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Abstract

High-fidelity optimization of aircraft has the potential to produce more efficient
designs and to further reduce the risk of late design changes. For the optimization
to generate a useful design, all the relevant constraints must be considered, including
flutter. This is especially important in the high-fidelity aerostructural optimization
of commercial aircraft, which is likely to result in high-aspect-ratio wing designs that
are prone to flutter. To address this issue, we develop a flutter constraint formulation
suitable for gradient-based aerostructural optimization with accurate and efficient ad-
joint derivatives. This approach scales well with the number of design variables and
considers both structural sizing and aerodynamic planform variables. An effective
bounding curve defines the flutter-free flight envelope, prevents discontinuities in the
flutter constraint, and allows for minimum flutter speed to be specified implicitly.
The flutter constraint formulation utilizes an efficient non-iterative p-k method, an
effective bounding curve, and an aggregation technique that results in a single con-
straint in the optimization problem. Accurate and efficient derivatives of the flutter
constraint value with respect to structural sizing variables and aerodynamic planform
variables are computed. Furthermore, to enable changes in planform, derivatives of
the mode shapes are also computed efficiently. The derivatives are computed us-
ing a combination of analytic and automatic differentiation methods in reverse mode
(adjoint) and rigorously validated using the complex-step method. We perform a
multipoint, high-fidelity aerostructural optimization of a wing and full configuration

aircraft with and without the flutter constraint, subject to stress and buckling con-

XV



straints. With the flutter constraint, we obtain a stiffer, lower aspect ratio wing with
stark differences in structural sizing, but without a significant reduction in objective.
These results demonstrate the importance of including flutter constraints in wing de-
sign optimization. The proposed approach can be used to enforce such constraints in
other applications and could be adapted to constrain other types of phenomena with

the same form.
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CHAPTER 1

Introduction, Background and Objectives

1.1 Introduction

Flutter is a dynamic aeroelastic instability that causes divergent oscillatory vibra-
tions [3]. It is an undesirable phenomenon in aircraft because it can cause structural
damage or failure, performance and ride comfort degradation, or loss of control. Flut-
ter computations are typically performed only after an initial detailed design of the
aircraft is completed, because they require the vehicle stiffness, mass, and aerody-
namic models to be available [4]. If the design does not satisfy the flutter require-
ments at this stage, a redesign is necessary, which adds costs and delays to the aircraft
development cycle. Thus, it is desirable to consider flutter concurrently with the air-
craft design and the wing design in particular. Such a process would not only shorten
the design cycle, but also allow for advantageous design trade-offs between the flutter
requirements, the other constraints, and the aircraft performance.

Performing multidisciplinary design optimization (MDO) that considers both aero-
dynamic shape and structural sizing simultaneously while enforcing flutter constraints
is a way to address this issue [5, 6]. Structural optimization alone, even if includ-
ing aerostructural analyses for enforcing flutter constraints, yields design solutions
with suboptimal performance compared to the optimal designs resulting from MDO,

where structural and aerodynamic sizing variables are optimized simultaneously [6, 7].



MDO can minimize structural weight, fuel consumption, or a combination of these two
objectives with respect to wing shape, internal structure arrangements, and sizing,
while accounting for the interactions between aerodynamics, structures, and other
disciplines, and satisfying various constraints. MDO with flutter constraints results
in designs with optimal aeroelastic tailoring. Omitting flutter constraints in the
MDO process when minimizing fuel consumption tends to yield light-weight, high-
aspect-ratio wing (HARW) designs that despite being highly efficient may not be
feasible [8, 9.

After the aircraft has been designed and a prototype has been built, certification
requires flight tests to demonstrate that the aircraft be free from flutter in the flight
envelope with a 15% safety margin beyond the dive speed. If flutter is discovered at
the flight test certification stage, it requires redesign to address it, incurring additional
costs. The redesign effort typically increases the structural weight, reducing the
performance originally anticipated for the aircraft.

The trend towards HARW aircraft is driven by better fuel efficiency, but their
increased flexibility makes it all the more important to consider flutter accurately and
early in the design process [10]. Another recent trend is the increasing use of control
surfaces to suppress flutter. Active flutter suppression systems can be incorporated
late in the design process when aeroelastic instabilities are encountered and a passive
solution such as redesign is impractical and expensive [11, 12]. Alternatively, MDO
provides a way to obtain the best possible configuration by co-designing the wing
shape and internal structure, which contribute to passive flutter suppression that can
then be augmented with an active flutter control system.

While there has been extensive work in methods for flutter analysis, integrating
flutter constraints into design optimization requires additional considerations. Models
used for flutter prediction should capture the relevant physics with adequate accuracy

to correctly drive the optimizer, and inevitably there is a compromise between model



fidelity and computational cost. To include flutter analysis in a numerical optimiza-
tion cycle, speed of execution is particularly important to make sure that the overall
optimization process is tractable.

Another important characteristic for integrating flutter analysis into the optimiza-
tion process is the robustness of the flutter prediction method. Since the optimization
process automatically samples the design space, it is likely to request for the anal-
ysis of designs that would normally not be chosen by a human designer. Thus, it
is important that the flutter analysis converges for such designs so that the overall
optimization process is not interrupted.

Gradient-based optimization algorithms are needed to optimize practical aircraft
configurations parameterized with a large number of design variables [13]. When using
gradient-based algorithms, it is important to consider the smoothness of the objective
and constraint functions, as well as the accuracy and efficiency of the derivative
computations.

Optimizing HARW configurations subject to flutter constraints is even more chal-
lenging because it requires capturing couplings between aeroelasticity and flight dy-
namics along with geometric nonlinearities that arise in the presence of low natural
vibration frequencies and significant structural flexibility [14, 15].

Nonlinearities in the structure (large deflections, free-play of control surfaces, fol-
lower loading) or the aerodynamics (shock waves and flow separation) can cause
self-sustained oscillations of limited amplitude that remain constant in time, known
as limit cycle oscillations (LCOs). For certain types of nonlinearities, LCOs may
exist at flight conditions below the flutter point [16]. When nonlinear effects become
important, post-flutter analysis should be integrated into the design process in the
form of constraints to make sure that the optimal design is feasible.

There have been several review papers and textbooks on flutter and post-flutter

analysis. Livne [17, 18] reviewed the state-of-the-art and future challenges in aeroe-



lasticity of conventional and unconventional vehicles. A recent review by the same
author focused on active flutter suppression control systems [12]. Friedmann [19]
reviewed the general challenges in nonlinear aeroelasticity, where the applications fo-
cused on rotary wings. Dowell et al. [16] classified nonlinear aeroelastic behaviors and
discussed theoretical, computational, and experimental analysis efforts. de C. Hen-
shaw et al. [20] discussed traditional industrial linear flutter prediction and recent
efforts for including nonlinear effects, particularly due to transonic flows. More re-
cently, Afonso et al. [10] reviewed nonlinear aeroelasticity of HARWs. Dimitriadis [21]
discussed nonlinear post-flutter behaviors in aeroelastic systems and the related anal-
ysis methods. Beran et al. [22] reviewed methods for uncertainty quantification in
aircraft aeroelasticity and their application to formulate nondeterministic optimiza-
tion problems. However, the field lacks a review on the integration of flutter and
post-flutter analysis as constraints in aircraft design optimization.

In this chapter, we address this shortcoming by reviewing methods for flutter pre-
diction, and we discuss their advantages and disadvantages in the context of aircraft
design optimization. We refer the reader to Jonsson et al. [2] for discussion on struc-
tural nonlinearities in flutter analysis and post-flutter analysis and their integration
into design optimization.

First, we provide a brief background on multidisciplinary design optimization in
Section 1.2 and on flutter modeling in Section 1.3. These sections emphasize the
key aspects relevant to aircraft design and are beneficial for readers not familiar with
either of these topics. These methods and examples of their application in aircraft
design optimization problems are then discussed in Section 1.4. The chapter concludes
with remarks on the state of this field and the open challenges to be addressed for

integrating flutter considerations into the optimal design of aircraft configurations.



1.2 Background on Multidisciplinary Design Op-
timization

Multidisciplinary design optimization couples the relevant disciplines of an engineer-
ing system and performing a numerical optimization to aid the design of that sys-
tem [23]. MDO considers several disciplines simultaneously such that their interac-
tions can be leveraged, resulting in a better optimum than if each discipline were
optimized sequentially [24]. Thus, considering MDO early in the design process al-
lows engineers not only to improve the design, but also to minimize development time
and cost of the overall design.

Performing MDO of aircraft configurations by describing its outer mold line (OML)
and structural sizing with high fidelity requires a large number of design variables.
Detailed aerodynamic optimization of wings requires hundreds of shape variables [25]
and structural sizing based on a detailed finite-element wingbox model that is best
utilized with an equally large number of sizing variables [26]. Gradient-based opti-
mization methods are the feasible way to solve for high-dimensional problems within
a reasonable computational time, especially when using high-fidelity analyses [13, 27].
Gradient-based methods require derivatives of the objective and constraint functions
with respect to the design variables to help the optimization algorithm find the most
promising search directions and establish rigorous optimality conditions.

While gradient-free algorithms are typically more robust and some of them ex-
plore the design space more widely, their cost is prohibitive when the number of design
variables is large. Although gradient-based methods only guarantee convergence to a
local optimum, this can be mitigated by using a multi-start technique [28]. Further-
more, recent studies failed to find multiple local minima (multimodality) in airfoil
and wing shape design optimization [13, 25], except the case of planform optimiza-

tions where expected local minima were found related to choices such as upwards or



downwards winglets [29].

The efficacy of gradient-based algorithms relies on accurate and efficient gradient
computations. The gradient accuracy directly affects the ability to converge to the
optimum with a specified tolerance and the order of convergence of the optimization.
In the best case, inaccurate gradients increase the number of iterations required for
convergence and in the worst case cause early stopping due to numerical issues. Effi-
ciency gradient computation is also important because this computation is sometimes
the bottleneck in the optimization cycle.

When it comes to methods for computing gradients, the finite-difference method
is a popular choice because it is easy to implement and can always be used, even with
black-box codes. The major drawbacks of the finite-difference method is that it is in-
accurate and its computational cost scales poorly with the number of design variables.
Unlike the finite-difference method, the complex-step method [30] is accurate, but its
cost still scales unfavorably with the number of design variables, making it prohibitive
for wing design applications. Another option for computing gradients is automatic
differentiation (AD), which uses a software tool to parse the code of an analysis to
produce a new code that computes derivatives of that analysis [31, 32]. Although AD
can scale well with the number of variables, it does not handle iterative simulations
efficiently in general. Finally, analytic methods are the most desirable because they
are both accurate and efficient, especially for iterative simulations [33]. However,
they require significant implementation effort. There are two main approaches within
the analytic methods: the direct approach and the adjoint approach. The adjoint
approach is attractive because the computational cost is dependent on the number
of outputs of interest (objectives and constraints) but independent of the number of
design variables [33, 34]. A coupled-adjoint approach can be solved for solve static
aeroelastic problems [7, 8, 35] and can be generalized to any multidisciplinary prob-

lem [36, 37].



In the context of aircraft design optimization subject to flutter or post-flutter
constraints, most of the early efforts used gradient-based optimization with gradients
computed with either finite differences or the direct analytic method. However, recent
efforts implemented the more efficient adjoint approach, and some also used AD

techniques. These applications are further discussed in Section 1.4.2.

1.3 Background on Flutter Modeling

For aircraft designs to be useful and practical, the underlying models used in the
flutter and post-flutter analysis need to capture the correct physics involved. However,
a simplification of the phenomena is often necessary to make problems tractable to
solve. Therefore, the choice of model should balance the fidelity needed to obtain
accurate predictions and the mathematical or computational tractability for design
applications.

This section highlights the modeling aspects to be considered in flutter analysis,
which is discussed in more detail in Section 1.4 for obtaining meaningful results in
a design optimization. By flutter, we mean the onset of divergent oscillations as the
flight conditions of aircraft cross the critical stability boundary (flutter boundary).

Mathematically, flutter occurs at a Hopf bifurcation point [38] beyond which the
system is in the post-flutter regime. Several post-flutter behaviors are possible, as
discussed in detail by Dimitriadis [21] for a two-dimensional aeroelastic system with
stiffness and damping nonlinearities. Among these behaviors, we are particularly
interested in self-sustained oscillations with limited amplitude that remains constant
in time, known as LCOs.

LCOs typically develop beyond the flutter boundary; however, for certain types of
nonlinearities, they can also occur before reaching the flutter boundary [14]. Integrat-

ing post-flutter analyses into the design process can prevent this undesirable situation.
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Figure 1.1: Aeroelastic system response before and past the flutter point. Prior
to reaching the flutter point, the aeroelastic response is damped. At the flutter
point, the system response is an oscillation with a small constant amplitude. Past
the flutter point, a linear system response diverges, while a system with structural
or aerodynamic nonlinearities develops a stable response with finite amplitude that
remains constant in time, known as LCO.

For details on post-flutter analysis methods and their application in optimization we
refer the reader to Jonsson et al. [2].

Flutter is defined as a self-exciting dynamic instability that is associated with the
interaction of inertial, elastic, and aerodynamic forces [3]. At the onset of flutter, this
aeroelastic instability can be physically described as an oscillation with a small ampli-
tude that is constant in time triggered by a small-amplitude disturbance, as shown in
Fig. 1.1. The flight condition in which the system damping vanishes, resulting in this
self-sustained oscillation, represents the flutter point (or flutter boundary). For linear
systems, the flutter point is defined as the minimum dynamic pressure at which at
least one of the modes becomes unstable [3]. The dynamic pressure can be replaced
by equivalent airspeed, and is a function of altitude and Mach number.

Past the flutter point, in the absence of restraining nonlinearities from the aerody-



namics, the structure, or both, the amplitude of the oscillations grow exponentially.
Fluid-structure interactions may also result in a static instability called divergence [3],
which is not associated with oscillations. As for flutter, the structural response grows
unbounded past the onset point, eventually reaching a limited-amplitude oscillation
if restraining nonlinearities are present.

In the following discussion, we focus mainly on flutter phenomena, because for
many practical configurations flutter occurs before divergence. However, accounting
for divergence and the associated post-critical response in the design process shares
many of the modeling and analysis aspects associated with flutter. Furthermore,
some of the analysis methods and constraints discussed in Section 1.4 are applicable
to divergence as well as flutter. Moreover, in this work we focus on global wing or
component flutter rather than localized effects such as panel flutter that typically
occurs at supersonic flow conditions.

The possible flutter characteristics are illustrated in Fig. 1.2, which shows the
variation of the modal damping with flight speed at a fixed altitude. This is known
as V —g diagram, which is a classical tool used in linear flutter analyses for determining
the flutter point and interpreting the flutter characteristics. A similar representation
can be obtained by varying dynamic pressure at a fixed Mach number.

Damping changes with flight speed in different ways among different designs,
leading to different flutter behaviors. Soft flutter occurs when the damping decreases
gradually with increasing flight speed, while hard flutter occurs when this decrease
is abrupt. Another possibility is that there is a gradual decrease in damping with
increasing flight speed, all the way to cross the zero value and beyond, followed by
a damping increase. This phenomenon is known as a hump mode. These concepts
are important when considering how to formulate a smooth and continuous flutter
constraint for gradient-based optimization and are discussed in Section 1.4.

In flutter analysis, the physics described above is often represented by less expen-
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Figure 1.2: V — g diagrams for different types of flutter. Soft flutter is a gradual loss
of damping with increased speed while hard flutter occurs abruptly and violently. A
hump mode manifests itself as a damping decrease followed by an increase, which
may result in considerably lower flutter speed.

sive linear models due to the number of conditions to be considered for certification.
However, nonlinear structural and aerodynamic effects or the interaction between
elastic and rigid-body degrees of freedom (DOF), which become important in the
presence of low structural vibration frequencies, may significantly impact the flutter
point. Therefore, the flutter prediction accuracy depends on the appropriate modeling
of nonlinear effects and boundary conditions.

Furthermore, nonlinear effects impact not only the models used in flutter analysis,
but also the analysis methods themselves. For linear systems, flutter characteristics
do not depend on the deformation state. Therefore, flutter is typically analyzed by
considering the unloaded and undeformed structure. For nonlinear systems, stability
characteristics vary with the deformation configuration. Therefore, flutter analysis
must be performed by computing the eigenvalues of the aeroelastic system linearized
around equilibrium points for each flight condition to identify at what point the
damping vanishes [14]. The eigenvalues can be computed by considering both the
elastic and rigid-body DOFs (flutter in free flight) or by retaining only the elastic

DOFs (traditional flutter) or the rigid-body DOF's (flight dynamic stability).
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Many possible sources of nonlinearities can be present simultaneously in aeroelas-
tic systems [10, 16, 21]. Here, we focus on aerodynamic nonlinearities due to transonic
flow regimes and geometric structural nonlinearities due to large deflections, both of
which are critical in the design of next-generation transport aircraft.

Aerodynamic nonlinearities due to shock waves and flow separation significantly
impact the flutter speed. This decreases dramatically in the transonic regime, a
phenomenon known as the transonic dip [39-43] illustrated in Fig. 1.3. Low-order,
linear unsteady aerodynamic models commonly used in flutter analysis are in general
accurate enough for subsonic and supersonic flows, but they severely overestimate the
flutter speed for transonic conditions [44-46].

As shown in Fig. 1.3 for a hypothetical wing, linear theory is non-conservative
when compared to nonlinear viscous models. Nonlinear inviscid models based on
Euler equations can capture shock waves but they still fail to accurately predict
the flutter boundary [47]. In many cases, the nonlinear inviscid theory predicts a
highly conservative flutter speed at the dip, even though it is generally closer to
viscous theory predictions. Depending on the severity of shocks, models based on
Navier-Stokes equations (which include viscous and turbulence effects like boundary
layer thickening, flow separation, and interactions between shocks and regions of
separated flow) are necessary to obtain accurate flutter points [45]. Studies on various
geometries demonstrated that taking into account viscous phenomena in the transonic
flow regime improves the numerical prediction of transonic dip [48-51].

A common approach to improve the accuracy of transonic flutter computations
while minimizing the increase in computational cost is to use numerical or experimen-
tal corrections applied to potential-flow linear models [52]. However, the correction
data may not be available for optimization, either because it requires high-fidelity
computations that are too expensive or because it is obtained from wind-tunnel mea-

surements. This problem can be addressed by analyzing flutter using time-accurate
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Figure 1.3: Characteristic transonic dip of a transport wing. Aerodynamic nonlin-
earities due to shock waves and flow separation have a significant impact on the
flutter speed, which may decrease dramatically. Linear theory (e.g., DLM) is non-
conservative when compared to nonlinear viscous theory (e.g., RANS). Nonlinear
inviscid theory (e.g., Euler) predicts highly conservative flutter speed at the dip, but
it is generally closer to viscous theory predictions.

dynamic simulations and higher-fidelity aerodynamic models. On the other hand,
flutter prediction based on time-accurate computational fluid dynamics (CFD) is a
challenge even for just analyzing the final configuration and is currently prohibitive
for design space exploration.

Methods exist that try to preserve the computational efficiency of lower-fidelity
methods while retaining the nonlinear physics modeled by the higher-fidelity CFD
methods. One possibility is to use time-linearized transonic small disturbance (TSD)
equations. Linear small-disturbance theory is inadequate for capturing strong tran-
sonic shocks, but small-disturbance solutions about the steady nonlinear background
flow computed using high-fidelity CFD can provide acceptable performance and accu-
racy [53]. Another possibility is to use the transonic equivalent strip (TES) theory [54]
and a provided pressure distribution from either experimental data or a high-fidelity
CFD code to compute the small-disturbance transonic aerodynamic loads for flutter

analysis [55]. Furthermore, several efforts have applied the time-linearization directly
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to CFD solvers. This approach is appealing since is retains nonlinear effects, provides
accurate results in the transonic regime, and intrinsically accounts for geometric prop-
erties of the body such as thickness and camber.

Kreiselmaier and Laschka [56] developed an unsteady method based on the small-
disturbance Euler equations, which was later extended to small disturbance Navier—
Stokes equations to include viscous effects [57]. The proposed method produced good
results in the transonic flow regime [58, 59]. Thormann and Winghalm [60] developed
a linear frequency domain (LFD) solver taking advantage of preconditioned Krylov
GMRES [61] solution method. Later, Widhalm and Thormann [62] improved the
algorithm and provided the analytic derivatives needed in the solution, improving
the solver efficiency. The method was shown to be accurate when compared to full
unsteady time-marching solutions.

These approaches consider unsteady aerodynamic models linearized about non-
linear equilibrium states and thus can capture the impact of static nonlinear effects
on flutter. Moreover, they demonstrate computational savings well beyond an order
of magnitude compared to fully unsteady time-marching solutions [56, 60]. However,
computing derivatives of such methods for optimization is challenging due to the need
for second-order derivative information.

Motivated by the interest in capturing key transonic flow physics with low compu-
tational cost, recent efforts also developed low-order unsteady transonic aerodynamic
models suitable for integrating transonic flutter analyses into aircraft design.

Skujins and Cesnik [63] proposed a reduced-order unsteady aerodynamic model for
multiple Mach regimes based on linear convolution with a nonlinear static correction.
The methodology included error estimation capabilities based on the newly developed
method of segments, which represents a flexible wing as a collection of rigid spanwise
segments subject to local angle of attack and Mach number conditions. The method

of segments was also applied to transonic flutter analysis of a transport vehicle by
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Kitson and Cesnik [64].

Mallik et al. [65] developed a reduced-order model for HARW configurations
by combining time-linearized Leishman indicial functions [66] with lift-curve and
moment-curve slopes obtained by solving the RANS equations around airfoils at
various Mach number and angle of attack conditions and for various thickness ra-
tios. They obtained a state-space formulation for the airfoil unsteady aerodynamics
to be used for eigenvalue analysis, which was extended to three-dimensional HARW
discretized in spanwise strips by accounting for sweep correction. Flutter results
were compared with wind-tunnel experiments for a truss-braced wing (TBW) con-
figuration. The low-order model captured the transonic dip that was not predicted
by potential-flow theory and presented good agreement with experiments at signif-
icantly lower computational cost compared to unsteady RANS simulations. These
results showed the method suitability for conceptual HARW aircraft design including
transonic flutter constraints.

Opgenoord et al. [67] developed a physics-based two-dimensional low-order model
for transonic airfoils using the perturbations of the lowest-order volume-source and
vorticity moments with respect to a known nonlinear background flow solution as
the states. Evolution equations for these perturbations were derived and calibrated
using data from high-fidelity Euler CFD simulations. A state-space unsteady aero-
dynamic model was obtained for airfoil flutter analysis which was later extended to
three-dimensional HARW configurations [68] using strip theory and sweep correction,
as done by Mallik et al. [65]. The method was applied in conceptual design and
optimization problems including transonic flutter considerations [68, 69].

In addition to capturing transonic effects, a more recent flutter modeling need is to
take into account geometric structural nonlinearities. These are particularly impor-
tant in the analysis of HARW configurations, which achieve higher energy efficiency

at the cost of increased structural flexibility and thus experience large deflections un-
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der normal operating load conditions. The changes in geometric shape and stiffness
properties due to these deflections significantly affect the flutter boundary [15]. When
deformations are large, traditional flutter analysis based on the vehicle undeformed
shape does not capture the actual behavior of the aircraft during flight.

Studies on isolated HARWSs [70], high-altitude long-endurance (HALE) flying-
wing configurations [14, 71, 72], and commercial transport vehicles [64] pointed out
the need to analyze very flexible aircraft in statically deformed configuration at trim,
which varies with the flight condition. Including structural nonlinearities in flutter
prediction is challenging for both analysis and design due to the high computational
cost of nonlinear aeroelastic simulations and the flutter boundary dependency on the
deformation state, which is not considered in linear approaches.

Finally, classical wing flutter analyses typically assume the vehicle to be clamped
at the wing root. While this may be an acceptable simplification for some vehicles, it
does not reflect the vehicle behavior in free flight [17, 18]. For some configurations,
simply including rigid-body DOFs influences the flutter solution substantially [14].
This occurs due to the coupling between rigid-body motion and structural dynamics
that arise in the presence of low natural vibration frequencies. These interactions
usually result in lower flutter points than the cantilevered configurations or different
flutter mechanisms like body-freedom flutter (BFF) [73]. Therefore, it is imperative to
understand the effect of boundary conditions and state variables on flutter prediction.

Mazidi et al. [74] investigated the effect of engine placement and roll maneuver
on flutter results. They observed that the roll maneuver has a destabilizing effect
on the flutter boundary dependent on the bank angle. Additionally, the location of
the engine or external store greatly affects the flutter boundary and the roll-induced
effects. Nearly all vehicles perform roll maneuvers during turns, making the inclusion
of these conditions relevant to the aircraft design process.

There has been further work on the effect of rigid-body DOFs on the flutter
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problem. Niblett [73] investigated the causes of BFF for a conventional wing-fuselage
configuration using a linear analytical flutter method. Su and Cesnik [14] investigated
the flutter behavior of a blended wing-body (BWB) aircraft both for cantilevered and
free-flying conditions using the University of Michigan’s Nonlinear Aeroelastic Simu-
lation Toolbox (UM/NAST). They observed a reduction in the flutter speed when the
rigid body DOF's were included compared to the cantilever case. Moreover, the flut-
ter mode changed to include pitch and plunge motions, resulting in BFF. Similarly,
Jones and Cesnik [75] investigated the BFF characteristics of the X-56A experimental
aircraft, describing the entire modeling process used for the flutter prediction. Cesnik
and Su [76] analyzed the University of Michigan’s X-HALE very flexible aeroelastic
testbed [77] and observed that significant wing deformations can drive lateral BFF
due to the coupling of the Dutch roll and asymmetric wing bending modes. Su
and Cesnik [72] investigated the stability and dynamic response of a highly flexible
flying wing for different payload configurations and gust disturbances. They found
that wing deflections can lead to an unstable phugoid mode and an aperiodic short-
period mode. Similar behaviors were observed by Patil and Hodges [71] and Patil
and Taylor [78]. Richards et al. [79] also analyzed the coupled flight dynamics and
aeroelasticity of flying wings. They noted that BFF occurred due to a coupling of
the short period pitching mode and the first elastic bending mode. They compared
different inertial configurations of the aircraft and noted that BFF depends largely
on the inertia about the pitch axis. They found a boundary value for pitch inertia
that uncoupled the pitch and bending modes, thus replacing BFF with a more con-
ventional flutter. After parameter studies, they concluded that BFF was caused by
low fuselage inertia, which could be mitigated by redistributing the fuselage mass.
BFF is not exclusive to flying-wing configurations; conventional tube-and-wing
aircraft can also encounter this type of instability. Cavallaro et al. [80] investigated

the flutter behavior of a Prandtl Plane (boxed wing aircraft) including rigid-body
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DOF's using MSC Nastran. Similarly to Richards et al. [79], they observed a depen-
dence on the fuselage mass in causing BFF: while the baseline configuration encoun-
tered flutter without rigid-body contributions, increasing the fuselage mass resulted
in BFF. Therefore, capturing these phenomena in flutter analyses is advisable even

for conventional configurations and imperative when investigating non-conventional

ones [17, 18].

1.4 Flutter Analysis in Aircraft Design Optimiza-
tion

Because flutter is a safety-critical phenomenon, analyses and experimental investiga-
tions are required for vehicle certification. Analyzing a configuration for flutter late
in the development cycle is likely to result in an inefficient design solution or pose
challenges mitigating unexpected instabilities, resulting in performance decrease, fi-
nancial losses, or both. For this reason, flutter should be integrated into the design
process early in the form of a constraint.

In this section, we review flutter prediction methods and previous research that
addressed optimization subject to flutter constraints. Past work has focused primar-
ily on flutter analyses using linear structures and linear aerodynamic models. Further
work considered transport aircraft operating in the transonic regime and thus used
linear structures and nonlinear aerodynamics. The recent trend towards more flex-
ible aircraft has led to research on constraining flutter for geometrically nonlinear
structures.

Due to the sheer number of design variables typically used in practical aircraft
optimization, most of the previous work reviewed here used gradient-based methods.
However, studies on geometrically nonlinear configurations were limited to simple

structures parametrized by few design variables. For this reason, efforts that consid-
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ered gradient-free optimizations are also included.

1.4.1 Prediction Methods

Flutter computations are typically performed in the frequency domain by solving
an eigenvalue problem. Well-established eigenvalue-analysis methods exist for flut-
ter analysis of linear aeroelastic systems (e.g., k-, p-, pk- and g-method) [81-85].
These methods are also applicable to nonlinear systems by linearizing the equations
of motion about the nonlinear equilibrium configuration at each flight condition for
capturing static nonlinearities due to the structure (large deflections) or the aerody-
namics (background transonic flow). Direct methods, based on the Hopf-bifurcation
theory, can also be used to predict the flutter point of nonlinear aeroelastic systems
directly in the frequency domain [20].

It is also possible to predict flutter in the time domain, but this incurs a much
higher computational cost. When analyzing the stability of a system in the time
domain, the flutter point is typically evaluated by perturbing equilibrium configura-
tions at different flight conditions and by time-marching the equations of motion in
order to verify the decay or growth of the response, or to extract damping values in
a post-processing stage [86-93].

The computational cost of time-domain flutter analysis based on transient simu-
lations is currently prohibitive for optimization, particularly in the presence of aero-
dynamic or structural nonlinearities. The high computational cost is due to the large
number of computations required to evaluate the flutter speed by means of flight
speed (or dynamic pressure) sweep or bisection. Additionally, ascertaining the sta-
bility close to the flutter point requires long integration times due to small damping
values.

For gradient-based optimization, another challenge is the efficient computation of

derivatives for time-marched systems. Adjoint methods are advantageous for opti-
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mizations with many design variables, but they are computationally expensive when
applied to time marching solvers [94]. This is because the adjoint solution requires
a reverse time integration following the forward integration for computing the sys-
tem response [95], which results in large computational times, storage, and memory
requirements [96]. Due to the above limitations, frequency-domain flutter prediction
methods are more prevalent in literature, but some fully coupled unsteady aeroelastic
adjoint implementations are found in the literature [97-102].

For a more detailed and general discussion on eigenvalue-based and direct methods

we refer the reader to Jonsson et al. [2].

1.4.2 Application to Optimization

Despite early work by researchers such as Haftka [5, 103] and Hajela [104] optimization
subject to flutter constraints is still not a standard design practice. More recently,
several authors have integrated flutter constraints into design and investigated their
effect on the optimal solutions. These efforts are summarized in Table 1.1 and re-
viewed below. They differ in the use of eigenvalue analysis (EV), direct (Hopf),
or time-domain (TD) prediction methods for flutter analysis, the fidelity of struc-
tural and aerodynamic models, and the optimization problem formulation in terms
of objective, type and number of design variables, and use of gradient-based (GB) or
gradient-free (GF) solution algorithms. Efforts that used gradient-based algorithms
also differ in the methods used for computing derivatives with respect to design vari-
ables. Finally, previous work shown in Table 1.1 differs in the types and number
of design variables that were considered in the optimization problem. Most of the
efforts included only structural sizing variables without considering changes in the
aerodynamic shape. Fewer efforts optimized the airfoil or planform shapes. Including
planform shape variables is challenging because changes in the mode shapes and the

corresponding natural frequencies need to be considered when computing derivatives,
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incurring additional computational cost.
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Table 1.1: Summary of efforts on optimization or derivative computation considering flutter [2].

Design variables

Models Shape
Effort Method” Aerodynamics™ Structure? Objective® Structural  Airfoil Planform N Algorithml
Turner [105] EV Strip theory Panel Min mass ° 3 GB-Analytic
Bhatia and Rudisill [106] EV - Beam Min mass . 12 GB-Analytic
Rudisill and Bhatia [107]  EV - Beam Min mass ° 12 GB-Analytic
Gwin and Taylor [108] EV DLM Beam Min mass ° 33  GB-Analytic
Ringertz [109] EV DLM Composite ~ Min mass ° 9 GB-Analytic
Mallik et al. [110] EV Strip theory Beam Min FB, Max TOGW ° ° ° 19  GF-Genetic
Stanford et al. [111] EV TSD+Euler Shell Min mass ° 92000 GB-Adjoint
Chen et al. [112] EV Euler Shell - Derivative computation only —  GB-Complex-step
Bartels and Stanford [113] EV RANS Shell Min mass ° 711  GB-Adjoint
Variyar et al. [9] EV Lifting line NL beam Min FB ° ° 12 GB-Finite difference
Xie et al. [114] EV DLM NL beam Min mass ° 44  GF-Direct
Bhatia and Beran [115] EV Euler NL beam Min mass ° 8 GB-Analytic
Lupp and Cesnik [116] EV Strip theory NL beam Min FB ° ° 5 GB-Adjoint
Kennedy et al. [117] Direct Panel Shell - Derivative computation only —  GB-Adjoint
Beran et al. [118] Direct ONERA stall NL beam - Derivative computation only — GB-Adjoint
Mani and Mavriplis [97] TD Euler Mass-spring Max fl. speed ° 32 GB-Adjoint
Zhang et al. [99] TD RANS Mass-spring  Max fl. speed ° 48 GB-Adjoint
Zhang et al. [100] TD RANS FEM Max fl. speed ° ° 120  GB-Adjoint

* Methods: EV-— Eigenvalue method, TD— Time-domain

T Aerodynamics: DLM—Doublet lattice method, TSD—Transonic small disturbance, RANS—Reynolds averaged Navier-Stokes
¥ Structures: NL—Nonlinear

$ Objective: FB—Fuel burn, TOGW—Takeoff gross weight

I Algorithm: GB—Gradient based, GF—Gradient free



In one of the early efforts to constrain flutter, Turner [105] formulated a mass min-
imization problem by considering distribution of material rather than the structure
topology to meet a specified flutter speed. Later, Bhatia and Rudisill [106] developed
a numerical procedure to minimize wing mass while satisfying a flutter constraint.
They applied the procedure to a uniform cross-section box beam consisting of three
bays in order to minimize the mass while maintaining the flutter speed. Rudisill
and Bhatia [107] improved the rate of convergence of this procedure by computing
second-order derivatives of the eigenvalues and of the flutter speed with respect to the
design variables. Gwin and Taylor [108] developed the method of feasible directions
for the mass minimization of a structure subject to a minimum flutter speed. They
were able to handle up to 33 structural design variables in a supersonic problem.

Due to the limited computational capabilities of the time, these early efforts used
simple aerodynamic and structural models and employed a similar strategy to en-
force the flutter constraint. They all formulated the flutter problem in the frequency
domain as an eigenvalue problem, which was then differentiated with respect to the
design variables. The derivatives of the eigenvalues were obtained using the left and
right eigenvectors and one of these efforts also considered second-order derivatives to
better guide the optimization process and improve the rate of convergence [107].

Ringertz [109] applied the k-method to minimize the weight of a cantilevered wing
in incompressible flow subject to flutter and divergence constraints. The structure
was modeled as a composite FEM model, while the unsteady aerodynamic loads were
computed using the doublet lattice method (DLM) [119, 120]. The eigenvalue problem
was analytically differentiated in the modal space. A continuous flutter constraint
was formulated using a boundary to constrain the damping values, which resulted in
a large number of constraints. The method was demonstrated on a rectangular wing
and on a swept wing with taper, where the objective was to minimize weight with

respect to element group thicknesses subject to flutter and divergence constraints. In
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both cases, a considerably lighter design was achieved.

Mallik et al. [110] investigated the impact of a previously developed flutter con-
straint [121] on the MDO of a TBW aircraft. The flutter speed was computed using
the k-method applied to a linear pre-stressed structural model. The unsteady aero-
dynamic loads were computed using Theodorsen theory [122] with a Prandtl-Glauert
compressibility correction. They implemented an iterative procedure to ensure consis-
tency of the flutter speed, Mach number, and altitude, and optimized a representative
TBW configuration for minimum takeoff weight and fuel burn using a genetic algo-
rithm. The flutter constraint was formulated by enforcing a minimum flutter Mach
number and was added to several other mission constraints. Comparing the opti-
mization results with those obtained by removing the flutter constraint, they showed
that this is necessary to obtain a flutter-free optimal solution.

Several authors have focused on including aerodynamic nonlinearities in flutter
analysis to optimize transonic configurations. Stanford et al. [111] evaluated six
different novel tailoring schemes employed in mass minimization optimization. They
analyzed the flutter characteristics using the pk method and the commercial software
ZTRAN [53] to retain aerodynamic nonlinearities. The nonlinear higher-fidelity Euler
code, ZEUS, was used to compute steady background flow at multiple transonic Mach
numbers for a fixed cruise shape. Using these steady-state CFD solutions as an input,
the linearized unsteady loads were computed for a range of reduced frequencies using
time-linearized transonic small disturbance (TSD) analyses about the equilibrium
solutions.

The system damping values were forced to be under a stability boundary, similarly
to the approach by Ringertz [109]. The transonic aerodynamic loads were computed
offline before the optimization and their derivatives were obtained by differentiating
the eigenvalue problem [123]. Flutter, stress, and buckling constraints computed

in this study were all aggregated using a KS function [124]. They considered the
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fixed-mode derivatives to improve computational efficiency, an approach that does
not allow for shape changes.

They studied the undeflected Common Research Model (uCRM) wing [125] and
obtained six different optimal wing structures corresponding to different tailoring
schemes, all for the same operating condition and setup. The six tailoring schemes
considered for the structural design were metallic thickness variations, functionally
graded materials, balanced or unbalanced composite laminates, curvilinear tow steer-
ing, and distributed trailing edge control surfaces. While there was a structural wing
mass reduction for every case , many of the lighter designs had an active flutter
constraint, while the buckling constraint was active for the heavier cases.

Chen et al. [112] extended their previous work [126] by computing derivatives
of flutter constraints with respect to shape variables using ZEUS coupled with a
boundary layer code. The derivatives with respect to shape were computed using the
complex-step approach [30, 33], which is numerically exact. The flutter constraint
was formulated using the g-flutter method [85], which was differentiated analytically
with respect to the design variables. The approach was verified for a cantilevered
planform, similar to the F-5 geometry [127, 128], where a structure consisting of 10
spars, 10 ribs, and upper and lower skins was modeled using MSC Nastran. While
no optimization results were presented, the flutter derivatives were verified against
exact results.

Bartels and Stanford [113] proposed an approach to enforce a CFD-based flut-
ter constraint for gradient-based structural optimization of transonic vehicles. The
flutter analysis was performed as a standard eigenvalue analysis on the state-space
representation of the aeroelastic system obtained via RFA [129]. The generalized
acrodynamic force (GAF) matrix of the baseline structure was identified from time-
linearized unsteady RANS simulations about nonlinear steady-state solutions [130].

The GAF matrix of the updated design was then computed by projecting the updated
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modes onto the baseline modes. The methodology was used to minimize the uCRM
mass subject to structural and aeroelastic constraints. The flutter was constrained by
requiring that the real part of the system eigenvalues be below a bounding curve [104].
The optimization assumed a fixed-mode approximation. The authors compared the
optimal solutions obtained using unsteady RANS and DLM aerodynamics in the op-
timization loop. They showed that the DLM-based solution was not conservative
and had a significantly different thickness distribution compared to the CFD-based
optimal design.

Opgenoord et al. [68] extended a low-order two-dimensional transonic flutter pre-
diction model [67] to wings and implemented the model into a conceptual aircraft
design tool to investigate the impact of geometric parameters and Mach number on
the flutter boundary. Furthermore, they optimized the D8 configuration by minimiz-
ing the maximum take-off weight and fuel burn with and without a transonic flutter
constraint. Enforcing the flutter constraints resulted in lower optimal aspect ratio and
a weight penalty or lower fuel burn reduction compared to the case when the flutter
constraint was omitted. Opgenoord et al. [69] also used the developed flutter model
to optimize the internal lattice structure of a wing by minimizing weight with and
without enforcing a flutter constraint in addition to stress and buckling constraints.
The optimal design including the flutter constraint showed only a slight mass increase
thanks to the appropriate aeroelastic tailoring of the lattice structure.

While several authors have performed flutter-constrained optimizations using non-
linear aerodynamic models, examples of flutter constraints considering nonlinear
structures are more rare due to the more recent interest in optimizing very flexible
aircraft. Variyar et al. [9] developed a framework for MDO of geometrically nonlinear
aircraft subject to flutter constraints by coupling the SUAVE design tool [131] with
the ASWING nonlinear aeroelastic solver [132]. They developed an interface to con-

vert the arbitrary aircraft designs output by SUAVE into equivalent nonlinear beam
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models for ASWING to drive structural and aeroelastic analyses and to post-process
the results. The flutter speed was obtained iteratively by computing the eigenvalues
of the statically deformed aircraft at different flight conditions.

This MDO framework was used to optimize the Sugar VOLT strut-braced air-
craft [133] for minimum fuel burn subject to mission, maneuver, gust, and flutter
constraints. The flutter constraint was implemented by imposing a minimum flutter
speed, and derivatives with respect to the design variables were obtained via finite
differences. The authors performed three MDO cycles by adding the maneuver, gust,
and flutter constraints to the mission constraints. Despite having better performance,
the optimal solution achieved with only maneuver and gust constraints experienced
flutter within the flight envelope, highlighting the need for a flutter constraint in the
design process.

Lupp and Cesnik [116] studied the effect of a flutter constraint including geo-
metrical nonlinearities on the design of a BWB. They extended the University of
Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) to utilize AD in
reverse mode to determine coupled aeroelastic derivatives including geometrical non-
linearities. They proposed an algorithm to increase the computational efficiency of
the gradient evaluation for a geometrically nonlinear aeroelastic analysis. The sam-
ple optimization formulation included a geometrically nonlinear beam-based flutter
constraint using a KS aggregation [134] to obtain a scalar constraint for the entire
flight envelope. The authors ran three fuel burn minimization cases: with a strength
constraint, with a linear flutter constraint, and with a geometrically nonlinear flut-
ter constraint with the wing chord distribution, wing box size, and wing box thick-
ness as design variables. While the linear flutter constraint became active over the
strength constraint, it was not conservative compared to the geometrically nonlinear
constraint. They concluded that a geometrically nonlinear flutter constraint is needed

for very flexible aircraft.
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Xie et al. [114] used a flutter constraint to minimize the weight of a very flexible
wind tunnel model. The purpose of this constraint was to ensure flutter within
the wind tunnel speed range. The optimization problem coupled a geometrically
nonlinear beam solver with a vortex lattice code for the static aeroelastic analysis,
while a doublet lattice code was used to compute the unsteady loads. Since they use a
gradient-free algorithm, no derivatives were computed. They compared optimization
results based on linear and geometric nonlinear beam models subject to a flutter
constraint. In addition to flutter, tip displacement and torsion angle constraints were
also enforced. The linearly optimized configuration resulted in a wing lighter than
the optimal solution obtained with the nonlinear flutter constraint. Furthermore,
the flutter and displacements constraints were violated when the linear optimized
configuration was analyzed considering geometric nonlinear effects. The difference in
the results highlighted the need for a flutter constraint when optimizing very flexible
vehicles and the importance of using nonlinear flutter prediction methods not only
for analysis, but in design optimization as well.

Bhatia and Beran [115] developed a framework to optimize thermally stressed non-
linear structures subject to transonic flutter constraints. They showed that including
aerothermoelastic static nonlinearities in the flutter analysis impacts the optimal
design. These effects are particularly important for high-speed vehicles, which are
subject to significant thermoelastic stresses when flying through the transonic regime
during reentry [135]. The authors optimized a skin panel with respect to the thickness
and density distributions to minimize the mass subject to a flutter constraint. The
structure was modeled using a Timoshenko beam finite element with nonlinear von
Krmn strain, while the transonic flow was solved via a finite-element discretization of
the Euler equations. The structure was linearized around the static thermoelastic re-
sponse and the aerodynamics was linearized around the background steady transonic

flow past the baseline geometry. Flutter was analyzed in the frequency domain as an
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iterative V-g solution [3] considered the system linearized around the nonlinear equi-
librium configuration for each operating condition. The flutter speed was constrained
directly. The optimal solution obtained by linearizing around the thermally stressed
equilibrium configuration showed a mass lower than the result using an unstressed
analysis.

The Hopf-bifurcation method has also been applied in design optimization. Kennedy
et al. [117] proposed a variant of previous bifurcation approaches [136, 137] to opti-
mize an aeroelastic system subject to a flutter constraint, which was formulated in
terms of flight speed rather than damping. The proposed method had the benefit of
not requiring a search of the flutter point (which may be located well outside of the
flight envelope) at each design iteration. The KS function [124] was used to smooth
the effect of mode switching in the constraint value by aggregating the less damped
modes, which yielded smooth gradients. The authors presented preliminary results
for a medium fidelity three-dimensional aerodynamic panel code coupled with the
structural finite-element code TACS [138]. Although no detailed optimization was
performed, they performed a preliminary study on the uCRM benchmark [125].

Beran et al. [118] developed a fast adjoint method to compute derivatives of flut-
ter points computed via the Hopf-bifurcation method for gradient-based MDO. The
approach was applied to the highly flexible cantilevered wing studied by Tang and
Dowell [139, 140]. Both geometric nonlinearities due to the structure and aerodynamic
effects described using the ONERA stall model [140] were considered when computing
the flutter point and its derivatives with respect to aerodynamic and structural de-
sign variables. While no optimization study was presented, the authors outlined the
future work required to apply the methodology: validate the derivatives, assess the
computational cost compared to alternate time- and frequency-domain flutter pre-
diction methods, and develop the handling of mode switching to avoid discontinuous

flutter points.
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Some rare examples of optimizations with flutter constraints based on time-accurate
analyses are also found in the literature, but they have been restricted to simple prob-
lems. In an early work, Holden [141] applied a collocation method to constrain the
aeroelastic response envelope for a wing optimization problem. More recently, Mani
and Mavriplis [97] were among the first to present a fully coupled unsteady adjoint
for aeroelastic optimization. They demonstrated their method successfully in a shape
optimization of two-dimensional airfoil section to suppress flutter, using a total of
32 design variables in the form of Hicks-Henne bump functions [142]. Later, Mishra
et al. [98] extended previous work and presented the fully coupled unsteady adjoint
for three-dimensional aeroelastic problems, which was demonstrated in a shape opti-
mization of a flexible rotorcraft configuration.

Zhang et al. [99] developed a coupled adjoint method for unsteady aerostructural
problems solved via time simulations. The method was applied to an airfoil shape
optimization problem with the goal of suppressing flutter. The aerodynamics was
computed with an Euler CFD code coupled with a boundary layer code to account
for viscous effects. Both the continuous and discrete coupled adjoint were developed
for steady-state analyses. The discrete approach proved more promising and only
this version was developed for unsteady cases. A damping objective function was
proposed that used a Hilbert transform [90] of the nonlinear unsteady time-history.
To achieve the required flutter boundary, the damping objective function was mini-
mized to obtain a neutral response, indicating the flutter point. The authors applied
the methodology to the optimization of the two-dimensional (2D) Isogai airfoil [40, 41]
to suppress flutter. Only derivatives with respect to shape variables were computed
and the airfoil shape was parametrized using 48 Hicks-Henne bump functions [142].
A neutrally stable (zero-damping) configuration was obtained for a given flight con-
dition.

Zhang et al. [100] extended their previous work [99], where the coupled adjoint
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was developed for time-marching simulations. Two objective functions were used:
one that maximized the flutter boundary and another that matched a given flutter
boundary. To maximize the flutter boundary, they minimized the squared and time
averaged history of the lift coefficient. To match a given flutter boundary, the damp-
ing value of a given time history was minimized to obtain a neutral response. B-spline
curves were chosen as a parametrization method due the large number of Hicks—Henne
functions that were previously needed. The authors presented steady-state optimiza-
tion results for a 2D airfoil optimized to match a given pressure distribution and for
the 3D ONERA M6 case [143], where the objective was a composite function of lift
and drag. Configurations considered in the unsteady optimization consisted of the 2D
Isogai airfoil and the Goland wing as modeled by Kurdi et al. [144]. For the unsteady
2D airfoil, two optimization cases were considered: flutter margin maximization and
a flutter boundary matching (i.e., a neutral response for the given flight condition).
The design variables were the plunge and pitch stiffness values. For the Goland wing,
they optimized the aerodynamic shape to maximize the flutter speed with respect to
120 shape variables. A structural optimization of the Goland wing was also performed
to maximize the flutter speed with respect to the skin thickness. No optimization was
performed using simultaneously structural sizing and aerodynamic shape variables.
Kiviaho et al. [145] developed a flutter constraint using their previously devel-
oped unsteady aeroelastic framework with adjoint sensitives [101, 102]. The flutter
constraint is based on a matrix pencil method [88] applied to a time-history, which
estimates the damping based on most critical aeroelastic modes. Two methods are
proposed, a direct flutter point evaluation which finds the flutter point where the
dynamic pressure lower bound is specified as the design flight condition, and a flutter
margin or clearance approach where the dynamic pressure times some tolerance is
fixed. The direct method was demonstrated in a single design variable optimization

of an airfoil were the dynamic pressure is minimized subject to the flutter constraint
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in order to identify the flutter point.

1.4.3 Open Problems

Now that we reviewed methods for flutter prediction and their applications to op-
timization (see Table 1.1), we can summarize the open problems and challenges of
integrating flutter constraints into aircraft design optimization.

Gradient-based optimization is the preferred choice for optimizations with respect
to large numbers of design variables. When enforcing a flutter constraint in a gradient-
based optimization, a serious challenge is varying structural and aerodynamic design
variables simultaneously to optimize the aircraft external shape, planform, and inter-
nal sizing. Most of previous work optimized only structural sizing, and only a few
efforts included airfoil shape and wing planform design variables as well. Furthermore,
simplifying assumptions like the fixed-mode approximation were frequently used when
computing derivatives to limit computational cost [113, 146, 147]. These assumptions
are adequate for a structural optimization, but they can lead to inaccurate results
when varying aerodynamic properties because this can cause significant changes in
the mode shapes at each design iteration. Therefore, gradient-based optimizations
with respect to structural, planform, and shape variables need approaches that take
into account the derivatives of the mode shapes when computing the derivatives of
the flutter constraints. Few examples of these approaches applied to simplified con-
figurations or using lower-fidelity models are available in the literature [9, 116, 134].
However, they still have to be demonstrated on practical configurations parametrized
by large number of structural and aerodynamic design variables.

A second major challenge is developing efficient flutter analysis models and meth-
ods applicable in the presence of aerodynamic or structural nonlinearities. In previous
aircraft optimizations including linear flutter constraints, the natural choice was to

analyze flutter in the frequency-domain due to the availability of well-established
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and computationally efficient eigenvalue-analysis methods. The computational cost
of these methods is a big challenge when including aerodynamic or structural non-
linearities because the flutter point depends on the equilibrium state. For each flight
condition considered in the flutter search, the steady background flow solution (in
the case of aerodynamic nonlinearities) or the coupled aerostructural equilibrium (in
the case of both aerodynamic and structural nonlinearities) needs to be determined
first. Next, the linearized model about each equilibrium point must be identified for
computing the aeroelastic eigenvalues and determine at which point modal damp-
ing vanished. This process must be repeated for each flight condition, while linear
methods analyze flutter by considering the undeformed configuration at zero angle
of attack for each flutter search point. Moreover, in the presence of nonlinear effects
multiple equilibrium points may also exist for each flight condition, which further
increases complexity and computational cost. Stability must be analyzed about all
equilibrium points, otherwise critical constraint values may be missed.

For large high-fidelity models with both structural and aerodynamic nonlineari-
ties, computing the aerostructural equilibrium points and the corresponding linearized
systems may be computationally prohibitive. For moderately flexible configurations,
structural nonlinearities can be neglected, so eliminating the need to solve a nonlinear
static aeroelastic problem at each flight condition. However, transonic aerodynamic
nonlinearities still require identifying a linearized unsteady aerodynamic model for
each steady background flow solution. Computing and retaining aerodynamic non-
linearities to accurately predict the flutter point in the transonic regime remains a
big challenge due to the large computational cost associated with CFD. To address
this problem, some efforts tried to preserve the computational efficiency of lower-
fidelity methods while retaining the nonlinear physics modeled by the higher-fidelity
CFEFD methods [53, 55]. Other works proposed time-linearized CFD solvers [56, 60] or

reduced- or low-order models calibrated using CFD [65, 67]. Despite these progresses,
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optimizing aircraft subject to transonic flutter constraints is still an open problem,
particularly when using gradient-based methods and when seeking both structural
sizing and aerodynamic shape changes.

Due to these challenges, previous work mainly optimized linear aircraft configura-
tions or included only aerodynamic nonlinearities while limiting to structural sizing.
Aerostructural optimizations considering both aerodynamic and geometric structural
nonlinearities used low-order models or optimized simple configurations to limit the
computational cost [9, 116]. No previous work considered both structural and aerody-
namic nonlinearities in a high-fidelity MDO setting. Additionally, rigid-body DOFs
were never included in the flutter constraints, which may lead to unfeasible designs
for configurations prone to coupled rigid-elastic instabilities.

Few studies used alternatives to frequency-domain eigenvalue analysis methods
for nonlinear flutter prediction, like the Hopf-bifurcation method or time-domain
simulations. Such studies are rare because the high computational cost of time-
accurate analyses makes them prohibitive to optimize complex configurations. For
this reason, these applications were limited to simple configurations and frequently

two-dimensional problems.

1.5 Thesis Objectives

In the previous section we reviewed the state-of-the-art in flutter analysis, its appli-
cation in design optimization, and finally providing a summary of open challenges.
In this work we focus on the first major challenge identified, developing a flutter
constraint that is suitable for large scale high-fidelity aerostructural optimization,
considering both structural and aerodynamic design variable.

We address the above in this work with the following intermediate milestones:

1. Develop a robust, efficient, and continuous flutter analysis methodology that
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can be used to constrain flutter in a large scale high-fidelity aerostructural opti-

mization, considering both structural sizing and aerodynamic design variables.

2. Compute derivatives of the proposed flutter constraint using methods that are
accurate, efficient, and independent of the number of design variables. No
simplifications or approximations, such as the fixed mode approximation, should

be applied.

3. Demonstrate the proposed flutter constraint in a large scale high-fidelity aerostruc-
tural optimizations, and study its effect on representative wing geometries,

demonstrating the need for such constraint.

1.6 Thesis Outline

To achieve the stated objectives, the multidisciplinary design optimization for aircraft
configurations with high fidelity (MACH) framework is expanded by implementing
several new components to enforce a flutter constraint that can be applied in high-
fidelity design optimization.

A brief introduction of existing components in MACH framework that are used
in this work are discussed in Chapter 2. To address objective 1, the flutter analysis
methodology and constraint formulations is discussed in detail in Chapter 3. This
includes theory, algorithms, and integration considerations necessary for a successful
flutter constraint suitable for high-fidelity gradient based design. The subsequent
chapter, Chapter 4, discusses the derivative strategy in order to compute the deriva-
tives efficiently and accurately, addressing objective 2. In particular, we discuss algo-
rithmic differentiation (AD) in reverse as well as analytic approaches that are suitable
for AD, and verify the accuracy of the implementation.

Finally, objective 3 is addressed in a series of chapters, increasing in problem size

and complexity, demonstrating the need for including a flutter constraint in high-
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fidelity design. Chapter 5 demonstrates the constraint on an idealized wing (plate).
A design space study is performed, demonstrating the continuity of the constraint that
is finally demonstrated in an optimization without CFD. In Chapter 6 the proposed
flutter constraint is applied and demonstrated using a rectangular subsonic wing.
Two multipoint high-fidelity aerostructural optimizations are conducted, with and
without the flutter constraint, maximizing the range. Finally, in Chapter 7 the flutter
constraint is applied in a large scale multipoint aerostructural optimization on a
full configuration aircraft, namely the XRF1. Here, O(1000) design variables and
constraints are applied demonstrating the capabilities of the constraint.

Chapter 8 concludes the thesis summarizing the key results and contributions.
Suggestions for possible future work are then discussed. This includes discussion on
improving the proposed methodology and capabilities, and including larger set of

problems such as transonic aerodynamics and geometrically nonlinear effects.
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CHAPTER 2

Existing Computational Tools

In this section, we briefly describe existing components from the multidisciplinary de-
sign optimization for aircraft configurations with high fidelity (MACH) framework [7]
that are employed in static aerostructural optimization. An overview of the pro-
cess is detailed in Fig. 2.1. This framework has been extensively used in aerody-

namic [25, 148-153] and aerostructural [7, 8, 125, 154-156] optimization.
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2.1 Geometric Parametrization

The geometric parametrization of the aerodynamic surfaces and structure is done
using a free form deformation volume (FFD) approach [157], which has its origins in
computer graphics applications [158].

Using this approach, the geometry of interest is embedded within an FFD volume
that can be though of as a flexible volume. The FFD volume is then deformed using
a number of B-spline control points. As the control points are moved in space, the
embedded coordinates are deformed in a continuous fashion. This method is well
suited for aerostructural optimization because it provides a unified way of treating
aerodynamic surfaces and the internal structure. Global design variables, such as span
or sweep, are implemented by moving multiple points according to suitable functions.

Airfoil cross-sectional shapes are controlled by individual B-spline control points.

2.2 CSM Solver

The computation structural mechanics (CSM) solver used in this work is the Toolkit
for the Analysis of Composite Structures (TACS) [138]." TACS is an open-source
parallel finite-element (FEM) solver that can handle poorly conditioned problems,
which is common in the thin-walled structures found in transport aircraft. For such
cases, the stiffness matrix condition numbers may exceed O(10%), but through the use
of a Schur-complement based parallel direct solver, TACS is able to effectively solve
these poorly conditioned problems. Sensitivities of structural functions of interest
with respect to structural and geometric design parameters are computed efficiently
using the adjoint method [138]. The load and displacement transfer scheme used
here is the rigid link approach [7], which follows the work of Brown [159]. In this

approach, rigid links extrapolate the displacements from the structural surface to the

lhttps://github.com/gjkennedy/tacs
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aerodynamic surface. These rigid links, which are suitable for non-matching surfaces,
are constructed between the aerodynamic surface mesh points and the points on the

structural model lying closest to this set of points.

2.3 CFD Solver

In this work, we use the open-source CFD solver ADflow, a parallel, finite-volume,
cell-centered, multi-block solver, which solves the Euler and the Reynolds averaged
Navier—-Stokes (RANS) equations in either steady, unsteady, or time spectral modes [35].
The mean flow equations and the one-equation Spalart—Allmaras turbulence model
are solved in a coupled fashion by an approximate Newton—Krylov method [160]. A
discrete adjoint method for the Euler and RANS equations is implemented within
ADflow, enabling the efficient computation of gradients of functions of interest with
respect to any number of design variables [35]. This solver has been extensively

verified and validated against experimental results [161, 162].

2.4 Mesh Deformation

The mesh warping scheme used here is a robust inverse distance method, which has
been used extensively in aerodynamic and aerostructural optimization [156, 163, 164].
Given an updated set of surface mesh nodes, the warping scheme uses an inexact
explicit interpolation scheme to update the volume mesh nodes [165]. The derivative

computation is implemented using the reverse mode AD method.

Zhttps://github.com/mdolab/adflow
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2.5 Aerostructural Solver

The aerostructural solver facilitates the solution of the nonlinear aerostructural equa-
tions, and the linear adjoint equations. For the nonlinear system a block Gauss—Seidel
(NLBGS) with Aitken acceleration scheme is employed. The adjoint system is solved
using a coupled-Krylov (CK) method, which has been shown to be significantly faster
than a commonly used linear block Gauss—Seidel (LBGS) approach [7]. The above
solution approach has proven sufficiently robust for a range of aerostructural problems

at various flight conditions [7, 8, 125, 154-156].

2.6 Optimizer

The optimization package used in this work is SNOPT (Sparse Nonlinear OPTi-
mizer) [166]. SNOPT is a gradient-based optimizer that implements a sequential
quadratic programming (SQP) algorithm. SNOPT uses an augmented Lagrangian
merit function and the Hessian of the Lagrangian is approximated using a quasi-
Newton approach. This optimizer is designed to perform well for optimization prob-
lems featuring many sparse nonlinear constraints. SNOPT is wrapped with py-

OptSparse, a sparse implementation of pyOpt [167].2

3https://github.com/mdolab/pyoptsparse
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CHAPTER 3

Flutter Prediction and Constraint

Formulation

As discussed in the introduction, the goal is to develop a flutter constraint that is
suitable for high-fidelity aerostructural optimization. In this chapter, we describe the
techniques and components necessary to enable such a flutter constraint. Figure 3.1
gives a high-level overview of the overall flutter analysis process developed in this
work. Numerous new components are developed as part of this work. This includes
the Lanczos eigenvalue solution method, doublet lattice method (DLM), flutter anal-
ysis, and constraint aggregation strategy suitable for gradient based optimization.
All new components developed in this work are implemented in Python and Fortran
with communication done efficiently in memory. In the following sections, we outline
the characteristics of these components that are needed to enable flutter analysis and
present a flutter constraint applicable to gradient-based optimization with structural
and aerodynamic changes. Additionally, a component that handles communication
between these components is also implemented. The methodology described here
is independent of specific components or methods, i.e., different components can be
used and substituted in, without any need for updating the formulation, nor the
usage of the constraint in an aerostructural optimization. For example, to obtain
higher fidelity generalized aerodynamic forces that capture transonic effects the aero-

dynamic component, in this case the DLM, can be replaced with CFD. This is due to
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Figure 3.1: XDSM [1] of the proposed flutter analysis process and constraint formu-
lation.

the fact that inputs and outputs have been clearly defined and identified. Similarly,
derivatives needed are also defined.

The chapter is structured as follows, Section 3.1 discusses theory and equations
used in this work to predict the flutter characteristics. To solve the flutter equations,
a robust non-iterative solution strategy is introduced in Sections 3.2 and 3.3. Finally,
Sections 3.4 and 3.5 describes the constraint formulation and aggregation strategy

used which is suitable for high-fidelity gradient based optimization.

3.1 Flutter Analysis

Aeroelasticity consists of the interaction of aerodynamics, structures and inertial
forces and are often depicted by the Collars triangle Fig. 3.2.

The discrete equation of motion for a generic linear aeroelastic system can be
written as:

M(x)ii(t) + C(x)u(t) + K(x)u(t) = F(x,1), (3.1)
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where N, is the number of structural DOFs, M(x), C(x), K(x) € RY*Ns are the
mass, damping, and stiffness matrices resulting from the finite-element discretization
and are a function of the design variables x € R, u(t) € R is the displacement
vector including all degrees of freedom of the system, translations and rotations. In
general the forces F(x,t) € R™s can be split into external forces F,(x,t), which we
assume to be zero in this work, and the unsteady aerodynamic forces F,eo(u(t)). The

equations of motions can then be written as,

Mii(t) + Cu(t) + Ku(t) — Faeo(t) = 0. (3.2)

For the sake of conciseness, Eq. (3.2) omits the dependency of the structural matrices
and aerodynamic loads on the design variables x. Therefore, flutter analysis methods
are presented for a fixed design and all the structural and aerodynamic quantities are

updated at each optimization step based on the current values of the design variables.

3.1.1 Load and Displacement Transfer

The aerodynamic forces presented Eq. (3.2) are given in the structural degrees of
freedom. An aeroelastic interface is required that is capable of transferring aerody-

namic loads and then structural displacement using a suitable interpolation strategy.
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Furthermore, in practice, the aerodynamic mesh does typically not coincide with the
structural mesh. For the displacement transfer, the structural DOF u can be related

to the aerodynamic DOF h € R™ by

h = Tu, (3.3)

where T € RMa*Ns g a linear operator, and a displacement transfer interpolation
matrix and NV, is the number of aerodynamic DOF.

The aerodynamic forces on the aerodynamic mesh, F, € CYe, can be interpolated
using

F..,. = T'F, (3.4)

Equation (3.4) can be derived using the principle of virtual work. By imposing the
equivalence of the virtual work done by the aerodynamic forces F, and the equivalent

structural forces we can write,

6L = 6h'F, = 6u’ F oy, (3.5)

where dh, du are virtual displacements. By substituting Eq. (3.3) into Eq. (3.5) we
obtain

Su” (TTF, — Faero) = 0. (3.6)
Since the virtual deformations du # 0 are arbitrary, the terms inside the paren-

thesis must equal to zero, therefore giving Eq. (3.4).

3.1.2 Generalized Structural Matrices

Due to the sheer number of structural DOFs, it is common to reduce the computa-

tional effort by rewriting Eq. (3.2) in terms of a reduced set of N, generalized coor-
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dinates (modal amplitudes) where N, < N,. This is referred as a modal approach.

The displacement field can be then approximated by

u(z,y, z;t) = Q. (x,y,2)q(t) , (3.7)

where q € R is the vector of retained generalized coordinates and Q, € RNs*¥r ig
a matrix whose columns contain the corresponding eigenvectors (mode shapes).

The natural mode shapes are obtained by setting any loads to zero, assume har-
monic motion substituting u = @e™* in Eq. (3.2) and solve the following eigenvalue

problem,

[K —w/M] @; =0, (3.8)

where w; is the natural frequency.

To obtain the lowest natural modes and mode shapes, Eq. (3.8) is solved us-
ing a shift-and-invert Lanczos method [168]. The Lanczos algorithm, discussed in
Appendix B.1, uses an M-orthonormal subspace, written as V,, € R¥*Nm guch
that VﬁMVm = I,,, where N, is the size of the square mass and stiffness matri-
ces, and N,, the size of the subspace chosen. We use an expensive, but effective,
full-orthonormalization procedure (Gram—Schmidt) that enforces M-orthonormality.
The Lanczos implementation is shown to produce good approximation and has been
verified against the commercial software MSC/Nastran [169].

The eigenvectors (mode shapes) @; are then computed from the constructed sub-

space V,,. The @1; for i = 1,..., N, < N,, are collected in the matrix Q, € RNs*Nr
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where N, is the number of column vectors in the reduced mode shape matrix. These
eigenvectors are M-orthonormal, such that QZMQ, = I,. To obtain good approxi-
mations for the first /N, number of natural modes and mode shapes, the subspace size
N,, is chosen to be at least N, > 2N,.

Substituting Eq. (3.7) into Eq. (3.2) and pre-multiplying by QI we obtain the

EoM in a generalized form,

M, §(t) + C,(t) + Krq(t) — QF Faero(t) = 0. (3.10)

The eigenvectors are M-orthonormal, such that Q' MQ, = I,.. The reduced general-

ized mass, damping, and stiffness matrices take the form:

M, = Q;MQT =1 € IRNTXNT7
C, = QTCQ, € RN, (3.11)

K, — Q'KQ, = diag{w?} € RN

The final expression of C, depends on how the damping matrix is constructed.

3.1.3 Generalized Aerodynamic Loads

From Eq. (3.10) the generalized aerodynamic forces (GAFs) on the structure are
written as

Faero,r = QZ—'Faero c RNT (312)

or in terms of the scalar modal forces for the 7-th mode

7" Faero (313)

ol

F, aero,r,i

Using the pressure coefficient C), and the dynamic pressure ¢, the forces in the
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time-domain can be obtained by integrating the surface area, scaled by a mode shape

Faero,r,i = (o / Cp(t>ﬁi -dS (314)
S

By assuming we have a linear time invariant system (LTI) then an arbitrary input

and output signal can be described by the convolution integral,

Fraar = o | TH( = r)a(r)dr = g (Hx q)(0), (3.15)

where the H is a transfer matrix and is the system response due to an input impulse.
This is under the assumptions that linear relations describe the generalized aerody-
namic forces due to a deflection in one of the mode shapes. Now transforming into

the frequency domain we obtain,

Faero,r(5> = qooH(S)EI(S) (316>

where H(s) is aerodynamic transfer function and q(s) is the Laplace transform of

q(t) and s is the Laplace variable.

3.1.3.1 Aerodynamic Loads

The aerodynamic forces on the aerodynamic mesh can be written as

F. = oo Arc(ik)h, (3.17)

where ¢, is the dynamic pressure, Ajc(ik) € CNo*Ne is the aerodynamic influence
coefficient load matrix, where k = wb/U is the reduced frequency, w is angular fre-

quency, b is the reference semi-chord, and U is the freestream velocity. Combing
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equations Eqs. (3.4) and (3.17), the forces in the structural DoFs become,

Facro = oo T Arc(ik)Tu. (3.18)

Pre-multiplying the mode shapes, QF, and using Eq. (3.7) we obtain the reduced

generalized forces

Faero,gen(ik) = QfFaero (319)
= 4oQ; T" A1c(ik)TQ,q (3.20)

where we have defined

A, (ik) = Q' TT Ao (ik) TQ, € CN M, (3.22)

The aerodynamic mode shapes obtained by interpolating the structural mode shapes

using

Qra = TQr S RNQXNT— (323)

and thus we can write the generalized forces matrix in terms of the aerodynamic mode

shapes as

A, (ik) = Ql,Awc(ik)Qra (3.24)

3.1.3.2 Aerodynamic Loads - DLM

In this work, we use the doublet-lattice method (DLM) [119, 120] to generate the
unsteady aerodynamic loads. It consists of a lifting surface method that is formulated
in the frequency domain. A substantial body of literature exists on the DLM. An
excellent reference worth mentioning is the work done by Blair [170]. The DLM has

been widely adopted in the aeroelastic community and has been a valuable tool for
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the flutter analysis of subsonic aircraft. Commercial software tools such as Nastran
have adopted the DLM [171]. The implementation is based in part on the method of
Albano and Rodden [119], and the extension by Rodden et al. [120]. For more details
we refer interested readers to the Appendix A.

Using the Doublet-Lattice Method (DLM) the unsteady pressure coefficient can

be computed as follows,
_Ap

C
g

=D 'weC (3.25)

where the D™! € CM+*Na js the inverted aerodynamic influence coefficient (AIC)
matrix computed by the DLM, and w € C™e is the normalwash. NN, is the number of
panels used in the aerodynamic mesh. Recalling from Appendix A.1.4 and repeating

Eq. (A.22) in vector form the normalwash in the frequency domain is written as
W = ikh + h, (3.26)

The displacement h is then written in terms of generalized coordinates as

h =Tu (3.27)
=TQ.q (3.28)
= Qr.q (3.29)

where we have used Egs. (3.3), (3.7) and (3.23). Substituting we obtain

(3.30)

W = (Z.I%Qr(z + 8Q7”a) aq
ox
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The aerodynamic forces can then be written as

F.= QOOSCp (331)
= ¢.SD ™ 'w (3.32)

7 a ra \ —
= ¢ooSD ™! <z‘k:Qm+ gx )q (3.33)

where S € RYexNa ig the area of individual panels and distributes the forces from the

collocation point to the nodes of the panel. The generalized forces matrix is then

A, (ik) = QL SD™! (sz + 6(%“) (3.34)
where the generalized forces are written as
Focror (1K) = g0 A (1k)q (3.35)

3.1.4 Generalized Equations of Motion

All matrices have now been defined in generalized coordinates using a reduced set of
mode shapes. Taking the Laplace transform of the equations of motion Eq. (3.10)

yields,

[SQMT +s5C, + K, — qooAr(s)] q(s) =0, (3.36)

by assuming motion of q(t) = @e* where s = v + iw. This equation can also be

written in terms of non-dimensional Laplace parameter p = sb/U = g + ik,

U\? , U _
> p°M, + EPCT + K, — ¢A(p)| alp) =0, (3.37)
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where, b is the reference half chord, ¢ is the nondimensional damping, and & is the
reduced frequency [81].

Equation (3.37) requires computing the GAF in the Laplace domain. However,
the GAF is typically given as a transcendental function, A, (ik), of the reduced fre-
quency. Two approaches are used for overcoming this problem [12]. One approach
is to approximate A, (p) ~ A, (ik) and solve the flutter equation, Eq. (3.36), or an
equivalent form by computing the GAF matrix in the reduced frequency domain while
enforcing the condition I(p) = k. An alternate approach is to obtain a rational func-
tion approximation (RFA) of A,(ik) and use analytic continuation [172] to extend
its domain from the imaginary axis (reduced frequency) to the entire complex plane
(nondimensional Laplace variable). The aeroelastic system can be recast in state-
space form by introducing additional aerodynamic states, such that flutter can be
analyzed using a standard eigenvalue analysis.

When the GAF is represented as a transcendental function of k, flutter analysis
is performed using iterative or non-iterative methods that either compute the true
damping only at the flutter point (k-method) or at all flight speeds or dynamic pres-
sure values (root locus, p-, pk-, and g-methods) [81-83, 85, 173]. Here, we use the
pk-method, assuming purely oscillatory aerodynamic forces A,(p) ~ A, (ik), then

Eq. (3.37) is rewritten as [81],

U\* , U N

(3.38)
F,(p,k)a(p) =0 .

This is a second-order nonlinear eigenvalue problem, where the nonlinearity stems
from the dependency of A, on the imaginary part of p.
Several decompositions of the GAF A, in Eq. (3.38) exist in the literature. Stan-

ford [174] summarized these decompositions and showed that they predict the same
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flutter speed, but that the mode migration and characteristics may be very different.
This directly impacts the optimization, resulting in different optimal designs.

The GAF are split into its real and imaginary parts as A, = AF + {Al order
to improve the approximation of the damping. Assuming small damping, p/(ik) ~

1 [169], the forces can be written as,

A, =AF +p/kAL (3.39)

Finally, Eq. (3.38) can be rewritten in first-order form as the generalized nonlinear

eigenvalue problem [82, 134, 147],

(3.40)

where I, € RN¥*Mr is an identity matrix. All matrices are real but due to the non-
symmetric nature of the aerodynamic loads, the eigenvalues and eigenvectors are
complex. The real part of the eigenvalue, p, dictates the stability of the system,
where a positive value corresponds to an unstable system, a zero value represents a
neutrally stable system, and a negative value represents a stable one.

The matrix A, is dense in general, while M,. and K, are diagonal. The structural
viscous damping can be approximated by Rayleigh damping, C, = aM, + K, [175],
as proposed by Stanford and Dunning [146], but is omitted here for simplicity. While
rigid-body modes are not considered in this study, the above system of equations
could be extended without affecting the proposed flutter aggregation strategy [2].

The reduced generalized eigenvalue problem, Eq. (3.40), of size 2N, x 2N is solved
with LAPACK [176]. However, valid roots need to satisfy the equivalence &(p) = k.

A robust flutter solution strategy is discussed in the next section.
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Note that the computational cost scales with double the number of mode shapes,
i.e., the eigenvalue problem size is doubled. Industrial applications for the analysis of
full configuration aircraft may consider up to 100 natural modes, thus placing an upper
bound on the problem size. While LAPACK is capable of solving such problems,
parallel eigenvalue solution methods, such as SLEPc [? | could be considered to

improve performance.

3.2 Non-iterative Flutter Solution Method

In flutter analysis, when solving Eq. (3.40) (or Eq. (3.38)), iterative procedures are
usually applied because the aerodynamic matrix depends on the reduced frequency,
k, the imaginary part of the eigenvalue, p. Valid roots need to satisfy the equivalence
S(p) = k.

One such procedure is the determinant iteration proposed by Hassig [81]. This

method is a secant method applied to the determinant of Eq. (3.38),

A(p) = det (F,.(p, k)) . (3.41)
Given initial guesses p;, and ps, the method computes py.o as follows,

Pk+1A(pk) - pkA(karl)

Prt2 = Ape) — Alpror) (3.42)

The iteration is continued until |A(pgi2)| < €0 for some specified tolerance.
Another popular method is found in commercial software such as MSC/Nas-
tran [169, 171], where the eigenvalue problem is solved based on an assumed reduced
frequency k;. The resulting computed eigenvalue, p(k;), for the mode under study is
identified and its imaginary part is compared to the assumed reduced frequency. If

the difference, |3 (p(k;)) — ki| < €101, €xceeds some predefined tolerance, the iteration
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continues using the imaginary part of the new eigenvalue as the reduced frequency,
ki1 = (p(k;)), computing new aerodynamic loads repeating the process.

Iterative methods however may in general experience convergence issues, such as
slow convergence rate, non convergence, and convergence to incorrect values. For

the basic iterative algorithm, k11 = $(p(k;)), to converge locally, the following must

hold,

d(p)

where k* is solution to k — J(p) = 0 [177]. It can be shown that the asymptotic
convergence rate is at best linear. Convergence rate is slow for magnitudes close to
one, requiring numerous small dynamic pressure increments. For values greater than
one, it does not converge. Further, if the aeroelastic eigenvalue changes rapidly with
dynamic pressure, the convergence rate can be slow because of a large number of
dynamic pressure increments. In addition, an incorrect eigenvalue can be picked up
if two eigenvalues are close to each other in frequency. This results in mode hopping,
such that a discontinuity appears in the damping, which is detrimental for gradient-
based optimization.

Basic iterative methods do not distinguish aerodynamic lag roots from structural
modes. If an aerodynamic lag root becomes unstable, these methods may converge
to the lag root over the structural mode or not converge at all. Further, neither of
the aforementioned iterative methods are able to add or remove aerodynamic roots.
A more sophisticated and robust root finding method is thus needed for integrating
the flutter process in an optimization process. In addition, a robust mode tracking
algorithm is also needed to avoid mode hopping.

To improve the convergence rate of flutter analysis, a Newton method with safe-
guards was proposed by Back and Ringertz [177]. While such method offers superior
convergence rate, it may still suffer from poor initial conditions and failure to con-

verge. In contrast, a non-iterative method is not subject to such limitations. During
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Figure 3.3: Hypothetical system with two modes. Black dots represent a valid solu-
tion, i.e., where the modes intersect the diagonal line, I(p) = k, depicted in black.

gradient-based optimization a wide range of designs and operating conditions may be
analyzed. Thus, for a successful optimization robust convergence properties of the
analysis methods is vital. In addition, it is important that the objective and con-
straint functions be continuous and smooth. Several methods have been proposed in
the literature [85, 178, 179]. The proposed flutter solution method used in this work
aims to satisfy these requirements.

In this work we implement a similar non-iterative method as proposed by van Zyl
[179]. The method is as follows. At each dynamic pressure increment, ¢;, Eq. (3.40)
is solved for a range of reduced frequencies, k. The eigenvalues are valid roots of the
flutter equation if the imaginary part of the eigenvalue equals the assumed k value,
i.e., a matched point solution where J(p) = k. A change in sign of the difference
S(p) — k thus signifies the existence of a valid root. The root is determined by a
linear interpolation. This non-iterative method places no restriction on the number
of roots that can be found.

For a hypothetical system with two modes, Fig. 3.3 shows qualitatively the re-

duced frequency sweep for a single dynamic pressure ¢;. The black dots represent
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an intersection of a mode with the black diagonal line, J(p) = k, which is found by
linear interpolation. There are five valid roots for this particular system, four from
the first mode and one from second mode. For the first mode, there are two real
roots at k = ky = 0, and two complex roots at £k = k; and k = ky. The second
mode is complex throughout the reduced frequency sweep, and has only one valid
root at k = k3. An iterative method would have issues converging to k = k; because
Eq. (3.43) is not satisfied and would converge to k = ky. Similar behavior is noted by
Rodden and Bellinger [180] where the iterative method converges to a real root when

it should converge to an oscillatory complex root.

3.3 Mode Tracking

Mode tracking is an important component in the success of a p-k-type flutter analy-
sis. The primary function of this tracking is to provide a correlation functionality be-
tween two consecutive iterations during mode migration (e.g. with increasing dynamic
pressure), and reduced frequency sweep, to prevent mode hopping. Such tracking is

typically performed by utilizing the mode shapes (eigenvectors) computed.

3.3.1 Existing Methods

Several mode tracking methods have been proposed and one of the early and popular
methods is the modal assurance criterion (MAC) proposed by Allemang and Brown
[181]. Later, due to its popularity, Allemang [182] discusses its original development
and various extensions to the method. The general form of the MAC correlation

metric for real and complex vectors is:

Cy = 97 q, (3.44)
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where q;, q; are the i-th previous and j-th current eigenvectors, and * represents the
Hermitian for complex numbers and transpose for real numbers. Equation (3.44)
computes the C;; entry in the correlation matrix C.

van Zyl [183] proposed a similar version correlating modes based on complex
inner products between current and previous eigenvalues. The scalar product of two
complex eigenvector must be defined to be independent of scaling and phase. A

definition that satisfies these conditions is

2 2
X.Y = —V:/%S—j;% _es (3.45)
34

where
S, = kzn; R(XOR(Yy) — S(X0)S(Vi) (3.46)
S, = i R(XD)S(Va) — S(Xp)R(VE) (3.47)
5= Ak (3.43)
5= I¥ilP (3.49)

Using this method a full correlation matrix C is constructed between two sets of
mode shapes from the previous and current iteration. The matrix is then searched
for the largest elements in which its position then relates previous iteration (line)
with current iteration (column). Once a mode has been selected the corresponding
line and column are excluded from the selection process and this process continues
until all the current modes have been correlated with the previous set of modes.
Eldred et al. [184] proposed a mode tracking method applicable for real eigenvalue
problems, demonstrated in structural optimization with free vibration constraints.

Later Eldred et al. [185] proposed two mode tracking methods for complex eigenvalue
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problems and demonstrated its usefulness in flutter analysis.

Other mode tracking methods exist that do not use the eigenvector information
for eigenvalue tracking. One such method proposed by Chen [85] is a predictor-
corrector scheme for the eigenvalue tracking in the g method [85]. This method uses
a linear extrapolation to predict the new eigenvalue using the current eigenvalue and
gradient. Another class of methods builds on the piecewise quadratic interpolation
(PQI) method proposed by Eller [186]. Huang et al. [187] later improved the method
using shape-preserving cubic spline for mode tracking that uses available data to
compute polynomial coeff