural designs are presented in

Fig. 7.14. The optimized design without the flutter constraint, shown in Fig. 7.14a,

has the 1st mode as the active flutter mode, with a flutter dynamic pressure at approx-

imately 15 kPa. Reading Fig. 7.6 this translates to a flutter speed of approximately

240 m/s, at the specified Mach number 0.8.

For the design with the flutter constraint the optimizer successfully finds a flutter

free design by moving any critical modes out of the infeasible space as shown in

Fig. 7.14b. The critical mode which is driving the optimization is the 2nd mode,

which is a hump mode. The 2nd natural mode shown in Fig. 7.13b is a primarily an

in-plane mode with some out-of-plane bending. By inspecting the flutter frequency

in Fig. 7.14d we observe that, while no mode coalescence occurs, the first three modes

have similar frequencies and influence each other. This is better observed in the root-

loci Figs. 7.14e and 7.14f. This indicates that the flutter mode shape is a coupled

in-plane, out-of-plane bending mode.

The previously critical flutter mode, the 1st mode, has been pushed outside the

flutter margin, to higher dynamic pressures, and now becomes unstable at a dynamic

pressure of approximately 24 kPa. Again, referring to Fig. 7.6, this dynamic pressure
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(a) Natural mode shapes of the optimized design without the flutter constraint.

(b) Natural mode shapes of the optimized design with the flutter constraint.

Figure 7.13: First twelve natural mode shapes from the two optimal aerostructural
solutions obtained without (a) and with (b) the flutter constraint.
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translates to a flutter speed of approximately 250 m/s, an increase of 10 m/s for

this mode between the two designs. Overall, the optimizer successfully finds a flutter

free design, in addition to pushing other flutter modes to higher dynamics pressures,

without significant impact on the objective.

7.5 Summary

The proposed flutter constraint is demonstrated successfully in a high-fidelity aerostruc-

tural optimization and compared against an optimal solution obtained without the

flutter constraint. Without any significant increase in fuel burn (less than 1% between

the two designs), we obtain a flutter free design that is heavier and stiffer when the

flutter constraint is enforced.

Geometric changes and aerodynamic characteristics demonstrate within 1% dif-

ference between the two optimized designs. The span and aspect ratio are found

to be smaller for the flutter constrained design with an increased MAC and surface

area. Similarly, the aerodynamic performance of the two optimized designs are simi-

lar, with the flutter constrained design slightly more efficient. However, these designs

differences are small and close to the function accuracy and tolerances set in the opti-

mization. This makes it difficult to interpret and evaluate if such differences are solely

due to the inclusion of the flutter constraint. Despite these changes being small they

are not insignificant. In particular, the geometric changes are worthy of attention in

the context of manufacturing, such as the span, which shortens by 6 cm.

The structural sizing differences are however significant, where the optimized de-

sign with the flutter constraint is 1.8% heavier. The largest increase is found at the

front spar, followed by the lower and upper skin. This difference influences the flut-

ter characteristics favorably, effectively moving the center of gravity upstream, which

has known aeroelastic benefits, making the final design flutter free. The increase in
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(a) Damping without flutter constraint. (b) Damping with flutter constraint.

(c) Frequency without flutter constraint. (d) Frequency with flutter constraint.

(e) Root locus without flutter constraint. (f) Root locus with flutter constraint.

Figure 7.14: Flutter damping and frequency characteristics of the two aerostructural
optimal designs without and with a flutter constraint.
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stiffness of the flutter-constrained structure is evident from the reduced tip deflection.

Overall, we obtain a feasible flutter free design without significant compromise in

fuel burn and structural mass. This large scale aerostructural optimization demon-

strates the necessity of adding and enforcing a flutter constraint in the high-fidelity

aerostructural design process. The flutter-constrained optimum exhibits small differ-

ences in planform and shape, but more significant sizing features are observed, which

alter and improve the wing aeroelastic characteristics. The proposed flutter constraint

complements commonly enforced structural constraints such as failure, buckling, and

adjacency constraints, making the overall optimal design more robust.
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CHAPTER 8

Conclusion

The results

This chapter gives an overview of the main conclusions of this thesis, contributions,

and finally suggests directions for future work building on the work herein.

8.1 Conclusions and Final Remarks

The trend towards higher aspect ratio aircraft designs is driven by better fuel ef-

ficiency. Furthermore, with new materials and manufacturing techniques, their in-

creased flexibility makes it all the more important to consider flutter accurately and

early in the design process [10]. Conservative design approaches may lead to exces-

sively stiff and hence heavy designs, while optimization approaches without flutter

constraints may lead to excessively flexible wings that are infeasible because they

flutter. Thus, it is desirable to consider flutter concurrently with the aircraft design

and the wing design in particular. To facilitate this, MDO can be employed to obtain

the best possible configuration by simultaneously design the wing shape and internal

structure, subject to a flutter constraint.

While there has been extensive work in methods for flutter analysis, integrating

flutter constraints into design optimization, in particular gradient-based optimization,

requires additional considerations. Ideally models used for flutter prediction should

capture the relevant physics with adequate accuracy to correctly drive the optimizer
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and inevitably there is a compromise between model fidelity and computational cost.

However, to include flutter analysis in a numerical optimization cycle, speed of exe-

cution is particularly important to make sure that the overall optimization process is

tractable. In Chapter 1 a detailed literature survey of flutter modeling, analysis meth-

ods, and their application in optimization is presented. Furthermore, several open

problems are identified, one being the need for a flutter methodology able to form a

constraint in high-fidelity aerostructural design optimization, considering structural

and aerodynamic design variables simultaneously.

To address this, Chapter 3 presents a robust, efficient, and continuous flutter

analysis methodology satisfying these requirements. The methodology described is

independent of specific components in which higher-fidelity methods could be used

without any need for updating the formulation, nor the usage of the constraint in

an aerostructural optimization. Robustness and efficiency is paramount due to the

fact that each function evaluations in a high-fidelity gradient based design can be

computationally expensive. Thus failing to compute the constraint would halt and

potentially terminate the optimization. For this reason, a non-iterative strategy,

coupled with mode tracking, is chosen to solve the nonlinear aeroelastic eiginvalue

problem. To formulate a continuous flutter constraint, a bounding curve, or a flut-

ter margin, is proposed. This bounding curve, implicitly sets the minimum flutter

dynamic pressure, prevents hump modes, controls hard flutter modes, and is fully con-

figurable based on the aircraft requirements. A conservative KS aggregation strategy

is then employed, twice in series, aggregating all damping values for all modes over

all dynamic pressures to obtain a scalar value, namely the flutter constraint value.

In Chapter 4, the derivative strategy of the flutter analysis process is discussed.

The sensitivity of the flutter constraint with respect to all the design variables is

computed accurately and efficiently using a combination of analytic and reverse mode

AD. In fact, to ensure derivative are accurate, all new components developed as
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part of this work are differentiated using both forward and reverse mode AD, and

verified rigorously using both finite difference and complex step. A dot product

test is also conducted to ensure the forward and reverse mode implementations are

consistent. Derivatives are demonstrated to be accurate to machine precision for all

newly implemented components.

To demonstrate the proposed flutter constraint in practical aerostructural design

optimization of a HARW, a series of results are presented in Chapters 5 to 7, in-

creasing in optimization problem size and complexity. The primary purpose of 5 is to

demonstrate flutter constraint and its characteristics in a multidisciplinary optimiza-

tion. The constraint was successfully applied to an idealized rectangular wing, a flat

plate, in a range maximization. This problem was specifically tailored to demonstrate

the continuity of the constraint and its ability to use structural and aerodynamic plan-

form design variables in a multidisciplinary design optimization.

In Chapter 6 the flutter constraint is demonstrated in an aerostructural optimiza-

tion of a rectangular wing geometry considering both structural sizing and aerody-

namic planform shape. The optimized design is compared and contrasted with an

optimized solution obtained without the flutter constraint. The results indicate that

with the flutter constraint a stiffer, less slender wing is obtained, without any signif-

icant reduction in range (less than 1% between the two designs). The wing aspect

ratio decreases by 4%, but the total mass remains roughly the same (less than 0.1%

between the two designs). However, a significant difference is observed in the struc-

tural sizing variables, namely the panel and stiffener thicknesses. With the flutter

constraint, the optimizer moves favors thicker panels upstream and outboard, such

as leading edge spar, while reducing the upper skin thickness. The net effect is that

center of gravity of the structure is moved upstream, which is known to have a stabi-

lizing aeroelastic effect. The increase in stiffness of the flutter-constrained structure

is evident from the reduced tip deflection. Most importantly, a feasible design is
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obtained without significant compromise in range and structural mass.

Building on these results, in Chapter 7 the flutter constraint is applied in a large

scale multipoint aerostructural optimization of the XRF1 aircraft, minimizing fuel

burn considering structural, aerodynamic shape, and planform design variables. As

before, the results are compared against an optimal solution obtained without the

flutter constraint to identify the effect of including such constraints on the design. Due

to the more complex and complete optimization formulation, additional development

in TACS was necessary to account for the large fuel mass contained in the wing.

To address this, a point masses element in TACS was developed that is capable of

modeling the fuel mass appropriately.

Without any significant increase in fuel burn (less than 1% between the two de-

signs), a heavier and stiffer design is obtained when the flutter constraint is enforced.

While a smaller aspect ratio design is obtained with the flutter constraint, geometric

differences and aerodynamic differences are overall small, and possibly close to the

function accuracy and tolerances set in the optimization. This makes it difficult to

interpret or draw decisive conclusions whether such differences are solely due to the

inclusion of the flutter constraint. Despite these differences being small they are not

insignificant, in particular in terms of manufacturing.

However, the structural sizing differences are significant, where the optimized

design with the flutter constraint is 1.8% heavier. The largest increase is found at the

front spar, followed by the lower and upper skin. These characteristics are similar as

identified in Chapter 6, namely the optimizer takes advantage of aeroelastic benefits

by effectively moving the center of gravity upstream, resulting in flutter free final

design. This increase in stiffness of the flutter-constrained structure is evident from

the reduced tip deflection. Overall, a feasible and optimal, flutter free design is

obtained without significant compromise in fuel burn and structural mass.

The results presented in Chapters 6 and 7 demonstrate the necessity of adding
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and enforcing a flutter constraint in the high-fidelity aerostructural design process.

Depending on the configuration, the flutter-constrained optimum exhibits differences

in planform and shape, but more significant sizing features are observed. Collectively,

theses differences alter and improve the wing aeroelastic characteristics ultimately

obtaining a feasible and optimal flutter free design. The proposed flutter constraint

complements commonly enforced structural constraints such as failure, buckling, and

adjacency constraints, making the overall optimal design more robust.

8.2 Contribution

A large portion of the work in this dissertation is concerned with development and im-

plementation of the proposed flutter constraint and the associated derivatives. How-

ever, original contributions are also concerned with application and analysis. The

contributions of this thesis are the following:

1. Developed and implemented a robust flutter analysis methodology, and formu-

lated a continuous flutter constraint applicable for gradient based optimization.

Demonstrated the continuity of the constraint formulation resulting in a smooth

feasible region for design optimization. This work made it possible to include a

flutter constraint in high-fidelity aerostructural optimization, which was demon-

strated using MACH [134, 210].

2. Developed and implemented efficient and accurate derivative computation of

the flutter constraint using analytic and reverse mode AD. The derivative im-

plementation is rigorously verified and for all new components shown to be

accurate to machine precision. Reverse mode derivative implementation of the

Lanczos eigenvalue method to compute derivatives of modes and mode shapes

with reduced basis. This enables computation of varying modes shapes, which

is important when considering geometric design variables.
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3. Performed the first known high-fidelity aerostructural optimization subject to

flutter constraint considering aerodynamic, planform, and structural sizing de-

sign variables.

4. Performed the first known multipoint high-fidelity aerostructural optimization

of a full configuration commercial aircraft subject to flutter constraint. This

optimization problems considers over O(1000) aerodynamic, shape, planform,

and structural sizing design variables together with O(1000) aerodynamic, ge-

ometric, stress, buckling, manufacturing, and flutter constraints.

5. Extensive literature survey conducted for flutter and post-flutter analysis meth-

ods in aircraft design optimization [2].

8.3 Recommendations for Future Work

Throughout this work, numerous possible avenues for future work have been identified

that can continue to advance the proposed capabilities and the state of the art of

high-fidelity aerostructural design optimization. These suggestions include not only

applications, but also new methods that can be incorporated.

1. Multipoint flutter constraint.

In this work a single Mach number is specified and the dynamic pressure is varied

(using matched density and speeds) effectively simulating change in altitude.

By including more Mach numbers a greater portion of the flight envelope could

be considered to provide a more robust design. Two possible approaches are

suggested here. Leveraging the MACH framework multipoint component, a

multipoint stencil could be generated including the most critical Mach numbers

similarly as done for the cruise conditions. Another approach is to adopt a

sampling strategy that samples the entire flight envelope over multiple Mach
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and altitudes. A similar strategy is proposed by [116]. The second approach is

more intrusive and requires a more fundamental development and refactoring

of the current code. Both approaches are embarrassingly parallel, thus analysis

points can be run in parallel, minimizing the impact on computational cost.

2. Full configuration with fuel and engine mass.

Including the engine mass is known to lower the torsion mode, thus directly

affecting the flutter characteristics. As part of this work, the necessary point

mass element and weighting strategy were implemented to model the engine

mass. However, including the engine mass in the dynamic analysis resulted

in unwanted local modes appearing when changing the design. While it may

be difficult to completely get rid of such behavior, it is possible that more

sophisticated element is needed, in particular the RBE3. Such element was

found not attainable to implement in the version of TACS used in this work.

Further investigation and implementation is suggestion in a more recent version

of TACS.

3. Visualize the critical and active aeroelastic modes.

In this work the natural mode shapes are visualized to determine which type of

mode shapes, e.g., bending, are used in the aeroelastic analysis. The aeroelastic

modes then emanate from these modes at wind-off. By using the aeroelastic fre-

quency characteristics (the imaginary part of the eigenvalues), one can estimate

the aeroelastic mode shape based on how close the frequencies of other modes

are to the critical mode. However, visualizing the actual aeroelastic modes can

provide additional insight and aid understanding interpreting results and de-

sign tradeoffs. Implementing such visualization requires storing the aeroelastic

mode shapes and a post-processing step such that the reduced aeroealastic mode

shape can be represented on the structure. Storing these modes is not necessary
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during optimization and this analysis could be performed when analyzing the

optimized design.

4. Parallel implementation of the flutter solution method.

The current implementation of the flutter analysis is executed on a single core.

While this is not found to be a limitation for the cases considered in this work,

solving the generalized nonlinear eigenvalue problem for large application prob-

lems considering 100 natural modes or more, may become a bottleneck. Utiliz-

ing eigenvalue libraries to solve such large problems in parallel could alleviate

that. Similarly, during the computation of the correlation matrix for the mode

tracking is independent of each other and is embarrassingly parallel. More gen-

erally, using libraries such as MPI could further improve performance in various

places.

5. Implement aerodynamic solver directly representing the aerodynamic shape.

In this work the aerodynamic method chosen is a DLM, which models the aero-

dynamic surface directly as a flat surface, parallel to the stream of flow. Aero-

dynamic shape changes are thus not directly modeled in the dynamic analysis.

Other aerodynamic methods are possible as the flutter methodology presented

here is general.

6. Flutter analysis considering aerodynamic nonlinearities.

A major challenge is developing efficient flutter analysis models and methods

applicable in the presence of aerodynamic nonlinearities. Aerodynamic nonlin-

earities, such as shock waves and flow separation, significantly impact the flutter

speed. The linear doublet lattice method is not capable of modeling such nonlin-

earities, and thus may give inaccurate predictions in the transonic flow regime.

However, the computational cost is a big challenge because the flutter point de-
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pends on the equilibrium state, requiring at minimum, the steady background

flow solution. Several paths are possible here that are part of this topic.

Correction methods exist that corrects linear responses using higher-fidelity

data to better match nonlinear CFD methods can be applied. However, despite

many of the correction methods achieving good agreement with reference CFD

data, they all depend on high-fidelity reference data. In fact, many of the more

recent methods employ time-linearized frequency domain or small perturbation

CFD methods, to compute and provide the reference data. Such CFD meth-

ods could also be applied directly, but developing derivatives for such methods

needs care due to the second order derivative information needed on an already

linearized approach. Furthermore, ROMs based on high-fidelity CFD are be-

coming increasingly popular choice in aeroelastic analysis. Finally, despite the

high computational cost, full nonlinear frequency domain CFD approaches, such

as harmonic-balance or time-spectral can also be considered and applied.

7. Geometrically nonlinear configurations. For moderately flexible configurations,

structural nonlinearities can be neglected, so eliminating the need to solve a

nonlinear static aeroelastic problem at each flight condition. However, for high

aspect ratio wings this assumption may not be applicable. Investigating struc-

tural nonlinearities in flutter prediction is challenging for both analysis and

design and is an active field of research.
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APPENDIX A

Doublet Lattice Method

A.1 Unsteady Transonic Flow

Here we provide a brief review unsteady transonic flow equations ranging from linear

to nonlinear that are found in literature and applied in flutter analysis.

A.1.1 Transonic Small Disturbance (TSD)

The TSD equations are a popular linearization of the full potential equations (FPE)

where the velocity potential is assumed have a uniform flow in the x direction and

composed of

Φ = U∞x+ φ, (A.1)

where U∞ is the freestream velocity, and φ is the perturbation velocity potential,

where perturbations are assumed to be small. Unlike the FPE which is valid for

arbitrary bodies, due the small perturbations the, TSD equation is only valid for

slender thin bodies. It can be shown, neglecting higher order effects, that the unsteady

TSD can be written as [211]

β2φxx +M2(γ + 1)φxφxx + φyy + φzz −
2U

a2
φxt −

1

a2
φtt = 0 (A.2)
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where β2 = 1−M2 This equation is nonlinear, due to the φxφxx term, and is capable

of model shockwaves in the direction of the flow or x. Neglecting φxφxx will make

Eq. (A.2) valid in the subsonic regime, but will reduce accuracy in the transonic

regime. Thus, neglecting the nonlinear term the pressure potential equation can be

written as follows:

β2pxx + pyy + pzz −
2U

a2
pxt −

1

a2
ptt = 0 (A.3)

where p is both the pressure and the pressure potential.

A.1.2 Doublet Lattice Method (DLM)

Here we provide a short discussion on boundary element methods which are also

referred to as lifting surface methods. They have clear advantages over other methods

in terms of efficiency as only the boundary of the domain need to discretized. In terms

of lifting surfaces the flow field around a body is fully described by elements such as

sources and doublet. Depending on the type of element used the flow field can be

described as a multiplication of the element strength and a kernel function which is

defined based on the properties on the element. Using the superposition principle

the body can then be divided into multiple elements and integrated over in order to

compute the flow field.

The pressure potential (A.3) is the basis for deriving the DLM [119, 120]. An

excellent document on the mathematics leading up to the DLM is given Blair [170],

but here we briefly outline the procedure. Solutions to the pressure potential equa-

tion (A.3) can be written as follows:

p =
1

R
f(t− τ)
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where f is a general function and τ (retarded time) and R are defined as follows:

R =
√

(x− ξ)2 + β2((y − η)2 + (z − ζ)2)

=
√
x2

0 + β2(y2
0 + z2

0)

τ =
R−M(x− ξ)

aβ2

Now, specializing this general expression to harmonic behavior in time, we can arrive

at the following expression:

p =
1

R
e

[
iω
aβ2 (M(x−ξ)−R)

]
eiωt

ψ =
∂

∂z

[
1

R
e

[
iω
aβ2 (M(x−ξ)−R)

]]
= β2(z − ζ)

[
1

R2
− 1

R3

]
e

[
iω
aβ2 (M(x−ξ)−R)

]

This is the formula for a single pressure doublet. It describes the pressure ψ at

coordinates (x, y, z) due to a pressure doublet at coordinates (ξ, η, ζ).

φ = − 1

U
e−

iωx
U

∫ x

−∞
e
iωx
U ψ dx

w̄ = − 1

U

∂φ

∂z
=

1

U2
e−

iωx
U

∫ x

−∞
e
iωx
U ψ dx

w̄ =
1

4πρU2

∫
S

∆pe−
iω(x−ξ)

U
∂2

∂z2

[∫ x−ξ

−∞

1

R
e
iω
(
x
U
−R−Mx

aβ2

)
dx

]
dS

The doublet lattice method (DLM) is based on the following expression for the

nondimensional normal wash, w̄(x, s) on a wing in an oscillating flow where the x-
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direction is parallel to the free-stream direction:

w̄(x, s) =
1

8π

∫
S

∆Cp(ξ, η)K(x− ξ, s− η) dξdη (A.4)

where the kernel function K, is given by the following expression:

K = e−iωx0/U

[
K1T1

r2
1

+
K2T2

r4
1

]
(A.5)

where:
x0 = x− ξ

y0 = y − η

z0 = z − ζ

r1 =
√
y2

0 + z2
0

The kernel function is derived from the doublet acceleration potential and for the

DLM given by [212].

The terms T1 and T2 are the normal and transverse contributions to the normal

wash defined as follows:

T1 = cos(γr − γs)

T2 = (z0 cos γr − y0 sin γr)(z0 cos γr − y0 sin γr)

The terms K1 and K2 are the planar and nonplanar contributions to the kernel

function given as follows:

K1 = I1 +
Mr1

R

e−ik1u1√
1 + u2

1

K2 = −3I2 − i
k1M

2r2
1

R2

e−ik1u1√
1 + u2

1

− Mr1

R

[
(1 + u2

1)
β2r2

1

R2
+ 2 +

Mr1u1

R

]
e−ik1u1

(1 + u2
1)3/2
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where the following definitions are used:

β2 = 1−M2

k1 =
ωr1

U

R2 = x2
0 + β2r2

1

u1 =
MR− x0

β2r1

Finally, I1 and I2 are integrals that are given as follows:

I1 =

∫ ∞
u1

e−ik1u

(1 + u2)3/2
du

I2 =

∫ ∞
u1

e−ik1u

(1 + u2)5/2
du

(A.6)

The doublet lattice method contains two essential components:

1. The integral expressions (A.6) are approximated using an approximation of the

function 1− u/
√

1 + u2

2. The kernel function itself is approximated using a quartic expression and inte-

grated across the panel length

The body under investigation is discretized into panels and Eq. (A.4) is evaluated

for each panel, at the 3/4 chords (the collocation point), against all other panels on

the body. Note that panels are required to be parallel to the streamwise direction in

order for the theory to hold. This approach leads to a system of equations where the

resulting matrix relates pressure coefficient to the downwash on all panels

w̄ = D∆Cp (A.7)

where the matrix D elements are each solution of the Eq. (A.4). For further details

please refer to Ref. [119, 120]
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A.1.3 Boundary Conditions

Given the appropriate boundary condition it can be shown that the linearized small

disturbance equation has a unique solution. A time varying surface in space can be

given by the equation

F (x, y, z, t) = 0 (A.8)

Due to the inviscid nature of the problem, the boundary conditions requires the flow

to be tangential to the surface at a given time instance. This is equivalent to saying

that the normal flow component should be zero. This can be written as

∂F

∂t
+ V · ∇F = 0

∂F

∂t
+ Vi

∂F

∂xi
= 0

(A.9)

(A.10)

where the latter equation is given in index notation. Here we linearize the above

equation about an undisturbed and uniform flow. This limits us to thin wings. The

surface of the wing is described as F = Fw(x, y, z, t) and given by two uncoupled

components, hm, ht which are the deformations of the midplane and the thickness

envelope, respectively, about the undeformed midplane, i.e., z = 0. This can be

written as

Fw(x, y, z, t) = z − h(x, y, t) = 0 (A.11)

where

h(x, y, t) = hm(x, y, t)± ht(x, y, t) (A.12)

The linearized flow about uniform freestream V = Uî is given as

V = (U + u)̂i+ vĵ + wk̂ (A.13)
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where u, v, w are the small disturbances form the uniform stream. By substituting

Eq. (A.11) in Eq. (A.9) we get

−∂h
∂t
− (U + u)

∂h

∂x
− v∂h

∂y
+ w = 0 (A.14)

dropping nonlinear terms and rearranging we obtain

w =
∂h

∂t
+ U

∂h

∂x
(A.15)

We can further nondimensionalize the equation by dividing with the freestream ve-

locity U

ŵ =
1

U

∂h

∂t
+
∂h

∂x
. (A.16)

A.1.4 Boundary Conditions in Frequency Domain

The normal wash w is computed from the boundary conditions (BCs). Impenetrabil-

ity boundary condition is expressed as

φz(x, y, 0, t) = w = ht + Uhx (A.17)

where subscripts are partial differentiation and h(x, y, t) is the disturbance function

describing deviation in z. Transform to frequency domain using harmonic motion, let

φz(x, y, z, t) = φ̄z(x, y, z)eiωt

h(x, y, t) = h̄(x, y)eiωt

(A.18)

(A.19)

and substituting into Eq. (A.17), differentiating and simplifying, we get

φ̄z = iωh̄+ Uh̄x. (A.20)
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In terms of the nondimensional Eq. (A.16) and using the reduced frequency k = bω/U

we obtain the nondimensional normal wash

w̄ =
φ̄z
U

=
ik

b
h̄+ h̄x (A.21)

We can further write the nondimensional normal wash using the reduced frequency

that is used in the DLM, namely, k̂ = k/b = ω/U or

w̄ =
φ̄z
U

= ik̂h̄+ h̄x (A.22)

Assuming a general motion (as is possible when using the determinant iterative

method)

φz(x, y, z, t) = φ̄z(x, y, z)est

h(x, y, t) = h̄(x, y)est

(A.23)

(A.24)

where s = γ + iω is the Laplace parameter we obtain

φ̄z = sh̄+ Uh̄x

= (γ + iω)h̄+ Uh̄x

(A.25)

(A.26)

Expanding and normalize by dividing with U we obtain

w̄ =
φ̄z
U

= ik̂h̄+
( γ
U
h̄+ h̄x

)
. (A.27)
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APPENDIX B

Lanczos Method

B.1 Lanczos Algorithm

The Lanczos algorithm extracts eigenvalues for symmetric generalized eigenvalue

problems. Here, we use this algorithm to solve for the natural frequencies of the

structural problem without aerodynamic loads:

Ku = λMu.

Instead of solving this problem directly, we use a shift and invert strategy to zero-in

on the desired spectrum to reduce the number of iterations required. This shift and

invert technique produces the following eigenproblem that has the same eigenvectors

but different eigenvalues:

M(K− σM)−1Mu = µMu,

where the transformed eigenvalue µ is related to the original eigenvalue λ through

the relationship:

µ =
1

λ− σ .

When σ is chosen such that it lies close to the desired λ, the corresponding transformed

eigenvalues, µ, become well separated, making the Lanczos algorithm more efficient.
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The Lanczos algorithm uses an M-orthonormal subspace, written as Vm ∈ Rn×m,

such that VT
mMVm = Im. In exact arithmetic, this subspace can be formed directly

from the Lanczos three-term recurrence. However, the resulting subspace loses or-

thogonality as the algorithm converges to an eigenvalue due to numerical truncation

errors. Instead, we use an expensive, but effective, full-orthonormalization procedure

(Gram–Schmidt) that enforces M-orthonormality.

1: Lanczos method for computing eigenvalues/eigenvectors of Ku = λMu

2: Given: m, v̂1, σ, εtol

3: Factor the matrix (K− σM)

4: Set i = 1

5: while i ≤ m do

6: v̂i+1 = (K− σM)−1Mvi

7: Set j = 1

8: while j ≤ i do . Full M-orthonormalization

9: hji = vTj Mv̂i+1

10: v̂i+1 ← v̂i+1 − hjivj
11: j ← j + 1

12: end while

13: αi ← hii

14: βi =
√

v̂Ti+1Mv̂i+1

15: vi+1 = v̂i+1/βi

16: Ti = tridiagk{βk, αk, βk−1} . Solve the reduced eigenproblem

17: Solve Tiyi = θyi for (θ,yi)

18: if βiy
T
i ei < εtol then . Test for convergence

19: u = Viyi

20: λ = 1
θ

+ σ

21: break

22: end if

23: i← i+ 1

24: end while

The Lanczos method can be easily extended to find multiple eigenpairs (λi,u).

A byproduct of the Lanczos method is the M-orthonormal subspace. Instead of

discarding this subspace, we use these vectors to enhance the flutter prediction and
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eigenvector computation.
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APPENDIX C

XRF1

C.1 Additional Optimization Results

Plots for individual design variable, the stiffener pitch, stiffener height, stiffener thick-

ness, and panel thickness, are provided in the in Figs. C.1 and C.2.

A detailed buckling and failure map for each maneuver flight conditions 2.5g, -1g,

and 1g is presented in Figs. C.3 to C.5.
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(a) Pitch

(b) Stiffener height

Figure C.1: Structural thicknesses of the optimized designs with and without the
flutter constraint. A diverging color map highlights the difference between the designs.
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(a) Stiffener thickness

(b) Panel thickness

Figure C.2: Structural thicknesses of the optimized designs with and without the
flutter constraint. A diverging color map highlights the difference between the designs.

184



(a) Buckling

(b) Failure

Figure C.3: Buckling and failure comparison of the optimized designs with and with-
out the flutter constraint, for the 2.5g maneuver condition. A diverging color map
highlights the difference between the designs.
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(a) Buckling

(b) Failure

Figure C.4: Buckling and failure comparison of the optimized designs with and with-
out the flutter constraint, for the -1g maneuver condition. A diverging color map
highlights the difference between the designs.
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(a) Buckling

(b) Failure

Figure C.5: Buckling and failure comparison of the optimized designs with and with-
out the flutter constraint, for the 1g maneuver condition. A diverging color map
highlights the difference between the designs.
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