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ABSTRACT

Many trait-associated genomic loci are in non-coding regions of the genome. De-

termining which genetic variants in these regions are causally related to a trait and

elucidating their downstream effects can be difficult. Layering transcriptomic and

epigenomic data on top of genetic variation data can help nominate causal phenotype-

associated variants and generate hypotheses about their effects in different cellular

contexts.

In this thesis, I first apply RNA-sequencing (RNA-seq) and the assay for trans-

posase accessible chromatin using sequencing (ATAC-seq) to investigate gene expres-

sion and chromatin accessibility in the Danforth mouse, a model of caudal birth de-

fects. The Danforth phenotype results from an endogenous retroviral insertion near

the Ptf1a gene. I identify 49 genes differentially expressed between Danforth and

WT E9.5 tailbuds, including increased expression of Ptf1a and the nearby Gm13344

lncRNA in Danforth. A gene ontology enrichment analysis indicates differentially

expressed genes are enriched in the hedgehog signaling pathway, suggesting disrup-

tion of hedgehog signaling may cause the Danforth phenotype. I identify one region

of increased chromatin accessibility in Danforth relative to WT mice, localizing to

the Gm13344 promoter. This region is orthologous to a human PTF1A enhancer,

suggesting it may mediate Ptf1a overexpression in the Danforth mouse.

Next, I apply a software package for the quality control of ATAC-seq data (devel-

oped in our lab) to public datasets to measure heterogeneity, and analyze GM12878
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ATAC-seq data to quantify the impact of Tn5 transposase concentration and sequenc-

ing lane cluster density. I find that increasing cluster density shifts the ATAC-seq

fragment length distribution towards shorter fragments and results in greater tran-

scription start site enrichment. I show that increasing Tn5 transposase concentration

increases the enrichment of reads in enhancers and promoters, with 80% of ATAC-seq

peaks showing increased signal with increasing Tn5 concentration (5% FDR). Peaks

bound by the CTCF transcription factor are less sensitive to Tn5 concentration than

those bound by other transcription factors. This analysis demonstrates the difficulties

in reliably quantifying chromatin accessibility and utilizing public datasets.

I then apply single-nucleus ATAC-seq and RNA-seq to human and rat skeletal

muscle to generate cell type specific transcriptomic and chromatin accessibility maps.

I integrate these maps with UK Biobank genome-wide association study (GWAS)

data to explore enrichment of GWAS signals in cell type specific ATAC-seq peaks.

I demonstrate the utility of these maps by nominating causal genetic variants and

cell types at several GWAS loci, including the T2D-associated ARL15 locus. At the

ARL15 locus I nominate a credible set variant in a highly mesenchymal stem cell

specific ATAC-seq peak.

Lastly, to gain insight into the genetic regulation of chromatin architecture and

its association with aerobic exercise capacity, I analyze skeletal muscle ATAC-seq (n

= 129) and RNA-seq (n = 143) from a rat model for untrained running capacity.

Although no genes associate with running capacity at 5% FDR, a gene ontology en-

richment analysis indicates that the genes with the strongest association are enriched

in fatty acid oxidation pathways, consistent with previous findings in this rat model.

I identify no ATAC-seq peaks associated with running capacity (5% FDR) but find

4,477 ATAC-seq peaks associate with at least one SNP (5% FDR).

Together, these projects demonstrate the value of epigenomic and transcriptomic

data in the investigation of monogenic and polygenic traits, as well as the challenges
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and limitations of applying epigenomic and transcriptomic data in this context.
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CHAPTER I

Introduction

Many human diseases have a clear genetic component [218], and understanding

the genetic basis of disease is one of the primary goals of biomedical research. By

deciphering which genetic variants confer susceptibility, and why they associate with

that disease, investigators hope to gain a better understanding of the pathophysiology

of the disease, be able to predict which individuals will be most susceptible to the

disease, and determine how the disease might be treated.

1.1 Non-coding genetic variation in common polygenic traits

and disease

Recent progress in genotyping [93] and sequencing technologies [89] has substan-

tially eased the task of associating genetic variation with phenotypic variation and

disease. Dense genotyping chips enable accurate genotyping of large numbers of in-

dividuals, thereby enabling genetic variant allele frequencies to be associated with

binary and continuous traits.

The favored modern method for studying the association between genetic varia-

tion and common, polygenic traits is the genome-wide association study (GWAS).

A GWAS tests for associations between genetic variants across the genome and a

given phenotype. Modern GWAS may involve hundreds of thousands of individuals
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and tens of millions of genetic variants (generally single-nucleotide polymorphisms

(SNPs), which are relatively easy to genotype and impute) [172]. GWAS have un-

covered thousands of associations between traits and variants: as of the first quarter

of 2020, the NHGRI-EBI GWAS catalog [26] contains >100,000 variant-trait associ-

ations. Individual traits or diseases may have hundreds of associated variants, most

of which have a relatively small effect on the phenotype [172]; for example, a recent

meta-analysis of height GWAS [311] detected > 700 associated genetic loci and the

largest type 2 diabetes (T2D) GWAS to date reported > 400 independent associations

[172].

While GWAS have succeeded in identifying a large number of trait-associated

variants, interpretation of the associations has proved difficult. For many traits and

diseases, such as T2D, most associated variants are in non-coding regions of the

genome [172, 315]. The effects of these variants are often mediated by changes in

gene expression, and it is frequently unclear (1) which variant(s) at the locus are the

causal variant(s) (neighboring variants in high linkage disequilibrium (LD) with trait-

influencing SNPs are often statistically associated with the trait as well, making it

difficult to infer the causal SNPs through statistical association alone); (2) what the

proximal effects of the variant(s) are; (3) which cell type(s) and conditions the causal

variant(s) are having an effect in (non-coding regions of the genome are frequently

functional in only a subset of cell types, developmental time points, and environmental

conditions [7, 65, 184]); and (4) which gene(s) the causal variant(s) are affecting.

Because a given polygenic trait may have hundreds of associated genetic loci,

targeted experimental follow-up of individual loci is laborious and costly. Therefore,

a common strategy to nominate functional genetic variants at each locus and interpret

their effects in different cell types is to integrate genetic variation data with genome-

wide assays of molecular traits. Since it is assumed that gene expression is the vector

through which many variants affect traits, these molecular traits often capture some
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aspect of gene regulation or gene expression. This may be gene expression itself (i.e.,

some measure of the ‘transcriptome’, which is the whole of the RNA produced in

the cell), or some indicator of DNA gene regulatory function (often a dimension or

correlate of the ‘epigenome’, which refers to the whole of the chemical marks on the

DNA or on the histone proteins that form a complex with the DNA).

1.2 Chromatin accessibility as a proxy for non-coding DNA

function

One layer of information that is used to decipher the function of non-coding ge-

netic variants is chromatin accessibility data. DNA in the cell nucleus forms a complex

with histone proteins, giving rise to a higher-order structure called chromatin [167].

Chromatin structure is not uniform across the genome [149, 115]. In any given cell

type most of the chromatin is compacted tightly into a form called heterochromatin

(‘closed’ chromatin) while a small fraction of it is in a relatively decompacted form,

euchromatin (‘open’ or ‘accessible’ chromatin). Chromatin accessibility is an impor-

tant factor in gene regulation [164, 280]. Gene expression is regulated through the

interaction of transcription factor proteins (TFs) with regulatory elements encoded

in DNA such as enhancers and promoters. For a gene to be expressed, the chro-

matin at the gene’s regulatory element(s) must be accessible so that the necessary

TFs can interact with the DNA. Regions of accessible chromatin frequently corre-

spond to active or primed gene regulatory elements [280], and assaying chromatin

accessibility across the genome is therefore one common method of mapping likely

gene regulatory elements in a cell type or tissue. Chromatin accessibility covaries

with other molecular traits, including DNA methylation levels and multiple histone

modifications [103, 268, 243] which themselves are indicators of regulatory function

[243, 28, 48, 227].
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Since trait-associated genetic loci frequently lie in non-coding regions of the genome,

the causal variants at these loci are presumed to act through gene regulation and will

often be in gene regulatory elements. Determining which variants lie within acces-

sible chromatin is one method for narrowing in on the causal variants(s) at a given

locus. Furthermore, because many gene regulatory elements are cell type specific (or

only active under certain environmental conditions or at certain developmental time-

points) [280], this can provide information about the cell type or context in which

a variant is functionally relevant. This relationship between chromatin accessibility

(or other molecular marks of gene regulatory elements) and trait-associated variants

has been one of the most robust findings in the GWAS era. For example, T2D as-

sociated SNPs are highly enriched in pancreatic beta cell open chromatin/enhancers

[71, 79, 172, 208, 209, 224, 228, 281, 286, 287], and SNPs associated with many au-

toimmune disorders are enriched in immune cell open chromatin/enhancers [71, 70].

1.3 Molecular traits as mediators of genotype - phenotype

relationships

Because non-coding variants act on a phenotype via intermediate effects on fac-

tors such as regulatory element function and gene expression, profiling gene expression

and/or molecular correlates of regulatory element function can generate hypotheses

about the precise mechanisms through which causal variants impact a phenotype.

For example, if a trait-associated SNP associates with the expression of a nearby

gene (such SNPs are known as expression quantitative trait loci, or eQTL), one

possible hypothesis is that the effect of the SNP on the gene is the basis for the

SNP-phenotype relationship. As expected, GWAS signals sometimes colocalize with

eQTL [307, 104, 18, 4] or other molecular phenotype-associated variants such as chro-

matin quantitative trait loci (caQTL) [18, 4]. Furthermore, correlation between gene
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expression or chromatin accessibility and a given trait can help nominate genes or

regulatory elements that might mediate genetic effects on the phenotype. Identifying

associations between variants and molecular traits and between molecular traits and

phenotypes can help explain variant - phenotype associations.

1.4 Non-coding variation in monogenic traits and disease

As discussed above, GWAS are used to study polygenic traits and have uncovered

large numbers of phenotype-associated genetic variants, many or most of which lie

in non-coding regions of the genome and have small effect sizes. Monogenic traits

differ along each of these dimensions. Associated genetic variants are detected by

other means, and the traits usually fall under the control of single genetic variants or

mutations of large effect. Most genetic variants known to associate with monogenic

diseases are coding variants [41], and as a result non-coding variation has not been

emphasized in the study of monogenic traits to the extent that it has been in poly-

genic traits. Nevertheless, the role of non-coding variants in monogenic traits should

not be overlooked, and epigenomic and transcriptomic profiling can provide valuable

information in this context as well.

One example, related to later work in this thesis, can be found in the work of

Weedon et al. [296]. Weedon et al. utilized whole genome sequencing of individuals

with pancreatic agenesis to identify likely causal mutations, some of which clustered

in a non-coding region of the genome. Epigenomic data in human embryonic stem

cell-derived pancreatic endoderm cells suggested that these mutations were within a

pancreatic developmental enhancer, and follow-up experiments suggested that this

enhancer drives expression of the nearby PTF1A gene.

In other examples, profiling gene expression has clarified the impact of non-coding,

disease-linked variants that alter RNA splicing [152] or RNA stability [210], and chro-

matin interaction data has identified pathological re-arrangements in non-coding re-
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gions of the genome [169, 168]. Transcriptomic and epigenomic profiling are therefore

useful tools in understanding many monogenic disorders in addition to common poly-

genic traits. Data integration can help identify causal variants and resolve the path

from the causal variant to the physical manifestation of the trait or disease.

1.5 Measuring genome-wide chromatin accessibility

Because chromatin accessibility is a useful indicator of regulatory activity in a cell

type, investigators frequently wish to assay chromatin accessibility on a genome-wide

scale. Several genome-wide assays for chromatin accessibility have been developed

in the last two decades, including MNase-seq [313], DNase-seq [20], FAIRE-seq [84],

and ATAC-seq [23]. ATAC-seq is the youngest of the common methods and has

several practical advantages of the others, namely low input material requirements

and quick turnaround time [23]. In ATAC-seq, nuclei are isolated and exposed to

Tn5 transposase, an enzyme that preferentially cuts DNA where it is unprotected by

histone proteins. An adapter is appended to the cleaved DNA, generating a DNA

library in which the ends of the fragments represent genomic regions with accessible

chromatin. Sequencing this library therefore allows one to determine which regions

of the genome have accessible chromatin.

1.6 Profiling the transcriptome

Gene expression is one of the most commonly assayed molecular traits, and there

are efficient, well-developed techniques to measure it. The current dominant method

for measuring gene expression genome-wide is RNA-seq [160, 193, 191]. In RNA-

seq, RNA is isolated from a sample and reverse transcribed to DNA, which is then

sequenced. Because most RNA in the cell is rRNA [292], some form of selection

(poly-A tail capture [193, 191], or negative rRNA selection [160]) is often applied to
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enrich the captured RNA for mRNA [318] or other RNAs of interest. Sequencing the

resulting library yields a digital readout of gene expression.

1.7 Single-cell and single-nucleus assays of molecular traits

Tissues are composed of mixtures of different cell types, and even ostensibly homo-

geneous cell lines or isolated cell populations may contain individual cells at different

stages of development or in different states. Assays that are performed on bulk tis-

sue samples, such as standard ATAC-seq, essentially average over the constituent cell

types or cell states of the input sample, obscuring the heterogeneity therein. In many

contexts it is desirable to maintain and observe the per-cell heterogeneity, and as

a result the development of single-cell and single-nucleus assays, which provide per-

cell or per-nucleus readouts, has been an area of intense research in the last decade.

The first single-cell RNA-seq (scRNA-seq) paper was published eleven years ago [276]

and the technology has matured considerably since then. Single-nucleus ATAC-seq

methods are younger – the first single-nucleus ATAC-seq publications appeared in

2015 [25, 49] – but are rapidly gaining adoption. Single-cell assays have also been

developed to profile DNA methylation [92], histone modifications [119, 245], TF bind-

ing [119, 245] and 3D chromatin interactions [194, 229]. Recently, single-cell assays

jointly profiling multiple molecular traits in individual cells have been developed as

well [320, 30, 37, 44]. While these assays come with their own challenges [170], they

can provide a higher-resolution view of gene expression, chromatin accessibility, and

other molecular traits within a tissue or cell type of interest.

1.8 Thesis outline

In this thesis, I apply these assays – bulk and single-nucleus ATAC-seq and RNA-

seq – and integrate the epigenomic and transcriptomic maps with genetic data to
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examine monogenic (chapter II) and polygenic (chapters IV, V) traits in human,

mouse, and rat. In chapter II of my thesis, I apply ATAC-seq in concert with RNA-

seq to a mouse model of human birth defects to investigate the downstream effects of a

known causal genetic variant on the molecular phenotypes. In chapter III, I introduce

a software package for quality control (QC) of ATAC-seq and snATAC-seq data and

use it to survey public datasets as well as explore the effect of two technical variables

on ATAC-seq results. In chapter IV, I utilize snATAC-seq and snRNA-seq to map

the transcriptome and chromatin accessibility landscape of human and rat skeletal

muscle, integrating the results with GWAS data to nominate causal variants for type

II diabetes (T2D) and serum creatinine level. In chapter V, I apply bulk ATAC-seq

and RNA-seq to a rat model for aerobic exercise capacity to investigate correlation

between genetic variants and molecular phenotypes, as well as between molecular

phenotypes and organismal phenotypes. Together, these projects demonstrate the

value of epigenomic and transcriptomic data in the investigation of monogenic and

polygenic traits, as well as the challenges and limitations of applying epigenomic and

transcriptomic data in this context.
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CHAPTER II

Genome-Wide Chromatin Accessibility and

Transcriptome Profiling Show Minimal Epigenome

Changes and Coordinated Transcriptional

Dysregulation of Hedgehog Signaling in Danforth’s

Short Tail Mice

2.1 Abstract

Danforth’s short tail (Sd) mice provide an excellent model for investigating the un-

derlying etiology of human caudal birth defects, which affect 1 in 10,000 live births. Sd

animals exhibit aberrant axial skeleton, urogenital and gastrointestinal development

similar to human caudal malformation syndromes including urorectal septum mal-

formation, caudal regression, vertebral-anal-cardiac-tracheo-esophageal fistula-renal-

limb (VACTERL) association and persistent cloaca. Previous studies have shown that

the Sd mutation results from an endogenous retroviral (ERV) insertion upstream of

the Ptf1a gene resulting in its ectopic expression at E9.5. Though the genetic lesion

has been determined, the resulting epigenomic and transcriptomic changes driving

the phenotype have not been investigated. Here, we performed ATAC-seq experi-

ments on isolated E9.5 tailbud tissue, which revealed minimal changes in chromatin
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accessibility in Sd/Sd mutant embryos. Interestingly, chromatin changes were local-

ized to a small interval adjacent to the Sd ERV insertion overlapping a known Ptf1a

enhancer region, which is conserved in mice and humans. Furthermore, mRNA-seq

experiments revealed increased transcription of Ptf1a target genes and, importantly,

downregulation of hedgehog pathway genes. Reduced sonic hedgehog (SHH) signaling

was confirmed by in situ hybridization and immunofluorescence suggesting that the

Sd phenotype results, in part, from downregulated SHH signaling. Taken together,

these data demonstrate substantial transcriptome changes in the Sd mouse, and in-

dicate that the effect of the ERV insertion on Ptf1a expression may be mediated by

increased chromatin accessibility at a conserved Ptf1a enhancer. We propose that hu-

man caudal dysgenesis disorders may result from dysregulation of hedgehog signaling

pathways.

2.2 Introduction

The semidominant Danforth’s short tail (Sd) mutation results in severe develop-

mental abnormalities of the urogenital and gastrointestinal systems and the lower

spine. These phenotypes overlap with caudal malformation syndromes in humans,

including Currarino syndrome (OMIM #176450), urorectal septum malformation se-

quence, vertebral-anal-cardiac-tracheo-esophageal fistula-renal-limb anomalies (VAC-

TERL) association (OMIM #192350) and caudal regression syndrome (OMIM #60

0145). Caudal birth defects affect 1:10,000 live births but their genetic etiology,

intermediate molecular consequences to the epigenome and transcriptome and result-

ing pathophysiology are largely unknown [211]. The phenotypic overlap of the Sd

mouse with multiple distinct human caudal dysgenesis disorders makes it an out-

standing model to investigate the underlying etiology of human caudal dysgenesis.

Heterozygous (Sd/+) mice have a shortened tail, sacral vertebral anomalies and fre-

quent kidney anomalies but are viable and survive into adulthood [61]. Homozygous
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(Sd/Sd) mice exhibit cessation of the vertebral column at the lumbar level and com-

plete absence of the tail [61]. Urogenital defects include agenesis or hypoplasia of the

kidneys with occasional formation of the bladder and urethra and persistence of the

cloaca. Gastrointestinal anomalies include imperforate anus. Homozygous animals

are born in Mendelian ratios but are not viable beyond 24 h [61]. Sd/Sd and Sd/+

embryos are visually distinguishable from wild type (WT) embryos at E11 by caudal

truncation and hemorrhagic lesions in the tailbud [91]. Defects are apparent slightly

earlier in Sd/Sd embryos. Prior to identification of the genetic lesion, differentiation

of Sd/Sd and Sd/+ embryos could only be made by the increased phenotypic severity

in Sd/Sd mutants during gestation [86]. In 2013 our group and others identified the

Sd mutation as an 8528 bp insertion of an endogenous retroviral element (ERV) at

a point 12,463 bp upstream of the Pancreas specific transcription factor 1a (Ptf1a)

gene [290, 166, 262]. The ERV insertion results in ectopic expression of Ptf1a at E8.5

in the notochord, lateral plate mesoderm and tail mesenchyme that persists into the

caudal notochord, tailbud mesenchyme, mesonephros and hindgut of E9.5 embryos

[166]. The critical role of PTF1A in causing the Sd phenotype was demonstrated by

knockout (KO) of Ptf1a genomic sequences followed by replacement of Ptf1a coding

sequences, which resulted in attenuation and recapitulation of the Sd phenotype, re-

spectively [262]. PTF1A is a basic helix-loop-helix (bHLH) transcription factor (TF)

that is expressed in the pancreas and in neuronal progenitors in the cerebellum, hind-

brain, neural tube (NT) and retina [135, 302, 198, 85]. Null mutations in Ptf1a in

humans and mouse result in pancreatic and cerebellar agenesis [261, 136]. PTF1A

interacts with an E-box protein and RBPJ to form the trimeric PTF1 complex. PTF1

binds a bipartite cognate site including a canonical E-box motif (CANNTG) and TC-

box (TGGGAAA) [45]. PTF1 drives initial pancreatic organogenesis as well as the

specification of GABAergic neurons in the NT [136, 118, 16]. In the pancreas, PTF1

subsequently drives differentiation of mature acinar cells [302]. Masui et al. char-
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acterized a Ptf1a autoregulatory enhancer region, which contains two PTF1 motifs

located 14.8 and 13.5 kb upstream of Ptf1a [177]. Both enhancers drive LacZ ex-

pression in the dorsal and ventral pancreas and the NT [177]. NT-specific enhancers

have been identified 12.4 kb downstream of Ptf1a coding sequences [182, 187]. Two

long non-coding RNAs (lncRNAs), Gm13344 and Gm13336, have been annotated

in the genomic region surrounding Ptf1a in the mouse. Interestingly, the transcrip-

tion start site (TSS) for Gm13344 overlaps the region corresponding to the Ptf1a

13.5 kb upstream autoregulatory enhancer, while Gm13336 overlaps Ptf1a coding

sequences [177]. Our previous studies of the Sd mutation implicated ectopic Ptf1a

expression in the Sd phenotype. The genome-wide epigenome and transcriptome al-

terations induced by the Sd mutation are largely uncharacterized. To address this

issue, we measured chromatin accessibility using ATAC-seq and transcriptional pro-

files using mRNA-seq on E9.5 WT and Sd/Sd tailbuds [23, 259, 286]. We found

minimal changes to the genome-wide landscape of chromatin accessibility—only one

peak met our genome-wide 5% False Discovery Rate (FDR) threshold. Strikingly,

the peak is adjacent to the Sd insertion site, which is located at the Ptf1a 13.5 kb

upstream autoregulatory enhancer that overlaps with the Gm13344 TSS. This peak

is more open in Sd mice compared to WT. The mRNA-seq results confirmed upregu-

lation of Ptf1a and Gm13344 in Sd mutants and identified significantly (<5% FDR)

reduced expression of genes within the Hedgehog signaling pathway. In situ hybridiza-

tion confirmed downregulation of sonic hedgehog (Shh) as well as other notochordal

markers. Further, dysregulation of caudal NT patterning was observed in Sd/Sd em-

bryos, consistent with Shh downregulation. Finally, we observed increased apoptosis

in the tailbud and caudal somites. Our findings suggest that ectopic Ptf1a expres-

sion, potentially driven by increased chromatin accessibility at an upstream enhancer,

induces a cascade of transcriptional dysregulation of multiple genes in the Hedgehog

signaling pathway. We propose that ectopic Ptf1a ultimately leads to downregula-
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tion of Shh signaling, degeneration of the notochord and increased apoptosis in the

developing caudal region.

2.3 Results

2.3.1 ATAC-seq reveals localized changes in chromatin accessibility near

the Sd insertion

TF binding and chromatin accessibility are strongly coupled. Closed chromatin

and inaccessible DNA may prevent a TF from binding a target site; on the other hand,

cooperative binding of TFs, or binding of certain ’pioneer factors’, may increase or

maintain chromatin accessibility. Therefore, the over- or under-expression of TFs may

alter chromatin accessibility [141, 43, 36, 264]. Ptf1a is strongly overexpressed in Sd

mice and is a direct regulator of other TFs. The Sd insertion is located adjacent to

a Ptf1a autoregulatory enhancer region. In order to quantify changes in chromatin

accessibility in Sd mutant embryos, we performed ATAC-seq on E9.5 WT and Sd/Sd

tailbuds. We analyzed four WT and four Sd/Sd ATAC-seq libraries, pooling tailbuds

from two embryos for each library to ensure sufficient input material. ATAC-seq peak

calling identified 26,620 reproducible peaks (defined as those peaks that appear in at

least two of the eight libraries; see section 2.5). Correlation between all libraries

was high with the mean Pearson’s r = 0.84 for all pairwise comparisons (Fig. 2.1),

demonstrating the reproducibility and quality of the libraries. A differential peak

analysis uncovered little change in ATAC-seq signal genome wide, revealing only

one significantly differential peak (unadjusted P-value 2.2 × 10−7, adjusted P-value

5.8× 10−3 , 5% FDR threshold for the analysis) [165]. This peak corresponds to the

promoter of Gm13344, an lncRNA located 13.7 kb upstream of Ptf1a (Fig. 2.2A and

B; Fig. 2.3). The peak called at the Ptf1a promoter region was not significantly

different between WT and Sd/Sd E9.5 embryos at 5% FDR; however, the peak is
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skewed toward being more open in the WT (unadjusted P-value 4.5× 10−4, adjusted

P-value 0.61 Fig. 2.2B). This suggests that while there are few genome-wide changes

in chromatin accessibility in the Danforth mouse, local chromatin accessibility near

Ptf1a and the Sd insertion site is altered.

2.3.2 Gm13344 promoter is orthologous to a human pancreatic develop-

mental enhancer

The mouse lncRNA Gm13344 is not present in standard human genome anno-

tations such as Gencode and RefSeq. In a previous study, expression of a transgene

containing the Sd ERV and Gm13344 in mice did not lead to the development of

a short tail, indicating that Gm13344 overexpression alone is unlikely to cause the

Danforth phenotype [262]. LncRNAs are generally not conserved across species and

may evolve from unstable transcription of regulatory elements [295, 207]. Masui et

al. previously found that in the human genome, PTF1A binds an enhancer element

∼15 kb upstream of the PTF1A gene containing two PTF1A motif matches that are

conserved in mouse (Fig. 2.2A, 2.3) [177]. Interestingly, the orthologous mouse Ptf1a

binding sites occur near the Gm13344 promoter, suggesting that the mouse Gm13344

lncRNA promoter may be functionally comparable to the human enhancer. In order

to determine whether this human enhancer is active during pancreatic development,

we uniformly processed and analyzed publicly available ChIP-seq data for H3K4me1, a

histone mark that colocalizes with enhancers, from developing human pancreatic cells

and other control tissues (control tissues downloaded from Roadmap Epigenomics)

[296, 100, 140]. Developmental pancreas H3K4me1 data show a clear H3K4me1 peak

at the enhancer, consistent with the enhancer being active during human pancreatic

development. (Fig. 2.2C). Notably, H3K4me1 ChIP-seq data from other tissues and

time points display lower signal in the region orthologous to the mouse Gm13344 pro-

moter (Fig. 2.2D). Collectively, these results suggest that the Sd -insertion-mediated
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Figure 2.1 Correlation between ATAC-seq libraries. Correlation in the ATAC-seq
peak signal between ATAC-seq libraries. Read counts in the 26,620 ATAC-seq peaks
were converted to log(RPKM) units and the correlation between libraries calculated
and plotted. Correlation values represent Pearson’s r.
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Figure 2.2 Chromatin accessibility and transcriptome changes occur at the Ptf1a
locus of Sd/Sd mutant embryos. (A) UCSC Genome Browser [122] (http://geno
me.ucsc.edu) displaying ATAC-seq (orange) and RNA-seq signal (blue) near the Sd
insertion (denoted by the vertical black line), Ptf1a and Gm13344, for one WT and
one Sd/Sd library. Previously characterized PTF1A binding sites are denoted by
vertical black lines near the Gm13344 promoter and intron. (B) Volcano plot for
ATAC-seq data (n = 4 libraries per genotype). The gene represented by the nearest
TSS for the significantly differential peak is indicated, as is the peak representing
the Ptf1a promoter. Red dots denote significance at FDR <5%. (C) ChIP-seq data
from [296], indicating a peak above the human region orthologous to the Gm13344
promoter. (D) The ChIP-seq signal for H3K4me1 in developing pancreas (from [296])
is greater than the signal in other tissues/at other time points. (E) Volcano plot for
RNA-seq data (n = 3 libraries per genotype).
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Figure 2.3 Gene expression and chromatin accessibility near the Sd insertion. UCSC
Genome Browser [122] (http://genome.ucsc.edu) displaying ATAC-seq (orange) and
RNA-seq signal (blue) near the Sd insertion, Ptf1a, and Gm13344, for all 8 ATAC-seq
and all 6 RNA-seq libraries. The vertical yellow highlight represents the differential
peak.
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increase in chromatin accessibility at the Gm13344 promoter acts as an enhancer for

Ptf1a in E9.5 mice, and transcription of the lncRNA is at least partially a byproduct

of this regulatory activity.

2.3.3 mRNA-seq reveals misexpression of PTF1A target genes

To determine which genes show evidence of misregulation in Sd mutant embryos

at E9.5, we performed mRNA-seq on three WT and three Sd/Sd E9.5 tailbud libraries

(samples were pooled as necessary for sufficient input material to each library; see

section 2.5). We performed differential gene expression analysis and found 49 genes

to be significantly differentially expressed (5% FDR; Figs. 2.2E and 2.4). Several

of the differential genes discovered by mRNA-seq recapitulate previous findings. As

expected, Ptf1a showed almost no expression in WT tailbuds but strong expression

in Sd/Sd tailbuds (Figs. 2.2A and 2.4, 2.3). Similarly, Gm13344, the lncRNA up-

stream of Ptf1a, showed almost no expression in WT tailbuds but strong expression

in the Sd mutant samples, consistent with previous reports (Figs. 2.2, 2.4, 2.3) [262].

Carboxypeptidase A1 (Cpa1 ), previously found to be underexpressed in E10.5 Ptf1a

KO mice, is overexpressed in Sd mutant tailbuds (Fig. 2.4) [279]. We found Foxa1 to

be downregulated in Sd mutant samples (Fig. 2.4), consistent with the upregulation

of Foxa1 in Ptf1a KO mice [279]. Foxa2 also trended toward downregulation in Sd

mice, although the adjusted P-value did not reach statistical significance (unadjusted

P-value 2.0 × 10−4 , adjusted P-value 0.066) (Fig. 2.4). Two of the most strongly

upregulated genes in Sd/Sd tailbuds were Kirrel2 and Nphs1 (Figs. 2.2E and 2.4),

which share a bidirectional promoter to which Ptf1a is known to bind at later time

points in NT and pancreas [183]. Aplp1, positioned directly downstream of Kirrel2,

is similarly upregulated in Sd mutant samples (Fig. 2.4). mRNA-seq also revealed

upregulation of Sox8 in Sd mutant tailbuds (Fig. 2.4). SOX8 is a high mobility

group TF that functions redundantly with SOX9 and SOX10 in neural crest devel-
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Figure 2.4 Ectopic Ptf1a expression drives global transcriptomic changes within
Sd/Sd embryo tailbud. Heatmap displaying normalized expression and −log10(p) for
differentially expressed genes. Several genes that did not meet the threshold of <5%
FDR but are of interest due to their known expression in the tailbud or notochord,
including Wnt3a, Cyp26a1, Cdx2, T, Foxa2 and Noto, are included at the bottom
of the heatmap. P-values are from the differential gene expression analysis with
DESeq2[165].

opment and its expression precedes that of SOX9 and SOX10 [199]. No significant

differences in the caudally expressed genes Wnt3a, Cyp26a1 and Cdx2 were identified

in Sd mutant samples in our mRNA-seq data (Fig. 2.4).

2.3.4 Whole mount in situ hybridization analysis validates mRNA-seq

expression changes

To confirm expression changes in Sd mutant tailbuds identified by mRNA-seq

analysis, we used whole mount in situ hybridization in E9.5 embryos. These studies
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confirmed ectopic expression of Ptf1a in the tailbud of E9.5 Sd/+ and Sd/Sd em-

bryos (Fig. 2.5). The ectopic Ptf1a expression was stronger in homozygous mutants

compared to Sd/+ embryos, and appeared highest in the presomitic mesoderm with

lower levels in the notochord in the anterior thoracic region. In addition, we found

increased expression of Gm13344 in the tailbud of Sd/+ and Sd/Sd embryos (Fig.

2.5). We also found upregulated expression of Kirrel2 (Fig. 2.6A–C) in Sd/+ and

Sd/Sd mutants, as identified by mRNA-seq. Foxa1 expression was clearly reduced in

Sd/Sd embryos (Fig. 2.6D–F), in accord with our mRNA-seq data. Foxa2 expression

was also reduced in the tailbud by whole mount in situ hybridization (Fig. 2.6G–I).

Although the unadjusted P-value for Foxa2 was significant in the mRNA-seq analysis,

it did not survive genome-wide multiple testing correction using 5% FDR. This could

be due to the relatively small proportion of Foxa2 -expressing cells in the tailbud [2].

We also examined expression of the T-box TF brachyury (T ) in the tailbud of Sd/Sd

embryos. T is expressed in notochord-derived cells and is required for notochord

development, mesoderm differentiation and development of structures posterior to

the forelimb level in mouse embryos [57, 257, 306]. We found that T expression was

unaffected in the tailbud of Sd mutant embryos, although reduced expression was

observed in the more anterior part of the notochord of Sd/Sd embryos (Fig. 2.6J–L),

which correlates with our mRNA-seq data (Fig. 2.4). Noto, a Not family home-

obox gene, is expressed in the WT mouse tailbud and is essential for proper caudal

notochord function [2]. We did not detect Noto expression in the tailbud of Sd/Sd

embryos, and expression was decreased in the Sd/+ embryos (Fig. 2.6M–O), which

could indicate suppression of its expression, since T expression indicates the presence

of the caudal notochord in Sd/Sd embryos at this timepoint.
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Figure 2.5 Whole mount in situ hybridization shows ectopic Ptf1a expression. (A-C)
Whole mount in situ hybridization with Ptf1a antisense probe in E9.5 WT, Sd/+, and
Sd/Sd embryos. (D-I) Whole mount in situ hybridization with Gm13344 antisense
probe in E9.5 embryos and tailbuds.
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Figure 2.6 Whole mount in situ hybridization confirms transcriptomic changes in
Sd/Sd embryos. Whole mount in situ hybridization with antisense probes for Kirrel2
(A–C), Foxa1 (D–F), Foxa2 (G–I), T (J–L) and Noto (M–O) in E9.5 WT, Sd/+
and Sd/Sd embryos. Arrow heads (A–C) and asterisks (D–F) indicate increased and
decreased, respectively, expression patterns in the tailbud of Sd/Sd embryos. Solid
lines indicate staining within the tailbud (G, H, J, K, L, M, N) and dashed lines (I,
O) indicate extent of reduced staining in Sd/Sd tailbuds. N ≥ 3 for each genotype
per probe.
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2.3.5 Pathway analysis shows dysregulated hedgehog signaling

To determine which developmental signaling pathways are disrupted in Sd mutant

tailbuds, we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

way enrichment analysis using the P-values of all genes included in the differential

gene expression analysis. Several pathways related to cellular adhesion and migration

show significant enrichment for disrupted gene expression (Fig. 2.7A). Interestingly,

the only developmental pathway to show significant enrichment for altered gene ex-

pression was the Hedgehog signaling pathway (Fig. 2.7A). Shh and Indian Hedge-

hog (Ihh) are two of the most strongly downregulated genes in Sd mutant samples

(Fig. 2.4A), and in total seven genes annotated to hedgehog signaling show an un-

adjusted P-value for differential expression of <0.05 [Shh (P = 4.43 × 10−14), Ihh

(P = 6.62 × 10−10), Gli1 (P = 0.018), Gli3 (P = 0.019), Ptch1 (P = 0.021), Ptch2

(P = 0.002), Bmp4 (P = 0.006)] with changes in the direction expected for down-

regulation of this pathway. Whole mount in situ hybridization confirmed that Shh

expression was absent in the tailbud of Sd/Sd embryos at E9.5, and its expression

decreased in a reciprocal manner to the ectopic expression of Ptf1a in the tailbud

(Fig. 2.7B–D). NKX2.9 is a homeobox TF expressed in close proximity to SHH in

NT structures along the entire neuraxis and is regulated by SHH [205, 206]. Nkx2.9

expression was significantly reduced in Sd/Sd embryos by mRNA-seq and confirmed

by whole mount in situ hybridization (Fig. 2.4A and Fig. 2.7E–G). Gli1, a major

downstream effector of SHH signaling, was reduced by LacZ staining in mice from a

cross between Sd/+ and Gli1 -LacZ reporter mice (Fig. 2.7H, I) in accordance with

SHH downregulation.

23



Figure 2.7 KEGG pathway analysis of Sd/Sd embryos identifies dysregulated SHH
signaling. (A) Volcano plot for enrichment of disrupted gene expression in KEGG
pathways. Notable developmental signaling pathways are labeled. Hedgehog signaling
is the only developmental signaling pathway showing enrichment for differential gene
expression. (B–D) Whole mount in situ hybridization with Shh and Nkx2.9 (E–G)
antisense probes in E9.5 WT, Sd/+ and Sd/Sd embryos. Dashed lines in C, F, D and
G indicate extent of reduced staining in Sd/+ and Sd/Sd tailbuds, respectively. (H, I)
X-gal staining of E10.5 WT and Sd/+ embryos from a cross between Sd/+ mice and
Gli1-lacZ reporter mice. White dashed line in tailbud enlargement (I) shows extent
of reduced lacZ reporter gene expression in the tailbud of Sd/+ embryo. N ≥ 3 for
each genotype of stained embryos.
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2.3.6 The absence of Shh results in aberrant caudal NT patterning in

Sd/Sd embryos

We hypothesized that dysregulation of SHH signaling in developing Sd mutant

embryos would result in aberrant NT patterning. To test this hypothesis, we con-

ducted immunofluorescence experiments on E10.5 WT, Sd/+ and Sd/Sd mice. Em-

bryos were sectioned in the transverse plane through the NT and notochord at the

level of both the forelimb and hindlimb bud. Staining with an antibody against

SHH revealed aberrant notochordal morphology in Sd/+ embryos and absence of

the notochord in Sd/Sd embryos (Fig. 2.8A–F). Floorplate expression of SHH was

maintained throughout Sd/+ embryos; however, it was lost at the hindlimb level of

Sd/Sd embryos. Floorplate-derived SHH is induced following FOXA2 initiation in

the floorplate by notochordal-derived SHH [299, 66, 109, 161, 240]. Thus, SHH loss

in the floorplate is likely due to the downregulation of FOXA2 in the floorplate (Fig.

2.8G–L, E’, F’). Ventralization of the NT relies on SHH signals; thus, loss of the V3

domain marker NKX2.2 in the Sd/Sd hindlimb NT is consistent with SHH loss (Fig.

2.8M–R, G’, H’) [21]. Interestingly, the more widely expressed marker NKX6.1 is

expressed but ventrally constricted in Sd/Sd mutant embryos (Fig. 2.8S–X). Consis-

tent with the loss of SHH signaling from the floorplate and notochord, the dorsally

restricted TF PAX6 exhibits ventral expansion at the hindlimb level of Sd/Sd em-

bryos (Fig. 2.8Y–D’). Reduced expression of ventral markers as well as expansion

of dorsal NT markers at the hindlimb level in the NT of Sd/Sd embryos indicates

the notochord of Sd/Sd mutant embryos degenerates before correct patterning of the

presumptive floorplate can be established.

2.3.7 Sd mutant embryo exhibit increased apoptosis in the tailbud

Previous studies have revealed hemorrhaging within the regressing tailbud of E12.5

Sd mutant embryos; however, degeneration of the tailbud in Sd mutant embryos has
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Figure 2.8 Immunofluorescence staining confirms dysregulated SHH expression in
Sd/Sd embryos and identifies aberrant NT patterning. Immunofluorescence studies
of SHH expression (green) in WT, (A, D) Sd/+, (B, E) and Sd/Sd (C, F) embryos
as well as downstream targets FOXA2, (G–L) NKX2.2, (M–R) NKX6.1 (S–X) in
transverse forelimb (top pane) and hindlimb (bottom pane) sections. Dorsal marker
PAX6 (Y–D’) indicates the competing WNT/BMP gradient. Enlarged FOXA2 (E’,
F’) and NKX2.2 (G’, H’) floorplate images of WT (J, P) and Sd/Sd (L, R) hindlimb
images, respectively. (I’) WT expression domains of these TFs. All sections co-stained
with DAPI for histological reference (blue). Dashed line indicates ventral border of
NT. N ≥ 3 for each genotype per antibody.
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Figure 2.9 Sd/Sd tailbuds exhibit gross hematomas and increased apoptosis. WT
(A), Sd/+ (B) and Sd/Sd (C) tailbuds imaged immediately following dissection in
PBS. Hematoma is evident in Sd/Sd embryo tailbud. Increased apoptosis was ob-
served by immunofluorescence staining for Caspase 3 (green) in Sd/Sd tailbud (F)
compared to WT (D) and Sd/+ (E) tissues. All sections co-stained with DAPI (blue).
N ≥ 3 for each genotype.

not been closely investigated [86]. No visible phenotypic differences were apparent at

E9.5. However, we found that hematomas are clearly evident in Sd/Sd embryos at

E10.5, which likely give way to severe hemorrhaging as development progresses (Fig.

2.9A–C). Further investigation of the tailbud degeneration using immunofluorescence

with an antibody to cleaved Caspase 3 revealed increased apoptosis in Sd/Sd tailbud

tissues relative to WT and Sd/+ littermates (Fig. 2.9D–F). Increased apoptosis could

be a result of loss of hedgehog patterning from the notochord in Sd/Sd embryos

[197, 263, 294, 319, 35].
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2.4 Discussion

Our group and others previously identified the Sd mutation as an ERV insertion

upstream of Ptf1a that leads to its ectopic expression during caudal development,

resulting in the Sd mutant phenotype [290, 166, 262]. The underlying mechanisms

that lead to upregulation of Ptf1a and the downstream developmental pathways dys-

regulated by ectopic Ptf1a expression were not previously determined. In the current

study, we used ATAC-seq to analyze genome-wide chromatin accessibility and mRNA-

seq to gain additional insight into these underlying mechanisms. Our ATAC-seq data

showed a significant change in chromatin accessibility near the Ptf1a genomic locus,

mapping to the promoter region of Gm13344, an lncRNA that has been annotated

in the mouse genome. This lncRNA overlaps with a previously characterized au-

toregulatory enhancer of Ptf1a [177]. According to our mRNA-seq data, Gm13344 is

transcribed and overexpressed in Sd/Sd tailbuds relative to WT tailbuds. Previous

studies also detected overexpression of Gm13344 in Sd mutant embryos, although a

transgene containing the Sd ERV and Gm13344 without Ptf1a did not recapitulate

the Sd phenotype, while a transgene containing the Sd ERV and Ptf1a did recapitu-

late some, but not all, of the Sd phenotype [262]. We previously generated a transgene

containing 31.9 kb of genomic sequence surrounding Ptf1a with and without the Sd

ERV, which did not recapitulate the Sd phenotype [290]. This transgene contained

part of the Gm13344 sequence, including the PTF1A binding sites. The discrepancy

between these transgene experiments suggests that the genomic regulatory context

is critical for appropriate localization of ectopic Ptf1a expression and may have been

strongly influenced by positional integration effects of the transgenes. Thus, the exact

effects of Gm13344 on the Sd phenotype are not known. We found no evidence of an

annotated human lncRNA that is orthologous to the mouse Gm13344 lncRNA. How-

ever, the promoter region is conserved in humans and maps to a region that contains

high H3K4me1 signal in developing pancreas relative to other tissues, including adult
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pancreas [296]. This finding suggests that the enhancer properties of the Gm13344

orthologous promoter sequence in humans are conserved. Our results suggest that

the genomic sequence corresponding to the Gm13344 promoter in mouse functions

as an enhancer, consistent with previous studies, and the resulting RNA produced

from Gm13344 is a byproduct of this enhancer activity, as has been shown for other

developmentally regulated genes [177, 207, 145]. In addition, we speculate that it is

the combination of TFs binding to the Sd ERV and the Gm13344 enhancer region

that is required for the tissue and temporal specificity of ectopic Ptf1a expression in

Sd mutant embryos. A corollary of this hypothesis is that ectopic Ptf1a feeds into

this autoregulatory loop to further increase ectopic Ptf1a expression. One intriguing

question that remains unanswered is the mechanism underlying the exquisite speci-

ficity of ectopic Ptf1a expression in the tailbud. We speculate that this could either be

due to sequences within the ERV that direct expression of Ptf1a in combination with

Gm13344 enhancer sequences, or due to enhancer sequences within the surrounding

genomic region, possibly within the TAD containing Ptf1a, that form a regulatory loop

to direct this tailbud specificity. 4C-seq or Capture C experiments could shed light

on this question in the future [50, 56]. Our transcriptome analysis revealed 49 genes

with significant differential expression at 5% FDR. As expected, Ptf1a and Gm13344

were significantly upregulated, as were known PTF1A downstream targets, including

Kirrel2, Nphs1 and Cpa1. Kirrel2 and Nphs1 share a bidirectional promoter, which

contains known PTF1A binding sites. They were originally identified as components

of the interdigitating podocyte foot processes of the glomerular filter but are also ex-

pressed in the developing nervous system [242]. Expression of both Kirrel2 and Nphs1

are lost in Ptf1a null mice, while forced expression of Ptf1a in the cerebral cortex in-

duced ectopic expression of both genes [196]. Therefore, the transcriptomic changes

we identified were widespread but characterized by expected changes due to upreg-

ulation of Ptf1a expression. It is notable that a considerable number of genes were
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differentially expressed while only a single region of differential chromatin accessibil-

ity was identified. Chromatin accessibility can be an important factor in regulating

gene expression, but there are many other factors (such as miRNA binding, mRNA

stability/degradation and TF availability) and the correlation between chromatin ac-

cessibility and gene expression is known to be poor [20]. Changes in TF binding at

a promoter can often occur without changes in the ATAC-seq signal; recent work

shows that the majority of TFs do not have a noticeable impact on chromatin open-

ness [11]. As Ptf1a overexpression does not lead to extensive changes in chromatin

accessibility, we speculate that PTF1A is one such TF. Given the above findings, it is

unsurprising that many changes in gene expression occur in the absence of changes in

chromatin accessibility. One of the most striking findings revealed by our mRNA-seq

analysis was that the hedgehog signaling pathway is altered in Sd mutant embryos.

Both Shh and Ihh were significantly downregulated, and KEGG pathway enrichment

analysis revealed the Hedgehog pathway as significantly dysregulated compared to

other known developmental signaling pathways. These findings were confirmed by in

situ hybridization analysis with Shh, as well as a cross of Sd/+ mice to the Shh re-

porter strain Gli1 -LacZ, which revealed decreased β-galactosidase expression in Sd/+

tailbuds. We also confirmed reduced expression of Nkx2.9 and Foxa2, which are reg-

ulated by SHH along the neural axis [110]. Our mRNA-seq data did not demonstrate

significant differences in expression of Cdx2, T, Wnt3a and Cyp26a1, and the KEGG

pathway enrichment analysis did not identify the Wnt or Retinoic acid signaling path-

ways as being significantly dysregulated. Because T is expressed in notochord-derived

cells and is required for notochord development, we performed in situ hybridization

analysis for T expression [306, 101, 213]. While we did observe reduced T expres-

sion in the anterior notochord in Sd/Sd embryos, expression of T in the tailbud was

unchanged. Although our data conflict with a previous study, our analysis of tailbud

tissue and use of more specific methodology (RNA-seq and in situ hybridization com-
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pared to quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR)

in RNA from whole embryos) could explain this apparent discrepancy [262]. While

our use of tailbud tissue for our analyses is limited by the heterogeneous nature of the

tissue, our rationale was to enrich for the entire region of ectopic Ptf1a expression.

Although this reduces our statistical power to detect differential expression of genes

expressed in only a small subset of cells within the tailbud, such as Foxa2, our use

of additional qualitative methods to evaluate changes in gene expression, such as in

situ hybridization and immunofluorescence, minimizes these concerns. We observed

increased expression of Lfng in Sd/Sd tailbuds by mRNA-seq. Lfng is a downstream

effector of Notch1 signaling. Although RBPJ is an integral component of the PTF1

complex, its expression was unchanged in Sd mutant tailbuds (unadjusted P-value =

0.56), and the Notch signaling pathway was not found to be dysregulated by KEGG

pathway analysis. Since different E-box proteins are used as the third component

of PTF1 complex depending on the context, it is difficult to predict which E-box

proteins might be dysregulated in Sd mutant embryos. In addition to T, we also

examined expression of Noto as a marker of notochord expression [2, 217, 180]. Not

surprisingly, we found that Noto expression was absent in the caudal notochord of

Sd/Sd embryos. It is possible that the absence of Noto expression is due to degen-

eration of notochord cells in this region. However, the persistence of T expression in

the caudal notochord suggests that Noto expression is suppressed either directly or

indirectly by ectopic Ptf1a. FOXA2 induces Shh expression in both notochordal and

floorplate tissues, and importantly, floorplate-derived SHH is sufficient to pattern the

NT [299, 66, 109, 161, 240, 8]. Immunofluorescence staining through the transverse

plane of forelimb and hindlimb level NT revealed normal expression of SHH in the

floorplate of Sd/+ embryos, which is sufficient to correctly maintain the expression

domains of FOXA2, NKX2.2, NKX6.1 and PAX6 in the E10.5 NT, despite aberrant

notochord morphology and reduced SHH signaling from this organizing tissue. Sim-
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ilarly, in Sd/Sd mutant embryos, normal expression of SHH from the floorplate is

sufficient to pattern the NT, however, only at the forelimb level. In Sd/Sd embryos,

SHH is completely absent from the presumptive floorplate at the hindlimb level and

as a result, dorsal NT TF domains of FOXA2, NKX2.2 and NKX6.1 are reduced,

and expression of the ventrally constricted TF PAX6 is expanded dorsally. Taken

together, these experiments demonstrate that dysregulated SHH signaling adversely

affects patterning of the NT in Sd/Sd embryos. If dysregulated SHH signaling drives

the Sd phenotype, then the increased phenotypic severity of Sd/Sd embryos could

result from the degeneration of the notochord before redundancy between the floor-

plate and notochord has been established in the caudal Sd/Sd embryo. Numerous

published studies in mouse models have demonstrated that caudal and urogenital mal-

formations resembling the malformations observed in Sd mutants can be secondary to

disrupted SHH signaling. The Shh KO mouse [38] exhibits abnormal axial structures

including the floorplate, ventral NT and sclerotome. Additional mouse models with

disrupted SHH signaling have been demonstrated to have phenotypes of anorectal,

renal and vertebral malformations that are observed in Sd mutant mice, resembling

VACTERL association [186, 128, 127]. Runck et al. [247] studied cloacal develop-

ment in Shh KO mice and in human patients with cloacal malformations and found

striking similarities between the two. KO of Shh in the notochord or floorplate using

either ShhCreERT2 or Foxa2CreERT2 mice exhibits a phenotype that is strikingly

similar to Sd mutant mice only in the notochord KO [40]. KO of both Foxa1 and

Foxa2 in the notochord results in severe defects in formation of the axial skeleton

and dorsal–ventral patterning of the NT secondary to reduced Shh expression [173],

also phenocopying Sd mutant mice. Finally, in vivo knockdown of T in the noto-

chord results in reduced Shh expression in the notochord and also phenocopies the Sd

mutant phenotype [213]. Thus, the caudal phenotype observed in Sd mutant mice is

consistent with previous reports of disrupted SHH signaling in the notochord. Col-
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lectively, our results show that the Sd insertion leads to widespread transcriptional

dysregulation of the hedgehog developmental signaling pathway. The effect of the

Sd insertion may be mediated by a nearby conserved Ptf1a autoregulatory enhancer,

which shows increased chromatin accessibility in Sd mutant mice. More generally,

our results suggest a cascade of molecular events where a single non-coding regulatory

mutation propagates to perturb a critical signaling pathway. Further, our findings

suggest that regulatory mutations in hedgehog signaling pathway genes could explain

some human caudal malformations without known genetic etiologies. Future studies

of viable mouse models, such as the Sd mouse, with alterations in SHH signaling, will

be critical to dissecting the timing and impact of key molecular events and will help

to further our understanding of human caudal malformations.

2.5 Methods

2.5.1 Animals

All animals were housed in environmentally controlled conditions with 14 h light

and 10 h dark cycles with food and water provided ad libitum. All protocols were

approved by the Institutional Animal Care & Use Committee at the University of

Michigan and comply with policies, standards and guidelines set by the State of

Michigan and the United States Government. Sd/+ animals were maintained on an

outbred CD-1 background (Charles River Laboratories, Wilmington, MA).

2.5.2 Timed pregnancies

Matings for timed embryo isolation were set up using standard animal husbandry

techniques. Noon on the day of vaginal plug observation was considered E0.5. Em-

bryos were isolated at E9.5 - E10.5. Yolk sac DNA was isolated via the HotSHOT

extraction method for genotyping. Genotyping was performed as previously described
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[290]. For RNA-seq and ATAC-seq, embryo tailbuds were dissected just prior to the

terminal somite, snap frozen in liquid nitrogen and stored at -80◦C.

2.5.3 mRNA-seq experiments

RNA was collected from the tailbuds using a dounce homogenizer and RNAeasy

mini extraction kit (Qiagen, Hilden, Germany). First, samples were placed into a

dounce homogenizer with 350 ul of RLT buffer and homogenizing with five strokes.

The extraction procedure was followed as specified by the kit, including the optional

DNAse treatment. Samples were eluted in 35 ul of RNAse free water. Libraries were

prepared at the University of Michigan DNA Sequencing Core using the Illumina

TruSeq stranded mRNA-seq kit.

2.5.4 ATAC-seq experiments

All procedures were done at 4◦C to minimize degradation of nuclei, and following

the previously published protocol except as noted here [23]. Each tailbud was dis-

rupted in 200 ul of NIB with 0.5% Triton-X buffer by pipetting up and down. Then

the samples were spun, supernatant removed and was followed by a second wash with

RSB buffer. Each pellet of nuclei was then transposed using a home-made Tn5 en-

zyme [259, 214]. After 30 min of incubation at 37◦C, each sample was cleaned up

with MinElute PCR purification kit (Qiagen, Hilden, Germany).

2.5.5 Sequencing data

Libraries were multiplexed and sequenced on an Illumina HiSeq 2500 instrument.

All raw and processed data have been deposited to Gene Expression Omnibus under

the accession GSE108804.
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2.5.6 ATAC-seq data processing

Adapters were trimmed using cta (v. 0.1.2). Reads were aligned to mm9 us-

ing bwa mem (v. 0.7.15-r1140; flags: -M) [156]. Picard MarkDuplicates (v. 2.8.1;

http://broadinstitute.github.io/picard) was used for duplicate removal (op-

tions: VALIDATION STRINGENCY = LENIENT) and samtools (v. 1.3.1) was

used to filter for autosomal, properly paired and mapped read pairs with mapping

quality ≥ 30 (samtools view -b -h -f 3 - F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30)

[157]. Peak calling was performed using MAC2 callpeak (v. 2.1.1.20160309; options:

– nomodel –broad –shift -100 –extsize 200 –keep-dup all) [316]. Peaks were filtered

against a blacklist (downloaded from http://mitra.stanford.edu/kundaje/akund

aje/release/blacklists/mm9-mouse/mm9-blacklist.bed.gz). For figures display-

ing ATAC-seq coverage, we normalized the signal to account for differences in library

size. This was done by dividing each line in the ‘treat pileup’ bedgraph files gener-

ated during peak calling with MACS2 by the number of tags in the treatment (‘total

tags in treatment’ as output by MACS2) and multiplying by 10 million. The bed-

graph files were then converted to bigwig format using bedGraphToBigWig (v. 4)

[123]. ATAC-seq quality control was performed using ataqv (v. 1.0.0) [202]. The

resulting interactive HTML quality control report is available at https://theparke

rlab.med.umich.edu/data/porchard/qc/danforth ataqv master peaks/. To gen-

erate this report, we used the list of peaks used for differential peak calling, the TSS

file (mm9.tss.refseq.housekeeping.ortho.bed.gz in the ataqv GitHub repository and

the mm9 blacklist that was used for peak filtering).

2.5.7 Differential peak calling

The list of reproducible peaks for downstream analysis was generated by taking

the union of all 5% FDR broad peaks across all eight samples, and keeping the union

peaks that overlapped with 5% FDR peak calls from at least two of the eight ATAC-
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seq libraries. We additionally tested two alternate thresholds, keeping only the union

peaks that overlapped with 5% FDR peak calls from at least three or four of the eight

ATAC-seq libraries, rather than from at least two; these alternate thresholds similarly

resulted in only a single differential peak, the same peak identified using our selected

threshold. Differential peak calling was performed across all the replicates using

DESeq2 (v. 1.14.1) [165]. Read counts for each sample and each peak were collected

using bedtools’ coverageBed (v. 2.26.0; coverageBed -counts) [225]. The number of

somites in each sample was used as a covariate (in the case that the sample consisted

of pooled embryos, the number of somites for the sample was set to the mean number

of somites in the embryos). Differential peaks were called at 5% FDR.

2.5.8 RNA-seq processing and differential gene expression analysis

Reads were aligned to mm9 (Gencode vM1 comprehensive gene annotation) using

the STAR splice-aware aligner (v. 2.5.2b; – outSAMUnmapped Within KeepPairs)

[3, 58, 59]. Aligned reads were filtered to autosomal reads with mapping quality

255 (samtools view -b -h -f 3 -F 4 -F 8 -F 256 -F 2048 -q 255). We used QoRTs

(v. 1.0.7) to gather read counts per sample per gene for differential gene expression

analysis [96]. Differential gene expression analysis was performed using DESeq2 (5%

FDR); only genes with at least one read in at least one library were included (i.e.

we excluded those genes that were completely unexpressed in all libraries). The

number of somites in each sample was used as a covariate. For figures displaying

RNA-seq coverage, we normalized the signal to account for differences in library size.

To do this, the filtered RNA-seq BAM files were converted to wiggle format using

QoRTs’ bamToWiggle (with options –negativeReverseStrand –stranded –sizefactor

XXX), where XXX represents the corresponding sample’s size factor (from QoRTs

function get.size.factors).
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2.5.9 GO enrichment

Gene Ontology (GO) enrichment analysis using the P-values for all genes included

in the differential gene expression analysis was performed using RNA-Enrich (with

the KEGG database; code downloaded from supplemental materials of [148]. Gene

sets with less than five genes or more than 500 genes were excluded from the analysis;

otherwise, default parameters were used. The ‘baseMean’ column in the DESeq2

differential gene expression output, representing the gene-wise average read count

across samples after normalizing for sequencing depth, was used as the ‘avg readcount’

values for RNA-Enrich.

2.5.10 ChIP-seq processing

We aligned the Weedon et al. [296] and Roadmap Epigenomics [140] ChIP-seq

data using bwa aln (default parameters). All reads were trimmed to 36 bps (us-

ing fastx trimmer from FASTXtoolkit v0.0.14; http://hannonlab.cshl.edu/fastx

toolkit) to prevent read length from confounding comparisons. Picard MarkDu-

plicates was used for duplicate removal (options: VALIDATION STRINGENCY

= LENIENT) and samtools was used to filter to autosomal, properly paired and

mapped read pairs with mapping quality ≥ 30 (samtools view -b -h -F 4 -F 256

-F 1024 -F 2048 -q 30). Peak calling was performed using MAC2 callpeak (op-

tions: –broad –keep-dup all). Peaks were filtered against hg19 blacklists (downloaded

from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMa

pability/wgEncodeDacMapabilityConsensusExcludable.bed.gz and http://hgdo

wnload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod

eDukeMapabilityRegionsExcludable.bed.gz). We normalized the signal for each ex-

periment to 10M reads to prevent sequencing depth from confounding comparisons.

Quality control was performed using phantompeakqualtools (v.2.0); all samples in-

cluded in the analysis had relative strand cross-correlation coefficient (RSC) > 0.8 and
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normalized strand cross-correlation coefficient (NSC) > 1.05 [144, 124]. One of the

two Weedon et al. H3K4me1 samples (ERR361008) appeared as a QC outlier (NSC

= 1.31, RSC = 2.67) relative to other samples (mean NSC = 1.10, mean RSC = 1.47)

and was therefore excluded [296]. To determine the human sequence orthologous to

the Gm13344 promoter peak, we used bnMapper with an mm9 to hg19 chain file from

University of California, Santa Cruz (UCSC) (downloaded from http://hgdownload-

test.cse.ucsc.edu/goldenPath/mm9/liftOver/mm9ToHg19.over.chain.gz) to map

the Gm13344 promoter peak onto the human genome [55]. The resulting closely

spaced stretches of human orthologous sequence were then merged together (bedtools

merge -d 30) in order to eliminate small gaps between them, and the signal for this

region in each tissue’s H3K4me1 ChIP-seq experiment was used for the comparison

in (Fig. 2.2C).

2.5.11 Reproducibility of computational analyses

We have created a GitHub repository that has all the code necessary to reproduce

the analyses in this work. The repository is located at https://github.com/Parke

rLab/danforth-2018.

2.5.12 X-gal staining

X-gal experiments were conducted on Gli1tm2Alj/J (Jackson Laboratories, Bar

Harbor, Maine, #008211) mice crossed to Sd/+ mice. Embryos were dissected in

phosphate buffered saline (PBS) and fixed with glutaraldehyde solution (1.25%, 1 M

EGTA; .2%: 1 M MgCl2; 2%: 25% glutaraldehyde in PBS) and rinsed in wash buffer

(.2%, 1 MgCl2 ; .4%, 5% NP-40 in sodium phosphate buffer). Embryos were incubated

in X-gal stain solution containing ferric and ferrocyanide ions for 2 h. Embryos were

then fixed with 4% paraformaldehyde (PFA) then rinsed and stored in PBS. (n ≥

3 for all conditions). Images were taken with a Leica MZ10F dissecting microscope
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with a Fostec EKE ACE external light source.

2.5.13 Whole mount in situ hybridization

Embryos were dissected in cold diethyl pyrocarbonate (DEPC) treated PBS, fixed

in 4% PFA in DEPC treated PBS, washed in PBST, dehydrated through a graded

methanol series (25, 50, 75 and 100%) and processed for in situ hybridization as de-

scribed previously [120, 289]. Embryos at each developmental stage for each probe

were processed together, and images were captured under identical settings for com-

parison of staining intensity among WT, Sd/+ and Sd/Sd genotypes, n ≥ 3 em-

bryos of each genotype were studied with all probe conditions. Ptf1a probes were

generated from IMAGE clone: 8861527, (MGC:170132, GenBank BC138507.1) in

PCR4-TOPO. Sense probe was generated using digoxygenin labeling kit (Roche, In-

dianapolis, Indiana), T3 polymerase and Not I digested plasmid. Antisense probe

was generated using T7 polymerase and Spe I digested plasmid. For the Gm13344

probe, a 511 bp fragment (Chr2:19,351,134–19,351,644) of Gm13344 lncRNA was

amplified using primers GGGTGTATCACCCAGCAATC (Forward) and AAGAG-

GAGGAACCCAGGTGT (Reverse) from BAC DNA RP24347 M17, and cloned into

pGEMT-easy vector. The antisense digoxygenin-AP probe was generated using SP6

polymerase from the Nco I digested pGEMT clone while the sense probe using T7

polymerase from Nde I digested clone. Probes for Shh [95, 62, 68], Noto [180], Kir-

rel2/Neph3 [291], Nkx2.9 [205], Foxa1, Foxa2 [188, 112] and T [305] were previously

described.

2.5.14 Immunofluorescence

Embryos were dissected into fresh, ice cold 4% PFA (Fluka: 76240) in PBS for

30 min then cryoprotected overnight in solution of 10% sucrose and 2 mM MgCl2

and cut immediately rostral to the forelimb and hindlimb buds. The tissues were
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embedded in optimum cutting temperature (OCT) compound and stored at -80 ◦C.

Frozen sections were taken through the transverse plane and stored at -80 ◦C. Tissue

sections were blocked with PBS with 3% Bovine Serum Albumin (BSA), 1% Goat

Serum, 0.1% Triton X-100, brought to a final pH of 7.4 for 1 h at room temperature

in a humidified container. Blocking solution was replaced with primary antibody

diluted in blocking buffer. Primary antibodies were purchased from the Developmen-

tal Studies Hydronima Bank [SHH (5E1, AB 2188307), FOXA2 (4C7, AB 2278498),

NKX2.2 (74.5A5, AB 2314952), NKX6.1 (F55A10, AB 532378), PAX6 (PAX6, AB

528427)]. Tissue sections from n ≥ 3 embryos per genotype were incubated with each

primary antibody overnight at 4◦C at the following concentrations: 1:20 for SHH,

FOXA2, NKX2.2, NKX6.1 and 1:2500 for PAX6. Sections were stained with DAPI

(Kirkegaard & Perry Laboratories, Gaithersburg, Maryland: 71-03-00), incubated for

1 h with Alexa fluor 488 goat anti-mouse secondary antibody (A11001), then cover-

slipped with aqueous mounting medium (Thermo Scientific, Waltham, Massachusetts:

Immu-Mount: 990402). Fluorescent imaging was conducted on a Leitz DMRB mi-

croscope, with a Leica EL6000 fluorescent lamp.

2.5.15 Caspase 3 immunofluorescence

Embryos were processed for Paraffin embedding with a Tissue Tek VIP (Miles Sci-

entific, Newark, Delaware) and embedded in paraffin blocks. Blocks were sectioned

with a Spencer Microtome (American Optical, Bethlehem, Pennsylvania) at a thick-

ness of 7 µm and stored at room temperature. Paraffin was removed with Xylene

followed by EtOH and PBS for rehydration. Antigen retrieval was achieved by cit-

rate boiling and slides were then blocked with suppressor solution (5% goat serum,

3% BSA, 0.5% Tween 20) for 20 min. Sections (n > 3 per genotype) were incubated

with Caspase 3 primary antibody (Cleaved Caspase-3 anti-rabbit, D175: 9661S Cell

Signaling Technology) overnight at 4◦C at a concentration of 1:400. Sections were
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stained with DAPI (Kirkegaard & Perry Laboratories: 71-03-00), incubated for 1

h with Alexa fluor 488 goat anti-rabbit secondary antibody (A11008), rinsed with

PBS, then coverslips were applied with aqueous mounting medium (Thermo Scien-

tific, Waltham, Massachusetts: Immu-Mount: 990402). Fluorescent imaging was

conducted on a Leitz DMRB microscope, with a Leica EL6000 fluorescent lamp.
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CHAPTER III

Quantification, Dynamic Visualization, and

Validation of Bias in ATAC-seq Data with Ataqv

3.1 Abstract

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) has

become the preferred method for mapping chromatin accessibility, due to its time and

input material efficiency. However, it can be difficult to evaluate data quality and

identify sources of technical bias across samples. Here, we uniformly analyze 2,009

public ATAC-seq datasets and present ataqv, a computational toolkit for efficiently

measuring, visualizing, and comparing quality control (QC) results. We observed

a ten-fold range across key QC metrics in the public datasets. We next performed

benchmark ATAC-seq experiments and statistical modeling to show that technical

variation in the ratio of Tn5 transposase to nuclei and sequencing flowcell density

induces systematic bias, substantially changing the enrichment of reads across diverse

functional genomic annotations including promoters, enhancers, and transcription

factor bound regions, with the notable exception of CTCF. We show that key QC

metrics can adjust for these technical biases and conclude that the ataqv tool and

associated benchmark datasets will help increase the reproducibility and rigor of

ATAC-seq conclusions.
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3.2 Introduction

The assay for transposase-accessible chromatin using sequencing (ATAC-seq) is

the current preferred method for mapping chromatin accessibility due to its simplicity,

speed, and low input material requirements [23]. In ATAC-seq, intact nuclei are

exposed to Tn5 transposase, which preferentially cuts protein-free unprotected DNA

to ligate sequencing adapters to the cleaved ends. After sequencing, the reads are

aligned to a reference genome and peak calling is performed to determine the regions

of the genome enriched for transposase-accessible DNA. This information can be used

to inform the prediction of active regulatory regions [23], nucleosome positioning [254],

and transcription factor binding [223, 256].

The number of publicly-available ATAC-seq datasets is rapidly growing, but the

quality of these datasets can vary widely. ATAC-seq libraries may differ in PCR

amplification bias, fragment length distribution, transcription start site (TSS) en-

richment, nuclei prep quality, proportion of mitochondrial reads, and other variables

[14]. ATAC-seq involves a number of experimental and computational steps which

may introduce such heterogeneity. Some of these confounders are shared with many

other high-throughput sequencing-based assays (e.g., PCR amplification bias), while

others are more ATAC-seq specific (e.g., potentially high proportions of mitochondrial

reads and variable nuclei prep quality). Identifying these confounders and adjusting

for them in downstream analyses is an important part of reproducible and rigorous

ATAC-seq analyses.

Few computational quality control (QC) tools exist for ATAC-seq, and each of the

existing tools have notable limitations. The ENCODE ATAC-seq processing pipeline

includes a script (ATAqC; https://github.com/kundajelab/ataqc) that produces

a QC report, but this script is difficult to utilize as a standalone tool. Considerable

effort is required to integrate it into a custom pipeline as one must install a complete

conda environment, and it supports only the human and mouse reference genomes. It
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produces one report per sample (rather than a unified report for multiple samples),

complicating cross-sample comparisons. A second tool, ATACseqQC [203], exists as

an R Bioconductor package. This package provides R functions for QC of BAM files

and preprocessing for common downstream analyses. Because it provides functions

rather than generating a single report, it is a flexible framework but places additional

work on the end user and renders the package inaccessible to those unfamiliar with R.

Like ATAqC, it generates separate plots for each BAM file, making it less practical for

cross-sample comparisons. Alfred [233] is a third tool with ATAC-seq QC function-

ality. It is run on the command line and a web server is available for visualizing the

results. It is quick to set up and run, but does not have an option to visualize several

libraries simultaneously, and can handle only three read groups per BAM file in the

case that the user wishes read groups to be analyzed separately. Several additional

software packages built to assist in ATAC-seq data processing and analysis exist, and

these each include QC steps; however, they are not meant to provide comprehensive

QC on BAM files. These packages include ATAC-pipe [322], which supports only

two reference genomes (hg19 and mm9) and does not perform QC on a user-provided

BAM file (the primary QC function accepts raw fastq files, tying read mapping and

QC together); and esATAC [298], which similarly provides few read mapping statistics

when starting from a BAM file (rather than a fastq file) and produces individual QC

plots (e.g., fragment length distribution and TSS coverage) for each sample/replicate,

complicating cross-sample comparisons.

In order to address these shortcomings, and to facilitate the unified analysis of

thousands of ATAC-seq datasets, we developed a new ATAC-seq QC and visualization

software package, ataqv (Fig. 3.1). Ataqv overcomes the primary limitations of

existing packages. It eases cross-sample and cross-experiment comparisons, can easily

be integrated into existing data processing pipelines, and produces interactive reports

that are easy to share. We apply ataqv to thousands of publicly-available libraries and

45



observed a broad range of results across diverse QC metrics. We therefore carefully

constructed Tn5 dosage experiments to explore the influence of technical variation on

ATAC-seq profiles and find that experimental conditions that influence the ATAC-seq

fragment length distribution, such as sequencing lane cluster density and Tn5:nuclei

ratio, robustly skew QC metrics and alter the biological interpretation of ATAC-

seq results. QC reports and metrics from the ataqv package can help identify these

technical biases and adjust for them in downstream analyses.

3.3 Results

3.3.1 Ataqv is a modular and accessible tool for ATAC-seq quality control

and visualization

Ataqv allows quick visualization and comparison of 35 metrics and potential con-

founders across samples (Table 3.1; Fig. 3.1). It produces both machine-readable

(JSON format) metrics and an interactive HTML report (Fig. 3.1b) that is accessible

to experimental scientists and easy to share. It is simple to integrate into existing

ATAC-seq pipelines and can handle thousands of samples, an important consider-

ation as single-cell analyses come of age and sample sizes grow. The only inputs

are a BAM file of aligned reads, an optional BED file of peaks, and the name of

the organism to which they were aligned (Fig. 3.1a). Human, mouse, rat, worm,

fly, and yeast reference metadata is built in; metadata for other organisms (auto-

somal and mitochondrial chromosome names) can be easily supplied. If desired,

metrics can be calculated separately for each read group in a BAM file (facilitat-

ing the processing of BAM files that may contain many libraries, as is often the

case for single-cell data). A demonstration of the interactive ataqv HTML report is

at https://parkerlab.github.io/ataqv/demo/ and the ataqv source code is freely

available under the GPL3 license at https://github.com/ParkerLab/ataqv/.
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Metric Abbreviation in Figure 3.2

Fragment length distribution NA

% reads that are high-quality and autosomal percent hqaa

% of reads properly paired and mapped percent properly

paired and mapped

% of reads that aligned to autosomes that

were duplicates

percent autosomal duplicate

Short-to-mononucleosomal-ratio (# frag-

ments 50 - 100 bps long / # 150-200 bps

long)

short mononucleosomal ratio

TSS enrichment tss enrichment

Duplicate fraction in peaks (fraction of prop-

erly paired reads that map within peaks and

are duplicates)

duplicate fraction in peaks

Duplicate fraction outside of peaks (fraction

of properly paired reads that map outside of

peaks and are duplicates)

duplicate fraction not in peaks

Peak duplicate ratio (’duplicate fraction out-

side of peaks’ / ’duplicate fraction in peaks’)

peak duplicate ratio

Cumulative fraction of high-quality autoso-

mal reads in peaks

hqaa overlapping peaks percent

Cumulative fraction of the genome that falls

within peaks

total peak territory

Distribution of mapping qualities N/A

Number of total reads total reads

% of alignments marked secondary percent secondary
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% of alignments marked supplementary percent supplementary

% of alignments marked as duplicates percent duplicate

Mean mapping quality mean mapq

Median mapping quality median mapq

% of reads unmapped percent unmapped

% of reads with an unmapped mate percent unmapped mate

% of QC-fail reads percent qcfailed

% of unpaired reads percent unpaired

% of reads with mapping quality 0 percent mapq 0

% paired + mapped but in RF orientation percent rf

% paired + mapped but in FF orientation percent ff

% paired + mapped but in RR orientation percent rr

% paired + mapped but on separate chromo-

somes

percent mate

separate chromosome

% paired + mapped but too far from mate percent mate too distant

% paired + mapped but not properly percent improperly paired

% reads aligned to autosomes percent autosomal

% reads aligned to mitochondria percent mitochondrial

% reads aligned to mitochondria that were

duplicate

percent mitochondrial duplicate

Number of peaks called total peaks

Fragment length distribution distance fragment length distance

Max fraction of reads from a single autosome max fraction reads

from single autosome

Table 3.1: List of ATAC-seq metrics displayed in interactive ataqv HTML report
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a

sample_1.bam
organism name

(Optional): sample_1_peaks.bed
(Optional): TSS.bed

ataqv

sample_1_qc_metrics.json.gz

sample_2.bam
organism name

(Optional): sample_2_peaks.bed
(Optional): TSS.bed

ataqv

sample_2_qc_metrics.json.gz

sample_3.bam
organism name

(Optional): sample_3_peaks.bed
(Optional): TSS.bed

ataqv

sample_3_qc_metrics.json.gz

Interactive 
HTML QC 

report

ataqv

b

Figure 3.1 Ataqv workflow. Aligned reads (BAM format), the organism name,
and optionally a file of peak calls and TSS annotations are passed to ataqv, which
generates a JSON-formatted file of quality control metrics. JSON files for multiple
BAM files can be passed back to ataqv, which then creates an interactive HTML
report displaying the samples jointly.
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Figure 3.2 Survey of public ATAC-seq data (a) 2,009 public ATAC-seq libraries
representing 23.4 billion read pairs were downloaded and uniformly processed. (b)
Number of libraries and total read pairs per species and project (colors represent
different projects). (c) ATAC-seq signal at promoters of two housekeeping genes
(GAPDH and VCP) across human bulk libraries with at least 5M reads post-filtering.
Colors along the y-axis represent project. (d) TSS enrichment and median fragment
length for the 693 processed bulk (not single cell) datasets. (e) Maximum fraction of
autosomal reads derived from a single autosome for public human single-cell ATAC-
seq data. (f) Normalized read coverage in 2Mb windows (with 1Mb steps between
them) across chromosomes for the outlier circled in red from (e) and for a set of 90
non-outlier cells from the same cell type (GM12878; all lying within the dotted box
in (e)). The outlier’s read coverage is represented by the red line; non-outliers are
shown in gray. One arm of chromosome 1 shows abnormally high coverage in the
outlier cell. (g). Correlation between ataqv metrics across public bulk ATAC-seq
datasets. Metric abbreviations are listed in Table 3.1 (h). Correlation between PC1
and ataqv metrics in project PRJNA259243.
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Figure 3.3 Intrastudy heterogeneity in ATAC-seq data. (A) Fragment length
distributions and (B) TSS enrichment for two public datasets (facet header labels).

To demonstrate the utility of ataqv and assess the heterogeneity of publicly-

available datasets, we downloaded and uniformly processed 2,009 human and mouse

ATAC-seq libraries (Fig. 3.2a-c). The fragment length distributions (FLDs) and TSS

enrichment for these libraries display over ten-fold variability (Fig. 3.2d), and consid-

erable heterogeneity exists even between libraries from the same study (Fig. 3.2c,d,

3.3). Links to the interactive ataqv sessions for these uniformly processed data sets

are available in section 3.5. These sessions make clear the heterogeneity in public

ATAC-seq data and may be helpful as a point of reference to compare new ATAC-seq

datasets.

QC of single-cell ATAC-seq (scATAC-seq) data is especially critical to ensure

meaningful and reproducible results, as a portion of the sequencing reads produced

in scATAC-seq experiments may be derived from background DNA released by non-

viable cells. Per-cell scATAC-seq fragment counts, sometimes in combination with

TSS enrichment, is commonly used to filter the data to those reads derived from
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high-quality cells [228, 252]. Ataqv introduces another metric that we believe will be

useful in filtering single-cell data in particular: the maximum fraction of autosomal

sequencing reads derived from a single autosome. Most scATAC-seq data is produced

using microfluidics platforms, and in such systems free DNA from dead or dying cells

may end up being transposed and barcoded, perhaps in close proximity to (and with

the same barcodes as) healthy cells. As a result some cellular barcodes that appear to

represent healthy cells and could pass common QC thresholds may contain reads from

this free DNA. If large, free-floating chromosomal segments are represented in such

barcodes, the observed distribution of reads across chromosomes would not match the

expected distribution. To demonstrate this, we examined the maximum fraction of

autosomal sequencing reads derived from a single chromosome for all cells in public

scATAC-seq data (Fig. 3.2e). This metric illuminated extreme chromosomal read

imbalance in some of the cells. Plotting the read coverage in genomic bins across each

chromosome for some of these cells frequently showed that large contiguous segments

of the chromosomes have increased coverage relative to the rest of the chromosomes

(Fig. 3.2f), consistent with a scenario in which broken chromosome(s) derived from

another cell received the same barcode as the reads from a potentially healthy cell.

Such cases should be filtered out during QC of scATAC-seq data. We additionally

examined this metric in the public bulk ATAC-seq libraries, where outliers may reflect

abnormal karyotypes (Fig. 3.4). Consistent with this notion, the outliers we observed

(e.g., K562 and mESCs) tended to be cell lines with known abnormal karyotypes

[195, 234, 271].

To explore the relationship between QC metrics, we calculated the correlation

between all QC metric pairs across the public bulk libraries analyzed (Fig. 3.2g). We

find that TSS enrichment positively correlates with percentage of reads in peaks, and

negatively correlates with median fragment length. Read count positively correlates

with the number of peaks called, likely because greater read count increases the
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JNA259243. Each point represents one library.

statistical power to call peaks [143]. A few metrics show such high correlation that

they may be considered somewhat redundant for the purposes of standard QC; e.g.,

the number of peaks unsurprisingly shows very high correlation with peak territory

(the amount of the genome covered by peaks). The ataqv software includes an option

to output a reduced set of QC metrics by pruning out several metrics that tend to

show very high correlation with other metrics. Ataqv metrics can be correlated with

principal component (PC) scores in order to determine which characteristics of the

libraries may be contributing most to the variance in the data across libraries. To

demonstrate this, we performed a principal component analysis on the project with

the most bulk ATAC-seq libraries from a single cell type and correlated the PC1 scores

against ataqv metrics (Fig. 3.2h; we selected data from a single project and cell type

because in a cross-project or cross-cell-type analysis PC1 would capture project or

cell type). TSS enrichment showed the highest correlation with PC1 scores (Figs.

3.2h, S5), indicating that TSS enrichment may be a particularly important variable

to examine during QC.

Ataqv metrics may be useful as covariates in downstream analysis, in part because

they may reflect latent variables. For example, while examining a subset of ATAC-seq

libraries from one study, we noticed that half of the libraries displayed a considerably

different fragment length distribution than the other half. Through inspection of the

sequencing read names we inferred the sequencing run and flowcell that each library
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was sequenced on and found that the median fragment lengths of each library covaried

with the sequencing flowcell (Fig. 3.6a), suggesting that the QC metric was capturing

a batch effect that otherwise may not have been apparent from the metadata (public

metadata is frequently difficult to parse or missing altogether). Running a differential

peak analysis with and without the QC metric median fragment length as a covariate,

we found a robust shift towards more extreme p-values from the analysis when the

covariate was included (Fig. 3.6b), which indicates increased statistical power after

controlling for the batch effect.

To further demonstrate the utility of ataqv in identifying problematic variance, we

used it to systematically explore two potential sources of bias. ATAC-seq experiments

produce a stereotypical FLD, distinguished by many short (< 100 bp) fragments and a

tail of longer (> 147 bp) fragments in multiples of the nucleosomal unit size. Because

chromatin structure differs across classes of regulatory elements, different regulatory

elements produce different local FLDs [23]. We therefore hypothesized that variables

perturbing the FLD will systematically change ATAC-seq results. We therefore de-

signed experiments to test the influence of two technical variables: Tn5:nuclei ratio

and sequencing lane cluster density. As noted in [24], the ratio of Tn5 enzyme to nu-

clei number is a determining factor in the experiment FLD. Increasing this variable

should shift the FLD toward shorter fragments. Sequencing lane cluster density also

affects the length distribution of sequenced fragments, with high cluster density gen-

erally favoring shorter fragments [22, 87]. Importantly, while both of these variables

affect the FLD, they do so in different ways. In the case that the Tn5:nuclei ratio

changes, both the global (genome-wide) as well as local (locus-specific) FLDs should

shift. When the sequencing lane cluster density changes, the true underlying global

and local FLDs do not change; however, they are subsampled in different manners

between the sequencing runs (high cluster density runs should sample more from the

left-most part of the FLD than do low cluster density runs).
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Figure 3.6 Quality control metrics may track latent variables. (A) Median
fragment length vs sequencing run flowcell for a subset of libraries from project PR-
JNA323617/PRJNA341508. Median fragment length clearly correlates with flowcell,
indicating that median fragment length may correlate with processing/sequencing
batch or another related experimental variable. (B) Adding median fragment length
as a covariate to a differential peak analysis between E0 and E1 results in more
extreme p-values.
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To quantify the influence of cluster density and Tn5:nuclei ratio, we performed

two sets of ATAC-seq experiments. In one, we performed ATAC-seq on GM12878

using seven different Tn5 concentrations all using 50k nuclei as input, and sequenced

each library on two separate sequencing runs, one run having 124% the cluster density

of the other (411M vs 508M clusters passing filtering; Fig 3.7a; n = 3 independent

nuclear isolations, producing a total of 21 libraries). Importantly, during this experi-

ment we observed that the number of PCR cycles required for each library strongly

covaried with Tn5 concentration (Fig. 3.8). Because PCR amplification can influence

the fragment length distribution [74] and introduce other biases, we designed a second

experiment in which we again performed ATAC-seq on GM12878 nuclei using seven

different concentrations of Tn5 while holding the number of nuclei constant at 50k

(n = 6 independent nuclear isolations, producing a total of 42 libraries; Fig. 3.9a, b)

but additionally held the number of PCR cycles constant across libraries (Fig. 3.10).

We refer to these experiments as the ‘PCR-variable’ and ‘PCR-constant’ experiments,

respectively. The interactive ataqv reports for both of these experiments are available

online (see section 3.5).

3.3.2 Sequencing lane cluster density biases ATAC-seq library fragment

length metrics and TSS enrichment

First, we examined the effect of sequencing lane cluster density on ATAC-seq re-

sults. As expected, despite the fact that the same libraries were sequenced in both

runs, the fragment length distributions from the high cluster density run were consis-

tently shifted toward shorter fragments relative to the low cluster density run (Fig.

3.7b). The average difference in median fragment length between sequencing runs

was 12 bps. Interestingly, TSS enrichment was consistently higher in the high cluster

density sequencing run (average difference of 1.83; Fig. 3.7c). Other QC metrics

differed consistently but to a lesser degree (see ataqv HTML report). We conclude
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Figure 3.7 Sequencing lane cluster density systematically alters ATAC-seq
results. (A) Study design for an experiment exploring the influence of sequencing
flow cell cluster density. ATAC-seq was performed using 7 concentrations of Tn5;
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Tn5 transposase while keeping the number of nuclei constant. Six replicates were per-
formed. (b) GAPDH locus coverage. (c) Increasing Tn5 concentration shifts the frag-
ment length distribution towards shorter fragments. (d) Increasing Tn5 concentration
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(g) UCSC genome browser screenshot displaying a Tn5-sensitive enhancer peak. (h).
The percentage of ATAC-seq reads falling into enhancer and active TSS chromatin
states increases with increasing Tn5, while the percentage of reads falling into low
signal regions decreases. Values shown represent the median values across replicates
in the PCR-constant experiment.

59

http://genome.ucsc.edu/


rep4 rep5 rep6

rep1 rep2 rep3

5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

0.0

0.5

1.0

0.0

0.5

1.0

Total PCR cycles

N
or

m
al

iz
ed

 R
LU

Relative [Tn5]

no cells (control)

0.2

0.5

0.66

1

1.5

2

5

Figure 3.10 qPCR curves used for the selection of PCR amplification cycles
in the PCR-constant experiment. Facets represent nuclear isolation replicates.
Dashed red line represents the number of PCR cycles (16) used for all libraries.

60



that sequencing run cluster density has a systematic effect on ATAC-seq QC met-

rics, likely because different cluster densities effectively ’subsample’ the actual library

fragment length distribution in a biased manner and this changes the representation

of different functional regions (like the TSS) across the genome.

3.3.3 ATAC-seq results are sensitive to Tn5:nuclei ratio

Next, we examined the effect of the Tn5:nuclei ratio, using the results of the

PCR-constant experiment and of the high cluster density sequencing run of the PCR-

variable experiment. As expected, when the number of PCR cycles was held constant,

the fragment length distribution shifted toward a greater proportion of shorter frag-

ments as Tn5 concentration increased (Fig. 3.9c, 3.11a). This correlation was atten-

uated when PCR cycles were allowed to vary, likely reflecting the influence of PCR

cycles on FLDs (Fig. 3.12a). Furthermore, in both experiments we found that in-

creasing Tn5 concentration negatively correlated with the percent of mitochondrial

sequencing reads (Fig. 3.11b, 3.12b). We speculate that as Tn5 concentrations in-

crease, an increasing proportion of mitochondrial DNA (which competes with nuclear

DNA for the pool of Tn5) [189] is digested to the extent that it is no longer effec-

tively sequenced. Alternatively, it may be that an increasing proportion of nuclear

genomic DNA is digested sufficiently to be effectively sequenced. As mitochondrial

reads are typically filtered out during standard ATAC-seq data processing, reduc-

ing mitochondrial reads increases the amount of sequence available for downstream

analysis. Read duplication rate negatively correlated with Tn5 in both experiments

(Fig. 3.11d, 3.12e). Overall, increasing the amount of Tn5 resulted in a considerably

greater proportion (approximately four-fold higher comparing the extremes of Tn5

concentration) of reads surviving filtering in both experiments (Fig. 3.11e, 3.12f).

Additionally, we found Tn5 concentration positively correlated with the enrichment

of fragments around TSSs (Fig. 3.9d) in the PCR-constant experiment but not in the
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PCR-variable experiment (Fig. 3.12c). The enrichment of reads in ATAC-seq peaks

increased approximately 1.75-fold from the lowest Tn5 concentration to the highest

(Fig. 3.9e, 3.12d). Examining the peaks called for each library, we found that the

number of peaks increases with Tn5 concentration, and that this relationship is not

solely due to differences in the number of reads surviving bioinformatic filtering at

each Tn5 concentration (Fig. 3.13). Furthermore, we found that as Tn5 concen-

tration increases, peak calls become more reproducible, such that the mean Jaccard

index between peak calls from two replicates increases as Tn5 concentration increases

(Fig. 3.14). We performed a principal component analysis and found that the first

principal component correlated with Tn5 concentration (Fig. 3.15), confirming that

this technical variable has a systematic effect on ATAC-seq results.

In order to determine whether there is a subset of peaks that are Tn5 sensitive or

whether Tn5 sensitivity is a shared property of all peaks, we used a negative binomial

generalized linear model (GLM) to model the number of reads in an ATAC-seq peak

as a function of the Tn5 concentration, controlling for replicate and using the PCR-

constant experiment. At a false discovery rate (FDR) of 5%, we identified 49,989

Tn5 sensitive peaks (of 70,658 total and 62,576 for which the model converged; Fig.

3.16, top panel; 3.9f,g, Fig. 3.17, 3.18, 3.19), of which the overwhelming majority

(99%) displayed a positive relationship between Tn5 concentration and peak signal

(49,443 of the 49,989 5% FDR peaks). Similar results were obtained in the PCR-

variable experiment (29,355 peaks significant of 43,447 that converged; Fig. 3.20).

This massive shift (79.9% of converged peaks in PCR-constant experiment) indicates

that Tn5 sensitivity is a common quantitative trait of peaks across the genome.

Adding a covariate summarizing the fragment length distribution of each library to

the GLM reduced the number of Tn5 sensitive peaks detected in the PCR-constant

experiment (Fig. 3.16; of the 62,576 peaks that converged in all models, 79.9% were

Tn5 sensitive at 5% FDR when using no covariate and 8.3% were sensitive after
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Figure 3.11 Tn5 concentration correlates with QC metrics in the PCR-
constant experiment. Correlation between Tn5 concentration and (A) median
fragment length, (B) percent of mitochondrial reads, (C) TSS enrichment, (D) dupli-
cation rate, and (E) proportion of reads remaining after deduplication and filtering.
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Figure 3.12 Tn5 concentration correlates with QC metrics in the PCR-
variable experiment. Correlation between Tn5 concentration and (A) median
fragment length, (B) percent of mitochondrial reads, (C) TSS enrichment, (D) per-
cent of filtered reads overlapping peaks, (E) duplication rate, and (F) proportion of
reads remaining after deduplication and filtering. Data shown is from the high cluster
density sequencing run.
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Figure 3.13 Tn5 concentration correlates with number of peaks called. Cor-
relation between Tn5 concentration and number of peaks called (A) without and (B)
with subsampling to an equal number of post-filtering reads (PCR-constant experi-
ment).
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Figure 3.14 Peak call reproducibility increases with Tn5 concentration. The
Jaccard index between peak calls from all pairs of libraries from the PCR-constant
experiment was calculated by first taking the union of peak calls in any two libraries
to generate a set of merged peaks, and then dividing the number of those merged
peaks that appear in both libraries by the total number of merged peaks. A merged
peak was considered to appear in a library if there was any overlap between a peak
from that library and a merged peak. (A) The average Jaccard index between two
replicates with given Tn5 concentrations, using all reads for peak calling. (B) The
average Jaccard index between two replicates after subsampling reads to ensure that
the same number of reads is used for peak calling for each library.
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2). The first principal component captures Tn5 concentration. The second principal
component captures the day on which the experiment was performed.

adding median fragment length to the model as a covariate). Such covariates had no

effect in the PCR-variable experiment (Fig. 3.20).

Our results suggest that higher Tn5 concentration increases the ATAC-seq signal-

to-noise ratio (at least over the tested range of Tn5 concentrations). In order to

determine if this holds for both promoter and enhancer regions, we calculated the

proportion of reads that overlapped with chromHMM-derived GM12878 chromatin

states (3.9f,g,h, 3.21) [67, 208]. We found that the percentage of reads falling in

strong enhancer and active promoter chromatin states increases with increasing Tn5

(Bonferroni-adjusted p-values of 6.34 × 10−22 and 1.2 × 10−16, respectively, in the

PCR-constant experiment; 2.61× 10−9 and 3.87−7 in the PCR-variable experiment),

and that this is accompanied by a decrease in the proportion of reads falling in the

low signal state (Bonferroni-adjusted p = 1.04 × 10−21 and p = 1.2 × 10−8 in the

PCR-constant and PCR-variable experiments, respectively). This increase in signal-

to-noise due to a technical variable is therefore observed for both TSS-proximal and

TSS-distal regulatory elements.

To determine if the binding of certain transcription factors (TFs) might influence

the change in ATAC-seq signal, we examined ATAC-seq reads and peaks in relation
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Figure 3.16 Most ATAC-seq peaks are Tn5 sensitive when PCR-cycles
are held constant. Distribution of the Z-statistic for the coefficient of log2(relative
Tn5 concentration) in the negative binomial GLM. The distribution is shifted in the
positive direction when only the replicate is used as a covariate (top facet), indicating
that many ATAC-seq peaks show increased signal (normalized to library size) as the
concentration of Tn5 is increased. Adding either one of three covariates summarizing
the fragment length distribution weakens the relationship between peak signal and
Tn5 concentration. Percentages shown reflect only those peaks that converged in
all 4 models (62,576 peaks). The example promoter and enhancer peaks from the
genome browser screenshots in Fig. 2f,g are denoted by the red and blue dashed
lines, respectively. They are Tn5 sensitive at 5% FDR when no FLD-summarizing
variable is used as a covariate (or when short:mononucleosomal is used as a covariate),
but no longer Tn5 sensitive when median fragment length or fragment length distance
are used as covariates.
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Figure 3.17 Example Tn5-sensitive promoter peak. UCSC genome browser
screenshot displaying a Tn5-sensitive promoter peak in the PCR-constant experiment.
The six panels represent the six replicates, displaying high reproducibility (http:
//genome.ucsc.edu/) [122, 31].

68

http://genome.ucsc.edu/
http://genome.ucsc.edu/


a

Scale

Chromatin states
Basic

1 kb hg19

5 Tn5

2 Tn5

1.5 Tn5

1 Tn5

0.66 Tn5

0.5 Tn5

0.2 Tn5

b

Scale

Chromatin states
Basic

1 kb hg19

5 Tn5

2 Tn5

1.5 Tn5

1 Tn5

0.66 Tn5

0.5 Tn5

0.2 Tn5

c

Scale

Chromatin states
Basic

1 kb hg19

5 Tn5

2 Tn5

1.5 Tn5

1 Tn5

0.66 Tn5

0.5 Tn5

0.2 Tn5

d

Scale

Chromatin states
Basic

1 kb hg19

5 Tn5

2 Tn5

1.5 Tn5

1 Tn5

0.66 Tn5

0.5 Tn5

0.2 Tn5

e

Scale

Chromatin states
Basic

1 kb hg19

5 Tn5

2 Tn5

1.5 Tn5

1 Tn5

0.66 Tn5

0.5 Tn5

0.2 Tn5

f

Scale

Chromatin states
Basic

1 kb hg19

5 Tn5

2 Tn5

1.5 Tn5

1 Tn5

0.66 Tn5

0.5 Tn5

0.2 Tn5

Figure 3.18 Example Tn5-sensitive enhancer peak. UCSC genome browser
screenshot displaying a Tn5-sensitive enhancer peak in the PCR-constant experiment.
The six panels represent the six replicates, displaying high reproducibility (http:
//genome.ucsc.edu/) [122, 31]
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Figure 3.19 Example Tn5-insensitive peak. UCSC genome browser screenshot
displaying a Tn5-insensitive peak in the PCR-constant experiment. The six panels
represent the six replicates (http://genome.ucsc.edu/)[122, 31].
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Figure 3.20 Most ATAC-seq peaks are Tn5 sensitive when PCR-cycles are
allowed to vary. Distribution of the Z-statistic for the coefficient of log2(relative Tn5
concentration) in the negative binomial GLM, in the PCR-variable experiment and
when including the respective covariates. The distribution is shifted in the positive
direction in all cases, indicating that many ATAC-seq peaks show increased signal
(normalized to library size) as the concentration of Tn5 is increased.
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Figure 3.21 Proportion of reads overlapping with chromatin states as a
function of Tn5 concentration (PCR-variable experiment). The percentage
of ATAC-seq reads falling into enhancer and active TSS chromatin states increases
with increasing Tn5, while the percentage of reads falling into low signal regions
decreases.

to ENCODE GM12878 reproducible ChIP-seq peaks (ChIP-seq experiments on 85

TFs) [65, 267]. For all TFs, the proportion of ATAC-seq reads overlapping with

ChIP-seq peaks increased as the Tn5 concentration increased (Fig. 3.22). This is

consistent with our chromatin state findings (Fig. 3.9h), given that TF binding will

commonly overlap with enhancers and promoters which themselves show increased

signal with increasing Tn5 concentration. In order to determine if the binding of

certain TFs correlates with Tn5 sensitivity, we examined the probability that a peak

is Tn5 sensitive given that it is bound by a certain TF, controlling for peak size

(Fig. 3.23). We performed logistic regression and discovered that binding of nearly

all TFs (82 out of 85) are significantly (Bonferroni adjusted p < 0.05) associated with

increased Tn5 sensitivity. The only exceptions are CTCF, RAD21, and REST. These

factors are commonly associated with strongly phased nucleosomes [76, 97, 248, 301];

we speculate that this may render regions bound by them less sensitive to variability in

Tn5 concentration. Overall, these results show that technical variation in ATAC-seq

data is associated with selectively biased profiling of functional genomic regions.
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Figure 3.22 The percentage of ATAC-seq reads overlapping TF ChIP-seq
peaks increases with increasing Tn5 (PCR-constant experiment). For each
TF and Tn5 concentration, the mean proportion of reads overlapping ChIP-seq peaks
was calculated across the six replicates before normalizing to the 1X Tn5 values.

3.4 Discussion

We conclude that ATAC-seq experiments performed for the purpose of identifying

enhancers and promoters will likely achieve better signal-to-noise with increased Tn5

concentration. We note that while this relationship holds over the 25-fold range

of Tn5 concentrations we have tested, it is likely that continuing to increase Tn5

concentration beyond a certain point will begin to reduce data quality as highly

accessible regions are digested to an extent that they can no longer be effectively

sequenced. We have not, however, reached this concentration in the data presented

here. Another important caveat is that these relationships may change when nuclei

numbers are limiting. The ATAC-seq protocol published in [24] states that when ”too

few” cells are used, the proportion of reads derived from inaccessible regions of the

genome increases. Our data was generated using a large enough number of cells that

Tn5, rather than cell number, appears to be the limiting factor in library complexity.

When this is the case, we find that increasing the Tn5 concentration increases the
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proportion of reads in peaks, in enhancer and promoter chromatin states, and in

most TF bound regions. These findings are generally consistent with another recent

publication, which adjusted several experimental variables in cell lines and generally

found that increasing Tn5 concentration yielded more peaks and greater enrichment

of reads around TSS [77]; however another publication, utilizing mouse embryonic

stem cells, concluded that changing Tn5 concentration had little effect on ATAC-seq

results [46].

We note that, although we generated our data under a large range (25X) of

Tn5:nuclei ratios, considerable differences are apparent even over lower ranges that

are likely to be encountered in real-world lab settings. Differences between samples

in the number of input cells and the efficiency of nuclear isolation can easily generate

two-fold or greater differences in Tn5:nuclei ratio (Fig. 3.24). We expect that these

differences may be especially extreme in cases of variable sample quality, or when

working with tissues for which nuclear isolation is especially difficult (e.g., adipose

tissue). Accordingly, nuclei counting should be a standard step in the ATAC-seq

protocol to ensure consistent results.

The observed relationship between Tn5:nuclei ratio and PCR cycles is also an

important finding. When the ratio is low, additional PCR cycles may be necessary

in order to further enrich for short fragments in the library. This is another reason to
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control the Tn5:nuclei ratio, as failure to do so may lead one to differentially amplify

libraries later in the protocol, which may introduce additional PCR-related biases.

Another recent publication [87] found considerable differences in the fragment

length biases of different Illumina sequencing machines, and flagged this as a point of

concern for those performing ATAC-seq. Our results build on and extend these pub-

lished results, as we find that cluster density differences across runs on the same type

of sequencing machine systematically perturb fragment length as well. Therefore,

both the type of sequencing machine and the loading concentration of sequencing

libraries should be taken into account when planning and analyzing ATAC-seq exper-

iments.

When performing QC before proceeding with data analysis, a common question

involves which QC metrics to focus on and which thresholds to select. We urge cau-

tion in following such hard-and-fast rules for several reasons. First, QC metrics may

differ systematically according to factors like cell type. For example, embryonic stem

cells are thought to have greater genome-wide chromatin accessibility than more dif-

ferentiated cells [10, 155] which could result in a significantly different distribution

of ATAC-seq reads and therefore differences in TSS enrichment, number of peaks,

percent of reads in peaks, etc. Similarly, cell types vary in their mitochondrial DNA

copy numbers [121, 273] which may lead to different levels of mitochondrial reads

in different cell types, and sample heterogeneity (e.g., a homogeneous cell line vs a

tissue sample composed of several different cell types) likely affects many of these

metrics. Second, ideal QC metrics may depend on analysis goals. For example, if

one wishes to map precise nucleosome positions adjacent to open chromatin using a

method such as NucleoATAC [254], a mix of shorter and longer reads are favorable,

and therefore a library with very high TSS enrichment but short median fragment

length (few reads longer than 150 bps) might be considered a poor library for this

purpose. These study-specific goals are therefore different, and the associated QC
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metrics that indicate ’good’ may not be shared. Third, one’s threshold for “accept-

able” data will realistically vary depending on sample availability and analysis needs.

If working with valuable clinical samples or very rare, hard-to-obtain cell types, the

amount of material per sample or the number of samples available may be a lim-

iting factor. In this case, one may settle for relatively lower-quality data than one

would accept if one were creating abundant cell line ATAC-seq data (for which sam-

ple availability is not likely to be an issue). Lastly, we have found that the details

of the calculation of a metric can make a significant difference in the resulting QC

values. The calculation of TSS enrichment is a prime example. A variety of methods

for calculating TSS enrichment exist among the QC packages and pipelines available.

Ataqv calculates coverage around the TSS using entire ATAC-seq fragments, while

other packages calculate coverage using only the cutsite or by shifting and extending

individual sequencing reads such that the reads are centered on the cutsite. We have

found that different methods can result in considerably different TSS enrichment val-

ues for the same library (Fig. 3.25). Unsurprisingly, the TSS list used for calculation

of TSS enrichment can change results as well (Fig. 3.26) [46]. Given all of the above

factors, we believe that when selecting QC thresholds researchers should look at the

distribution of many QC metrics calculated uniformly across libraries, and use those

distributions to determine reasonable thresholds. To demonstrate this and provide

one point of reference to users, we have plotted the distributions of several QC met-

rics in the different cell types from the analyzed public bulk ATAC-seq data (Fig.

3.27). Similarly, if researchers wish to compare the characteristics of their ATAC-seq

libraries to previously-generated libraries, a suitable reference library is probably one

that is species- and cell type-matched, was processed using the same genome anno-

tations, and that has already been shown to give quality results in the downstream

analyses that the author(s) plan to utilize the newer libraries for. The ataqv packages

facilitates easy implementation of all these considerations.
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Figure 3.25 TSS enrichment curves and values are highly sensitive to cal-
culation method. (A) Aggregate coverage around TSS for one library from the
PCR-constant experiment, using different methods for calculating coverage. In one
method (‘coverage using fragment’), the coverage over each bp around the TSS is
calculated using the actual entire ATAC-seq fragment. In a second method (‘cover-
age using cutsite +/- 1bp’), coverage is calculated by determining ATAC-seq cutsites
(the exact ends of each ATAC-seq fragment) and placing a fake 3-bp read over each
cutsite and calculating TSS enrichment using these fake reads. In another method
(‘coverage using cutsite +/- 1/2 read length’), cutsite-centered fake reads are again
utilized, but the length of these fake cutsite-centered reads are set to the read length.
For all methods, ‘normalized coverage’ is calculated by dividing the coverage of each
bp by the average coverage over the flanking regions (-1000 - -900, and 900 - 1000).
TSS coverage shows clear differences in shape and smoothness of the curve. (B) Posi-
tion of max coverage (around TSS) for libraries from the PCR-constant experiment,
with coverages calculated as in (A). The maximum point on the curve shows greater
stability across the libraries when calculating coverage using the ATAC-seq fragment
rather than cutsite-centered coverages.
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Figure 3.26 TSS enrichment is highly sensitive to TSS annotations used.
TSS enrichment calculated using all RefSeq TSS or TSS of housekeeping genes only
(PCR-constant experiment). Using housekeeping genes only results in systematically
larger TSS enrichment values.

The systematic relationships between technical variance and change in ATAC-seq

signal highlighted here demonstrate the importance of identifying and adjusting for

heterogeneity in ATAC-seq data. The heterogeneity of the data may also inform one’s

choice of downstream methods. For example, several existing methods leverage the

characteristic ATAC-seq fragment length distribution to call peaks [277], predict TF

binding [159], or determine nucleosome positioning [254]. Cross-sample heterogeneity

in FLDs may confound such analyses.

It has become increasingly clear that rigorous analysis of quantitative chromatin

signatures will be critical for understanding complex human traits and diseases [4, 126,

139, 285]. We expect ataqv to be useful for scrutinizing confounding heterogeneity

and it will therefore be an important tool in dissecting biological mechanisms.
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Figure 3.27 Distribution of several QC metrics across mouse and human
cell types. Median fragment length, TSS enrichment, and the number of peaks in
the analyzed public bulk ATAC-seq data from (A) human and (B) mouse. Each point
represents one library.
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3.5 Methods

3.5.1 Experimental model and subject details

We cultured GM12878 cells following the ENCODE GM12878 cell culture proto-

col (https://www.encodeproject.org/documents/1bb75b62-ac29-4368-9855-68d

410e1963a/), except that we added plasmocin (Invivogen, San Diego, CA; 50 µg ml−1)

to the growth media to prevent mycoplasma contamination. The cell line was not

authenticated. C2C12 cells were proliferated at 37 ◦C in growth media (DMEM +

20% FBS + 1% penicillin streptomycin) in a CO2 incubator (5% CO2). The cell line

was not authenticated.

3.5.2 ATAC-seq experiments

We conducted ATAC-seq as described in [24] using a home-made Tn5 that we

synthesized as described in [214]. We isolated nuclei from three independent cul-

tures (‘replicates’) for the ‘PCR-variable‘ experiment and six additional cultures for

the ‘PCR-constant’ experiment. For each replicate we incubated 50,000 nuclei with

various concentrations of enzyme (1
5

X, 1
2
X, 2

3
X, 1X, 1.5X, 2X, 5X; 1X corresponds

to 2.5 µl of 1:1 Tn5-A/B mix) at 37 ◦C for 30 minutes in a 50 ul reaction. We

column-purified the tagmented DNA using the Zymo DNA Clean & Concentrator-5

kit (Zymo Research, Irvine, CA). In the PCR-variable experiment, we PCR-amplified

the entire eluate until amplification curve reached its mid-log phase (1
3

to 1
2

of max

signal; the number of PCR cycles required to reach this phase differed among groups,

see Results section); whereas in the PCR-constant experiment, we amplified the en-

tire eluate with a fixed number of PCR cycles (16) for all samples. We purified the

products using SPRI beads prepared as in [244] and eluted in 20 ul of TE buffer with

Tween-20 (10 mM Tris-HCl, 0.1 mM EDTA, 0.05% Tween-20, pH 8). Libraries were

multiplexed and sequenced on an Illumina NextSeq 500 instrument.
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3.5.3 GM12878 ATAC-seq data processing

All reads were trimmed to 36 bps using fastx trimmer (from fastx-toolkit v 0.0.14).

Adapters were trimmed using cta (v. 0.1.2; https://github.com/ParkerLab/cta).

Reads were aligned to hg19 [142] using bwa mem (v. 0.7.15; flags: -M) [156]. For

the ATAC-seq experiments that were used to observe the effect of Tn5 concen-

tration, each library was sequenced on two sequencing runs; BAM files from the

two sequencing runs were merged using samtools merge. Picard MarkDuplicates

(v. 2.18.27; http://broadinstitute.github.io/picard) was used for duplicate re-

moval (options: VALIDATION STRINGENCY=LENIENT) and samtools (v. 1.7)

[157] was used to filter for autosomal, properly-paired and mapped read pairs with

mapping quality ≥ 30 (samtools view b h f 3 F 4 F 8 F 256 F 1024 F 2048 q

30). Peak calling was performed using MACS2 callpeak (v. 2.1.1.20160309; op-

tions: –nomodel –broad –shift -100 –extsize 200 –keep-dup all) [316]. Peaks were fil-

tered against ENCODE blacklists (ENCODE Project Consortium, 2012) (downloaded

from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMa

pability/wgEncodeDacMapabilityConsensusExcludable.bed.gz and http://hgdo

wnload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod

eDukeMapabilityRegionsExcludable.bed.gz) using bedtools intersect (option -v; v.

2.27.1) [226]. Ataqv (v. 1.1.0) was run on the BAM files with duplicates marked,

and the blacklists were passed as excluded regions. For the TSS file, we took the

hg19.tss.refseq.housekeeping.ortho.bed.gz TSS file packaged with ataqv (representing

TSS for genes with 1:1:1 human:mouse:rat orthologues where the human gene is a

housekeeping gene [63]; GitHub commit f4b655) and further filtered the list to remove

genes that had more than one TSS in human, mouse, or rat. One library from the

PCR-variable experiment had very few reads (∼ 0.5M in one sequencing run and ∼

0.25M in the second) and was excluded from downstream analysis. For figures display-

ing ATAC-seq coverage, we normalized the signal to account for differences in library
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size and all signal track plots show the same range. Normalization was performed on

the MACS2-created treat pileup.bdg bedgraph files. The script used for normaliza-

tion is available on GitHub (https://github.com/porchard/normalize bedgraph;

commit 82ab906; run with parameters ‘–to-number-reads 10000000’). The normal-

ized bedgraph files were then converted to bigwig format using bedGraphToBigWig

(v. 4) [123].

3.5.4 Public ATAC-seq data (mouse and human) processing

Libraries were processed in the same manner as the GM12878 ATAC-seq libraries

(mapping to mm9 or hg19 as appropriate) [142, 192]. For mm9 we used the black-

list available at http://mitra.stanford.edu/kundaje/akundaje/release/blackl

ists/mm9-mouse/mm9-blacklist.bed.gz (downloaded on Jan. 25, 2013) and the

mm9.tss.refseq.housekeeping.ortho.bed.gz TSS file packaged with ataqv, further fil-

tered as described above for hg19.tss.refseq.housekeeping.ortho.bed.gz.

3.5.5 Determination of high-confidence peaks

To generate the list of peaks used in downstream analyses, we used bedtools merge

to calculate the union of the FDR 1%, blacklist filtered peaks from libraries created

using the 1X Tn5 concentration for each of the two experiments. We then kept, as

master peaks, those intervals that overlapped with FDR 1%, blacklist-filtered peak

calls from at least two of the 1X Tn5 libraries from that experiment.

3.5.6 ataqv metrics

Ataqv collects many common measurements of ATAC-seq results, as well as sev-

eral new metrics that are illuminating when comparing experiments. These metrics

are listed in Table 3.1. One of the metrics, fragment length distribution (FLD) dis-

tance, quantifies the similarity between each experiment’s FLD and a reference FLD
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(‘distance to reference distribution’; Fig. 3.28). This provides a quantitative in-

dicator of over- or under-transposition of samples and may be used as a covariate

in downstream analyses. The distance to reference distribution metric is similar to

a signed Kolmogorov-Smirnov statistic, with the magnitude representing the maxi-

mum vertical difference between the empirical distribution functions of the reference

distribution and the experiment’s distribution. It is calculated as:

S =


maxx(Fe(x)− Fr(x)), if maxx(Fe(x)− Fr(x)) > |minx(Fe(x)− Fr(x))|

minx(Fe(x)− Fr(x)), otherwise

where S is the statistic, x represents a fragment length, and Fe and Fr represent the

empirical distribution functions of the experiment’s fragment length distribution and

the reference fragment length distribution, respectively. The greater the magnitude

of this metric, the less similar the experiment’s FLD is to the reference FLD. A

positive value indicates over-transposition relative to the reference FLD (a greater

proportion of short fragments in the distribution relative to nucleosomal fragments),

while a negative value indicates under-transposition relative to the reference. The

interactive ataqv report includes plots of these FLD metrics, allowing for the quick

visual identification of outliers.

Ataqv calculates TSS enrichment using fragments. Fragment coverage over the

TSS +/- 1kb is computed, and the enrichment for each position is calculated by

dividing this coverage by the average coverage over the outermost 200 bps in the 2-kb

interval (100 bp upstream, 100 bp downstream).

3.5.7 Overlap of reads with chromatin states

Chromatin states were downloaded from https://research.nhgri.nih.gov/man

uscripts/Collins/islet chromatin/hg19/ChromHMM/GM12878 chromHMM.bb [208].

The bigBed file was converted to bed format using bigBedToBed (v. 1) [123]. Reads
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Figure 3.28 Calculation of the fragment length distribution distance. Three
hypothetical distributions are displayed in panel (A); one is chosen as the reference
sample. Relative to the reference sample, one sample has an abundance of shorter
fragments (as would b e expected for a high Tn5 : nuclei ratio) and one has an
abundance of longer fragments (as would be expected for a low Tn5:nuclei ratio). The
fragment length distributions are converted to cumulative distributions (B), and the
Kolmogorov Smirnov statistic is calculated (the maximum vertical distance between
two cumulative distributions). The sign is then set according to whether or not the
sample of interests cumulative distribution takes a value greater than (positive) or
less than (negative) the reference cumulative distribution at the point of maximum
vertical distance.
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were filtered against ENCODE blacklist regions using bedtools intersect prior to the

analysis. Each read was assigned to the chromatin state with which it showed the most

overlap (according to bedtools intersect). To determine the statistical significance of

the relationship between Tn5 concentration and the percentage of reads falling in

each chromatin state, we ran one linear model per chromatin state, modeling pro-

portion of reads in chromatin state ∼ replicate + log2(relative Tn5 concentration).

P-values for the Tn5 concentration coefficient were Bonferroni adjusted.

3.5.8 Overlap of reads with ChIP-seq peaks

IDR ChIP-seq peaks were downloaded from ENCODE [65, 158, 267]. Reads were

filtered against ENCODE blacklist regions prior to the analysis. Bedtools intersect

was used for the overlap; a single base pair was considered sufficient to call a read

overlapping with a peak.

3.5.9 Estimating the efficiency of nuclear isolation

10 nuclear isolations were performed using C2C12 cells in order to characterize

the variability in nuclear isolation efficiency. Cells were trypsinized and washed, and

250K cells were used for each nuclear isolation. Nuclear isolation was performed as in

Supplementary Protocol 1 of [46]. For each of the 10 replicates, nuclei were counted

twice using trypan blue dye in a Countess II FL instrument, and the average of the

two counts used to determine the number of final nuclei.

3.5.10 Modeling Tn5-sensitive peaks

To detect Tn5-sensitive peaks, we used the glm.nb function in the MASS R package

(v. 7.3-50) [288]. We used the following model:

Reads in peak ∼ replicate+log2(relative Tn5 concentration)+offset(log(size factor))
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where replicate represents the nuclear isolation (of which there were 6), relative Tn5

concentration is one of (0.2, 0.5, 0.66, 1, 1.5, 2, 5), and size factor is the total number

of reads after filtering the BAM file (the ‘offset’ term adjusts for the variable number

of reads in each library after filtering). The ‘reads in peak’ value was determined by

passing the bed file of high-confidence peaks and each filtered BAM file to bedtools’

coverageBed (‘-counts’ option). In the case that the model did not converge, we

excluded the peak from the downstream analysis. For the PCR-constant experiment,

all 42 libraries were used. For the PCR-variable experiment, the 20 libraries that

passed QC were used.

3.5.11 Logistic regression to estimate TF ChIP-seq peak sensitivity

To determine if binding of each TF is associated with increased Tn5 sensitivity,

we modeled

peak is tn5 sensitive ∼ median atac peak signal + overlaps TF chipseq peak

using R’s glm function. The median atac peak signal term controls for differences in

NB GLM power as peak size increases. To calculate this term, we first gathered read

counts for all Tn5 = 1X libraries in all peaks, and normalized these counts by the

median count within each library to get a peak signal score for each peak in each

library. We then took the median signal score across libraries for each peak. P-values

for each TF were Bonferroni adjusted. Peak signal and whether or not the peak was

Tn5 sensitive was derived from the PCR-constant experiment.

3.5.12 Data and code availability

All raw and processed data generated during this study have been deposited to

GEO under the accession: GEO: GSE130450. We have created a GitHub repo con-
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taining the code used in this work (https://github.com/ParkerLab/ataqv-2019).

Interactive QC reports for previously published ATAC-seq libraries are available at ht

tps://theparkerlab.med.umich.edu/data/porchard/ataqv-public-survey/. In-

teractive QC reports for our original data are available at https://theparkerlab.med

.umich.edu/data/porchard/ataqv-tn5-series-pcr-controlled (PCR-constant ex-

periment, with six replicates per Tn5 concentration) and https://theparkerlab.med

.umich.edu/data/porchard/ataqv-tn5-series-not-pcr-controlled (PCR-variable

experiment, and sequencing at high and low cluster density).
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CHAPTER IV

Human and Rat Skeletal Muscle Single-nuclei

Multi-Omic Integrative Analyses Nominate Causal

Cell Types and SNPs for Complex Traits

4.1 Abstract

Skeletal muscle accounts for the largest proportion of human body mass, on av-

erage, and is a key tissue in complex diseases, mobility, and quality of life. It is com-

posed of several different cell and muscle fiber types. Here, we optimize single-nucleus

ATAC-seq (snATAC-seq) to map skeletal muscle cell-specific chromatin accessibility

landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-

seq) to map cell-specific transcriptomes in human, capturing type I and type II muscle

fiber signatures, which are generally missed by existing single-cell RNA-seq data. We

perform cross-modality and cross-species integrative analyses for the 30,531 nuclei,

representing 11 libraries, profiled in this study, and identify seven distinct cell types

ranging in abundance from 63% (type II fibers) to 0.9% (muscle satellite cells) of all

nuclei. We introduce a regression-based approach to assign cell types by comparing

transcription start site-distal ATAC-seq peaks to reference enhancer maps and show

consistency with marker gene-based cell type assignments. We find heterogeneity in

enrichment of genetic variants linked to complex phenotypes from the UK Biobank
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and diabetes genome wide association studies in cell-specific ATAC-seq peaks, with

the most striking enrichment patterns in muscle mesenchymal stem cells (∼ 3% of

nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to

nominate causal cell types, SNPs, and transcription factor (TF) motifs for creatinine

level and type 2 diabetes signals.

4.2 Introduction

Skeletal muscle tissue accounts for 30-40% of body mass, which is the largest tis-

sue, on average, in adult humans and is central to basic quality of life and complex

diseases [75, 108]. Like other tissues, skeletal muscle is composed of a mixture of

different cell types. Most of the tissue is composed of muscle fibers, which may be

categorized into different fiber types, each of which display distinct metabolic and

molecular phenotypes. The proportion of muscle fibers accounted for by each fiber

type varies across individuals [266]. Muscle-related diseases may differentially impact

different fiber types, and fiber type proportions are associated with complex pheno-

types, including aerobic and anaerobic exercise capacity and type 2 diabetes (T2D)

status [275]). Muscle satellite cells are progenitors to muscle fibers, indispensable

for the generation and regeneration of muscle [236]; these cells are present in skele-

tal muscle tissue, as are several other cell types, such as mesenchymal stem cells,

that cooperate in muscle regeneration [111, 129]. Molecular associations with skeletal

muscle tissue/muscle fiber characteristics and muscle-related complex diseases could

be mediated in part by these stem cell-like populations; for example a genetic variant

that alters the developmental of a satellite cell could carry important implications

for later muscle function, just as some T2D-associated variants are proposed to im-

pact pancreatic/beta cell development rather than the function of mature beta cells

[178, 282] and facial morphology associated variants may act through progenitor cell

populations [310]. Immune cells infiltrate muscle tissue and communicate with muscle
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cells as well, playing a particularly important role following injury [215]. Profiling the

transcriptomic and epigenomic landscapes of these cell types and muscle fiber types

may therefore contribute to our understanding of the biology of muscle development

and muscle-related complex traits.

Bulk profiling of skeletal muscle tissue ignores this heterogeneity and is domi-

nated by the most common cell types (muscle fibers), but single-cell/-nucleus meth-

ods overcome this and allow profiling of the constituent cell types. In the case of

skeletal muscle, the distinction between single-nucleus and single-cell profiling is par-

ticularly important as (1) skeletal muscle fibers have an elongated shape that may

make them difficult to capture in single-cell suspensions, and (2) muscle fibers are

multinucleated, meaning that a single-cell measurement will capture the output of

many nuclei. Previous single-cell RNA-seq studies of human [185, 246, 308], mouse

[52, 54, 83, 200, 212, 274], and pig [222] skeletal muscle tissue either capture no

muscle fiber nuclei or capture them in unrepresentative proportions. Bulk analysis

of pooled, dissected muscle fibers have generated fiber-type specific transcriptional

profiles [6, 33, 34, 232] and analysis of specific isolated muscle resident cell popula-

tions [39, 78, 163] have generated insights into targeted cell subpopulations but these

studies are necessarily biased towards specific cell types. To date no single nucleus

ATAC-seq (snATAC-seq) studies of whole human or rat skeletal muscle tissue samples

has been performed.

Here, we employ single-nucleus RNA-sequencing (snRNA-seq) and ATAC-seq (sn

ATAC-seq) on the 10X Genomics platform to profile gene expression and chromatin

accessibility of frozen skeletal muscle cell populations in human and rat. First we

examine the influence of fluorescence activated nucleus sorting (FANS) and nucleus

loading concentration on the performance of the platform. Next, we perform joint

clustering of the snRNA-seq and snATAC-seq libraries to determine the cell types

detected in skeletal muscle tissue samples and map their respective transcriptomes
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and chromatin landscapes. We then integrate the resulting genomic maps with UK

Biobank and T2D-related GWAS results to explore the relationship between these

cell types and a broad range of human phenotypes and diseases and nominate causal

SNPs at several genomic loci.

4.3 Results

4.3.1 FANS negatively impacts 10X snATAC-seq results

Before being loaded onto the 10X platform, nuclei must be isolated from the

samples of interest. This process involves cell lysis, which produces viable nuclei as

well as substantial cellular debris and dead nuclei, some of which inevitably remains

in the final nuclei suspension. By staining the DNA in live nuclei and using FANS to

selectively filter the suspension for stained entities, one should be able to remove dead

nuclei and cellular debris in the suspension, improving the purity and quality of the

suspension loaded onto the 10X platform. However, the FANS process could stress

the live nuclei or otherwise alter the snRNA-seq and snATAC-seq results. Comparing

quality control metrics and (in the case of snRNA-seq) aggregate gene expression or

(in the case of snATAC-seq) aggregate ATAC-seq peaks/signal between snRNA-seq

and snATAC-seq libraries generated from nuclei that either did or did not undergo

FANS would allow one to detect substantial changes that FANS may introduce. Also,

because the aggregate of reads from a snRNA-seq or snATAC-seq library should

resemble the profile of the same assay performed in a bulk fashion on the same

biological sample, one can generate bulk and single-nucleus libraries from a single

sample and compare quality control metrics and gene expression/ATAC-seq signal

between them. Therefore, to determine the effect of FANS on 10X snRNA-seq and

snATAC-seq results, we performed three nuclear isolations from a single human muscle

sample, mixed the resulting nuclei together, and performed FANS on one half of

93



the suspension (Fig. 4.1A). The FANS and non-FANS suspensions were then each

used to produce two replicate snATAC-seq and two replicate snRNA-seq libraries,

resulting in eight total libraries (four snATAC and four snRNA). We also generated

two independent bulk ATAC-seq libraries from the same biological sample, allowing

us to compare snATAC-seq profiles, with and without FANS, to a comparable bulk

ATAC-seq profile.

First we examined the four snATAC-seq libraries, comparing the aggregate signal

for each library to bulk ATAC-seq libraries from the same biological sample. We

called peaks for the four libraries and ran the ataqv quality control software package

[202] on the aggregated data to examine the overall transcription start site (TSS)

enrichment and fragment length distributions. The fragment length distributions for

each library resembled the expected stereotypical ATAC-seq fragment length distribu-

tion, showing an abundance of short fragments as well as mononucleosomal fragments

(Fig. 4.1B) [23]; however, the TSS enrichment was lower in the FANS libraries (Fig.

4.1C), indicating the FANS libraries had a lower signal to noise ratio. This differ-

ence in signal-to-noise ratio is demonstrated when visualizing the ATAC-seq signal

at genomic regions active in muscle, such as the ANK1 locus (Fig. 4.1D) [259]. We

additionally overlapped TSS-distal ATAC-seq peaks from each of the libraries with

existing chromatin states from diverse tissues and cell types [243] and found that the

peaks from the non-FANS libraries showed considerable overlap with skeletal muscle

enhancers, while the peaks from the FANS libraries showed poor overlap (Fig. 4.2).

ATAC-seq signal across FANS libraries showed poor correlation with the two bulk

ATAC-seq libraries from the same sample (Fig. 4.3). We therefore concluded that

FANS has a clear negative impact on 10X snATAC-seq results.

Next we examined the four snRNA-seq libraries. All four libraries showed high

correlation, indicating that FANS does not substantially alter snRNA-seq results, at

least at the pseudo-bulk gene expression level (Fig. 4.1E). In order to determine if
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Figure 4.1 Effect of FANS and 10X well loading concentration on aggre-
gate snATAC-seq and snRNA-seq results. (A) Study design to determine the
effect of FANS on snRNA-seq and snATAC-seq results. Muscle cartoon adapted from
[259]. HSM1 refers to one specific skeletal muscle sample (‘human skeletal muscle
1’). Bulk ATAC-seq was performed on HSM1 as well (two replicates, each separate
nuclei isolations). (B) Fragment length distribution and (C) TSS enrichment for two
snATAC-seq libraries that did not undergo FANS and two that did, as well as two
bulk ATAC-seq replicates from the same sample (‘Bulk’). (D) ATAC-seq signal at
the ANK1 locus for FANS or non-FANS input snATAC-seq libraries, and the two
bulk ATAC-seq libraries. All tracks are normalized to 1M reads. (E) Correlation
between FANS and non-FANS snRNA-seq libraries; each point represents one gene.
(F) Study design to determine the effect of loading 20k vs 40k nuclei into the 10X
platform, utilizing HSM1 as well as a second sample, HSM2 (‘human skeletal muscle
2’). Bulk ATAC-seq was performed on HSM1 (same libraries as in (a)) and on HSM2
(two replicates, each separate nuclei isolations). (G) Fragment length distribution
and (H) TSS enrichment for snATAC-seq libraries after loading 20k vs 40k nuclei, as
well as for the four bulk ATAC-seq libraries (two each from the two muscle samples,
‘HSM1 bulk’ and ‘HSM2 bulk’). (I) ATAC-seq signal at the ANK1 locus for the 20k
and 40k libraries and the four bulk ATAC-seq libraries. All tracks are normalized to
1M reads. (J) Correlation between snRNA-seq libraries resulting from loading 20k vs
40k nuclei.
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Figure 4.2 Chromatin state overlap for TSS-distal (> 5kb from TSS) ATAC-seq
peaks from the FANS and non-FANS snATAC-seq libraries.
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Figure 4.3 Correlation between FANS snATAC-seq, non-FANS snATAC-seq, and
standard bulk ATAC-seq libraries. Each point represents one peak.
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FANS altered the yield of quality nuclei, we used read counts and mitochondrial con-

tamination to select quality nuclei from each library, additionally removing doublets

using doubletfinder [181]. We found that FANS substantially increased the number of

quality nuclei obtained (2,004 and 2,078 for non-FANS libraries; 7,715 and 7,118 for

FANS libraries). We therefore concluded that FANS has little effect on pseudo-bulk

gene expression measurements, but may alter nucleus yield.

4.3.2 snATAC-seq and snRNA-seq results are robust to nucleus loading

concentrations

The concentration at which nuclei are loaded onto the 10X platform is an impor-

tant parameter affecting data quality and the number of nuclei available for down-

stream analysis. Increasing the loading concentration increases the maximum number

of nuclei from which data can be obtained; however, it also increases the probability

that multiple nuclei end up with the same gel bead, thereby increasing the doublet

rate. Balancing these outcomes is important to maximize the amount of quality data

and number of nuclei available for downstream analysis. To evaluate the effect of

increasing the number of nuclei loaded onto the platform, we performed a separate

experiment in which we isolated nuclei from two muscle samples, mixed them to-

gether, and then loaded either 20k or 40k nuclei (as quantified by a Countess II FL

Automated Cell Counter) into a 10X well for snRNA-seq and for snATAC-seq (Fig.

4.1F). We also generated two independent bulk ATAC-seq libraries from the biologi-

cal sample for which bulk ATAC-seq profiles were not already available, allowing us

to compare snATAC-seq profiles to comparable bulk ATAC-seq profiles.

The snATAC-seq libraries displayed the expected fragment length distributions

and comparable TSS enrichments (Fig. 4.1G, H). We examined the aggregate signal of

the snATAC-seq libraries next to bulk ATAC-seq libraries from the same samples and

confirmed that both libraries showed strong signal, comparable to that of bulk data
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Figure 4.4 Chromatin state overlap for TSS-distal (>5 kb from TSS) ATAC-seq
peaks from the 20k and 40k nucleus FANS snATAC-seq libraries.

(Fig. 4.1I). Overlap between TSS-distal ATAC-seq peaks called on both libraries and

chromatin states were likewise similar, showing relatively high overlap with skeletal

muscle enhancers (Fig. 4.4), and the ATAC-seq signal in the libraries correlated with

bulk ATAC-seq signal to an extent comparable to the correlation between two bulk

ATAC-seq libraries (Fig. 4.5). After selecting quality nuclei (Fig. 4.6), we found that

the higher loading concentration yielded 2,035 nuclei while the lower concentration

yielded 855 nuclei (after doublet removal).

Correlation between the snRNA-seq libraries was high, indicating that the loading

concentration could be changed substantially without compromising data quality (Fig.

4.1J). We again found the higher loading concentration yielded more quality nuclei

than the lower concentration (3,839 vs 2,118) after doublet removal.

10X guidelines recommend loading 15k nuclei into a well; however, our results

indicate that exceeding this loading concentration can still yield quality snATAC-seq
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Figure 4.5 Correlation between 20k and 40k nucleus snATAC-seq libraries and stan-
dard bulk ATAC-seq libraries. Each point represents one peak.
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b

Figure 4.6 QC thresholds for the 20k and 40k nuclei input snATAC-seq libraries. (a)
Dashed lines represent thresholds for minimum number of reads, maximum number
of reads, and minimum TSS enrichment. (b) Dashed lines represent thresholds for
minimum number of reads, maximum number of reads, and the maximum fraction of
reads derived from a single autosome (imposed to filter out nuclei showing aberrant
per-chromosome coverage).
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Figure 4.7 QC thresholds for the 20k and 40k nuclei input snRNA-seq libraries.
Dashed lines represent thresholds for minimum number of UMIs, maximum number
of UMIs, and maximum fraction of mitochondrial UMIs.

results (as measured by standard quality control metrics relative to bulk ATAC-seq

data) and, for both snATAC-seq and snRNA-seq, increase the number of quality

nuclei even after accounting for the increase in doublet rate. The aggregate gene

expression/ATAC-seq signal profile was comparable between loading concentrations.

One caveat to these conclusions is that the actual number of nuclei loaded into the

well may differ from our estimated numbers, as debris in the nuclei preps may affect

the accuracy of the nuclei counts.

4.3.3 Joint clustering of human and rat snATAC-seq and snRNA-seq

identifies skeletal muscle cell types

To determine cell types present in skeletal muscle samples, we selected high-quality

ATAC and RNA nuclei from the FANS/non-FANS libraries and the 20k/40k nuclei

libraries generated above and performed joint clustering. snATAC-seq libraries that

underwent FANS were excluded as they failed to provide quality data. We generated

and included a snATAC-seq library containing a mix of human and rat nuclei (Fig.

4.8, 4.9). Information about the biological samples and post-QC nucleus summary

statistics for each library is provided in Table 4.1. In total we obtained 24,866 hu-

man snRNA-seq (mean UMIs = 7,482), 5,053 human snATAC-seq (mean fragments
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Nuclei from sample
library median/mean

fragments
HSM1 HSM2 Rat

Human/rat mix (ATAC) 49484/55905 887 0 612
no FANS, rep. 1 (ATAC) 75315/80666 670 0 0
no FANS, rep. 2 (ATAC) 53694/56209 606 0 0
no FANS, rep. 1 (RNA) 8610/9635 2004 0 0

FANS, rep. 1 (RNA) 8264/8799 7715 0 0
no FANS, rep. 2 (RNA) 8512/9770 2078 0 0

FANS, rep. 2 (RNA) 8172/8708 7118 0 0
20k nuclei (RNA) 2530/3030 1045 1073 0
20k nuclei (ATAC) 37110/38727 386 469 0
40k nuclei (RNA) 2190/2654 1913 1926 0
40k nuclei (ATAC) 20390/20991 955 1080 0

Table 4.1: Per-library fragment counts and per-sample nucleus counts for jointly
clustered libraries

= 31,500), and 612 rat snATAC-seq (mean fragments = 60,874) nuclei. We used

integrative non-negative matrix factorization (iNMF) as implemented in the LIGER

(linked inference of genomic experimental relationships) software package [300] to

perform joint clustering on snRNA-seq and snATAC-seq nuclei and identified seven

cell type clusters (Fig. 4.10A). Nuclei from different modalities, species, and libraries

integrated well, indicating that clustering was not driven by technical factors (Fig.

4.10B).

We used marker genes to assign cell types to each cluster (Table 4.2) and found

clear concordance between human RNA-seq and ATAC-seq (Fig. 4.10C, D). We found

marker gene accessibility in the rat ATAC-seq data to be largely consistent with the

human data, though examination of the myosin heavy chain genes, often used to

distinguish between different muscle fiber types, indicated that a considerable number

of rat type II muscle fiber nuclei were likely present in the type I muscle fiber cluster

(the opposite did not seem to occur; i.e., the type II muscle fiber cluster appeared to

be relatively free of rat type I muscle fiber nuclei; Fig. 4.11). This mixing of some rat

muscle fiber nuclei is a limitation of our data; because only 612 of 30,531 (2.0%) of
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a

b

Figure 4.8 QC thresholds for all snATAC-seq libraries used in cell type clustering
and downstream analyses. (a) Dashed lines represent thresholds for minimum number
of reads, maximum number of reads, and minimum TSS enrichment. (b) Dashed lines
represent thresholds for minimum number of reads, maximum number of reads, and
the maximum fraction of reads derived from a single autosome (imposed to filter out
nuclei showing aberrant per-chromosome coverage).
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Figure 4.9 QC thresholds for all snRNA-seq libraries used in cell type clustering
and downstream analyses. Dashed lines represent thresholds for minimum number of
UMIs, maximum number of UMIs, and maximum fraction of mitochondrial UMIs.

all nuclei come from rat, the human data drive the clustering. As expected the vast

majority of our nuclei (90.4%) were muscle fiber nuclei (Fig. 4.10E).

We sought to independently assess cluster identity without relying on marker gene

patterns and therefore focused on cluster-level TSS-distal ATAC-seq peaks, many of

which would not be taken into account when assigning cell types using marker genes.

We developed a logistic regression approach to score the similarity between these

Gene Cell type References
MYH1 Type II muscle fibers [255, 275]
MYH7 Type I muscle fibers [255, 275]

PDGFRA Mesenchymal stem cells [69, 283]
VWF Endothelial cells [249, 312]

MYH11 Smooth muscle [32, 88]
CD163 Immune (macrophages/monocytes) [146, 137]
PAX7 Satellite cells [235, 260]

Table 4.2: Marker genes used for cell type assignments
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Figure 4.10 Joint clustering of snRNA-seq and snATAC-seq nuclei and
cell type determination. (A) UMAP after clustering human snATAC-seq, human
snRNA-seq, and rat snATAC-seq nuclei with LIGER. (B) UMAP faceted by species
and modality. (C) Gene expression (snRNA-seq) or accessibility (snATAC-seq; gene
promoter + gene body) of marker genes. Values are column-normalized. (D) ATAC-
seq signal for human snATAC-seq nuclei in each cluster. All tracks are normalized
to 1M reads. (E) Fraction of nuclei, across both species and modalities, assigned to
each cell type. (F) Logistic regression-based approach to score similarity between
TSS-distal ATAC-seq peaks (> 5 kb from TSS) and Roadmap Epigenomics enhancer
states. (G) Similarity of snATAC-seq peak calls for each cell type and species to
Roadmap Epigenomics chromHMM enhancer states based on the logistic regression
procedure outlined in (F). The Roadmap Epigenomics cell type names have been
adjusted slightly for clarity and the sake of space. The full names and the identifiers
from the Roadmap Epigenomics paper are: Psoas muscle (E100), Mesenchymal Stem
Cell Derived Adipocyte Cultured Cells (E023), HUVEC Umbilical Vein Endothelial
Primary Cells (E122), Stomach Smooth Muscle (E111), Primary monocytes from
peripheral blood (E029), and Fetal Muscle Trunk (E089). (H) Nucleus counts per
species for snATAC-seq data.
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Figure 4.11 snATAC-seq read counts (gene promoter + gene body) derived from the
Type II muscle fiber myosin heavy chain genes (MYH1, MYH2, MYH4 ) or the Type
I muscle fiber myosin heavy chain gene (MYH7 ) for human and rat nuclei. Each
point represents a single nucleus. Type I muscle fibers/Type II muscle fibers headers
represent the cluster to which each nucleus was assigned.
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Cell type Human ATAC Human RNA Rat ATAC
Type II muscle fibers 2729 16028 381
Type I muscle fibers 1615 6730 126

Mesenchymal stem cells 271 596 47
Endothelial cells 147 494 20
Smooth Muscle 134 448 16
Immune cells 92 367 16

Muscle satellite cells 65 203 6

Table 4.3: Cell type nucleus counts by species and modality

peaks and enhancer chromatin states from 127 Roadmap Epigenomics cell types (Fig.

4.10F) [243]. We found concordance with the marker gene-based cell type assignment

approach (Fig. 4.10G). Remarkably this approach worked relatively well in assigning

rat nuclei, despite the fact that the number of nuclei per cluster for rat ranged between

six and twenty for the smallest four cell types (Table 4.3; Fig. 4.10H).

The majority of the nuclei were assigned as type I or type II muscle fibers. Genes

previously discovered to be preferentially expressed in type I vs. type II muscle

fibers [246] were usually similarly preferentially expressed in our snRNA-seq data

(Fig. 4.12), validating the quality of the data and accuracy of muscle fiber type

assignments.

4.3.4 Integration of cell-type-specific ATAC-seq peaks with UK Biobank

GWAS reveals cell type roles in complex phenotypes

Genetic variants associated with complex traits and disease are frequently located

in non-coding regions of the genome [179, 208, 253]. Variants associated with a

given complex trait are expected to be enriched specifically in non-coding regulatory

elements of the trait-relevant cell types; for example, T2D-associated genetic vari-

ants are enriched in regulatory elements specific to pancreatic islets and beta cells

[71, 79, 172, 208, 209, 224, 228, 281, 286, 287], and variants associated with autoim-

mune disorders are enriched in immune cell-specific regulatory elements [71]. Variant
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Figure 4.12 Log2(fold change) for Type II vs Type I muscle fiber gene expression,
showing the top differentially expressed genes from Rubenstein et al. (Rubenstein et
al. Table S4).

enrichment in cell-specific regulatory elements can therefore be used to determine

which cell types are relevant to a given trait or disease. Variants in high linkage dis-

equilibrium (LD) with trait-influencing SNPs are often statistically associated with

the trait as well, making it difficult to infer the causal SNP through statistical asso-

ciation alone. Epigenomic data, such as chromatin accessibility in trait-relevant cell

types, can be used to nominate causal genetic variants under the assumption that

non-coding SNPs in accessible regions of the genome are more likely to be causally

related to a trait than non-coding SNPs in inaccessible regions.

To explore the relationship between complex traits and the cell types present in

our data, as well as demonstrate the value of our muscle cell type chromatin data in

narrowing the post-GWAS search space, we used LD score regression (LDSC) [71, 80]

to perform a partitioned heritability analysis using GWAS of 404 heritable traits from

the UK Biobank [270] (http://www.nealelab.is/uk-biobank/) and our muscle cell

type open chromatin regions [71, 80]. Results for all traits in which at least one

of our cell types showed significant (p < 0.05) enrichment after Benjamini-Yekutieli
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correction are displayed in Fig. 4.13A. Due to the heavy multiple testing correction

burden, relatively few traits meet this threshold. However, we observed immune cell

abundance traits show enrichment for the immune cell cluster, and diastolic blood

pressure GWAS SNPs are enriched in smooth muscle ATAC-seq peaks. In addition,

we see that several skeletal trait GWAS SNPs are enriched in mesenchymal stem cell

peaks. Previous work has shown a central role of bone mesenchymal stem cells in

osteoblast development [216, 309]. In addition, SNPs for several corneal traits are

also enriched in mesenchymal stem cell peaks, consistent with previously observed

enrichment of corneal thickness GWAS SNPs in mesenchymal stem cell/connective

tissue cell annotations [105]. Results using rat peaks projected into human coor-

dinates largely mirror the human mesenchymal stem cell enrichment findings (Fig.

4.14).

One muscle-related trait included in the UK Biobank is creatinine level. In humans

most serum creatinine is produced by skeletal muscle and is filtered by the kidneys

[116]. Creatinine levels are commonly used as a biomarker for kidney function but

correlate with muscle mass and have been used to score sarcopenia [12, 117, 154]. In

our enrichment analysis, the cell type with the highest LDSC coefficient Z-score was

type II muscle fibers (z-score = 2.5; Fig. 4.13B).

Integrating the ATAC-seq results with the GWAS summary statistics can help

nominate causal SNPs. One example is the C17orf67 locus in the creatinine GWAS

(Fig. 4.13C). The lead SNP at this locus (rs227727; p = 5.38e-18) lies in an in-

tergenic region 92 kb from C17orf67 and 104 kb from NOG. This SNP is in an

ATAC-seq peak in several muscle cell types, though the signal is largest in type II

muscle fibers (Fig. 4.13D). The peak corresponds to an enhancer chromatin state

in muscle, amongst other cell types [243]. We used the Probabilistic Identification

of Causal SNPs (PICS) tool [70] to estimate the probability that nearby SNPs were

causal given the pattern of linkage disequilibrium at the locus. PICS assigned the
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Figure 4.13 Integration of UK Biobank GWAS with cell type snATAC-seq
peaks. (A) UK Biobank LDSC partitioned heritability results for traits for which
one of the muscle cell types was significant after Benjamini-Yekutieli correction. (B)
LDSC partitioned heritability results for creatinine (UK Biobank trait 30700). Red
y-axis labels refer to the muscle snATAC-seq cell type annotations. (C) Locuszoom
plot [221] for C17orf67 locus in the UK Biobank creatinine GWAS. (D) ATAC-seq
signal in the region highlighted in (C). All tracks are normalized to 1M reads. SNPs
shown have LD ≥ 0.8 with the lead SNP based on the European samples in 1000
Genomes Phase 3 (Version 5) [1]. (E). gkmexplain importance scores for the ref and
alt allele-containing sequences (top two rows), and the difference between the ref and
alt allele importance scores (third row), which resembles the PITX2 2 motif predicted
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Figure 4.14 UK Biobank LDSC partitioned heritability results for traits for which
one of the muscle cell types was significant after Benjamini-Yekutieli correction (rat).

index SNP, rs227727, a probability of 0.766 of being the causal SNP. A tightly linked

SNP, rs227731 (R2 = 0.99), had a probability of 0.221; no other SNPs had proba-

bility greater than 0.01. SNP rs227731 is not in an ATAC-seq peak in any of the

muscle cell types we identified, suggesting that the index SNP, rs227727, is indeed

the causal SNP. A previous study found that the A allele of rs227727 was associated

with higher activity in an allelic luciferase assay in both human fetal oral epithelial

cells (GMSM-K) and murine osteoblastic cells (MC3T3) [153]. To predict allelic ef-

fects at this SNP in type II muscle fibers, we trained a gapped-kmer support vector

machine model (gkm-SVM) [82, 150] to detect kmers associated with increased or

decreased chromatin accessibility using the top ATAC-seq peaks for each of our cell

types and then ran deltaSVM [151] to predict this SNP’s effect on chromatin ac-

cessibility. DeltaSVM predicts a SNP’s effect by comparing the gkm-SVM inferred

kmer weights for kmers created by the reference vs the alt allele; we transformed the
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deltaSVM score to a z-score based on the distribution of the predicted impacts of all

autosomal 1000 Genomes SNPs [1]. The type II muscle fiber deltaSVM z-score for

this SNP was 0.73 (directionally favoring the alt allele, T, having higher chromatin

accessibility, although the z-score is not statistically significant). We also attempted

to interpret how each allele of the SNP affects the gkm-SVM model’s score for the

sequence using the gkmexplain software package, which scores the importance of each

base in a sequence to the gkm-SVM model score for the sequence [265]. We ran gkm-

explain on the sequence surrounding the SNP in the presence of either the reference

or the alternative allele and compared the results (Fig. 4.13E). The change in the

gkmexplain importance scores in the presence of the reference vs alternative allele

resembled several known homeodomain TF motifs predicted to be disrupted by the

reference allele such as that of PITX2, suggesting that the alternate allele may have

directionally (non-significant) greater predicted chromatin accessibility because it is a

better match to these homeodomain TF motifs (Fig. 4.13E) [125]. We note, however,

that the deltaSVM z-score of the SNP as well as the gkmexplain importance scores

of the SNP and surrounding nucleotides are of low magnitude, suggesting that the

reference allele may reduce the binding of PITX2 or another homeodomain TF with-

out significantly affecting local chromatin accessibility. Biologically, the nearby NOG

gene is a particularly compelling candidate target gene of this regulatory element,

as its product (noggin) regulates BMP signaling and is involved in muscle growth

and maintenance [47, 73, 251, 250, 284, 293]. Integrated with the GWAS summary

statistics and these additional resources, our ATAC-seq data adds to existing evi-

dence that SNP rs227727 alters the activity of a gene regulatory element and is a

prime candidate to impact creatinine levels.
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4.3.5 Integration of cell type-specific ATAC-seq peaks with T2D GWAS

credible sets nominates causal SNPs and cell types

It is well-established that T2D GWAS SNPs overlap pancreatic islet/beta cell

enhancers [79, 172, 208, 228, 286]; however, some SNPs may act through other T2D-

relevant tissues, such as muscle, adipose, or liver. We therefore used LDSC to perform

a partitioned heritability analysis for T2D-associated SNPs [172] in each of the mus-

cle cell types as well as in beta cell ATAC-seq peaks, adipose ATAC-seq peaks, and

liver DNaseI hypersensitive sites (see Methods) (Figs. 4.15A, 4.16A). When modeling

each cell type separately (adjusting for the cell type-agnostic LDSC baseline annota-

tions and common open chromatin regions), we found significant enrichment (after

Bonferroni correction for 40 tests) in type II muscle fibers and beta cells, though

when modeling all cell types in a single joint model only beta cell open chromatin

regions showed significant enrichment (Fig. 4.16A). We performed a similar analysis

on GWAS SNPs for a T2D-related trait, fasting insulin (Figs. 4A, 4.16A) [175]. For

fasting insulin, we found significant enrichment in mesenchymal stem cells, immune

cells, and bulk adipose when modeling each cell type individually, but only adipose

showed significant enrichment when modeling all cell types jointly. For fasting in-

sulin, we note that the small sample size of that GWAS means the analysis was likely

underpowered, leaving open the possibility that other cell types will show significant

enrichment when GWAS with larger sample sizes are available. We also note that the

adipose open chromatin regions are derived from bulk tissue open chromatin profiling;

it is therefore possible that at least some of the signal from adipose is being driven by

cell types shared between our muscle samples and adipose tissue, such as mesenchy-

mal stem cells. This is an area for further exploration when single-cell/single-nucleus

data from adipose is available.

We performed similar GWAS enrichments using the rat muscle cell type peaks

projected into human coordinates (Fig. 4.15A, 4.16B). For T2D we found muscle
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fiber types and mesenchymal stem cells were significantly enriched after Bonferroni

correction, but as with human muscle cell types these enrichments did not persist in

a joint model with all cell types (Fig 4.16B). For fasting insulin no rat muscle cell

types showed enrichment after Bonferroni correction.

While none of our cell types showed significant enrichment in 10-cell-type models

after Bonferroni correction, it is still possible that some T2D GWAS loci act through

muscle cell types or cell types shared between muscle and other tissues such as adipose.

There are a substantial number of T2D GWAS credible sets that show no overlap with

pancreatic islet functional annotations [172]. We therefore overlapped 380 previously-

published T2D GWAS signals with 99% genetic credible set SNPs [172] with our

snATAC-seq peaks to nominate SNPs that may be acting through the muscle cell

types, including those that are expected to be shared with adipose.

One locus highlighted by our data is the ITPR2 locus on chromosome 12 (Fig.

4.15B). This locus contains 22 credible set SNPs, none with a particularly high pos-

terior probability of association (PPA) in the T2D genetic fine-mapping (maximum

across all credible set SNPs = 0.06). Only one SNP (rs7132434; PPA = 0.042)

overlaps any of our muscle cell type peak calls (Fig. 4.15C). This SNP is in a large

mesenchymal stem cell ATAC-seq peak, and also overlaps peak calls in smooth muscle

and blood, though the chromatin accessibility signal in those cell types is lower in our

data. The SNP also overlaps a peak call in a subset of adipose and islet samples (Fig.

4.17). We found that this SNP had a large deltaSVM z-score in several of the muscle

cell types (absolute z-score = 2.88 in mesenchymal stem cells; the T2D risk allele, A,

is predicted to result in greater chromatin accessibility). We ran gkmexplain on the

sequence surrounding the SNP and found the gkmexplain importance scores for the

sequence in the presence of the risk allele resembled an AP-1 motif (Fig. 4.15D) [125].

A literature search revealed that the element underlying this SNP has been validated

for enhancer activity using a luciferase assay (in a renal cancel cell line, 786-O cells)
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Figure 4.15 Integration of T2D and related trait GWAS with cell type
snATAC-seq peaks. (A) LDSC partitioned heritability results for T2D and Fast-
ing insulin GWAS, using human peak calls. For each of the cell types, one model
was run adjusting for cell type-agnostic annotations from the LDSC baseline model
and common open chromatin regions. Asterisks represents Bonferroni significance (p
< 0.05 after adjusting for 40 tests). (B) locuszoom plot [221] for ITPR2 locus in
the T2D data. (C) T2D credible set near the ITPR2 gene, consisting of 22 SNPs.
One SNP (highlighted in red) overlaps a peak call in any of the muscle cell types.
(D) gkmexplain importance scores for the ref and alt allele (top two rows) and the
difference between the ref and alt importance scores (third row); the G allele dis-
rupts an AP1 motif (bottom row). (E). locuszoom plot for ARL15 locus in the T2D
data. (F). T2D credible set SNPs near the ARL15 gene. One of the SNPs overlaps
a mesenchymal stem cell specific peak. (G). Projecting the SNP highlighted in (F)
into the rat genome (projected SNP position indicated by the red vertical line) shows
the corresponding region has open chromatin in rat mesenchymal stem cells. (H).
gkmexplain importance scores for the ref and alt alleles (top two rows), the difference
between them (third row), and a MEF2 motif disrupted by the SNP.
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Figure 4.16 (A) LDSC partitioned heritability results for T2D and Fasting insulin
GWAS, using human peak calls. Results are shown for pancreatic beta cell, adipose,
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the rat peak calls projected into human coordinates for the muscle cell types.
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and the risk allele showed preferential binding of the AP-1 transcription factor in

an EMSA assay in the same study and cell line [17], consistent with our findings.

We note that this SNP is also a credible set SNP for waist-hip ratio [99, 162]. We

therefore hypothesize that rs7132434 is the causal SNP at this locus, and that it may

be acting through mesenchymal stem cells.

A second locus highlighted by our data is an intronic locus in the ARL15 gene

(Fig 4E). The T2D genetic fine-mapping narrowed the list of potentially causal SNPs

at this locus to three (two other, larger genetic fine-mapping credible sets are also an-

notated to ARL15 ). SNPs in this credible set are statistically associated with fasting

insulin [171], and more broadly variants in or near ARL15 associate with metabolic

traits including adiponectin, HDL cholesterol levels, and BMI [171, 241, 278], sug-

gesting that the locus may affect T2D risk not through islets but through adipose or

a related cell type. Interestingly, none of the SNPs overlap with any of ENCODE’s

1.3 million candidate cis-regulatory elements [64, 65] or any of the approximately 3.6

million DNaseI hypersensitive sites (DHS) annotated in [184]; however, in our data

we find that one of the SNPs (rs702634) is in the center of a mesenchymal stem cell

specific ATAC-seq peak (Fig. 4.15F), and a mesenchymal stem cell peak is likewise

present in the corresponding position in the rat genome (Fig. 4.15G), indicating that

this is a regulatory element that has been conserved across species. The T2D genetic

fine-mapping assigned this SNP a probability of 0.48 of being the causal SNP at this

locus, higher than either of the other two SNPs (0.33 and 0.19, respectively). We

examined publicly-available beta cell (n = 1), islet (n = 10) [228], and adipose (n =

3) [29] ATAC-seq data to see if hints of this peak are present in these T2D-relevant

cell types. No convincing signal appears to be present in beta cell or islet data (a

subset of islet samples do have a peak call overlapping the SNP, but visual inspection

of the locus suggests this is spurious); a weak but significant and visually apparent

increase in signal at that SNP is evident in adipose samples (Fig. 4.18). As mes-
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enchymal stem cells are one component of adipose tissue, it is possible that the weak

signal in adipose is due to mesenchymal stem cell populations within adipose; this is

one area for follow-up when adipose single-nucleus ATAC-seq data is available. The

absolute deltaSVM z-score in mesenchymal stem cells for this SNP was 0.48, indicat-

ing it does not have a large impact on predicted chromatin accessibility; however, the

risk allele is predicted to disrupt a MEF2 motif [90, 125], and we found the change

in gkmexplain importance scores between the reference and alternative allele showed

some resemblance to this motif (Fig. 4.15H). This data is consistent with a model in

which rs702634 is the causal SNP and acts through mesenchymal stem cells.

4.4 Discussion

Here we present snATAC-seq and snRNA-seq for human skeletal muscle and

snATAC-seq for rat skeletal muscle, which we use to map the transcriptomes and

chromatin accessibility of cell types present in skeletal muscle samples. The cell

types identified are consistent with known biology and with previous studies of hu-

man [246] and mouse [54, 83, 274] skeletal muscle tissue. However, our use of single-

nucleus rather than single-cell techniques allows us to capture muscle fiber nuclei,

cell types missing from previously published snRNA-seq datasets. To our knowledge

this is the first published snATAC-seq dataset for human and rat skeletal muscle

tissue. We therefore anticipate that this dataset will be useful in nominating causal

GWAS SNPs and demonstrate this by integrating the data with UK Biobank and

previously published T2D GWAS credible sets, highlighting potentially causal SNPs

at the C17orf67, ARL15, and ITPR2 loci.

Additionally, we explore the effect of two technical parameters on snRNA-seq

and snATAC-seq results. First, we find that FANS substantially alters snATAC-seq

results. Though the stereotypical ATAC-seq fragment length distribution is observed,

signal-to-noise (as measured by TSS enrichment and fraction of reads in peaks, as
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well as by visual inspection) appears to decrease substantially relative to non-FANS

libraries. We note that the effect of FANS (nucleus sorting) may differ from that of

FACS (cell sorting). snRNA-seq results appear to be substantially less sensitive to

FANS – the pseudobulk gene expression from FANS libraries correlates strongly with

that from non-FANS libraries – suggesting that chromatin is more sensitive to FANS

than is RNA. We also observed higher nucleus yield in our FANS snRNA-seq libraries

than our non-FANS libraries. There are several potential explanations for this. One

is that the nuclei counting step that necessarily precedes loading of the 10X platform

may be sensitive to debris. If greater amounts of debris are observed in non-FANS

libraries, nucleus concentration may be systematically overestimated in non-FANS

libraries, resulting in more nuclei actually being loaded onto the 10X platform from

FANS libraries. While not mutually exclusive, FANS may also decrease the amount

of debris being loaded into the 10X platform, and thereby improve nucleus capture.

We found snATAC-seq and snRNA-seq results were remarkably consistent at dif-

ferent loading concentrations. One clear caveat is that this may change as the loading

concentration is further reduced or increased. It is also important to note that the

actual number of nuclei loaded may differ from the estimated 20k or 40k nuclei. As

discussed above, it is possible that debris in the input preparation makes nucleus

counting less accurate, in which case our cited values may not reflect the true values.

However, because the same nuclear preparation was used as input for the 20k and

40k nuclei libraries, the two-fold difference in loading concentration should be reliable,

even if the absolute values are skewed.

The GWAS enrichments presented here will be one interesting area to follow up on

as more snATAC-seq data is published. Interpretation of the results is complicated by

the fact that many tissues share cell types. For example, mesenchymal stem cell-like

populations exist in many tissues besides muscle, such as adipose tissue and bone

marrow. Taking the fasting insulin enrichments as an example, we found that the
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enrichment of GWAS SNPs in muscle cell type ATAC-seq peaks disappeared when

adipose tissue was included in the enrichment model. However, it is possible that

the adipose enrichment is being driven in part by mesenchymal stem cell populations

within adipose itself. Direct comparison of snATAC-seq and snRNA-seq profiles from

mesenchymal stem cells from a wider array of tissues will help tease apart common-

alities and tissue-specific differences in this interesting population.

4.5 Methods

4.5.1 snATAC-seq and snRNA-seq, FANS vs no FANS experiment

Three separate pieces of tissue were cut from a single human skeletal muscle

sample (weighing 60mg, 50mg and 50mg; sample HSM1). Nuclei were isolated using

a modified version of the ENCODE protocol [65], customized from Step 5 onwards

to accommodate FANS (Fluorescence assisted nuclei sorting). In step 5, the nuclei

were resuspended in 700 µL of Sort buffer (1% BSA, 1mM EDTA in PBS) and filtered

through a 30 µm filter. Three different nuclei isolations were performed and the nuclei

suspended in sort buffer were mixed, pooled together and divided into two groups,

one with FANS and one without FANS. FANS nuclei were sorted according to the

previously published FANS protocol using DRAQ7 [219]. DRAQ7 (0.3mM from Cell

Signaling Technology) was added to the FANS nuclei suspension, at 100 fold dilution

to get a final concentration of 3 µM. Nuclei were gently mixed and incubated for 10

minutes on ice. Nuclei were analyzed in the presence of DRAQ7 and sorted for high

DRAQ7 positive signal using Beckman Coulter’s Astrios MoFlo. We followed the

gating strategy outlined in the FANS protocol [219]. The sorted nuclei were collected

in a recovery buffer (5% BSA in PBS). The nuclei with and without FANS were spun

at 1000g for 15 min at 4◦C. The nuclei were resuspended in 100 µL of 1X diluted nuclei

buffer and counted in the Countess II FL Automated Cell Counter. The appropriate

123



amount of nuclei were split for snRNA-seq and spun down at 500g for 10 min at 4◦C

and resuspended in RNA nuclei buffer (1% BSA+PBS in 0.2U RNAse inhibitor). The

nuclei at appropriate concentration for snATAC-seq and snRNA-seq were submitted

to the Advanced Genomics core for all the snATAC-seq and snRNA-seq processing

on the 10X Genomics Chromium platform (v. 3.1 chemistry for snRNA-seq). For

each modality nuclei were loaded at 15.4K nuclei/well.

4.5.2 snATAC-seq and snRNA-seq, loading 20k or 40k nuclei

Two pieces of tissue (weighing 85.3 mg and 85.8 mg) were cut from one human

skeletal muscle sample HSM1 and two tissue pieces (weighing 95.9 mg and 92.6 mg)

were cut from a second human skeletal muscle sample, HSM2. Each of the samples

was cut on dry ice using a frozen scalpel to prevent thawing. The samples were

pulverized using an automated dry cryo pulverizer (Covaris 500001). We isolated

nuclei using a customized protocol derived from the previously published ENCODE

protocol [65]. All four pulverized tissues pieces were mixed and redistributed to per-

form four different nuclei isolations. The desired concentration of nuclei was achieved

by resuspending the appropriate number of nuclei in 1X diluted nuclei buffer for

snATAC-seq and RNA nuclei buffer (1% BSA in PBS containing 0.2U/µL of RNAse

inhibitor) for snRNA-seq. The nuclei at appropriate concentration for snATAC-seq

and snRNA-seq were submitted to the Advanced Genomics core for all the snATAC-

seq and snRNA-seq processing on the 10X Genomics Chromium platform (v. 3.1

chemistry for snRNA-seq). For each modality nuclei were loaded at two different

concentrations, 20K nuclei/well and 40K nuclei/well.

4.5.3 snATAC-seq, human and rat mixed library

Tissue from human (49mg of pulverized human skeletal muscle; sample HSM1)

and rat (45mg of pulverized gastrocnemius samples) were used in this single nuclei

124



ATAC experiment. We used the previously published ENCODE protocol [65] to

isolate nuclei, which is compatible with both snATAC-seq and snRNA-seq. After

isolating nuclei from each sample (species) individually, the nuclei were mixed in

equal proportions. The desired concentration of nuclei was achieved by resuspending

the appropriate number of nuclei in 1X diluted nuclei buffer for snATAC-seq. The

nuclei at the appropriate concentration for snATAC were submitted to the Advanced

Genomics core for all the snATAC-seq processing on the 10X Genomics Chromium

platform. 15.4K nuclei were loaded into a single well.

4.5.4 Bulk ATAC-seq

2 tissue pieces weighing 99.4 mg and 80.7 mg were cut from one human skeletal

muscle sample (HSM1) and 2 pieces weighing 67.6 mg and 103.5 mg were cut from

a second human skeletal muscle sample (HSM2). Each of the samples was cut on

dry ice using frozen scalpel to prevent thawing. The samples were pulverized using

an automated dry cryo pulverizer (Covaris 500001). After nuclei isolation, the nuclei

were counted in Countess II FL Automated Cell Counter, and the appropriate vol-

ume of the suspension for 50K nuclei was spun down and used for the downstream

transposition reaction (a modified version of the ENCODE protocol [65]).

4.5.5 Processing of muscle bulk ATAC-seq data

Adapters were trimmed using cta (v. 0.1.2; https://github.com/ParkerLab/c

ta). Reads were mapped to hg19 using bwa mem (-I 200,200,5000 -M; v. 0.7.15-

r1140) [156]. Duplicates were marked using picard MarkDuplicates (v. 2.21.3; https:

//broadinstitute.github.io/picard/). We used samtools to filter to high-quality,

properly-paired autosomal read pairs (-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30;

v. 1.9 using htslib v. 1.9) [157]. To call peaks, we used bedtools bamtobed [226] to

convert to a bed file (v. 2.27.1) and then used that file as input to MACS2 callpeak
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(–nomodel –shift -100 –seed 762873 –extsize 200 –broad –keep-dup all –SPMR; v.

2.1.1.20160309) [317]. To visualize the signal, we converted the bedgraph files output

by MACS2 to bigwig files using bedGraphToBigWig (v. 4) [123].

4.5.6 Processing of snATAC-seq data

Adapters were trimmed using cta. We used a custom python script (available in

the GitHub repo) for barcode correction. Barcodes were corrected in a similar manner

as in the 10X Genomics Cell Ranger ATAC v. 1.0 software. In brief, barcodes were

checked against the 10X Genomics whitelist. If a barcode was not on the whitelist,

then we found all whitelisted barcodes within a hamming distance of two from the

bad barcode. For each of these whitelisted barcodes, we calculated the probability

that the bad barcode should be assigned to the whitelisted barcode using the phred

scores of the mismatched base(s) and the prior probability of a read coming from the

whitelisted barcode (based on the whitelisted barcode’s abundance in the rest of the

data). If there was at least a 97.5% chance that the bad barcode was derived from

one specific whitelisted barcode, it was corrected to the whitelisted barcode.

Reads were mapped using bwa mem with flags ‘-I 200,200,5000 -M’. We used

Picard MarkDuplicates to mark duplicates, and filtered to high-quality, non-duplicate

autosomal read pairs using samtools view with flags ‘-f 3 -F 4 -F 8 -F 256 -F 1024

-F 2048 -q 30’. Quality control metrics were gathered on a per-nucleus basis using

ataqv (v. 1.1.1) on the bam file with duplicates marked. In the case of the mixed rat

and human snATAC-seq library, all reads were mapped to the hg19 and rn6 genomes

separately, and then a nucleus was assigned as either rat or human by counting

the number of high-quality, non-duplicate autosomal reads after mapping to either

genome. If at least three times as many high-quality reads were present after mapping

to one genome than to the other, the nucleus was assigned to either the rat or human

sample as appropriate. In the case that fewer than three times as many high-quality
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reads mapped to one genome as to the other, the nucleus was not assigned to either

species and was dropped.

For the two snATAC-seq libraries that contained a mix of nuclei from the two

human individuals, we assigned nuclei to biological samples (and determined doublets)

using demuxlet [114] with SNP calls from the bulk ATAC-seq libraries. To call SNPs

on the bulk ATAC-seq BAM files, we first merged the two bulk technical replicate

ATAC-seq BAM files for each individual, then filtered out reads with edit distance >

2 from the hg19 reference. Used samtools mpileup (-R -Q 20 -d 10000 -E) on these

two BAM files as input to bcftools call (-v -f GQ; v. 1.9). We then used bcftools

filter to filter to those positions where both individuals had genotype quality (GQ)

> 90. This VCF file was used as input to demuxlet (option ‘–field PL’; git commit

b7453fc, modified as described in GitHub issue #15).

When comparing aggregate snATAC-seq signal to bulk ATAC-seq signal (Fig.

4.1), we eliminated sequencing reads corresponding to nucleus barcodes that couldn’t

be matched to the 10X barcode whitelist, but otherwise processed it as bulk ATAC-

seq data (i.e., marking duplicates ignoring cell-level information, and not filtering to

quality nuclei).

To select quality nuclei from each library, we selected nuclei (barcodes) meeting

the thresholds in Table 4.4.

4.5.7 Processing of snRNA-seq data

snRNA-seq data was processed using starSOLO (STAR v. 2.7.3a), which outputs

the count matrices needed for most of the analyses [59]. To select quality nuclei

from each library, we selected nuclei meeting the thresholds in Table 4.5. We used

souporcell (as contained in the Singularity container downloaded from the souporcell

GitHub on Dec. 10, 2019, and setting -k 2) to detect doublets in the libraries that were

a mix of nuclei from two human individuals [98]. We additionally ran doubletfinder
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library min.
reads

max.
reads

min. TSS
enrich.

max(max fraction reads
from single autosome)

Human-rat
mix
(human
nuclei)

25000 335319 3 0.15

Human-rat
mix
(rat nuclei)

35000 348820 3 0.15

no FANS,
rep. 1

70000 342966 4.5 0.15

no FANS,
rep. 2

50000 214062 4.5 0.15

20k nuclei 30000 159372 4.5 0.15
40k nuclei 15000 72704 4.5 0.15

Table 4.4: snATAC-seq nucleus QC thresholds

library min.UMIs max.UMIs max. fraction mitochondrial
no FANS, rep. 1 2000 35000 0.004

FANS, rep. 1 1500 25000 0.009
no FANS, rep. 2 2000 35000 0.004

FANS, rep. 2 1500 25000 0.009
20k nuclei 1000 10000 0.007
40k nuclei 1000 10000 0.009

Table 4.5: snRNA-seq nucleus QC thresholds

(v. 2.0.2) [181] on each of the snRNA-seq libraries, and removed any nuclei that

were called as a doublet by either souporcell or doubletfinder. When running Seurat

(v. 3.0.2) for doubletfinder, we set selection.method = ‘vst’ and nfeatures = 2000,

and used the top 20 PCs to find neighbors and resolution = 0.8 to find clusters

[27, 269]. When calling the doubletFinder v3 function, we selected the doubletfinder

pK based on the maximum ’BCmetric’ after running the paramSweep v3 function,

set nExp assuming a 7.5% doublet rate (adjusting for the homotypic proportion as

in the doubletfinder documentation example), and used the top 20 PCs.
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4.5.8 Clustering with LIGER

Nuclei were clustered using LIGER (v. 0.4.2; with R v. 3.5.1 and Seurat v. 2.3.0)

[300, 27, 269]. For snATAC-seq libraries, per-gene scores were computed by calculat-

ing the number of reads overlapping with each gene’s promoter/gene body using bed-

tools intersect. Gene promoter/body were calculated based on NCBI annotation GTF

files (NCBI Rattus norvegicus Annotation Release 106 and Homo sapiens Updated

Annotation Release 105.20190906), filtered to include only protein-coding/lncRNA

genes with source ‘BestRefSeq’/BestRefSeq%2CGnomon’/’Curated Genomic’. Genes

assigned to multiple chromosomes/strands were excluded, and then the regions for

each gene were merged to get the gene body. Promoters were taken as the 3kb up-

stream of the TSS; after this, genes represented by multiple non-contiguous genomic

stretches were excluded. For input to LIGER, all count matrices for a given modality

and biological sample were concatenated together, so that there was 1 rat snATAC

matrix, 2 human snATAC matrices, and 2 human snRNA matrices. For factoriza-

tion, we used k = 15, lambda = 5, and nrep=5, using the smaller human snRNA

matrix to select variable genes (as all the nuclei for that matrix were processed on

a single day, and should therefore reflect less technical variation). For each of the

downstream steps we dropped factors 3 and 5, as these had highly-loading ribosomal

genes or showed relatively high specificity for one of the two omics modalities. For

normalization, we set knnk (and small.clust.thresh) to 10 and resolution to 0.05, and

centered the data. For the UMAP, we used n neighbors = 15. We then called the

clusterLouvainJaccard function to re-cluster cells using the normalized factors, with

k = 17, and resolution = 0.05.

4.5.9 Per-cluster processing of snATAC-seq data

The filtered reads from all snATAC-seq nuclei in each cluster were merged us-

ing samtools merge. Peaks were called and bigwig files produced as described for
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the bulk ATAC-seq data. Peak files were filtered against blacklist files available

from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMa

pability/wgEncodeDacMapabilityConsensusExcludable.bed.gz and http://hgdo

wnload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncod

eDukeMapabilityRegionsExcludable.bed.gz (hg19) (ENCODE Project Consortium,

2012) and https://github.com/shwetaramdas/maskfiles/tree/master/ratacces

sibleregionsmaskfiles/strains intersect.bed for rn6 (Ramdas et al., 2019).

For analysis of rat peak overlap with human GWAS data, rat peaks were projected

into the human genome using bnMapper (v. 0.8.6) and the chain file at http://hg

download.cse.ucsc.edu/goldenpath/rn6/liftOver/rn6ToHg19.over.chain.gz.

4.5.10 Roadmap enhancer regression

We called peaks on the aggregate of the nuclei in each cluster, and then took

the union of peaks across all clusters to generate a master peak list. We then used

logistic regression to model, for each cluster and each Roadmap Epigenomics cell

type in the Roadmap 15-state chromHMM model, the accessibility of each TSS-

distal master peak (> 5kb from a RefSeq TSS) in that cluster as a function of the

posterior probability that that master peak is an enhancer in that Roadmap cell type

according to the Roadmap chromHMM model [243]. Since the posteriors are given

in 200 bp windows, and there are also 3 different enhancer states (‘Genic enhancers’,

‘Enhancers’, and ‘Bivalent Enhancer’), multiple windows overlap with each master

peak – the posterior for the master peak is therefore taken as the maximum of the

200 bp window posteriors, across all 3 of the enhancer states. The model coefficient

was used as the (unnormalized) score for that Roadmap cell type in that cluster, and

the normalized score was simply the score for that Roadmap cell type in that cluster

divided by the max score across all cell types for that cluster.

For rat peaks, in addition to removing master peaks near TSS in rat coordinates,
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we additionally removed master peaks that were within 5 kb of a TSS after projecting

into human coordinates.

4.5.11 Non-muscle cell type open chromatin annotations used in GWAS

To create the adipose open chromatin regions, we processed the three adipose

ATAC-seq libraries from [29]. Adapter sequences were removed using Cutadapt (v.

1.12) [176] before mapping to hg19 with bwa mem (-I 200,200,5000 -M). Duplicates

were marked using picard MarkDuplicates and BAM files were filtered using samtools

view (-F 4 -F 256 -F 1024 -F 2048 -q 30) before converting to BED format (bamtools

bamtobed) and calling peaks with MACS2 (–nomodel –shift -100 –seed 2018 –extsize

200 –broad –keep-dup all –SPMR). We then took the union of peaks across the three

samples, keeping those merged peaks that appeared in at least two samples.

The beta cell ATAC-seq peaks were taken from [228]. We used the peaks called

using all beta cell nuclei.

Common open chromatin regions were derived from the DNaseI hypersensitive

sites from [184]. The DHS index from [184] was downloaded from https://ww

w.meuleman.org/DHS Index and Vocabulary hg38 WM20190703.txt.gz on March 21,

2020. We lifted open chromatin regions from hg38 to hg19 using liftOver with

the chain file from http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver

/hg38ToHg19.over.chain.gz [102]. We then kept those that were labeled as ‘tissue

invariant’ and that appeared in at least 500 of the 733 samples.

We also used open chromatin regions from [184] for adrenal gland, bone, brain, eye,

gonad, gum, heart, kidney, large intestine, liver, lung, mammary, mesoderm, ovary,

placenta, prostate, skin, small intestine, spinal cord, spleen, stomach, and umbilical

cord. For each tissue, we took the non-cancerous samples labeled ‘Primary’ from that

tissue and kept those DNaseI hypersensitive sites that appeared in at least 50% of

the samples from that tissue.
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4.5.12 UK Biobank GWAS enrichment

We downloaded UK Biobank GWAS summary statistics made available by the

Benjamin Neale lab (v2 of their analysis, initially made public on August 1, 2018;

http://www.nealelab.is/uk-biobank/) [270]. Specifically, we downloaded the ‘both

sex’ GWAS summary statistic files listed in the ‘UKBB GWAS Imputed v3 - File Man-

ifest Release 20180731’ spreadsheet available at https://docs.google.com/spreads

heets/d/1kvPoupSzsSFBNSztMzl04xMoSC3Kcx3CrjVf4yBmESU/edit#gid=178908679

(downloaded on April 9, 2020). Because some traits may not be appropriate for such

an enrichment analysis (because they are not strongly polygenic, because the pheno-

types are untrustworthy, etc.), we kept only traits deemed as ‘high confidence’ and

with estimated heritability > 0.01 (and z-score > 7) based on the Neale Lab’s own

LD score regression heritability analysis of the GWAS results. Their rating crite-

ria are described on their UKBB LDSC GitHub page (https://nealelab.github.i

o/UKBB ldsc/confidence.html) and their LD score regression results (with confi-

dence ratings) were downloaded from https://www.dropbox.com/s/ipeqyhrpdqav5u

h/ukb31063 h2 all.02Oct2019.tsv.gz?dl=1. For each trait, we used the ‘primary’

GWAS result, as indicated in that file. Any traits that did not have a combined male

and female GWAS analysis were dropped. The creatinine GWAS highlighted in the

text was trait 30700 irnt (’Creatinine (quantile)’).

The LDSC software package (v. 1.0.1) includes a ‘baseline’ model with 59 cate-

gories derived from 28 genomic annotations [71, 80]. Many of these annotations are

cell type agnostic; e.g. a SNP’s minor allele frequency does not change between cell

types. However, other annotations in the baseline model are not cell type agnos-

tic; for example, the FANTOM5 enhancer annotation is derived from experiments

performed on a range of different cell types, and may change substantially if the

cell types used to create the annotation were to change. When performing the UK

Biobank GWAS enrichments, we utilized the cell-type agnostic annotations from the
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LDCS baseline model. In order to reduce the likelihood of model misspecification,

we then added common open chromatin regions and open chromatin regions from

a range of cell types. Specifically, we added (1) beta cell ATAC-seq peaks, (2) adi-

pose ATAC-seq peaks, (3) DNase-seq peaks derived from the 22 tissues/organs listed

above, and (4) the ATAC-seq peaks from all seven of our snATAC-seq cell types.

The various annotation files (regression weights, frequencies, etc.) required for run-

ning LDSC were downloaded from https://data.broadinstitute.org/alkesgrou

p/LDSCORE. LD scores were calculated using the Phase 3 1000 Genomes data, keep-

ing only the HapMap3 SNPs as recommended by the LDSC authors and using only

SNPs with minimum MAF of 0.01. GWAS summary statistics were prepared for

LDSC using the munge sumstats.py script, with option –merge-alleles w hm3.snplist

(where w hm3.snplist is the file in the data download). When running the regression,

we required a minimum MAF of 0.05, and utilized the Phase 3 1000 Genomes SNP

frequencies/weights.

4.5.13 T2D and fasting insulin GWAS enrichment

We used the T2D (BMI unadjusted) and fasting insulin (BMI adjusted) GWAS

summary statistics from [172] and [175], respectively.

Because the cell types relevant to T2D are generally thought to be pancreatic beta

cells, adipose, muscle, and liver, we performed enrichments using each of these cell

types, common open chromatin, and the cell type-agnostic LDSC baseline annota-

tions. First, for each of these muscle/beta cell/adipose/liver cell types, we ran one

model containing the open chromatin from that cell type, the common open chro-

matin regions, and the cell type-agnostic LDSC baseline annotations. Then, we ran

one joint model containing all of those cell types and annotations. LDSC parameters

were the same as for the UK Biobank GWAS enrichments.
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4.5.14 T2D GWAS locus genome browser screenshots and peak overlaps

All signal tracks in the genome browser were created by converting the normalized

bedgraph files output by MACS2 to bigwig files using bedGraphToBigWig (v. 4).

Processing and provenance of adipose ATAC-seq and beta cell ATAC-seq is de-

scribed above. The 10 bulk islet libraries were from [228]. These libraries were

processed as described in that manuscript, except we did used the 10% FDR peak set

from peak calling on the unsubsampled libraries.

4.5.15 Predicting SNP regulatory impact

We used the lsgkm package modified by the Kundaje lab with gkmexplain (https:

//github.com/kundajelab/lsgkm; commit c3758d5bee7) [82, 150, 265]. For each cell

type, we took the 150 bps on either side of the summits of the top 40,000 narrowPeaks

(by p-value) as the positive sequences for gkmSVM. To generate negative sequences,

we took windows across the genome (step size = 200), removed those containing Ns,

overlapping hg19 blacklists, overlapping any FDR 10% broadPeaks from that cell

type, or having repeat content > 60%, and then for each positive sequence selected a

negative sequence with matching GC content and repeat content (repeat content was

calculated based on the hg19 simpleRepeat table from the UCSC genome browser

[122, 31], downloaded on March 29, 2020, which contains simple tandem repeats

annotated by Tandem Repeats Finder [15]; GC content and repeat content for the

negative sequence was required to be within 2% of that of the positive sequence; in

the case that no such negative sequence could be found, the positive sequence was

dropped from the analysis). We held out 15% of sequences as test data, and trained

the gkmSVM model on the remaining 85% of sequences, setting l = 10 and k = 6 and

using the gkm kernel. Using this model and deltaSVM [151], we predicted the effect

of all autosomal 1000 Genomes phase 3 SNPs (downloaded on May 27, 2015 from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502) (1000 Genomes Project
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Consortium et al., 2015). For each muscle cell type, deltaSVM scores were converted

to z-scores based on the distribution of scores across all SNPs for that cell type. We

additionally passed the gkmSVM model to gkmexplain to generate importance scores

for sequences containing the ref/alt alleles.

4.5.16 Overlap of SNPs and peaks with ENCODE candidate cis-regulatory

elements

The set of 1,310,152 candidate cis-regulatory elements in ENCODE’s ‘Registry

of candidate Regulatory Elements’ (in hg19 coordinates) were fetched from the EN-

CODE web portal on April 7, 2020 [64, 65].

4.5.17 Locuszoom plots

Locuszoom plots were created for the DIAMANTE T2D GWAS summary statis-

tics with the locuszoom standalone v. 1.4, using the Nov. 2014 EUR 1000 Genomes

data included in the download (–pop EUR –source 1000G Nov2014) [221].

4.5.18 PICS

We used the online PICS tool [70] (https://pubs.broadinstitute.org/pubs/fi

nemapping/pics.php) with the EUR LD structure. The tool was accessed on April

13, 2020.

4.5.19 Motif scan

The MEF2 motif scan was performed using FIMO (v. 5.0.4) [90] with a back-

ground model calculated from the hg19 reference genome.
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CHAPTER V

Association of Skeletal Muscle Molecular Traits

with Genetic Variants and Running Capacity in a

Rat Model for Aerobic Exercise Capacity

5.1 Abstract

In humans, high aerobic exercise capacity is associated with decreased suscepti-

bility to many diseases and decreased mortality overall. Determining the genes and

gene regulatory elements related to exercise capacity may clarify the molecular rela-

tionships underlying this association. Here, we utilize a rat model of aerobic exercise

capacity to search for genes and non-coding regulatory elements linked to exercise

capacity, as well as identify thousands of genetic variants associating with chromatin

accessibility.

5.2 Introduction

Complex, polygenic diseases account for a large fraction of deaths and healthcare

spending in developed nations [303, 220, 81], and are a growing burden in developing

nations [220, 81]. Aerobic exercise capacity (AEC) is one strong predictor of mortality

[147, 174, 106, 304, 297] and risk of common diseases like cardiovascular disease
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[147, 106, 304, 297] and cancer [106]. AEC is a highly heritable trait [19, 258] and

understanding the genetic variants and molecular traits associated with AEC could

clarify the molecular pathways underlying the observed relationship between AEC

and many common complex diseases.

One recently-developed rat model for AEC provides further compelling evidence

for the link between AEC and other health phenotypes and is a promising system for

investigating the molecular traits associated with AEC [130, 131, 132]. This rat model

is comprised of two rat lines that are divergent in their running capacity, referred to

as high capacity runners (HCRs) and low capacity runners (LCRs). Generated via

artificial selection for intrinsic (untrained) running capacity as measured by tread-

mill tests, the HCRs and LCRs show a striking (∼ 7-fold [132]) difference in running

capacity. Although artificial selection is performed based on running distance, the

HCRs and LCRs have developed remarkable differences in many other traits as well,

including body mass [130] (lower in HCRs relative to LCRs), susceptibility to insulin

resistance [190] (lower in HCRs relative to LCRs) and lifespan (higher in HCRs rel-

ative to LCRs) [133]. F2 rats derived from HCRs and LCRs (created by mating the

HCRs with the LCRs, and then mating offspring pairs) show a wide distribution of

running capacity [239] and represent an interesting cohort for studying associations

between running capacity and molecular traits.

Here, we perform ATAC-seq and RNA-seq on up to 150 F2 rats and examine asso-

ciations between chromatin accessibility, gene expression, and running capacity. We

additionally associate chromatin accessibility with genetic variants to find thousands

of chromatin quantitative trait loci (caQTL).
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Figure 5.1 RNA-seq PC1 separates one batch from the others.

5.3 Results

5.3.1 Transcriptomic and epigenomic profiling of F2 rat skeletal muscle

samples

We performed bulk RNA-seq on 150 F2 rats and bulk ATAC-seq on 141 of the 150

rats. After removing samples swaps and performing quality control (see section 5.5),

143 RNA-seq and 129 ATAC-seq libraries remained. Principal component analysis

(PCA) on the log2(FPKM) gene expression matrix showed signs of a batch effect

(PC1; Fig. 5.1), while other top PCs correlated with sex. Top PCs from a PCA on

the matrix of chromatin accessibility (log2(RPKM) values for each autosomal ATAC-

seq peak) correlated with several ATAC-seq quality control metrics, consistent with

variance introduced by technical biases (Fig. 5.2).

5.3.2 Running capacity association with gene expression

To find genes that may play a role in running capacity, we modeled the relationship

between running capacity (best running distance) and the expression of each auto-

somal gene. Because some of the rats are siblings and siblings are expected to show

increased similarity in both running capacity as well as gene expression relative to

non-siblings, we expected p-values from linear models may be inflated; therefore, we

139



a

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

3.5

4.0

4.5

5.0

5.5

−200 −100 0 100

PC1 score

ts
s 

en
ric

hm
en

t

b

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

60

80

100

120

140

−50 0 50 100

PC2 score

m
ed

ia
n 

fr
ag

m
en

t l
en

gt
h

Figure 5.2 Correlation between top ATAC-seq PCs and quality control
metrics. (a) PC1 correlates with TSS enrichment, a measure of signal-to-noise. (b)
PC2 correlates with median fragment length.

ran several linear models (not adjusting for relatedness in any way) and linear mixed

models (LMMs; using a genetic relatedness matrix estimated from all genotyped

SNPs as the correlation matrix in a variance component to adjust for relatedness; see

methods in section 5.5.8) and compared the results (Fig. 5.3). Because female F2

rats tend to have greater running capacity than male F2 rats (Fig. 5.4), we included

sex as a fixed effect in all models and examined the impact of adding other possible

covariates (body weight, sequencing run, and several RNA-seq QC metrics including

the fraction of reads assigned to the top 100 expressed genes (summarizing the distri-

butions shown in Fig. 5.12) and a measure of 3’ bias) (Fig. 5.3). Most linear models

and linear mixed models show substantial inflation; however, we found that the linear

mixed model including the fraction of reads assigned to the top 100 expressed genes as

a covariate appeared less inflated than all other models, including the corresponding

linear model (Fig. 5.3). We therefore proceeded to examine linear mixed models with

sex, fraction of reads assigned to the top 100 expressed genes, and either sequencing

run or body weight as an additional covariate (Fig. 5.5). Adding body weight as a co-

variate appeared to slightly reduce inflation over the first half of the Q-Q plot (though
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the Q-Q plots are broadly similar; Fig. 5.5); therefore, we chose to proceed with the

linear mixed model containing gene expression, sex, fraction of reads assigned to the

top 100 expressed genes, and body weight as fixed effects (in addition to the random

effect controlling for genetic relatedness). The tail of the Q-Q plot may show hints of

some real signal; however, none of the genes are significantly associated with running

capacity (at FDR < 5%). This result is perhaps unsurprising, as a previous analysis

of running capacity association with gene expression in a larger cohort of 409 F2 rats

[230] identified only 14 associated genes (with considerable inflation in the associated

Q-Q plot).

The distribution of running capacity heritability (h2) point estimates based on the

proportion of variance explained by the random effect in the LMM model (one model

per gene) is displayed in Figure 5.6. The median estimate was 0.55, similar to the

running capacity heritability estimate from GCTA using only best running distance

and the genetic relatedness matrix for the 143 rats with pass-QC RNA-seq data (0.49

± 0.15).

Despite the absence of significant genes after multiple testing correction, we used

RNA-Enrich [148] to determine if genes with more extreme p-values (from the LMM)

are enriched for certain biological processes. RNA-Enrich is particularly suited for

this analysis, as it does not impose a p-value threshold in the analysis; rather, it

computes a test statistic for each gene ontology (GO) term using -log10(p) for all of

the tested genes included in that GO term. We found that genes with more extreme

p-values for being positively associated with running capacity were strongly enriched

for fatty acid oxidation processes (Fig. 5.7). This result is consistent with several

previous analyses on the HCR/LCR rats, which found that HCRs have an increased

capacity for fatty acid oxidation [204], genes expressed more highly in HCRs than

LCRs are enriched for fatty acid oxidation pathways [238], and genes more strongly

associated with running capacity in the F2s (in extensor digitorum longus (EDL)
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Figure 5.3 Q-Q plots for gene expression association with running distance.
We ran linear models (no adjustment for relatedness between rats) or linear mixed
models (‘LMM’; using a variance component to adjusted for relatedness using the
genetic relatedness matrix). Facet labels on the right indicate fixed effects included in
the model (in addition to expression of the gene); bw = body weight, fraction top 100
= fraction of reads assigned to the top 100 expressed genes. Most linear models and
linear mixed models show substantial inflation; however, linear mixed models with
the fraction of reads assigned to the top 100 expressed genes showed reduced inflation
relative to other models.
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Figure 5.4 Best running distance by sex. Females show, on average, greater
running capacity.

Figure 5.5 Q-Q plots for gene expression association with running distance
(sex + fraction top 100 + additional covariate. Facet labels indicate fixed
effects included in the model (in addition to expression of the gene); bw = body
weight, fraction top 100 = fraction of reads assigned to the top 100 expressed genes.
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Figure 5.6 Distribution of running capacity heritability estimates from
linear mixed model (LMM) for gene expression association with running
distance.

muscle) are enriched in fatty acid oxidation pathways [230].

One possibility is that the effect sizes of genes associated with running capacity are

too small to be detected in our analysis. If this were the case, we might at least expect

to see that genes with a positive coefficient in our model (i.e., tilting towards positive

association with running capacity, even though the association is not significant) also

tilt (again, not necessarily significantly) towards higher expression in HCRs than in

LCRs. To see if such an effect is present, we downloaded previously published HCR

vs. LCR EDL muscle gene expression log fold changes [238] and compared the sign

of the log fold change for each gene in that data set to the sign of each gene’s (non-

significant) coefficient for association with running capacity in our model. To enrich

for signal, we restricted this analysis to genes that were nominally significant (p <

0.05) in at least one of the analyses. Though the relationship is unsurprisingly noisy,

we found that genes with a positive HCR/LCR log fold change were more likely to

have a positive coefficient in our model, and genes with a negative HCR/LCR log fold

change were more likely to have a negative coefficient (Fig. 5.8). This is consistent

with the hypothesis that there are genes significantly associated with running capacity

that we lack the power to detect in our analysis.
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Figure 5.7 Gene ontology enrichment analysis using RNA-Enrich.
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Figure 5.8 HCR/LCR log fold change vs gene expression coefficient in
the running capacity ∼ gene expression analysis using F2 RNA-seq data.
Percentages represent the percentage of genes in each quadrant. Only genes with p
< 0.05 in at least one of the analyses are displayed.
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5.3.3 Running capacity association with chromatin accessibility

The relative activity of enhancers or other gene regulatory elements could mediate

changes in running capacity. While we do not have a direct measure of enhancer activ-

ity in these samples, chromatin accessibility is often used as an (imperfect) proxy for

regulatory element activity. Furthermore, chromatin accessibility differences between

rats could signal priming of regulatory elements to become active upon a change in

exercise state, enabling some rats to respond to the initiation of exercise more effi-

ciently than others. We therefore used linear models (not controlling for relatedness

between rats) or LMMs (controlling for genetic relatedness between rats; see meth-

ods in section 5.5.9) to test for a relationship between chromatin accessibility and

best running distance for 200,305 ATAC-seq peaks. We included sex as a fixed effect

in all models and examined the impact of adding other possible covariates (body

weight, sequencing run, and several ATAC-seq QC metrics including TSS enrichment

(quantifying signal-to-noise in the library) and median fragment length; Fig. 5.9).

Linear models do not appear more inflated than linear mixed models, and regardless

of the type of model (linear or linear mixed model) and the covariates included, there

is little evidence of chromatin accessibility association with running capacity; after

FDR correction, no ATAC-seq peaks were significantly associated (FDR < 5%) with

running capacity in any of the models.

5.3.4 Variants associating with chromatin accessibility

Non-coding variants may act on a phenotype by perturbing regulatory element

function. Although previous GWAS on running capacity in the F2 rats did not iden-

tify any significantly associated variants [230], identifying variants that correlate with

changes in chromatin accessibility may assist future genetic analysis of the HCR/LCR

model system. Therefore, we used RASQUAL [138] to detect caQTLs, controlling for

sex, weight, sequencing run, and ATAC-seq PCs 1-3 (Fig. 5.10). We tested all 684,421
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Figure 5.9 Q-Q plots for chromatin accessibility association with running
distance. We ran linear models (no adjustment for relatedness between rats) or
linear mixed models (‘LMM’; using a variance component to adjusted for relatedness
using the genetic relatedness matrix). Facet labels on the right indicate fixed effects
included in the model (in addition to the accessibility of the peak); bw = body weight.
Inflation is minimal regardless of the type of model and covariates used, and for all
models no ATAC-seq peaks show significant association (FDR <5%) with running
capacity.
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Figure 5.10 Distribution of caQTL nominal p-values.

SNP-peak pairs for which the SNP was within 10kb of the peak; this included 110,371

unique ATAC-seq peaks. LD between neighboring SNPs results in correlated p-values

when they are tested against the same peak; therefore, to correct for multiple tests,

we used eigenMT [51] to estimate the number of independent tests performed for

each ATAC-seq peak and perform Bonferroni correction of p-values for each peak,

and then performed Benjamini-Hochberg correction [13] across all peaks (using the

top SNP p-value for each peak) to determine which peaks were significantly associ-

ated (FDR < 5%) with at least one SNP. This procedure resulted in 4,477 peaks that

were significantly associated with at least one SNP. An example locus, where SNP

chr4:80860957 is a caQTL for the peak it is in (p = 1.6 × 10−26), is shown in Fig.

5.11; the A allele of this SNP correlates with increased chromatin accessibility. This

peak sits 10.4kb from the nearest gene (a lncRNA, AABR07060560.3).

5.4 Discussion

Here, we first examined the relationship between running capacity and gene ex-

pression to find genes that may impact running capacity. While no genes were statisti-

cally significant at 5% FDR, we found genes with (non-significant) positive coefficients

for association with F2 running capacity tended to lean towards higher expression in
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Figure 5.11 Example caQTL SNP-peak pair. (a) Read counts at SNP
chr4:80860956 (caQTL p-value = 1.6 × 10−26), normalized by the total number of
reads in peaks for each sample. (b) Average ATAC-seq signal in the region around
SNP chr4:80860956, stratified by rat genotype at the SNP. ATAC-seq signal is scaled
to reads per million. The gene nearest to this locus is a lncRNA, AABR07060560.3,
10kb away.

HCRs than in LCRs and the reverse were true for genes with negative coefficients,

suggesting there may be a substantial number of associated genes that we simply lack

the power to detect using traditional FDR thresholds at the current sample sizes.

Regardless of the lack of significant genes, a GO analysis suggested that genes with

more extreme p-values are enriched for fatty acid oxidation, consistent with previ-

ous findings [204, 238, 230]. Next, we investigated the relationship between running

capacity and chromatin accessibility. We found little evidence of association in this

analysis – for all models tested, the distribution of p-values more-or-less follows the

null expectation. This is evidence against the hypothesis that priming of gene regula-

tory elements in the resting state may play a factor in determining running capacity,

although given the high multiple testing burden (∼ 200k ATAC-seq peaks) and small

sample size here (129 samples), it is of course possible that we are hampered by low

power to detect small effects. There are additional tweaks that could be made to

the models presented here that may improve results; for example, including an ad-

ditional variance component in the linear mixed models to control for covariance in

transcriptomes or chromatin accessibility across rats.
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The above results, particularly for gene expression, are consistent with previous

analyses suggesting that running capacity is a highly polygenic trait. The most recent

QTL analysis on running capacity in these F2 rats (using ∼ 615 rats) did not find

any significantly associated variants, and an association analysis of gene expression

with running capacity in the same work (n = 409 F2 EDL skeletal muscle samples)

identified relatively few significantly associated genes (14 with FDR < 5%) [230].

With our limited sample sizes (143 for RNA-seq and 129 for ATAC-seq), it will be

difficult to detect many small effects. This is a common challenge in the study of

polygenic traits; methods that aggregate information across genomic loci or biological

pathways might help overcome this, as demonstrated by the GO enrichment analysis.

All of these analyses were performed using bulk RNA-seq and bulk ATAC-seq with

samples from rats at rest. It is possible that additional and/or stronger molecular trait

associations with running capacity would be apparent under different physiological

conditions (e.g., while the rats are running), or that some associations are cell type

specific and may be difficult to detect without, for example, single-nucleus data. RNA-

seq and ATAC-seq data is available for 128 HCR/LCR rats under a variety of exercise

conditions; the data from that cohort will clarify the extent to which gene expression

and chromatin accessibility change with exercise, and perhaps those results will help

direct more targeted analyses in the F2 rats. We also plan to generate snRNA-seq

and snATAC-seq data using these F2 samples in the future.

Lastly, we performed a caQTL analysis and identified 4,477 ATAC-seq peaks as-

sociated with at least one SNP. In isolation the caQTL results are not informative

about the trait of interest, but these results may be helpful in interpreting future

genetic findings in this model system or in other rat models.

151



5.5 Methods

5.5.1 Treadmill test

To determine the aerobic exercise capacity of each rat, a shock grid-assisted tread-

mill test is performed [130]. The treadmill speed at the beginning of the test is 10

meters/minute, and the speed is increased 1 meter/minute every two minutes. The

treadmill slope is 15 degrees for the duration of the test. A shock grid sits at the

bottom of the treadmill. Once the rat ceases to run and stays on the shock grid for

two seconds, the rat is said to be exhausted.

5.5.2 RNA-seq library generation

RNA was isolated from 150 F2 gastrocnemius muscle samples, and stranded RNA-

seq libraries were generated using poly(A) selection. Libraries were sequenced using

paired-end, 150 bp reads.

5.5.3 ATAC-seq library generation

We pulverized 149 F2 gastrocnemius muscle samples. These samples were divided

into 47 batches comprising of 6 samples. Each of the samples weighing around 50

mg were weighed out from the respective pulverized tissue samples. Each of the six

samples was resuspended in 1 mL of ice-cold PBS, to perform six different nuclei

isolations. Nuclei were isolated using a modified version of the ENCODE protocol

[65]. The nuclei were counted in a Countess II FL Automated Cell Counter, and the

appropriate volume of the suspension for 50K nuclei was spun down and used for the

downstream transposition reaction. Libraries were sequenced using paired-end, 51 bp

reads.
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Figure 5.12 Cumulative read gene assignment diversity. Genes were ranked
according to read count (high to low; X-axis), and the cumulative fraction of reads
assigned to the top X genes was calculated (Y axis). Two outlier libraries, highlighted
in red, were dropped from downstream analysis.

5.5.4 RNA-seq processing and quality control

Reads were mapped to the rn6 using STAR (v. 2.5.4b; options –outSAMunmapped

Within KeepPairs) ([59]). QoRTs (v. 1.0.7) ([96]) was run on the resulting BAM files

to generate QC metrics as well as gene fragment counts for downstream analysis

(using all uniquely mapped, properly-paired read pairs). We identified two libraries

that were outliers across several QoRTs QC metrics, including in cumulative gene

expression (Fig. 5.12); these libraries were excluded from downstream analysis.

5.5.5 ATAC-seq processing and quality control

Adapters were trimmed using cta (v. 0.1.2; https://github.com/ParkerLab/c

ta). Reads were mapped to rn6 using bwa mem (-I 200,200,5000 -M; v. 0.7.15-

r1140) [156]. Duplicates were marked using picard MarkDuplicates (v. 2.21.3; https:

//broadinstitute.github.io/picard/). We used samtools to filter to high-quality,

properly-paired autosomal read pairs (-f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30;

v. 1.9 using htslib v. 1.9) [157]. To call peaks, we used bedtools bamtobed [225] to

convert to a bed file (v. 2.27.1) and then used that file as input to MACS2 callpeak
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Figure 5.13 TSS enrichment for F2 ATAC-seq libraries. Libraries with TSS
enrichment < 3.3 (denoted by the dashed red line) were dropped from downstream
analysis.

(–nomodel –shift -100 –seed 762873 –extsize 200 –broad –keep-dup all –SPMR; v.

2.1.1.20160309) [316]. Peaks were filtered against the rn6 mask file from [231] (down-

loaded from https://github.com/shwetaramdas/maskfiles/tree/master/ratacc

essibleregionsmaskfiles/strains intersect.bed). To visualize the signal, we

converted the bedgraph files output by MACS2 to bigwig files using bedGraphToBig-

Wig (v. 4) [123].

Basic ATAC-seq quality control was performed using ataqv [202]. In addition to

the five sample swaps, we dropped seven libraries showing low TSS enrichment (Fig.

5.13), leaving 129 libraries for downstream analysis.

To generate a set of peaks for downstream analysis, we randomly sampled 5M

reads from each rat and called peaks as described above on the resulting BAM file.

We then kept only those peaks supported by a peak call in at least 5 of the individual

samples; this resulting in 205,315 peaks.
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5.5.6 Sample swaps

We checked for sample swaps in the ATAC-seq and RNA-seq data using the di-

rectly genotyped variants and MBV from the QTLtools software package [72, 53].

The same five swaps were present in the ATAC-seq and RNA-seq data; these libraries

were removed for downstream analysis.

5.5.7 Genotyping

Genotyping was performed using the custom array from [237]. SNPs were lifted

to the rn6 genome assembly, after which 378,951 SNPs remained.

5.5.8 Running capacity association with gene expression

To model the relationship between gene expression and best running distance

accounting for genetic relatedness we used linear models (R’s lm function):

Y = Xβ + ε, ε ∼ N(0, σ2
eI)

and linear mixed models (as implemented in the lme4qtl R package [321], fitting

the model using restricted maximum likelihood (REML)):

Y = Xβ + u+ ε, u ∼ N(0, σ2
gG), ε ∼ N(0, σ2

eI)

where Y is running distance, X is an incidence matrix, β is a vector of fixed

effects, and G is a kinship matrix generated using EMMAX (Balding-Nichols matrix)

[113] with the full set of autosomal SNPs, normalized as described in equation 5 of

[113]. Gene expression values were converted to counts per million (CPM) and then

inverse normalized. As discussed in section 5.3.2, for downstream analyses we used a

linear mixed model with gene expression, sex, body weight, and the fraction of reads

assigned to the top 100 expressed genes (summarizing the distributions shown in Fig.
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5.12) as fixed effects, and a random effect to account for genetic relatedness (based

on the kinship matrix). We tested all autosomal genes with at least 2 counts in 75%

of the libraries.

5.5.9 Running capacity association with chromatin accessibility

To model the relationship between chromatin accessibility and best running dis-

tance accounting for genetic relatedness we used linear models (R’s lm function):

Y = Xβ + ε, ε ∼ N(0, σ2
eI)

and linear mixed models (as implemented in the lme4qtl R package [321], fitting

the model using restricted maximum likelihood (REML)):

Y = Xβ + u+ ε, u ∼ N(0, σ2
gG), ε ∼ N(0, σ2

eI)

where Y is running distance, X is an incidence matrix, β is a vector of fixed

effects, and G is a kinship matrix generated using EMMAX (Balding-Nichols matrix)

[113] with the full set of autosomal SNPs, normalized as described in equation 5 of

[113]. Peak read counts were converted to counts per million (CPM) and then were

inverse normalized for each ATAC-seq peak. We tested all 200,305 peaks with more

than 5 counts in at least 75% of the libraries.

5.5.10 Heritability estimation using GCTA

For estimating h2 using GCTA, we first used GCTA (v. 1.93.2 beta) to generated

a genetic relatedness matrix using all genotyped autosomal SNPs (i.e., no thinning of

genotypes) with MAF > 1%, and then applied GCTA’s GREML function using best

distance as the phenotype and including no additional covariates.
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5.5.11 caQTL analysis

We used RASQUAL (GitHub commit 1cdd0a0) [138] for the caQTL analysis. We

included sex, weight, sequencing run, and ATAC-seq PCs 1-3 as covariates, and tested

all SNPs within 10kb of each peak. For within-peak correction of p-values, we used

eigenMT (downloaded from http://montgomerylab.stanford.edu/resources/eig

enMT/ downloads/eigenMTwithTestData.tgz on May 15, 2020).
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CHAPTER VI

Conclusion

In this thesis I have integrated epigenomic and transcriptomic data with genetic

data to examine monogenic (chapter II) and polygenic (chapters IV, V) traits in hu-

man, mouse, and rat. I have also explored the diversity of public ATAC-seq datasets

and the variability in ATAC-seq results introduced by several technical variables

(chapter III). Each of these analyses generated new information or resources, but

clearly none of them close the door on the problems they are attempting to tackle

or the biological traits and systems they are investigating. Together they display the

value of epigenomic and transcriptomic data in understanding monogenic and poly-

genic traits, and to varying degrees they also highlight new hypotheses and research

directions, and current challenges.

In the Danforth (Sd) mouse project presented in Chapter II, I investigated the

genome-wide changes in the transcriptome and epigenome of E9.5 Sd mouse tailbuds.

The results are a demonstration of both the advantages of multi-omic data integra-

tion as well as the limits and challenges of integrating ATAC-seq and RNA-seq. Using

ATAC-seq, we detected local changes in chromatin accessibility near the Sd ERV in-

sertion, but identified little evidence for changes in chromatin accessibility elsewhere

in the genome. RNA-seq, on the other hand, pointed to differential expression of

49 genes across the genome. While changes in chromatin can certainly be linked to
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changes in gene expression, and vice versa, the relationship is often weak or context-

dependent [20], making it tricky to explicitly model the relationship between them.

Nevertheless, the local change in chromatin accessibility at the Gm13344 promoter,

which is orthologous to an autoregulatory human PTF1A enhancer, suggests that

the overexpression of Ptf1a in the context of the ERV insertion could be mediated

at least in part by enhancer activity of the Gm13344 promoter. Of course, our data

does not prove this, and other possibilities exist, most obviously the possibility that

the ERV insertion is acting as an enhancer and is solely responsible for driving the

Ptf1a overexpression without any contribution of the Gm13344 promoter sequence.

Nevertheless, the complementary information in the ATAC-seq and RNA-seq data

lead to an interesting hypothesis to be tested downstream. Additional data, such as

chromatin conformation data to detect contacts between the Gm13344 promoter and

Ptf1a promoter, or deletion/mutation of the Gm13344 promoter, might help clarify

whether the Gm13344 promoter is playing any role in Ptf1a overexpression. The

ATAC-seq data also provided evidence against another hypothesis, namely that over-

expression of Ptf1a was causing changes in chromatin accessibility at Ptf1a binding

sites as has been observed for some other TFs [314, 43, 94]. Recent work suggests

that only a minority of TFs possess the ability to impact chromatin accessibility in

that way [11, 5], so it is not surprising that PTF1A cannot act in this manner. This

project also demonstrated the role that omics data can play in bridging the gap be-

tween a known genetic lesion and the downstream effects, with RNA-seq data and

GO enrichment analysis guiding further experimental work into a specific biological

signaling pathway. PTF1A binding data, as well as data from earlier time points,

could provide further information into the cascade of events – e.g., which differen-

tially expressed genes are likely to be direct targets of PTF1A and may therefore

come earlier in the cascade.

While the integration of different omics data, including public datasets, can be ex-
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tremely informative, one frequent challenge is dealing with the technical heterogeneity

that may be present in the data. The ataqv project (chapter III) demonstrated the

substantial heterogeneity that characterizes many public ATAC-seq datasets. In ad-

dition, I analyzed original data and used QC metrics as well as the distribution of

reads across the genome to quantify the impact of two technical variables on ATAC-

seq results, namely the ratio of Tn5 transposase to nuclei and sequencing lane cluster

density. Although a long-term biomedical research plan should be driven by mean-

ingful biological problems, day-to-day work in a research lab is dominated by working

through and around less glorious problems. This reality is typified by QC, and tools

and resources that help perform QC, benchmark technical effects, and place the re-

sults into a broader context can be of great practical value. The results and resources

generated by this project will hopefully assist future projects that utilize epigenomic

profiling (and were put to use in the QC of all the ATAC-seq and snATAC-seq data

generated for the projects in this dissertation).

In chapter IV, I performed joint analysis of snRNA-seq and snATAC-seq to map

the transcriptomes and chromatin accessibility of skeletal muscle cell types, and ap-

plied the chromatin accessibility data to examine cell type GWAS SNP enrichments

and nominate causal GWAS SNPs. In addition to these specific results, the down-

stream GWAS enrichments suggest interesting questions about cell type identity and

the relative contribution of similar cell types in different tissue contexts to a given

trait. For example, using UK Biobank GWAS we showed enrichment of blood and

immune cell trait GWAS SNPs in the skeletal muscle immune cell ATAC-seq peaks.

This is not surprising, as nominally similar cell types derived from non-muscle sources

have shown similar GWAS enrichments [9, 107]. However, the extent to which the

identified muscle-resident cell populations can be taken as representatives of nominally

similar cell populations in other tissues remains an open question, and presumably

for many traits the ‘same’ cell type in different tissues will not have equal effects on
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the trait of interest. These are not new topics of investigation – for example, the

similarities and differences between mesenchymal stem cell populations isolated from

adipose, bone marrow, and muscle has been a subject of research for years [134, 60],

as has the role of tissue-resident vs. circulating immune cells [42, 272]. But high-

throughput single-cell methods are moving these discussions into a new era, providing

new data with which to examine old questions. The single-cell era will help clarify

the extent to which we can isolate a cell type from it’s tissue context, including when

considering that cell type’s role in traits and disease.

In chapter V, I performed the first analyses of chromatin accessibility in the F2

rats from the HCR-LCR model system. One hypothesis was that there may be chro-

matin accessibility differences correlating with running capacity differences between

rats at rest, perhaps signaling priming of regulatory elements to become active upon

a change in exercise state (enabling some rats to respond to the onset of exercise more

effectively than others). However, I observed little evidence for associations between

running capacity and ATAC-seq peak signal in my initial analysis. My analysis of the

association between running capacity and gene expression largely recapitulated the

results of previous analyses [230, 238], showing signs of signal in the data (especially

in biological pathways related to fatty acid oxidation) but, in my case, no significantly

associated genes. These results suggest that running capacity is a highly polygenic

trait. If small effect sizes at a large number of loci drive the wide distribution of

running capacity in the F2s, aggregating information across loci will be key to under-

standing the genetics of running capacity in this system. It is also likely that some

effects will only be apparent under certain conditions; future analysis of HCR-LCR

chromatin accessibility and gene expression under different exercise conditions will

provide insight into the extent to which chromatin accessibility and gene expression

change with exercise. In chapter V I also performed the first caQTL analysis in

this rat model system, identifying 4,477 ATAC-seq peaks associated with at least one
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SNP. In isolation the caQTL results provide little to no insight into the genetic factors

underlying running capacity, but as genetic, epigenomic, and transcriptomic analysis

of the HCR/LCR and F2 rats continues, caQTL results will be one layer of informa-

tion to draw upon to help interpret future findings. For example, HCR-LCR allele

frequency differences at caQTL SNPs might be one explanation for any differences in

ATAC-seq peak signal we observe between the lines.

The projects carried out in this dissertation demonstrate the value as well as the

challenges in applying current epigenomic and transcriptomic assays to the investi-

gation of monogenic and polygenic traits. Continued development and refinement of

experimental methods to probe molecular traits will generate exciting new datasets

we can leverage to this end. Integration of this data with existing data will be key

to understanding many aspects of monogenic and polygenic disease, from identify-

ing causal mutations and genetic variants, to understanding the mechanisms through

which the variants exert their effects, and the contexts in which they are relevant.
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R. Salonen, and J. T. Salonen (2001), Cardiovascular fitness as a predictor of
mortality in men, Archives of Internal Medicine, 161 (6), 825–831, doi:10.1001/
archinte.161.6.825.

[148] Lee, C., S. Patil, and M. A. Sartor (2016), RNA-Enrich: a cut-off free func-
tional enrichment testing method for RNA-seq with improved detection power,
Bioinformatics, 32 (7), 1100–1102, doi:10.1093/bioinformatics/btv694.

[149] Lee, C.-K., Y. Shibata, B. Rao, B. D. Strahl, and J. D. Lieb (2004), Evidence
for nucleosome depletion at active regulatory regions genome-wide, Nature Ge-
netics, 36 (8), 900–905, doi:10.1038/ng1400.

[150] Lee, D. (2016), LS-GKM: a new gkm-SVM for large-scale datasets, Bioinfor-
matics, 32 (14), 2196–2198, doi:10.1093/bioinformatics/btw142.

[151] Lee, D., D. U. Gorkin, M. Baker, B. J. Strober, A. L. Asoni, A. S. McCallion,
and M. A. Beer (2015), A method to predict the impact of regulatory variants
from DNA sequence, Nature Publishing Group, 47 (8), 955–961.

[152] Lee, H., et al. (2020), Diagnostic utility of transcriptome sequencing for rare
Mendelian diseases, Genetics in Medicine, 22 (3), 490–499, doi:10.1038/s41436-
019-0672-1.

[153] Leslie, E. J., et al. (2015), Identification of functional variants for cleft lip
with or without cleft palate in or near PAX7, FGFR2, and NOG by targeted
sequencing of GWAS loci, American Journal of Human Genetics, 96 (3), 397–
411, doi:10.1016/j.ajhg.2015.01.004.

[154] Levey, A. S., J. P. Bosch, J. B. Lewis, T. Greene, N. Rogers, and D. Roth
(1999), A more accurate method to estimate glomerular filtration rate from
serum creatinine: a new prediction equation. Modification of Diet in Renal
Disease Study Group, Annals of Internal Medicine, 130 (6), 461–470, doi:
10.7326/0003-4819-130-6-199903160-00002.

[155] Le Gros, M., et al. (2016), Soft X-Ray Tomography Reveals Gradual Chromatin
Compaction and Reorganization during Neurogenesis In Vivo, Cell Reports,
17 (8), 2125–2136, doi:10.1016/j.celrep.2016.10.060.

[156] Li, H., and R. Durbin (2009), Fast and accurate short read alignment with
Burrows-Wheeler transform, Bioinformatics, 25 (14), 1754–1760, doi:10.1093/
bioinformatics/btp324.

[157] Li, H., et al. (2009), The Sequence Alignment/Map format and SAMtools,
Bioinformatics, 25 (16), 2078–2079, doi:10.1093/bioinformatics/btp352.

[158] Li, Q., J. B. Brown, H. Huang, and P. J. Bickel (2011), Measuring reproducibil-
ity of high-throughput experiments, The Annals of Applied Statistics, 5 (3),
1752–1779, doi:10.1214/11-AOAS466.

177



[159] Li, Z., M. H. Schulz, T. Look, M. Begemann, M. Zenke, and I. G. Costa (2019),
Identification of transcription factor binding sites using ATAC-seq, Genome
Biology, 20 (1), 45, doi:10.1186/s13059-019-1642-2.

[160] Lister, R., R. C. O’Malley, J. Tonti-Filippini, B. D. Gregory, C. C. Berry,
A. H. Millar, and J. R. Ecker (2008), Highly integrated single-base resolution
maps of the epigenome in Arabidopsis, Cell, 133 (3), 523–536, doi:10.1016/j.cel
l.2008.03.029.

[161] Litingtung, Y., and C. Chiang (2000), Specification of ventral neuron types is
mediated by an antagonistic interaction between Shh and Gli3., Nature Neuro-
science, 3 (10), 979–985, doi:10.1038/79916.

[162] Liu, C.-T., et al. (2014), Multi-ethnic fine-mapping of 14 central adiposity loci,
Human Molecular Genetics, 23 (17), 4738–4744, doi:10.1093/hmg/ddu183.

[163] Liu, Y.-x., et al. (2019), Dissecting cell diversity and connectivity in skeletal
muscle for myogenesis, Cell Death & Disease, 10 (6), doi:10.1038/s41419-019-
1647-5.

[164] Lorch, Y., J. W. LaPointe, and R. D. Kornberg (1987), Nucleosomes inhibit the
initiation of transcription but allow chain elongation with the displacement of
histones, Cell, 49 (2), 203–210, doi:10.1016/0092-8674(87)90561-7.

[165] Love, M. I., W. Huber, and S. Anders (2014), Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2, Genome Biology, 15 (12),
31–21.

[166] Lugani, F., et al. (2013), A Retrotransposon Insertion in the 5’ Regulatory
Domain of Ptf1a Results in Ectopic Gene Expression and Multiple Congenital
Defects in Danforth’s Short Tail Mouse, PLoS Genetics, 9 (2), e1003,206, doi:
10.1371/journal.pgen.1003206.
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