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Abstract 
 
 

 
The continuous downsizing of the critical dimensions (CDs) of semiconductor devices 

poses challenges to plasma-involved semiconductor fabrication processes.  As the CD decreases 

to sub-ten nanometers (e.g., 6 nm-width fin field-effect transistor [FinFET]), control of plasma 

properties to provide atomic scale precision becomes necessary.  Meanwhile, to ensure high 

yield, semiconductor fabrication is often deployed on a large scale, on 300 mm wafers.  

Therefore, it is essential to have a uniform plasma distribution across the reactor for consistent 

yields.   

In this thesis, reactor and feature scale modeling was performed.  The research work 

involves developing computational modules and applying acceleration mechanisms in two 

simulation platforms: the Hybrid Plasma Equipment Model (HPEM), for reactor scale modeling, 

and the Monte Carlo Feature Profile Model (MCFPM), for feature scale simulations.  Frequency 

tuning and impedance matching with an impedance matching network (IMN) were implemented 

in the HPEM to study the electrical dynamics during pulsed-plasma operation.  Surface reaction 

mechanisms of SiO2 plasma-enhanced atomic layer deposition (PE-ALD) using bis-tertiary-

butyl-amino-silane (BTBAS) as the precursor were developed.   

In an inductively coupled plasma (ICP) reactor, the power deposition into the plasma is 

always less than the output from the power source.  The power that is not directed into the 

plasma is lost in the transmission line, reflected at the coil-plasma interface due to the impedance 

mismatch, or dissipated by the materials in the plasma reactor.  The power reflection is 
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minimized by implementing an IMN between the power source and the coil.  By tuning the 

circuit components used in the IMN, the impedance of the pre-plasma circuit (including coils, 

IMNs, and power source) is brought close to the impedance of the plasma, thus reducing the 

power reflection.  However, in practice, the components in an IMN have fixed values because 

tuning the IMN is a mechanical process that takes several miliseconds to even seconds.  

Frequency tuning is another mechanism for impedance matching, which takes advantage of the 

high tuning rate with solid state electronics.  This technique can be used with an IMN if the 

plasma has a rapidly changing impedance (e.g., pulsed plasma).  The function of analytically 

calculating the circuit components in IMN to minimize power reflection in an ICP reactor was 

implemented in the HPEM.  An algorithm of frequency tuning in an ICP was also added to 

enable impedance matching by adjusting RF frequency when the IMN is fixed.  

SiO2 films are widely used in semiconductor devices, and PE-ALD is a preferred method 

for deposition when a low process temperature is needed.  The PE-ALD of SiO2 has two major 

steps: precursor dosing and plasma exposure.  During precursor dosing, a silicon precursor such 

as BTBAS is used to treat the target surface and forms a monolayer of Si-H compounds.  

Subsequently, in the plasma exposure step, the target surface is treated with an oxygen plasma 

and is oxidized.  The reaction is self-limiting for both steps, and a monolayer of SiO2 is 

deposited in one cycle.  However, in experiments, the growth-per-cycle (GPC) is often less than 

one monolayer, which partly is caused by steric hindrance.  Incomplete reactions during 

precursor dosing leave alkyl ligand remains on the target surface, which block neighboring sites, 

and slows the deposition.  The impacts of the operating conditions and steric hindrance on SiO2 

films during PE-ALD were studied.   
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Chapter 1: Introduction 
 
 
 
1.1 Low Temperature Plasmas in Semiconductor Processing 

Since the mid-1980’s, the use of low-temperature plasmas (LTPs) has become an 

essential part of the semiconductor industry.  In fact, developments in manipulating LTPs have 

become a driving force for increasing transistor density in computer microchips that keeps 

pushing the technology to follow Moore’s law [6,7].  Different types of plasmas are often 

categorized as a function of electron density and electron temperature, as shown in Fig 1.1 [4].  

In this thesis, the focus is on a greater understanding of low-temperature plasmas and their 

application in the semiconductor industry.  

Plasma is commonly referred to as the fourth state of matter.  It is an electrically quasi-

neutral gas consisting of charged and neutral particles with collective behaviors [1].  Generally 

speaking, as temperatures increase from absolute zero a substance experiences phase changes 

from solid, to liquid, to gas.  Beyond the gas phase, if additional energy is provided, the matter 

transforms into the plasma state.  It is recognized that the majority of the matter in the visible 

universe is plasma.  For example, both the ionosphere of the earth and the photosphere of the sun 

are plasmas.  Because plasma provides highly reactive particles, and its behavior is subject to the 

surrounding external electrical field (E-field), it is widely used for industrial applications.  The 

most recognizable examples of these are plasmas in visual display panels and in fluorescent 

lighting.  Both of these utilize ultraviolet (UV) light produced in a plasma [2,3].  From 
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fluorescent lighting to the surface of the sun, plasma parameters cover a vast range of possible 

uses.   

There is no strict definition of low-temperature plasmas (LTPs).  However, for plasma 

processing applications, an LTP often refers to a non-thermal-equilibrium, weakly-ionized 

plasma with an electron temperature (Te) between several to 10s eV [5].  The electron density 

(ne) of an LTP is often at 108 - 1013 cm-3, and the pressure is from a few mTorr up to atmospheric 

pressure (100s Torr).  The properties of an LTP depend on many factors, including but are not 

limited to the input power, pressure, and the geometry of the reactor. Therefore, many control 

knobs can be manipulated to characterize an LTP for  specific applications, which is typically not 

the case for other manufacturing approaches. 

The wide range of chemical and electrical properties of an LTP exceed the boundary of 

normal manufacturing.  For example, using LTP enables high aspect ratio (HAR) etching in 

microchip manufacturing within nanometer-scale critical dimensions (CD) due to the emphasis 

on physical etching [8].  Before the use of plasmas, wet chemical etching was the mainstream 

etching technique.  However, wet etching is isotropic, and therefore is not suitable for HAR 

processing.  Applying LTP also enables the deposition of dielectric material with nanometer-

scale precision in low temperature (< 300 ˚C) applications [9].  Access to the reactive particles in 

the LTP moderates otherwise thermally expensive reactions therefore allowing deposition to be 

performed on temperature-sensitive devices.  Examples such as those mentioned above 

demonstrate that LTPs become indispensable components in semiconductor fabrication.  As the 

technology node hits sub-10 nm, and the design of semiconductor devices shifts from 2-

dimensional (2D) to 3-dimensional (3D), it is critical to have precise control over the 
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manufacturing processes.  Producing highly uniform plasmas, with abundant desired reactants 

and maximum power efficiency, continues to be the goal of industrial related LTP research.  

This dissertation focuses on two topics: to survey the possible methods for improving 

plasma uniformity and stability; and to investigate the impact of operating conditions on a PE-

ALD of SiO2.  Both topics are studied using computational tools.  A brief overview of the 

fundamentals of LTP and plasma sources is presented in Section 1.2.  PE-ALD of SiO2 is briefly 

explained in Section 1.3 and the modeling of reactor-scale plasma phenomena and feature-scale 

deposition processes is described in Section 1.4 and 1.5. 

 

1.2 Plasma Sources 

To sustain a plasma, an external supply is required to provide the power to ionize and 

excite the neutral particles.  The resulting ions and excited state species are essential components 

in plasma and are often desired for surface treatment or etching. 

LTPs are made up of bulk and sheath regions and make up a quasi-neutral dynamic 

system with a delicate charge balance in the sheath-bulk plasma interface.  The sheath is a thin 

high-electrical field region above all the surfaces exposed to the plasma.  A diagram of the 

plasma sheath is shown in Fig. 1.2 [10].  In an LTP, Te ≫ Ti and the mass of an electron (me) is 

much less than the mass of an ion (mi).  Therefore, the thermal velocity of the electron is much 

faster than that of heavy ions.  When a surface is presented in a plasma, electrons are lost at a 

much faster rate than neighboring ions due to their high velocity.  Because the plasma is a quasi-

neutral system, the loss of electrons to the surface results in a positively charged region almost 

exclusively containing only cations and neutrals.  This charge provides a plasma potential that 

leads to the formation of an electrical field (E-field) from the plasma bulk to the surface.  This 
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potential repels the electron flux (Γe) and accelerates cation fluxes (Γi) toward the surface.  This 

high E-field region with ni > ne is commonly referred to as the sheath region.  If the surface is not 

grounded, it is referred to as an electrically floating surface.  A floating surface can be charged 

by fast-moving electrons, and this also results in a surface-pointing E-field and the development 

of the sheath.  The sheath formation on a powered electrode is more complicated and will be 

discussed in detail later. 

Most of the plasma chemical reactions occur in the bulk plasma.  Charged particles and 

excited state species are created through ionization and excitation, and they are lost through 

recombination reactions and diffusion to the wall.  Electron impact reactions are the most 

common types of reactions in an LTP.  Electrons accelerated by the E-field gain energy and 

collide with neutral particles, and this transitions the particle to an excited state.  If the electron 

energy is high enough, ionization occurs.  The energy of a species is often plotted on a potential 

energy curve.  For example, the potential energy curve of O2 is shown in Fig. 1.3 [11].  When 

external energy is applied to the ground state oxygen molecule, it can be pumped to another 

potential curve and this represents the shifting of its energy states and the occurrence of a 

reaction.  If two potential curves cross, a shift of states may occur.  Most of the reactions in LTPs 

are energy-dependent, meaning the reaction rate varies with the energy of the reactant electrons.  

This energy-dependence is addressed by using cross section (σ) in the expression of the reaction 

rate coefficient.  A cross section is an energy-dependent parameter of the unit of area and is 

specific for each species.  The electron impact cross sections for oxygen are shown in Fig. 1.4 

[12].  Inelastic collisions such as ionization and excitation have threshold energy requirements, 

while the momentum transfer reaction (elastic collision) is available across all energy regimes.  

An averaged reaction rate constant (k) is: 
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where f(ε) is the electron energy distribution function (EEDF). 

Note that plasma is a dynamic system defined by the group behavior of electrons and 

ions.  One of the most important features of a plasma is its plasma frequency.  The electrons and 

ions are constantly oscillating due to the self-restoring force caused by the perturbation of local 

charge equilibrium.  The electrons and ions oscillate at different frequencies ωpe and ωpi: 

,     (1.2) 

where q is the elementary charge, n0 is the plasma density, and me,i are the electron and ion 

masses, respectively.  Because the electron mass is much smaller than the ion mass, the electron 

plasma frequency is always much larger than the plasma ion frequency, ωpe ≫ ωpi.  Therefore, in 

most scenarios, it is safe to consider only the electron plasma frequency and treat ions as 

stationary particles.  The oscillation of the charge species creates a local non-equilibrium of 

charge density.  In an LTP, the scale over which the charge-equilibrium can be violated is the 

Debye Length (λD): 

,      (1.3) 

where Te is the electron temperature.  Remember that within the sheath, the plasma is not charge-

neutral (ni > ne).  The thickness of the sheath is often several λD. 

1.2.1 Inductively Coupled Plasma Source 

Inductively coupled plasma (ICP) sources are widely deployed in the semiconductor 

industry.  A commonly used ICP has the “stovetop coil” configuration shown in Fig. 1.5 [13].  In 

this case, radiofrequency (RF) power is fed through the planar coil.  The oscillating E-field 
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generates a time-varying magnetic field in the reactor which then creates an E-field that 

oscillates in the azimuthal direction.  This E-field accelerates electrons back and forth and 

transmits the power from the coil to the plasma.  The plasma potential is often low in an ICP (10s 

V).  This low potential results in a thin sheath and low ion energy onto the surface, thus causing 

less sputtering and contamination in the plasma.  Because the targeted feature size can be 10s or 

sub-10 nm scale, reducing contamination is critical.  Usually, separately controlled power 

sources are applied to the substrate in an ICP reactor to control the ion energy and angular 

distributions (IEADs) onto the wafer.  Therefore, an almost independent control of the plasma 

density and IEADs is made possible with the use of ICP. 

In an industrial application, the frequency of the RF power is typically at 13.56 MHz, and 

the pressure is 10s mTorr.  The momentum transfer collision frequency (νm) is less than or close 

to the driving frequency of the coil.  Under these conditions, the skin depth of the 

electromagnetic field (EM-field) into the plasma can be approximated by 
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where δ represents the skin depth, and µ0 is the vacuum permeability.  The power is mainly 

transferred to the plasma within the range of this skin-depth.  Power transition is largely carried 

out through collisionless heating due to the low pressure.  In a typical ICP, δ ≈ 1-2 cm. 

To optimize the power delivery to the plasma, an impedance matching network (IMN) is 

often implemented between the power source and the coil [14,15].  An IMN is a circuit that 

contains only inductors and capacitors, so there is no net power consumption.  By tuning the 

circuit components used in the IMN, the input impedance of the IMN is matched to the output 

impedance of the power source, which usually is 50 Ω.  Using IMN ensures high power delivery 



 7 

efficiency by reducing the power reflection.  The electric field reflection coefficient (ΓR) is 

calculated as 
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0

L
R

L

Z Z
Z Z

−
Γ =

+
,      (1.5) 

where ZL is the impedance of the load, including the impedances of IMN, plasma, and the 

electrical termination components; Z0 is the 50 Ω impedance of the power source.  The power 

deposition into the plasma is then equaled Ptot(1-|ΓR|2), where Ptot is the power output from the 

power source. 

Pulsed power is often used to gain better control of the reactive species fluxes to the 

substrate.  The pulse repetition frequency (PRF) is often between 1-20 kHz, and the duty cycle 

(the fraction of the power-on time in the whole period) is 10s of percent.  Using pulsed power 

enables higher plasma density while maintaining a moderate average power.  Also, unique 

plasma chemistry is enabled during the power-off period [16-18].  Even better control of the 

reactive particles fluxes to the wafer can be achieved when combining the pulsed ICP power 

with a separately controlled powered substrate [19, 20]. 

A commonly observed behavior in a pulsed plasma is that Te often spikes over the quasi-

steady state value at the leading edge of pulse-on, as shown in Fig. 1.6 [21].  This phenomenon is 

caused by low ne during the pulse-off.  Without power input, electrons are rapidly lost to the 

chamber wall and through recombination and attachment reactions.  Therefore, at the end of the 

pulse-off, ne can be as low as 108 cm-3.  Consequently, 10s to 100s of Watts of power are 

distributed in a small number of electrons in the early pulse, which efficiently heat the electrons 

and causes the spike of Te.  With high Te, the ionization reaction rate increases, leading to a boost 

of ne, and sequentially causes the drop of Te to the quasi-steady state value.  Because the spike of 
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Te depends on the low ne during pulse-off, it is more significant when the PRF is low and when 

the plasma is sustained in gases with high electron affinity, such as Cl2 [22, 23]. 

Another unique dynamic of a pulsed ICP is the E-H mode transition during power ramps 

when ne changes abruptly.  The ICP operates in H-mode when the plasma density is high.  In H-

mode, the skin depth (δ) of the electromagnetic wave is smaller than the dimension of the 

reactor.  The power is mainly transferred to the plasma through the azimuthal E-field.  However, 

δ ∝1/ne. When ne is low, such as at the beginning of the pulse-on, δ can be longer than the 

dimension of the reactor, meaning power cannot be effectively transferred to the plasma through 

the azimuthal E-field.  However, because the coils are high-voltage metals, according to 

Poisson’s equation, they produce E-field in the axial direction.  This E-field propagates into the 

plasma and accelerate electrons accordingly.  The power coupled to the plasma through this 

method is the capacitively coupled power.  When the power is mainly coupled through 

capacitive coupling, the plasma operates in the E-mode.   

The E-mode occurs when δ extends further into the plasma, and ne is low, which is most 

often the condition at the end of the pulse-off.  Therefore, in a pulsed plasma, it is often observed 

that during the power ramp-up, a plasma begins in E-mode.  As ne increases, the plasma 

experiences an E-H transition and switches to H-mode dominant.  The E-H transition has been 

observed in various studies, and often shows hysteresis behavior [24-27].  The E-to-H and H-to-

E transition can occur at different powers.  The pressure, dimension of the reactor, and even the 

power loss in the transmission line, are all believed to affect the E-H transition, which explains 

the uniqueness of the phenomenon from case to case [28, 29].  An ionization instability and the 

modulation of the electron density (ne) are often the outcomes of an E-H transition [30].  Because 

E-H transition results from the re-ignition of the plasma, one approach to avoid it is to use a 
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high-low pulsed power scheme [31].  With a low power input during the low-power period, a 

minimum plasma density is maintained to ensure the plasma always operates in the H-mode.  

Another method to minimize the effect of E-H transition is to apply a Faraday shield between the 

planar coil and the dielectric window, which minimizes capacitive power coupling to the plasma 

[32].   

1.2.2 Capacitively Coupled Plasma Source 

Another widely used plasma source is the capacitively coupled plasma (CCP).  A 

conceptual diagram and an experimental CCP reactor are shown in Fig. 1.7 [33].  Comparing 

with an ICP reactor, the CCP reactor typically is shorter in the axial direction.  The smaller 

dimension allows it to operate under higher pressures.  In the semiconductor industry, a CCP 

reactor is often used in the deposition process when the pressure is up to several Torr.     

Unlike an ICP, in a CCP reactor, the power is fed into the plasma through the plate 

electrodes.  As the voltage on the electrode varies at radio frequency, so does the E-field created 

adjacent to the electrode.  The oscillating E-field creates an oscillating sheath that heats electrons 

and sustains the plasma.  This electron heating mechanism with a time-varying sheath is called 

stochastic heating.  In a CCP, the plasma potential is often high due to its capacitive power 

coupling.  This high plasma potential creates a high time-averaged E-field pointing from the 

plasma bulk to the electrode, which accelerates ions to an energy up to 100s eV.  These energetic 

ions bombard the electrode, leading to the emission of electrons.  This process is referred to as a 

secondary electron emission.  However, the secondary electron emission is not uniquely caused 

by ions.  A hot neutral species, that is, a neutral particle with high energy that can be created by 

charge exchange reactions, can also cause secondary electron emissions.  Even so, the ion-

induced secondary electron emission usually dominates in a CCP.  The probability of the 

secondary electron emission depends on the energy, mass, states of the heavy particles impacting 
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on the surface, and the material of the electrode.  Note that the secondary electron emission is not 

a simple kinetic energy transfer process.   

If a CCP is primarily sustained by the hot electrons from a secondary electron emission, 

that is, the secondary electrons cause most of the ionization and excitation reactions, the plasma 

is regarded as in γ-mode.  Otherwise, if the plasma is sustained by the bulk electrons heated by 

stochastic heating, the plasma is in α-mode.  The difference between these two modes has been 

extensively studied [34-37].  A transition from α- to γ-mode CCP with an increasing applied 

voltage in a Neon discharge is depicted in Fig. 1.8 [34].  Unlike ICP switching between E- and 

H-mode in a single process, a CCP mostly does not experience a γ- and α-mode transition.  The 

reason partly is that whether the plasma operates in γ- or α-mode highly depends on the local 

operating conditions, such as pressure and radio frequency, which are commonly constant in a 

process. 

The sheath plays a critical role in the generation of a CCP.  Another important parameter 

closely related to sheath properties is the self-generated DC-bias voltage.  This DC-bias voltage 

is the key parameter to affect the plasma properties that are most important for a semiconductor 

fabrication process, such as IEADs.  Brief descriptions of the sheath on a powered electrode and 

the generation of the DC-bias are provided as follows.   

As mentioned at the beginning of Chapter 1.2, electrons are much easier lost to a surface 

than ions in an LTP because of electron temperature is much larger than ion temperature (Te ≫ 

Ti).  The thin electron-barren layer formed next to the surface with high E-field generates the 

plasma potential (VP).  This layer is effectively a sheath.  A sheath also forms on a powered 

electrode, but the mechanism is more complicated.  Since it is connected to the power source the 

potential of the electrode is oscillating at the radio frequency, which is often several to 10s MHz.  
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Therefore, when the potential of the electrode is in the positive half, it attracts nearby electrons 

and causes the sheath to collapse.  When the potential of the electrode is in the negative half, it 

repels electrons and leads to the sheath expansion.  As a result, the sheath in a CCP is constantly 

oscillating.  These sheath dynamics are so important that stochastic heating is one of the main 

electron heating mechanisms in a CCP.   

In a CCP reactor, a blocking capacitor is often connected to the electrode to dominate 

over the effects of any stray impedance.  Upon this capacitor, a DC-bias is generated.  The DC-

bias is produced due to the geometrical asymmetry, that the surface area of the grounded surface 

(Aground) is inequal to the surface area of the power surface (Apower).  This asymmetry results in 

current inconsistency in the reactor as the current magnitude will be larger on the surface with 

larger area.  Therefore, a DC-bias is built up on the blocking capacitor to maintain the current 

consistency.  In most LTP reactors, Aground > Apower, which produces a negative DC-bias (-Vbias) 

on the powered electrode.  With this DC-bias, the superpositioned voltage on the electrode is 

shifted by the amount -Vbias, and the time when the RF potential on the electrode exceeds the 

floating plasma potential is shortened, as shown in Fig. 1.9.  When a DC-bias is generated on the 

substrate, it is one of the most important parameters that affect the ion energy because ions only 

react to low-frequency or continuous wave (CW) voltages due to their heavy masses. 

One of the shortcomings of the CCP is that most plasma properties are heavily coupled.  

For example, in an ICP, the plasma density and the ion energy to the wafer can be independently 

controlled.  This disassociation is caused by the negligible heating of electrons by the thin sheath 

above the substrate.  In a CCP, varying the operating conditions often result in the changes of 

many plasma parameters.  In some cases, increasing the power leads to the increase of plasma 

density, but also causes high ion fluxes to the substrate.  In the deposition process, a high plasma 
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density is desired because it leads to high deposition rates.  However, high ion flux can lead to 

damage of the deposited film and should be avoided.  Such a dilemma is common when using a 

conventional single-frequency CCP (SF-CCP).  One approach to decoupling the plasma 

parameters is to use a dual- or multi-frequency CCP [38-44].  As mentioned above, in a CCP, 

power can be transferred predominantly to the plasma electrons through stochastic heating.  If so, 

the electron power transfer efficiency is proportional to the radio frequency.  Therefore, input 

power with a high-frequency (10s MHz) affects the heating of electrons more than at low-

frequency (several MHz).  At the same time, heavy particles, such as most ions, can barely 

follow the fast-changing E-field but will respond well to a low-frequency signal.  Therefore, 

theoretically, by applying dual-frequency power, the plasma density and ion fluxes and the IEAD 

can be independently controlled to some degree.  Ideally, high-frequency power is used to 

control the plasma density while low-frequency power is used to control the IEAD to the wafer.  

Even so, some level of coupling still occurs.  Secondary electron emission, which are 

proportional to the ion energy and flux, affects the electron density if the plasma and operate in 

γ-mode.  In these cases, the low-frequency affects the plasma density by influencing ion fluxes, 

even though two frequencies are applied [45].  Following this process, multi-frequency power 

sources are implemented to have more control options in a CCP-involved process [46, 47].  

 

1.3 Plasma Enhanced Atomic Layer Deposition of Silicon Dioxide 

Some sort of dielectric material is one of the most prevalent materials in semiconductor 

fabrication.  As the complexity of semiconductor devices escalates, the requirements on the 

dielectric material deposition become more stringent including high conformality, a low level of 

contamination, high deposition rates, and low wet etch rates (WER) of the film [48, 49].  Atomic 

layer deposition (ALD) technology for the deposition of many dielectric layers has improved in 
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the past decades [50-54].  A schematic of the ALD process is shown in Fig. 1.10 [50].  An ALD 

process often involves two steps, and each step deposits a portion of the desired material on the 

target surface.  Typically, a monolayer of the chemical compound is deposited at the end of each 

cycle.  This ALD process is called the AB binary reaction sequence.  A successful ALD strictly 

depends on the successful self-limiting of surface reactions on each step.  That is to say, 

deposition saturates once the surface is covered with one layer of the target material and self-

limitedly prevents any build-up, ensuring nanometer scale control and is the key factor in ALD. 

Plasma enhanced atomic layer deposition (PE-ALD) has become more important in the 

past few years and particularly involves the use of LTP.  In fact, one of the most significant 

advantages of the PE-ALD is its low deposition temperature requirement.  The ions in the LTP 

can activate the surface by transferring kinetic energy to the surface particles during the 

bombardment.  Also, the reactive species in LTP often have a lower energy threshold for their 

surface reactions.  Therefore, less thermal energy is needed in a PE-ALD process.  The 

deposition temperature can be decreased from 100s to 100 or even 10s˚C for some processes [55-

57].  Another advantage is that this decrease of deposition temperature broadens the choices of 

material available for semiconductor fabrication.  Materials that break down under high 

temperature become usable if PE-ALD replaces thermal depositions.   

Silicon dioxide (SiO2) is a material frequently used in semiconductor devices.  SiO2 film 

deposition is common and requires precise control as the size of the feature decreases.  In a SiO2 

PE-ALD process, the target surface is first dosed with the silicon precursor and then is exposed 

to oxidant-containing plasma.  Depending on the choice of silicon precursor, and the plasma 

operating conditions, the plasma exposure time can vary from 100s ms to 10 s [58-60].  The rule 

of thumb is that the plasma exposure time is long enough for the oxidant to oxidize the surface, 
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but not so long as to induce significant ion bombardment that damages the film.  The variable 

requirements of SiO2 film quality, and various plasma operating conditions cause this order of 

magnitudes difference of plasma exposure time for particular applications.  Note that oxygen 

plasma is mainly used as the oxidant agent in most SiO2 PE-ALD processes.   

One’s choice of silicon precursor is another critical factor that affects the PE-ALD 

process.  Irrespective of the popularity of using silane as the precursor for silicon-based material 

deposition, it is rarely used in an ALD process due to its low adsorption probability [61].  As an 

alternative, alkyl- or amine-ligand containing silane precursors are commonly used [62-64].  The 

asymmetrical structures of these species often lead to lower bonding energy between the silicon 

core and the ligands, thus increases their adsorption probability.  One shortcoming of these 

organic silicon precursors is that if adsorption is incomplete, and the large ligand groups remain 

on the surface, other sites on the surface can be physically blocked by these ligands [65].  This 

results in decreases in the growth per cycle (GPC).    

 

1.4 Modeling of Low Temperature Plasmas  

Computational investigation is a critical approach to studying the physics of LTPs.  It 

provides insights into LTPs without the need to conduct experiments.  Modeling work is more 

cost-efficient compared with the experiments, and broader parameters of study can be performed.  

Therefore, computational modeling of LTP is often performed as the first step of reactor design.   

There are three kinds of LTPs models: kinetic, hybrid, and fluid [66].  The main 

differences between these models are the scale and the equations they are built on.  Generally 

speaking, the fluid model is the most time-efficient, and the kinetic model is the most accurate.  

A hybrid model is a combination of the fluid and kinetic model, thus can lean towards either high 

efficiency or high fidelity, based on the chosen setup.  There is no definitive superior model.  
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The choice of the model being used should depend on the particular problem that is being 

addressed.   

The fluid model uses macroscopic properties such as densities, mean velocities, and mean 

energies to describe LTPs.  A fluid model is based on the Boltzmann equation.  Nearly all of the 

governing equations of a fluid model, the continuity, momentum, and energy equations, can be 

derived from the Boltzmann equation.  Then the effect of the electromagnetic field on the plasma 

is gained by coupling these equations with Maxwell’s equation.  Because the fluid model is 

governed by the fluid equations, the number of variables (densities, energies, and velocities) 

being tracked is a function of the number of species included in the model, which is often 50 or 

more.  As described, a fluid model is computationally light and is proven useful when 

conducting a quick study on the LTPs.  However, information such as electron energy 

distribution functions (EEDFs) is missing in a fluid model, which may introduce inaccuracy in 

the results. 

In a kinetic model pseudoparticles that are the computational units used to represent 

groups of particles of various species.  The kinetic model is based on first-principles equations, 

such as the Newton-Lorentz and Maxwell’s equations.  Because of this, the kinetic model often 

provides highly accurate results [67,68].  However, because the time consumed in executing a 

kinetic model scales with the number of pseudoparticles used, a kinetic model is often 

computationally expensive.  In most scenarios, only the electrons and ions can be tracked using 

pseudoparticles, while the neutral species are treated as background gas to save computational 

time.  Another method for accelerating a kinetic model is to apply a high-speed computational 

unit, such as a graphic processing unit (GPU), for modeling.  In any case, it is advantageous to 
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use the kinetic model when studying plasma with non-Maxwellian EEDFs, statistical properties 

such as the EEDFs are captured.   

The hybrid model is the combination of the fluid and kinetic models.  It combines 

sections that solve the plasma properties in the macroscopic scale as in a fluid approach as well 

as sections tracking the plasma properties using pseudoparticles as in a kinetic model [69].  A 

full fluid model provides the quickest result when studying the quasi-steady state of an LTP, 

however, if EEDFs are the subject of interest, electrons can be treated using the Monte Carlo 

approach, while ion properties are solved using fluid equations.  If ion energy and angular 

distributions (IEADs) are the key factors that need to be logged, ions can be treated as 

pseudoparticles.  The hybrid model provides high flexibility between accuracy and efficiency 

and can be customized to a specific task. 

Because in a hybrid model both the macro- and micro-scale physics are tracked, it is 

difficult to choose the proper time step [70].  The time step requirements can vary by orders of 

magnitude.  Microscale physics, such as the oscillation of the E-field at radio frequency occurs at 

a time scale smaller than 1 ns.  On the other hand, to capture some phenomena that occur at the 

reactor scale (e.g., gas flow), several seconds are needed.  This issue is often addressed in a 

hybrid model by dividing the calculation into different modules.  Each module has its own time 

step for resolving the natural behavior of the corresponding physics, with parameters updated 

and transferred between the modules in a time-slicing fashion.  That is, the parameters are 

updated hierarchically until the system reaches the quasi-steady state. 

 

1.5 Feature Profile Modeling 

The frontline of material processing using LTPs is the plasma-material interface.  LTPs 

provide reactive particles to modify both the chemical (e.g., surface components) and physical 
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(e.g., topology) properties of the surface material.  The products of the surface reactions are 

released into the plasma, causing modification of the plasma properties.  The interaction between 

LTPs and the material is called a plasma surface interaction (PSI).  Modeling the PSI offers 

physics insight, and provides valuable information for the subsequent process optimization. 

There are three major approaches to the PSI modeling: ab initio modeling, molecular 

dynamic (MD) modeling, and kinetic Monte Carlo (KMC) modeling [71].  The ab initio model is 

based on quantum mechanics, and uses the densities functional theory (DFT) to calculate the 

particle potentials.  Therefore, this model generally provides the result with the highest accuracy 

[72].  However, it is challenging to apply the ab initio model on the entire feature with a scale of 

1,000s nanometers.  The ab initio model is mainly used to study the particle surface reaction 

without considering the topology of the surface.  The bulk surface material defined in an ab initio 

model often contains up to 100s atoms. 

In a molecular dynamic model, unlike the ab initio model, the potentials of the particles 

are not solved from the time-independent Schrödinger’s equation, but is part of the input.  The 

solution of an MD model therefore depends on the choice of this potential.  However, errors can 

be induced if the potential is chosen improperly.  Even so, the MD model is computationally 

much lighter than the ab initio model due to its use of this semi-empirical potential function.  

Therefore, the MD model is frequently used to explore the atomic scale reaction mechanisms of 

a PSI [73, 74].  Despite the fact that an MD model is computationally lighter than an ab initio 

model, it still is almost impossible to apply the MD model to a large simulation domain that 

covers the whole structure at, say, 100s nanometer scale. 

To have the entire target structure covered in a simulation, kinetic Monte Carlo models 

are often developed.  The prerequisite for using a KMC model is the inclusion of experimental 
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data or the simulation results from ab initio or MD models.  The KMC model takes those surface 

reaction rates as a known parameter while focusing on the topological development of the 

feature.  Three methods can be used to represent the surface in a KMC model: the string method, 

level set method, and the cell-based method [75].  The string method uses the straight-line 

connected nodes (segments) to represent the surface.  The movement of the surface is captured 

by moving segments along with the nodes.  Because the slope of the segments remains constant 

during the simulation, the string method is most suitable for modeling an isotropic procedure 

such as wet chemical etching.  In the level set method, the surface is given an initial profile.  This 

profile is updated by applying a time- and space-dependent force on it.  This force is then 

calculated based on the local conditions on each node.  If compared with the string method, the 

level set method can much more easily capture the anisotropic properties of a process.  But 

updating the driving force is computationally intensive, which is a difficult trade off to make for 

many applications that require high efficiency.   

A cell-based method defines each mesh cell as associated material and the gas phase 

particles are also tracked.  Any surface reactions are addressed as Monte Carlo collisions when 

gas phase particles hit the solid material.  The cell-based method directly tracks the feature 

profile and the topological evolvement.  By choosing the proper cell size, the computational time 

can be effectively reduced.  However, this is proportional to the number of Monte Carlo particles 

involved.  If many particles are tracked, the cell-based method can also be computationally 

heavy.   

 

1.6 Summary 

To continue to pursue Moore’s law, the semiconductor industry is now targeting sub-10 

nm scale manufacturing techniques.  Plasma-involved processes continue to play an important 
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role in fulfilling this task, requiring a highly uniform and stable plasma.  Applying a multi-

frequency power source and modifying the power profile are two widely used techniques for 

achieving these goals.  Properties of a triple-frequency capacitively coupled plasma and an 

inductively coupled plasma sustained in low-high pulsed power are discussed in this dissertation.  

Triple-frequency power offers more control options to modify plasma properties, while a low-

high pulsed power mitigates the abrupt changes of plasma properties during power transitions. 

To enable a fabrication process to benefit from these unique power formats, it is essential 

to have optimal power delivery to the plasma.  The majority of the power delivered to such 

systems is at radio frequencies, delivered to the plasma reactor by a transmission line.  One needs 

to minimize the power reflection by the reactor so that the power delivered to the plasma has the 

desired profile.  Since the power delivery efficiency is a function of the impedances of the load 

represented by the reactor, impedance matching circuitry is often used.  Using pulsed power, the 

impedance of the reactor changes significantly, making matching difficult.  Set-point matching 

uses a fixed impedance matching network (IMN) between the power supply and the plasma 

reactor with the goal of having a matched load at some point during the pulsed cycle.  Frequency 

tuning employs a power supply with having a variable frequency for dynamic impedance 

matching.  The effects of both impedance matching techniques on pulsed ICPs are discussed in 

this dissertation.   

Finally, the ultimate goal for a plasma processing in semiconductor fabrication is to 

manufacture nm-scale features.  In this regard, the use of plasma enhanced atomic layer 

deposition (PE-ALD) for SiO2 films is discussed.  The impact of macroscopic parameters such as 

input power and pressure in the reactor on the film deposition are discussed.   
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To summarize, in this dissertation, both reactor and feature scale simulation results are 

studied to investigate the effects of operating conditions on an LTP, the proper IMNs setup in a 

pulsed plasma, and the possible optimization methods of a SiO2 PE-ALD process.   

In Chapter 2, the algorithms used for the models applied in this dissertation are described.  

A 2-dimensional model, the Hybrid Plasma Equipment Model (HPEM), is used for the reactor 

scale plasma simulation and the basic structure of the HPEM is discussed.  The calculation of the 

IMNs with consideration of power reflection is also described.  A 3-dimensional model, the 

Monte Carlo Feature Profile Model (MCFPM), was used in the investigation of PE-ALD of SiO2 

films and a description of this model is also provided in Chapter 2.   

In Chapter 3, the transient plasma properties of an ICP driven by high-low pulsed power 

are discussed.  The plasma is sustained in an Ar/Cl2 gas mixture, and the pressure is 10s mTorr.  

The use of Cl2 enables unique chemistry during the low-power period due to its high electron 

affinity.  The high electron attachment rate to Cl2 leads to low electron density (ne) in the late 

low-power period.  This low ne causes a spike in the electron temperature (Te) shortly after low-

high power transition due to the transitional boost of energy per particle.  This overshoot of Te 

ends promptly as ne increases and approaches the quasi-steady state.  However, plasma transit 

states differ from various positions.  For example, spikes of Te disappear 10 cm away from the 

power source, near the wafer.  But the response time of the plasma to the power transition is then 

longer due to transport delay.  Elongating the power ramp and applying higher “low power” can 

stabilize the plasma near the wafer at the cost of having less low-power chemistry.   

In Chapter 4, the power transition from a power source to the plasma is discussed with an 

impedance matching network (IMN) included.  The plasma is an ICP sustained with Ar/Cl2 gas 

mixture at a pressure of 10s mTorr using pulsed power.  At the beginning of the pulse, when the 
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plasma density is low, the power is mainly capacitively coupled to the plasma, and the plasma is 

in E-mode.  As the ne increases with the power, plasma switches from E- to H-mode, meaning 

the power is predominantly inductively coupled to the plasma and no abrupt change of ne is 

captured during the mode transition in this work.  The IMN used in this work is a set-point 

matching circuit.  That is, the IMN is fixed during the pulsing period.  Picking the match point 

appears to have a significant impact on power delivery.  For example, matching the early pulse 

suppresses the E-mode but causes consistent power reflection through the pulse-on.  On the 

contrary, matching the late pulse increases the averaged power delivery efficiency but 

emphasizes E-mode in the early pulse. 

In Chapter 5, results from a computational investigation regarding power transition with 

impedance matching network (IMN) and frequency tuning are discussed.  This investigation is 

conducted on a pure Ar plasma sustained in a 5 kHz pulsed power.  The reactor used is the ICP 

reactor ICAROS, designed in North Carolina State University, Dr. Shannon’s group.  The values 

of the circuit components used in the IMN are first analytically calculated to match the 

impedance of the load to the impedance of the power supply.  The IMN is then fixed according 

to this result to match the impedance at certain point in a pulse referred to as match point.  The 

use of only the IMN for impedance match is referred to as set-point matching.  A real-time 

impedance matching technique, frequency tuning, is applied along with set-point matching to 

further optimize the impedance matching through the entire pulse and provides optimal power 

transition.  Impedance matching in early pulse is found vital for the plasma ignition, which is 

difficult if there is severe impedance mismatch in the early stage of a pulse.  Frequency tuning 

becomes necessary when plasma operates away from the match point for long periods of time. 

In Chapter 6, the results of a computational investigation on a triple-frequency CCP (TF-
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CCP) sustained in Ar/CF4/O2 gas mixture are discussed.  The pressure being 10s mTorr, and the 

gap length between the electrode is 2-5 cm.  Three power sources are connected to two 

electrodes: 80 MHz 500 W on the top electrode, and 10 MHz and 5 MHz power on the bottom 

electrode with 400 W on each frequency.  All the power sources are controlled independently.  

The 80 MHz power has been found to predominantly control the plasma density.  Increasing the 

power from 80 MHz power source is much more effective in raising the ne than increasing power 

on low frequencies.  A more lifted high-energy tail of the electron energy distribution function 

(EEDF) can be observed near the top electrode than near the substrate, even though the power is 

lower from the 80 MHz power source compared with the total power from the low frequencies.  

Increasing high frequency signifies the stochastic heating, and this weakens the local 

electrostatic effect on the edge of the wafer, and improves the plasma uniformity.   

In Chapter 7, results are discussed from an integrated investigation from both reactor- and 

feature-scale simulations on SiO2 atomic layer deposition.  The deposition is performed in a CCP 

reactor and the process consists of two steps: precursor dosing, and plasma exposure.  An Ar/O2 

plasma is used during the plasma exposure to oxidizing the precursors adsorbed on the surface 

during precursor dosing.  The pressure in the reactor is several Torr in both steps.  And the power 

of 100s W is used to generate the oxygen plasma.  Varying pressure has been found to be more 

effective in affecting SiO2 film properties than varying power.  High pressure creates a 

collisional sheath, therefore reducing ion bombardment damage on the film.  When depositing in 

a trench or a via structure, conduction limit hinders the oxidation in the bottom of the feature, 

causing slow film growth rate and high vacancy concentration.  Because compared to the other 

unstable oxidants (e.g., excited state O2 and O3), O is less subjected to conduction limit.  

Therefore, it predominantly determines the oxidation process in the bottom of a high AR feature.   
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In Chapter 8, a summary of the discussed research work is given.  Some interesting future 

work is suggested. 
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1.7 Figures 

 
 

 
Fig. 1.1 Plasma categorized by electron density (ne) and electron temperature (Te).  The low-
temperature plasma is shadowed.  Reproduced from Ref. [4].  
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Fig. 1.2 Diagram of the sheath with potential ΦW.  Ion density (ni) is higher than electron density 
(ne) in the sheath due to the high electron temperature (Te) and small electron mass (me). vi is ion 
velocity on the sheath boundary.  Reproduced from Ref. [10].  
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Fig. 1.3 Potential energy curves of oxygen molecule and ions.  Reproduced from Ref. [11]. 
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Fig. 1.4 Electron impact O2 cross section. Qm is momentum transfer, Qa is attachment, Qp is ion-
pair formation, and Qi is ionization.  vib. exc. represents vibrational excitation states.  
Reproduced from Ref. [12]. 
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Fig. 1.5 a) An ICP reactor setup with planar coil configuration and b) one of the early ICP 
reactor designed at IBM. Reproduced from Ref. [13]. 
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Fig. 1.6 Spike of the radiation temperature at the beginning of the pulse, representing an electron 
temperature (Te) spike as high as 90-100 eV.  Ar, 300 W, 20 mTorr, PRF = 100 kHz, DC = 50%.  
Reproduced from Ref. [21]. 
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Fig. 1.7 Schematic of a) heating mechanisms in a CCP reactor and b) a CCP reactor setup in an 
experiment.  Reproduced from Ref. [33]. 
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Fig. 1.8 Spatio-temporal evolutions of the electron impact excitation rate from the ground state 
into Ne2p1 state within two RF cycles at different RF voltages for two driving frequencies, i.e. 8 
MHz (first row) and 12 MHz (second row), at 50 Pa.  A transition to γ-mode appears in (a3).  
Reproduced from Ref. [34]. 
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Fig. 1.9 The effect of DC-bias on the substrate potential and plasma potential in two RF periods 
(τRF). 
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Fig. 1.10 Schematic of the AB binary sequence of ALD.  The self-limiting ensures a maximum 
deposition rate of one mono-layer per cycle.  Reproduced from Ref. [50]. 
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Chapter 2: Description of the Models 
 
 
 

The modeling of Low Temperature Plasmas provides insight into the minute physics that 

occurs during material processing.  This makes a physics-based plasma model an essential tool in 

the early stage of reactor and process design.  In this thesis, two plasma models were used: the 

Hybrid Plasma Equipment Model (HPEM), and the Monte Carlo Feature Profile Model 

(MCFPM).  A detailed description of the HPEM is provided in this chapter, followed by a brief 

overview of the MCFPM.   

 

2.1 Hybrid Plasma Equipment Model 

The HPEM hybrid model contains several modules [1].  Each module addresses one area 

of the LTP physics hierarchically interacting with other modules.  The modules that are used for 

the simulation in this thesis are Electromagnetics Module (EMM), Electron Energy Transport 

Module (EETM), Fluid Kinetics Poisson Module (FKPM), and Plasma Chemistry Monte Carlo 

Module (PCMCM).  A schematic of the HPEM is given in Fig. 2.1.  The simulation starts with 

an estimation of the densities of various species and their distribution.  This provides the initial 

conductivity of the plasma to the EMM. 

The EMM module calculates the electromagnetic fields ( , )E r ϕ
   and ( , )B r ϕ

   produced by 

antenna in materials and the plasma, where r  is the spatial dependency and φ is the time 

dependency.  A circuit model is used to represent the impedance matching network.  This circuit 

model can capture various properties such as power reflection.  The EM field calculated in the 
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EMM is transferred to the Electron Energy Transport Module (EETM).  In the EETM, the 

behavior of the electrons is attained kinetically using a Monte Carlo simulation.  The electron 

impact reaction rates ( , )k r ϕ  and the electron impact source terms ( , )S r ϕ  are then calculated 

and transferred to the Fluid Kinetics Poisson Module (FKPM).  Within the FKPM, the densities 

( )N r , velocities ( )v r  , and the temperatures ( )T r of the heavy particles are produced.  The 

heavy particle reaction rate coefficients and source functions are also generated in this module.  

With the information for charge densities in the plasma and on the materials, Poisson’s equation 

is solved in the FKPM, and this provides the electrostatic electric field ( , )SE r ϕ
   and the plasma 

potential ( , )P r ϕΦ
 .  The electrostatic E-field and ionization sources are passed to the Plasma 

Chemistry Monte Carlo Module (PCMCM), where the pseudoparticles of ions and neutrals are 

launched and tracked using the Monte Carlo approach.  The energy and angular distributions 

(EADs) of the heavy particles and electrons are logged on certain surfaces in the PCMCM. 

In the HPEM, modules are coupled using a time-slicing technique.  When performing a 

simulation, the evolution of the plasma is captured by executing modules with a unit of a global 

iteration.  During each global iteration, modules are called and variables are updated with 

different time steps.  For example, in a μs global iteration, FKPM is operated once, with several 

updates of electron impact reaction rates ( , )k r ϕ  from EETM.  This technique enables 

simulation in longer time scale without sacrificing much accuracy.   

2.1.1 Electromagnetics Module (EMM) 

The inductively coupled electromagnetic field is calculated in the EMM using the 

frequency-domain Maxwell’s equations.  The time-varying electric field E


 is obtained by 

solving the following wave equation using the finite difference method 
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2 21 1( ) ( ) ( )coilE E E i j Eω ε ω σ
µ µ

−∇ ∇⋅ +∇ ⋅ ∇ = + + ⋅
    

,  (2.1) 

where µ is the permeability, ε is the permittivity, ω is the radian frequency of the applied power, 

and i is the imaginary unit.  The last term coilj


 represents the conduction current in the coil and 

Eσ ⋅


 is the conduction current from the plasma.  The σ  is the conductivity tensor with the form: 
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e n
m v i

σ
ω

=
+

,     (2.3) 

( )e
m

m v i
e

α ω= + ,     (2.4) 

B is the static magnetic field, ne is the electron density, me is the electron mass, e is the 

elementary charge, and νm is the electron momentum collision frequency [2].  For a simulation of 

the inductively coupled plasma, the electromagnetic field is calculated in the EMM as a function 

of position and phase in an RF period.  Because no static magnetic field is used regarding the 

work in this thesis, the conductivity is isotropic and equals σ0.  Using the electric field calculated 

by Eq. (2.1), the magnetic field is derived as: 

( / )B i Eω= ∇×
 

,     (2.5) 

Assuming the collisional power deposition through the azimuthal electric field, this electric field 

from Eq. (2.1) is then normalized to provide desired power through ej E⋅


. 

The EMM also contains a circuit model with which the power supply is interfaced to the 

plasma reactor.  A schematic of the circuit representation of the impedance matching network, 
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antenna, reactor, and plasma is in Fig. 2.2.  The antenna is modeled as a discretized transmission 

line.  The geometry of the antenna determines its inductance.  This inductance depends on the 

overall diameter, height, number of turns, and the thickness of the wire.  It is divided into 100 

discrete series segments, each of which has an appropriate fraction of the total resistance of the 

antenna.  Each segment contains a series impedance, ZSn, consisting of the resistance (RAn) and 

physical inductance (LAn) of the antenna.  The impedance ZSn also contains transformed values of 

resistance and inductance from the plasma [3].  The transformed impedance of the plasma, ZT, is 

[4] 

2
21 ,T P P A A P

P m

MZ i L R i M k L L
Z
ω ωω

ν
   

= − + − =         
,   (2.6) 

2
2 2
P P P P

m

Z L R Rωω
ν

 
= + + 
 

,       (2.7) 

where RP is the plasma resistance, kA is the antenna transformer coupling coefficient, LA and LP 

are the inductance of the coil and plasma, respectively.  The effective plasma resistance RP was 

given by  

( )
3

2P

j E d r
R

j dA

θ θ

θ

⋅
=

⋅

∫
∫



 ,     (2.8) 

The numerator is the volume integrated inductively coupled power, and the denominator is the 

area integrated azimuthal current.  The consequences of the skin depth and the nonlinearities in 

the plasma are accounted for by including the spatial dependence and phase differences between 

the current and the electric field. 

From each discrete segment of the transmission line representation of the antenna, an 

impedance ZCn is implemented to represent the capacitance and series resistance directed to the 
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ground.  This impedance is the capacitive coupling from the antenna.  The reactance of ZCn 

consists dominantly of the series capacitances of the air gap between the antenna and dielectric 

window of the ICP reactor, the window, and the plasma sheath at the surface of the window.  

The resistance of ZCn results from the capacitively coupled conduction current flowing to the 

ground.  The impedance of each element Zk is calculated during the execution of FKPM.  A brief 

description of the calculation of Zk is provided as follows. 

For each turn k of the antenna, the voltage amplitude Vok and phase φvk are determined 

from the circuit model.  The voltage ( ) ( )( )( ) ( )Re exp cosk ok Vk ok VkV t V i t V tω ϕ ω ϕ= + = +  is used 

as the boundary condition for solving Poisson’s equation.  The displacement current flowing out 

of each turn of the coil is logged as 

( )
( )( )

0

ˆ
k

d E t n
I t dA

dt
ε

⋅
= ∫



,     (2.9) 

where n̂ is the normal vector of the coil surface, ( )E t


 is the time-varying electric field obtained 

by solving Poisson’s equation, and A is the surface area of the coil.  The current ( )kI t  is then 

Fourier transformed to provide frequency-domain current with an amplitude Iok and phase Ikϕ .  

The impedance is then 

( )( )expok
k Vk Ik

ok

VZ i
I

ϕ ϕ= − ,     (2.10) 

For pure H-mode, nearly all the power is coupled to the plasma inductively.  The phase 

difference between the voltage and current, ( )Vk Ikϕ ϕ− , is approaching 90˚.  For E-mode, when a 

finite amount of power is capacitively coupled to the plasma, the phase difference is 

( ) ( 90 ,0 )Vk Ikϕ ϕ− ∈ −   .  The value of Zk is distributed to the transmission line segments in the 
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circuit model, meaning each ZCn is a fraction of the total impedance Zk.  The cycle-averaged 

capacitively coupled power is 

( )
( )( )

0

ˆ1
c k k

k k rf

d E t n
P P V t dAdt

dt
ε

τ

⋅
= =∑ ∑ ∫∫



,   (2.11) 

where rfτ is the RF period.  The circuit model also produces PA (resistive losses in the antenna 

coils), PM (resistive losses in the matchbox) and ZM, the input impedance to the impedance 

matching network.  The power dissipated by the inductive power coupling is 

( ) ( )2 31
2IP r E r d rθσ= ∫

  ,     (2.12) 

With ZM, the electric field reflection coefficient is calculated as 

0

0

M

M

Z Z
Z Z

−
Γ =

+
,       (2.13) 

The total power deposited in the system is 

( )21T S M A I CP P P P P P= − Γ = + + + ,    (2.14) 

where PA is the resistive power dissipated in the antenna, and PM is the resistive power dissipated 

in the impedance matching network.  Recognizing that Eθ scales linearly with the antenna current 

and PI scales with 2Eθ , the current flowing into the impedance matching network is renormalized 

so that Eq. (2.14) is satisfied.  With the renormalized values, the circuit and wave-equations are 

again solved.  This process is iterated several thousand times till convergence.  The final values 

of Vk, Eθ and ϕ  are returned to the FKPM for the next iteration for time integration of the fluid 

equations for densities, momenta, and energy.   

For a perfect match of the PS, ZM = Z0.  In the HPEM, matching is produced by adjusting 

CP and CS such that Re(ZM) = Z0 and Im(ZM) = 0.  Typically, Z0 is 50 Ω based on the industrial 
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standard.  From a procedural perspective, CP and CS can be repeatedly tested to minimize the 

value of Γ.  However, one can analytically compute ZM based on the circuit values and plasma 

conditions, and solve for the values of CP and CS that produce the match.  The solutions of CP 

and CS depend on the design of the IMN, details for solving CP and CS are provided in the 

Appendix.  

Finding the impedance match can be accomplished through adjusting the matching circuit 

though it can also be done by varying the operating RF frequency.  In the HPEM, this approach 

is accessible through fixing the IMN and performing a frequency sweep.  The impedance of the 

load is then updated and the reflection coefficient is calculated for each frequency.  The 

frequency that provides the smallest reflection is then chosen as the new operating frequency 

until the fractional variation of the load impedance is higher than the user defined threshold.  

Finally the frequency sweep will be performed again and the operating frequency will be 

updated.     

 

2.1.2 Electron Energy Transport Module (EETM) 

The EETM calculates the rate coefficient from electron impact reactions ( , )k r ϕ  and 

corresponding source function ( , )S r ϕ  by using the electromagnetic fields ( , )E r ϕ
  , ( , )B r ϕ

   

provided by EMM, and the electrostatic electric field ( , )SE r ϕ
  , as well as heavy particle 

densities ( )N r  provided by the FKPM.  The EETM then obtains the electron properties by using 

the electron Monte Carlo Simulation (eMCS) to compute electron energy distribution functions 

(EEDFs).  Another method for attaining the electron properties is by solving the electron energy 

equation, which is performed in the FKPM.  In any case, secondary electron emission caused by 
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heavy particle bombardments on surfaces exposed to the plasma are always addressed using the 

eMCS. 

The eMCS is a fully kinetic approach to resolving the electron dynamics.  The 

pseudoparticles representing the electrons are initially released with random velocities following 

a Maxwellian distribution.  The positions chosen for the electrons are weighted by the electron 

densities in different parts of the reactor.  The governing equation for the electron dynamics is 

the Lorentz equation 

( )e
e

e

dv e E v B
dt m

= + ×
   ,     (2.15) 

where ev is the electron velocity and E


and B


 are the total local electric and magnetic fields 

(electromagnetic and static). 

The energy grid technique is applied to collect collision frequencies and the statics of the 

electrons.  The electron energy is divided into several uneven ranges, e.g., 0-5, 5-10, 10-50, 50-

300, and 300-1000 eV bearing in mind that bulk electrons typically have energy of less than 50 

eV. The high energy range is used to capture the secondary electrons.  These electrons are 

accelerated by the sheath, depending on the bias voltage and plasma potential, secondary 

electrons can have high energy up to several keV.  Each energy section is further divided into 

energy bins and a collision frequency is calculated for each energy bin 

1 2

,

3 i
i ijk j

j ke

N
m
εν σ

 
=  
 

∑ ,     (2.16) 

where iε  is the average energy in bin i, ijkσ  is the cross-section of the species j of process k at 

energy iε , and Nj is the density of the species j.  The concept of a null collision is applied in the 

eMCS to optimize the calculation of collision frequencies.  A null collision frequency is defined 
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as the difference between the maximum collision rate and the real collision frequency.  Because 

the maximum collision rate is a known parameter, including the null collision makes the total 

collision frequency independent of the electron velocity.  Hence, the time intervals between 

collisions are governed merely by the probability law ln( ) / mjt r ν∆ = −  [5].  The r is a random 

number within (0,1), and νmj is the maximum collision frequency within an energy bin j.  The 

types of the collisions are determined by comparing the series of random numbers with the 

normalized collision frequencies.  If the collision is found to be a null collision, no properties of 

the electrons are changed.  Otherwise, the electron properties are updated according to the 

reactions that occur [6].  

In the eMCS, the EEDFs are recorded to each energy bin i and spatial bin l 

( )1
2il j i i i l l

j
F w r r rδ ε ε ε δ  = ± ∆ − ± ∆ −       

∑   ,    (2.17) 

The wj involves the weighting of particles calculated based on the number of particles each 

pseudoparticle represents, the time step for updating particle trajectory, and spatial weighting.  

The EEDF ( , )ef rε   is obtained at each spatial bin at the end of the eMCS by using 

( ) 1 2, 1ij i e i i
i i

F f rε ε ε ε∆ = ∆ =∑ ∑  ,     (2.18) 

Secondary electrons are always tracked in the method described above.  Unlike bulk 

electrons, the secondary electrons are released perpendicular to the surface.  They are no longer 

tracked when they strike a surface or when their energy is reduced to a value lower than the 

lowest excitation threshold.  In the latter case, these secondary electrons are placed into a source 

function for bulk electrons. 

The eMCS can provide highly accurate electron properties, especially when a large 

number of pseudoparticles are used.  However, it can be computationally expensive.  To ease the 



 47 

computational burden, the application programming interface (API) OpenMP is used to enable 

parallel computing.  The OpenMP is a multi-threading parallel computational platform 

implementing the fork-join model, as shown in Fig. 2.3 [7].  At the start of the parallel section, 

the master thread distributes the job to a number of slave threads.  Each slave thread performs a 

fraction of the work and returns its results to the master thread at the end of parallel computation.  

Because multiple threads are working simultaneously, the parallel computation can provide up to 

10 times in the speed of some simplified examples using ten threads. 

The subroutines in the eMCS can be categorized into three sections: initialization 

subroutines (IS), particle trajectories and collisions subroutines (PS), and diagnostic and post-

processing subroutines (DPS).  In the eMCS, IS is called first to initialize the particle properties, 

followed by several repeated calls of PS.  Then the DPS is called after each call of PS.  Note that 

pseudoparticles representing electrons have no interactions with each other, making it suitable 

for parallel computing.  The eMCS is reconstructed such that the PS is included in one big loop.  

In this loop, parallel computing is performed.  The arrays storing the particle properties are 

separated by IS into several thread-aware arrays.  Each array is then passed to a slave thread.  By 

doing this, the probability of memory-sharing between the threads is significantly reduced.   The 

properties of the pseudoparticles are then updated in the PS in the individual thread.  After each 

PS, in the call of DPS, the thread-aware arrays are reconstructed back to their initial structure.  

Parallelizing the entire PS rather than each small loop in PS minimizes the computational 

overhead.  Naturally, the speed-up is especially significant when a large number of 

pseudoparticles are used.   

2.1.3 Fluid Kinetics Poisson Module (FKPM) 

The heavy particle densities, electron energy equation and Poisson’s equation are 

resolved in the FKPM.  As an alternative to the eMCS, in the FKPM, the electron energy 
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distribution ( , , )ef rε ϕ  is obtained through solving the Boltzmann equation using the two-term 

approximation.   

( )e e
r e v e

collisionse

e E v Bf fv f f
t m t

+ ×∂ ∂ = − ∇ − ⋅∇ +  ∂ ∂ 

 
 ,   (2.19) 

In Eq. (2.19), r∇  is the spatial gradient, and v∇  is the gradient in the velocity space.  The last 

term on the right-hand side of the equation includes all the collisional terms.   fe from Eq. (2.19) 

are compute for a wide range of the normalized electric field (E/N), where E is the local electric 

field, and N is the gas density.  A table of rate coefficients versus Te is then created.  This table is 

interpolated during execution of the code.  Consequently, the electron temperature (Te) is 

obtained using the equation 
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∂


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where kB is the Boltzmann constant, κ is the thermal conductivity and eφ


 is the electron flux.  

The total power shunted to electrons is 

     e eeP j E e Eφ= ⋅ = ⋅
  

,     (2.21) 

There are two methods to express the electron flux: the simple drift-diffusion, and 

Scharfetter-Gummel (S-G) expression.  The simple drift-diffusion form of the electron flux is 

     e e e e ee n E D nφ µ= − ∇
 

,     (2.22) 

where µe is electron mobility, and De is the electron diffusion coefficient.  The S-G method is 

widely used to describe the transport of charged particles in the fluid model [7].  With a S-G 

expression, the flux between the mesh points i and i+1 is 

1
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with 

     1i ie
x

α µ +Φ −Φ = −  ∆ 
,     (2.24) 

where D  is the averaged diffusion coefficient between vertex i and i+1, µ  and x∆ are the 

averaged mobility and the length of this interval, and Φi is the potential on vortex i. 

The densities of the heavy particles are attained by solving continuity, momentum, and 

energy equations.  For species i with a source term Si 
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where φ


 is the flux, N is the density, v  is the velocity, m is the mass, T is the temperature, µ  is 

the viscosity, p is the pressure, and ε is the energy.  

Because the charge density directly affects the electrostatic field SE


, it is convenient to 

solve Poisson’s equation in the FKPM along with the update of charged particle densities.  In the 

HPEM, the Poisson’s equation is semi-implicitly solved using linear interpolation of ion charge 

densities in the time domain  
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where ρ  is the charge density.  Because both the surface of a material and the plasma can hold 

the spatial charge, ρ is expressed as 

( ) ( ) ( )m i i
i

t t q N tρ ρ= +∑ ,     (2.29) 

where the first term is the charge density from the solid material, and the second term is the 

charge from the plasma.  qi is the charge of ion i and Ni is the ion density.  By solving Poisson’s 

equation semi-implicitly, there is no requirement of time step t∆  to be smaller than the dielectric 

relaxation time, which is, on the other hand, required for the explicit method [8].  If Scharfetter-

Gummel fluxes are used, the 
t tt
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where ,e jq  represents the charge of electrons and ions, respectively, SΦ  is the electrostatic 

potential. t’ means that the charge density is evaluated at the current time step t, but the potential 

is evaluated at the time step t t+ ∆ .   

The Jacobian term eφ∂
∂Φ



 from Eq. (2.30) is numerically expressed by applying a small 

change of the potential, and then divide the corresponding electron flux fluctuation with this 

potential change.  The first two terms of the partial derivative are kept as the value of eφ∂
∂Φ



.  

Typically, the test variation ,i j∆Φ  is smaller than 5% of the local potential.  The numerical 

expression of the Jacobian term is  
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where i and j are the coordinates of the mesh in the radial and axial direction.  The equations 

mentioned above are solved using either Successive-Over-Relaxation or direct sparse matrix 

method [9,10].   

The charge density is an essential component of the boundary condition.  In the FKPM, 

the charge density on a surface is collected as the sum of the spatial charge in a dielectric 

material, the ion and electron fluxes to the surface, the secondary electron emitted from the 

surface, and the conduction current within the material.  The potential on a powered material is 

the instantaneously applied potential superpositioned with the DC-bias Vdc.   

   ( ) ( )RF dct t t VΦ +∆ = Φ + ,     (2.32) 

where ( )RF tΦ  is the RF potential at time t.  As discussed in the Introduction, the magnitude of 

Vdc depends on the asymmetry of the reactor.  In the HPEM, Vdc is calculated as 
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,    (2.33) 

where C is the magnitude of the blocking capacitance, i is the index of the materials, and j is the 

index of the particles.  The first term on the right-hand side is the conduction current carried by 

ion and secondary electron fluxes.  γij is the secondary electron emission coefficient of material i 

when bombarded with particle j.  n̂  is the normal vector of the electrode surface.  The second 

term is the displacement current on the electrode.  mi can be -1 or +1 depending on which side of 

the circuit  the electrode is located.  That is, if the electrode is on the powered end, mi = 1, else if 

the electrode is electrically close to the ground, mi = -1. 

The power on the electrode is  
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where V(t) is the time-dependent voltage, j is the conduction current density, τ is the RF 

integration time, and A is the surface area of the electrode.  The second term in Eq. (2.34) is the 

displacement current on the electrode, where ε is the electrode permittivity and E


 is the time-

varying electric field.  

When more than one frequency is applied to the same electrode, the power deposition is 

calculated individually for each power source.  The current on the electrode is Fourier analyzed 

to distinguish the frequency components.   
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where N is the number of time bins used to resolve the RF cycles.  Typically, the RF cycle is 

divided into 103-104 bins.  With this current mapping in the frequency domain, the time domain 

current with a radian frequency of ω is expressed as 

    ( )
1 1
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m n

ij ij ij
i j

I t I j tω φ
= =

= +∑∑ ,    (2.36) 

where m is the total number of frequencies, n is the number of harmonics considered for each 

frequency, and ϕij is the phase of the jth harmonic of frequency i.  Sequentially, the time domain 

current is multiplied with the voltage, and the RF period averaged power deposition of frequency 

ω is 

        1 ( ) ( )i iP I t V t dtω ωτ
= ⋅∫ ,    (2.37) 

Finally, the total power on the electrode is the summation of the power from all frequencies. 
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2.1.4 Plasma Chemistry Monte Carlo Module (PCMCM) 

The PCMCM is usually executed after the plasma reaches a quasi-steady state, though it 

can also be executed throughout the simulation.  It is used to record the energy and angular 

distributions (EADs) of both charged and neutral species in the plasma or on the plasma-material 

interface [11].  The electric field, the density of species, and the relevant source functions are 

used in the PCMCM to move and track the pseudoparticles.   

The PCMCM is operated kinetically using the Monte Carlo Simulation technique.  

Pseudoparticles are launched at targeted locations with densities weighted by the source 

functions of the corresponding species.  The initial velocity of a species is isotropic, with a 

magnitude that replicates the temperature calculated in the FKPM using the Maxwell-Boltzmann 

distribution.  The electric and magnetic field are linearly interpolated in both space and time 

domains, and used to advance pseudoparticle trajectories.  Same as in the eMCS, collisions in the 

PCMCM are also handled using the null-collision technique.  A series of random numbers are 

used to determine the collision frequencies and type of reaction from each collision. 

The time step used to integrate the trajectory of pseudoparticles is calculated to be the 

minimum of the time between collisions, the time required for a pseudoparticle to move across a 

specified fraction of the mesh cell, and a fraction of the smallest RF period.  In a bulk plasma, 

the fraction of a mesh cell a pseudoparticle is allowed to travel in each time step is between 0.2 – 

0.5.  As the pseudoparticle enters the sheath, it is accelerated to a high velocity by the electric 

field in a short period of time.  Therefore, the fraction of a mesh cell a pseudoparticle is allowed 

to travel is constrained to ensure an accurate energy and angular distributions (EADs) recording.   

Charge exchange collision is a common occurrence in the sheath.  During a charge 

exchange collision, an energetic ion accelerated by the sheath collides with a neutral particle.  

The ion then losses its charge but preserves its initial kinetic energy.  Consequently, a duo of a 
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hot neutral and a cold (thermal) ion is created.  The hot neutrals bring a significant amount of 

kinetic energy to the surface that can activate the surface sites or cause further damage through 

subsequent bombardments.  Due to the combined importance of ions and neutrals, both the 

IEADs and neutral energy and angular distributions (NEADs) are recorded in the PCMCM. 

2.1.5 Surface Kinetics Module (SKM) 

Reactions at the interface of plasma with a solid material (e.g., wall, wafer, electrode, 

etc.) can be addressed using a Surface Site Balance Model (SSBM) within SKM.  The SSBM 

consists of the rates of reactions between fractional surface sites and gas phase fluxes, or 

between different surface sites.  The relative sticking coefficient of the gas phase species in the 

plasma is updated depending on fractional surface coverage [11].  The incident flux ( inφ


) to a 

surface is provided by FKPM.  A surface reaction generally has the form 

A(g) + B(s) → C(s) + D(g) + E(g),    (2.38) 

where g stands for gas phase species, and s denotes the surface sites.  The rate of ith reaction 

between gas phase species A and surface sites B on material m is: 

     im i Am BmR α φ θ= ,     (2.39) 

where αi is the reaction rate of ith reaction, ϕAm is the flux of gas phase species A on material m, 

θBm is the fractional coverage of surface site B on material m.  The fractional coverage of surface 

sites is updated by summing up the reaction rates. 

The surface coverage ratio, of all the surface sites, is attained by integrating the rate 

equations of the corresponding sites using a third-order Runge-Kutta technique.  The fractional 

surface coverage along with the gas phase fluxes from the surface, outφ


, is returned to the FKPM, 

through which the surface reactions feedback to the plasma.  The reaction probability of gas 

phase species on the surface is the summation of the rates of reactions with it as a reactant.   
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2.2 Monte Carlo Feature Profile Model (MCFPM) 

The Monte Carlo Feature Profile Model (MCFPM) is a voxel-based feature scale 

simulator used to investigate the physics of topologically evolving targets.  It is compatible with 

both 2-dimensional (2D) and 3-dimensional (3D) simulations, while in this thesis, only the 3D 

geometry is used.  A detailed explanation of the MCFPM is provided in Ref. [12].  Only a brief 

description of the model is given in the following paragraphs. 

In the MCFPM, the feature profile is mapped using cubic voxels.  Each voxel preserves 

its assigned material properties.  Pseudoparticles with EADs obtained from the HPEM output are 

typically introduced at the top of the simulation domain.  These pseudoparticles are then tracked 

until they hit the solid material on the surface.  Based on the species of the colliding pair, the 

incident energy of the gas phase species, and the reaction probability, the outcome of the 

bombardment is determined.  Two processes that lead to surface evolvement are deposition and 

sputtering.  In the deposition process, an additional voxel representing the deposited species is 

added to the initial mesh.  In a sputtering process, the voxel indicating the solid reactant is 

removed from the mesh, and the gas phase product is either tracked as a pseudoparticle using the 

Monte Carlo technique or returned as a background species. 

The properties of these fluxes are logged at the bottom of the feature in a defined 

window.  The number of bombarding particles within this window is calculated by counting the 

pseudoparticles hitting the surface, and scaling it with the number of particles each 

pseudoparticle represents.  This value is then normalized by dividing it by the sampling area.  

The fluxes at the bottom of the feature are attained by multiplying the normalized particle 

number with the velocity components perpendicular to the solid surface.  The height of the 

bottom solid surface is determined by averaging the heights of the top-most voxel from each 
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mesh column within the test area.  This height of the surface is periodically recorded, and the 

deposition or etch rate is obtained by dividing the height change with the time interval between 

recordings.   The number of particles leaving the feature is measured by the number of 

pseudoparticles passing through the top boundary of the simulation domain. 

2.2.1 Co-deposition 

In a semiconductor fabrication process, sometimes, sterically large molecules are used.  

For example, when depositing SiO2 film using the PE-ALD technique, organic silicon precursors 

such as BTBAS ([NH(C4H9)]2SiH2), TIPS ([(CH(CH3)2]3SiH)), and BDEAS 

(SiH2[N(CH2CH3)2]2) are used.  All of these compounds are more than twice the size of single 

silicon radicals.  With a complete surface reaction, the silicon is the only particle that is 

deposited on a surface.  However, occasionally, if the surface reaction is incomplete, the ligand 

group from the precursor remains on the surface, causing a steric hindrance.  This phenomenon 

is addressed in the MCFPM by considering co-deposition sites. 

In a co-deposition process, extra voxels are added to the mesh to represent the ligand 

group along with the deposition of the primary species (silicon).  Depending on the dimension of 

the simulation domain, a search of the mesh region centered with the primary deposited site is 

performed in a 3 × 3 square (2D) or 3 × 3 × 3 cube (3D) for possible co-deposition locations.  A 

series of random numbers are then used to determine the sequence of this search.  The co-

deposited ligand groups can occupy up to 2 (2D) or 8 (3D) voxels in the mesh.  When the co-

deposited sites occupy more than one voxel, the location of each voxel is independently 

searched.  Once added to the mesh, the ligand group is treated the same as other surface 

materials, with specified physical properties (e.g., mass, charge, mobility, etc.) and reactions 

with the gas phase particles. 
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The occurrence of co-deposition is probable only when the tagged surface site is 

deposited from the specific reactants.  For example, in a SiO2 PE-ALD process, the ligand group 

is introduced to the surface during precursor dosing.  When a silicon radical is deposited, the 

ligand group from the precursor is assumed to react with the hydroxyl group on the target 

surface, and to volatilize as part of the gas phase product.  However, if there are not enough 

hydroxyl groups on the surface, the ligand group will continue to bond with the silicon and stay 

on the solid surface.  In this example, the primary deposition site is the silicon, and the 

prerequisite reactant is the silicon precursor.  The precursor requirement is necessary because 

silicon can be deposited through various paths.  Other than from the precursor, silicon can also 

be deposited from gas-phase silicon radicals sputtered by the energetic ions.  In this case, the 

probability of co-deposition of the ligand group should be zero since the ligand group does not 

exist in the reactant.  In the MCFPM, all the reactions are mapped with their corresponding 

reactants and products enabling use of the reactants as the prerequisite condition in the co-

deposition process. 

Because the MCFPM is a voxel-based model, all the materials are discretely treated using 

an aligned voxel mesh in the space domain.  Therefore, the microscopic material structure is not 

resolved.  However, the occurrence of a steric hindrance strongly depends on the microscopic 

properties of the reactants.  The structure of the surface material, the neighboring components 

near the positions where the reaction occurs, and the orientation of the gas phase reactant during 

a collision are all vital factors that affect the steric hindrance.  In the MCFPM, a probability is 

assigned to the co-deposition reactions to provide extra control and to accommodate the elements 

that are not included in the model.  A series of random numbers ranging from 0 to 1 is used to 
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determine whether the co-deposition occurs.  The random number is compared with the co-

deposition probability and co-deposition occurs when the random number is smaller. 

2.2.2 Energetic Particle Surface Reaction 

In the MCFPM, any reactions between gas-phase species and surface sites are mapped in 

a probability array.  When a pseudoparticle hits the surface, a random number is generated and 

compared with a given reaction probability, which then determines which reaction is to occur.  

Most of the reactions used in this thesis have a constant reaction probability although it is 

important to remember that an energetic particle surface reaction probability is energy and 

angular dependent [13, 14]     

0( , ) ( )
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i th
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r th

E Ep E p f
E E

θ θ
 −

=  − 
,    (2.40) 

where Ei is the particle energy, θ is the incident angle, p0 is the reference probability, Er is the 

reference energy, Eth is the threshold energy, and f(θ) is the angular dependent function.  The 

exponential term n is typically 0.5.  When bombarding on the surface, energetic particles can 

cause physical sputtering or chemical enhanced etching, any of which may have different angular 

dependence.  In this thesis, using a PE-ALD process, physical sputtering dominates the likely 

energetic particle surface reactions, and a reaction probability is at the maximum value when the 

incident angle is around 60˚.  In our case, this reaction probability decreases with a decreasing 

incident angle and is zero for glazing collisions. 

If the target feature has an aspect ratio greater than 1, an energetic particle can experience 

several collisions on the sidewall before reaching the bottom of the feature.  Through this 

process, the particle losses its energy.  The preserved energy Es of a sputtered particle after 

striking the surface is 
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where Ets is the threshold energy for specular scattering, Ec is the cut off energy of diffusive 

scattering, and θc is the lower angular boundary for specular scattering.  Particles with Ei > Ets 

preserve all the energy, and particles with Ei < Ec, or θ < θc are treated as to be diffusively 

scattered. 
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2.3 Figures 

 
Fig. 2.1 The flow chart of the Hybrid Plasma Equipment Model (HPEM) used in this thesis. 
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Fig. 2.2 a) Schematic of the circuit model and b) the detail of each segment representing 1/100 of 
an antenna.  
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Fig. 2.3 Schematic of the fork-join model used in OpenMP for parallel computation. 
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Chapter 3: Insights to Plasma Transients in Low-High Pulsed Power Inductively Coupled 
Plasmas*  

 
 
 
3.1 Introduction 

Inductively coupled plasmas (ICPs) represent a critical technology for plasma etching for 

semiconductor fabrication, particularly for the manufacture of conductors and compound 

materials, and for atomic layer etching [1-5].  Typical operating conditions include rare gas-

halogen gas mixtures and pressures of a few to tens of mTorr.  Power deposition is up to a few 

kW in chambers accommodating 300 mm diameter wafers.  As the critical dimension (CD) of 

semiconductor devices continues to decrease and more exotic materials are used, finer control is 

required over the plasma produced reactive fluxes to the wafer.  

An increasingly applied method to control reactive fluxes to the wafer is the use of 

pulsed-power.  Typical pulse repetition frequencies (PRF) are up to 5-10 kHz and duty cycles 

(DC), which are the fraction of the pulse period power is on, are typically tens of percent.  Pulsed 

power enables high peak power during the power-on portion of the cycle while leveraging 

unique plasma chemical reactions during the power-off portion of the period [6-8].  When 

combined with continuous or pulsed biases on the substrate, unique combinations of reactant 

fluxes and ion energies onto the wafer can be produced to accelerate ions onto the wafer [9,10].  

Pulsed ICPs have been particularly effective in minimizing damaging the wafer during 

processing.  For example, Ishikawa found that in an SiO2 etching process carried out in an Ar 
                                                
* The results presented and a portion of the text appearing in this chapter were accepted to be published in the paper 
“Transients using low-high pulsed power in inductively coupled plasmas”, by Chenhui Qu et al., Plasma Sources 
Sci. Technol. 103665.R1 (2020). 
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ICP, there was less UV damage when using pulsed power compared to continuous wave (CW) 

due to the lower UV dose during the power-off period [11].  Petit-Etienne et al. studied silicon 

recesses during plasma etching with both CW and pulsed-power using HBr/O2/Ar plasmas [12].  

They found that when using synchronous pulsed-power, the recess loss of Si could be better 

controlled due to a decreased ion flux while maintaining neutral fluxes.  They also concluded 

that using pulsed-power may also minimize chamber wall sputtering due to the lower ion flux, 

which then reduced contamination of the substrate [13].  Bodart et al. investigated the 

consequences of PRF and DC on radical densities in Cl2/HBr plasmas [14].  They found that in 

the high PRF regime, changing DC could effectively control the fragmentation of the feedstock 

gases, whereas in the low frequency regime the effect of DC on the plasma chemistry was small.   

Pulsed ICPs have also been extensively investigated through modeling.  In an early work, 

Ramamurthi et al. developed a two-dimensional continuum model to study pulsed ICPs sustained 

in Cl2 [15].  A highly electronegative ion-ion plasma core with an electropositive edge was 

observed in the afterglow of the discharge.  A spike in Te was observed at the beginning of the 

power pulse, which agreed well with experiments.  The authors concluded that some plasma 

properties, such as negative ion density, are strongly dependent on the spatial distribution of the 

plasma core, also noting the need to control electric probe positions in experiments to obtain a 

complete perspective of these complex processes.  Due to the strong spatial dependence of 

plasma properties in an electronegative discharge, the separation of the electronegative core and 

electropositive periphery was accounted for in a volume-averaged model developed by Kim et al. 

[16].  That model predicts a decreased ratio of neutral-to-ion flux as the aspect ratio of the 

discharge increases in an O2 plasma, further demonstrating the importance of geometry and the 

spatial conditions in electronegative plasmas.  To better understand the transient behavior of a 
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pulsed-power driven electronegative plasma, Thorsteinsson et al. performed a computational 

investigation of an Ar/Cl2 plasma using a global model [17].  They concluded that improvements 

in etch selectivity when using a pulsed-power Cl2 plasma result from the increase of the radical 

to ion ratio compared to CW operation.  This control can be further refined by varying mole 

fractions in Ar/Cl2 mixtures, a practice that provides some limited ability to tune the electron 

temperature.   

A commonly observed behavior of Te in a pulsed ICPs is that at the beginning of the 

power pulse Te spikes to a value above that in the quasi-steady state.  For example, in the 

modeling by Ramamurthi et al., this spike in Te was observed in a pulsed Cl2 ICP [15].  Te 

peaked to 5 eV at the beginning of the pulse and then rapidly decreased to the quasi-steady value 

of 2 eV in about 10 µs.  This phenomenon was observed in early experiments performed by 

Ashida et al. [18].  In a pulsed ICP sustained in Ar at 5 mTorr, Langmuir probe measurements 

indicated a peak in Te at the leading edge of the pulsed period up to 7 eV, with the quasi-steady 

state temperature being 3.5 eV.  Darnon et al. noted that in their experiments the overshoot of Te 

at the beginning of the pulse is more significant when the pulse repetition PRF is low [19].  A 

low PRF provides a longer afterglow, and thus a lower electron density, ne, at the beginning of 

the next pulse.  This lower ne then produces the overshoot of Te.  With the spike of Te in a pulsed 

plasma being well documented, its behavior is used as a test of the accuracy of experimental 

measurements [20].  However, the spatial dependence of the spike of Te is not often documented.  

Although there are several advantages of using pulsed-power for electronegative ICPs, 

there are also several challenges.  Due to the low electron density at the end of the afterglow and 

at the beginning of power pulse, E-H (capacitive-to-inductive) transitions can occur at the 

beginning of each pulse.  At the beginning of the pulse when the electron density is low, the 
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electromagnetic skin depth can be larger than the dimensions of the reactor, and electromagnetic 

coupling is inefficient.  Power is electrostatically and capacitively coupled to the plasma through 

the voltage drop from the coil to the plasma bulk.  This is the E-mode.  As the electron density ne 

increases, the skin depth decreases and power becomes coupled to the plasma inductively 

through the electromagnetic field.  This is the H-mode.  During the onset of the E-mode, large 

oscillations can occur in the plasma potential and plasma density, and electrostatic waves can be 

launched from beneath the antenna.  When operating close to the transition between the E- and 

H-modes, ionization instabilities may occur which produce periodic maxima in the plasma 

density [21]. 

The E-H transition in ICPs was experimentally investigated by Cunge et al. [22] who 

observed a hysteresis in the mode transition as a function of power.  It was observed that the 

power absorbed by the plasma has a nonlinear dependence on the electron density.  In a later 

work, Chabert et al. investigated this instability in SF6 and Ar/SF6 plasmas with a combination of 

experimental and modeling work [21].  They concluded that multistep ionization plays an 

important role in ionization balance, induces nonlinearity in the plasma and produces hysteresis 

behavior during the E-H mode transition  

One of the origins of the E-H transition in electronegative ICPs and its associated 

instabilities is the need to reignite the plasma at the beginning of each period in pulsed plasmas.  

One strategy to circumvent the E-H transition while also modulating power is to use a high-low 

power scheme [23].  Using this method, the pulsed power format consists of a high-power 

portion of the pulsed period followed by a low power portion of the pulsed period - that is, non-

zero power.  The intent of the non-zero power is to maintain the plasma’s conductivity at a high 

enough value so that the system remains in H-mode throughout the pulsed period.  However, 
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even high-low power pulsing may have instabilities.  List et al. found that in high-low power 

modulated Cl2 ICPs, the plasma may extinguish at the beginning of the low-power period and 

then reignite after 10s of microseconds to a few ms [23]. They called this phenomenon “ignition 

delay”, the cause of which is believed to be related to the ability of the supply to deliver power to 

the time varying impedance of the plasma. 

In this chapter, we discuss results from a computational investigation of high-low pulse 

power formats for ICPs sustained in Ar/Cl2 gas mixtures.  We found that in high-low pulsed 

plasmas, Te undergoes a transient during both power transitions.  For long enough high- and low-

power periods, Te, is effectively constant during the pulse.  However, Te, has a momentary 

maximum when power transitions from low-to-high, are similar to the leading edge of 

conventional pulsed ICP.  Te, also has a momentary minimum when power transitions from high-

to-low.  This response of Te to power transitions highly depends on location with respect to the 

electromagnetic skin-depth and the fractional dissociation in the Cl2-containing plasma.  Within 

the skin-depth, the transients in plasma properties (Te and ne) during power transitions are 

distinctly observed.  With increasing distance from the skin-depth, the transients disperse in 

space and dissipate in magnitude.  These responses of the plasma to pulsed power can be 

controlled through gas mixture and the pulsed power format.  Decreasing the Cl2 mole fraction, 

lengthening the power ramp time, and increasing the low-power diminish the transients and 

produce a more spatially uniform plasma.   

A brief model description is in Sec. 3.2.  Plasma properties as a function of high-low 

power format and gas mixture are discussed in Sec. 3.3.  Concluding remarks are provided in 

Sec. 3.4. 
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3.2 Description of the Model 

Note: The computational investigation was performed using the HPEM (Hybrid Plasma 

Equipment Model).  Details of this model are discussed in Sec. 2.1 and Ref. [24], while a brief 

description follows focusing on the options used in this study. 

In this work, the model employed uses the Electromagnetics Module (EMM), Fluid 

Kinetics Poisson Module (FKPM), and Electron Monte Carlo Simulation Module (eMCS) within 

the Electron Energy Transport Module (EETM).  The inductively coupled electric field is 

produced in the EMM from a frequency domain solution of Maxwell’s equation.  The densities, 

fluxes and temperatures of the heavy particles (neutrals and ions), densities of electrons and 

electrostatic potential are produced in the FKPM.  This information is then transferred to the 

eMCS for electron energy distributions (EEDs) throughout the reactor.  Electron trajectories 

including electron collisions in the time and spatially varying electric and magnetic fields are 

computed.  Transport of both bulk and secondary electrons from surfaces is addressed.  Electron-

electron collisions are included such that the Maxwellian nature of the EEDs is captured in 

regions of high electron density.   

The species included in this work are Ar, Ar(1s5), Ar(1s4), Ar(1s3), Ar(1s2), Ar(4p), 

Ar(4d), Ar+, Ar2
+, Ar2

*, Cl2, Cl2(v), Cl2+, Cl, Cl+, Cl(4s), Cl(4p), Cl(3d), Cl-, and electrons. 

 

3.3 Characteristics of Low-High Pulsed Power ICPs 

The geometry of the ICP reactor used in this investigation is shown in Fig. 3.1a.  The 

system is a conventional ICP reactor with a stovetop 4-turn coil located at 0.4 cm above a 

dielectric window.  The cylindrical reactor radius is 7.6 cm and the chamber height is 15.6 cm.  

A wafer of a radius of 3.7 cm is positioned on a grounded substrate 13 cm below the dielectric 

Al2O3 window.  A 1.8 cm wide Al2O3 focus ring surrounds the substrate.  The dielectric constant 
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of the alumina is 9.8 and that of the wafer is 11.8.  The dielectric has a negligible conductivity 

while the wafer has a conductivity of 10-3/Ω-cm.  The substrate supporting the wafer is not 

powered so that any modulation of the plasma is attributed to power changes from the coil.  The 

gas inlet is in the sidewall at 0.4 cm below the dielectric window and the annular pump is at the 

bottom of the reactor with a 2.1 cm width.  The feedstock gas enters the chamber at ambient 

temperature (300 K).  A pressure sensor is embedded in the sidewall at 3.9 cm above the 

substrate to monitor the local pressure, and that measurement is used to throttle the output flow 

rate to maintain the specified pressure.  The inner wall of the reactor is coated with the dielectric 

yttria (Y2O3) to decrease the sticking coefficient of radicals, thus increasing the precursor 

densities in the plasma bulk.  The dielectric constant of yttria is about 13.  The actual thickness 

of the yttria coating of a few microns cannot be resolved by the mesh, and so the dielectric 

constant of the yttria used in the model was increased to 104 so that the capacitance (F/cm2) of 

the yttria material would be the same as the thin film.  The reactor is surrounded by air with 

electrical ground planes situated at large enough distances so that the electromagnetic waves 

produced by the coil are not perturbed by the surrounding ground planes.   

The secondary electron emission coefficients of both the alumina window and the Y2O3 

sidewall coating were 0.05 for ions and 0.01 for excited state species having energy greater than 

the work function of the material.  (Photoelectron emission was not included.)  A parametric 

study was conducted for varying the secondary electron emission coefficient from one third to 

three times of these base case values.  There was little impact on the plasma density or spatial 

distribution of the plasma.  The ionization by secondary electrons is 1-2 orders of magnitudes 

smaller than the ionization by bulk electrons.   

The applied power profile, shown in Fig. 3.1b, is a high-low pulsed format that modulates 
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the 13.56 MHz radio frequency current applied to the antenna.  For the work in this chapter, all 

the applied power is inductively coupled to the plasma.  That is, we did not include capacitive 

coupling from the coils and so were able to assume H-mode power deposition.  This assumption 

was validated by performing limited simulations with full electrostatic coupling from the 

antenna.  In the base case, the high-power is 160 W and the low-power is 96 W.  (With high 

power, the power density, W/cm3, is similar to industrial reactors used for microelectronics 

fabrication.)  The pulse repetition frequency (PRF) is 5 kHz and the duty cycle (DC) is 50%.  

Note that the power takes 10 μs to ramp from low-to-high or from high-to-low power.  The 

ramp-up and ramp-down times are evenly split between the high- and low-power periods so a 

50% DC is strictly enforced.  For the base case, the feedstock gas used is an Ar/Cl2 = 5/95 

mixture with a flow rate of 22 sccm.  The pressure is held constant at 20 mTorr. The reaction 

mechanism used for the Ar/Cl2 plasma investigated here is the same as in Ref. [25].  The 

recombination coefficient on surfaces for ground state Cl to recombine to form Cl2 was 0.05.  

Excited states of Cl and Ar quenched on surfaces to form their ground states with unity 

probability.  Cl2(v) quenched on all surfaces to form ground state Cl2 with 0.5 probability.   All 

charged species recombine on surfaces with no reflection, depositing charge on dielectric 

surfaces.  

The 2D profiles of the electron density (ne), electron temperature (Te) and ionization 

source by bulk electrons (Se) are shown in Fig. 3.2.  The figures shown are at the end of the high- 

and low-power periods, corresponding to the times of 100 μs and 200 μs shown in Fig. 3.1b.  In 

the base case, the position with the highest power deposition is at mid-radius of the reactor at 1 

cm below the dielectric window.  As the power changes from 96 W to 160 W, the maximum 

power density increases from 0.8 to 1.4 W/cm3, leading to an increase in the maximum electron 
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density from 6.3 × 1010 cm-3 to 1.3 × 1011 cm-3.  Using these values of ne and the momentum 

transfer collision frequency (νm) of 2 to 4 × 107 s-1, the skin depth (δ) of the EM wave in the 

plasma is 1.5 to 2.0 cm, which is much smaller than the height of the reactor (13 cm).  

Consequently, the pulsed power has little direct impact on the plasma dynamics in the several cm 

above the wafer.   

For example, the ionization source by bulk electrons (Se) decreases by a factor of 100 

within 5.0 cm from the dielectric window, indicating the plasma density above the substrate is 

not directly sustained by the pulsed power but rather results from transport of charged species 

from the top of the reactor.  The plasma near the substrate can at best be sustained by power that 

is convected from the top of the reactor by non-local electron transport and by electron thermal 

conduction, or by Penning ionization due to metastable species that transport from the top of the 

reactor. 

The dominant positive and negative ions in the base case are Cl2+ and Cl-.  Their densities 

and the gas temperature (Tgas) are shown in Fig. 3.3 at the end of the low- and high-power 

portions of the pulsed cycle.  The axial densities of electrons and Cl- at mid-radius of the wafer 

are shown in Fig. 3.4 at the end of the low- and high-power periods.  The maximum Cl2+ density 

has only a small increase, 1.6 × 1011 cm-3 to 1.8 × 1011 cm-3, as the input power transitions from 

low (96 W) to high (160 W).  The increase in the negative ion density is also small, 1.5 × 1011 

cm-3 to 1.6 × 1011 cm-3.  The electronegativity of the plasma, the ratio of the negative ion density 

to electron density, decreases from 2.4 at low power to 1.2 at high power.  The Cl- density is 

relatively stable through one full period due to the high dissociative attachment rate of Cl2 by 

thermal electrons which can occur throughout the reactor.  Losses of Cl- are dominated by ion-

ion recombination since the negative ion is trapped in the plasma by there being a positive 
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plasma potential throughout the pulsed period.  The peak plasma potential is 13 V during low 

power and 14 V during high power.  Unlike pulsed systems where the power is turned off, the 

plasma potential does not dissipate during the low-power period which would then allow 

negative ions to diffuse out of the plasmas.  With the Cl2+ density also fairly stable through the 

period, the loss term of the Cl- is also fairly constant. , 

The maximum gas temperature is modulated during the pulsed cycle by about 170 K (752 

K during low power and 920 K during high power).  Heating is nearly instantaneous with the 

application of power while the dominant gas cooling is by thermal conduction to the walls.  

(There are small additional contributions due to injection of cool gas and pumping of hot gas.)  

These thermal heating and cooling time scales are short compared to the gas convective time 

scale, and so there is less modulation in the gas density.  As a result, there are pressure 

oscillations during the pulsed period [26]. 

The aspect ratio of the ICP reactor has important implications on the local densities of 

charged particles.  In this work, the reactor has a fairly large aspect ratio (height divided by 

radius) with the power deposition and electron impact ionization being limited to a few cm at the 

top of the reactor within the electromagnetic skin depth.  Transport processes then convect power 

and density from the skin depth to the lower portion of the reactor.  For example, ne and Te are 

shown at mid-radius of the wafer as a function of time for different heights in Fig. 3.5.  Within 

the electromagnetic skin depth (height = 11 cm), ne is fairly constant during the high- and low-

power periods with a change in density commensurate with the change in power.  At locations 

further from the skin depth, the electron density is smaller while the relative modulation in ne is 

also smaller.  Moving further from the source, there is an increasing positive slope in ne as a 

function of time during the high-power pulse and an increasingly more negative slope in ne as a 
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function of time during the low-power pulse.  These trends result from the finite transport time 

for the excess electron density produced during the high-power to translate to the bottom of the 

reactor.  The time for transport of the electrons from the top to the bottom of the reactor is 

commensurate with the pulsed period.  Therefore, the increase and decrease in plasma density 

that is experienced in real-time with power modulation at the top of the reactor is averaged over 

the cycle at the bottom of the reactor. 

The high- and low-power periods are long enough, 100 µs, that the plasma in the skin 

depth comes into a quasi-steady state during both the high- and low-power periods.  For quasi-

steady state conditions, the electron temperature Te is determined by a balance between sources 

by electron impact ionization and Penning reactions, and losses by attachment, recombination 

and transport out of the skin depth.  In the skin depth, the fractional dissociation, 47%, is nearly 

constant during the high- and low-power periods, and the change in gas rarefaction between the 

high- and low-power, 15%, is not large.  As a result, Te during the low- and high-power periods 

is similar – the value at which sources and losses balance each other.  The power deposition is, to 

first order, nekL(Te)Ng, where kL(Te) is the rate coefficient for power loss (which increases with 

increasing Te) and Ng is the gas density.  With Te and Ng being similar during the low- and high-

power, then a change in power requires a change in ne.  The change in ne is downwards when 

going from high-to-low power and upwards when going from low-to-high power.  These 

transitions in turn require that Te momentarily decrease below the self-sustaining value in 

transitioning from high-to-low power to lower the electron density.  Similarly, Te must 

momentarily increase above the self-sustaining value when transition from low-to-high power to 

increase electron density.   

A similar interpretation of the need for spikes (up or down) in Te, comes from the 
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perspective of power dissipation.  With an instantaneous, step-function increase in power 

deposition, there is not sufficient time for the electron density to increase to accommodate the 

increase in power.  To enable the increase in power deposition, Te must increase, which usually 

also increases the rate of power dissipation per electron.  Similarly, if there is an instantaneous 

decrease in power, there is insufficient time for the electron density to decrease to accommodate 

the decrease in power.  To enable the decrease in power deposition, Te must decrease, which 

usually also decreases the rate of power dissipation per electron.  The duration of the spikes in Te 

(up or down) is then the time required for the electron density to change from the low-to-high 

values (and vice-versa). 

These spikes in Te are shown in Fig. 3.5, and occur dominantly in the skin depth where 

power deposition is maximum – positive spike for low-to-high power and negative spike for 

high-to-low power.  When translating lower in the reactor and further from the skin depth, Te 

decreases due to collisional power loss.  The local heating sources are superelastic collisions (a 

small contribution), thermal conduction by bulk electrons or non-local transport in the tail of the 

EED.  The spikes in Te also dissipate and broaden in time, as thermal conductivity and 

convection translate the pulse of hotter electrons (low-to-high power) or cooler electrons (high-

to-low power) to lower heights.  The end result is that Te appears to have periodic waves close to 

the wafer.   

The EEDs at the end of the high- and low-power periods are shown in Fig. 3.6.  At the 

top of the reactor, the EEDs are almost Maxwellian due to the high e-e collision frequency and 

higher Te.  Moving away from the power source, the EEDs gradually shift to bi-Maxwellian with 

a lower temperature bulk (1.0 eV) and higher temperature tail (1.9 eV).  The bulk Te decreases in 

translating lower in the reactor due to the lower frequency of e-e collisions and collisional power 
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loss.  The tail of Te is relatively constant (or decreases less than the bulk Te) as the tail is 

sustained by non-local transport of high energy electrons that are accelerated in the skin depth 

and have longer mean free paths.  There are no significant differences between the EEDs at the 

end of the low- and high-power periods.  First, the Te is essentially the same in the skin depth at 

the end of the low- and high-power periods, and so the power deposition-per-electron is the 

same.  As a result, the EED in the skin depth is essentially the same.  Lower in the reactor, the 

tail of the EED has a higher temperature at the end of the high-power period compared to the 

low-power period.  This is likely a result of the higher thermal conductivity afforded by the 

higher electron density. 

3.3.1 Gas Mixture 

In a pure rare gas mixture at low pressure (without dimer ions), loss of electrons and ions 

is dominated by diffusion to surfaces where they recombine.  If in a pulsed system, the period is 

shorter than the time for ions to diffuse to surfaces, then the plasma source is effectively 

averaged over the pulse period.  The plasma density will then not directly track the variation in 

power deposition.  When increasing the Cl2 mole fraction in a Ar/Cl2 gas mixture, the rate of 

electron loss by dissociative attachment increases and the electron density is more modulated 

during the pulsed period.  This increased rate of modulation of the plasma density then requires a 

larger modulation in Te.   

The Cl2 mole fraction in the Ar/Cl2 gas mixture was varied from 20% to 80%, and the 

resulting electron densities are shown in Fig. 3.7 at the end of the high-power part of the cycle.  

The electron densities and temperatures at heights of 11 cm and 2 cm above the substrate are 

shown in Figs. 3.8 and 3.9 during the pulsed cycle.  The PRF (5 kHz), duty cycle (50%) and 

low/high power (96 W/160 W) are the same as in the base case.    

With the increase in Cl2 mole fraction, the power deposition per electron increases and so 
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on this basis alone, for a given power density, the electron density decreases.  We see this trend 

in the electromagnetic skin depth where power deposition is maximum – ne increases from 1.6 × 

1011 cm-3 for an Ar/Cl2 = 20/80 mixture to 7.9 × 1011 cm-3 for an Ar/Cl2 = 80/20.  As electrons 

diffuse out of the power deposition region, the Te of these electrons decrease more rapidly with 

increasing Cl2 mole fraction.  For Cl2, which is a thermally attaching gas, the rate of dissociative 

attachment increases with decreasing Te, and this lowers the average electron density even 

further.  As a result, there is a more severe gradient in electron density between the top and 

bottom of the reactor with a larger Cl2 mole fraction.  For the Ar/Cl2 = 80/20 mixture, ne 

decreases by a factor of 2.2 from the top to the bottom of the reactor.  For the Ar/Cl2 = 20/80 

mixture, this decrease is by a factor of 7.5.   

The electron density at the top of the reactor (height = 11 cm) is essentially in phase 

during the pulse-period – increasing when the power is high and decreasing when the power is 

low.  With the power deposition being limited to the skin depth, there is a time-delay (phase 

offset) for the increase in plasma density to propagate from the top of the reactor to the bottom of 

the reactor.  This delay is 10-15 µs for the Ar/Cl2 = 80/20 mixture and decreases with increasing 

mole fraction.  At the same time, the degree of modulation in the plasma density decreases from 

the top of the reactor to the bottom of the reactor.  In the skin depth, the electron density is 

modulated by a factor of 2.  Above the substrate, the modulation is a factor of 1.5.  The phase 

delay and decrease in modulation in plasma density are both a consequence of the finite 

propagation time for the pulse of higher electron density during the high-power period to 

propagate across the reactor. 

In transitioning from low-to-high power, which requires an increase in plasma density, Te 

must increase at least momentarily above the quasi-state self sustaining values.  In transitioning 
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from high-to-low power, which requires a decrease in plasma density, Te must at least 

momentarily decrease below the quasi-state self sustaining values.  The magnitudes of these 

momentary increases and decreases in Te get larger with increasing Cl2 mole fraction.  Te in the 

skin depth (height = 11 cm) as a function of Cl2 mole fraction is shown in Fig. 3.9a.  The leading 

positive spike of Te (low-to-high power) increases by about 0.2 eV between a mole fraction of 

20% and 80%.  This increase is required to offset the additional electron losses by dissociative 

attachment.   

The initial positive spike in Te produces excess ionization that persists during the high-

power pulse.  Based on the additional losses inherent to the more chlorine rich Ar/Cl2=20/80 

mixture, one would expect Te to be higher during the pulse in than in more dilute mixtures.  This 

is not the case, as Te is marginally lower for the chlorine rich mixtures during the pulse.  The 

excess ionization produced by the positive leading spike in Te enables a lower Te in the chlorine 

rich mixtures during the high-power pulse.  During the low-power period, Te is higher for higher 

Cl2 mole fractions.  In transitioning from high-to-low power, there is no ionization excess and so 

Te is higher in the more chlorine rich mixtures to offset the additional electron losses.   

Te for different Cl2 mole fractions at 2 cm above the substrate is shown in Fig. 3.9b.  The 

electron transport time from top-to-bottom of the reactor is 10-20 µs, which is also about the 

duration of the leading spikes and decreases in Te in the skin depth.  As a result, these spikes and 

decreases in Te are dissipated and averaged over the high- and low-power periods by the time the 

transients reach the substrate.  The end result is that there are imperceptible spikes (positive or 

negative) in Te above the substrate.  However, the low-to-high power positive spike in Te, and the 

high-to-low power negative spike in Te in the skin depth, when convected to the substrate, 

produces a temperature that is 0.1 to 0.2 eV higher during the high-power than during the low-
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power.   

With there being increasing collisional losses with increasing Cl2 mole fractions while the 

electrons transport from the source region to the substrate, Te above the substrate decreases by 

0.7 eV with increasing mole fraction (20% to 80%).  A portion of this decrease can be attributed 

to the lower electron thermal conductivity due to the lower electron density with a large Cl2 mole 

fraction.  The lower thermal conductivity reduces the diffusion of thermal energy from the 

source region to the substrate.  

3.3.2 Power Ramp-Down Time 

For the pressures and gas mixtures investigated in this chapter, the time for the system to 

respond to step function changes in power deposition is the response time τR = 10-30 µs.  If the 

change in power is over times longer than τR, then the plasma will track the change in power in a 

quasi-steady state manner.  That is, the electron density and temperature will be nearly in 

equilibrium with the instantaneous power.  When ramping down in power, there must still be a 

decrease in Te below the self-sustaining value to enable a decrease in plasma density; and there 

must be increases in Te above self-sustaining when ramping up in power.  However, for long 

enough ramp times these changes may be imperceptible.  If the power ramping time, τ, is 

commensurate or shorter than τR, then the Te must undergo significant excursions in order to 

increase power dissipation while increasing electron density (ramp up) or decrease power 

dissipation while decreasing electron density (ramp down).   

The power ramp-down time, τ, was varied from 10 μs to 80 μs while the ramp-up time 

remained at 10 μs.  The corresponding Te at heights of 11 and 2 cm are shown in Fig. 3.10, and 

the corresponding ne are in Fig. 3.11.  The low- and high-power periods are long enough that the 

quasi-steady state electron densities are nearly the same, independent of ramp time τ.  Having 
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said that, larger values of τ result in higher average power deposition.  (Between a ramp time of 

10 and 80 µs, the average power increases from 128 W to 139 W.)  As a result, there is 

proportionately more dissociation of the Cl2 and more gas heating, which results in the electron 

density being about 10% higher with the longest ramp time.  That aside, the conditions for low-

to-high power are nearly the same for all ramp times.  As a result, the initial spikes in Te in the 

skin depth (height = 11 cm) are also nearly independent of τ.   

As τ increases from 10 to 80 µs, the length of power-down period begins to exceed the 

plasma response time τR.  In doing so, the downward spike in Te becomes less severe – 0.3 eV 

for τ = 10 µs to less than 0.1 eV for τ = 80 µs.  If we extend τ to 100 µs, the change in Te falls 

within the statistical noise of the simulation.  Above the substrate, Te shows the transit time delay 

and smoothing of the initial spike for the low-to-high power transition (discussed above).  

During the low power period, Te is higher for τ = 80 µs compared to shorter ramp times due to 

the lack of the downward spike in Te.  However, all of these variations are within 0.15 eV.   

With the exception of the aforementioned increase in ne due to the higher average power 

for large τ, ne in the skin depth closely tracks the ramping down of the power.  At 2 cm above the 

substrate, the averaging of power deposition over the electron transit time of 10-30 µs from the 

skin depth makes the electron density less well correlated with the ramp-down time.   

3.3.3 Magnitude of Low Power 

For what are otherwise the same conditions, if the lengths of the low- and-high-power 

periods are long enough to achieve the steady state, Te should be independent of the magnitude 

of power during the low- and high-power periods.  That value of Te is given by ionization 

sources being balanced by losses.  In practice, there are average power affects that must be 

considered.  For example, consider keeping the high-power constant and varying the low-power.  
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Increasing low power increases the average power deposition, which results in more dissociation 

of Cl2, more gas heating and higher average plasma density.  More dissociation of Cl2 reduces 

the rate of electron loss by dissociative attachment.  More gas heating produces rarefaction that 

increases losses by diffusion and reduces ion-ion neutralization rate coefficients.  Higher plasma 

densities increase the rates of dissociative recombination and ion-ion neutralization.  The end 

effect on Te becomes case specific.    

Electron temperatures at heights of 11 cm in the skin depth, and 2 cm above the wafer, 

are shown in Fig. 3.12 while varying the low-power (PL) from 32 W (20% of the high-power) to 

160 W, which is equal to the high power.  The electron densities for these conditions are shown 

in Fig. 3.13.  When increasing PL from 32 W to 160 W, the average power deposition increases 

from 96 W to 160 W, the fractional dissociation of Cl2 increases from 38% to 44%, and the gas 

temperature increases from 568 to 573 K.  The increase in fractional dissociation of Cl2 largely 

enables the quasi-steady state value of Te in the skin depth to decrease by 0.13 eV when PL 

increases from 32 W to 160 W.  With this increase in the fraction dissociation of Cl2, the electron 

density during the constant high-power 160 W increases from 9.4 × 1010 cm-3 for PL = 32 W to 

1.4 × 1011 cm-3 for PL = 160 W.    

The low- to high-power spike in Te increases from zero for PL = 160 W, as this is a 

continuous plasma, to 0.85 eV for PL = 32 W.  This increasing overshoot in Te with decreasing 

PL is required to avalanche the plasma from progressively lower plasma densities to that for the 

high-power.  For example, for PL = 32 W, the electron density increases by factor of 6.9 from 

low- to high-power.  The magnitude of the high- to low-power decrease in Te intensifies with PL 

decreasing from 160 to 32 W.  Reducing PL requires a larger change in ne which is produced by a 

larger negative excursion of Te below the steady state.  The high- to low-power decrease in Te is 
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0.9 eV for PL = 32 W and 0.26 eV for PL = 96 W.   

Te also has a small decrease in its steady state value in the skin depth (height = 11 cm) 

during the high- and low-power periods.  There is a 0.13 eV decrease in Te from PL = 160 W to 

PL = 32 W.  This change is largely a result of the higher average power with PL = 160 W 

producing more dissociation of Cl2 and therefore fewer attachment losses.  However, above the 

substrate (height = 2 cm) there is significant variation of Te for different PL.  For example, at the 

end of the high-power period, Te is 0.1 eV lower for PL = 32 W compared to PL = 160 W.  This is 

the opposite trend compared to the skin depth (height = 11 cm) where PL= 160 W has the lower 

Te.  The net change in Te from the skin depth to the wafer (from high to low PL) is a decrease of 

0.23 eV.  With PL = 32 W, the average power is lower, the dissociation of Cl2 is lower, the Cl2 

density is higher and the electron density is lower.  As a result, there are more collisional losses 

and less thermal conduction from the skin depth as electrons transport down towards the 

substrate.  The aggregate end result is a lower Te.   

During the low-power period above the substrate, the decrease in Te (PL = 32 W 

compared to PL = 160 W) is 0.35 eV whereas in the skin depth, Te for PL = 160 W is lower by 

0.13 eV.  The net change in Te is 0.5 eV from the skin depth to the wafer, about twice the change 

as during the high-power period.  Since the fractional dissociation is essentially the same during 

the high- and low-power periods, the larger decrease in Te can be attributed to lower thermal 

conductivity due to the lower electron density with PL = 32 W.  This lower thermal conductivity 

is likely also responsible for the slow increase in Te during the high-power portion of the pulse. 

The densities of all the cations (Cl2+, Cl+, Ar+, and Ar2
+), density of Cl- and the ratio of 

the densities of the dominant cation Cl2+ and Cl+ (α =[Cl2+]/[Cl+]) in the skin depth (height = 11 

cm) are shown in Fig. 3.14 for different values of PL.  Among the cations, the dominant species 
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are Cl2+ and Cl+, which have densities 2-3 orders of magnitude higher than the densities of Ar+ 

and Ar2
+.  During the high-power part of the cycle, the cation density is nearly constant whereas 

the Cl- density increases by 30% from PL = 160 W to PL = 32 W.  The decrease in Cl- density 

with increasing PL is partly due to the increase in fractional dissociation of Cl2 (53% to 73%) 

with increasing power – low Cl2 density translates to lower rates of dissociative attachment – and 

increased rarefaction in the skin depth at higher power.  α =[Cl2+]/[Cl+] is particularly sensitive to 

the PL and increases with decreasing PL.  Again, this is in part explained by the lower fractional 

dissociation at low PL.  The lower fractional dissociation not only reduces the rate of ionization 

of atomic Cl but also increases the rate of charge exchange of Cl+ with Cl2 to form Cl2+.    

 

3.4  Concluding Remarks 

In this chapter, an inductively coupled plasma, driven by a low-high pulsed power 

sustained Ar/Cl2 mixtures at 20 mTorr, was computationally investigated.  Similar to an on-off 

pulsed plasma, the electron temperature Te spikes in the electromagnetic skin depth at the 

beginning of the high-power portion of the cycle.  A downward spike of Te occurs in the skin 

depth during power transition from high-to-low power, while Te is nearly the same value (and 

constant) during the low- and high-power periods.  Te is largely determined by a balance between 

electron heating from the electric field, and power losses, which in the skin depth includes both 

collisions and advection out of the skin depth.  With the gas density nearly constant during the 

pulsed cycle the increase in Te above the steady-state value is required at the leading edge of the 

low-to-high power period to increase the ionization rate to reach a higher plasma density 

required to sustain the high-power portion.  Analogously, a decrease in Te below the steady-state 

value is required at the leading edge of the high-to-low power period to decrease the rate of 

ionization and increase the rate of attachment.  As the low-to-high (and high-to-low) power 
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ramping time increases and exceeds the energy relaxation time, the leading edge transients in Te 

become less severe.  For long ramping times, the transients become nearly indistinguishable.  

The response of the plasma to the low-high and high-low power changes is highly 

spatially dependent.  For example, the spikes of Te are distinct in the skin depth while being 

elongated transients near the substrate.  Similarly, the modulation in electron density in the skin 

depth closely tracks power deposition while ne is dispersed in time near the substrate.  Both 

transients in Te and ne are delayed near the substrate relative to the skin depth.  The electron 

transport time across the reactor, (10-30 µs) coincides with the time of the power transition, and 

so produces a delay in the transients in the skin depth.  During this transport in density and 

temperature across the reactor, power is collisionally dissipated while thermal conduction 

disperses the heat pulse.  As a result, the spikes (positive and negative) in temperature, and steps 

in electron density originating in the skin depth, are dispersed in time and in space upon reaching 

the substrate.  

For pulse repetition rates in ICPs that are high enough that the gas density and mole 

fractions do not significantly change during the pulses.  Spikes of Te (positive or negative) 

should be expected during power transitions.  However, these spikes are really only required in 

the skin depth where power deposition occurs.  The magnitude, duration and phase of the 

transients in Te and ne are at first functions of distance from the skin-depth, and second, a 

function of the absolute plasma density that controls the thermal conduction of electron power 

from the skin depth.  A third consideration is the non-local transport of electrons in the tail of the 

energy distribution function which have a longer mean-free-path than the electrons in the bulk of 

the distribution.  For conditions where non-local effects dominate, the convection of electron 

power from the skin depth to lower in the reactor will be more rapid and efficient. 
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The results discussed in this chapter demonstrate the importance of considering spatial- 

and time-dependent dynamics when optimizing ICPs sustained with pulsed-power.  The 

dynamics that are experienced during power transitions at positions within the skin depth of the 

electromagnetic wave launched into the plasma can be very different from those at more remote 

locations.  For plasma processing applications, optimizing the flux of reactants to the substrate is 

the ultimate goal.  In this regard, it is recommended to directly measure the plasma properties by 

the substrate rather than interpret them from the measurements performed near the power source.  

This is particularly important when using pulsed power, during which large transients can occur 

in the skin depth but these transients do not survive to the substrate.  Applying a low-high power 

profile, instead of off-on pulsed power, and moderately extending the power transition time can 

mitigate the severe oscillations of plasma properties during power transitions. 
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3.5 Figures 

 

Fig. 3.1 Geometry and power profile used in the model. a) The geometry is an inductively 
coupled plasma having a 4 –turn antenna.  The dots (with dimensions) indicate where plasma 
properties are shown. b)  Pulse power profile for the base case.   
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Fig. 3.2 Plasma properties for the base case (Ar/Cl2 = 5/95, 20 mTorr, 96 W - 160 W) at 0 µs 
(end of the low-power) and 100 μs (end of the high power) during the power pulse. a) Electron 
density, b) electron temperature and c) ionization source by collisions of bulk electrons.  
Maximum value, range of values plotted and units for contour labels are indicated in each image.   
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Fig. 3.3 Plasma properties for the base case (Ar/Cl2 = 5/95, 20 mTorr, 96 W – 160 W) at 0 µs 
(end of the low-power) and 100 μs (end of the high power) during the power pulse. a) Cl2+ 
density, b) Cl- density and c) gas temperature.  Maximum value, range of values plotted and units 
for contour labels are indicated in each image.   
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Fig. 3.4 Axial distribution of electron and Cl- densities at mid-radius of wafer at a) end of the 
low-power pulse (0 μs) and b) end of the high-power pulse (100 μs). 
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Fig. 3.5 Time dependence of a) electron density and b) electron temperature at different heights 
above the substrate and mid-radius over 2 pulse periods (Ar/Cl2 = 5/95, 20 mTorr, 96 W - 160 
W).  These heights are noted in Fig. 3.1.  The results for electron temperature have been 
numerically smoothed. 
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Fig. 3.6 Electron energy distributions (EEDs) at different heights above the substrate at mid-
radius of the wafer at the a) end of the low-power pulse (0 μs) and b) end of the high power pulse 
(100 μs).  (Ar/Cl2 = 5/95, 20 mTorr, 96 W - 160 W.)  These heights are noted in Fig. 3.1.  The 
EEDs have been numerically smoothed. 
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Fig. 3.7 Electron density at the end of the high-power pulse (100 μs) for gas mixtures of Ar/Cl2 = 
a) 20/80, b) 40/60, c) 60/40 and d) 80/20.  (20 mTorr, 96 W - 160 W.)  The contours are plotted 
on a 2-decade log scale with the maximum value in each frame noted.  Contour labels have units 
of 1011 cm-3.  
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Fig. 3.8 Electron density as a function of time for different values of the Cl2 mole fraction at a) 
11 cm above the substrate and b) 2 cm above the substrate.  (20 mTorr, 96 W - 160 W.) 
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Fig. 3.9 Electron temperature as a function of time for different values of the Cl2 mole fraction at 
a) 11 cm above the substrate and b) 2 cm above the substrate.  (20 mTorr, 96 W - 160 W.)  The 
values for Te have been numerically smoothed. 
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Fig. 3.10 Electron temperature while varying the power ramp-down time.  a) Power profiles for 
ramp-down times from 10 to 80 μs.  Electron temperature for different ramp-down times at b) 11 
cm above the substrate and c) 2 cm above the substrate.  (Ar/Cl2 = 5/95, 20 mTorr, 96 W - 160 
W.)  These values of Te have been numerically smoothed.  
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Fig. 3.11 Electron density while varying the power ramp-down time.  a) Power profiles for ramp-
down times from 10 to 80 μs.  Electron density for different ramp-down times at b) 11 cm above 
the substrate and c) 2 cm above the substrate.  (Ar/Cl2 = 5/95, 20 mTorr, 96 W - 160 W.)   
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Fig. 3.12 Electron temperature while varying the low power during the cycle.  a) Power profiles 
for low powers of 32 W to 160 W.  Electron temperature for different low powers at b) 11 cm 
above the substrate and c) 2 cm above the substrate.  (Ar/Cl2 = 5/95, 20 mTorr, 160 W high 
power.)  These values of Te have been numerically smoothed.  
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Fig. 3.13 Electron density while varying the low power during the cycle.  a) Power profiles for 
low powers of 32 W to 160 W.  Electron density for different low powers at b) 11 cm above the 
substrate and c) 2 cm above the substrate.  (Ar/Cl2 = 5/95, 20 mTorr, 160 W high power.)  
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Fig. 3.14 Plasma properties 11 cm above the substrate while varying the low power during the 
cycle.  (Ar/Cl2 = 5/95, 20 mTorr, 160 W high power.) a) Total cation density, b) Cl- density and 
c) ratio α = 𝑛𝑛𝐶𝐶𝐶𝐶2+ 𝑛𝑛𝐶𝐶𝐶𝐶+⁄ . 
  



 100 

 
3.6 References 

1. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, and K. Collins, J. Vac. Sci. Technol. A 29, 

011017 (2011). 

2. A. Agarwal, P. J. Stout, S. Banna, S. Rauf, and K. Collins, Appl. Phys. Lett. 100, 044105 

(2012). 

3. S. Banna, A. Agarwal, G. Cunge, M. Darnon, E. Pargon, and O. Joubert, J. Vac. Sci. 

Technol. A 30, 040801 (2012). 

4. V. M. Donnelly, and A. Kornblit, J. Vac. Sci. Technol. A 31, 050825 (2013). 

5. K. J. Kanarik, T. Lill, E. A. Hudson, S. Sriraman, S. Tan, J. Marks, V. Vahedi, and R. A. 

Gottscho, J. Vac. Sci. Technol. A 33, 020802 (2015). 

6. T. Ma, T. List, and V. M. Donnelly, J. Vac. Sci. Technol. A 36, 031305 (2018). 

7. E Despiau-Pujo, M. Brihoum, P. Bodart, M. Darnon, and G. Cunge, J. Phys. D: Appl. Phys. 

47, 455201 (2014). 

8. J. P. Booth, H. Abada, P. Chabert, and D. B. Graves, Plasma Sources Sci. Technol. 14, 273 

(2005). 

9. C. Petit-Etienne, E. Pargon, S. David, M. Darnon, L. Vallier, O. Joubert, and S. Banna, J. 

Vac. Sci. Technol. B 30, 040604 (2012). 

10. S. Banna et al., IEEE Trans. Plasma Sci. 37, 1730 (2009). 

11. Y. Ishikawa, Y. Ichihashi, S. Yamasaki, and S. Samukawa, J. Appl. Phys. 104, 063306 

(2008). 

12. C. Petit-Etienne, M. Darnon, L. Vallier, E. Pargon, G. Cunge, F. Boulard, and O. Joubert, J. 

Vac. Sci. Technol. B 28(5), 926 (2010). 

13. C. Petit-Etienne, M. Darnon, P. Bodart, M. Fouchier, G. Cunge, E. Pargon, L. Vallier, O. 

Joubert, and S. Banna, J. Vac. Sci. Technol. B 31, 011201 (2013). 

14. P. Bodart, M. Brihoum, G. Cunge, O. Joubert, and N. Sadeghi, J. Appl. Phys. 110, 113302 

(2011). 

15. B. Ramamurthi, and D. J. Economou, J. Vac. Sci. Technol. A 20, 467 (2002). 

16. S. Kim, M. A. Lieberman, A. J. Lichtenberg, and J. T. Gudmundsson, J. Vac. Sci. Technol. A 

24, 2025 (2006). 

17. E. G. Thorsteinsson, and J. T. Gudmundsson, J. Phys. D: Appl. Phys. 43, 115202 (2010). 



 101 

18. S. Ashida, M. R. Shim and M. A. Lieberman, J. Vac. Sci. Technol A. 14, 391 (1996). 

19. M. Darnon, G. Cunge, and N. S. J. Braithwaite, Plasma Sources Sci. Technol. 23, 025002 

(2014). 

20. J. B. Boffard, S. Wang, C. C. Lin and A. E. Wendt, Plasma Sources Sci. Technol. 24, 065005 

(2015). 

21. P. Chabert, A. J. Lichtenberg, M. A. Lieberman, and A. M. Marakhtanov, Plasma Scources 

Sci. Technol. 10, 478 (2001). 

22. G. Cunge, B. Crowley, D. Vender, and M. M. Turner, Plasma Sources Sci. Technol. 8, 576 

(1999). 

23. T. List, T. Ma, P. Arora, V. M. Donnelly, and S. Shannon, Plasma Sources Sci. Technol. 28, 

025005 (2019). 

24. M. J. Kushner, J. Phys. D: Appl. Phys. 42, 194013 (2009). 

25. P. Tian, and M. J. Kushner, Plasma Sources Sci. Technol. 26, 024005 (2017). 

26. G. Cunge, D. Vempaire, and N. Sadeghi, Appl. Phys. Lett. 96, 131501 (2010). 

  



 102 

Chapter 4: Power Matching to Inductively Coupled Plasmas† 
 
 
 
4.1 Introduction 

The combined impedance of the plasma reactor and the plasma in low pressure plasma 

processing for microelectronics fabrication, using both capacitively and inductively coupled 

plasmas (ICPs), is typically non-linear [1-2].  Common combined impedances can range from 

100’s of mΩ to 100’s of Ω and up to kilo-ohms of reactance.  These conditions make it difficult 

to deliver power to the plasma from conventional power supplies and transmission lines that 

typically have fixed impedances of 50-75 Ω.  The electric field reflection coefficient, ΓR, is the 

electric field reflected from the plasma reactor relative to the electric field delivered by the 

power supply through a transmission line (typically a coaxial cable) to the plasma reactor.  The 

reflection results from the output impedance of the power supply and transmission line differing 

from that of the plasma reactor, 

0

0

L
R

L

Z Z
Z Z

−
Γ =

+
,      (4.1) 

where ZL is the impedance of the load (in this case, the combined impedance of the plasma 

reactor and the plasma) and Zo is the output impedance of the power supply and transmission line 

[3].  Since ZL has reactive contributions, ΓR typically has both real and imaginary components 

from which both the magnitude and relative phase of the forward and reflected waves can be 

                                                
† The results discussed and portion of the text appearing in this chapter were previously published in the paper by 
Chenhui Qu et al., “Power matching to pulsed inductively coupled plasmas”, J. Appl. Phys. 127, 133302 (2020). 
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determined.  Typically only the magnitude of reflection |ΓR| is used to characterize matching 

efficiency. 

The usual remedy to maximize power transfer to a plasma processing reactor (and 

minimize reflection) is to employ an impedance matching network (IMN) between the 

transmission line and plasma reactor [4-6].  The IMN usually contains reactance (capacitors and 

inductors) both in series and parallel to the load with the goal of making the input impedance to 

the IMN be the same as the power supply termination impedance and transmission line 

impedance.  In doing so, the reflection coefficient is minimized.  In practice impedance matching 

is complicated by both the non-linear characteristics of the plasma and the increasingly common 

use of multiple frequencies and pulsed power.  Even if driven with a single frequency, the non-

linear response of the plasma to that single frequency power will produce higher harmonics in 

current, thereby making reproducible impedance matching more challenging [7,8]. 

The use of pulsed power further complicates matching as the plasma contribution to ZL 

can change by orders of magnitude during the pulsed cycle.  For example, pulsed ICPs as used in 

microelectronics fabrication operate at pressures of tens of mTorr in attaching gas mixtures such 

as Ar/Cl2 powered with radio frequency (RF) supplies of a few to tens of MHz.  The pulsed 

repetition frequency (PRF), pulses per second, can be hundreds of Hz to tens of kHz.  Duty cycle 

(DC), the fraction of time the power is applied per cycle, can be 10-50%.  The end result is that 

the electron density at the time the power is applied at the leading edge of the pulse can be as low 

as 108 cm-3 whereas later during the pulse, the electron density can exceed 1011 cm-3 [9,10].  

These densities can increase across these three decades during a few to 10s or 100s of µs 

depending on the power delivery system and reactor design.  The reactor contribution to ZL for 

an ICP is typically dominated by the positive reactance of the inductance of the antenna, though 
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the antenna will also have resistance. 

ZL for a pulsed ICP has additional dynamics due to the E-to-H (capacitive-to-inductive) 

transition that occurs during the transient in plasma density at the beginning of a pulsed period 

[11-15].  If the electron density at the beginning of a power pulse is too low, the electromagnetic 

skin depth, δP, may exceed the dimensions of the reactor which then makes inductive coupling of 

power from the antenna problematic.  For these conditions, the antenna simply acts as an 

electrode which electrostatically and capacitively couples power into the plasma through the 

dielectric window between the antenna and the plasma [11].  This is the E-mode during which 

power can be dominantly coupled into the plasma by sheath oscillation (much like a capacitively 

coupled plasma) with power mainly deposited by ion acceleration from the plasma into the 

dielectric window under the antenna [15].  During the capacitive E-mode, the reactance of the 

plasma is negative.  As the electron density increases, δ decreases which increases the fraction of 

power that is inductively coupled until the power is dominantly delivered by electron 

acceleration in the electromagnetic field within δ of the antenna.  This is the H-mode during 

which the reactance of the plasma is positive.  In practice there may be mixed-mode coupling, 

both E-mode and H-mode during quasi-steady state operation of the ICP [11,12].  The degree of 

E- and H-mode coupling depends on factors such as the voltage across the antenna, the proximity 

of antenna to the plasma, the shape of the antenna, gas pressure and composition, and the use of 

a Faraday shield between the antenna and plasma [16]. 

The E-H transition in ICPs has been addressed both experimentally and theoretically [17-

25].  When measuring the electron energy distribution (EED), Chung et.al. found that during E-

mode, the EED evolves from bi-Maxwellian to Druyvestein-like structure when increasing 

pressure [26].  During the H-mode, having a significantly larger electron density with a higher 
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rate of e-e collisions, the EED remains essentially as a Maxwellian.  To smoothen the severity of 

the E-H transition, Singh et al. investigated use of a Faraday shield to minimize capacitive 

coupling from the antenna [16].  When using the Faraday shield, the plasma potential at low 

power was lower, indicating lower capacitive coupling while the electron density was lower.  

During H-mode, the antenna current and voltage decreased when using the Faraday shield.  Had 

the plasma been operating purely in H-mode, there would not have been a decrease in current 

when using the Faraday shield, which then implies that even in H-mode, there was mixed E- and 

H-mode coupling. 

Kempkes et al. investigate the effect of the power modulation on the E-H transition using 

rectangular and triangular power waveforms [27].  They found that even with smoothly varying 

power (triangular waveform) abrupt E-H transitions occurred.  Kawamura et al. performed 2-

dimensional (2D) simulations of E-H transitions in ICPs sustained in Cl2 [28].  They found 

ionization instabilities and modulations in electron density attributed to rapid transitions between 

E- and H-modes.  

The E-H transition often displays hysteresis behavior.  The transition between the low E-

mode electron density to the high H-mode electron density occurs at different powers if 

increasing power (occurs at a higher power) or decreasing power (occurs at a low power).  The 

power deposition from both inductive and capacitive coupling was theoretically analyzed by Lee 

et al. [29], who found that the pressure and the dimensions of the reactor affected the power for 

the E-H transition.  The combined effects of electron density, collision frequency and skin depth 

of the electromagnetic wave contributes to nonlinear dependence of mode transition on operating 

conditions.  The hysteresis of the E-H transition was experimentally investigated by Daltrini et 

al. [30].  They suggest that rather than being an intrinsic characteristic of the plasma, the 
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hysteresis behavior can be affected by the power loss in the matching system, suggesting the 

need to include circuit analysis when investigating these transitions. 

The E-to-H transition is another complicating factor in matching pulsed power to the ICP 

reactor.  The change in ZL due to the E-to-H transition in addition to the reduction in the 

resistance of the plasma is typically over shorter times than the components in the match box can 

be changed.  The end result is that power delivery cannot be efficiently matched to the plasma 

reactor during the entire pulsed cycle.  The values of components in the match box are typically 

chosen to match at a particular time during the pulsed cycle – this is called set-point matching.  If 

the match is chosen early in the pulsed period, the E-mode may be emphasized while there is a 

mismatch during the latter part of the pulsed cycle.  If the set-point is late during the pulse 

period, the E-mode may be suppressed but there is also a longer time to ramp up the plasma 

density when power is mismatched early in the pulse. 

In this chapter, some results from a computational investigation of the dynamics of power 

matching to pulsed ICPs of the type used in microelectronics processing (etching, deposition) are 

discussed.  A model for the circuit and match box has been employed in a 2-dimensional 

simulation of the ICP.  It was found that under perfect matching conditions, there is a smooth 

transition between the E- and H-modes, in contrast to several experimental results.  This suggests 

that a sharp transition between modes is not a fundamental plasma transport issue, but rather may 

be related to power delivery.  It was found that when using pulsed power, the power delivery is 

highly dependent on the time during the pulse at which the set-point is matched.  Matching early 

in the pulsed period leads to a faster re-ignition of the plasma, while emphasizing E-mode 

characteristics during the onset of the pulse.  There is also poor matching during the H-mode.  

Matching later in the pulsed period leads to better power delivery overall, at the cost of longer 
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ignition delay.  The rapid application of power when operating in E-mode can launch 

electrostatic waves due to the need to establish a sheath to dissipate the applied voltage.  The 

pulsed duty-cycle, matchbox parameters, and antenna shape play key roles in power matching 

inductively coupled plasmas. 

A brief model description is provided in Sec. 4.2.  Matching to pulsed ICPs with E-H 

transitions is discussed in Sec. 4.3.  Concluding remarks are in Sec. 4.4. 

 

4.2 Description of the Model 

This computational investigation was performed using the Hybrid Plasma Equipment 

Model (HPEM) complemented by a model for the matchbox.  The HPEM is discussed in detail 

in Chapter 2 and Ref. [31], thereby only a brief description will be provided here.  In this case we 

utilize three modules – the Electromagnetics Module (EMM), Electron Energy Transport Module 

(EETM) and the Fluid-Kinetics Poisson Module (FKPM).  The frequency domain wave equation 

for inductively coupled electric field is solved in the EMM.  In this 2-dimensional simulation, the 

current flowing in the antenna is in the azimuthal direction θ, producing components at the 

fundamental frequency of the magnetic field in the (r,z) [radius, height] directions and of the 

electric field, Eθ, in the θ direction.  The conduction currents are provided by a circuit model.  

The Poisson’s equation is solved in the FKPM coincident with the update of all charged and 

neutral species densities.  Complex conductivities are transferred back to the EMM to solve the 

wave equation. 

The schematic of the circuit representation for the matchbox, reactor and plasma is shown 

in Fig. 4.1.  As described in Sec. 2.1.1, the antenna is represented as a discretized transmission 

line in the circuit model.  Its inductance is calculated based on its geometry, and divided into 100 
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segments.  Each of these segments has an fraction of the total inductance of the antenna.  In this 

work, four paths of power flow are considered: power loss in the matchbox (PM), power loss on 

the antenna (PA), inductively coupled power (PI), and capacitively coupled power (PC). 

An ideal matching condition is represented when the power refection coefficient, Γ, is 

zero. The circuit components for such a condition are solved as ZM = Z0, where ZM is the input 

impedance of the matchbox and Z0 is the intrinsic impedance of the power source.  The choices 

of the circuit components in the matchbox are circuit dependent.  That is, the solutions of the 

circuit components are subject to the architecture chosen for the matchbox.  For the matchbox 

used in this chapter as shown in Fig. 4.1, the capacitors CP and CS are adjusted to approach the 

perfect matching, and the solutions are: 
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4.3 Matching to Pulsed ICPs with E-H Transitions 

For computationally investigating the fundamental phenomena of E-H matching, we 

chose a simple ICP geometry and a relatively small chamber.  This layout for an ICP reactor 
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powered by a spiral planar antenna is a standard design used for plasma assisted semiconductor 

fabrication [35-37].  Industrial systems are typically larger to accommodate wafers up to 30 cm 

in diameter.  Our choice of a smaller chamber for this investigation was based on wanting a fine 

enough mesh to capture the dynamics of the E-H transitions while also enabling computation of 

a sufficient number of pulsed periods to reach the quasi-steady stated.  The details of our 

investigation are sensitive to the size and topology of the reactor.  For example, antenna and 

chamber impedance are both functions of size and layout, which would affect the specific values 

of match box parameters, and necessitate a different termination impedance.  The spacing of the 

antenna from the dielectric window affects capacitive coupling, as discussed below.  Having said 

that, the systematic trends we discuss apply to more complex and larger reactors.  For example, 

we have performed limited studies on industrial size ICP reactors [38] and the systematic trends 

we discuss here are essentially the same. 

A schematic of the reactor is shown in Fig. 4.2.  The chamber has an internal diameter of 

22.5 cm, height (substrate to window) of 12 cm and is powered by a 3-turn antenna having radii 

of 2.5, 5.3 and 8.0 cm.  The coils have thickness of 0.45 cm and height of 1.15 cm, and sit above 

the 0.8 cm thick quartz window (ε/ε0 = 4) with an air gap of 0.4 cm.  The total inductance of the 

antenna is LC = 0.95 µH.  The antenna-plasma coupling coefficient is kC = 0.75.  The entire inner 

surface of the window serves as gas inlet showerhead with the pump port occupying an annulus 

between 6.9 and 11.1 cm on the bottom of the chamber.  A pressure sensor is located in the outer 

wall 2 cm above the pump port.  All other surfaces are grounded metal. 

Unless otherwise noted, the gas mixture is Ar/Cl2 = 65/35 at a pressure of 25 mTorr.  

Ar/Cl2 gas mixtures are commonly used for conductor etching.  The gas inlet flowrate is 200 

sccm.  The outlet flow rate is adjusted so that the pressure at the sensor is 25 mTorr.  As 
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discussed below, our results are sensitive to the conductivity of the plasma at the start of the 

power pulse, and that conductivity is sensitive to gas mixture.  When using pure Cl2 plasmas, a 

thermal electron attaching gas, the system can transition to an ion-ion plasma during the 

afterglow with a negligible electron density.  These conditions then require “re-ignition” of the 

plasma on every power pulse.  Although this may in fact be the case for many industrial systems, 

the re-ignition requirement adds another constraint and complexity.  We therefore chose a gas 

mixture for which there would be significant change in conductivity during the afterglow but not 

to the degree that re-ignition is required. 

The reaction mechanism is the same as discussed in Ref. 32.  An important point for the 

study in this chapter is that Cl2 is a thermal electron attaching gas for which the rate coefficient 

for dissociative electron attachment increases with decreasing electron temperature, Te.  So for 

otherwise the same conditions, rates of attachment are small when power is applied during a 

pulse and Te is large.  Rates of attachment are large when the power is off and Te is small. 

The fixed circuit elements are coil resistance RC = 0.1 Ω, termination impedances CT = 

100 nF and LT = 5 nH, and inductance on match box LP = 100 nH.  The internal resistance of the 

match box was neglected by setting RM = 10-6 Ω so that PM is negligible.  This allows for the 

independent study of impedance matching impact on plasma transients.  In practice, matching 

network impedances can have 100s to 1000s of mΩ of real resistance, and consume a significant 

amount of power delivered by the supply.  Typically, these dissipative losses are accounted for in 

the series elements, where the larger dissipative components tend to reside, and where the current 

through the elements tends to be higher, as opposed to the shunt components.  The inner coil of 

the antenna was connected to the match box, and the outer coil of the antenna was connected to 

ground through the series termination components CT and LT.   
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4.3.1 Continuous Power Baseline 

With the base case values for circuit and operating conditions, the continuous wave (CW) 

characteristics of the ICP reactor were first investigated as a function of power delivered from 

the supply.  Using perfect match values for CP and CS, Γ = 0, and PS = PT.  The electron density, 

inductive power and capacitive power are shown in Fig. 4.3 for a total power deposition of 5 W 

and 200 W.  Note that the capacitive power deposition plotted is actually the time average of the 

capacitive and resistive (bulk) power deposition.  The calculation of local power deposition of 

p j E= ⋅


 is unable to distinguish between the capacitive and resistive heating.  Given the spatial 

distribution and the negative sign of the reactance of Zk, the capacitive power is clearly 

dominated by sheath heating at higher total power. 

For 5 W, the voltages on the coils (inner to outer) are 147 V, 112 V and 44 V.  The total 

capacitive power is 3.19 W (63.8% of the total), inductive power is 0.86 W (17.2 %), and 

resistive antenna losses 0.95 W (19%), a power division that indicates E-mode operation.  On a 

relative basis, antenna losses are larger at lower total power due to the higher relative antenna 

current required to sustain the plasma.  The capacitive component includes contributions from 

both ion and electron acceleration by the sheath and bulk Joule heating.  With the largest voltage 

and capacitive current from the inner coil, the capacitive heating is maximum under that coil (3.8 

mW/cm3) adjacent to the dielectric with resistive current flowing through the plasma to produce 

Joule heating of 0.7 mW/cm3 in the center of the plasma.  Sheath heating also occurs along the 

metal boundaries.  With the peak electron density of 6 ×108 cm-3, inductive power deposition 

extends to the middle of the reactor (electric field skin depth δ = 7.4 cm) with a maximum value 

of 3 mW/cm3.  The voltages on the 3 coils of the antenna are nearly in phase.  However, with 

different voltage amplitudes and different adjacent sheath thickness, particularly with respect to 
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ground, there is some recirculation of current between the antenna coils that produces a net 

negative power deposition in the upper outer radius of the reactor. 

For 200 W total power, the voltages on the coils (inner to outer) are 334 V, 276 V and 

112 V.  The total capacitive power is 9.7 W (4.8% of the total), inductive power is 188.2 W 

(94.1%), and resistive antenna losses 2.1 W (1.1%), a power division that indicates H-mode.  

With a higher electron density (peak 6.8 × 1010 cm-3) the plasma is more conductive and 

capacitive heating is largely limited to the periphery of the reactor.  The higher plasma density 

also reduces the electric field skin depth to δ = 0.7 cm. 

The capacitive power has a cycled averaged layer of negative power deposition parallel 

to the dielectric window, in addition to that in the upper right corner, that was not observed at 

lower power.  At the high power, the electron flux directed towards the dielectric is dominated 

by the ambipolar flux originating from the electron sources produced by inductive coupling.  The 

electron ambipolar flux is retarded by the ambipolar electric field that points from the center of 

the plasma towards boundaries.  This is the same direction as the electric field that produces 

electron heating due to expansion of the capacitive sheath under the window.  During expansion 

of the capacitive sheath, power is expended in slowing the ambipolar driven electron flux in 

addition to accelerating electrons out of the sheath region.  This negative power deposition is not 

observed at the lower power in the absence of the large ambipolar electron flux produced by 

inductive coupling. 

The division of power deposition between capacitive and inductive; and average electron 

density are shown in Fig. 4.4a for PT = 5-200 W for perfect match conditions and continuous 

power.  The values of CP and CS to obtain perfect matches and ionization efficiency are shown in 

Fig. 4.4b.  (Ionization efficiency is average plasma density divided by power deposition in the 
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plasma, and is a relative measure of efficiency.)  These results are typical of the E-H transition.  

At low power deposition, the electron density is low, the skin depth is large and sheath is thick.  

The low electron density and large skin depth reduces (on a relative basis) the inductive power 

deposition and the thick sheath (on a relative basis) increases the capacitive power deposition.  

The thicker sheaths produce a larger sheath velocity, and capacitive power deposition scales with 

the square of the sheath speed.  As noted above, for PT = 5 W, 77% of the power is capacitive 

and 11% is inductive.  The power dissipation by the coil is about 12%.  With increasing power 

deposition, the electron density increases, skin depth decreases and sheath thickness shrinks, all 

of which contribute to lower capacitive power deposition and higher inductive power deposition.  

We do not observe a sharp, step-function increase in electron density that can be identified as the 

E-H transition.  The power at which the E-H transition occurs is then somewhat a qualitative 

judgement.  The fraction of power dissipated by inductive coupling exceeds 50% at PT = 25 W, 

and exceed 90% at PT = 140 W.  To achieve the perfect match, the values of the matching 

elements CP decreases by about 20% and CS increases by a factor of 2.5.   

Over the range of PT = 5-200 W, the average electron density increases from 2.8 × 108 

cm-3 to 2.3 × 1010 cm-3, a factor of nearly 100 increase, for PT increasing by a factor of 40.  A 

portion of the increase in electron density results from an increase in ionization efficiency, 

plotted here as the total electron density divided by the total power deposition in the plasma.  

This efficiency increases by a factor of nearly 3.  At low PT, the fraction of power dissipated by 

resistive coil and capacitive heating is large.  No ionization occurs from coil heating, and the 

efficiency of ionization by capacitive coupling is low due to ion acceleration in the sheaths, 

characteristic of the E-mode.  The efficiency remains relatively constant until the H-mode 

begins, at which time the efficiency increases.  At high power deposition, a true H-mode occurs, 
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as the majority of power is dissipated by electron heating in the bulk which is intrinsically more 

efficient at producing ionization. 

With there always being a perfect match when changing PS, there is a relatively smooth 

transition from dominantly E-mode to dominantly H-mode with increasing power.  To obtain this 

perfect match with increasing power, the value of CS smoothly increases (33 pF to 155 pF) and 

CP smoothly decreases (267 pF to 168 pF).  Experimentally, it is often observed that there is a 

rapid, almost impulsive, increase in electron density with a rapid switch between E-mode and H-

mode when a critical power is delivered from the supply.  Based on fundamental plasma 

transport, there is no requirement for such a sharp transition to occur.   

In practice, the transition in apparent ionization efficiency may be exacerbated by the 

difficulty in matching between the E-mode and H-mode.  If the circuit is better able to match to 

the H-mode (positive reactance) than E-mode (negative reactance), then the ionization efficiency 

will make a rapid and impulsive increase when the H-mode begins to dominate.  There may also 

be heating of electrical components that can change their impedance.  Another factor that may 

influence the apparent ionization efficiency is changes in plasma conditions due to the power 

deposition.  For example, when operating at constant pressure, higher power deposition produces 

more gas heating which reduces the gas density and so reduces the electron collision frequency.  

In chemically active mixtures, more power deposition produces more dissociation and so there 

are different species with which electrons collide. 

To demonstrate these possibilities, two parameterizations were performed.  In the first, a 

parameterization over power (PT = 5-200 W) was conducted with the match box settings chosen 

to provide a perfect match at 150 W (CP = 162 pF, CS = 135 pF) which then produces 

mismatches at other powers.  The resulting ionization efficiency is shown in Fig. 4.5.  For these 
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conditions the circuit is mismatched at lower powers, producing a large reflection coefficient, 

and a corresponding low ionization efficiency.  With power increasing towards 150 W, the 

reflection coefficient decreases, H-mode begins to dominate and so the ionization efficiency 

increases. 

In the results shown in Fig. 4.4, the length of time for the simulation was deliberately 

chosen to be long enough so that the plasma properties came into a quasi-steady state; while 

being short enough that there was no significant dissociation of the feedstock gases and gas 

temperature excursions were not significantly different.  These conditions correspond to a short 

residence time of the gas in the plasma, τres.  In this way, a side-by-side comparison of different 

powers could be performed without the complication of the impact of changing gas temperatures, 

gas densities and gas compositions on matching.  In actual practice, when changing power one 

does have these complications of gas heating producing rarefaction and different degrees of 

dissociation of the gas.   

The parameterization in Fig. 4.4 was repeated when computing for a sufficient time that 

all plasma properties including gas temperature and composition come into a steady state.  This 

would correspond to at large τres.  With the large τres, for PT = 5 W, the average gas temperature 

was Tg = 330 K (for a wall temperature of 325 K) and fractional dissociation of Cl2 was 1.3%.  

For PT = 200 W, Tg = 635 K and fractional dissociation was 27%.  The resulting ionization 

efficiency, also shown in Fig. 4.5, increases by a factor of 4.5 from low to high power.  The 

majority of this increase in efficiency results from the decrease in Cl2 mole fraction (due to 

dissociation) and decreases in gas density (gas heating), which then decreases the rate of 

attachment. These results emphasize the difficulty of performing side-by-side comparisons of E-

H behavior when changes in power deposition also change fundamental properties of the plasma 
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in addition to electron density. 

4.3.2 Set Point Matching to ICPs 

In this section, we discuss matching of a pulsed ICP for the same operating conditions as 

the CW studies (Ar/Cl2 = 65/35, 25 mTorr).  The standard conditions for pulsed ICP operation 

were a pulse repetition rate (PRF) of 13.3 kHz (period of 75 µs), duty cycle 35% and forward 

power delivered from the supply during the power on period of PS = 250 W.  As a base case, we 

used perfect match conditions by instantly adjusting CP and CS to produce Γ=0 throughout the 

pulse period.  The maximum in the plasma potential, the electron density, Cl- density and 

positive ion densities are shown in Fig. 4.6a during the power pulse and immediate afterglow.  

The modes of power dissipation are shown in Fig. 4.6b.  The resistive and reactive components 

of the impedance ZL, and perfect matching values of CP and CS are shown in Fig. 4.6c. 

At the beginning of the power pulse, the plasma conditions are essentially an ion-ion 

plasma where the positive ion density is nearly equal to the negative ion density, [M+]≈[Cl-]=4.5 

× 1010 cm-3.  The small electron density at the beginning of the pulse, ne = 2 × 108 cm-3 results 

from Cl2 being a thermally attaching gas, which reduces the electron density during the afterglow 

through dissociative electron attachment producing Cl-.  During the power pulse the negative ion 

density [Cl-] is relatively constant.  With the electron temperature Te ≈ 2.5 – 3.5 eV during the 

power pulse, the thermal dissociative attachments rates are small compared to ionization rates.  

The increase in electron density is nearly matched by the increase in positive ion density. 

With this low initial electron density, power is initially capacitively coupled.  During the 

first 3 µs, the capacitive power exceeds that of the inductive power and the plasma operates in E-

mode.  The E-mode is additionally indicated by the oscillation in the plasma potential, ΦP, with 

an amplitude as large as 450 V in the same manner as a capacitively coupled plasma.  The 



 117 

maximum antenna voltage amplitude (inner turn) is 1080 V.  There is some oscillation in the 

voltage amplitude on the antenna, which is due to the rapid increase in electron density, which 

changes the plasma impedance sufficiently to lower the antenna voltage, which lowers the 

electron density which induces an increase antenna voltage.  This oscillation is likely magnified 

by the iterative numerical technique used to link the plasma portion of the simulation with the 

circuit. 

As the electron density increases, the electromagnetic skin depth decreases and sheath 

under the coils thins, the fraction of capacitive power dissipation decreases.  By 5 µs, the 

electron density is high enough, 1 × 1010 cm-3, and skin depth short enough that power is 

dominantly inductively coupled and the plasma operates dominantly in H-mode.  Due to the 

proximity of the antenna to the dielectric window, approximately 5% of the total power 

continues to be capacitively coupled even during H-mode.  This is similar to CW operation.  In 

the quasi-steady state during the pulse, the proportion of capacitively coupled power decreases 

by a few watts but is otherwise nearly constant.  Upon termination of the power, both the 

capacitive and inductive power decrease in nearly the same proportion while remaining in H-

mode.  The power decreases quickly enough that the electron density does not appreciably 

change, and so the skin depth remains short enough to allow H-mode operation.  This represents 

a hysteresis-type of behavior.  The plasma remains in H-mode during decreasing power at the 

same power deposition that corresponded to E-mode during the beginning of the pulse. 

As the plasma density increases at the leading edge of the power pulse and operation 

transitions to H-mode, the oscillation in ΦP decreases to an amplitude of 10-20 V.  This 

modulation of ΦP is on top of the quasi-dc plasma potential of about 20 V.  This dc value of 

plasma potential results from the ambipolar nature of the plasma transport (Te > Tion, me < mion).  
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An indication of purely H-mode operation without capacitive coupling would be quasi-dc plasma 

potential without significant oscillation.  Since the power deposition resulting from Eθ and 

electron heating are harmonic, there can be harmonic oscillation in Te and so there would be 

some small oscillation in ΦP even in purely H-mode.  However, in this case, the majority of 

oscillation in ΦP is due to capacitive coupling. 

With perfect match conditions, CP decreases during the power pulse from 290 pF to 160 

pF, accompanied by an increase in CS from 50 pF to 160 pF.  The combined load impedance, ZL 

(which includes the antenna coil and plasma) has a positive reactance due to the inductance of 

the antenna.  This reactance decreases during the plasma pulse in response to the capacitive 

component of the antenna current through the plasma.  The resistive component increases in 

response to the power deposition in the plasma.  

The impedance of the variable capacitors in RF matching networks is typically changed 

by a mechanical process (e.g., changing the overlap area between two plates).  The speed of the 

mechanical movement of these variable capacitor systems is largely determined by the driving 

motors, with end-to-end movement typically on the order of hundreds to thousands of 

milliseconds.  Impedance control algorithms working in conjunction with these mechanical 

limits will typically produce a tuning transient with a comparable characteristic time.  With 

plasma-induced impedance transients having time scales that are orders of magnitude shorter that 

what can be achieved by these mechanically driven system, it is typically not possible to change 

the values of CS and CP rapidly enough to achieve a perfect match throughout the power pulse.  

Typically set-point matching is employed in which values of CS and CP are chosen to minimize Γ 

at a particular instant during the power pulse.  We investigated the consequences of set-point 

matching.  Computationally, this was achieved by selecting values at given times for CS and CP 
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from the perfect-match case.  For example, plasma reactor properties are shown in Fig. 4.7 when 

values for CS and CP were chosen for set-point matches from early to late in the pulse.  These 

times, relative to the start of the power pulse, were 1.5, 3.25, 7 and 21 µs.  Since the progression 

of the plasma prior to the time of the matching point is not exactly the same as for the case with 

perfect matching, the reflection coefficient at the match point may not be exactly zero.  

For a matching point of tM = 1.5 µs, the reactor properties at the match point are a 

forward power of 82.7 W and Γ=0.013.  The maximum capacitive power of 62.2 W occurs at the 

match point.  The resistive power is 9.6 W and inductive power is 8.5 W, indicating operation in 

the E-mode.  (Note that Γ is finite due to the plasma properties being different than for the 

perfect match that provided the values of CS and CP.)  As the plasma density begins to increase, 

the E-mode dissipates and H-mode begins.  With this increase in plasma density, the values of CS 

and CP required to achieve a match deviate from the set-point values.  The reflection coefficient 

then monotonically increases until the H-mode is fully established at t = 6-7 µs, after which Γ is 

relative constant at 0.5.  At the end of the pulse, the electron density is 1.15 × 1010 cm-3 

compared to the perfect match value of 2.4 × 1010 cm-3.  This decrease in electron density is due 

to the reduction in power deposition following that Γ = 0.5. 

 As tM increases, the peak capacitive power decreases, there is a larger delay in the onset 

of inductive power deposition and the maximum inductive power increases, as shown in Fig. 4.8.  

The delay in onset of the H-mode results from there being less ionization produced during the E-

mode.  With a larger tM, there is a larger mismatch that produces a larger Γ early in the pulse, 

which reduces power deposition and ionization.  For example, for tM = 2.5 µs, the peak 

capacitive power of PC = 70 W occurs at 2 µs when the inductive power is PI = 41 W and 

Γ=0.03.  Just prior to the end of the maximum delivered power at 23 µs, PC = 9.3 W, PI = 108 
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and Γ=0.46.  For tM = 21 µs, the peak capacitive power of PC = 21 W occurs at 2.6 µs when the 

inductive power is PI < 1 W and Γ = 0.76.   At 23 µs, PC = 12 W, PI = 235 and Γ < 0.001.  For tM 

> 7 µs, the set-point values of CS and CP are well matched to the H-mode, and so  Γ < 0.01 for t 

> 10-15 µs for the remainder of the power pulse.  The electron density at the end of the power 

pulse is nearly that of the perfect match. 

4.3.3 Matching for Different Duty Cycles 

Matching early during the power pulse is sensitive to the electron density at the onset of 

power, and this is particularly problematic in thermally attaching gas mixtures such as Ar/Cl2.  

During the inter-pulse period, the electron temperature decreases, which increases the rate of 

attachment and increases electron loss.  The lower electron density at the onset of power for the 

next pulse makes the system appear to be more capacitive to the matching network.  This 

sensitivity can be demonstrated by varying the duty cycle of the pulsed power. 

For the same peak power during the power pulse, a shorter duty cycle translates to lower 

average power deposition and less fractional dissociation of Cl2.  The larger density of Cl2 results 

in more attachment during a longer inter-pulse period, resulting in a lower initial electron density 

at the beginning of the next pulse. For example, the electron density and plasma potential ΦP 

during the pulsed period are shown in Fig. 4.9 for different duty cycles (25% to 65%).  Note that 

the time scales are shifted in Fig. 4.9b by increments of 10 ns. in order to show the plasma 

potentials more clearly.  The electron density at the beginning of the pulsed cycle is 1 × 108 cm-3 

for a duty cycle of 25% and 1 × 109 cm-3 for a duty cycle of 65%.  The magnitude of oscillation 

of ΦP indicates the severity of capacitive coupling. 

When varying duty cycle, the same set-point match is used corresponding to tM = 7 µs 

and a duty cycle of 35%.  Duty cycles shorter than 35% produce smaller initial electron densities. 
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However, the system already starts in the E-mode, and so there is little change in the oscillation 

of the ΦP.  Increasing duty cycle increases the initial electron density, which enables some H-

mode coupling early during the pulse.  This H-mode coupled power reduces the power coupled 

into the E-mode which then reduces the oscillation in ΦP.  This reduction in capacitive power 

does come at a cost of increasing the reflection coefficient.  At the time of the nominal match 

conditions for a duty cycle of 35%, the reflection coefficient at t = 7 µs is Γ = 0.01.  For a 25% 

duty cycle, is Γ = 0.02 (still small) whereas for a duty cycle of 65%, the reflection coefficient is 

Γ = 0.08.  

4.3.4 Ion Energy Distribution on Dielectric Window During E-mode 

A consequence of early matches that allow significant power into the E-mode is large ion 

fluxes incident onto the dielectric window while there is still significant oscillation in the plasma 

potential.  These conditions produce energetic ions onto the window which can result in 

sputtering and erosion.  For example, the ion energy distributions (IEDs) incident onto the 

window with a duty cycle of 25% are shown in Fig. 4.10.  At the beginning of the pulse, the 

plasma potential rises from about 10 V when the sheath beneath the window is thick.  The 

resulting IED is largely thermal with an extended tail.  As the plasma density increases, which 

thins the sheath, and plasma potential increases with the capacitive coupling, the IED extends to 

as high as 200 eV, for a plasma potential peaking at 375 V during the E-mode.  The maximum in 

the IED does not directly correspond to the maximum in plasma potential due to the locations 

within the thick sheath that ions are produced and due to the transient charging of the dielectric.  

As the H-mode is established and the plasma potential decreases, the maximum energy of the 

IEDs also begins to decrease.  By the end of the power pulse, the peak of the IED occurs at 18 

eV.  In the afterglow where the plasma potential decreases below 10 V, the peak in the IED 
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occurs at 5 eV. 

When matching early in the pulse, capacitive coupling is emphasized, there is more 

power dissipated in ion acceleration and there are more energetic of ions incident on all inside 

surfaces of the reactor, and on the window in particular.  These energetic ions could be 

potentially damaging to the window and other surfaces.  These energetic fluxes are then another 

consideration in choosing an early match.  Having said that, even with tM being small, the E-

mode dissipates before the plasma density reaches its maximum value.  As such, the flux of 

energetic ions produced by capacitive coupling may not be large, thereby reducing the likelihood 

for damage.  

4.3.5 Antenna Placement 

The capacitance between the antenna and the plasma consists of at least three series 

components – the capacitance of the air gap between the antenna and window, the capacitance of 

the window and the capacitance of the sheath.  In practice, the capacitance of the antenna-

window gap is more variable than that of the window.  For example, placement of the antenna 

after maintenance must be extremely precise to replicate the capacitance of the antenna-window 

gap.  The variable capacitance of the antenna-window gap then translates into variability in the 

plasma. 

To demonstrate the sensitivity of matching pulsed ICPs to the placement of the antenna, 

the following procedure was followed.  The gap between the bottom of the flat antenna and the 

window was varied from d = 0 (in contact with the window) to 8.2 mm.  For each gap, 

calculations were first performed with perfect matching.  The values of CP and CS for each gap 

size were then chosen as the perfect match values at tM = 20 µs.  The simulations for gaps sizes 

of d = 0 – 8.2 mm were then repeated with these fixed values CP and CS.  The resulting 
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capacitive power PC and inductive power PI during the power pulse are shown in Fig. 4.11. 

With increasing values of the gap, d, the series capacitance of the gap-window pair 

decreases.  With d = 0 (maximum capacitance), E-mode power is dissipated at the leading edge 

of the power pulse.  This capacitive power produces ionization, which then enables the inductive 

power to begin earlier leading to an onset of the H-mode.  As the gap size d increases, the series 

capacitance also decreases.  This decrease in capacitance of the gap limits current, then decreases 

the E-mode power at the leading edge of the power pulse and increases the reflection coefficient.  

With lower E-mode power deposition, the increase in electron density is slower.  This slow rate 

of increase in electron density means that more time is required for the electron density to 

increase to the point that inductive power dominates and the H-mode begins.  During the quasi-

steady state portion of the pulse where the circuit is well matched to the plasma, the small values 

of d allow for larger capacitive power deposition, which then reduces the inductive power 

deposition.   

For all values of the antenna-window gap, there is nearly a perfect match late in the pulse 

– all forward power is dissipated either in the plasma or in the antenna.  However, the manner of 

deposition, fraction of power dissipated as PC and PI, is sensitive to the height of the antenna 

above the window.  In results not shown here, there is a similar dependence on the flatness of the 

antenna.  An antenna that may be mounted at a small angle with respect to the window can be 

perfectly matched, however the fractions of power dissipated as PC and PI are a function of the 

orientation of the antenna.  Reproducing performance when replacing an antenna requires both 

ensuring a match and also reproducing the fraction of power separately dissipated as PC and PI.  

In the case of pulsed plasmas, the power waveforms should also be reproduced. 

4.3.6 Electrostatic Waves at Onset of E-mode 

For thermally attaching gas mixtures, as in the Ar/Cl2 mixture used in this investigation, 



 124 

the onset of the E-mode at the leading edge of the power pulse produces an impulsive 

perturbation to the plasma that generates electrostatic waves.  At the beginning of the power 

pulse, the plasma is essentially an ion-ion plasma with the positive and negative ion densities 

greatly exceeding the electron density.  For example, for the base-case at the end of the 

afterglow, the positive and negative ion densities adjacent to the window are essentially equal at 

3.4 × 1010 cm-3 whereas the electron density is 2 × 108 cm-3.  The charge density (units of 

elementary charge, q = 1.6 × 10-19 C) is -2.5 × 104 cm-3.  There essentially is no sheath as both 

positive ions have largely thermalized to the same temperature during the afterglow and the ions 

have nearly the same mobilities. 

When the power is applied, a large voltage is generated across the antenna and capacitive 

coupling to the plasma occurs.  The response of the plasma is to attempt to form a sheath to 

dissipate the capacitive voltage drop.  During the first few RF cycles, the sheath is most easily 

formed by accelerating electrons adjacent to the dielectric into the plasma to produce a positive 

space charge region.  During these first few cycles, the far more numerous positive and negative 

ions are nearly immobile and do not significantly separate to produce the charge density needed 

to create the sheath.  With each half cycle, electrons are expelled from and attracted to the 

dielectric.  The end result is launching of electrostatic waves into the ion-ion plasma. 

The electron and charge density are shown in Fig. 4.12 during the first 6 cycles of the 

power pulse for the base-case with a match point of tM = 1.5 µs.  These conditions were chosen 

to emphasize the initial E-mode coupling for demonstration purposes.  The electron density is 

shown as color-contours.  The charge density ρ (units of elementary charge/cm3) is shown with 

numerical labels with a line for ρ = 0 indicating a sign change in local charge density.  As the 

power increases at the beginning of the pulse, the voltage on the coils increases with each 
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successive RF cycle.  Electrons adjacent to all surfaces in contact with the plasma are expelled 

into the plasma in an attempt to form a sheath.  This expulsion is most pronounced under the 

window adjacent to the coils but also occurs along the side walls and substrate.  The expulsion 

first produces an electrostatic wave having ρ < 0.  Since the electron density is 2-orders of 

magnitude less than the positive and negative ions, this wave can propagate through the plasma 

without significantly perturbing the overall charge balance.  The anodic half of the cycle 

launches a positive electrostatic wave.  With each cycle, a new wave is launched, producing 

layers of alternating charge propagating into the plasma.  The waves appear to emanate from 

under the inner and middle coils where the voltage is the largest and the largest amount of charge 

must be expelled to form the sheath. 

In time, the electron density increases and positive space charge sheath is formed under 

the dielectric while the initial electrostatic waves collisionally dissipate.  The waves soon 

become chaotic (not shown) due to the disparity in coil voltages, each with slightly different 

phases.  The oscillating voltage on each coil launches what appears to be a cylindrically 

expanding electrostatic wave of different magnitude.  These individually expanding waves are 

close enough in phase that their sum appears to have only a slight curvature.  However, on 

successive pulses, the disparity in voltage between the coils increases, producing expanding 

waves which intersect and become chaotic before dissipating.  

These electrostatic waves will occur in any highly electronegative system in which a 

sharply rising negative voltage is applied to a surface.  For example, in pulsed plasma doping 

(P2LAD) systems, a multi-kV negative, nearly step-function pulse is applied to the substrate to 

accelerate ions into the wafer for shallow junction implantation [39].  Simulations of P2LAD 

systems predict similar electrostatic waves, albeit more soliton-like due to the single transient 
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voltage [40].  In the ICP systems discussed here, the amplitude and duration of the waves are 

small, and so the effects on processing (e.g., etch rate or uniformity) are likely not large.  Their 

effects on diagnostics and sensors could be problematic, particularly if the waves are not 

reproducible pulse-to-pulse. 

 

4.4 Concluding Remarks 

Power dissipation in CW and pulsed electronegative inductively coupled plasmas 

sustained in Ar/Cl2 mixtures and the consequences of impedance matching were computationally 

investigated.  During a pulsed cycle, the modulation in electron density determines the mode of 

power deposition – capacitive (E-mode) at low electron density where the electromagnetic skin 

depth is large and inductive (H-mode) at high electron density where the electromagnetic skin is 

small.  Even with perfect power transfer from the supply to the plasma, there is a natural E-H 

mode that occurs at the beginning of the pulsed period.  

When considering matching, the increase in plasma density and spatial distribution of the 

plasma changes the impedance of the plasma reactor during pulsing, which then changes the 

matching requirements to deliver power from the supply.  Since components in the match box 

are typically fixed during the pulsed period, components in the match box are set to match the 

plasma at particular time during the pulsed period.  If the match box is chosen to match the 

impedance at the onset of the power pulse, E-mode is emphasized and a fast plasma ignition is 

expected due to efficient power deposition during power ramp-up.  However, the tradeoff is a 

high power reflection coefficient during the majority of the power-on period as a consequence of 

the impedance mismatch to the H-mode plasma.  In contrast, matching the higher power H-mode 

produces more net power transfer from the supply to the plasma, but delays the onset of the H-

mode due to the mismatch of power in the E-mode. 
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Duty cycle during pulsing has important implications on power matching.  In general, the 

shorter the duty cycle, the lower the electron density at the beginning of the next power pulse.  

This is particularly the case for mixtures using gases that attach thermal electrons, such as Cl2.  

The lower electron density with a shorter duty cycle promotes E-mode operation at the start of 

the next power pulse.   

In highly electronegative gases, the plasma at the beginning of the power pulse is 

essentially an ion-ion plasma.  The impulsive application of power in a purely an E-mode results 

in launching of electrostatic waves during the leading RF cycles.  The response of the plasma to 

the high voltage on the antenna during the E-mode is to form a sheath.  The electrostatic waves 

result from the expulsion of the remaining electrons from nearby surfaces in an attempt to form a 

sheath.  These waves are more severe when the afterglow is long and electronegativity is high. 

Capacitance is largely a function of geometry and so the capacitance between the antenna 

and the plasma is a function of the gap length between the coil and dielectric window.  A big gap 

produces a small capacitance and decreases the capacitive power that can be deposited during the 

E-mode.  That decrease in power reduces the initial increase in electron density which then 

delays the onset of the H-mode. 

The results discussed in this chapter demonstrate that impedance matching to a plasma, 

especially when using pulsed power, is a complex process.  Changes in both operating conditions 

(duty cycle) and geometry (distance between the antenna and dielectric window) were found to 

impact the formation of the plasma and the power dissipation, which then affect plasma 

properties such as plasma density and collision frequency that determine the impedance of the 

plasma.  Therefore, impedance matching networks with fixed components are not able to achieve 

a match over the entire pulsed period.  Even when matching can be achieved, reset of the IMN 



 128 

may be necessary for even slight modifications of the operating conditions or the setup of the 

reactor.  For example, after preventative maintenance, a slight change in the arrangement of 

reactor components such as the antenna may produce a change in matching requirements.  

Different match box setups lead to distinctive plasma behavior.  In a pulsed power 

sustained plasma, choosing the circuit components in the match box to match the plasma 

impedance early in the pulse may produce faster ignition but risks impedance mismatch during 

the latter part of the pulse.  Matching during the latter part of the pulse optimizes power delivery 

during the quasi-steady state with the tradeoff of delayed plasma formation.  Matching the early 

part of the pulse benefits plasmas sustained by pulsed power with small duty cycles, while 

matching the late part of the pulse is suitable for plasmas sustained by power with long duty 

cycles or if the power supply is not able to accommodate higher levels of reflected power. 

Power matching to transient systems will be challenging as long as the matching requires 

mechanical changes in components.  These mechanical changes simply cannot be made rapidly 

enough to track the change in plasma impedance.  As pulsed plasmas become even more 

prevalent in semiconductor manufacturing, advanced matching techniques, such as frequency 

tuning, will be required to minimize mode transitions and instabilities. 
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4.5 Figures 

 

Fig. 4.1 Circuit schematic a) The circuit consists of impedances of the power generator, 
transmission line, matchbox, antenna, plasma, and termination circuit components. The antenna 
and transformed plasma impendances area represented by a discrete transmission line with each 
segment have having serial impedance Zsn and parallel impendance due to capactive coupling, 
Zcn.  b) The Zsn components consist of the physical resistance (RAn) and inductance (LAn) of the 
antenna, and the transformed impedance (resistance and inductance) of the plasma, ZTn.  The 
impedance due to capacitive coupling, Zcn, has components due to the air gap and dielectric, 
sheath and bulk resistance of the plasma. 
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Fig. 4.2 Geometry of the cylindrically symmetric ICP reactor.  
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Fig. 4.3 Capacitive and inductive power deposition, and electron density when plasma is 
sustained with at total continuous power of a) 5 W and b) 200 W.  (Ar/Cl2 = 65/35, 25 mTorr.)  
The match is perfect.  The capacitive power is shown as color contours with a line separating 
positive and negative values.  Contour labels are mW/cm3.  Electron density is shown as color 
contours.  Inductive power deposition is shown as contour lines with labels in mW/cm3.  The 
contour lines are blanked near the axis to enable clear view of the sheath formed under the 
powered coil.  
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Fig. 4.4 Plasma and circuit properties as a function of CW power deposition for perfect matching 
(Ar/Cl2 = 65/35, 25 mTorr).  a) Electron density and fraction of power deposition due inductive 
H-mode, capacitive E-mode and antenna heating.  b) Analytical solutions for CP and CS for a 
perfect match and the ionization efficiency.  The ionization efficiency is total electron density 
divided by power deposition in the plasma, and is a relative measure of efficiency.  
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Fig. 4.5 Ionization efficiency as a function of CW power (Ar/Cl2 = 65/35, 25 mTorr).  Cases are 
shown for perfect matches for small and large residence time (τres) and with circuit values for a 
perfect match at 150 W with small τres. The ionization efficiency is total electron density divided 
by power deposition in the plasma, and is a relative measure of efficiency.  
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Fig. 4.6 Plasma and circuit values for a pulsed ICP with perfect matching.  a) Electron and ion 
densities, and plasma potential, b) modes of power deposition and c) CP and CS for perfect match 
conditions, and reactive and resistive components of the impedance ZL.  The pulse repetition 
frequency is 13.3 kHz, duty cycle of 35% and forward power during the pulse is PS=250 W, 
shown in c).  
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Fig. 4.7 Modes of power deposition, total power deposition and power reflection coefficient Γ 
when CP and CS are chosen to match at tM = a) 1.5, b) 3.25, c) 7 and d) 21 µs into the pulse. 
(Ar/Cl2=65/35, 25 mTorr, PRF = 13.3 kHz, DC = 35%, PS = 250 W.)  
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Fig. 4.8 Circuit values and power deposition as a function of matching time.  a) Power reflection 
coefficients through one pulsed period when matching at different tM.  b) Inductive and 
capacitive power at their maximum value and at the end of pulse (t = 23 µs) with varying match 
time tM.  (Ar/Cl2 = 65/35, 25 mTorr, PRF = 13.3 kHz, DC = 35%, PS = 250 W.)  
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Fig. 4.9 Plasma properties when varying duty cycle (25 to 65%) during a pulsed period.  The 
circuit match values correspond to a duty cycle of 35% with the match time at tM = 7 µs.  a) 
Electron density and b) plasma potential.  For clarity, the plots for plasma potential have been 
shifted by increments of 10 ns.  (Ar/Cl2=65/35, 25 mTorr, PRF = 13.3 kHz, PS = 250 W).  
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Fig. 4.10 Ion energy distribution (IED) incident onto the dielectric window at different times 
during the pulse.  a) 0-2.0 μs, and b) 2.0-22 μs.  The inset shows the plasma potential.  The labels 
A-H are the locations in the pulsed cycle at which the IEDs are plotted.  (Ar/Cl2 = 65/35, 25 
mTorr, PRF = 13.3 kHz, DC = 25%).  
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Fig. 4.11 Inductive and capacitive power deposition for different gaps, d, between the coils and 
the top of the dielectric window.  Heights range between d = 0 to 8.2 mm. a) Power over the 
entire power-on period and b) power during the first 5 µs.  The circuit match values correspond 
to the match time tM = 20 µs.  (Ar/Cl2 = 65/35, 25 mTorr, PRF = 13.3 kHz, DC = 35%, PS = 250 
W.) 
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Fig. 4.12 Electron density (color contours) and charge density over the first few RF cycles of a 
pulsed period. a) 2nd, b) 3rd, c) 4th and d) 6th cycles.  The circuit match values correspond to the 
match time tM = 1.5 µs.  The charge density ρ is shown by labels in units of q (1.6 × 10-19 C)/cm3 
with a line denoting ρ = 0.  (Ar/Cl2 = 65/35, 25 mTorr, PRF = 13.3 kHz, DC = 35%, PS = 250 
W).  The impulsive power deposition launches electrostatic waves.  
  



 141 

 
 
4.6 References 

1. P. Chabert, J. L. Raimbault, J. M. Rax, and M. A. Lieberman, Phys. Plasmas 11, 1775 

(2004). 

2. J. Gudmundsson, and M. A. Lieberman, Plasma Sources Sci. Technol. 7, 83 (1998). 

3. K. Kurokawa, IEEE Trans. Microw. Theory Tech. 13, 194 (1965). 

4. S. Xu, K. N. Ostrikov, Y. Li, E. L. Tsakadze, and I. R. Jones, Phys. Plasmas 8, 2549 (2001). 

5. F. Schmidt, J. Schulze, E. Johnson, J. Booth, D. Keil, D. M. French, J. Trieschmann, and T. 

Mussenbrock, Plasma Sources Sci. Technol. 27, 095012 (2018). 

6. J. Franek, S. Brandt, B. Berger, M. Liese, M. Barthel, E. Schüngel, and J. Schulze, Rev. Sci. 

Instrum. 86, 053504 (2015). 

7. T. Mussenbrock, R. P. Brinkmann, M. A. Lieberman, A. J. Lichtenberg, and E. Kawamura, 

Phys. Rev. Lett. 101, 085004 (2008). 

8. J. Schulze, B. G. Heil, D. Luggenhölscher, R. P. Brinkmann, and U. Czarnetzki, J. Phys. D: 

Appl. Phys. 41, 195212 (2008). 

9. L. Liu, S. Sridhar, V. M. Donnelly, and D. J. Economou, J. Phys. D: Appl. Phys. 48, 485201 

(2015). 

10. C. Xue, D. Wen, W. Liu, Y. Zhang, F. Gao, and Y. Wang, J. Vac. Sci. Technol. A 35, 

021301 (2017). 

11. Th Wegner, C. Küllig, and J. Meichsner, Plasma Sources Sci. Technol. 26, 025006 (2017). 

12. Th Wegner, C. Küllig, and J. Meichsner, Plasma Sources Sci. Technol. 26, 025007 (2017). 

13. J. Wang, Y. Du, X. Zhang, Z. Zheng, Y. Liu, L. Xu, P. Wang, and J. Cao, Phys. Plasmas 21, 

073502 (2014). 

14. M. A. Lieberman, and A. J. Lichtenberg, Principles of Plasma Discharges and Materials 

Processing, 2nd ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005). 

15. P. Chabert, and N. Braithwaite, Physics of Radiofrequency Plasmas, (Cambridge: Cambridge 

University Press, 2011). 

16. S. V. Singh, and C. Pargmann, J. Appl. Phys. 104, 083303 (2008). 

17. T. Gans, M. Osiac, D. O’Connell, V. A. Kadetov, U. Czarnetzki, T. Schwarz-Selinger, H. 

Halfmann, and P. Awakowicz, Plasma Phys. Control. Fusion 47, A353 (2005). 



 142 

18. G. Cunge, B. Crowley, D. Vender, and M. M. Turner, Plasma Sources Sci. Technol. 8, 576 

(1999).  

19. M. Lee, and C. Chung, Plasma Sources Sci. Technol. 19, 015011 (2010). 

20. M. M. Turner, and M. A. Lieberman, Plasma Sources Sci. Technol. 8, 313 (1999). 

21. T. Czerwiec and D. B. Graves, J. Phys. D: Appl. Phys. 37, 2827 (2004). 

22. Th Wegner, C. Küllig, and J. Meichsner, Plasma Sources Sci. Technol. 24, 044001 (2015). 

23. P. Chabert, A. J. Lichtenberg, M. A. Lieberman, and A. M. Marakhtanov, Plasma Sources 

Sci. Technol. 10, 478 (2001). 

24. U. Kortshagen, N. D. Gibson, and J. E. Lawler, J. Phys. D: Appl. Phys. 29, 1224 (1996). 

25. E. Despiau-Pujo and P. Chabert, Plasma Sources Sci. Technol. 18, 045028 (2009). 

26. C. Chung and H. Chang, Appl. Phys. Lett. 80, 1725 (2002). 

27. P. Kempkes, S. V. Singh, C. Pargmann, and H. Soltwisch, Plasma Sources Sci. Technol. 15, 

378 (2006). 

28. E. Kawamura, M. A. Lieberman, A. J. Lichtenberg, and D. B. Graves, Plasma Sources Sci. 

Technol. 21, 045014 (2012). 

29. M. Lee and C. Chung, Phys. Plasmas 13, 063510 (2006).  

30. A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. 

Lett. 92, 061504 (2008). 

31. M. J. Kushner, J. Phys. D 42, 194013 (2009). 

32. P. Tian and M. J. Kushner, Plasma Sources Sci. Technol. 26, 024005 (2017). 

33. M. J. Kushner, W. Z. Collison, M. J. Grapperhaus, J. P. Holland and M. S. Barnes, J. Appl. 

Phys. 80, 1337 (1996).  

34. R. B. Piejak, V. A. Godyak and B. M. Alexandrovich, Plasma Sources Sci. Technol. 1, 179 

(1992).  

35. T. Ohba, W. Yang, S. Tan, K. J. Kanarik, and K. Nojiri, Jpn. J. Appl. Phys. 56, 06HB06 

(2017). 

36. D. J. Coumou, S. T. Smith, D. J. Peterson, and S. C. Shannon, IEEE Transactions on Plasma 

Science, 47, 2102 (2019). 

37. D. Metzler, C. Li, S. Engelmann, R. L. Bruce, E. A. Joseph, and G. S. Oehrlein, J. Vac. Sci. 

Technol. A 34, 01B101 (2016). 



 143 

38. S. J. Lanham and M. J. Kushner, “Investigating Mode Transitions in Pulsed Inductively  

Coupled Plasmas”, 64th American Vacuum Society International Symposium, Paper PS-

WeA10,  Tampa, FL, November 2017. 

39. S. B. Felch, Z. Fang, B.-W. Koo, R.B. Liebert, S.R. Walther and D. Hacker, Surf. Coat. 

Technol. 156, 229 (2002). 

40. A. Agarwal and M. J. Kushner, J. Appl. Phys. 101, 063305 (2007).  



 144 

Chapter 5: Impedance Matching to a Pulsed Inductively Coupled Plasma Using Set-point 
Matching and Frequency Tuning 

 
 
 

5.1 Introduction 

Low pressure plasmas are widely used in industrial applications for microscale device 

fabrication. Efficiently applying sufficient power to the plasma is necessary to produce high 

plasma densities, which requires a low power reflection coefficient (Γ).  The power reflection 

coefficient is, 
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where ZL is the combined impedance of plasma, antenna/electrodes, and any circuit components 

used in the power transmission line, and Z0 is the output impedance of the power supply, which 

typically is 50 Ω.  In an inductively coupled plasma (ICP) reactor, to reduce Γ, an impedance 

matching network (IMN) ideally consisting of non-resistive passive circuit components is often 

implemented between the power supply and plasma reactor.  By changing the impedance of the 

IMN, ZL can be tuned to minimize Γ.  The power delivery to the plasma is then,  

0 (1 )P P= −Γ ,      (5.2) 

where P0 is the output power from the power supply.  The maximum power delivery is attained 

when ZL = Z0.  Employing an IMN is a commonly used and effective method to maximize the 

power delivery to a plasma [3-7]. 

However, certain challenges emerge when the plasma switches between multiple states 
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during operation, for example, when the plasma is sustained with pulsed power [8-12].  In 

consider a plasma pulsed with 100s W at 10s mTorr pressure at 10s of kHz, both the real and 

imaginary parts of the plasma impedance can experience severe oscillations up to 10s Ω to 100s 

Ω during power transitions.  These oscillations result from the significant difference between 

electron densities (ne) between when power is on and off.  At the leading edge of the power 

pulse, the electron density can increase from lower than 108 cm-3 to more than 1011 cm-3 within 

several μs.  This increase of electron density produces high electron plasma frequency (ωpe) and 

plasma conductivity (σp), and low plasma impedance, 
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where e is the elementary charge, ε0 is the permittivity of free space, me is the electron mass, ω is 

the radiofrequency (RF) of the input power, and νm is the electron-neutral collision frequency 

[13].  If the duty-cycle (DC) of a pulse (the fraction of a period power is on) is small, or the 

period is short, it is likely that electron and ion densities will fail to reach the quasi-steady state 

before power is turned off again [11-12].  Consequently, the plasma impedance will continuously 

change during power-on, making it difficult for an IMN with fixed components to 

instantaneously match the impedance.  If  the power has a high-low pulsing profile—wherein 

instead of having zero power input during power-off, a low-power is applied to maintain the 

plasma—the different plasma impedances during the high- and low-power periods will pose even 

more challenges to the IMN [10].  To that end, real-time impedance matching techniques with an 

agile impedance adjustment rate is needed to optimize power delivery. 

One approach to improve the impedance matching to a plasma load with a changing 
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impedance is to use multiple IMNs that match different ZL [14].  For example, in a high-low 

pulsed power ICP reactor, two IMNs can be used to match the impedances of the plasma during 

high- and low-power periods.  The IMN is switched between two architectures at each power 

transition.  Using this technique, the power reflection will be greatly reduced compared to when 

the IMN is fixed.  However, switching circuit components in the IMN is often a mechanical 

process that cannot be performed rapidly (often 100s to 1000s ms).  Meaning matching the 

impedance by modifying the IMN is difficult if the plasma load is pulsed at high pulse repetition 

frequency (PRF).  If the IMN fails to synchronize with the impedance of the plasma, 

unpredictable instabilities in the plasma can occur.    

Another method of impedance matching to a plasma in near real-time is to fix the 

components of the IMN but modify the frequency of the power delivered from the power supply 

[15-16].  Both the impedance of the plasma and the circuitry have fairly significant reactive 

components, making it reasonably efficient to impedance match by frequency tuning.  The 

advantage of using frequency tuning is the high tuning speed,  The frequency tuning itself can be 

done in a time as short as 10s μs as the tuning can be performed electronically without any 

mechanically moving parts.  Additionally, the fractional change of frequency that is required is 

usually small.  For a plasma operating at 10s MHz, without orders of magnitude variation in 

operating conditions (power, pressure, gas flow rate etc.), the required frequency change to 

obtain matching during a pulse is often less than several MHz. 

In this chapter, we discuss results from computational investigations of impedance 

matching with both a fixed IMN and with frequency tuning performed on a 15 mTorr Ar ICP.  

The plasma is produced in the ICP reactor ICAROS, and sustained by a pulsed power having 

PRF = 5 kHz, DC = 50%, and power of 50 W.  Employing a fixed IMN was found to produce a 
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reasonable impedance matching result, but mismatch occurs when the impedance of the load 

shifts away from the target impedance of the IMN.  This issue is then addressed by applying 

frequency tuning for a real-time impedance match.  The power profile was varied to test the 

capability of frequency tuning to correct an impedance mismatch.  Specifically, the pulsed power 

ranges from 30-80 W, power ramp time during power transition is varied from 4-80 μs, and DC 

is adjusted from 40-60%.  In all cases, frequency tuning was found to help maintain a low power 

reflection coefficient.  A brief description of the model is provided in Sec. 5.2.  Results of the 

investigation of power deposition with only IMN and a combination of IMN and frequency 

tuning with varying pulse profiles are provided in Sec. 5.3.  Concluding remarks are in Sec. 5.4. 

 

5.2 Description of the Model 

The computational platform used in this work is the Hybrid Plasma Equipment Model 

(HPEM).  The details of this model are discussed in Chapter 2 and Ref [17].  Only a brief 

description is provided here. 

The modules from the HPEM that are used in this work are the Fluid Kinetics Poisson 

Module (FKPM), Electromagnetics Module (EMM), and Electron Energy Transport Module 

(EETM).  The inductively coupled electromagnetic field is obtained by solving the frequency-

domain Maxwell’s equation in the EMM.  The continuity, momentum, and energy equations for 

the heavy particles are solved in the FKPM to update the heavy particle densities.  With the 

charge density provided, Poisson’s equation is also addressed in this module to provide the 

electrostatic potential.  Boltzmann’s equation is solved in the EETM for the electron energy 

distribution function (EEDF).  Cross sections are averaged over the EEDF to provide impact rate 

coefficients. Electron energy equation is solved for the electron temperature. 

A circuit model in the EMM is used to represent the IMN in the power transmission line 
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from the power supply to the ICP reactor.  The impedances of the plasma downstream of the 

antenna are calculated having both inductive and capacitive components.  A user-specified IMN 

is implemented between the antenna and power supply.  The values of circuit components in the 

IMN are analytically calculated to produce a perfect impedance matching condition (ZL = Z0).  

This is accomplished by matching both the real and imaginary parts of ZL and Z0.  When using 

frequency tuning, circuit components in the IMN are fixed, while the frequency of the 

radiofrequency (RF) provides minimum reflection coefficient is obtained by a minimization 

search.  Both the test range (frange) and step (Δf) are user-defined values.  Frequency tuning is 

only performed when the fractional change of load impedance exceeds a threshold ε, which is by 

default 0.01.    

The plasma species included in this model are Ar, Ar(1s5), Ar(1s4), Ar(1s3), Ar(1s2), 

Ar(4p), Ar(4d), Ar2
*, Ar+, Ar2

+ and electrons, where Ar2
* is a lumped excited state of the argon 

dimer. 

 

5.3 Plasma Characteristics with Set-Point Matching and Frequency Tuning 

The geometry of the ICP reactor used in this work is shown in Fig. 5.1. and represents the 

ICAROS reactor designed by Prof. Steven Shannon at North Carolina State University.  This 

cylindrically symmetric reactor is relatively small, with the plasma chamber having a radius r = 

4.8 cm and height z = 14.3 cm.  Pure Ar is used at a flow rate of 10 sccm at a pressure of 15 

mTorr.  Gas is injected from the top of the reactor and is pumped out at the bottom.  The speed 

of the pump is adjusted to maintain constant pressure.  The wall of this reactor is alumina, with a 

dielectric constant εr = 9.8.  A 4-turn solenoidal coil provides power to the plasma.  Here, the top 

coil is connected to the power supply, such that the voltage on the coil decreases from top to 

bottom.  The bottom coil is connected to ground through a 0.35 nF capacitor.  Pulsed power with 
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a pulse repetition frequency (PRF) of 5 kHz and duty cycle (DC) of 50% is applied to the 

plasma.  The default power transition time (τt) is 4 μs, meaning that the power takes 4 μs to ramp 

from zero to full power, and from full power to zero.  By default, the radiofrequency (RF) is 

13.56 MHz.  The reactor is surrounded by air.  The outer-most boundary of the computational 

domain is metal, which provides boundary conditions for solutions of Poisson’s equation and the 

wave equation. 

The 2-dimensional distributions of electron density (ne) and power density as well as the 

spatially averaged ne and electron temperature (Te) are shown in Fig. 5.2.  Here, all power is 

delivered to the plasma (Γ = 0).  The peak electron density is 1.4 × 1011 cm-3.  The peak power 

density of 0.17 W/cm3 is close to the wall adjacent to the coils as the skin depth is only a few cm.  

Capacitive power coupling is not included in this work.  That is, power is not electrostatically 

coupled to the plasma from the voltage drop on coils.  The spatially averaged electron density 

and electron temperature are plotted over one pulse period (200 μs).  Te spikes at the beginning 

of the pulse when ne is low ( < 4 × 1010 cm-3) in order to avalanche the electron density from its 

low prepulse value.  This spike of Te diminishes after 10 μs as ne increases.  Note that even 

though Te is stabilized through almost the entire power-on period, ne continues to increase, 

indicating that the plasma is not in a quasi-steady state.  The plasma impedance changes with ne 

and produces an electrically dynamic load, which then produces an impedance mismatch if no 

impedance matching system has been implemented. 

The IMN implemented between the coils and power supply is shown in Fig. 5.3.  From 

left to right are the power supply, impedance matching network, and the load impedances from 

the coils, plasma, and the reactor.  The output impedance of power supply, RG, is a standard 50 Ω 

impedance with no reactive component.  Rloss represents the stray resistance in the IMN.  
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However, in this work, Rloss is set to 0 to provide a lossless IMN.  The inductance LP in the IMN 

is a constant 0.7 μH, while the capacitances CS and CP are analytically solved to produce a 

perfect impedance match condition.  A detailed solution of CS and CP is provided in the 

Appendix.  Briefly, CS and CP are solved by matching the combined impedance of all the non-

power supply components to RG.  The loads following the IMN are the coils and plasma, whose 

impedances are automatically calculated in the HPEM.  The impedance of the coil is geometry 

dependent, and the plasma impedance is a function of plasma geometry, density and impact 

collision frequency (νm).  ZP is approximated as that of the window.  The last two components, LT 

and CT, are the termination components representing the impedance between the antenna and 

ground.  In this work, LT = 0, and CT = 350 pF. 

Values of CP and CS in this IMN are solved through the power-on part of the pulse for a 

perfect match.  The results are shown in Fig. 5.4, where Im(ZL) and Re(ZL) are the real and 

imaginary parts of the load impedance ZL.  Significant oscillations of ZL occur during power 

transitions as both ne and the collision frequency (νm) experience rapid changes.  As shown in Eq. 

(5.4), a change of ne and νm directly affects the electrical properties of the plasma.  Because the 

plasma impedance is one of the major components of ZL, the ignition and decay of the plasma 

then produce changes in the power reflection coefficient.  ZL stabilizes as plasma approaches the 

quasi-steady state, with Re(ZL) remaining constant at 25 Ω, and Im(ZL) slightly decreasing from 

46 Ω  (20 μs) to 41 Ω (100 μs).  This variation of Im(ZL) suggests that the increase in ne during 

power-on mainly affects the reactance of the plasma.  To have a perfect match, the value of CP 

remains nearly constant, with only minor increases from 52 pF at 10 μs to 63 pF at 100 μs.  CS is 

increases by a factor of 1.4, from 182 pF to 253 pF, which indicates that an impedance mismatch 

will occur if the IMN has fixed values of CS and CP. 
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The power deposition and reflection with the fixed IMN are shown in Fig. 5.5.  The 

method of using a fixed IMN for impedance matching is referred to as set-point matching.  With 

set-point matching, CP and CS are obtained from the result shown in Fig. 5.4 to perfectly match 

at a specific time during the pulse.  Set-point values of CP and CS are chosen at τM = 10 and 90 

μs, and are designated as match points.  When τM = 10 μs, the plasma ignites rapidly and reaches 

the near quasi-steady state within 20 μs.  Because the IMN is selected to match the impedances 

at τM = 10 μs, the reflected power (Pref) drops to 0 at that time, after the initial spike when the 

plasma first ignites.  The impedance of the plasma becomes relatively stable 50 μs after the 

leading edge of the pulse (Fig. 5.4).  Matching early in the pulse produces a non-zero power 

reflection coefficient Γ through the entire power-on period, starting from τ = 10 μs.  In this case, 

with τM = 10 μs, 2.6 W out of 50 W input power is reflected back to the power supply at τ = 90 

μs, which translates to a power reflection coefficient of Γ = 5%.  To minimize this power 

reflection, a match point is chosen late in the pulse, at τM = 90 μs.  As shown in Fig. 5.5b, this 

approach successfully brings power reflection down to almost zero when τ > 40 μs.  However, 

the mismatch early in the pulse challenges plasma ignition.  Compared to τM = 10 μs, the initial 

power reflection spike lasts longer when matching at τM = 90 μs.  Even though the integral of the 

reflected power (Pref) in the entire power-on period is not large (≈ 10%), the slower plasma 

ignition might be problematic. 

 To better optimize power delivery, a near real-time impedance matching technique is 

needed, along with set-point matching.  To accomplish this, we implemented frequency tuning.  

Typically, the power reflection coefficient is sensitive to the change of frequency, as shown in 

Fig. 5.6a.  Power reflection can be significantly reduced by a small adjustment in operating 

frequency. In practice, frequency tuning can be done much faster than adjusting the components 
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in the IMN (μs versus s).  In the HPEM, frequency tuning is performed using a search algorithm.  

A diagram of this process is shown in Fig. 5.6b.  Frequency tuning is performed when the 

fractional variation of the load impedance exceeds the threshold ε, which is 0.01 here.   

Results with frequency tuning along with set-point matching are shown in Fig. 5.7.  The 

range for the frequency tuning is frange = 4 MHz, meaning that the frequency can be varied from 

11.56 to 15.56 MHz.  As the model indicates, with frequency tuning, almost perfect power 

matching is attained regardless of the choice of match points.  Power reflection of less than 30 W 

occurs in the first 4 μs for both cases (τM = 10 and 90 μs).  The finite power reflection during 

start up is a consequence of the frequency have reached its lower limit of 11.56 MHz.  However, 

because of its small magnitude and short duration, this power reflection does not have a 

significant effect on the plasma.  The choice of match points affects the preciese frequency 

during frequency tuning.  When frequency tuning is employed, 13.56 MHz is the frequency near 

the match points because the components in the IMN are chosen when the input power is at 

13.56 MHz.  By matching at different times, the peak-to-peak frequency oscillation decreases 

from 3.5 MHz for τM = 10 μs to 2 MHz for τM = 90 μs.  In practice, frequency tuning with a 

tuning requires at least 10 μs.  Therefore, choosing the match point that requires the smallest 

peak-to-peak frequency oscillation will reduce power reflection by reducing the number of 

frequency changes.  For example, when τM = 10 μs, if the frequency is tuned to match early pulse 

to operate at 13 MHz and remains at this frequency until mid-pulse at ≈ 60 μs, the offset of 2 

MHz from the ideal frequency during power-on will produce a significant impedance mismatch.  

Conversely, if τM = 90 μs and the frequency is tuned to 13 MHz in the early pulse, it only creates 

≈ 0.6 MHz frequency offset in the mid-pulse. This considerably reduces the impedance 

mismatch.   
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In the following sections, power delivery to the plasma is computationally investigated 

by considering power magnitude, power transition time, and duty cycle while using set-point 

only impedance matching, and a combination of set-point matching and frequency tuning.  The 

IMNs used are the same as it from the base case (50 W, DC = 50%, τt = 4 μs) when matching in 

the late pulse at τM = 90 μs.   

5.3.1 Power Magnitude 

The power magnitude of the pulse was varied from 30 to 80 W while the duty cycle 

(50%) and transition time (4 μs) remained the same as the base case.  To quantify the power 

deposition, power efficiency η is defined as, 
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where τP is the pulsing period, Pdep is the power deposition in the plasma, and Pforward is the 

power output from the power supply.  As a function of Pforward, η is plotted in Fig. 5.8.  Even in 

the absence of frequency tuning, the power efficiency remains at a relatively high value of > 

90% when Pforward > 50 W.  This is because the electrical properties of the plasma do not change 

significantly at high plasma density and so ZL is relatively stable.  For example, as power 

increases from 50 to 80 W, Re(ZL) stays at 25 Ω while Im(ZL) moderately increases from 35 to 

41 Ω, which induces a minor impedance mismatch and leads to a slight decrease of η.  Even 

though the IMN is chosen to match the late pulse when Pforward = 50 W, the highest power 

efficiency with a set-point match occurs when Pforward = 60 W.  Although the impedance is 

perfectly matched at the end of the pulse when Pforward is 50 W, η is lower at Pforward = 50 W than 

60 W.  The power reflection produced by the impedance mismatch during other parts of the 

pulse is larger when Pforward is 60 W.  Instead of obtaining perfect match conditions at a specific 
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match point, when choosing IMN values, the goal should be to minimize the reflection 

coefficient through the entire period. 

Without frequency tuning, the power deposition efficiency drops to almost zero as the 

pulse power decreases from 50 to 30 W.  The electron density and power reflection coefficient 

with and without frequency tuning are shown in Fig. 5.9, when the pulse power is 30, 40, and 50 

W.  Note that when power is 40 W, even without frequency tuning, the plasma nearly reaches a 

quasi-steady state density at the end of the pulse.  At τ = 90 μs, ZL = (24 + j44) Ω when the power 

is 40 W, compared to ZL = (25 + j41) Ω when the power is 50 W.  These values of closed ZL 

suggest that when Pforward = 40 W, using the same IMN setup as in the base case can also 

optimize power delivery late in the pulse.  As shown in Fig. 5.9b, the power reflection coefficient 

when Pforward is 40 W (Γ40W) is only 5% at τ = 100 μs.  The low power deposition efficiency with 

a decreasing power is caused by the impedance mismatch early in the pulse.  At τ = 10 μs, ZL(40 

W) = (21 + j47) Ω, while ZL(50 W) = (24 + j51) Ω.  The difference in ZL, especially in relation to 

the resistive components, produces a severe impedance mismatch, which results in a high 

reflection coefficient and a low power deposition efficiency.  A low power deposition efficiency 

early in the pulse delays plasma formation and increases in ne.  Therefore, at 40 W, it takes a 

longer time for the plasma to reach a quasi-steady state.  

The impact of the impedance mismatch early in the pulse is maximized when Pforward = 

30 W.  In this case, without frequency tuning, plasma fails to ignite as the power reflection 

coefficient remains high (Fig. 5.9b).  However, with frequency tuning, the power reflection 

coefficient at 30 W (Γ30W) is reduced to 80% at the leading edge of the pulse, which shortly 

increases to 95% and then abruptly decreases to less than 10% in 10 μs.  The final decrease of 

Γ30W is enabled by the power deposition early in the pulse.  Even though Γ30W is still higher than 
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80% in the first 5 μs, the small amount of power deposited in the plasma enables plasma ignition 

and the increase of ne, which facilitates the impedance matching and further enables the increase 

of plasma density.   

5.3.2 Power Transition Time 

Another parameter that is often varied in a pulsing profile is the power transition time (τt).  

The power transition time was varied from 4 to 80 μs as the power turns on, and remains 

constant at 4 μs when the power is turned off.  For all cases, full power is 50 W, and the duty 

cycle is 50%.  Therefore, average power decreases with an increase of τt.   

The power deposition efficiency η as a function of τt is shown in Fig. 5.10a.  Without 

frequency tuning, η decreases from 93% to 14% as τt increases from 4 to 80 μs. This is caused by 

the long period of time with low input power.  The power reflection coefficients when τt is 4, 40 

and 80 μs are shown in Fig. 5.10b.  Without frequency tuning, the power reflection coefficient 

remains at a high value through out the power transition.  This is because the low power density 

produces a low plasma density, which leads to an impedance mismatch that enhances power 

reflection and results in even less power deposition to the plasma, again preventing an increase in 

ne.  When τt = 80 μs and there is no frequency tuning, power cannot transfer to the plasma until 

the last 20 μs of the pulse when Pforward reaches 50 W.  Even then, the minimum power reflection 

coefficient is 60%, which translates to a power deposition of 20 W.  The end result is a 20 μs 

spike of ne ≈ 1.6 × 1010 cm-3 at the end of each pulse with 86% of the total power reflected back 

to the power supply.   

Applying frequency tuning proves helpful in reducing the power reflection coefficient.  A 

low frequency is needed for impedance matching when ne is low; however, the lower boundary 

of the RF is 11.56 MHz, which means there is a minimum ne requirement for a functional 
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frequency tuning.  In this work, that electron density is ≈ 1010 cm-3, however ne takes a longer 

time to reach this density with a longer τt.  When τt = 80 μs, frequency tuning starts to reduce ΓR 

at 30 μs when Pforward = 18 W and nearly all of the power before 30 μs is reflected.  The longer 

the power transition time is, more power is reflected.  As τt increases from 4 to 80 μs, η decreases 

from 99% to 87% when frequency tuning is implemented.  These results demonstrate that 

frequency tuning or real-time impedance matching is likely to be most impactful when the power 

profile has a large fraction in the low-power regime, such as a sawtooth waveform.   

5.3.3 Duty Cycle 

In this section, the duty cycle of the pulse ranges from 40% to 60%.  The peak power is 

50 W, and the power transition time is 4 μs, the same as in the base case.  Therefore, the average 

power increases with an increase in the duty cycle.  The power deposition efficiency η as a 

function of the duty cycle is shown in Fig. 5.11a. 

Changing the duty cycle mainly affects the time the plasma stays in the quasi-steady 

state. The longer the duty cycle, the longer the time the plasma is in the quasi-steady state.  The 

components of the IMN were chosen to match the load impedance ZL when the plasma is 

stabilized at the end of the pulse.  The impact of frequency tuning becomes insignificant when 

the duty cycle is long.  The plasma can reach the quasi-steady state with a DC = 40% (Fig. 5.11).  

As a result, the power deposition efficiency η > 90% without frequency tuning.  In these cases, 

frequency tuning can still optimize power delivery to the plasma during the first 40 μs, when 

some level of impedance mismatch occur.   

As the duty cycle decreases, the impact of frequency tuning becomes more significant 

when a longer fraction of the pulse is mismatched.  Note that increasing the duty cycle also 

decreases the inter-pulse period, meaning the plasma has a shorter time to dissipate, and the 
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initial plasma density will be higher at the leading edge of the pulse.  Without frequency tuning, 

as the duty cycle increases from 40% to 60%, the initial electron density increases from 1.5 to 

1.9 × 1010 cm-3.  However, since the plasma takes only ≈ 20 μs to reach the high-density state, 

the different ne at the beginning of the pulse has little impact on power delivery. 

 

5.4 Concluding Remarks 

A computational investigation of power deposition in an Ar ICP sustained in the reactor 

ICAROS with 50 W power pulsed at 5 kHz was performed using the HPEM simulation platform.   

Two impedance matching techniques were employed: set-point matching using a fixed 

components in the impedance matching network (IMN), and a combination of set-point matching 

with a close to real-time frequency tuning.  The circuit components in the IMN are first 

analytically solved for the perfect match and then fixed to match the impedance at a certain time 

during the pulse.  Real-time frequency tuning is then employed with the set-point match to 

correct impedance mismatches.   

We found that using set-point matching alone produces impedance mismatch and results 

in power reflection at times other than the match point.  When frequency tuning is applied, the 

choice of match point affects the tuning range in such a way that a late match point in a quasi-

steady state results in the need for smaller frequency adjustments.  The impact of frequency 

tuning on power deposition with varied power magnitude, power transition time, and duty cycle 

were discussed.  With the IMN set to match the impedance of the quasi-steady state, frequency 

tuning is found to be most impactful during transients when the input power is low.  Therefore, 

frequency tuning is recommended if the pulse power is low, the power transition time is long, or 

the duty cycle is short.  Impedance match early in the pulse is desirable because a severe 
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mismatch will extend the time that the plasma reaches the steady state.  Therefore, frequency 

tuning, especially in the early pulse, is recommended. 

To summarize, impedance matching not only maximizes the power delivered to the 

plasma reactor but also minimizes the power reflected back to the supply.  Minimizing the 

reflected power becomes ever more important as power levels increase in plasmas processing – 

now exceeding 10-20 kW.  In addition to minimizing reflected power to protect the power supply, 

optimum impedance matching enables consistent power pulsing profiles to the plasma.  For 

example, optimum matching helps to avoid issues such as dropping a pulse, in which due to 

impedance mismatch at the onset of applied power, the plasma does not ignite during the pulse.  

In this chapter, the effects of set-point matching and frequency tuning for impedance matching in 

plasma processing are discussed.  However, these results may also apply to other pulsed power 

plasma applications.  For example, pulsed power thrusters are used in electric propulsion (EP) 

for accelerating and station keeping of satellites and spacecraft.  EP uses plasma exhaust to 

accelerate the spacecraft.  In these systems, minimizing mass is exceedingly important.  

Minimizing mass is typically achieved by maximizing the efficiency of all on-board systems, 

which includes the power transfer that generates the plasma.  
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5.5 Figures 

 
 

 
Fig. 5.1 Geometry of the inductively coupled plasma (ICP) reactor used in this work. 
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Fig. 5.2 Distributions of electron density and power density, and spatially averaged electron 
density and electron temperature. Ar, 15 mTorr, 50 W, PRF = 5 kHz, DC = 50%.  
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Fig. 5.3 Diagram of power transmission line with power supply, impedance matching network, 
and load impedance consisting of the coil, plasma, and termination circuit components. 
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Fig. 5.4 Real and imaginary parts of the load impedance (ZL) and the capacitances in the 
matching network (CP and CS) required for the impedance match.  Ar, 15 mTorr, 50 W, PRF = 5 
kHz, DC = 50%. 
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Fig. 5.5 Power deposition (Pdep) and reflection (Pref) and load impedance when the impedance 
matching network is chosen to match a) in the early pulse at τ = 10 μs and b) in the late pulse at τ 
= 90 μs.  Ar, 15 mTorr, 50 W, PRF = 5 kHz, DC = 50%. 
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Fig. 5.6 a) A typical response of power reflection coefficient (Γ) with radiofrequency, and b) a 
schematic diagram of frequency tuning in the HPEM. 
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Fig. 5.7 Power deposition (Pdep) and reflection (Pref) with (FT) and without (no FT) frequency 
tuning when a) b) IMN is chosen to match early in the pulse at τ = 10 μs and when c) d) IMN is 
chosen to match late in the pulse at τ = 90 μs. 
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Fig. 5.8 Power deposition efficiency with and without frequency tuning with different powers.  
Ar, 15 mTorr, PRF = 5 kHz, DC = 50%. 
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Fig. 5.9 a) Spatially averaged electron density b) power reflection coefficient without frequency 
tuning and c) power reflection coefficient in the first 20 μs with and without frequency tuning.  
Ar, 15 mTorr, PRF = 5 kHz, DC = 50%. 

 
  



 168 

 
 

 

Fig. 5.10 a) Power deposition efficiency as a function of power transition time (τt) and b) power 
reflection coefficient when τt = 4, 40, and 80 μs.  Ar, 50 W, 15 mTorr, PRF = 5 kHz, DC = 50%. 
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Fig. 5.11 a) Power deposition efficiency as a function of duty cycle and b) power deposition, 
power reflection, and frequency with and without frequency tuning when DC = 40%.  Ar, 50 W, 
15 mTorr, PRF = 5 kHz. 
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Chapter 6: Customizing Capacitively Coupled Plasma Properties with a Triple-Frequency 
Power Source 

 
 
 
6.1 Introduction 

The use of capacitively coupled plasmas (CCPs) to enable reactive-ion etching (RIE) has 

been widely studied [1-4].  A typical CCP reactor consists of a pair of parallel plate electrodes 

separated by a few cm, an annular gas outlet surrounding the bottom electrode (substrate), and a 

showerhead for the gas inlet that overlaps with the top electrode.  In conventional RIE, the 

bottom electrode is powered with up to several kW of radiofrequency (RF) power, and the top 

electrode is grounded.  A negative DC bias voltage is usually self-generated on a blocking 

capacitor in series with the bottom electrode to balance current to the powered and grounded 

electrodes [2,5].  This bias voltage partly contributes to the ion acceleration and can accelerate 

the ion energy incident on the substrate from 100s to thousands eV. 

Energetic ions play an essential role in the microchip etching process as they are the 

agent for both physical sputtering and surface activation.  To optimize the RIE process, one 

needs precise control over the ion energy and angular distributions (IEADs) incident on the 

wafer.  For example, with the shrinking device dimension (under 10 nm) and increasing aspect 

ratio (AR, the depth over the width) of the target features, a narrow ion angular distribution 

(IAD) is required to minimize scattering from the sidewalls [6-8].  If an ion enter a feature with a 

large incident angle (> 50˚), it will strike and be reflected from the sidewalls.  Successive 

collisions result in a loss of energy and broadening of the angular distribution.  This results in 
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bowing at the top of the feature and a lack of energetic ions at the etch front at the bottom, 

causing a widened opening and slow etch rate.  The ion energy distribution (IED) has limitations 

both high- and low-energies.  Too high of an ion energy leads to perhapes unwanted physical 

sputtering.  Too low of an ion energy results in etch-stop [9,10].   

IEADs can be modified by changing the plasma operating conditions.  However, in a 

conventional single-frequency (SF) CCP, this usually leads to modification of the magnitude and 

composition of the ion flux.  To decouple the IEADs from the magnitude of the ion flux, and to 

gain independent control of both, multi-frequency CCPs can be used.  The goal is to have more 

control parameters so that a combination of the parameters can provide a wide range of IEADs 

and ion flux.  In a CCP, electrons are mainly heated through stochastic heating such that hot 

electrons are created through the fast oscillation of the sheath.  A sheath is a high electric field 

(E-field) region adjacent to a surface exposed to the plasma.  Above the surface of a powered 

electrode, high frequency voltage, usually radiofrequency (RF), leads to a high sheath expansion 

velocity and a resulting high heating efficiency as well as a high plasma density.  Unlike 

electrons, ions only respond to the low-frequency (LF) due to their larger mass.  In a multi-

frequency CCP, high-frequency (HF) power is used to control the plasma density while a range 

of LF powers are applied to the substrate to modify the IEADs.  Applying harmonics of a 

fundamental frequency produces the electrical asymmetry effect (EAE) due to non-linear 

responses of the sheath to the non-sinusoidal voltage waveforms.  The EAE provides an 

approach to control the DC bias, thereby offering additional control over IEADs [11-15]. 

The most basic multi-frequency CCP is a dual-frequency (DF) CCP where the power is 

applied to the plasma through two distinguishable frequencies [16-19].  Boyle et al. studied a 

DF-CCP using a particle-in-cell model with Monte Carlo collisions (PIC-MCC) [17].  It was 
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shown that the decoupling nature of the ion energy and flux is related to the low-to-high 

frequency ratio such that a greater separation of the two frequencies provides a more thorough 

decoupling between the IED and ion flux.  In addition to the frequency ratio, the phase between 

frequencies (θ) can also be used as a method to control a DF-CCP [11, 20].  With investigations 

using an analytical model, Czarnetzki et al. reported that when applying the fundamental 

frequency (13.56 MHz) and its second harmonic (27.12 MHz) on the same electrode in a CCP, 

the ion energy has an almost linear dependence to θ, but the ion flux remains constant [11].  

They suggested that varying θ induces significant deviations to the dynamics of power 

dissipation, and yet, time-averaged power deposition to the plasma is barely changed.  

Consequently, the acceleration of ions in the sheath, through which they obtain energy, is 

impacted by θ, but the ion flux remains constant.   

Applying DF power can also have fundamental impacts on the plasma.  Sahu et al. 

reported that while keeping the power input constant, if an ultrahigh-frequency (320 MHz) is 

added to a SF-CCP sustained by 200 W (13.56 MHz) power, the electron energy distribution 

function (EEDF) can be changed from a Druyvesteyn to a bi-Maxwellian structure [21].  They 

concluded that HF enhances stochastic heating and populates warm-electrons (11-15 eV).  

Despite the advantages of DF-CCP in an RIE process, O’Connell et al. warned that some level of 

HF-LF coupling can still occur, especially when both frequencies are applied to the same 

electrode [16].  Such an issue can be solved by distributing the powers to different electrodes and 

using multi-frequency ( > 2) power for even more sophisticated control over the plasma. 

Diomede et al. investigated a multi-frequency CCP in a geometrically symmetric reactor 

powered by a tailored voltage consisting of up to three harmonics of the fundamental frequency 

(15 MHz) [22].  They found that both the absolute value of the DC bias and the electron density 
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increase with an increasing number of harmonics.  But the ion energy on the grounded electrode 

changes monotonically with the number of harmonics.  The average ion energy increases with an 

increasing number of applied harmonics when the phase of the harmonics θ = π, but decreases 

when θ = 0.  These results suggest using phase as a parameter for modifying plasma properties in 

a multi-frequency CCP.  Lee et al. investigated the IED from a low-pressure triple-frequency 

(TF) CCP sustained in Ar with driving frequencies of 1, 30, and 120 MHz applied to the same 

electrode [23].  They concluded that the current density (for the current-driven source) or voltage 

(for a voltage-driven source) along with the frequency ratios, determine the average ion energy 

and the width of the IED, instead of the absolute values of frequencies.   

Focused more on the function of each frequency in a multi-frequency CCP, Kawamura et 

al. investigated Ar discharges with the highest frequency, being up to 162 MHz.  They also 

concluded that LF power predominantly determines sheath development while the HF power 

controls plasma production.  They reported that the standing wave created by HF power 

optimizes the plasma distribution.  The high plasma density in the center of the reactor, caused 

by the standing wave, counteracts the electrostatic effect at the edge of the wafer and improves 

plasma uniformity. 

In this chapter, we investigate a TF-CCP sustained in an Ar/CF4/O2 gas mixture and 

driven by powers at 5, 10, and 80 MHz.  A brief model description is provided in Sec. 6.2.  

Results from the simulation vhile varying power, pressure, high frequency, and geometry are 

discussed in Sec. 6.3.  Concluding remarks are in Sec. 6.4. 

 

6.2 Model Description 

The model used in this chapter is a two-dimensional (2D) kinetic-fluid hydrodynamics 

simulation, the Hybrid Plasma Equipment Model (HPEM).  A detailed description of HPEM is 
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provided in Chapter 2 and Ref [25].  Only a brief description is provided here. 

The HPEM contains modules addressing different aspects of plasma physics.  The 

modules used in this work are Fluid Kinetics Poisson Module (FKPM), Electron Monte Carlo 

Simulation (eMCS), Surface Kinetic Model (SKM), and Plasma Chemistry Monte Carlo Module 

(PCMCM).  In the FKPM, the momentum, energy, and continuity equations of all the heavy 

particles (neutrals and ions) are solved, which provides the densities of these heavy particles 

along with their source terms.  Poisson’s equation is also addressed in the FKPM to provide the 

electrostatic potential.  The SKM interacts with FKPM in a way that the FKPM provides the 

fluxes to a surface, and SKM uses that information to update the surface reaction probabilities 

that are used in the FKPM.   

The transport of both bulk and secondary electrons are tracked in the eMCS, as discussed 

in Section 2.1.2 and Ref [26].  In the eMCS, trajectories of pseudoparticles that represent 

electrons are advanced in the electric field from the FKPM while undergoing statistically chosen 

collisions.  In this work, 60,000 pseudoparticles are launched to provide statistically accurate 

spatially-dependent electron energy distribution functions (EEDFs), which are then used to 

produce electron transport and rate coefficients. 

Both the ion flux and the IEADs can be obtained using PCMCM.  In the PCMCM, 

similar to the eMCS, pseudoparticles representing ions are launched, moved, and tracked using a 

Monte Carlo approach.  The number of pseudoparticles launched for each species is weighted by 

its corresponding source term.  The electrostatic field solved for in the FKPM provides the 

acceleration.  The IEADs of Ar+, CF3
+, CF2

+, CF+, F+, O+, O2
+, and F2

+ are recorded when 

striking the wafer.  The IEADs discussed in this chapter averaged over the wafer and cross 0 

degree.   
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In the HPEM, the power sources are independently controlled.  For most cases discussed 

in this chapter, powers at each frequency are specified, and those corresponding voltages are 

adjusted to deliver the desired power.  A 5 nF blocking capacitor is connected to the substrate to 

produce the DC bias.  A Ar/CF4/O2 gas mixture is used as the feedstock gas, and the chemistry is 

discussed in detail in Ref [26].  The species are Ar, Ar(1s5, 1s3), Ar(1s2,1s4), Ar(4p, 5d), Ar+, 

CF4, CF3, CF2, CF, C, F, F*, F2, SiF4, SiF3, SiF2, CF3
+, CF2

+, CF+, C+, F+, F2
+, CF3

-, F-, O2, 

O2(1∆), O2
+, O, O(1D), O+, O-, CO, CO+, COF, COF2, CO2, FO, and e.   

 

6.3 Plasma Characteristic of TF-CCP 

The reactor geometry used in this work is shown in Fig. 6.1.  The reactor is cylindrical 

and is symmetrical across the central axis.  The radius of the reactor is 29 cm, and the height is 

7.4 cm.  The wafer and the top electrode have a radius of 15.0 cm and are separated by 2.8 cm.  

HF power, 80 MHz and 500 W, is applied to the top electrode, and DF power with 5 and 10 

MHz components is applied to the substrate, each delivering 400 W.  The voltage at each 

frequency, time averaged plasma potential, and DC bias are in Table I.  A quartz focus ring 

(relative dielectric constant εr = 4) surrounds the wafer.  A sacrificial material with the same 

conductivity as the wafer (0.05 Ω-1cm-1) is placed between the wafer and focus ring to smooth 

the sheath and help make the plasma uniform to the edge of the wafer.  The wall of the reactor is 

grounded with a thin layer of dielectric coating (εr = 50).  A fairly large εr is used here to 

compensate for the thickening of the dielectric layer by the finite mesh size, such that the 

capacitance of the dielectric coating remains large.  In this geometry, the showerhead overlaps 

with the top electrode and feeds a gas mixture of Ar/CF4/O2 (75/15/10) evenly to the reactor at 

500 sccm.  The outlet pump is the annulus at the bottom of the reactor, surrounding the substrate.  

The pressure is measured by a sensor embedded in the chamber wall 0.8 cm above the pump, 
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which is used to adjust the pumping speed to sustain a constant pressure of 25 mTorr in the 

reactor.   

The spatially averaged cation and neutral densities at the steady state are shown in Fig. 

6.2.  In the base case, the dominant ions are Ar+ (2.4 × 1010 cm-3) and CF3
+ (2.0 × 1010 cm-3).  A 

high Ar+ density results from the higher mole fraction of Ar in the feedstock gas.  CF4 has lower 

mole fraction, but CF3
+ still has a fairly high density because ionization of CF4 is dissociative 

and produces CF3
+, and carbon fluorides have high charge exchange reaction rates with other 

ions such as Ar+ and O+.  The low O2 input limits the densities of oxygen species.  Note that O2
+ 

has a steady-state density of 4.0 × 109 cm-3, an order of magnitude lower than Ar+.  The 

dominant neutrals are O, F, and F2, as shown in Fig. 6.2b.  O is mostly produced through the 

dissociative attachment reaction of O2, and F is from the electron-impact dissociation reaction of 

CF4. 

In the base case, the peak plasma density reaches 1.1 × 1011 cm-3 at r = 13.0 cm, as shown 

in Fig. 6.3a.  The electron density (ne) peaks at the periphery instead of the center of the reactor, 

partly due to the electrostatic electric field (E-field) enhancement at the corners of the top 

electrode and the wafer.  At 0.5 cm beneath the edge of the top electrode, the current density in 

both radial (Jr) and axial (Jz) are 10-3 A/cm2, while at the same axial position but r = 7.5 cm, both 

Jr and Jz are an order of magnitude lower, at 10-4 A/cm2, suggesting a possibly higher power 

deposition at the edge than the mid-radius of the electrodes.  At 0.5 cm beneath the top electrode, 

the power density is P = 0.06 W/cm3 at r = 13 cm, but only 0.03 W/cm3 at r = 7.5 cm. 

In an RIE process, energetic ions are essential for the chemical sputtering and surface 

activation.  A -370 V DC bias is generated on the substrate, producing a time averaged 490 V 

potential drop across the sheath above the wafer as opposed to a smaller 125 V potential drop by 
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the top electrode.  At 25 mTorr, the mean free path (λ) of Ar is about 0.2 cm, which is 

commensurate with the sheath width (0.6 cm).  This means some ions can travel across the 

sheath with very few or no collisions.  Such ions preserve most of their kinetic energy (100s eV) 

before impacting on the wafer.   

Electron temperature (Te) is uniform in the plasma bulk, as shown in Fig. 6.3b.  The 

stochastic heating causes high Te at the edge of sheaths with a value up to 3-4 eV.  This high Te 

drops rapidly towards the plasma bulk as hot electrons dissipate their energy through inelastic 

collisions with heavy particles (e.g., ionization and excitation).  At the periphery of the plasma 

bulk (r > 18 cm), Te is slightly higher due to the low ne.  However, because this high-temperature 

region is in the downstream of the gas flow, it does not significantly affect the bulk plasma and 

therefore is not discussed in detail.   

In a CCP, hot electrons with energy high enough to ionize a ground or excited state 

species can be either bulk, or beam electrons.  Bulk electrons are those in the plasma bulk that 

gain energy mainly through stochastic or ohmic heating.  Beam electrons are emitted from a 

surface as the product of energetic particle bombardments on that surface.  Beam electrons 

accelerated by the sheath can have energy up to the maximum sheath potential, making them 

affective at ionizing the neutral particles.  The secondary electron emission coefficient (γ) by 

ions is 0.15 on the wafer, the showerhead, and the sacrificial material, 0.05 on the quartz, and 

0.005 for the dielectric coating on the wall [27].  The ionization sources produced by the bulk 

and beam electrons are shown in Fig. 6.3c and d.  The ionization is dominated by bulk 

ionization.  Because bulk electrons are heated through sheath oscillation, the ionization source 

produced by bulk electrons (Se) is dependent on the plasma distribution and peaks at 1.1 × 1016 

cm-3s-1 at r = 14 cm where the plasma density is high.  In comparison, the ionization source for 
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beam electrons (Seb) is uniform in both radial and axial directions.  The high energy of beam 

electrons allows them to travel across the reactor and initiate ionizations in the mid-gap.   

The increase of ion flux in the radial direction (47% from the center to the boundary) is 

caused by the rise of plasma density but is not high enough to compensate for the decrease of the 

secondary electron emission coefficient from 0.15 (electrodes and wafer) to 0.05 (quartz), a 

reduction to 1/3.  The rate of secondary electron emission is determined by the ion flux and the 

secondary electron emission coefficients.  Seb decreases abruptly at the boundaries of the top 

electrode and wafer due to the reduction in rate of emission and the reduction in sheath voltage 

on the focus ring.  Note that the ionization sources have small values outside the plasma bulk, 

suggesting the power is well confined between the electrodes. 

The 2-dimensional (2D) Ar+ distribution is shown in Fig. 6.3e.  Similar to ne, a peak Ar+ 

density of 1.1 × 1011 cm-3 occurs below the edge of the top electrode where the bulk ionization is 

at its maximum.  The E-field in the sheaths accelerates cations toward the surfaces, causing a low 

Ar+ density near surfaces.  Because the E-field in the sheaths points from the plasma to the wall, 

it repels anions instead of attracting them.  Due to the low anion temperature (< 0.2 eV), it is 

nearly impossible for negative ions to climb the 100s V potential barrier of the sheath.  

Therefore, the anions are well confined in a thin layer between the electrodes.  For example, as 

shown in Fig. 6.3f, F- is trapped in a 1.5 cm thick slot in the mid-gap with a peak density of 9.0 × 

1010 cm-3 at r = 14 cm where ne is high.  Unlike electrons, F- is uniformly distributed across the 

reactor in the radial direction.  In the base case, the F- density is high enough to be commensurate 

with ne, and the ratio n(F-)/ne > 1 in the center of the reactor, suggesting an ion-ion plasma 

composition.  Unlike ions and electrons, the distribution of the neutral species is not directly 

affected by the E-field.  For example, O is evenly distributed between the electrodes even within 
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the sheath (Fig. 6.3g).  However, because any O+ bombarding on a surface is likely returned to 

the plasma as O, and because the O+ flux is higher on the wafer than on the top electrode, O 

density is higher in the bottom half of the gap than in the top half. 

Due to their high densities, Ar+ and CF3
+ have the highest fluxes (Γ) among cations.  At 

mid-radius of the wafer (r = 7.5 cm), 𝛤𝛤Ar+  = 4 × 1015 cm-2s-1 and 𝛤𝛤𝐶𝐶𝐶𝐶3+ = 1.9 × 1015 cm-2s-1.  The 

IEADs of these two species are shown in Fig. 6.4a and b, plotted in a logarithmic scale with two 

orders of magnitude.  The normalized IEDs are shown in Fig. 6.4c.  Both Ar+ and CF3
+ have a 

narrow angular distribution of less than 5 degrees.  Most ions hitting the wafer have energy 

between 300 to 750 eV.  Ions with low energy (< 400 eV) either have had collisions as they cross 

the sheath, or are produced near or within the sheath through charge exchange reactions.  On the 

other hand, energetic ions residing on the high-energy end of IEDs (> 600 eV) have encountered 

no or only a few collisions as they travel across the sheath.  Both the IEADs of Ar+ and CF3
+ 

have a maximum at ε = 400 eV, agreeing well with the DC bias Vdc ≈ -400 V.  At 25 mTorr, the 

transit time of ions across the sheath τion ≈ 0.3 µs, close to the RF cycle of 5 MHz power, τ5MHz 

= 0.2 µs.  Therefore, if ions enter the sheath when the 5 MHz voltage is negative, they can be 

accelerated by both the DC bias and this negative voltage and reach energy higher than 400 eV, 

which produces the maximum extent of the CF3
+ IED at 650 eV.   

The electron energy distribution function (EEDF) is one of the most fundamental plasma 

properties.  The EEDFs from positions depicted in Fig. 6.5b are shown in Fig. 6.5a.  The radial 

position r = 13.5 cm was chosen because the peak ne is at that radius.  The EEDFs have 

noticeable high-energy tails (> 20 eV) near the sheaths (z = 3.6 and 6.0 cm) due to stochastic 

heating.  This high-energy tail is suppressed in the center of the bulk plasma (z = 4.8 cm), where 

electrons are inefficiently heated by a small E-field (≈ 0.5 V/cm) from ohmic heating.  In 
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addition to this low heating efficiency, in the plasma bulk, electrons can quickly lose their energy 

through inelastic collisions, preventing them from gaining enough energy to populate the high-

energy tail of the EEDF.  One counter-intuitive result is that even though the total power from 

the substrate is higher than the power from the top electrode, the fraction of high-energy 

electrons is higher near the top electrode.  The upper position is 0.1 cm from the top electrode 

and the lower position is 0.3 cm above the substrate to accommodate the thinner sheath thickness 

by the top electrode.  However, either moving the upper point 0.2 cm away from the top 

electrode or moving lower point 0.2 cm towards the substrate, does not appreciably change the 

EEDFs.  This difference in EEDFs occurs because the radio frequencies 10s MHz are much 

smaller than the electron plasma frequency ωpe (about 20 GHz).  Therefore, electrons are capable 

of responding to the dynamics of the sheath and being heated each time the sheath expands.  To 

that end, a high frequency translates to a higher sheath speed and therefore a higher stochastic 

heating efficiency.  That is why EEDF has a higher high-energy tail near the top electrode, where 

the power has the higher frequency (80 MHz). 

The EEDFs from different radial positions are shown in Fig. 6.6.  Note that the height z = 

4.8 cm is chosen because the peak plasma density occurs there.  The difference of the EEDFs 

from the center and the left point is small and appears Maxwellian.  However, at r = 18 cm in the 

periphery of the bulk plasma, the EEDF appears to have a concave structure (Druyvesteyn 

distribution).  Note that to have a Maxwellian distribution, elastic collisions such as electron-

electron (e-e) collision should be the dominant collision [5].  Comparing with the center point (ne 

= 1.1 × 1011 cm-3), both left (ne = 7.5 × 1010 cm-3) and right (ne = 7.0 × 1010 cm-3) points have 

lower ne, meaning that e-e collisions are not as dominant.  However, the stochastic heating and 

secondary electron emission from the powered electrode and substrate provide high-energy 
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electrons at r = 5 cm (left point).  Therefore, the high rate of heating raises the tail of the EEDF.  

6.3.1 Power 

Input power is one of the most commonly used variables for controlling the plasma.  The 

80 MHz power (PHF) was varied from 50 to 1000 W, while the power from the substrate is held 

constant at 800 W with 400 W at each frequency.  The voltage at each frequency, averaged 

plasma potential, and DC bias with varying PHF are shown in Table I.  The corresponding 

electron distribution and the ionization source by bulk electrons (Se) are shown in Fig. 6.7.  Both 

ne and Se increase with PHF.  As PHF increases, Se has a 5-fold increase in the center of the 

reactor, leading to a high ne that balances the local maxima at the edge of the electrode.  When 

PHF = 50 W, ne in the center of the reactor (r = 1 cm) is only 13% of the peak ne.  This ratio 

increases to 72% as PHF increases to 1000 W, suggesting a much more uniform plasma 

distribution with high PHF.  Note that the location having the peak ne moves inwards, with an 

increase of PHF, implying the effect of electrostatic E-field enhancement at the edge of electrodes 

is weakened with an increasing PHF.  Because of the sheath thickness 1 2
es n −∝ , a non-uniform 

plasma distribution when PHF is low leads to a bending of the sheath edge.  This may 

consequently cause tilting of IADs when the boundary of the sheath is not parallel to the surface 

of the wafer.  

The EEDFs were recorded at upper and center points shown in Fig. 6.5b with varying 

PHF.  The EEDFs from the center point are almost identical when PHF increases from 500 W to 

1000 W.  However, as PHF decreases from 500 to 50 W, the EEDF perceptibly evolves from a 

Maxwellian distribution to a Druyvesteyn distribution with a concave structure.  This is partly 

because when PHF = 50 W, the recording point (r = 13.5 cm, z = 4.8 cm) is no longer within the 

high-density plasma center.  When PHF decreases from 500 to 50 W, ne at the center point is 
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reduced by 66% from 1.1 × 1011 cm-3 to 3.7 × 1010 cm-3.  The lower ne translates to low e-e 

elastic collision frequency, which produces a deviation of the EEDF from a Maxwellian 

distribution.  At the upper point, near the sheath of the top electrode, the high-energy tail (ε > 20 

eV) of EEDFs falls with lower PHF due to its decreasing power density. The high-energy tail 

decreases when moving further away from the top electrode.  As PHF decreases from 1000 to 50 

W, the power density decreases from 1.2 to 0.3 W/cm3 at the upper point.  The low power 

density causes less electron heating and thus smaller high-energy tails of EEDFs. 

The 2D IEADs and the normalized IEDs of the dominant ions Ar+ and CF3
+ are shown in 

Fig. 6.9.  For both species, the ion energy tends to decrease as the PHF increases.  As PHF 

increases from 50 to 1000 W, the DC bias drops from -660 to -121 V, and the plasma potential 

increases from 138 to 167 V, providing a net decrease of 510 V potential drop across the sheath.  

The decreased sheath potential with an increasing PHF results in lower ion bombardment energy.  

When PHF is 1000 W, the peak Ar+ energy is about 600 eV lower than that when PHF is 50 W.  

The low plasma density also thickens the sheath.  At the mid-radius (r = 7.5 cm) of the wafer, the 

sheath thickness s = 0.9 cm when PHF = 50 W, but only 0.2 cm when PHF = 1000 W.  With the 

same pressure, the thicker the sheath, the more collisional the sheath becomes.  A collisional 

sheath deviates ion trajectories and broadens the IAD.  Therefore, the IAD is much broader when 

PHF = 50 W.  The breadth of the IAD decreases from 10˚ to 5˚ as the PHF increases from 50 to 

1000 W.  If PHF is between 500 and 1000 W, the IAD barely changes because the sheath 

thickness only moderately decreases with the increase of power. 

6.3.2 Pressure 

Chamber pressure affects collision frequency and the mean free path of both ions (λion) 

and electrons (λe) and is another parameter that determines the plasma distribution and density.  

The pressure was varied between 15 and 50 mTorr.  The corresponding electron distribution, and 
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the ionization source by bulk electrons (Se), are shown in Fig. 6.10.  The voltage at each 

frequency, averaged plasma potential, and DC bias with varying pressure are shown in Table I.  

Increasing the pressure from 15 to 50 mTorr, the peak ne is decreased by 14%.  As pressure 

increases from 15 to 50 mTorr, λe decreases from 1.7 cm to 0.7 cm at the edge of the sheath, 

meaning at 50 mTorr, the number of hot electrons reaching the mid-gap (z = 4.8 cm) is sharply 

decreased.  This reduces the ionization and hence produces a low ne.  Note that when the 

pressure is 50 mTorr, Se is confined to a thin layer near the top electrode, and its magnitude is 

halved compared with the Se at the same position when the pressure is 15 mTorr.  The decrease 

of Se in the bulk plasma increases the relative importance of ionization by beam electrons (Seb).  

When the pressure is 50 mTorr, at mid-gap (r = 7.5 cm and z = 4.8 cm), Seb = 1.7 × 1015 cm-3s-1, 

surpassing Se = 1.3 × 1015 cm-3s-1.  Seb becomes more important in high pressure because beam 

electrons with an energy of 100s eV having longer mean free path, allowing them to travel into 

and ionize the plasma bulk. 

The EEDFs at the center point (r = 13.5 cm, z = 4.8 cm) with varying pressure are shown 

in Fig. 6.11a.  As the pressure increases from 15 to 50 mTorr, the high-energy tail is suppressed 

as the result of the shortening of λe.  A steeper slope of EEDF with increasing pressure translates 

to the lower Te.  As shown in Fig. 6.11b, the reactor averaged Te drops from 3.1 to 2.7 eV as the 

pressure increases from 15 to 50 mTorr, while ne decreases from 4.3 to 2.6 × 1014 cm-3.  Note 

that the gas mixture used in this work contains attaching gases such as F2 and O2, thereby 

increasing the pressure significantly enhances the attachment reactions, causing the decrease of 

ne. 

The IEADs and normalized IEDs of Ar+ and CF3
+ at pressures of 15, 30, and 50 mTorr 

are shown in Fig. 6.12.  Increasing the pressure broadens the IADs because the sheath becomes 
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thicker and more collisional.  As the pressure increases from 15 to 50 mTorr, the IAD is 

extended from 8˚ to 16˚.  The maximum ion energy increases with the increase in pressure.  For 

example, as the pressure increases from 30 to 50 mTorr, the peak Ar+ energy is increased from 

780 to 850 eV.  This increase of ion energy with pressure is caused by the increase of both 

plasma potential and the magnitude of DC bias on the substrate.  As the pressure increases from 

15 to 50 mTorr, the DC bias increases from -382 V to -450 V, and the plasma potential from 108 

to 150 V.  This high plasma potential and more negative DC bias creates high maximum ion 

energy when the pressure is 50 mTorr.  However, at high pressure, the sheath is more collisional. 

Therefore, even though the maximum ion energy is almost 900 eV, the majority of ions still 

come with energy ≈ 400 eV.  At 50 mTorr, the fraction of ions with energy less than 300 eV is 

more than that when the pressure is 15 mTorr, as shown in Fig. 6.12c, and d.  Therefore, the 

average ion bombardment energy can be similar for cases with different pressures even though 

the maximum ion energy is significantly different. 

6.3.3 Frequency 

The driving frequency of the power source is considered to be one of the most important 

parameters in an rf-power driven CCP.  The frequency from the top electrode was varied from 20 

to 120 MHz, while the power from the substrate remains the same as in the base case (5 MHz 

400 W and 10 MHz 400 W).  The voltages at each frequency, averaged plasma potential and DC 

bias with varying HF are shown in Table I.  The electron distribution and the ionization source 

by bulk electrons (Se) are shown in Fig. 6.13.  With the same input power, the peak value of the 

Se and ne barely changes with the HF.  However, as the HF increases from 20 to 120 MHz, the 

spatial distribution of both ne and Se becomes more uniform.  As discussed before, electrons can 

respond to the change of rf, and higher frequency has higher stochastic heating efficiency.    
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Therefore, as the HF increases, more hot electrons are created at the sheath edge, leading to a 

high ionization rate and high ne in plasma bulk.  Note that even though the power is fixed, the 

power dissipated to ions and electrons can vary under different operating conditions.  In this 

work, the power delivered to electrons increases from 125, 328 to 355 W, as the HF increases 

from 20, 60, and 120 MHz, showing that increasing the driving frequency amplifies electron 

heating efficiency.  However, the effect of the changing HF is not as significant when it rises 

from 60 to 120 MHz comparing to when it increases from 20 to 60 MHz, suggesting a saturation 

frequency above which ne will not have significant change with the increase of frequency. 

The EEDFs at the center point (r = 13.5 cm, z = 4.8 cm) are recorded as the HF increases 

from 20 to 120 MHz, as shown in Fig. 6.14.  Similar to the effect of HF on ne, increasing HF 

from 60 to 120 MHz only has a minor impact on EEDF.  The low sensitivity of EEDF to a 

changing HF is because when the HF is higher than 60 MHz, the plasma properties are governed 

by the magnitude of power input instead of the heating efficiency.  Even though the heating 

efficiency still increases, the impact is simply not significant enough to cause any substantial 

change to the plasma.  Therefore, the similar ne and the e-e elastic collision frequencies occur, 

resulting in nearly identical EEDF.  On the other hand, if the HF decreases from 60 MHz, both ne 

and the EEDF are affected by the decreasing stochastic heating efficiency, which causes a 

decrease of the hot electron density, hence low Se and ne.  The power transferred to electrons 

when the HF is 20 MHz is only approximately 1/3 compared with that when the HF is 120 MHz.  

A low ne translates to a low e-e collision frequency.  Therefore, when the HF is 20 MHz, the 

EEDF in the bulk plasma has a concave structure, characterized by suppression on both the high 

and low energy ends. 

The IEADs of Ar+ and CF3
+ on the wafer when the HF is 20, 60, and 120 MHz are shown 
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in Fig. 6.15.  Ions gain their highest energy when the HF is 60 MHz.  As the HF decreases from 

60 to 20 MHz, the DC bias becomes less negative, from -320 V to -145 V.  Meanwhile, the 

plasma potential increases from 151 to 316 V.  With both DC bias and plasma potential 

considered, the sheath potential by the wafer is 10 V higher when the HF is 60 MHz, which 

provides slightly higher ion energy.  However, the ion energy is not monotonically increased 

with the increase of the HF.  As the HF increases from 60 to 120 MHz, the plasma potential 

decreases from 151 to 117 V, and the DC bias from -320 to -305 V.  The net decrease of 49 V of 

sheath potential as HF increases from 60 to 120 MHz results in a decline of the maximum ion 

energy.  Increasing HF still produces an increase of stochastic heating efficiency, thus high ne, 

especially in the center of the reactor (r < 5 cm). With similar DC bias and higher power 

deposition into electrons, the plasma potential then decreases to reduce the power dissipated to 

ions, and maintain the constant power delivery to the plasma.   

6.3.4 Gap Length 

The effect of gap length between the top electrode and the substrate on the plasma was 

also investigated.  The voltage at each frequency, averaged plasma potential, and DC bias when 

the gap length is varied are shown in Table I.  The distributions of ne and the ionization source 

by bulk electrons (Se) when the gap length d = 2.3, 3.3, and 4.3 cm are shown in Fig. 6.16.  The 

peak ne barely changes with d because the power input is constant (1300 W).  The plasma is 

more uniformly distributed with an increasing d, due to the weakened electrostatic effect at the 

edge of the electrodes and the decreased loss of charged particles with decreasing surface to 

volume ratio.  When d = 2.3 cm, from 0.3 cm above the wafer, power density increases from 1.1 

W/cm3 at r = 1 cm to 2.3 W/cm3 at r = 14 cm.  This uneven power deposition leads to a non-

uniform plasma distribution.  When d = 4.3 cm, a wider gap minimizes the coupling between the 

top electrode and the substrate and weakens that electrostatic effect.  When d = 4.3 cm, at 0.3 cm 
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above the wafer, power density is 1.9 W/cm3 at r = 1 cm, and 2.0 W/cm3 at r = 14 cm, with only 

a minor increase of 0.1 W/cm3.  A uniform power deposition leads to uniform Se and ne 

distributions.  When d = 4.3 cm, ne from mid-gap is almost constant across the reactor, which is 

desired for most applications.  Increasing d also reduces the surface to the volume ratio of the 

reactor.  In a low temperature plasma, the diffusion loss to the wall is one of the major sinks for 

the charged species.  Reducing the surface to volume ratio effectively reduces the wall loss; 

therefore, despite the decreasing magnitude of Se with the increasing d, ne still increases.  

The EEDFs with varying d was recorded at r = 13.5 cm at mid-gap for each case, shown 

in Fig. 6.17.  The high-energy component is suppressed as d increases.  Because the data is 

gathered at the mid-gap, increasing d increase the distance between the recording point and the 

sheath.  Therefore, hot electrons created at the sheath edge are more likely to be cooled by 

collisions before reaching the position where EEDF is recorded.  Also, power is more evenly 

distributed in the reactor when d is large.  Therefore, the power density at r = 13.5 cm is lower 

with larger d as more power is delivered to the plasma in the center of the reactor (r < 5 cm).  

Consequently, fewer hot electrons are produced near the edge of electrodes, which also 

contributes to the suppression of the high-energy tail of EEDF at mid-gap when d increases. 

The IEADs of the Ar+ and the CF3
+ as d increases from 2.3 to 4.3 cm are shown in Fig. 

6.18.  The ion energy increases with an increasing d as a result of a more negative DC bias.  As d 

increases from 2.3, 3.3 to 4.3 cm, the DC bias changes from -300 V, -395 to -411 V, while the 

plasma potential increases from 126, 132, to 138 V.  Note that the DC bias is a function of 

multiple parameters including areas of the grounded and powered surfaces, ne at the edge of 

sheaths adjoining these surfaces and the RF voltage from the power source.  Usually, in an SF-

CCP, a well-confined plasma between the electrodes translates to a weak geometrical asymmetry 
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since the boundary of the bulk plasma is evenly distributed on the powered (bottom electrode) 

and grounded (top) surfaces, which usually have a similar surface area.  However, in this TF-

CCP setup, both the top electrode and the substrate are powered, meaning the main reactor itself, 

where the plasma is generated, is highly electrically asymmetric.  Therefore, simply having the 

plasma confined between the electrodes does not guarantee a zero DC bias.  In this particular 

setup, as d increases, the plasma is more confined between the electrodes, and the DC bias 

significantly increases.  This is partly because as d increases from 2.3 to 3.3 cm, ne by the 

grounded surface (above the pump) decreases to notably lower than that in the center of the bulk 

plasma, which leads to a more negative DC bias.  Because the plasma potential has only a mild 

increase with d, the average ion energy is predominantly determined by the magnitude of DC 

bias.  The IED shifts about 100 eV to higher energy as d increases from 2.3 to 3.3 cm.  The IAD 

becomes slightly narrower with increasing d as the high DC bias generates higher acceleration 

perpendicular to the wafer surface.  However, this decrease of the IAD with a varying d is 

insignificant since the sheath thickness barely changes. 

 

6.4 Concluding Remarks 

In this chapter, a low temperature TF-CCP sustained in Ar/CF4/O2 is computationally 

investigated under different operating conditions.  The electrostatic electric field enhancement at 

the edge of the electrodes was found to raise the local plasma density.  Changing operating 

conditions, such as increasing the HF or increasing HF power, can enhance the electron heating 

at the center of the reactor (< 5 cm), thereby weakening the electrostatic effect and leading to a 

more uniform plasma distribution.  The electron energy distribution function (EEDF) was found 

to have a Maxwellian structure in the regions with high electron density (ne) due to the high 

electron-electron (e-e) collision frequency.  However, the EEDF has a concave structure 
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(Druyvesteyn) where ne and the stochastic heating efficiency are low.   

Ideally, in a multi-frequency CCP, the HF power governs the plasma density while the 

LF power determines the ion energy and angular distributions (IEADs) onto the wafer.  

However, varying HF power was found to have some effects on the IEADs.  Increasing HF 

power directly increases the power density in the plasma, while increasing HF itself promotes the 

stochastic heating.  Both of these result in an increase of ne in the center of the reactor and a 

more uniform plasma distribution.  A re-distributed plasma changes the symmetry of the reactor 

that in turn determines the DC bias.  Therefore, varying the HF power (magnitude, frequency) 

often modifies the DC bias.  Also, both the plasma potential and sheath thickness (s) are sensitive 

to the change of ne, meaning they are also functions of the HF power.  The plasma potential and 

DC bias together determine the potential drop across the sheath, which establishes the ion energy 

distribution (IED).  The sheath thickness s affects the collisionality of the sheath and the energy 

width of the IED.  For the same pressure, thicker s translates to a more collisional sheath, and a 

broader ion angular distribution (IAD).  Evidently, the IEAD has a non-linear dependence on HF 

power.  In general, low ne results in high sheath potential and thick sheath, therefore a broad IAD 

and high ion energy.  The dependence of IEADs on HF power was investigated varied from 50 to 

1000 W.  In practice, when using HF power to adjust plasma behavior, the range of the varying 

power is often not as big.  Therefore, the effect of HF power on the IEADs will be less 

recognizable. 

The effects of pressure and gap length (d) between the electrodes on the plasma were also 

investigated in this work.  Increasing the pressure shortens the mean free path of electrons, thus 

reducing the ionization in the bulk plasma.  Meanwhile, high pressure translates to a highly 

collisional sheath, which broadens the IAD.  Increasing the gap length makes the plasma more 



 191 

uniform and makes a more negative DC bias.  The effect of gap length on IEADs saturates once 

d > 3.3 cm. 

In conclusion, in a TF-CCP, the plasma properties can be adjusted by using different HF 

power, pressure, and reactor geometry.  It has been confirmed that some coupling of HF power 

to the IEADs occurs, and fully independent control of plasma density and IEADs onto the wafer 

is hard to achieve.  However, with only moderate adjustments of the operating conditions, the 

consequences of HF on IEADs can be minimized.  Using a high power with high frequency, low 

pressure, and long gap length between the electrodes is recommended strategy to achieve 

uniform plasma distributions.  A uniform plasma distribution across the reactor makes the DC 

bias less sensitive to changes in the HF power, which helps decouple the control of IEADs and 

the plasma density.   
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Table I. Voltage of Each Frequency, Plasma Potential and DC bias with Varying 
Conditions 

The following table contains voltage at each frequency, time averaged plasma potential and DC 
bias with varying conditions.  For each case, only one parameter differs from the base case, and 
that parameter is used to label the corresponding case.  In the base case, HF = 80 MHz, PHF = 
500 W, pressure is 25 mTorr, gap length between top and bottom electrodes is 2.8 cm. 
 

  Voltage (V5MHz)/V10MHz/VHF) /V Potential /V DC bias /V 
 Base Case 448/357/117 128 -370 

Power 

50 W 768/488/44 138 -660 
200 W 619/437/77 124 -556 
700 W 362/310/141 142 -252 

1000 W 276/266/176 167 -121 

Pressure 

15 mTorr 438/336/108 108 -382 
20 mTorr 436/344/113 120 -372 
30 mTorr 468/375/120 136 -384 
40 mTorr 507/401/126 147 -414 
50 mTorr 541/418/129 150 -450 

Frequency 

20 MHz 440/367/342 316 -145 
40 MHz 491/390/192 203 -301 
60 MHz 444/347/144 151 -320 

100 MHz 431/347/103 119 -352 
120 MHz 396/330/96 117 -305 

Gap 
Length 

2.3 cm 396/330/116 126 -300 
3.3 cm 472/375/119 132 -395 
3.8 cm 476/378/121 136 -403 
4.3 cm 485/383/124 138 -411 
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6.5 Figures 

 

 

 

 

 

Fig. 6.1 Geometry of the reactor.  80 MHz power (500 W) is applied to the top electrode, 5 and 
10 MHz power (400 W each frequency) are applied to the substrate.  Ar/CF4/O2 (75/15/10), 25 
mTorr.  
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Fig. 6.2 Spatially averaged a) ion and b) neutral species’ densities.  An acceleration technique 
was used to help the plasma reach the quasi-steady state faster, causing rapid density changes in 
the first 250 μs.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 MHz), substrate: 400 
W (5 MHz), 400 W (10 MHz). 
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Fig. 6.3 2D profile of a) electron density, b) electron temperature, c) ionization source by bulk 
electrons, d) ionization source by beam electrons, e) Ar+ density, f) F- density and g) O density in 
base case.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 MHz), substrate: 400 W (5 
MHz), 400 W (10 MHz). 
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Fig. 6.4 The a) IEADs averaged over 0˚ and b) normalized IEDs of CF3
+ and Ar+ at mid-radius of 

the wafer (r = 7.5 cm).  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 MHz), 
substrate: 400 W (5 MHz), 400 W (10 MHz). 
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Fig. 6.5 a) EEDFs from different axial locations and b) the locations from where the EEDFs are 
recorded.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 MHz), substrate: 400 W (5 
MHz), 400 W (10 MHz). 
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Fig. 6.6 a) EEDFs from different radial locations and b) the locations from where the EEDFs are 
recorded at z = 4.8 cm.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 MHz), 
substrate: 400 W (5 MHz), 400 W (10 MHz). 
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Fig. 6.7 2D profiles of the electron density and ionization source by bulk electrons when the 
power from 80 MHz power source is 50, 500 and 1000 W.  Ar/CF4/O2 (75/15/10), 25 mTorr, top 
electrode: varied power (80 MHz), substrate: 400 W (5 MHz), 400 W (10 MHz). 
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Fig. 6.8 The EEDFs from a) center (r = 13.5 cm, z = 4.8 cm) and b) upper (r = 13.5 cm, z = 6.0 
cm) point when the power from 80 MHz power source is 50, 500 and 1000 W.  Inset of a) is the 
zoom-in on the low energy component of EEDFs at center point and the inset of b) is the 
spatially averaged electron density and electron temperature with increasing HF power.  
Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: varied power (80 MHz), substrate: 400 W (5 
MHz), 400 W (10 MHz). 
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Fig. 6.9 IEADs of a) Ar+ and b) CF3
+ and the normalized IEDs of c) Ar+ and d) CF3

+ when the 
power from 80 MHz power source is 50, 500 and 1000 W.  Ar/CF4/O2 (75/15/10), 25 mTorr, top 
electrode: varied power (80 MHz), substrate: 400 W (5 MHz), 400 W (10 MHz). 
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Fig. 6.10 2D profiles of the electron density and ionization source by bulk electrons when the 
pressure is 15, 30 and 50 mTorr.  Ar/CF4/O2 (75/15/10), varied pressure, top electrode: 500 W 
(80 MHz), substrate: 400 W (5 MHz), 400 W (10 MHz).  
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Fig. 6.11 a) EEDFs from the center point (r = 13.5 cm, z = 4.8 cm) when the pressure is 15, 30 
and 50 mTorr.  And the b) spatially averaged electron density and electron temperature.  
Ar/CF4/O2 (75/15/10), varied pressure, top electrode: 500 W (80 MHz), substrate: 400 W (5 
MHz), 400 W (10 MHz). 
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Fig. 6.12 The IEADs of a) Ar+ and b) CF3
+ and the normalized IEDs of c) Ar+ and d) CF3

+ when 
the pressure is 15, 30 and 50 mTorr.  Ar/CF4/O2 (75/15/10), varied pressure, top electrode: 500 
W (80 MHz), substrate: 400 W (5 MHz), 400 W (10 MHz). 
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Fig. 6.13 2D profiles of the electron density and ionization source by bulk electrons when the 
frequency from the HF power source is 20, 60 and 120 MHz.  Ar/CF4/O2 (75/15/10), 25 mTorr, 
top electrode: 500 W (varied frequency), substrate: 400 W (5 MHz), 400 W (10 MHz). 
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Fig. 6.14 EEDFs at the center point (r = 13.5 cm, z = 4.8 cm) when the frequency from the HF 
power source is 20, 60 and 120 MHz.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W 
(varied frequency), substrate: 400 W (5 MHz), 400 W (10 MHz).  
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Fig. 6.15 IEADs of a) Ar+ and b) CF3
+ and the normalized IEDs of c) Ar+ and d) CF3

+ when the 
frequency from the HF power source is 20, 60 and 120 MHz.  Ar/CF4/O2 (75/15/10), 25 mTorr, 
top electrode: 500 W (varied frequency), substrate: 400 W (5 MHz), 400 W (10 MHz).  
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Fig. 6.16 2D profiles of the electron density and ionization source by bulk electrons when the 
gap length is 2.3, 3.3 and 4.3 cm.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 
MHz), substrate: 400 W (5 MHz), 400 W (10 MHz).   
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Fig. 6.17 EEDFs from the center point (r = 13.5 cm, z = 4.8 cm) when the gap length is 2.3, 3.3 
and 4.3 cm.  The inset is the spatially averaged electron density and electron temperature with 
increasing gap length.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 MHz), 
substrate: 400 W (5 MHz), 400 W (10 MHz).   
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Fig. 6.18 IEADs of a) Ar+ and b) CF3
+ and the normalized IEDs of c) Ar+ and d) CF3

+ when the 
gap length is 2.3, 3.3 and 4.3 cm.  Ar/CF4/O2 (75/15/10), 25 mTorr, top electrode: 500 W (80 
MHz), substrate: 400 W (5 MHz), 400 W (10 MHz).  
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Chapter 7: Computational Investigation of Plasma Enhanced Atomic Layer Deposition of 
SiO2 Film Using Capacitively Coupled Ar/O2 Plasmas 

 
 
 
7.1 Introduction 

Atomic layer deposition (ALD) is a material deposition technology that enables minutely 

delicate control over film quality at the angstrom-scale.  An ideal ALD process is self-limiting, 

meaning that the kinetics of the film growth saturates, resulting in a maximum of only one 

monolayer of deposition per cycle.  The deposited films often yield high conformality and 

uniformity, which is necessary for applications ranging from conventional semiconductor 

manufacturing and solar panel fabrication, to novel applications such as energy storage fuel cell 

manufacturing [1-5].  For semiconductor manufacturing, deposition of silicon-based dielectrics is 

still one of the most targets for refinement of ALD technologies [6-12]. 

Thin SiO2 film is widely used as an isolation liner and sidewall spacer in microelectronics 

devices [13-15].  Even though some relatively sophisticated film deposition approaches are 

available, the current technology nodes at the less than 10 nm scale, having more challenging 

demands for high-conformality film deposition.  More severe operating conditions require highly 

uniform thin dielectric films, to deliver consistent performance.  For example, one of the most 

pressing issues challenging the dependability of SiO2 films is electrical breakdown [16-17].  This 

is more likely to happen if the SiO2 film contains defects in the film.  Stathis reported that in 

films thinner than 2 nm, a single defect is enough to cause a breakdown and inconsistent 

performance [17].   



 214 

Thermal ALD is one of the more well established SiO2 film deposition techniques.  

Typically, in a thermal ALD process, the target surface is sequentially treated with inorganic 

silicon precursor (e.g., SiCl4, SiCl3H) and oxidant (e.g., H2O, O3).  Each cycle produces a 

fraction of a monolayer of film.  Repeating the 2-steps builds the film layer by layer.  To activate 

these processes the substrate is usually heated to > 300 ˚C.  Using a SiCl4 and H2O binary 

reaction sequence, Sneh et al. achieved controlled SiO2 film deposition at temperatures of 330-

410 °C at a growth rate of 1.1 Å/cycle in 1995 [18].  In a later work, Lee et al. proposed a SiO2 

ALD mechanism having cycles of alternating Si2Cl6 and O3 with a substrate temperature of 403-

453 °C [19].  A temperature of 471 °C or higher was needed for a deposition rate higher than 

0.32 nm/cycle.  Even though this temperature is already lower than that used in many other SiO2 

deposition techniques, such as low-pressure chemical vapor deposition, it is still high enough to 

tax the allowed thermal budget of the manufacturing process.  This higher temperature also 

limits the use of temperature-sensitive materials such as those used for flexible electronics. 

One way to decrease the temperature of ALD of SiO2 deposition is to use plasma-

enhanced ALD (PE-ALD).  In a typical SiO2 PE-ALD process, the target surface is first treated 

with the silicon precursor and then oxidized in an oxygen plasma.  The process is repeated itself, 

and the SiO2 is thus grown layer-by-layer.  Unlike thermal ALD, in a PE-ALD, oxidation 

reactions are enabled by reactive species in the plasma.  Fang et al. reported that O2(1Δ), O3 and 

O(1D) are the primary reactants that oxidize a precursor-dosed surface during plasma exposures 

in SiO2 PE-ALD, and this enables the low-temperature deposition [20].  Choi et al. also reported 

the deposition of SiO2 films of 10s nm using PE-ALD with a temperature of less than 200 °C 

[21].  Jeon et al. used plasma-activated triisopropylsilane [TIPS, ((iPr)3SiH)] as a silicon 

precursor during dosing in a PE-ALD process [11].  They found that the deposition temperature 
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can be decreased to as low as 50 °C, and these SiO2 films have no detectable impurities. 

In side-by-side comparison of SiO2 films deposited using PE-ALD and plasma-enhanced 

chemical vapor deposition (PECVD), Jung et al. found that the PE-ALD prepared film had 

higher purity, more proper stoichiometry, and lower leakage current [12].  When tested as the 

gate insulator in a thin film transistor, PE-ALD SiO2 film appeared to be less susceptible to the 

negative threshold voltage shift than PECVD SiO2 film due to a smoother insulator/channel 

contact interface.  Civale et al. studied 200 nm-thick SiO2 liners for a high aspect ratio (25:1) 

through silicon via (TSV) as used in 3D interconnections, prepared using PE-ALD [13].  They 

reported near-ideal film conformality and electrical properties, suggesting a role of PE-ALD 

grown SiO2 films in high aspect ratio applications.  However, the quality of SiO2 films grown 

using PE-ALD is sensitive to the scale of the feature.  For example, growing a SiO2 film in a 

high aspect ratio feature having a critical dimension of less than 20 nm can be more challenging 

than depositing this film in a feature with a critical dimension of 10s to 100s nm and the same 

aspect ratio. 

Similar to other thin film deposition techniques, many parameters can affect the quality 

of a PE-ALD process.  Shin et al. found that for SiO2 PE-ALD, the deposition rate measured as 

growth-per-cycle (GPC) depends on the plasma exposure time [8].  The GPC decreased from 2.0 

to 1.6 Å/cycle as O2 plasma exposure time increased from 0.5 to 5.0 s, which was thought to be 

the result of surface heating and film densification.  Kobayashi et al. found that the deposition 

temperature can also affect PE-ALD [6].  A higher GPC was achieved with lower deposition 

temperature.  Using BDEAS (Bis(diethylamino)silane, SiH2[N(CH2CH3)2]2) as the silicon 

precursor, they found that the saturated GPC increases from 0.10 to 0.15 nm/cycle as the 

deposition temperature decreases from 300 to 50 °C.  They concluded that as the substrate 
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temperature increases, desorption reactions decrease the GPC.  

Other than the external operating conditions, the chemical properties of silicon precursors 

have a significant impact on the PE-ALD process [22-23].  In work comparing SiO2 PE-ALD by 

silicon precursors: BTBAS (bis(tertiary-butylamino)silane, SiH2[NH(C4H9)]2), BDEAS, and 

DSBAS (di-sec-butylaminosilane, SiH3[N(C4H9)2]), Mallikarjunan et al. concluded that because 

DSBAS is a monoaminosilane precursor, it has fewer organic substitutions than BTBAS and 

BDEAS [23].  Therefore, the surface packing density of silicon-containing components after the 

precursor dosing is higher when using DSBAS, and so is the growth rate.  From this work, it is 

clear that the structure of the precursor can affect PE-ALD through steric hindrance. 

Steric hindrance occurs when the ligand group from the silicon precursor remains on the 

target surface and blocks the otherwise exposed neighboring surfaces.  The blockage reduces the 

surface coverage of the desired species and hinders the growth of the film.  Using density 

functional theory (DFT) to study the steric effect in an ALD process, Murray et al. concluded 

that a sizeable steric bulk of alkyl ligand groups is less likely to form bound reactant structures 

with the surface, resulting in reduced adsorption probability [7].  Once deposited, these large 

ligand groups can cause significant steric hindrance and impede further deposition.   

In this chapter, we discuss results from computational investigations of PE-ALD of SiO2 

films for blanket deposition, and in trench and via structures.  We performed a parametric study 

on the input power of the oxidizing plasma from 400 to 1000 W, and the pressure from 0.5 to 2 

Torr.  We have found that changing power has a small effect on film quality, but decreasing 

pressure promotes ion bombardment, and produces a more porous film.  The deposition 

probability of ligand groups with precursors was varied from 0.001 to 0.5.  Both film growth 

rate, and film density, decrease with an increase of the ligand group co-deposition probability.  
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The model used in this investigation is briefly discussed in Sec. 7.2.  Plasma and film properties 

as a function of power, pressure, and ligand group co-deposition probability are discussed in Sec. 

7.3.  Concluding remarks are in Sec. 7.4.  

 

7.2 Description of the Model 

The computational investigation platforms used in this work are the Hybrid Plasma 

Equipment Model (HPEM) and the Monte Carlo Feature Profile Model (MCFPM).  The details 

of the models are discussed in Chapter 2, Ref [24] and Ref [25].  Only a brief description of 

these is provided here. 

The modules from the HPEM that are used in this work are the Fluid Kinetics Poisson 

Module (FKPM), the Electron Energy Transport Module (EETM), and the Plasma Chemistry 

Monte Carlo Module (PCMCM).  In the FKPM, the continuity, momentum, and energy 

equations of the heavy particles are solved coincidently with Poisson’s equation to provide heavy 

particle densities and electrostatic potential.  The Boltzmann equation is solved in the EETM for 

the electron energy distribution function (EEDF), from which electron transport and rate 

coefficients are obtained.  The PCMCM is used when the plasma reaches the quasi-steady state 

to calculate energy and angular distributions (EADs) of ions and reactive neutrals onto the wafer. 

In the MCFPM, gas-phase pseudoparticles with EADs providing by the HPEM are 

launched on at the top of the target feature and tracked using Monte Carlo technique.  Elastic 

collision of gas-phase particles is included with isotropic scattering.  The steric hindrance of 

large ligand groups in the Si precursor is addressed by “co-depositing” a ligand-representing cell 

in the neighbor cells of the primarily deposited silicon cell.   

The following process is used to co-deposit the ligands.  The Si precursor is specified to 

have N ligand groups.  Upon deposition of the Si precursor, a random number r=(0,1) is selected.  
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If r ≤ pR, then a co-deposition of the first ligand is attempted.  A search is made of the sites 

surrounding the deposition site for an empty voxel to co-deposit the ligand.  The search order is 

randomized.  For a 2D simulation, there are 8 possible sites.  For a 3D simulation, there are 26 

possible sites.  When an empty site is found, a ligand is placed in that voxel.  The process is then 

repeated for the N ligand groups. 

The species included in the reactor scale simulation are Ar, Ar(1s5), Ar(1s4), Ar(1s3), 

Ar(1s2), Ar(4p), Ar(4d), Ar2
*, Ar+, Ar2

+, O2, O2(v), O2(a1Δg), O2(b1Σg
+), O2

+, O2
-, O(1D), O(3s 

5S0), O(3s 3S0), O(3p 5P), O(1S), O+, O-, O3, O3
- and electrons. 

 

7.3 Surface Reaction Mechanism for SiO2 PE-ALD Using Ar/O2 Plasma 

The gas-phase species, surface sites, and surface reaction mechanism of SiO2 PE-ALD 

using a silicon precursor with two ligand groups (such as BTBAS) and Ar/O2 plasma as 

oxidation agent are shown in Table II.   

The gas-phase species included the feature scale simulation can be classified as follows.  

a) Ions bring high energy to the feature due to acceleration in the sheath.  b) Hot neutrals have 

similar energy as ions.  They are produced when ions hit a surface, lose their charge, and are 

reflected from the wall.  c) Thermal neutrals have energy less than 0.1 eV.  Many thermal 

neutrals, such as O and O3, are the primary species for surface oxidation.  d) Reaction products 

are gas phase particles removed from the surface by ions and hot neutrals or chemical reactions.  

Many reaction products can be re-deposited on the surface.   

Surface sites are classified by the layer they belong to. A silicon layer contains sites that 

are produced from precursor dosing, and an oxygen layer contains sites that are produced during 

plasma exposure.  Each voxel in the MCFPM represents a site in the oxygen layer containing 
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two physical bonds due to Si/O = 1:2 in SiO2 film.  For example, x-Si-y(s) denotes x and y sites 

connected to a shared silicon atom, although this silicon atom is not included in that voxel.   

The PE-ALD process starts with precursor dosing on a surface covered with hydroxyl 

sites.  The ligand group R from the precursor SiH2R2 combines with the hydrogen from hydroxyl 

sites and forms a volatile species HR.  The remaining precursor SiH2 is then bonded to the 

oxygen, and deposited on the surface as SiH2(s).  In a process that completely eliminates the 

ligands: 

 OH-Si-OH(s) + SiH2R2 → O2(s) + SiH2(s) + 2HR   (7.1a) 

However, there are cases where deposition of SiH2(s) can occur on some surface sites with 

insufficient hydroxyls. 

OH-Si-H(s) + SiH2R2 → O(s) + SiH2(s) + 2HR    (7.1b) 

OH-Si(s) + SiH2R2 → O(s) + SiH2(s) + pRR(s) + (1-pR)HR + HR (7.1c) 

O-Si-H(s) + SiH2R2 → O(s) + SiH2(s) + pRR(s) + (1-pR)HR + HR (7.1d) 

OH-Si-O(s) + SiH2R2 → O(s) + SiH2(s) + pRR(s) + (1-pR)HR + HR (7.1e) 

In reactions 7.1b, 7.1c, and 7.1d, O(s) instead of O2(s) is deposited.  If this happens too often, the 

O/Si ratio will decrease, leading to an disordered film structure.  Note that ligand groups R(s) are 

not co-deposited with SiH2(s) even when the direct surface reactant has insufficient hydroxyl 

sites, such as in reaction 7.1c, 7.1d, and 7.1e.  This is because, if any of the nearest neighbors of 

the direct surface reactant can provide hydrogen atoms, the ligand from the silicon precursor can 

combine with them and form volatile HR.  That said, it would be very computationally expensive 

to check the nearby neighbors of a direct surface reactant wherever a deposition occurs.  

Therefore, we rely on the co-deposition probability pR for the deposition of ligand remnants R(s).  

For example, if a SiH2(s) is deposited on a surface with SiH2R2 as a reactant, an R(s) site is co-

deposited with the probability pR.   
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During plasma exposure, the surface is oxidized by ROS (reactive oxygen species) from 

the plasma.  The oxidation can be a multi-step process. 

SiH2(s) + O → Si(s) + OH-Si-H(s)     (7.2a) 

OH-Si-H(s) + O → OH-Si-OH(s)     (7.2b) 

Both the excited state oxygen radical (such as O(1D)) and O+ can have the same reactions with 

higher probability.  The oxidation can also become a one-step process by excited state oxygen 

molecules.  

SiH2(s) + O2(1Δ) → Si(s) + OH-Si-OH(s)    (7.2c) 

The goal of plasma exposure is to deposit the oxygen layer on the film and populate the surface 

with hydroxyl sites. 

Despite a high pressure of up to a few Torr, some ions reach the surface with energy 

exceeding 30 eV can produce damage by sputtering. 

OH-Si-OH(s) + I+ → OH-Si(s) + OH + I(h)    (7.3a) 

SiH2(s) + I+ → SiH2 + I(h)      (7.3b) 

R(s) + I+ → R + I(h)       (7.3c) 

The sputtering thresholds for oxygen and hydroxyl are 30 eV, and for silicon, SiH2(s), and SiH(s) 

are 35 eV.  The sputtered particles can be re-deposited on the surface when they have collided 

with sites having dangling bonds.  Gas-phase OH and R particles can combine with hydrogen 

and create a dangling bond on the surface. 

SiH2(s) + OH → SiH(s) + H2O      (7.4a) 

OH-Si-OH(s) + OH → OH-Si-O(s) + H2O    (7.4b) 

SiH2(s) + R → SiH(s) + HR       (7.4c) 

OH-Si-OH(s) + R → OH-Si-O(s) + HR    (7.4d) 

Hydrogen is typically bonded to Si or O.  No hydrogen-only sputtering is included due to the low 

kinetic energy transfer efficiency between a light hydrogen atom and a heavy incident particle.  
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Besides sputtering, the recombination reactions of oxygen radicals and O3 can also 

reduce the oxygen contents of SiO2 film. 

O(s) + O → O2       (7.5a) 

O2(s) + O → O(s) + O2      (7.5b) 

O2(s) + O3 → O2 + O2       (7.5c) 

Despite low reaction rates (p0 = 6 × 10-5), the high O density in the plasma makes these reactions 

common.   

Removal of the R(s) ligands can occur through 2 processes.  The first is removal process 

is sputtering by ions and hot neutrals.  R(s) This can also be removed through replacement 

reactions with reactive oxygen species (ROS) where O inserts into the Si-R(s) bond and 

displaces the R.  

R(s) + O → O(s) + R       (7.6a) 

R(s) + O* → O(s) + R                  (7.6b) 

R(s) + O3 → O(s) + R + O2      (7.6c) 

At low substrate temperatures, these reactions have low reaction probabilities.  In experiments by 

Lu et al., the oxygen plasma exposure time to remove the ligands was up to several minutes, 

which is much longer than the exposure time for of any given cycle (1 s) addressed here [26].   

 

7.4 Plasma Characteristics and Film Deposition Profile 

The reactor used in this work is shown in Fig. 7.1.  It is a cylindrically symmetric 

capacitively coupled plasma (CCP) reactor maintained at a pressure of 2 Torr.  The reactor is 

designed to process a wafer with a 30 cm diameter that is on a grounded substrate with a 4 cm 

quartz (relative permittivity εr = 4.0) focus ring.  500 W (10 MHz) radiofrequency (RF) power is 

applied to the top electrode 1.5 cm above the substrate.  Two gas inlets are used in this reactor.  

The primary showerhead overlaps with the top electrode and injects an Ar/O2 (80/20) mixture at 
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5 standard liters per minute (slm).  The secondary inlet is located at the top of the reactor at r > 

20 cm, from which pure O2 is flowed at 6 slm.  The purpose of the secondary inlet is to entrain 

flow from the primary showerhead towards the pump, which is located at the bottom of the 

reactor surrounding the substrate.  The secondary electron emission coefficient for ions is 0.05 

for all the surfaces exposed to the plasma. 

The base case conditions produce a time averaged plasma potential of 137 V.  A DC bias 

of -30 V is generated on the blocking capacitor connected to the top electrode.  The dominant 

cations and anions are O2
+ and O-.  The O2 flow, electron density (ne), O2

+ density, and O- 

density are shown in Fig. 7.2.  The flow of O2 demonstrates that the gas from the secondary inlet 

has little impact on the plasma between the electrode and substrate.  The plasma properties are 

predominantly determined by the gas mixture from the primary showerhead.  The electron 

density ne peaks at r = 19 cm at 2.3 × 1010 cm-3 due to electric field (E-field) enhancement at the 

edge of the top electrode, and is otherwise uniform in the radial direction across the wafer.  The 

wafer has a fairly high conductivity (σ) of 0.05 Ω-1cm-1, while the quartz focus ring is an ideal 

dielectric.  When solving Poisson’s equation using the substrate as a ground, the E-field is 

negligible in the wafer but relatively high in the focus ring (150 V/cm).  The end result is a 

higher potential on the surface of the focus ring (50 V) than on the wafer (4 V), which perturbs 

the sheath on the wafer-quartz interface and causes a non-uniform plasma distribution above the 

focus ring.  However, both the hot spot of ne and this perturbation of the plasma distribution 

occur downstream of the gas flow.  Therefore, their impact on the bulk plasma is insignificant.  

In a high pressure CCP, ionization can be sustained by bulk electrons, which are mostly 

resistively heated, and beam electrons that are from secondary electron emission.  At 2 Torr, the 

electron mean free path is much smaller than the gap length. Therefore, it is difficult for bulk 
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electrons heated at the edge of the sheath to transport to mid-gap with enough energy to enable 

further ionization.  However, when accelerated by the sheath, beam electrons can have energy up 

to 10s to more than 100 eV, enabling them to travel further into the bulk plasma.   

The ionization source for bulk electrons (Se) near the sheath is comparable with that for 

beam electrons (Seb), with Se = 6.7 × 1015 cm-3s-1 and Seb = 4.4 × 1015 cm-3s-1.  However, at 0.3 cm 

below the top electrode, Se drops to zero, and the ionization is maintained only by beam electrons 

(Seb = 2.7 × 1015 cm-3s-1).  Because the plasma is mainly sustained by beam electrons, the plasma 

is thereby operated in the γ-mode.   

The dominant cation O2
+ shares the same uniform radial distribution with electrons, and 

peaks at 6.2 × 1010 cm-3 at the corner of the top electrode.  In the axial direction, O2
+ density 

decreases from 2.4 × 1010 cm-3 near the sheath adjacent to the top electrode to 1.9 × 1010 cm-3 at 

the mid-gap.  O2 undergoes dissociative attachment producing O- which has a relatively high 

density.  The O- density is nearly 70% of ne in the bulk plasma.  However, because of its low 

temperature, O- is confined in the bulk plasma and has a negligible flux to the wafer.   

The energy and angular distributions (EADs) of Ar+, O2
+, and O are shown in Fig. 7.3a.  

These data are averaged over the wafer and averaged in angle across the normal.  Both Ar+ and 

O2
+ have relatively narrow angular distributions with an incident angle of less than 20˚.  The 

sheath by the wafer accelerates ions up to 45 eV.  However, the plasma potential is 137 V, 

almost three times the peak ion energy, indicating that the sheath is highly collisional such that 

ions dissipate their energy through multiple collisions as they travel across the sheath.  Because 

the majority of ions have energy less than 20 eV, smaller than the sputtering threshold of SiO2 

(30 eV), only minor ion bombardment damage to the film is expected.  Unlike ions, neutral 

species have close to thermal energy and wide angular distribution.  The peak O energy reaches 



 224 

0.3 eV, which is likely caused by charge exchange reactions near the wafer.  When hot O+ atoms 

collide with O, they exchange the charge but preserve their initial kinetic energy and form a hot 

O and a cold O+.  The hot neutral will no longer gain energy from E-field but will lose its energy 

through collisions with other particles as it moves toward the wafer.  Consequently, when it hits 

the surface, its energy is much lower than the energy of most ions but is still higher than the 

thermal energy of many neutral species.  This slightly higher energy of 0.2 eV is unlikely to 

cause any significant difference regarding the surface reaction rates. 

The fluxes of some major species as a function of radius are shown in Fig. 7.3b.  Most 

species have a fairly uniform flux across the wafer.  For example, the O flux remains at 1.6 × 

1018 cm-2s-1 at r < 12 cm with only minor fluctuation (± 1.0 × 1016 cm-2s-1). However, it increases 

to 1.7 × 1018 cm-2s-1 at r = 15 cm due to a slight increase of O density near the edge of the top 

electrode.  Note that the high pressure produces a reasonably high O3 density (3.6 × 1011 cm-3 at 

mid-gap), which produces a O3 flux of ≈ 3 × 1015 cm-3s-1.  Even though it is three orders of 

magnitudes smaller than the O flux, O3 is an important oxidant that is commonly used in the 

deposition of oxides due to its highly reactive nature.  The dominant cations Ar+ and O2
+ also 

have fluxes of ~1015 cm-2s-1.  Even though the resulting ion bombardment sputtering is not 

expected to be severe with the default setup, changing the operating conditions such as 

decreasing the pressure can increase ion energy and produce damage. 

A deposition schematic of PE-ALD of SiO2 film is shown in Fig. 7.4.  The wafer is 

repeatedly exposed to the silicon precursor and Ar/O2 plasma.  Gas purge is not included in the 

simulation and we assume that no gas remains from the previous steps.  The cubic voxels used in 

the MCFPM are 0.53 nm3.  Each cycle deposits 2 layers of voxels representing a monolayer of 

silicon dioxide.  Si voxels are displayed in two colors to help distinguish deposition from other 
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steps.  In the base case, the precursor dosing time is 0.8 s, and the plasma exposure time is 1.0 s.  

During precursor dosing, precursor flux of 1 × 1020 cm-2s-1 is launched from the top of the 

feature; while during plasma exposure, the fluxes are obtained from the HPEM results.  Unless 

otherwise specified, the ligand group co-deposition probability pR = 0.005.  As shown in Fig. 

7.4b, the impact of a buried ligand group increases as the film grows thicker.  The initial 

disruption of the layered structure caused by the embedded ligand group escalates to misalign in 

the upper layers and produces an increasingly coarse surface.  Some unoccupied gas voxels 

appear in the film as vacancies.  A vacancy occurs when the fast-growing neighbors of a gas 

voxel bridge over an unoccupied site.  A vacancy is defined as a gas phase voxel with less than 

two consecutive gas voxel neighbors in any direction.  The vacancy density reduces the quality 

of a film. Generally, a high vacancy density translates to a high wet etch rate (WER).   

Blanket film deposition was first performed on a 65 nm (L) × 10 nm (W) area and 

meshed with 130 × 20 computational voxels.  A reflective boundary condition was used on all 

the boundaries.  A gas phase particle crossing the boundary is specularly reflected back.  For 

these results, R(s) ligands are only removed by sputtering.  The SiO2 film deposited in 10 cycles 

is shown in Fig. 7.5.  Note that every two colored layers represent one monolayer of SiO2.  The 

film is fairly dense and uniform in the first 5 cycles but becomes less ordered later in the process.  

Early in the deposition, misalignments that are partly caused by the ligand remnants affect only 

their direct neighbors.  For a single ligand site, the immediate next layer will have only local 

imperfections, and with a low co-deposition probability (pR = 0.005), the impact of these 

imperfections is reasonably small.  By the end of the 5th cycle, irregularities are only sparsely 

distributed on the surface such that the film can still be considered smooth.  However, 

imperfections that occur in the early stages affect a larger area as the film grows.   
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The exposure of the side of a site enables non-epitaxial deposition.  For example, if the 

side of an OH-Si-OH(s) site is left open after the plasma exposure, in the following precursor 

dosing, a SiH2(s) site can deposit next to it instead of above it, causing a silicon atom to be 

embedded in an oxygen layer.  The OH-Si-OH(s) site this SiH2(s) is attached to (its neighbor) 

will be redefined as O2(s) and be exposed to the plasma.  An O2(s) cannot be easily deposited on 

by a silicon precursor because it cannot provide a hydrogen atom to combine with the ligand 

group from the precursor SiH2R2.  In this case an exposed O2(s) often produces a halt to the local 

deposition.  As a result, a single missing OH-Si-OH(s) induces two potential defects: a SiH2(s) 

embedded in an oxygen layer, and an exposed O2(s).  Both lead to staggered depositions in the 

layers above, and the following deposition on these misaligned sites occur in different steps as 

their neighbors.   

For example, when the SiH2(s) is deposited with O(s) during plasma exposure, most of its 

neighboring OH-Si-OH(s) are deposited upon in precursor dosing.  This staggered deposition 

may expose more sites with open sides and consequently enlarge the misaligned areas and 

eventually lead to non-ordered layers.  Because sparsely distributed defects and imperfections in 

the early stage can make the film highly disordered and rough later in the deposition, it is vital to 

perform quality control from the beginning of PE-ALD. 

O2(s) cannot be directly deposited on with a silicon precursor.  Therefore, the O2(s) 

surface coverage ratio increases through the deposition process, as shown in Fig. 7.6a.  The 

surface coverage ratio of O2(s) is the fraction of surface sites that are occupied by O2(s).  The 

sampled area occupies the center of the feature in a 10 nm × 10 nm square.  In this work, the 

surface coverage ratio of O2(s) does not reach saturation in 10 cycles.  However, it eventually 

saturates ≈ 50% as the exposure of O2(s) is balanced through recombination reactions with other 



 227 

gas phase species such as O and O3.   

The accumulation of O2(s) on the surface is part of the reason for the decreasing film 

growth rate.  The concentration of O (ηO), Si (ηSi), vacancy (ηVac), and ligand groups (ηR) in the 

entire film is shown in Fig. 7.6b.  Note that hydrogen is not counted, so that ηSi + ηO + ηVac + ηR 

= 1.  In the first 10 cycle (18 s), both ηSi and ηO are relatively stable, with ηO/ηSi ≈ 2.0.  Excessive 

O(s) deposition occurs when an already saturated Si(s) (silicon with four bonds occupied) is 

exposed to the plasma.  This is not a physical process.  To reduce its impact, the oxygen 

deposition probability on Si(s) was decreased to a smaller value (1 × 10-4), which is not expected 

to artificially decrease the O content.  With minor sputtering in a PE-ALD, the exposed Si(s) are 

often saturated with all of its bonds occupied and are exposed because of the slow growth of its 

neighbors.  It is unlikely for O to deposit on these silicon sites.  Ideally, the end surface after the 

precursor dosing is SiH2(s), which will be oxidized to OH-Si-OH(s).  Therefore, the film growth 

does not rely on the oxidation of Si(s) using this mechanism.   

The ligand group co-deposition probability, pR = 0.005, is constant through the ALD 

process, thereby ηR is constant ≈ 0.2%.  The film becomes coarser and more disordered as it 

thickens.  The vacancy density increases and peaks at 1% by the end of the 10th cycle.  The 

complicated surface concentration causes uneven growth on different parts of the surface and 

this ultimately results in more bridging and therefore more vacancies.   

The average (ξavg) and instantaneous (ξins) growth rate are shown in Fig. 7.6c.  A 1-

layer/cycle refers to ideal PE-ALD of a monolayer SiO2 deposition in each cycle, which is 

represented by 2 computational layers.  ξavg is calculated by dividing the spatially averaged film 

thickness with the number of cycles, while ξins is the increase of the film thickness from the last 

cycle.  The film thickness is also averaged in the center of the blanket deposition in a 10 nm × 10 
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nm square.  Both ξavg, and ξins decrease with time, partly because of the growing complexity of 

the surface contents as the film becomes more disordered later in the process.  Compared to ξavg, 

ξins decreases much faster, from 1 to 0.7 layer/cycle in 10 cycles.  In practice, ξins is often < 1 

layer/cycle. 

The deposition of SiO2 film was also investigated in a trench structure, shown in Fig. 7.7.  

The process flow and reaction mechanisms are identical to the blanket deposition.  The precursor 

dosing is 0.8 s and the plasma exposure is 1.0 s.  The width of the trench is 30 nm and the height 

is 120 nm, the depth of the simulation domain is 10 nm with reflective boundary conditions.  The 

voxels are 0.53 nm3 cubes.  The size of the computational geometry, including the walls is 70 

(W) × 243 (H) × 20 (D) voxels.  The film deposited in a trench, similar to the blanket deposition, 

has a relatively uniform structure early in the process that becomes coarse and disordered as it 

grows thicker.   

Deposition into a trench is also subject to conduction limits, which does not apply to a 

blanket deposition.  A conduction limit is basically a limitation of the distance a neutral particle 

can travel into a 3-dimensional feature.  For thermal neutrals hitting the surface without a surface 

reaction, they are diffusively reflected back to the plasma.  There is a 50% probability that these 

neutral particles come off a surface with a velocity component pointing upwards toward the 

opening of the feature.  This leads them to transporting out of the feature instead of deeper 

inside.  Due to the conduction limit, the neutral fluxes in the bottom of the feature are often 

smaller than those in the top.  For example, an O flux logged at the bottom center is 9.7 × 1017 

cm-2s-1 during plasma exposure in the first cycle.  That is reduced by almost 40% compared to 

the O flux at the top (1.6 × 1018 cm-2s-1).  As the film thickens, the aspect ratio increases and 

conduction limits increase.  The oxidant fluxes are high enough that even at the bottom of the 
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feature, an epitaxial deposition with a clear, layered structure is obtained in the first several 

cycles.  However, the conduction limit still affects the film deposition, especially for the 

oxidation process by reducing the excited state O2
* flux deep into the trench. 

Concentrations of the solid materials and vacancy, ηO/ηSi and average and instantaneous 

growth rate of the film at the bottom of the trench are shown in Fig. 7.8.  Similar to blanket 

deposition, when depositing a SiO2 film in the trench, concentrations of Si and O are relatively 

stable in the first 10 cycles, providing ηO/ηSi ≈ 1.9.  A ηO/ηSi < 2 suggests insufficient oxidation.  

This is partly caused by lack of oxidant in the lower trench due to conduction limits.  This could 

be addressed by longer plasma exposure.  At the end of the 10th cycle, ηO/ηSi is 1.95 in the top 

half of the trench and 1.88 in the bottom half, indicating a significant non-stoichiometric growth 

at the bottom.  In an oxygen plasma, O and O2
* are the main oxidants.  Their fluxes decrease by 

factors of 1.6 and 9.6, respectively at the bottom of the trench.  The O2
* flux has a much faster 

fractional decrease than O flux because, when hitting a surface, O2
* loses its energy and becomes 

a ground state inactive O2 molecule, while O retains its highly reactive nature.  Therefore, the 

O2
* reaching the bottom of the trench have zero contact with any surface.   

As the film grows thicker, the aspect ratio of the feature increases, from 4 to 4.8 in 10 

cycles, which further exacerbates the conduction limit, and significantly affects the O2
* flux.  

Compared to the flux at the bottom of the feature in the first cycle, by the end of the 10th cycle, 

O2
* flux has further decreased by a factor of 4, but the O flux remains almost the same.  These 

results demonstrate that unlike blanket deposition, when depositing in a 3-dimenstional structure 

such as a trench, the main oxidant is O rather than a combination of O and O2
*.  This is 

especially true at the bottom of a high aspect ratio feature.  Because the oxidation by O is a 

multi-step process, insufficient oxidation is all the more common in a film deposited in a trench 
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than blanket deposition, which explains the lower ηO/ηSi.  With the decrease of O2
* flux during 

plasma exposure as the film grows, the film growth rate decreases faster in a trench.  The 

deposition drops from 1 layer/cycle to 0.5 layer/cycle in 10 cycles as opposed to from 1 

layer/cycle to 0.7 layer/cycle for a blanket deposition.   

7.4.1 Power 

The CCP power was varied from 400 W to 1 kW.  Its impact on the SiO2 PE-ALD 

process is discussed. 

The EADs of Ar+ and O when the power is 400 W, and 1 kW are shown in Fig. 7.9a.  

Neither the ion energy and angular distribution (IEAD) nor the neutral energy and angular 

distribution (NEAD) experience significant changes based on power.  For this reactor, the 

blocking capacitor is connected to the top electrode.  This means that the DC bias is not on the 

substrate, and ion energy distribution (IED) is only affected by the oscillation of the plasma 

potential.  From 400 W to 1 kW, the bulk plasma density increases from 4.3 × 109 cm-3 to 1.2 × 

1011 cm-3, while the plasma potential increases from 127 to 137 V.  As shown in Fig. 7.9a, with 

the increase of power the peak Ar+ energy is increased by ≈5 eV from 40 to 45 eV, but the 

majority of the ions have lower energy, less than 5 eV, due to the highly collisional sheath.  The 

almost identical IEADs and ion fluxes (Fig. 7.9b) suggest minimal changes in the sputtering with 

varying power.  The NEAD also stays nearly the same when changing power.   

The fluxes of some main oxidants have notable variations with power that can potentially 

affect SiO2 film deposition.  As the power increases from 400 W to 1 kW, O3 flux decreases by a 

factor of 10, from 6.5 × 1015 cm-2s-1 to 7.5 × 1014 cm-2s-1 owing to the decreased O3 density 

caused by additional dissociative reactions.  At the same time, the excited state O2
* density 

increases with the power from 1.9 × 1018 cm-2s-1 at 400 W, to 5.6 × 1018 cm-2s-1 at 1 kW, which 
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may lead to a higher growth rate especially when in blanket deposition.  However, with a plasma 

exposure time of 1 s, the deposition is already self-limiting during plasma exposure when the 

input power is 500 W.  Therefore, any increase of the film growth rate with power is not large. 

The SiO2 film was deposited on a blanket feature while varying power.  The film 

concentrations and growth rate are shown in Fig. 7.10.  The data are gathered at the end of the 5th 

cycle.  As expected, with a long enough plasma exposure time, changing the power has a limited 

effect on the film quality.  Both oxygen and silicon have almost the same constant concentrations 

in the film.  Because the minimum sputtering threshold on SiO2 film is 30 eV, which is much 

higher than the energy of most ions (1-5 eV), the ion bombardment damage to the film is 

negligible.  In this example, ordered growth of oxygen and silicon layers occurs in the first 5 

cycles, as shown in the 2D film profile at the top of Fig. 7.10.  However, the increased O2
* flux 

indeed promotes the oxidation process.  Therefore, the ηO/ηSi has a slight increase as power 

increases from 400 W to 1 kW.  Both the average and instantaneous growth rates are close to 1 

layer/cycle with varying power.  The lower than average instantaneous growth rate suggests 

some presence of surface coarseness and the occurrence of slowly growing sites.  Even though 

input power has little effect on film deposition in this setup, it is expected to have a more 

significant impact on film deposition when the plasma exposure time is shorter.  By increasing 

power from 400 W to 1 kW, the O2
* flux is tripled, which will significantly increase the 

oxidation rate to the level of self-limiting during plasma exposure. 

Deposition in the trench with varying power was also studied.  Varying power had a more 

significant impact when depositing a film in a trench than blanket deposition.  As the power 

increases from 400 to 700 W, the ηO/ηSi ratio decreases from 1.94 to 1.85, and then rises up to 

1.90 as the power keeps increasing to 1 kW.  This non-monotonic of ηO/ηSi is mainly caused by 
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the change of ηO owing to the variation of O flux with power.  Film oxidation in a trench heavily 

relies on O instead of O2
*.  Therefore, even though the flux of O2

* is tripled as the input power 

increases from 400 W to 1 kW, it has little effect on film deposition deep in a trench.  Even with 

1 kW, by the end of the 5th cycle, the O2
* flux is 2.8 × 1017 cm-2s-1 at the bottom of the trench, as 

opposed to 6.9 × 1017 cm-2s-1 for O flux, which is more than twice of the O2
* flux.  As a result, 

when depositing in the trench, the film quality is directly affected by the magnitude of O flux, 

such that a lower O flux leads to less oxidation, hence more imperfections and misalignments in 

the film, more vacancies and a slower film growth rate.     

7.4.2 Pressure 

The IEAD is affected by sheath collisionality and thus the plasma pressure.  Increasing 

pressure makes a sheath more collisional, which broadens the ion angular distribution (IAD) and 

reduces the overall ion energy.  At the same time, with decreasing pressure, ions travel across a 

sheath with fewer or no collisions, resulting in a higher ion energy up to the maximum of sheath 

potential.  The pressure was varied from 0.5 to 2 Torr, and its effect on SiO2 film deposition was 

studied.  Power is 500 W, the same as the base case. 

The EADs of Ar+ and O when pressure is 0.5, and 2 Torr are shown in Fig. 7.12a.  The 

maximum ion energy reaches 50 eV at 0.5 Torr, and 40 eV at 2 Torr.  Even though the maximum 

ion energy only differs by 10 eV, there is a much higher fraction of ions with energy higher than 

30 eV when the pressure is 0.5 Torr than 2 Torr.  The higher ion energy at low pressure is 

collectively caused by the higher plasma potential and low collision frequency.  At 0.5 Torr, the 

plasma potential is 170 V, which decreases to 138 V at 2 Torr.  As pressure increases from 0.5 to 

2 Torr, the mean free path of Ar+ shortens from 0.1 mm to 0.02 mm, suggesting more collisions 

as ions are accelerated towards the wafer, which helps dissipate the ion energy.   

Again, the EAD of neutral species is not significantly affected by changes of pressure.  O 
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has almost identical thermal EADs when the pressure is both 0.5 and 2 Torr.  The fluxes of some 

major species are shown in Fig. 7.12c.  For most of these species, increasing pressure causes an 

increase in their fluxes as high pressure leads to higher ionization and excitation reaction rates.  

However, at high pressure, even though the ion fluxes are high, most of these ions have low 

energy.  Therefore, their effect on the SiO2 film deposition process is minor.  The O3 flux 

decreases with an increasing pressure O3 due to increased rates of electron collision quenching. 

Film concentrations and growth rates with varying pressure for blanket deposition are 

shown in Fig. 7.13.  The film properties show only minor changes when the pressure is higher 

than 1 Torr.  However, at 0.5 Torr, because of increased ion bombardment damage to the film, 

there are higher vacancy concentration and lower ηO/ηSi ratio.  As pressure increases from 0.5 to 

1 Torr, vacancy concentrations decrease by a factor of 3 from 1.5% to 0.5%.  In spite of a higher 

rate of sputtering at 0.5 Torr the ion flux is orders of magnitude smaller than that of the neutral 

species.  Therefore, any vacant sites caused by sputtering during plasma exposure are likely to be 

“repaired” by the reactive oxidants.  If a thicker film is being deposited, this slight increase of 

ηVac in the early stage can cause much coarser and disordered structure in the top layers of the 

film.   

Similar to film concentration, the growth rate is lower when pressure is 0.5 Torr.  This is, 

again, caused by ion bombardment sputtering.  Sputtering of the film compromises the 

continuous structure of the layers, which complicates surface structure and causes a low 

deposition rate.  For example, if a SiH2(s) site is sputtered from the surface at the beginning of a 

plasma exposure step, the exposed O2(s) below it cannot be deposited upon with more oxygen 

until it is covered with another SiH2(s) in the following precursor dosing.  The end result is that it 

takes two instead of one cycle to deposit a monolayer of SiO2 at that position.  The spatially 
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averaged layer thickness is then thinner, and the film growth rate will be slower. 

The results of film deposition with varying pressure in a trench are given in Fig. 7.14.  

Generally, increasing pressure has the same effect on film deposited in a trench as for blanket 

deposition.  Increasing the pressure results in less ion bombardment damage, thereby a higher 

ηO/ηSi ratio, lower vacancy concentrations, and higher film growth rates.  When deposited in a 

trench, by the end of the 5th cycle, as pressure increases from 0.5 to 2 Torr, the vacancy 

concentration halves from 2.1% to 1.1%.  However, for blanket deposition, it decreases by a 

factor of 5, from 1.5% to 0.3%.  The vacancy concentration is less sensitive to pressure in a 

trench because ion bombardment damage to the film is not as significant in a trench for blanket 

deposition.  Note that sputtering is angularly dependent, and the sputtering yield is close to 0 

when the incident angle of the particle is grazing near 90˚.  Therefore, in a trench, ions lose some 

energy by grazing the vertical walls but cause little sputtering.  Once contacted with a surface, 

ions lose their charge and become hot neutrals.  By continually colliding on the walls, hot 

neutrals loss more energy and become thermal neutrals.  Neutrals are also subject to the 

conduction limit such that their fluxes decrease from the top to bottom of a trench.  When the 

pressure is 0.5 Torr, in the 5th cycle, the total flux of ions and hot neutrals in the bottom of the 

trench is 2.8 × 1014 cm-2s-1, which is smaller by a factor of 7 comparing to the summation of ion 

fluxes from the top (2.0 × 1015 cm-2s-1).  Therefore, the ion bombardment damage is weak at the 

bottom; even though it is in that position that the incident angle of ions and hot neutrals is small 

enough to most likely cause sputtering.   

Changing the pressure has the same impact for films in a trench as for blanket deposition.  

However, the film in a trench is less sensitive to the pressure changes due to conduction limits.   

7.4.3 Co-deposition Probability 

Steric hindrance occurs when ligands from the precursor fail to react with hydrogen 
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atoms from the surface and thus remain bonded with the silicon that is deposited on the surface.  

Ligands may block nearby sites from reacting with the gas phase particles and hinder the 

deposition process.  In the current mechanism, steric hindrance is addressed by co-depositing a 

ligand group R(s) along with the precursor at probability pR with a default value of 0.005.  In this 

section, pR is varied from 0.001 to 0.5, and its impact on the SiO2 film quality is studied. 

The resulting film concentrations and growth rates with varying pR for blanket deposition 

are shown in Fig. 7.15.  The effect of pR becomes noticeable only when pR ≥ 0.01.  As pR 

increases, both oxygen and silicon concentrations decrease.  Also, the R(s) deposition directly 

affects the ηSi since co-deposition occurs during precursor dosing, such that when an R(s) is co-

deposited next to a SiH2(s), it occupies a space that otherwise should be taken by another SiH2(s) 

site.  Therefore, with a high pR, it is unlikely to attain 100% SiH2(s) surface coverage at the end 

of precursor dosing, which then leads to a lower ηSi.  However, it is also possible for R(s) to be 

co-deposited above the primarily deposited SiH2(s) and occupy voxels in the oxygen layer.  With 

the same SiH2R2 flux and the deposition probability of SiH2(s), higher pR results in more R(s) in 

the oxygen layer, thus less OH-Si-OH(s) formation during the plasma exposure.   

When pR > 0.01, ηO starts to decrease faster than ηSi, leading to an abrupt drop of the 

ηO/ηSi ratio from 1.98 at pR = 0.01 to 1.78 at pR = 0.5.  The increase of R(s) concentration also 

complicates the affected surface components as the film growth becomes highly uneven, which 

encourages bridging and prompts the formation of vacancies.  As pR increases from 0.05 to 0.5, 

vacancies increase from 1% to 3%.  Note that in many applications, after deposition, the ligand 

remnants  are removed through annealing, such that the final vacancy concentration in the film is 

ηVac+ηR.  In that scenario, the vacancy concentration reaches 2.5% even when pR = 0.05.  As 

described earlier, the growth rate of a film decreases as the surface becomes rougher.  Decreases 
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in both average and instantaneous growth rates occur when pR increases from 0.001.  When pR = 

0.001, the deposition process is almost ideal, with a growth rate of 1 monolayer per cycle.  At pR 

= 0.5, the instantaneous growth rate decreases to almost 0.4 layer/cycle. 

The results of film deposition with a varying pR in the trench are shown in Fig. 7.16.  The 

result is similar to that for blanket deposition.  With an increasing pR from 0.001 to 0.5, by the 

end of the 5th cycle, ηO/ηSi decreases from 1.88 to 1.68, and ηVac increases from 1% to 3%.  Film 

quality is notably affected by conduction limits in the trench.  When pR is small, insufficient 

oxidation caused by a low oxidant flux already produces a ηVac = 1%.  This high vacancy 

concentration overshadows the impact of the increasing pR until it is ≥ 0.05.  The same occurs to 

the instantaneous film growth rate.  Owing to conduction limits, the film growth rate is only 0.8 

layer/cycle at the bottom of the trench even with small pR.  A clear decrease of ξins occurs only 

when pR ≥ 0.01.  Before that, the impact of pR on growth rate is outweighed by the effects of 

conduction limits.   

Varying pR affects precursor dosing, which is a thermal process that is not significantly 

affected by the target feature.  Therefore, other than the high vacancy concentration and low 

instantaneous deposition rate when pR < 0.05, changes of the film properties with a varying pR 

when depositing in a trench are quantitatively similar to that for blanket deposition. 

Reaction probabilities are not known for these reactions of ROS with co-deposited R(s).  

Based on analogies to gas phase processes and reaction probabilities for removal of R(s) by O, 

O(1D) and O3 (reactions 7.6a, b and c ) were estimated as 1 × 10-4, 1 × 10-3, and 1 × 10-5.  Film 

concentrations of R(s), vacancies and ηO/ηSi with and without oxygen replacement reactions as a 

function of pR are shown in Fig. 7.17.  These properties do not significantly change with oxygen 

replacement reactions until pR > 0.1.  The oxygen replacement reactions enable more complete 
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oxidation during plasma exposure, thereby resulting in higher oxygen concentration and higher 

ηO/ηSi.  With pR = 0.5, reactions of R(s) with ROS decrease ηR by 2% from 15% to 13%, and 

ηO/ηSi increases from 1.79 to 1.86.  With pR < 0.1, there are not enough R(s) deposition on the 

film to make oxygen replacement reactions important when the plasma exposure time is only 1 s. 

The average and instantaneous film growth rates with and without the oxygen replacement 

reactions with varying pR  are shown in Fig. 7.17b.  Almost identical film growth rates are 

obtained. 

For small pR and short plasma exposure time, oxygen replacement reactions with R(s) do 

not significantly affect the SiO2 PE-ALD discussed in this chapter.  However, these conclusions 

could certainly change if the reaction probabilities for ROS at low substrate temperature are 

significantly higher than estimated here. 

7.4.4 Aspect Ratio 

Conduction limits predominantly affects film deposition in high aspect ratio features.  

Because conduction limits are significantly affected by the aspect ratio (AR) of the feature, in 

this section, the AR of a 3D feature is varied, and its impact on film deposition is discussed. 

SiO2 film deposition was first performed in a trench.  The width of the trench is 30 nm, 

the same as that used for the previous investigations.  The AR was varied by changing the height 

of the trench.  AR was varied from 2 to 8, meaning the height of the trench was varied from 60 to 

240 nm.   The concentrations of solid materials in the entire film, as well as the ηO/ηSi ratio are 

shown in Fig. 7.18a.  The instantaneous and average film growth rates logged in the bottom of 

the trench are shown in Fig. 7.18b.  Increasing AR increases conduction limits as particles 

encounter more collisions with walls before reaching the bottom of the feature.  This has the 

most impact on the unstable or excited state reactive species.  For example, as recorded in the 

bottom of a trench, when the aspect ratio increases from 2 to 8, O2
* flux decreases by a factor of 
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4.4, from 5.7-1.3 × 1017 cm-2s-1 in the first plasma exposure.  This reduction of oxidant results in 

insufficient film oxidation, which then causes a slow film growth rate.  In the 5th cycle, the 

instantaneous growth rate in the bottom of the trench when AR = 8, is 0.69 layers/cycle, only 

83% of that when AR = 2 (0.83 layers/cycle).  Note that conduction limits only affect film 

quality in the bottom of the trench.  For example, there is a slight decrease instead of an increase 

of ηVac as AR increases when sampling the entire film, owing to the film deposition in the top of 

the trench outweighing the effect of film deposition in the bottom.  If sampled using the film 

deposited at the bottom 30 nm of the trench, ηVac increases from 1.3% to 1.5% as the AR 

increases from 2 to 8.   

To further study the impact of aspect ratio on film deposition, a SiO2 film was deposited 

in a via.  A via is a cylindrical connection between two devices located in different layers of an 

integrated structure.  A thin layer of dielectric material is often deposited on the wall of a via as 

an electrical insulator.  The diameter of the via is 30 nm and the height was between 60 to 240 

nm, providing an AR between 2 to 8.  Because a via is a symmetrical structure, only a quarter of 

a via was used for the simulation (Fig. 7.19a) in deference to being computationally efficient.  A 

reflective boundary condition was applied to all vertical boundaries.  The process flow is the 

same as depositing in a trench: 0.8 s precursor dosing and 1 s plasma exposure.   

The film deposited in a via is reasonably conformal, the structure of a via can still be seen 

after 5 cycles of deposition.  Similar to the deposition in a trench or blanket deposition, in a via, 

layers deposited in the first several cycles are more uniform, having only sparsely distributed 

imperfections and misalignments that would affect the deposition of upper layers.   

The concentrations of materials and the elementary ratio ηO/ηSi at the end of the 5th cycle 

are shown in Fig. 7.19b.  Note that compared to the film deposited in a trench, the film deposited 
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in a via has a lower ηO/ηSi ratio and higher vacancy concentration, indicating a an even more 

insufficient oxidation process and more porous film structure.  This occurs because a via has a 

higher surface to volume ratio than a trench when their AR is the same.  With unbounded front 

and back sides, a trench of 30 nm (W) × 120 nm (H) × 10 nm (D) has a surface to volume ratio 

of 0.075, while a via with a 30 nm diameter and 120 nm height has a surface to volume ratio of 

0.142.  Doubling the surface to volume ratio produces more severe conduction limits that restrain 

the fluxes to the bottom of the feature.  For example, with AR = 8, in the first plasma exposure, 

the O flux at the bottom center of the trench is 9.0 × 1017 cm-2s-1, as opposed to 2.0 × 1017 cm-2s-1 

in the via.  The decrease of flux in the via is even more significant for unstable species such as 

O2
*, which is 2.0 × 1015 cm-2s-1 in the bottom of a via, but 1.1 × 1017 cm-2s-1 in the bottom of a 

trench.  Remember that low oxidant fluxes result in insufficient oxidation.  At the end of the 5th 

cycle, at the bottom 30 nm of the feature, a SiO2 film deposited in a trench has a ηO/ηSi ratio of 

1.79, but the film deposited in a via only has a ηO/ηSi ratio of 1.61.  The vacancy concentration 

almost doubles when depositing in a via compared to a trench.   

 

7.5 Concluding Remarks 

Plasma enhanced atomic layer deposition (PE-ALD) of SiO2 film on a nm-scale blanket 

target was investigated using 3-dimensional voxel-based simulation, the MCFPM.  The 

computational investigation was performed at the reactor scale for an Ar/O2 (80/20) capacitively 

coupled plasma (CCP) using the 2-dimensional hybrid plasma simulator, the HPEM.  Fluxes on 

the wafer, and energy and angular distributions (EADs) of major species obtained from the 

HPEM were transferred to the MCFPM for feature-scale investigation. 

In the base case, 500 W power was applied to the top electrode of the CCP reactor to 

sustain an Ar/O2 plasma at 2 Torr.  The dominant neutrals were O2(a1Δg), O, and O2(b1Σg
+), all 
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with close to thermal EADs.  The dominant ions, Ar+ and O2
+, had incident angle less than 20˚ 

and peak energy up to 40 eV.  Due to the high pressure and highly collisional sheath, most ions 

had energy less than 20 eV, which is smaller than the sputtering threshold of SiO2 (30 eV).  

These, as well as low ion fluxes suggest insignificant impact of ion bombardment damage to the 

film. 

A deposition mechanism of SiO2 using silicon precursors with two ligand groups and 

Ar/O2 plasma was developed.  The PE-ALD process consisted of repeated precursor dosing (0.8 

s) and plasma exposure (1.0 s).  Steric hindrance was addressed by co-depositing a ligand site 

along with the silicon during precursor dosing at a co-deposition probability pR.  The impact of 

the insertion of ligand remnants at the early stage of deposition were shown to increase as the 

film grows thicker.  The end result is a disordered film structure and large areas of roughness on 

the surface above the initial ligand remnant.  The roughness on the surface exposes both silicon 

and oxygen layers to the plasma.  Because the silicon precursor cannot directly be deposited on 

the oxygen sites O2(s), and because of the low sputtering rate, the surface coverage ratio of O2(s) 

increases with time and causes the decrease of the instantaneous film growth rate.  Film 

deposition in a trench follows many of the same trends as blanket deposition.  Vacancy 

concentrations increase while the film growth rate decreases.  Due to conduction limits, the film 

growth rate at the bottom of a trench decreases faster than that for blanket deposition.     

The impact of power, pressure and the co-deposition probability of the ligand remnant pR 

on the SiO2 film blanket deposition and a trench were investigated.  Varying the power from 400 

W to 1 kW, showed no obvious changes of IEADs and NEADs due to the highly collisional 

sheath at 2 Torr.  With a plasma exposure time of 1.0 s, the film growth is found to be almost 

self-limiting.  Therefore, neither the film concentration nor the growth rate was significantly 
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sensitive to variations of input power for blanket deposition.  However, conduction limits do 

restrain the O2
* flux in a trench, making the growth rate and elementary ratio ηO/ηSi sensitive to 

the change of O flux.   

Varying pressure was found to significantly affect film quality for blanket deposition.  

Decreasing pressure resulted in a less collisional sheath and a longer ion mean free path.  As a 

result, when the pressure is 0.5 Torr, the peak ion energy reaches 50 eV and sputtering rates 

increase.  Consequently, using lower pressure during plasma exposure promotes the production 

of vacancies and slows film growth.  However, when depositing in a trench, conduction limits 

buffer the impact of a varying of pressure.  Both the material concentration and growth rate 

experience smaller variation with pressure compared to blanket deposition.   

Varying the co-deposition probability of a ligand group has similar effect to blanket 

deposition as in a trench, due to the fact that it affects the film deposition through precursor 

dosing, which is a thermal process.  The co-deposition of ligand group probability pR was 

increased from 0.001 to 0.5.  At low pR < 0.05 the film is uniform and conformal.  A high pR ≥ 

0.05 produces disordered and rough films.  If annealing is used to remove ligand remnants after 

film deposition, the sum of vacancy and ligand concentrations translate to the vacancy 

concentration in the final product.  When pR = 0.05, at the end of the 5th cycle, this value reaches 

2.5% for blanket deposition and 3.2% when depositing in a trench. 

Finally, the effect of aspect ratio (AR) on film deposition when depositing in a trench and 

a via was discussed.  For both cases, increasing AR leads to a decrease of oxidant fluxes in the 

bottom of the feature, which lowers film growth rate and causes porous film structure.  However, 

for the same AR, a via has a bigger surface to volume ratio when the diameter of a via equals the 

width of a trench.  Therefore, conduction limits are more significant in a via, which suggests a 
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longer period for self-limited deposition in a via.   

To conclude, due to conduction limits, deposition in different structures depend on 

different species.  The O radical is the dominant oxidant in a 3-dimensional feature such as a 

trench or a via, while both O and O2
* are important for blanket deposition.  The effect of power 

on PE-ALD is insignificant with a sufficiently long plasma exposure time.  Sputtering can still be 

a major concern when the pressure is lower than 2.0 Torr.  Ligand remnants in the film can 

greatly affect the film quality.  With a co-deposition probability >5%, the vacancy concentration 

of the final product can reach more than 2% for blanket deposition and more than 3% in a trench.  

In summary, high pressure (> 1.0 Torr) and low pR (< 0.05) are desired for the PE-ALD of SiO2 

films. 

The results discussed in this chapter should help guide the design of SiO2 PE-ALD 

processes.  These results suggest that it is important to reduce ligand remnants on the surface 

after precursor dosing, especially in the early stage of the deposition.  The roughness that 

remnant ligand groups produce starting in the first several layers enlarges as the film grows.  To 

deposit a uniform and dense film, surface reactions during each step (precursor dosing and 

plasma exposure) should reach the stage of being self-limiting, which is achieved by employing 

long cycles and high reactants fluxes.  Longer cycles are not necessarily desirable in high volume 

manufacturing. 

In practice, the quality of films is gauged by the wet etch rate (WER).  A high WER 

infers a less dense film, a high vacancy concentration and thus a poor film quality.  Based on the 

simulation results, the WER is expected to increase with decreasing pressure (from 2 Torr), 

increasing ligand remnant density, and increasing aspect ratio.  
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Table II. Surface Reaction Mechanism for PE-ALD of SiO2 Using Ar/O2 Plasma as 
Oxidation Agent and BTBAS as Si Precursor 

Gas Phase Species Notes 
Ions or excited states, hot neutrals, and neutral 
partners 

Ar+, Ar2
+, Ar(h), Ar 

O2
+, O2(h), O2 

O+, O(h), O 
O2

*, O2 
O*, O 
O3 

a) 

Precursor SiH2R2 b) 
Sputtered materials and deposition by-products SiH2, SiH, Si, OH, R, HR, H2O  

Surface Sites  
Silicon layer SiH2(s), SiH(s), Si(s) c) 
Oxygen layer O2(s), O(s), OH-Si-OH(s),  

OH-Si-H(s), OH-Si(s), O-Si-H(s) 
c) 

a) O2* denotes O2(a1Δg) and O2(b1Σg
+).  O* denotes O(1D) and O(1S). 

b) R represents ligand group from silicon precursor, in the case of BTBAS, R denotes 
[NH(C4H9)]- group. 

c) SiO2 is represented by a Si(s) voxel connected to two O2(s) voxels.  Ideally, SiO2 film 
consists of staggered layers of Si(s) (silicon layer) and O2(s) (oxygen layer).  x-Si-y(s) 
represents two sites connected to Si(s) with this Si(s) not included in this voxel. 
  

Reactionsa) p0
b) Eth(eV)b) Er(eV)b) Notes 

Initial deposition of SiH2R2     
W(s) + SiH2R2 → W(s) + SiH2(s) + 2HR 0.01   c) 
SiH2R2 deposition on hydroxyl-rich surface     
OH-Si-OH(s) + SiH2R2 → O2(s) + SiH2(s) + 2HR 0.01    
OH-Si-H(s) + SiH2R2 → O(s) + SiH2(s) + 2HR 0.01    
OH-Si(s) + SiH2R2 → O(s) + SiH2(s) + HR 0.005   d) 
O-Si-H(s) + SiH2R2 → O(s) + SiH2(s) + HR 0.005   d) 
OH-Si-O(s) + SiH2R2 → O2(s) + SiH2(s) + HR 0.005   d) 
Oxidation of surface sites     
SiH2(s) + O → Si(s) + OH-Si-H(s) 0.01    
SiH2(s) + O* → Si(s) + OH-Si-H(s) 0.015    
SiH2(s) + O3 → Si(s) + OH-Si-H(s) + O2 0.015    
SiH2(s) + O+ → Si(s) + OH-Si-H(s) 0.015    
SiH2(s) + O2

* → Si(s) + OH-Si-OH(s) 0.015    
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SiH2(s) + O2
+ → Si(s) + OH-Si-OH(s) 0.015    

SiH(s) + O → Si(s) + O-Si-H(s) 0.015    
SiH(s) + O → Si(s) + OH-Si(s) 0.01    
SiH(s) + O* → Si(s) + O-Si-H(s) 0.02    
SiH(s) + O* → Si(s) + OH-Si(s) 0.015    
SiH(s) + O3 → Si(s) + O-Si-H(s) + O2 0.002    
SiH(s) + O3 → Si(s) + OH-Si(s) + O2 0.015    
SiH(s) + O+ → Si(s) + O-Si-H(s) 0.02    
SiH(s) + O+ → Si(s) + OH-Si(s) 0.015    
SiH(s) + O2

* → Si(s) + OH-Si-O(s) 0.02    
SiH(s) + O2

+ → Si(s) + OH-Si-O(s) 0.02    
SiH(s) + OH → Si(s) + OH-Si-H(s) 0.02    
OH-Si-H(s) + O → OH-Si-OH(s) 0.01    
OH-Si-H(s) + O* → OH-Si-OH(s) 0.015    
OH-Si-H(s) + O3

 → OH-Si-OH(s) + O2 0.015    
OH-Si-H(s) + O+ → OH-Si-OH(s)  0.02    
Si(s) + O → Si(s) + O(s) 10-4   e) 
Si(s) + O* → Si(s) + O(s) 2 ×10-4   e) 
Si(s) + O* → Si(s) + O(s) + O2 2 ×10-4   e) 
Si(s) + O+ → Si(s) + O(s) 2 ×10-4   e) 
Si(s) + O2

* → Si(s) + O2(s) 2 ×10-4   e) 
Si(s) + O2

+ → Si(s) + O2(s) 2 ×10-4   e) 
Si(s) + OH → Si(s) + OH-Si(s) 0.001    
O(s) + O → O2(s) 0.01    
O(s) + O* → O2(s) 0.015    
O(s) + O3 → O2(s) + O2 0.015    
O(s) + O+ → O2(s) 0.015    
O(s) + O2

* → O2(s) + O 0.001    
O(s) + O2

+ → O2(s) + O(h) 0.005    
O(s) + OH → OH-Si-O(s) 0.03    
OH-Si(s) + O → OH-Si-O(s) 0.015    
OH-Si(s) + O* → OH-Si-O(s) 0.02    
OH-Si(s) + O3 → OH-Si-O(s) + O2 0.02    
OH-Si(s) + O+ → OH-Si-O(s) 0.02    
OH-Si(s) + O2

* → OH-Si-O(s) + O 0.001    
OH-Si(s) + O2

+ → OH-Si-O(s) + O(h) 0.005    
OH-Si(s) + OH → OH-Si-OH(s) 0.03    
O-Si-H(s) + O → OH-Si-O(s) 0.01    
O-Si-H(s) + O* → OH-Si-O(s) 0.015    
O-Si-H(s) + O3 → OH-Si-O(s) + O2 0.015    
O-Si-H(s) + O+ → OH-Si-O(s) 0.015    
Sputtering by ion and hot neutrals     
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SiH2(s) + I+ → SiH2 + I(h) 0.9 35 140 g) 
SiH(s) + I+ → SiH + I(h) 0.9 35 140 g) 
Si(s) + I+ → Si + I(h) 0.9 35 140 g) 
OH-Si-OH(s) + I+ → OH-Si(s) + OH + I(h) 0.9 30 120 g) 
OH-Si-H(s) + I+ → OH + H + I(h) 0.9 30 120 f), g) 
O-Si-H(s) + I+ → O + H + I(h) 0.9 30 120 f), g) 
OH-Si(s) + I+ → OH + I(h) 0.9 30 120 g) 
OH-Si-O(s) + I+ → OH-Si(s) + O + I(h) 0.45 30 120 g) 
OH-Si-O(s) + I+ → O(s) + OH + I(h) 0.45 30 120 g) 
O(s) + I+ → O + I(h) 0.9 30 120 g) 
O2(s) + I+ → O(s) + O + I(h) 0.9 30 120 g) 
R(s) + I+ → R + I(h) 0.9 40 160 g) 
R(s) removal by reactive oxygen species     
R(s) + O → O(s) + R 10-4    
R(s) + O* → O(s) + R 10-3    
R(s) + O3 → O(s) + R + O2 10-5    
Redeposition of sputtered species     
SiH(s) + SiH2 → SiH(s) + SiH2 0.03    
SiH(s) + SiH → SiH(s) + SiH(s) 0.03    
SiH(s) + Si → SiH(s) + Si(s) 0.03    
SiH(s) + R → SiH(s) + R(s) 0.01    
Si(s) + SiH2 → Si(s) + SiH2(s) 0.001   e) 
Si(s) + SiH → Si(s) + SiH(s) 0.001   e) 
Si(s) + Si → Si(s) + Si(s) 0.001   e) 
Si(s) + R → Si(s) + R(s) 0.001   e) 
O(s) + SiH2 → O(s) + SiH2(s) 0.03    
O(s) + SiH → O(s) + SiH(s) 0.03    
O(s) + Si → O(s) + Si(s) 0.03    
O(s) + R → O(s) + R(s) 0.01    
O2(s) + SiH2 → O2(s) + SiH2(s) 0.03    
O2(s) + SiH → O2(s) + SiH(s) 0.03    
O2(s) + Si → O2(s) + Si(s) 0.03    
O2(s) + R → O2(s) + R(s) 0.01    
OH-Si(s) + SiH2 → OH-Si(s) + SiH2(s) 0.03    
OH-Si(s) + SiH → OH-Si(s) + SiH(s) 0.03    
OH-Si(s) + Si → OH-Si(s) + Si(s) 0.03    
O-Si-H(s) + SiH2 → O-Si-H(s) + SiH2(s) 0.03    
O-Si-H(s) + SiH → O-Si-H(s) + SiH(s) 0.03    
O-Si-H(s) + Si → O-Si-H(s) + Si (s) 0.03    
OH-Si-O(s) + SiH2 → OH-Si-O(s) + SiH2(s) 0.03    
OH-Si-O(s) + SiH → OH-Si-O(s) + SiH(s) 0.03    
OH-Si-O(s) + Si → OH-Si-O(s) + Si(s) 0.03    
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OH-Si-O(s) + R → OH-Si-O(s) + R(s) 0.01    
Oxidation by hydroxyl radical     
SiH2(s) + OH → SiH(s) + H2O  0.01    
SiH(s) + OH → Si(s) + H2O 0.01    
OH-Si-OH(s) + OH → OH-Si-O(s) + H2O 0.01    
OH-Si-H(s) + OH → O-Si-H(s) + H2O 0.01    
OH-Si-H(s) + OH → OH-Si(s) + H2O 0.01    
O-Si-H(s) + OH → O(s) + H2O 0.01    
OH-Si-O(s) + OH → O2(s) + H2O 0.01    
Recombination by sputtered ligand group     
SiH2(s) + R → SiH(s) + HR  0.01    
SiH(s) + R → Si(s) + HR 0.01    
OH-Si-OH(s) + R → OH-Si-O(s) + HR 0.01    
OH-Si-H(s) + R → O-Si-H(s) + HR 0.01    
OH-Si-H(s) + R → OH-Si(s) + HR 0.01    
O-Si-H(s) + R → O(s) + HR 0.01    
Oxygen Recombination     
O(s) + O → O2 6 ×10-5    
O(s) + O* → O2 10-4    
O(s) + O3 → O2 + O2 10-4    
O(s) + O+ → O2 10-4    
O2(s) + O → O(s) + O2 6 ×10-5    
O2(s) + O* → O(s) + O2 10-4    
O2(s) + O3 → O(s) + O2 + O2 10-4    
O2(s) + O+ → O(s) + O2 10-4    
O-Si-H(s) + O → O2 + H 6 ×10-5   f) 
O-Si-H(s) + O* → O2 + H 10-4   f) 
O-Si-H(s) + O3 → O2 + O2 + H 10-4   f) 
O-Si-H(s) + O+ → O2 + H 10-4   f) 
OH-Si-O(s) + O → OH-Si(s) + O2 6 ×10-5    
OH-Si-O(s) + O* → OH-Si(s) + O2 10-4    
OH-Si-O(s) + O3 → OH-Si(s) + O2 + O2 10-4    
OH-Si-O(s) + O+ → OH-Si(s) + O2 10-4    
Dissociation of O3     
Surface(s) + O3 → Surface(s) + O + O2 0.05   h) 

a) All ions neutralize on surfaces, returning to gas phase as their hot neutral partner.  Ions and 
their hot neutral partners have the same surface reactions with the same probability.  Only 
surface reactions for ions are shown in the table.  All such reactions (with the exception of 
neutralization) should be duplicated for the ion’s hot neutral partner.  Ar2

+ is reflected from 
the surface as two Ar hot neutrals. 

b) If Eth and Er are blank, the reaction has no energy dependence and the probability of the 
reaction is a constant, p0.  If Eth and Er have non-zero values, the reaction has an energy 
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dependent probability.  When the probability of reaction is less than unity, the remaining 
probability is allocated to no energy-dependent reactions. 

c) W(s) is the ideal surface upon which the SiO2 PE-ALD is performed, it provides sufficient 
hydroxyl sites for the first-step silicon precursor dosing. 

d) The ligand group remnants R(s) during precursor dosing is addressed using co-deposition 
probability.  Extra nR voxel is deposited with the silicon, at a deposition probability pR.   

e) Oxidation probability of Si(s) is reduced to avoid the excessive oxidation when more than 
one surfaces of the Si(s) voxel is exposed to the plasma.  The adjustment is only made for 
Si(s) as it is the final product upon which a high-density reactant (O) can be deposited. 

f) The hydrogen site is removed along with the oxygen or hydroxyl sites in an sputtering and 
oxygen recombination process due to the lack of information of the neighbors of the direct 
surface reactant.  This has minor effect in the current work due to the low concentrations of 
OH-Si-H(s) and O-Si-H(s) (< 1%), and low etching probability.  One method to improve the 
accuracy of the regarding surface reactions is to check the immediate neighbors of the 
surface reactant and transfer hydrogen reminant to the nearby Si(s) or SiH(s) to form SiH(s) 
or SiH2(s) accordingly.   

g) Reaction with physical sputtering angular dependence. 
h) Surface(s) represents any solid-state surface site.  
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7.6 Figures 

 
 

 
 
 
 
 
 
 

 

Fig. 7.1 Geometry of the reactor.  500 W (10 MHz), 2 Torr, primary gas inlet: Ar/O2 (4/1), 5 slm; 
secondary gas inlet: O2, 6 slm.  
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Fig. 7.2 O2 flux, 2-dimensional distribution of electron density, O2
+ density and O- density.  500 

W (10 MHz), 2 Torr, primary gas inlet: Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm. 
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Fig. 7.3 a) Energy and angular distributions (EADs) of dominant cations Ar+ and O2
+, and radical 

O.  b) Fluxes of major species across half-wafer.  500 W (10 MHz), 2 Torr, primary gas inlet: 
Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm. 
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Fig. 7.4 a) Flowchart of SiO2 PE-ALD process and b) impact of ligand remnant on the upper 
layer of SiO2 film deposition.  
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Fig. 7.5 a) 2-dimensional film profile of the middle slice at y = 5 nm and b) 3-dimensional profile 
of the SiO2 film at the end of 5th and 10th cycle. 
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Fig. 7.6 a) O2(s) sites surface coverage ratio, b) concentrations of oxygen, silicon, vacancy and 
ligand group in entire film and oxygen to silicon ratio and c) time-averaged and instantaneous 
film growth rate using the default setup.  0.5 nm/cell, 1 nm per SiO2 layer, blanket deposition. 
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Fig. 7.7 a) 2D film profile at the end of the 10th cycle and b) 3D film profiles at the end of the 5th 
and 10th cycle when depositing in a trench of 30 nm (W) × 120 nm (H) × 10 nm (D). 
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Fig. 7.8 a) Concentrations of oxygen, silicon, vacancy and ligand group in entire film and 
oxygen to silicon ratio and c) time-averaged and instantaneous film growth rate at the bottom of 
the trench.  0.5 nm/cell, 1 nm per SiO2 layer, trench deposition. 
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Fig. 7.9 a) Energy and angular distributions (EADs) of Ar+ and O when power is 400 W and 1 
kW and b) fluxes of major species at mid-radius of wafer.  10 MHz, 2 Torr, primary gas inlet: 
Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm. 
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Fig. 7.10 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate with varying 
power.  Data are from 5th cycle.  10 MHz, 2 Torr, primary gas inlet: Ar/O2 (4/1), 5 slm; 
secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 layer. 
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Fig. 7.11 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate at the bottom of 
a trench with varying power.  Data are from 5th cycle.  10 MHz, 2 Torr, primary gas inlet: Ar/O2 
(4/1), 5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 layer. 
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Fig. 7.12 a) Energy and angular distributions (EADs) of Ar+ and O when pressure is 0.5 and 2 
Torr, b) energy distribution function of all cations and c) fluxes of major species at mid-radius of 
wafer.  500 W, 10 MHz, primary gas inlet: Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm. 
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Fig. 7.13 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate with varying 
pressure.  Data are from 5th cycle.  10 MHz, primary gas inlet: Ar/O2 (4/1), 5 slm; secondary gas 
inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 layer.  
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Fig. 7.14 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate at the bottom of 
a trench with varying pressure.  Data are from 5th cycle.  10 MHz, primary gas inlet: Ar/O2 (4/1), 
5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 layer. 
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Fig. 7.15 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate with varying co-
deposition probability pR.  Data are from 5th cycle.  500 W, 10 MHz, 2 Torr, primary gas inlet: 
Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 layer. 
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Fig. 7.16 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate at the bottom of 
a trench with varying co-deposition probability pR.  Data are from 5th cycle.  500 W, 10 MHz, 2 
Torr, primary gas inlet: Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per 
SiO2 layer. 
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Fig. 7.17 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate for blanket 
deposition with and without oxygen replacement reactions.  Data are from 5th cycle.  500 W, 10 
MHz, 2 Torr, primary gas inlet: Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 
nm per SiO2 layer. 
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Fig. 7.18 a) Concentrations of oxygen, silicon, vacancy, and ligand groups in the entire film and 
oxygen to silicon ratio, and b) time-averaged and instantaneous film growth rate in the bottom of 
a trench with varying aspect ratio from 2-8.  Data are from 5th cycle.  500 W, 10 MHz, 2 Torr, 
primary gas inlet: Ar/O2 (4/1), 5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 
layer. 
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Fig. 7.19 a) Geometry of the via and film profile at the end of the 5th cycle and b) concentrations 
of oxygen, silicon, vacancy, and ligand groups in the entire film and oxygen to silicon ratio, and 
c) time-averaged and instantaneous film growth rate in the bottom of this via with varying aspect 
ratio from 2-8.  Data are from 5th cycle.  500 W, 10 MHz, 2 Torr, primary gas inlet: Ar/O2 (4/1), 
5 slm; secondary gas inlet: O2, 6 slm.  0.5 nm/cell, 1 nm per SiO2 layer. 
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Chapter 8: Conclusions and Future Work 
 
 
 

Some of the most critical challenges in semiconductor fabrication processes involving 

low-temperature plasma are maintaining a high stability and uniformity of the plasma, increasing 

the power deposition efficiency, as well as accomplishing independent control of the plasma 

density and ion energy on the wafer.  In addition, approaches that help us to understand the 

physics in an nm-scale feature within a plasma-enhanced atomic layer deposition (PE-ALD) 

process are highly desirable in order to improve the current technology.  In this dissertation, a 2-

dimensional reactor-scale hybrid hydrodynamic simulation platform (the HPEM) and a 3-

dimensional feature-scale voxel-based model (the MCFPM) were utilized to study these 

challenges.  The insights provided in this dissertation can help further optimize the design of 

low-temperature plasma (LTP) reactors for industrial applications, and help us to understand the 

SiO2 PE-ALD process.  Summaries of each chapter are presented in Sec. 8.1.  Contributions of 

this work are described in Sec. 8.2.  Future work is discussed in Sec. 8.3. 

 

8.1 Summary 

In Chapter 1, the fundamental properties and equations governing low temperature 

plasma are introduced.  Two types of plasma source—inductively coupled plasma (ICP) and 

capacitively coupled plasma (CCP)—were reviewed.  The fabrication process of using a plasma-

enhanced atomic layer deposition (PE-ALD) technique in order to grow a thin silicon dioxide 
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(SiO2) film was reviewed.  A review and comparison of both reactor- and feature-scale plasma 

models were then presented.   

In Chapter 2, the models used in this thesis were discussed in detail.  The 2-dimensional 

reactor-scale hybrid hydrodynamic model, the HPEM, was updated and equipped with a circuit 

model to address the impedance matching network (IMN) and frequency tuning.  The eMCS 

module in the HPEM was updated with parallel computation enabled, utilizing an application 

programming interface, OpenMP, to be more computationally efficient.  The 3-dimensional 

feature scale model, the MCFPM, was updated to address steric hindrance caused by the ligand 

group remnants on a surface in the PE-ALD process. 

In Chapter 3, the uniformity of an inductively coupled plasma (ICP) powered with a 

high-low pulsed power while being sustained in an Ar/Cl2 gas mixture was investigated.  An 

upward spike of electron temperature (Te) was observed at the leading edge of the pulse; 

likewise, a downward spike was observed during power transition from high-to-low.  The 

instabilities of Te, electron density, and ion densities caused by the pulse diminish toward the 

bottom of the reactor as distance from the power source increases, due to the long transportation 

time and low power density.  This work demonstrates that a pulsed plasma is a highly dynamic 

system with strong time- and spatial-dependency. 

In Chapter 4, power deposition to an Ar/Cl2 ICP was investigated with both inductive and 

capacitive power coupling included.  The set-point impedance matching technique was then 

applied.  In an ICP, when power is mainly transferred to the plasma through electromagnetic 

fields (EM-fields) with a solenoidal electric field (E-field), plasma is in H-mode.  When the 

power is predominantly coupled to the electrons and ions near the coils through an electrostatic 

E-field, the plasma is in E-mode.  Choosing the IMN to match the early pulse promotes E-mode, 
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which assists in plasma ignition, but the tradeoff is a high reflection coefficient through the 

pulse.  In contrast, matching to the late pulse encourages H-mode and reduces the power 

reflection coefficient for the majority of a pulse, but delays the onset of the H-mode.  This 

elongates the time plasma operates in E-mode.  A severe E-mode was found to launch 

electrostatic waves to the plasma in the leading RF cycles during pulsed-on due to the oscillation 

of the sheath produced by the electrostatic field from the coil.  The implications of duty cycle 

and geometry on the impedance match were also studied.  Short duty cycle promotes the E-mode 

at the beginning of a pulse owing to the low electron density caused by the sufficient loss during 

inter-pulse period.  A big gap between coil and dielectric window produces low capacitance that 

constrains capacitive power coupling, which then weakens the E-mode and delays the onset of 

the H-mode. 

In Chapter 5, utilizing a pure Ar ICP sustained in pulsed power, two impedance matching 

techniques were investigated: the first used only a fixed impedance matching network (IMN), 

referred to as set-point matching, and the second utilized a combination of set-point matching 

with a real-time impedance matching approach (frequency tuning).  When only the IMN was 

used to match impedance, it created an impedance mismatch during other times within the pulse, 

resulting in a high power reflection coefficient and low power transition efficiency.  This 

impedance mismatch can be minimized by frequency tuning.  Matching impedance in the early 

pulse was found to be vital for plasma ignition.  An impedance matching procedure that utililizes 

set-point matching for a coarse match and then refines it using frequency tuning was proposed. 

In Chapter 6, reactor-scale modeling was used to investigate the triple-frequency, 

capacitively coupled plasma (TF-CCP) sustained in Ar/CF4/O2 mixtures.  A high frequency (HF) 

80 MHz continuous wave (CW) power was applied to the top electrode, while lower frequency 
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powers (5, and 10 MHz) were applied to the substrate.  The high frequency was found to be more 

efficient in heating electrons, due to the fact that stochastic heating is propotional to the 

frequency.  Ion energy on the substrate decreases with the increase of HF power, due to the less 

negative DC bias (-660 to -121V as power increases from 50 to 1000 W).  Increasing pressure 

results in a more collisional sheath above the substrate, which broadens the ion angular 

distribution (IAD).  Increasing HF promotes stochastic heating, which in turn causes the increase 

of plasma density in the center of the reactor.  Increasing the gap length between electrodes leads 

to a more uniform plasma distribution in the plasma bulk and a more negative DC bias.    

In Chapter 7, using integrated reactor- and feature-scale models, we examined plasma-

enhanced atomic layer deposition (PE-ALD) of a thin SiO2 film deposited on blanket, trench and 

via structures using Ar/O2 plasma as oxidation agents.  A SiO2 deposition mechanism was 

developed for the feature scale simulation.  The steric hindrance was included by depositing the 

ligand group along with the primary silicon sites at a probability pR.  Sparsely distributed 

imperfections and misalignments in the layers deposited in the early stages affected film 

deposited later in upper layers, resulting in disordered film structure.  The growth rate of the film 

decreases as it thickenes due to the increased complexity of the surface components.  Both 

oxygen radical O and excited state oxygen molecule O2
* affect film deposition on a blanket, but 

O was found to be the dominant oxidant when depositing in a trench or a via due to the 

significant impact of the conduction limit on the O2
* flux.  Varying power affects the SiO2 film 

deposition differently when the film is on a blanket, compared to in a trench, because O2
* and O 

fluxes follow different paths as the power varies.  Increasing pressure results in a more 

collisional sheath, which reduces the ion energy and consequently reduces the ion bombardment 

damages to the film.  Changing the co-deposition probability of ligand group has a similar effect 
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on the film deposition, regardless of the structure of the target feature.  Higher pR leads to lower 

film growth rate and higher vacancy concentration in the film.  Because a via has higher surface 

to volume ratio than a trench when their aspect ratio is the same, conduction limit has a more 

significant effect in a via than in a trench.   

 

8.2 Contributions 

The work in this dissertation helps us to understand the fundamental physcis in low 

temperature plasmas within industrial applications, and provides information needed to optimize 

the design of a LTP reactor and operating conditions. 

1. IMN circuit components are analytically solved for the perfect matching condition.  

Frequency tuning is implemented for real-time impedance matching.   

A new method of analyticlally solving the values of circuit components used in the IMN 

in order to create perfect matching was added to the HPEM in order to provide more accurate 

results with less time consumption.  Frequency tuning was also implemented in the HPEM to 

enable a real-time impedance matching.  Using these updates, plasma behaviors were 

investigated using different impedance matching approaches.  The results can be used to guide 

the selection of IMN to maximize power deposition efficiency while minimizing plasma 

instability.  Results that utilize frequency tuning can help with choosing frequencies to match the 

impedance at various transients during processing.  Applications using a continuously changing 

power profile, such as a sawtooth waveform, will especially benefit from real-time impedance 

matching like frequency tuning.  

2. Implementation of parallel computation in electron Monte Carlo Simulation module. 

A parallel computing technique using the application programming interface OpenMP 

was implemented into the HPEM to enable efficient modeling in electron Monte Carlo 
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Simulation module (eMCS).  In order to prevent the cross-talks between variables during parallel 

computing, variables are made thread-aware at the beginning of the eMCS.  That is, parts of each 

variable are distributed to individual threads with the thread number logged.  These threads 

perform the computation independently through the eMCS and then merge the variables back 

into their initial form at the end of executing the eMCS.  This technique prevents cross-talks 

between the parts of variables and enables independent calculations on pseudoparticles.  The 

most conspicuous acceleration was achieved when a large amout of pseudoparticles was 

launched.   

3. Integrated investigation of plasma enhance atomic layer deposition system of SiO2 film 

deposition on blanket, trench and via features. 

The reactor-scale plasma properties (e.g., electron density, ion fluxes to the wafer, ion 

energy and angular distributions, etc.) of an Ar/O2 capacitively-coupled plasma (CCP) were 

studied using a 2-dimensional hybrid hydrodynamic model (the HPEM).  The surface reaction 

mechanism of plasma-enhanced atomic layer deposition (PE-ALD) of SiO2 film was developed 

for the feature-scale investigations.  Steric hindrance was addressed by depositing the ligand sites 

along with the primary deposited silicon sites at a co-deposition probability pR.   The impact of 

microscopic parameters on film quality was investigated using the feature-scale model (the 

MCFPM).  These microscopic parameters could be controlled through varying macroscopic 

parameters, such as the input power to the plasma, pressure in the reactor, and the choice of 

silicon precursor.  Results from this work provide guidance for SiO2 PE-ALD fabrication process 

optimization and for reactor design.  Parametric studies of power, pressure, and the ligand group 

remnant co-deposition probability were performed on blanket deposition and film deposition in a 
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trench.  Impact of aspect ratio on the SiO2 film quality was explored when depositing the film in 

a trench and in a via structure. 

 

8.3 Future Work 

Reactor- and feature-scale models were updated and executed to simulate low 

temperature plasmas involved in industrial applications.  Future work that will improve the 

performance of the plasma modeling is proposed as follows: 

1. Enable neighbor checks in the MCFPM for specified reactions. 

In the current version of the surface reaction mechanism of PE-ALD for an SiO2 film, the 

deposition probability of gas-phase oxygen radical O on the silicon site Si (s) is reduced to 10-4, 

to accommodate the exposure of saturated silicons, with all of their bonds occupied.  This 

reduction of deposition probability of O on Si (s) was empirically derived and is somewhat 

arbitrary; this can be avoided if the neighbor of the surface reactant is checked to determine if 

that surface reactant is in a saturated state.  Considering that performing this check will be highly 

time consuming if it is executed every time a surface reaction occurs, some form of tag —such as 

a special number— should be given to specified reactions so that if a tagged reaction occurs, a 

neighbor check is conducted.   

2. Parallel calculation in module PCMCM. 

Like eMCS, PCMCM tracks particles (charged and neutral) using a Monte Carlo 

approach.  Because pseudoparticles are moved and tracked independently, PCMCM is also 

suitable for parallel computation.  Similar to the eMCS, parameters of pseudoparticles should be 

distributed to a number of threads and become thread-aware at the beginning of the PCMCM;  

each thread then independently moves and tracks the pseudoparticles assigned to it and returns 

the information back to the master thread at the end of the PCMCM.  Using parallel computing 
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for the PCMCM should greatly reduce the time spent in the module especially when a large 

amount of the pseudoparticles are used, for instance, when neutral energy and angular 

distribution (NEAD) are to be recorded.  

3. Implement IMN and frequency tuning for CCP reactor. 

In the current version of the HPEM, the IMN and frequency tuning are only implemented 

for the calculation in an ICP reactor.  These should also be enabled in a CCP reactor so that the 

simulation can have better agreement with the experimental results. 

4. Apply machine learning to determine optimal operating conditions for fabrication processes. 

Machine learning (ML) can be employed to help choose the optimal operating conditions 

and reduce the number of test wafers to run during process development.  Simulation results 

from models such as the HPEM and MCFPM could be used for preliminary training datasets to 

reduce the number of wafers that need to be run.  Quantifiable physics parameters such as the 

reaction probabilities for ion and radical fluxes to the wafer should be a desired outcome of the 

ML so that the results can be transferred to other system.  ML algorithm are typically based on 

describing the flux to the wafer as a function of operating conditions (power, pressure, etc.) when 

the plasma is sustained in a certain gas mixture and certain reactor.  These outcomes do not 

necessarily transfer to other systems (different gas mixture, different method of excitation).  

Building the ML algorithm to isolate physical parameters that are not functions of operating 

conditions should make the outcome of ML more broadly applicable, for example, applying to 

both ICP and CCP.    
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Appendix: Analytical Solution of Components in Impedance Matching Networks 
 
 
 

The components used in the impedance matching network (IMN) is analytically solved in 

the HPEM to provide perfect impedance matching.  The solutions of theses components are 

subjected to the choice of IMN schematic.  In the HPEM, three types of the IMNs can be used.  

The schematics of these IMNs and solutions of the components in the IMN that can produce 

perfect impedance matching are provided in this Appendix. 

A.1 IMN Type 1 

The schematic of type 1 IMN is  

 

where RG is the resistance of the power supply, Rloss is the resistance in the IMN, CP and CS are 

capacitors that are tuned to produce perfect impedanc1e matching, LS is an inductor with fixed 

user-defined inductance, ZL is the impedance of the load consisting of plasma and reactor, ZP is 

the impedance of the plasma, LT and CT are the termination components connected to ground. 

The total impedance including match box components, plasma and termination 

components is 
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loss
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j L Z j Z
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ω

= +
+

+ + +

   (A.1) 

where Re(ZL) denotes the real component of ZL and Im(ZL) is the imaginary component of ZL, ω 

is the radian frequency of the power supply, and j is the imaginary unit.  For a perfect matching, 

Z = ZG, utilizing Im(Z) = Im(ZG) provides: 
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Im( ) 1
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S S L S
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where 

  22 4 2 3
1 2 Im( )L S S LA Z L L Zω ω ω= + +       (A.3) 

  2
1 2 2 Im( )S LB L Zω ω= − −        (A.4) 

where |ZL| is the modulus of ZL.  Then by requiring Re(Z) = Re(ZG), 
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A.2 IMN Type 2 

The schematic of type 2 IMN is 
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The denotations are the same as type 1 IMN other than instead of utilizing a series inductor LS, a 

parallel inductor LP is used in the IMN.  In a type 2 IMN, the total impedance of the match box 

components, plasma and termination components is 

  1 1
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loss
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L L
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j C

Z j Zj L
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ω
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   (A.6) 

Matching Re(Z) = Re(ZG), we obtain 
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where 

{ }2 4 2 24 2 2 3 4 2
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2 2 Re( ) 2 Re( ) Im( )P L L L G loss P LB L Z Z Z Z R L Zω ω ω= − − +         (A.9) 

{ } 2
2 Re( ) Re( )G loss L LC Z R Z Z= − −          (A.10) 

Then CS is solved by matching the imaginary part of the impedance Im(Z) = Im(ZG): 
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A.3 IMN Type 3 

The schematic of type 3 IMN is  
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The denotations are the same as those used in type 1 and 2 IMNs.  However, CP and CS 

are in series in the circuit.  Constant inductor and capacitor LC and CC are added in the IMN.  In a 

type 3 IMN, the total impedance of the match box components, plasma and termination 

components is 
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  (A.12) 

Matching Re(Z) = Re(ZG), we obtain 
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Then CS is solved by matching the imaginary components of the impedances   
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