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ABSTRACT

The estimation of conditional dependence graphs and precision matrices is one of the most

relevant problems in modern statistics. There is a large body of work for estimation with

fully observed and independent data. These are, however, often unrealistic assumptions for

real-world data applications. So extensions are needed to accommodate data complications

more suited for actual data analysis. In this thesis we address the methodology, theory, and

applications of covariance estimation with these complications.

We focus on a data setting with both dependence and missingness. To model this,

we use a matrix-variate model with a Kronecker product covariance structure and missing

values. This model allows for correlations to exist both between the rows and between the

columns, and is commonly used in fields as diverse as genetics, neuroimaging, psychology,

and environmental science, where estimating and/or accounting for dependence is often a

primary concern. We develop prototypical column- and row-wise precision matrix estimators

for single data matrices with missing data. We show initial concentration of measure bounds

on entry-wise consistency for data with mean structure and multiplicative errors, and develop

corresponding rates of convergence for the joint mean and covariance estimation in high-

dimensional settings.

To implement these estimators, we first solve a general implementation issue with graph-

ical Lasso-type estimators designed for use with noisy and missing data. These estimators

often result in non-positive semidefinite input matrices to the graphical Lasso, which can

result in pathological optimization issues. We show how this problem can be fixed with

modified objective functions and develop a feasible and efficient algorithm for solving the

graphical Lasso with these modifications. This algorithm can be used not only for our

xi



method, but also to implement a wide variety of graphical Lasso extensions that involve

non-positive semidefinite inputs.

Finally, we use our methods to explore a dataset of voting records from the U.S. Senate,

where we expect there to be connections both between similar or opposed senators as well

as between bills that may share characteristics or topics. This dataset exhibits missing data

and has mean structure due to the two-party system, and in particular we are interested in

estimating relationships beyond just those dictated by this party structure.
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CHAPTER I

Introduction

The estimation of conditional dependence graphs and precision matrices is one of the

most relevant problems in modern statistics, with application domains spanning many fields

ranging from genetics to neuroscience to economics and political science to environmental

science. When assuming that data come from a multivariate Gaussian model, standard

results show that estimating the conditional dependence graph can be done by estimating

the structure of the associated inverse covariance, or precision, matrix. A wide body of

work proposes methods to perform this estimation, most of which use a similar `1-penalized

likelihood approach which we will refer to as the graphical LASSO (Banerjee et al., 2008;

Friedman et al., 2008; Ravikumar et al., 2011; Rothman et al., 2008; Zhou et al., 2010). These

procedures generally follow the form of first constructing a positive semi-definite (PSD)

estimate of the covariance or correlation matrix with favorable convergence properties, then

using that as an input into a graphical LASSO or nodewise regression program that produces

a sparse estimate of the precision matrix.

Classically, graphical Lasso-type estimators are M -estimators that take the form

Θ̂ ∈ arg min
Θ�0

{
tr(Γ̂nΘ)− log det(Θ) + gλ(Θ)

}
,

given an input covariance estimate Γ̂n and a penalty function gλ(Θ), which is often the

element-wise `1-norm.
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Many of the results in this area focus on estimating the conditional dependencies between

variables with fully observed independent and identically distributed (i.i.d.) observations

with zero-mean. These are, however, clearly unrealistic assumptions for many real-world data

applications. So modern methods often extend these methods to include data complications

more suited for the complex data encountered in modern data analysis.

Note that we focus on graphical Lasso estimators rather than the closely related neigh-

borhood selection estimators, that generally utilize multiple node-wise regressions that are

later combined with an AND or OR rule (Meinshausen and Bühlmann, 2006; Yuan and Lin,

2007; Zhou et al., 2011). This is due to the masking strategies that we use throughout the

work to handle missingness, that are in general more difficult to adapt to the nodewise esti-

mators. Future work includes developing the methodology and theoretical results necessary

to extend these methods to their corresponding node-wise estimators.

1.1 Precision Matrix Estimation with Noisy and Missing Data

One of the complications that arises with real data is missing, noisy, or incomplete data,

and so it is natural to extend these methods to those settings. Many methods have been

developed along these lines. Lounici (2014) and Loh and Wainwright (2015) perform graph-

ical model estimation with missing or corrupted data using a modification to the covariance

estimate first presented by Hwang (1986). There are many methods dealing with error-in-

variables, including Rudelson and Zhou (2017), Park et al. (2017), Belloni et al. (2017) and

Greenewald et al. (2017), which allow for various types of dependent noise.

A common issue, however, that arises in many of these models is that the input covariance

estimate is no longer PSD. This makes it difficult to ensure that the optimization works as-

desired, and until our work the effects of these non-PSD inputs were not well-understood.

Note that these types of non-PSD inputs also arise in the closely related Gaussian copula

models used for semiparametric graph estimation and estimation with ordinal or mixed data,

which therefore face similar problems (Liu et al., 2012; Fan et al., 2017; Feng and Ning , 2019).

2



In Chapter II we explore this problem of performing precision matrix estimation with

noisy and missing data, and in particular we develop optimization objectives and algorithms

for use when the input matrices are not PSD. In order to ensure that these estimators are

well-behaving with non-PSD input, we impose a side constraint of the form ρ(Θ) < R, where

ρ is a convex function, similar to the one suggested in Loh and Wainwright (2015). Here we

focus on the estimator using the operator norm as a side constraint

Θ̂ ∈ arg min
Θ�0,‖Θ‖2≤R

{
tr(Γ̂nΘ)− log det(Θ) + gλ(Θ)

}
. (1.1)

Unfortunately, this additional constraint precludes using existing methods to solve the

penalized objective with non-PSD input. To close this gap, we develop an alternating direc-

tion method of multipliers (ADMM) algorithm to solve (1.1) efficiently. Although we focus

on applications with missing and noisy data, this objective and algorithm can be applied to

any graphical LASSO-type estimator with non-PSD input, and provides a practical method

for solving these problems without relying on existing PSD-based solvers that can become

degenerate in these scenarios.

We conduct empirical studies comparing this method to several other precision matrix

estimators and show that it compares favorably. We also explore the use of non-convex

regularizers such as SCAD and MCP, of which much recent work has focused on due to their

favorable model selection properties (Fan and Li , 2001; Zhang , 2010; Loh and Wainwright ,

2017) with fully observed data. Our simulation study reveals several trends in performance

that are not present in the fully observed case, in particular showing that non-convex penal-

ties tend to introduce undesireable instability and estimation error in the non-PSD setting.
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1.2 Covariance Estimation for Matrix-Variate Data with Missing

Values and Mean Structure

Another data complication of particular interest is adding dependence between the obser-

vations. The matrix-variate model, which allows for dependence along both axes of the data

matrix, is an increasingly popular model for doing this. Its ability to model relationships

between observations as well as covariates makes it useful for analyzing data with temporal,

geographical, or other network relationships between them. Thus, applications for matrix-

variate models often arise in biology, genetics, economics, climate science, and many other

fields, where it is important to use methods that are at least robust to these types of depen-

dencies. Specific applications include genomic data, where sample-side correlations can both

be intentional due to the experimental design or unintentional as described by Efron (2009),

spatial-temporal data such as brain imaging or environmental data (Genton, 2007; Wang

et al., 2016; Qiu et al., 2016; Shvartsman et al., 2018; Glanz and Carvalho, 2018), or panel

data from surveys over time or financial panels (Hatfield and Zaslavsky , 2018; Wang et al.,

2019; Chen et al., 2020). In the fully-observed setting there is a long line of work on estimat-

ing these models (Dutilleul , 1999; Werner et al., 2008; Yin and Li , 2012; Leng and Tang ,

2012; Tsiligkaridis et al., 2013; Zhou, 2014; Chen and Liu, 2019). Note that this model also

has a history in psychology and medicine, usually within the context of repeated measures

studies (Galecki , 1994; Naik and Rao, 2001). We, however, will focus on applications with a

single 2-dimensional data matrix.

Data in these settings, however, are also often collected with missing values (Little and

Rubin, 2014). Factors as varied as nonresponse, equipment failure or limitations, measure-

ment errors, human mistakes, or data corruption can all result in incomplete data matrices,

which most methods are not prepared to handle. Since deleting incomplete cases is inefficient

for even small missing rates, researchers generally impute the missing values. In a matrix-

variate setting we cannot rely on independent observations, however, so existing methods
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for imputation are generally not appropriate. Allen and Tibshirani (2010) present a method

for covariance estimation and imputation in this matrix variate setting. Their full EM-type

algorithm is, however, computationally infeasible for even moderate datasets, and the focus

of their work is therefore on approximate algorithms designed for imputation. We instead

focus on parameter estimation in high-dimensional settings.

In Chapter III we propose methods for estimating both the row- and column-wise preci-

sion and covariance matrices in matrix-variate data settings with missing data. In particular,

we incorporate missing values with varying sample rates by column. These are based on the

graphical Lasso estimator and assume sparsity in the inverse covariance (or precision) matrix

and therefore also in the undirected graphs that they encode (in the Gaussian case). We

establish the conditions required for consistency and present the convergence rates of our

estimators, which attain the same rates as in the fully observed setting when the missing

rates are fixed. Proofs for the results in this chapter are deferred to Chapter V.

In Hornstein et al. (2019), we developed an extension of the matrix-variate estimators in

Zhou (2014) to a setting with two-group means in the fully observed case. Motivated by an

persistent problem in genomics research, where test statistics for mean differences are often

observed to be miscalibrated, likely due to row-wise dependence (Efron, 2009), we developed

methods for joint mean and covariance estimation in this setting.

We therefore also extend our matrix-variate estimators with missing data to similar

settings with two-group mean structure. We show that we can still prove consistency and

convergence rates when jointly estimating both the mean and precision matrices, despite

significant complications that arise around the interaction of missing values and the joint

mean and covariance estimation. We present methodology for extending these estimators to

setting with unknown groups labels or more flexible mean structures.

In Chapter IV we apply these methods to a dataset of voting records from the U.S.

Senate, where we expect there to be connections both between similar or opposed senators

as well as between bills that may share characteristics or topics. Here, by removing the party
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means for each bill, we focus on connections beyond those of encoded in the mean structure.

Instead, we isolate relationships in the covariance structure of the errors, and we use these

to conduct an exploratory analysis, finding both expected and interesting novel relationships

and patterns.

1.3 Notation

For a matrix A = (aij) ∈ Rn×m, we denote the spectral or operator norm as ‖A‖2, the

Frobenius norm as ‖A‖F , the entry-wise max norm as ‖A‖∞, the entry-wise `1 norm as |A|1,

the entry-wise `0 norm as |A|0, and the matrix one-norm as ‖A‖1 = maxj
∑n

i=1|aij|. Let

|A|1,off and |A|0,off denote these norms applied to the nondiagonal entries. Let |A| denote

the determinant and tr(A) denote the trace. Let φi(A) denote the eigenvalues of A, with

φmax(A) and φmin(A) being the largest and smallest eigenvalues, and κ(A) being the condition

number. Let diag(A) be the diagonal matrix with the same diagonal as A, and let I be the

identity matrix. For a, b ∈ R we denote a∨ b = max(a, b) and a∧ b = min(a, b). For matrices

A ∈ Rn×m and B ∈ Rp×q we denote the Kronecker product as

A⊗B =


a11B · · · a1mB

...
. . .

...

an1B · · · anmB

 ∈ Rnp×mq

For A,B ∈ Rn×m we denote element-wise (Hadamard) multiplication and division as A ◦ B

and A�B, respectively.
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CHAPTER II

Precision Matrix Estimation with Noisy and Missing

Data

Undirected graphs are often used to describe high-dimensional distributions. Under spar-

sity conditions, these graphs can be estimated using penalized methods such as

Θ̂ ∈ arg min
Θ�0

{
tr(Γ̂nΘ)− log det(Θ) + gλ(Θ)

}
, (2.1)

where Γ̂n is the sample covariance or correlation matrix and gλ is a separable (entry-wise)

sparsity-inducing penalty function. Although this approach has proven successful in a variety

of application areas such as neuroscience and genomics, its soundness hinges on the positive

semidefiniteness (PSD) of Γ̂n. If Γ̂n is indefinite, the objective may be unbounded from

below.

In order to ensure this penalized M -estimator is well-behaving, Loh and Wainwright

(2015) impose a side constraint of the form ρ(Θ) < R, where ρ is a convex function. Here

we focus on the estimator using the operator norm as a side constraint

Θ̂ ∈ arg min
Θ�0,‖Θ‖2≤R

{
tr(Γ̂nΘ)− log det(Θ) + gλ(Θ)

}
. (2.2)

Loh and Wainwright (2017) adopt this method and show in theory the superior statisti-

cal properties of this constrained estimator. Their results suggest that the addition of a
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side constraint is not only sufficient but also almost necessary to effectively untangle the

aforementioned complications.

Unfortunately, this additional constraint precludes using existing methods to solve the

penalized objective with non-PSD input. To close this gap, we develop an alternating direc-

tion method of multipliers (ADMM) algorithm to implement (2.2) efficiently.

The remainder of this chapter is organized as follows. In Section 2.1, we provide an

overview of existing related work and describe in detail the optimization issues that arise

from indefinite inputs and nonconvex penalties. In Section 2.2, we present the proposed

ADMM algorithm and present some convergence results. Section 2.3 provides numerical

examples and comparisons. Finally, we summarize the empirical results and their practical

implications regarding choice of method in Section 2.4.

2.1 Problem formulation and existing work

There is a wide body of work proposing methods to perform precision matrix estimation

in the fully observed case, including Meinshausen and Bühlmann (2006), Yuan and Lin

(2007), Rothman et al. (2008), Friedman et al. (2008), Banerjee et al. (2008), and Zhou

et al. (2010), most of which are essentially a `1-penalized likelihood approach (2.1) which we

will refer to as the graphical Lasso.

Recent work has focused on using nonconvex regularizers such as SCAD and MCP for

model selection in the regression setting (Fan and Li , 2001; Zhang , 2010; Breheny and Huang ,

2011; Zhang and Zhang , 2012). Loh and Wainwright (2015, 2017) extend this analysis to

general M -estimators, including variants of the graphical Lasso objective, and show their

statistical convergence and support recovery properties. Estimators with these penalties

have been shown to attain model selection under weaker theoretical conditions, but require

more sophisticated optimization algorithms to solve, such as the local linear approximation

(LLA) method of Fan et al. (2014).

In a fully observed and noiseless setting, Γ̂n is the sample covariance and guaranteed to
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be at least positive semidefinite. Then, if gλ is the `1-penalty, the objective of (2.1) is convex

and bounded from below. In this setting, one can show that for λ > 0 a unique optimum

Θ̂ exists with bounded eigenvalues and that the iterates for any descent algorithm will also

have bounded eigenvalues (for example, see Lemma 2 in Hsieh et al., 2014).

When working with missing, corrupted, and dependent data, the likelihood is nonconvex,

and the expectation-maximization (EM) algorithm has traditionally been used to perform

statistical inference. However, in these noisy settings, the convergence of the EM algorithm

is difficult to guarantee and is often slow in practice. For instance, Städler and Bühlmann

(2012) implement a likelihood-based method for inverse covariance estimation with missing

values, but their EM algorithm requires solving a full graphical Lasso optimization problem

in each M-step.

An alternative approach is to develop M -estimators that account for missing and cor-

rupted data. For graphical models, Loh and Wainwright (2015) establish that the graphical

Lasso, including when using nonconvex penalties, can be modified to accommodate noisy or

missing data by adjusting the sample covariance estimate.

These modified estimators depend on the observation that statistical theory for the graph-

ical Lasso generally requires that ‖Γ̂n−Σ‖∞ converges to zero at a sufficiently fast rate (e.g.

Rothman et al., 2008; Zhou et al., 2010; Loh and Wainwright , 2017). When considering

missing or corrupted data, it is often possible to construct covariance estimates Γ̂n that

satisfy this convergence criteria but are not necessarily positive semidefinite. In fact, in

high-dimensional settings Γ̂n may even be guaranteed to be indefinite. Attempting to in-

put these indefinite covariance estimates into the graphical Lasso, however, presents novel

optimization issues.

Unbounded objective. When attempting to move beyond the `1 penalized case with

positive semidefinite input, the problem in (2.1) becomes unbounded from below, so an

optimum may not necessarily exist. This issue comes from two potential sources: 1) negative

eigenvalues in Γ̂n, or 2) zero eigenvalues combined with the boundedness of the nonconvex
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penalty gλ. For example, consider the restriction of the objective in (2.1) to a ray defined

by an eigenvalue-vector pair σ1, v1 of Γ̂n:

f(I + tv1v
T
1 ) = tr(Γ̂n) + t tr(Γ̂nv1v

T
1 )− log(1 + t) + gλ(tv1v

T
1 )

= tr(Γ̂n) + tσ1 − log(1 + t) + gλ(tv1v
T
1 ).

(2.3)

If σ1 < 0, we see that f is unbounded from below due to the tσ1 and − log(1 + t) terms. In

fact, if σ1 = 0 and gλ is bounded from above, as is the case when using standard nonconvex

penalties, the objective is also unbounded from below.

So unboundedness can occur anytime there is a negative eigenvalue in the input matrix,

or whenever there are zero eigenvalues combined with a nonconvex penalty function gλ.

Unboundedness creates optimization issues, as an optimum no longer necessarily exists.

Handling unboundedness. In order to guarantee that an optimum exists for (2.1),

an additional constraint of the form ρ(Θ) ≤ R can be imposed, where ρ is some convex

function. In this paper, we consider the estimator (2.2), which uses a side constraint of the

form ‖Θ‖2 ≤ R. Loh and Wainwright (2017) show the rates of convergence of this estimator

(2.2) and show that it can attain model selection consistency and spectral norm convergence

without the incoherence assumption when used with a nonconvex penalty (see Appendix E

therein), but do not discuss implementation or optimization aspects of the problem.

To our knowledge, there is currently no feasible optimization algorithm for the estimator

defined in (2.2), particularly when the input is indefinite. Loh and Wainwright (2015)

present a composite gradient descent method for optimizing a subset of side-constrained

versions of (2.1). However, their algorithm requires a side constraint of the specific form

ρ(Θ) = 1
λ
(gλ(Θ)+ µ

2
‖Θ‖2

F ), which does not include the spectral norm constraint and therefore

cannot attain the better theoretical results it achieves. It may be possible to develop heuristic

algorithms that alternate performing a proximal gradient update ignoring the side constraint

and projecting to the constraint set, but as far as we know there has not been any analysis

of algorithms of this type (we discuss this in more detail in Section 2.3.3).
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An alternative approach to solving this unbounded issue is to project the input matrix

Γ̂n to the positive semidefinite cone before inputting into (2.1). We discuss this further in

Section 2.3.1, but this only solves the unbounded issue when using the `1 penalty; noncon-

vex penalties still require a side constraint to have a bounded objective and therefore our

algorithm is still useful even for the projected methods.

2.1.1 Nonconvex penalties

The nonconvex penalties we will focus on are the SCAD and MCP functions, introduced

in Fan and Li (2001) and Zhang (2010), respectively. Following Loh and Wainwright (2015),

we make the following assumptions regarding the (univariate) penalty function gλ : R→ R.

(i) gλ(0) = 0 and gλ(t) = gλ(−t).

(ii) gλ(w) is nondecreasing for w >= 0.

(iii) gλ(w)/w is nonincreasing for w > 0.

(iv) g′λ(w) exists for all w 6= 0 and limw→0+ g
′
λ(w) = λ.

(v) gλ is weakly convex, i.e. there exists µ > 0 such that gλ(w) + (µ/2)w2 is convex.

Note that Loh and Wainwright (2017) show stronger model selection results under the fol-

lowing additional assumption.

(vi) There exists a constant γ <∞ such that g′λ(w) = 0 for all w > γλ.

This excludes the `1 penalty, but is satisfied by the nonconvex penalties we consider.

The SCAD penalty takes the form

gλ(w) =


λ|w| if |w| ≤ λ

−w2−2aλ|w|+λ2
2(a−1)

if λ < |w| ≤ aλ

(a+1)λ2

2
if aλ < |w|

(2.4)
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for some parameter a > 2. Note that this penalty is weakly convex with constant µ =

1/(a− 1).

The MCP penalty has the form

gλ(w) = sign(w)λ

∫ |w|
0

(
1− z

λa

)
+
dz (2.5)

for some parameter a > 0. This penalty is weakly convex with µ = 1/a.

2.2 ADMM Algorithm

Our algorithm is similar to the algorithm in Guo and Zhang (2017), which applies ADMM

to the closely related problem of condition number-constrained sparse precision matrix esti-

mation using the same splitting scheme as below. We discuss their method in more detail

in Section A.1. The following algorithm is specialized to the case where the spectral norm

is used as the side constraint. In Section A.2 we derive a similar ADMM algorithm that can

be used for any side constraint with a computable projection operator.

Rewrite the objective from (2.2) as

f(Θ) = tr(Γ̂nΘ)− log det(Θ) + gλ(Θ) + 1XR(Θ) (2.6)

where XR = {Θ : Θ � 0, ‖Θ‖2 ≤ R} and 1X (Θ) = 0 if Θ ∈ X and ∞ otherwise.

Let ρ > 0 be a penalty parameter and let Proxgλ/ρ be the prox operator of gλ/ρ. We

derive these updates for SCAD and MCP in Section 2.2.1. Let Tρ(A) be the following prox

operator for − log det Θ + 1XR(Θ), which we derive in Section 2.2.1,

Tρ(A) = Tρ(UMUT ) = UD̃UT

where D̃ii = min

{
Mii + (M2

ii + 4
ρ
)1/2

2
, R

}
,
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Algorithm 1: ADMM for graphical Lasso with a side constraint

Input: Γ̂n, ρ, gλ, R
Output: Θ̂
Initialize V 0 = Θ0 � 0, Λ0 = 0 ;
while not converged do

V k+1 = Proxgλ/ρ

(
ρΘk+Λk

ρ

)
Θk+1 = Tρ

(
ρV k+1−Γ̂n−Λk

ρ

)
Λk+1 = Λk + ρ(Θk+1 − V k+1)

end

where UMUT is the eigendecomposition of A. Then the ADMM algorithm for solving (2.6),

which we derive in Section 2.2.1, is described in Algorithm 1. Computationally this algorithm

is dominated by the eigendecomposition used to evaluate Tρ, and therefore has a complexity

of O(m3), which matches the scaling of other graphical Lasso solvers (e.g. Meinshausen and

Bühlmann, 2006; Friedman et al., 2008; Hsieh et al., 2014).

2.2.1 Derivation of Algorithm 1

ADMM algorithm. Recall that we can rewrite the objective as

f(Θ) = tr(Γ̂nΘ)− log det(Θ) + gλ(Θ) + 1XR(Θ)

where XR = {Θ : Θ � 0, ‖Θ‖2 ≤ R} and 1X (Θ) = 0 if Θ ∈ X and ∞ otherwise.

We then introduce an auxiliary optimization variable V ∈ Rm×m and reformulate the

problem as

Θ̂ = arg max
Θ,V ∈Rm×m

{
tr(Γ̂nΘ)− log det(Θ) + 1XR(Θ) + gλ(V )

}
s.t. Θ = V

For a penalty parameter ρ > 0 and Lagrange multiplier Λ ∈ Rm×m, we consider the aug-
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mented Lagrangian

Lρ(Θ, V,Λ) = tr(Γ̂nΘ)− log det(Θ) + 1XR(Θ) + gλ(V ) +
ρ

2
‖Θ− V ‖2

F + 〈Λ,Θ− V 〉 (2.7)

The ADMM algorithm is then, given current iterates Θk, V k, and Λk,

V k+1 = arg min
V ∈Rm×m

{
gλ(V ) +

ρ

2
‖Θk − V ‖2

F + 〈Λk,Θk − V 〉
}

(2.8)

Θk+1 = arg min
Θ∈Rm×m

{
− log det Θ + tr(Γ̂nΘ) + 1XR(Θ)

+
ρ

2
‖Θ− V k+1‖2

F + 〈Λk,Θ− V k+1〉
} (2.9)

Λk+1 = Λk + ρ(Θk+1 − V k+1) (2.10)

Considering the V -subproblem, we can show that the minimization problem in (2.8) is

equivalent to

V k+1 = arg min
V ∈Rm×m

{
1

ρ
gλ(V ) +

1

2

∥∥∥∥V − ρΘk + Λk

ρ

∥∥∥∥2

F

}
.

Which is a prox operator of gλ/ρ. Let W = ρΘk+Λk

ρ
and ν = 1/ρ. If gλ is the `1 penalty

then these updates simply soft-threshold the elements of W at level λ/ρ. For SCAD, these

updates have the element-wise form

Proxgλ/ρ(w) =



0 if |w| ≤ νλ

w − sign(w)νλ if νλ ≤ |w| ≤ (ν + 1)λ

w−sign(w) aνλ
a−1

1− ν
a−1

if (ν + 1)λ ≤ |w| ≤ aλ

w if aλ ≤ |w|

(2.11)
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While for MCP the updates are

Proxgλ/ρ(w) =


0 if |w| ≤ νλ

w−sign(w)νλ
1−ν/a if νλ ≤ |w| ≤ aλ

w if aλ ≤ |w|

(2.12)

See Loh and Wainwright (2015) for the derivations of these updates.

For the Θ-subproblem, we can similarly show that (2.9) is equivalent to

Θk+1 = arg min
Θ∈Rm×m

{
− log det Θ + 1XR(Θ) +

ρ

2

∥∥∥∥∥Θ− ρV k+1 − Γ̂n − Λk

ρ

∥∥∥∥∥
2

F

}
(2.13)

For any matrix A with corresponding eigendecomposition A = RMRT let us define the

operator

Tρ(A) = Tρ(UMUT ) = arg min
Θ

{
− log det Θ + 1XR(Θ) +

ρ

2
‖Θ− A‖2

F

}
= UD̃UT where D̃ii = min

{
Mii + (M2

ii + 4
ρ
)1/2

2
, R

} (2.14)

whose solution is derived below. Then the solution to (2.9) is Tρ((ρV
k+1 − Γ̂n − Λk)/ρ).

Using these results, the algorithm in (2.8)-(2.10) becomes

V k+1 = Proxgλ/ρ

(
ρΘk + Λk

ρ

)
Θk+1 = Tρ

(
ρV k+1 − Γ̂n − Λk

ρ

)

Λk+1 = Λk + ρ(Θk+1 − V k+1)

(2.15)

Solution of Tρ Recall that in (2.14) we define

Tρ(A) = arg min
Θ

{
− log det Θ + 1XR(Θ) +

ρ

2
‖Θ− A‖2

F

}
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Let Θ = WDW T and A = UMUT be the eigen-decompositions of the optimization variable

and A. Then, similar to the derivation in Guo and Zhang (2017), we can rewrite this problem

as

Tρ(A) = arg min
Θ∈Rm×m

− log det Θ +
ρ

2
tr(ΘΘ)− ρ tr(ΘA) + 1XR(Θ)

= arg min
Θ=WDWT

− log detD +
ρ

2
tr(DD)− ρ tr(WDW TUMUT ) + 1XR(D)

= arg min
Θ=WDWT ,W=U

− log detD +
ρ

2
tr(DD)− ρ tr(DM) + 1XR(D)

The final line is since, if we denote O(m) to be the set of m×m orthonormal matrices,

tr(WDW TUMUT ) = tr((UTW )D(UTW )TM) ≤ sup
Q∈O(m)

tr(QDQTM) = tr(DM)

Which holds with equality when W = U . Note that the last equality here is from Theo-

rem 14.3.2 of Farrell (1985).

We therefore get that Tρ(A) = UD̃UT where

D̃ = arg min
D diagonal

− log detD +
ρ

2
tr(D2)− ρ tr(DM) + 1XR(D)

= arg min
D diagonal

m∑
i=1

(
− logDii +

ρ

2
D2
ii − ρDiiMii + 1(0 ≤ Dii ≤ R)

)

We can see that this is separable by element. Let

q(d;Mii) = − log d+
ρ

2
d2 − ρdMii

So D̃ii = arg mind q(d;Mii)+1(0 ≤ d ≤ R). Ignoring the constraints in the indicator function

for now, we can set the derivative of q equal to zero to get that

0 = −1

d
+ ρd− ρMii =⇒ 0 = d2 −Miid−

1

ρ
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Which we can solve with the quadratic formula to show that q(d;Mii) has a unique minimizer

over d > 0 at

arg min
d

q(d;Mii) =
Mii + (M2

ii + 4
ρ
)1/2

2

Adding 1(0 ≤ d ≤ R) back and noting that q(d;Mii) is strictly convex over d > 0, we get

that we simply need to truncate this value at R. Therefore we get that

Tρ(UMUT ) = UD̃UT where D̃ii = min

{
Mii + (M2

ii + 4
ρ
)1/2

2
, R

}

2.2.2 Convergence

The following proposition applies standard results on the convergence of ADMM for

convex problems to show convergence when the `1 penalty is used. Details are in Section A.1.

Proposition 1. If the penalty is convex and satisfies the conditions in Section 2.1.1, Algo-

rithm 1 converges to a global minimum of (2.6).

Remark. Regarding the nonconvex penalty, recent work has established ADMM conver-

gence results in some nonconvex settings (see Hong et al., 2016; Wang et al., 2015), but to

our knowledge there is no convergence result that encompasses this nonsmooth and non-

convex application. We can show convergence if a fairly strong assumption is made on the

iterates, but we are currently working on extending existing results to this case.

Proposition 2 shows that any limiting point of Algorithm 1 is a stationary point of

the original objective (2.6). This is proved in Section A.1. When using the `1 penalty

or a nonconvex penalty with R ≤
√

2/µ, where µ is the weak convexity constant of gλ,

the objective f is convex and therefore any stationary point is unique and also the global

optimum. See Section A.3 for a more detailed discussion.

Proposition 2. Assume that the penalty gλ satisfies the conditions in Section 2.1.1. Then

for any limit point (Θ∗, V ∗,Λ∗) of the ADMM algorithm defined in Algorithm 1, Θ∗ is also

a stationary point of the objective f as defined in (2.6).
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The assumptions on gλ in Section 2.1.1 are the same as those assumed in Loh and Wain-

wright (2015, 2017), and are satisfied by the Lasso, SCAD, and MCP functions.

Note that if a limiting point is found to exist when using a nonconvex penalty the

result in Proposition 2 will still hold. Empirically we find that the algorithm performs well

and converges consistently when used with nonconvex penalties, but there is no existing

theoretical guarantee that a limiting point of ADMM will exist in that setting.

2.3 Simulations

We evaluate the proposed estimators using the relative Frobenius norm and the sum

of the false positive rate and false negative rate (FPR + FNR). We present results over a

range of λ values, noting that all the compared methods would use similar techniques to

perform model tuning. We also present an example of how to use BIC or cross-validation to

tune these methods. We present results using covariance matrices from auto-regressive and

Erdős-Rényi random graph models. See Section A.3 for descriptions of these models as well

as additional simulation results.

2.3.1 Alternative methods

When faced with indefinite input, there are two alternative graphical Lasso-style esti-

mators that can be used besides (2.2), which involve either `∞ projection to the positive

semidefinite cone or nodewise regression in the style of Meinshausen and Bühlmann (2006).

Projection. Given an indefinite input matrix Γ̂n, Park (2016) and Greenewald et al.

(2017) propose performing the projection Γ̂+
n = arg minΓ�0‖Γ− Γ̂n‖∞. They then input Γ̂+

n

into the optimization problem (2.1). This is similar to the projection done in Datta and Zou

(2017). In terms of the upper bound on statistical convergence rates, this method pays a

constant factor cost, though in practice projection may result in a loss of information and

therefore a decrease in efficiency.

After projecting the input, existing algorithms can be used to optimize (2.1) with the `1
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penalty. However, as mentioned in Section 2.1, using a nonconvex penalty still leads to an

unbounded objective and therefore still requires using our ADMM algorithm to solve (2.2).

Nodewise regression. Loh and Wainwright (2012) and Rudelson and Zhou (2017) both

study the statistical and computational convergence properties of using errors-in-variables

regression to handle indefinite input matrices in high-dimensional settings. Following the

nodewise regression ideas of Meinshausen and Bühlmann (2006) and Yuan (2010), we can

perform m Lasso-type regressions to obtain estimates β̂j and form estimates âj, where

β̂j ∈ arg min
‖β‖1≤R

{
1

2
βT Γ̂n,−j,−jβ − 〈Γ̂n,−j,j, β〉+ λ‖β‖1

}
âj = −(Γ̂n,j,j − 〈Γ̂n,−j,j, β̂j〉)−1

(2.16)

and combine to get Θ̃ with Θ̃−j,j = âjβ̂j and Θ̃j,j = −âj. Finally, we symmetrize the result

to obtain Θ̂ = arg minΘ∈Sm‖Θ− Θ̃‖1, where Sm is the set of symmetric matrices.

These types of nodewise estimators have gained popularity as they require less restrictive

incoherence conditions to attain model selection consistency and often perform better in

practice in the fully observed case. They have not, however, been as well studied when used

with indefinite input.

2.3.2 Data models

We test these methods on two models that result in indefinite covariance estimators, the

non-separable Kronecker sum model from Rudelson and Zhou (2017) and the missing data

graphical model described in Loh and Wainwright (2015).

Missing data (MD). As discussed above, Loh and Wainwright (2013, 2015) propose

an estimator for a graphical model with missing-completely-at-random observations.

Let W ∈ Rn×m be a mean-zero subgaussian random matrix. Let U ∈ {0, 1}n×m where

Uij ∼ Bernoulli(ζj) are independent of W . This corresponds to entries of the jth column

of the data matrix being observed with probability ζj. Then we have an unobserved matrix
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Z and observed matrix X generated by Z = WA1/2 and X = U ◦ X, where ◦ denotes the

Hadamard, or element-wise, product. Here the covariance estimate for A is

Γ̂n =
1

n
XTX �M where Mk` =


ζk if k = `

ζkζ` if k 6= `

(2.17)

where � denotes element-wise division. As we divide off-diagonal entries by smaller values,

Γ̂n will not necessarily be positive semidefinite.

Kronecker Sum (KS). Park et al. (2017) present a graphical model with additive noise

that is dependent across observations. This noise structure was first studied in the regression

setting in Rudelson and Zhou (2017) with a Kronecker sum covariance.

X ∼ Mn,m(0, A ⊕ B), where Mn,m is the matrix variate normal distribution and for

covariance matrices A ∈ Rm×m and B ∈ Rn×n. Note that A⊕B = A⊗ In+ Im⊗B, where ⊗

denotes the Kronecker product. We are interested in estimating the signal precision matrix

Θ = A−1, which has sparse off-diagonal entries. For our simulations, we normalize the noise

covariance B so that tr(B) = nτB, where τB is a measure of the noise level. Then the initial

covariance estimate for A is given by

Γ̂n =
1

n
XTX − t̂r(B)

n
Im (2.18)

as shown in Rudelson and Zhou (2017). Note that, in this model, Γ̂n is guaranteed to not

be positive semidefinite when m > n, as XTX will have zero eigenvalues.

Covariance models. Let Ω = A−1 = (ωij). We consider simulation settings using the

following covariance models for A, which are also used in Zhou (2014).

• AR1(r): The covariance matrix is of the form A = (r|i−j|)ij.

• Star-Block (SB): Here the covariance matrix is block-diagonal, where each block’s

precision matrix corresponds to a star-structured graph with Aii = 1. For the corre-
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sponding edge set E, then Aij = r if (i, j) ∈ E and Aij = r2 otherwise.

• Erdos-Renyi random graph (ER): We initialize Ω = 0.25I then randomly select

d edges. For each selected edge (i, j), we randomly choose w ∈ [0.6, 0.8] and update

ωij = ωji → ωij − w and ωii → ωii + w, ωjj → ωjj + w.

2.3.3 Simulation results

Optimization performance. Figure 2.1 shows the optimization performance of Algo-

rithm 1 using nonprojected input matrices from the missing data model with both `1 and

nonconvex penalties (MCP). The top two panels present an “easy” scenario with a higher

sampling rate, while the bottom two have a more challenging scenario with significant missing

data. Blue lines report the optimization error while red lines are the statistical error.
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(c) `1, ζ = 0.7

−4

−3

−2

−1

0

0 200 400 600
iterations

lo
g 

re
la

ti
ve

 F
ro

be
ni

us
 e

rr
or

(d) MCP, ζ = 0.7

Figure 2.1: Convergence of the ADMM algorithm for several initializations. Blue lines show the
relative optimization error (‖Θk − Θ̂‖F /‖Θ∗‖F , where Θ̂ is the result of running our algorithm to
convergence) while red lines show the statistical error (‖Θk − Θ∗‖F /‖Θ∗‖F ). All panels use an
AR1(0.7) covariance with m = 300 and n = 125 and set ρ = 12. The left panels use an `1 penalty,
while the right panels use MCP with a = 2.5. R is set to be three times the oracle spectral norm.

All the plots in Figure 2.1 have their optimization error quickly converge to below the
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statistical error. These plots also suggest that our algorithm can attain linear convergence

rates. We find that the algorithm consistently converges well over a range of tested scenarios.

Comparing the statistical error of the top two plots, we see that MCP achieves signifi-

cantly lower error for the easier scenario. But in the bottom two plots, where there is more

missing data, it struggles relative to the `1 penalty. This is a common trend through our

simulations, as the performance of estimators using MCP degrades as missingness increases

while the `1-penalized versions are more robust.

Figure 2.2 shows the convergence behavior for several initializations in terms of objective

value. Our algorithm seems to attain a linear convergence rate in terms of the objective

values even with a nonconvex penalty regardless of the initialization. We find that the

algorithm consistently converges well over a range of tested scenarios.
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Figure 2.2: Convergence behavior of the ADMM algorithm for two objectives. Panel a shows the
optimization convergence under the Kronecker sum model with A = AR1(0.6), B = ER, m = 300,
n = 140, τB = 0.3, and λ = 0.2, while Panel b is for the missing data model with A = ER, m = 400,
n = 140, ζ = 0.7, and λ = 0.2. We choose ρ = 12 and the SCAD penalty is used with a = 2.1.

Comparison to gradient descent. Figure 2.3 compares the optimization performance

of our ADMM algorithm to gradient descent. Note that since proximal gradient descent

is difficult to do in this setting, requiring an interior optimization step, we use a heuristic

version similar to that suggested by Agarwal et al. (2012) that does the proximal gradient

step ignoring the side-constraint then projects back to the side-constraint space. Note that
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since ρ in ADMM is roughly equivalent to the inverse step size in gradient descent, we

compare for difference values of ρ. These methods also take roughly the same computational

time per iteration, as they are both dominated by either an eigenvalue decomposition or

matrix inversion.
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Figure 2.3: Comparing the convergence behavior of ADMM to gradient descent. Here we use an
AR1(0.8) model with m = 200, n = 150, ζ = 0.6, and use an `1 penalty with λ = 0.11. For gradient
descent, ρ is the inverse of the step size. Note that since proximal gradient descent is difficult to do
in this problem, this version performs the proximal gradient step without the side-constraint then
projects back to the space.

We can see that for large enough values of ρ, these methods are nearly identical. Although

there is no known theoretical guarantee of convergence, it seems that this heuristic gradient

descent still convergence well for small enough step sizes.

But for smaller values, i.e. larger step sizes, ADMM still performs well and obtains faster

convergence rates while gradient descent is unstable and inconsistent. This combined with

the convergence guarantee of ADMM leads us to recommend this algorithm.

Method comparisons. Figure 2.4 demonstrates the statistical performance along the

full regularization path. Across the panels from left to right, the sampling rate decreases

and therefore the magnitude of the most negative eigenvalue increases.

In terms of Frobenius error, both projected methods and the nonprojected estimator with
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Figure 2.4: The performance of the various estimators for the missing data model in terms of
relative Frobenius error (‖Θ̂−Θ∗‖F /‖Θ∗‖F ) and model selection as measured by FPR + FNR. We
use an AR(0.6) covariance and set m = 1200. Settings are chosen so that the effective sample size
(nζ2) is roughly equivalent. The MCP penalty uses a = 2.5. We set R to be 1.5 times the oracle
value for each method and set ρ = 24. Our convergence criteria is ‖Θk+1 −Θk‖F /‖Θk‖F < 5e−5.

the `1 penalty get slightly worse across panels, but the nodewise regression and the nonpro-

jected MCP estimator react much more negatively to more indefinite input. The nodewise

regression in particular goes from being among the best to among the worst estimators as

the sampling rate decreases.

Comparing the projected and nonprojected curves in Figure 2.4, we see that the optimal

value of λ, as well as the range of optimal values, shrinks for the projected method as the

sampling rate decreases. This pattern is consistently repeated across models and scenarios,

likely because the `∞ projection is shrinking the off-diagonal entries of the input matrix.

We find that the nonprojected graphical Lasso performs slightly better than the projected

version when used with the `1 penalty, likely due to the information lost in this shrinkage.

Figure 2.4 also shows how these methods perform in terms of model selection. We
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can see that the nonconvex penalties perform essentially identically to their `1 penalized

counterparts. In particular, the degradation of the nonprojected MCP estimator in terms of

norm error does not seem to affect its model selection performance. The nodewise regression,

however, still demonstrates this pattern, as its model selection performance degrades across

the panels. For scenarios with more missing data, the nonprojected estimators seem to be

easier to tune, maintaining a wider range of λ values where they perform near-optimally. In

Section A.3 of the supplement we perform similar experiments in a variety of different noise

and model settings.

Sensitivity to R. Figure 2.5 demonstrates the sensitivity of the nonprojected estimators

to the choice of R, the size of the side constraint. We can see that all these methods are

sensitive to the choice of R for small values of λ in terms of norm error. None of the methods

are sensitive in terms of model selection.

Frobenius N
orm

M
C

C

0.0 0.2 0.4 0.6

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

lambda

Method
Nodewise

Non−Proj, l1

R_scale
1

1.5

2

Frobenius N
orm

M
C

C

0.0 0.2 0.4 0.6

0.5

1.0

1.5

2.0

0.00

0.25

0.50

0.75

1.00

lambda

Method
Non−Proj, mcp

Proj, mcp

R_scale
1

1.5

2

Figure 2.5: The performance of missing data estimators over different choices of R. The non-
nodewise estimators set R = R scale×‖A‖2, while each node’s regression in the nodewise estimator
sets R to be R scale times that node’s oracle `1 value. We use an AR(0.6) covariance, set m = 1200,
n = 130, and choose a sampling rate of ζ = 0.7. The MCP penalty is chosen with a = 2.5.

The nonprojected graphical Lasso with MCP is the most sensitive to R and is also

sensitive for larger choices of λ, which is important since it never reaches its oracle minimum

norm errors when R is chosen to be larger than the oracle. The nonprojected graphical Lasso

with `1 and the projected graphical Lasso with MCP both still achieve the same best-case

performance when R is misspecified, though tuning λ becomes more difficult.
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The nodewise regression results are also plotted here. Here R is the `1 side constraint

level in (2.16). For smaller values of λ the nodewise estimator levels off, corresponding to

when the side constraint becomes active over the penalty. Different values of R change when

this occurs and, if R is chosen large enough, do not significantly affect ideal performance.

Note that these use a stronger oracle that knows each column-wise `1 norm, but do show

that this method can be improved with careful tuning.

Tuning parameter selection. Note that in practice tuning parameters must be selected

for all these methods. In particular, we must tune λ and possibly the side-constraint R.

Note that one often has a reasonable prior for the magnitude of the spectral norm of the

true precision matrix, so if that is the case a multiple of that can often be used to choose

R. Also, as noted in Section 2.3.3, when using the `1 penalty the choice of R primarily

affects how difficult tuning λ will be. Though it is important to tune correctly when using

nonconvex penalties, we do not recommend those methods when there is significant missing

data. Therefore we will focus on tuning λ here, though the same methods can be used to

choose R as well.

Two possible methods are to use cross-validation or a modified BIC criterion. Note that

the particular implementation of both of these will depend on the data model that is being

used, as these methods can be applied to any method that generates an indefinite initial

estimate of the covariance, but we will show an example using the simple missing data case.

For the missing data case we can follow Städler and Bühlmann (2012), which uses the

same data model. Recall the notation in Section 2.3.2, where Xij denotes the ith value of

variable j and Uij tracks if that value is observed. Here, we define the observed log-likelihood

of an observation Xi given a precision matrix estimate Θ̂ as

`(Xi, Ui; Σ̂) = log φ(Xi,Ui ; Σ̂Ui,Ui)

where Xi,Ui is the vector of values that are observed for observation i, Σ̂ = Θ̂−1, and φ is the
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multivariate normal density. The BIC criterion, which we minimize, is therefore

BIC(λ) = −2
∑
i

`(Xi, Ui; Σ̂) + log(n)
∑
j≤j′

1{Θ̂jj′}6=0

To cross-validate, we can divide the data into V folds, where the vth fold contains indices

Nv. The cross-validation score, which we maximize, is therefore

CV(λ) =
∑
v

∑
i∈Nv

`(Xi, Ui; Σ̂−v)

where Σ̂−v = Θ̂−1
−v and Θ̂−v is the estimate based on the sample omitting the observations in

Nv.

Figure 2.6 presents an example of parameter tuning on a simulated scenario. We see that

both BIC and CV select slightly higher-than-optimal levels of penalization in terms of model

selection, but that selected model still achieves fairly good model selection.
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Figure 2.6: Example parameter tuning using BIC and CV. We additionally present the FPR+FNR
rate of the estimate. The vertical lines show the optimal λ values for BIC and CV, which here
happen to be identical. We set m = 400 and n = 80, the sampling rate to ζ = 0.8, and let A be
from an AR(0.6) model.

2.4 Conclusion

We study the estimation of sparse precision matrices from noisy and missing data. To

close an existing algorithmic gap, we propose an ADMM algorithm that allows for fast

optimization of the side-constrained graphical Lasso, which is needed to implement the

graphical Lasso with either indefinite input and/or nonconvex penalties. We investigate its

convergence properties and compare its performance with other methods that handle the

indefinite sample covariance matrices that arise with dirty data.

We find that methods with nonconvex penalties are quite sensitive to the indefiniteness of

the input covariance estimate, and are particularly sensitive to the magnitude of its negative

eigenvalues. They may have better existing theoretical guarantees, but in practice we find

that with nontrivial missingness or noise they perform worst than or, at best, recover the

performance of their `1-normalized counterparts. The nonconvex methods can outperform
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the `1-penalized ones when there is a small amount of missingness or noise, but in these

cases we often find the nodewise estimator to perform best.

In difficult settings with significant noise or missingness, the most robust and efficient

method seems to be using the graphical Lasso with nonprojected input and an `1 penalty. As

the application becomes easier – with more observations or less missing data – the nodewise

estimator becomes more competitive, just as it is understood to be with fully observed data.

The projected graphical Lasso estimator with an `1 penalty seems to be slightly worse

than its nonprojected counterpart. Projection does, however, allow for the use of nonconvex

penalties in more difficult settings without the large degradation in performance. This may

be desireable in some scenarios but in practice seems to simply add noise.
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CHAPTER III

Covariance Estimation for Matrix-Variate Data with

Missing Values and Mean Structure

The matrix-variate model, which allows for dependence along both axes of the data

matrix, is an increasingly popular way to handle the complex and dependent data in modern

data analysis. Its ability to model relationships between observations as well as covariates

makes it useful for analyzing data with temporal, geographical, or other network relationships

between them. Thus, applications for matrix-variate models often arise in biology, genetics,

economics, climate science, and many other fields, where it is important to use methods that

can at least account for these types of dependencies.

In this chapter, we propose methods for estimating both the row- and column-wise preci-

sion and covariance matrices in a matrix-variate data setting with missing data. In particu-

lar, we incorporate missing values with varying sample rates by column as well as two-group

mean structure. These are based on the graphical Lasso estimator and assume sparsity in

the inverse covariance (or precision) matrix and therefore also in the undirected graphs that

they encode (in the Gaussian case). We establish the conditions required for consistency and

present the convergence rates of our estimators, which attain the same rates as in the fully

observed setting when the missing rates are fixed, but also allow for decreasing sampling

rates as the data size increases.

In particular, existing graphical Lasso models generally assume matrices with zero means
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for simplicity, even though few practical applications meet this assumption. Rather than only

focusing on mean-zero random matrices, we propose estimators that can jointly estimate a

two-group mean structure with known groups. Hornstein et al. (2019) studied this problem

in the fully observed case, but the we show how to prove similar results with missing values.

We present theoretical results in this case and show how the demeaning process affects our

estimation performance.

The remainder of this chapter is organized as follows. In Section 3.1 we present the

data model we consider, which includes mean structure, matrix-variate dependence, and

missing data. We also develop and present estimators for the sparse precision matrices

along both data axes, including the intermediate covariance estimates and mask estimates

required for fully automated estimation. Section 3.2 presents the theoretical consistency

and convergence results for our methods. The proofs of these results are deferred until

Chapter V. In Section 3.3, we present numerical examples and simulated comparisons testing

the performance of our methods. Section 3.4 concludes.

3.1 Model and methods

We first present a model for matrix-variate data with two-group mean structure and

missing values. We then present a present methodologies for estimating the sparse row-wise

precision matrix both when the mean matrix is known and can be perfectly removed and

when the mean is unknown.

Our (unobserved) full data follows the same basic model as in Hornstein et al. (2019).

Consider a data matrix in Rn×m composed of a mean matrix M and an error term X.

X = M + X (3.1)

Instead of this full matrix, we will observe a version with missing completely-at-random
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entries. For column-wise sampling rates ζ1, . . . , ζm, we then observe

X = U ◦ (M + X) for U ∈ {0, 1}n×m, Uij
iid∼ Bernoulli(ζj), (3.2)

For now we assume the mean matrix has a known two-group structure, though this can

be extended to k groups. This is a setting where the individual group labels are known, such

as a genomics study with experimental and control groups (e.g. presence or non-presence of

a disease, such as in Hornstein et al., 2019) or the voting data we study in this paper with

known party membership. In future work we hope to extend these methods to unlabelled

data, where low-rank or clustering methods can be used to demean. So let n = n1 + n2

and assume that our data are sorted by the group label. Then we have M = Dµ, where

D ∈ Rn×2 is the design matrix

D =

 1 · · · 1 0 · · · 0

︸ ︷︷ ︸
n1

0 · · · 0 ︸ ︷︷ ︸
n2

1 · · · 1


T

and µ = (µ(1), µ(2))T ∈ R2×m is a matrix of means for each variable and group.

By removing the group means, our estimates capture links between observations through

the error term, or how they deviate from their means. This ensures group membership will

not obfuscate these connections, allowing us to discover interesting connections and patterns

not necessarily observable in the mean structure.

We assume that X has mean-zero subgaussian entries and a separable covariance struc-

ture, i.e. Cov(vec(X)) = A0 ⊗ B0, where A0 ∈ Rm×m and B0 ∈ Rn×n are positive-definite

covariance matrices and ⊗ denotes the Kronecker product. If we additionally assume X is

distributed matrix-variate normal, then A−1
0 and B−1

0 encode the conditional independence

relationships between columns and rows, respectively. In the subgaussian case this does not

hold in general, but we can still estimate these precision matrices and obtain sparse partial
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correlation estimates using them.

Due to the structure of our covariance, A0 and B0 are only identifiable up to a constant

factor, as for any constant c, A0 ⊗ B0 = (cA0) ⊗ (B0/c). For this work we will focus on

estimating the correlation matrices ρ(A0) and ρ(B0), as their sparse inverses encode the

same graphical information as in A−1
0 and B−1

0 . We denote the true (normalized) precision

matrices as Θ0 = ρ(A0)−1 and Φ0 = ρ(B0)−1.

Covariance estimation. Our estimator is then formed by first constructing appropriate

estimates of the covariance matrices for each axis of the data matrix. Then, like in the tra-

ditional graphical lasso, these covariance estimates are plugged into penalized optimization

programs to obtain the sparse estimates of the inverse covariance that we desire.

In our case, however, the presence of mean structure and missing data means that we

cannot use the basic Gram matrices that the basic graphical lasso uses. For the mean

structure, we show that even with missing data we can perform group-wise demeaing on

each variable and still obtain convergence. And to account for the missing data we apply

an element-wise adjustment to the Gram matrices that we call a mask matrix. In the

following sections, we first present estimators assuming knowledge of the true masks, as well

as demonstrate how mask estimators can be plugged in.

Let P be the matrix that performs by-group column sums:

P =

~1n1
~1Tn1

0

0 ~1n2
~1Tn2


Then our centered data is

X̃ = U ◦ (X − (PX )� (PU)) (3.3)

Note that we are simply demeaning each group and variable with the observed means (con-

tained in PX � PU), but the notation is complicated by the missing values in our dataset.
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Using this demeaned matrix, we form Gram matrices

Ŝ(A) = X̃ T X̃ Ŝ(B) = X̃ X̃ T (3.4)

Estimators with known masks. We first estimate the column covariance A0. Since

vi ∼ v for i = 1, · · · , n are independent, we define the mask matrix

M := Evi ⊗ vi =



ζ1 ζ1ζ2 ζ1ζ3 · · · ζ1ζm

ζ2ζ1 ζ2 ζ2ζ3 · · · ζ2ζm

ζ3ζ1 ζ3ζ2 ζ3 · · · ζ3ζm
...

...
...

. . .
...

ζmζ1 ζmζ2 ζmζ3 · · · ζm


(3.5)

Assuming knowledge of ζ, we can create an estimator for A0,

Ã = X̃ T X̃ � (tr(B0)M), (3.6)

and a corresponding estimator for the correlation ρij(A),

Γ̃ij(A) =
Ãij√
ÃiiÃjj

=
Ŝ(A)ij√

Ŝ(A)iiŜ(A)jj

1√
ζiζj

. (3.7)

For estimating the row covariance B0, consider the mask matrix M∈ Rn×n, where

Mk` =


∑m

j=1 ajjζj if k = `∑m
j=1 ajjζ

2
j if k 6= `

. (3.8)

We then get estimators

B̃ = X̃ X̃ T �M (3.9)
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and

Γ̃ij(B) =
B̃ij√
B̃iiB̃jj

=
Ŝ(B)ij√

Ŝ(B)iiŜ(B)jj

∑m
k=1 akkζk∑m
k=1 akkζ

2
k

(3.10)

Versions of these oracles estimators designed for the mean-zero case were first proposed

by Zhou (2019), which we adapt to our current model with group means and including

demeaning.

Given penalties λB, λA and constants RA > ‖ρ(A0)−1‖2, RB > ‖ρ(B0)−1‖2, our inverse

correlation estimates are the modified graphical Lasso estimators studied in Loh and Wain-

wright (2017) and Fan et al. (2019) using these inputs:

Ãρ = arg min
Aρ�0,‖A−1

ρ ‖2≤RA
tr(Γ̃(A)A−1

ρ )− log |Aρ|+ λ|A−1
ρ |1,off

B̃ρ = arg min
Bρ�0,‖B−1

ρ ‖2≤RB
tr(Γ̃(B)B−1

ρ )− log |Bρ|+ λ|B−1
ρ |1,off.

(3.11)

Mask estimation. To obtain fully automated estimators of these precision matrices, we

can finally plug-in mask estimates forM andM into the above. Here we present flexible mask

estimates that converge fast enough to have a minimal impact on the overall convergence

rate.

To estimate M , we use

M̂ij =


ζ̂i i = j

ζ̂iζ̂j i 6= j

(3.12)

where ζ̂j is the average number of observed entries in column j.

For estimating M, we propose the estimator

M̂ij =


tr(X̃ X̃ T ) i = j

n
n−1

tr(X̃ T X̃ ◦ M̂)− 1
n−1

tr(X̃ T X̃ ) i 6= j

(3.13)

where we adopt the estimator originally designed for the corresponding zero-mean case
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(Zhou, 2020), as discussed in Section 3.2. When using the demeaned data, this mask esti-

mator still proves effective enough to obtain convergence guarantees for the final estimator.

Plugging these estimates into the above results in correlation estimators

Γ̂ij(A0) =
Âij√
ÂiiÂjj

=
Ŝ(A)ij√

Ŝ(A)iiŜ(A)jj

1√
ζ̂iζ̂j

(3.14)

Γ̂ij(B0) =
B̂ij√
B̂iiB̂jj

=
Ŝ(B)ij√

Ŝ(B)iiŜ(B)jj

tr(X̃ X̃ T )

M̂ij

(3.15)

Which we then plug into the minimization programs as (3.11) to get estimators Âρ, B̂ρ.

3.1.1 Flexible mean estimation

We extend our methodology to allow for the flexible estimation of low-rank mean matrices

M following the low-rank matrix factorization literature. Here, we will assume that for some

r < n,m, we have matrices E ∈ Rn×r, F ∈ Rm×r such that M = EF T . Note that the

known two-group case above also falls under this model, where E is known and must have

a two-group structure.

To estimate M we optimize

Ê, F̂ = arg min
E,F

‖X − U ◦ (EF T )‖2
F (3.16)

to get M̂ = ÊF̂ T . We solve this optimization program with an alternating least squares

estimator as first proposed by (Wiberg , 1976) and detailed in Buchanan and Fitzgibbon

(2005). The estimators then proceed along the same lines as above plugging in the new

demeaned estimator

X̃lr = U ◦ (X − ÊF̂ T ) (3.17)

We do not provide theoretical results for this flexible method, as in particular theoretical

results for low-rank matrix factorization with dependent and missing data are not available
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to the best of our knowledge. We do, however, show through testing and simulation that

this method performs very similarly to the two-group estimator with known groups presented

above, and in practice has similar convergence behavior.

3.1.2 Related work

Our sparse precision matrix estimators extend the matrix-variate methods in Zhou (2014),

which also uses separate estimators for A0 and B0 based on the graphical Lasso estimator

in the fully observed setting. For proving the similar concentration equalities needed, we

often rely on the sparse Hanson-Wright inequalities developed in Zhou (2019) for use with

our sparsified data.

Missing data is often handled in practice through imputation. However, in a matrix-

variate setting with dependence we do not have independent observations, so existing meth-

ods for imputation are generally not appropriate. These methods include k-nearest neigh-

bors, random forest-based methods, or multiple imputation by chained equations (Van Bu-

uren and Oudshoorn, 1999; Troyanskaya et al., 2001; Stekhoven and Bühlmann, 2011).

Jamshidian and Bentler (1999), Städler and Bühlmann (2012), and Städler et al. (2014)

develop EM algorithm-based estimators, but these all depend on independent observations

and do not extend to the matrix-variate case.

Glanz and Carvalho (2018) develop a method for EM-style estimation of Kronecker prod-

uct covariances with missing data, but they rely on many samples of the matrix-variate data

matrix rather than a single instance. Allen and Tibshirani (2010) presents the only method

we are aware of for estimation and imputation with a single instance of matrix-variate data,

but the EM-style estimation method proposed is not computationally feasible, especially in

the high-dimensional setting. They instead focus on approximate algorithms designed for

imputation rather than estimation of the covariances.

Instead of relying on imputation of EM-style methods, our work instead corrects the

input covariance estimators to account for the multiplicative errors. This approach was
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first applied to correct covariance estimates in regression problems by Hwang (1986). Loh

and Wainwright (2013, 2015) suggested the use of the same methods for graphical model

estimation with missing data in the independent observations setting, but we develop new

estimators for the matrix-variate case. We also modify the initial correlation estimates that

are plugged into the graphical Lasso procedure to account for the missing values, though our

data setting is significantly complicated by the two-way dependence.

We additionally show that these estimators are consistent when there are unknown group

means, similar to the results shown by Hornstein et al. (2019) in the fully-observed case.

The random missing values here significantly complicate the analysis, as we have to carefully

account for how their effects propogate across the row and column dependencies to affect

both the mean and subsequent covariance estimates.

The graphical Lasso estimator and its variants are well-studied methods for estimating

sparse precision matrices (Banerjee et al., 2008; Yuan and Lin, 2007; Friedman et al., 2008;

Rothman et al., 2008; Ravikumar et al., 2011; Zhou et al., 2010, 2011, and others). A key

difference, however, is that our input correlation estimates are not positive definite, as they

are in Zhou (2014) and in the standard graphical Lasso literature, since the mask shrinks

the diagonal entries more than it does the off-diagonals.

This results in a potential unbounded objective problem, which we solve by imposing

an additional spectral norm constraint as in Loh and Wainwright (2015, 2017). For more

details, see Chapter II, which includes Fan et al. (2019) and studies this problem in detail

and develops an alternating direction method of multipliers (ADMM) algorithm to optimize

objectives of the form in (3.11) with non-positive definite input matrices, which we use to

implement our estimator.

3.2 Theoretical results

We make the standard assumption that our covariance matrices have bounded eigenval-

ues.
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Assumption 1. There exist some constants 0 < φ, φ <∞ such that φ < φmin(A0), φmin(B0)

and φmax(A0), φmax(B0) < φ.

We also need to assume that the group sizes grow at the same rate and lower bound how

small the sampling rate can be.

Assumption 2. Define ζmin = minj=1,...,m ζj. Assume n1, n2 ≈ n and ζmin &
√

log(m∨n)
n

.

To obtain convergence, we bound the number of nonzero off-diagonal entries in our pre-

cision matrices. Note that, when account for differeing sampling rates, using the estimated

mask requires a slightly stricter assumption.

Assumption 3. For convergence in the known-mask case, we need to assume

|A−1
0 |0,off = o

(
nζ5

min

log(m ∨ n)
∧ n

2ζ2
min

‖B‖2
1

)
|B−1

0 |0,off = o

(
mζ6

min

log(m ∨ n)
∧ n

2ζ4
min

‖B‖2
1

∧ n2ζ6
min

)

When using the estimated masks, we require the stronger assumption of

|B−1
0 |0,off = o

(
mζ8

min

log(m ∨ n)
∧ n

2ζ6
min

‖B‖2
1

∧ n2ζ8
min

)

We assume our rows are sorted by group, so we denote

U =

U1

U2

 , X =

X1

X2

 , where U1,X1 ∈ Rn1×m and U2,X2 ∈ Rn2×m

We similarly decompose the row-wise covariance B into

B =

 B1 B12

B12T B2


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Let C be some absolute constant, and define

α = CK2 logm‖A0‖2∑m
k=1 akkζ

2
k

+ CK2 log1/2(m ∨ n)√
m

1

‖ζ‖2/
√
m

√
a∞‖A0‖2

amin

(3.18)

β = CK2 log n‖B0‖2

ζmin tr(B0)
+ CK2 log1/2(m ∨ n)√

n

1

ζmin

√
n‖B0‖F
tr(B0)

(3.19)

These are the rates of convergence when the mean structure is known and therefore can be

perfectly removed, which we show in Theorem 5.3.3. Note that under Assumption 1 the

terms
√
a∞‖A0‖2/amin and

√
n‖B0‖F/ tr(B0) can both be upper bounded by constants.

We first present results assuming the masks are known and covariance estimators are

formed as in (3.7) and (3.10).

Theorem 3.2.1. Consider data generating random matrices as in (3.1) and (3.2) and sup-

pose Assumptions 1 and 2 hold. Let m ∨ n ≥ 3, and for some absolute constants C1, C2

define

αmean =
C1

ζ2
minnmin

(
‖B‖1 +

1

ζmin

tr(B)

nmin

)
+ C1K

2 logm

ζ3
min tr(A)

‖A‖2

+ C1K
2 log1/2(m ∨ n)

‖A‖F
ζ3

min tr(A)
+ α

(3.20)

βmean = C2
1

ζmin tr(B0)

(
tr(B1)

n1

+
tr(B2)

n2

)
+ C2

1

ζmin tr(B0)

(
1

n1

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+
1

n2

∣∣∣∣∣∑
k 6=`

B2
k`

∣∣∣∣∣
)

+ C2K
2 log n

ζ2
min

‖B1‖2 + ‖B2‖2

tr(B0)
+ C2K

2 log1/2(m ∨ n)

ζ
5/2
min

‖B1‖F + ‖B2‖F
tr(B0)

+ β

(3.21)

Let B̃ρ, Ãρ be the unique minimizers defined by (3.11) with the input correlation matrices

Γ̃(B0), Γ̃(A0). Penalties are chosen as

λB =
1

ε
(3αmean) λA =

1

ε
(3βmean) (3.22)

for some 0 < ε, ε < 1, and RA > ‖ρ(A0)−1‖2, RB > ‖ρ(B0)−1‖2.j Let αmean, βmean < 1/3 and
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let C3, C4 be some absolute constants.

Then, with probability at least 1− 25/(m ∨ n)2, we get that

‖B̃ρ − ρ(B0)‖2 ≤ ‖B̃ρ − ρ(B0)‖F ≤ C3κ(ρ(B0))2λB

√
|B−1

0 |0,off ∨ 1

‖B̃−1
ρ − ρ(B0)−1‖2 ≤ ‖B̃−1

ρ − ρ(B0)−1‖F ≤
C3λB

√
|B−1

0 |0,off ∨ 1

2ϕ2
min(ρ(B0))

(3.23)

Similarly, with probability at least 1− 26/(m ∨ n)2,

‖Ãρ − ρ(A0)‖2 ≤ ‖Ãρ − ρ(A0)‖F ≤ C4κ(ρ(A0))2λA

√
|A−1

0 |0,off ∨ 1

‖Ã−1
ρ − ρ(A0)−1‖2 ≤ ‖Ã−1

ρ − ρ(A0)−1‖F ≤
C4λA

√
|A−1

0 |0,off ∨ 1

2ϕ2
min(ρ(A0))

(3.24)

These all converge under Assumption 3.

In addition, we can prove similar results for our automated estimators (3.14) and (3.15)

using mask estimates M̂ and M̂. Theorem 3.2.2 shows these results, which have similar

rates but pay some additional costs to account for the mask estimation.

Theorem 3.2.2. Under the same conditions as in Theorem 3.2.1, let Âρ, B̂ρ be the results

of plugging Γ̂(A), Γ̂(B) as defined in (3.14) and (3.15) into the optimization program (3.11)

with penalties

λ′B =
1

ε
9
αmean

ζmin

λ′A =
1

ε
(12β + 3βmean) (3.25)

Then we get convergence of B̂ρ and Âρ in the same sense as in Theorem 3.2.1, where the

bounds on B̃ρ, B̃
−1
ρ hold with probability at least 1− 25/(m ∨ n)2 and the bounds on Ãρ, Ã

−1
ρ

hold with probability at least 1−26/(m∨n)2, where we require Assumption 3 using the stricter

assumption on |B−1
0 |0,off.

Remark. To prove Theorem 3.2.1, we first prove similar results for when the group means
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are known. In this case, we have the data

X̄ = U ◦ X for U ∈ {0, 1}n×m, Uij
iid∼ Bernoulli(ζj), (3.26)

and define Γ̄A, Γ̄B to be analogues of the estimators defined in (3.14) and (3.15), replacing

X̃ with X̄ . Section 5.3 proves the convergence of the zero- or known-mean covariance and

correlation estimates at the rates as defined in (3.18) and (3.19) for B and A, respectively.

The known-mask results were first presented in Zhou (2019), but we include the full proofs

here for completeness and completed the full rates using the mask estimators.

The proof of Theorem 3.2.1 then bounds how far the mean estimation causes our esti-

mates to deviate from this zero-mean baseline. Section 5.4.1 does this for when the masks

are known, while Section 5.4.3 bounds the difference in the mask estimates used to prove

Proposition 3.2.2.

Our analysis of the demeaned estimator decomposes the overall error into the error of the

zero-mean estimator and the additional error from demeaning. Similar to Hornstein et al.

(2019), these error terms manifest as a bias contribution, e.g. the first term in (3.20), and

variance contributions, the second and third terms. However, the presence of random missing

values makes controlling the error terms much more difficult, and we pay some additional

factors of 1/ζmin relative to the zero-mean rate. Simulations suggest that these factors may

not be necessary with a tighter theoretical analysis.

Once we have `∞ rates on our correlation estimates, we apply Theorem 5.2.1, which then

establishes the general convergence result for the graphical Lasso given convergence of the

input correlation estimates. This is a standard result similar to those in Rothman et al.

(2008) and Zhou et al. (2010). For completeness, we include the proof in Section 5.2, which

is only slightly modified from the above work to allow for our side constraint.
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3.3 Simulations

We use simulated data to demonstrate the performance of our methods under a variety

of data scenarios. We generate matrix-variate normal data using three covariance models:

• AR(ρ): an autoregressive model with a single lag. This model sets A = (ρ|i−j|)ij.

• SB(ρ, r): a star-block model. This covariance matrix is block-diagonal with blocks of

size r, where blocks have a star-structure. In each block, a hub node is chosen, and

the covariance is set to ρ for each nodes connection to the hub and ρ2 otherwise.

• ER: an Erdős-Rényi random graph model, as described in Zhou (2014). We set the

precision matrix Φ = 0.25In×n. Then for each of n randomly selected edges (ik, jk),

we choose a weight w uniformly from [0.2, 0.4] and update Φij = Φji ← Φij − w,

Φii ← Φii + w, and Φjj ← Φjj + w.

In these simulations we consider three estimation scenarios:

• The demeaned estimator is the baseline two-group estimator with missing data that

demeans each group using known group labels constructs out estimates with this de-

meaned matrix.

• The low-rank estimator uses the low-rank mean estimation methodology in Section 3.1.1

to demean a two-group data matrix without knowledge of the group labels.

• The no-mean estimator assumes oracle knowledge of the mean matrix, so the data

matrix can be perfectly demeaned and then treated as a zero-mean matrix. So here no

mean estimation is needed and the perfectly demeaned data matrix is used to construct

estimates.

All of our estimators use the automated mask estimators, and therefore correspond to the

estimators in (3.14) and (3.15).
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We evaluate convergence using both the relative Frobenius and spectral norms, and eval-

uate model selection using the sum of the false positive and false negative rates (FPR+FNR)

and the Matthews correlation coefficient (MCC), which can be interpreted as a correlation

coefficient between the predicted and observed edges.1

Figures 3.1 and 3.2 show how the the performance of our estimators changes over the

full regularization paths as we vary λ under three different topologies. The These show that

our estimator can approximately recover the graphical structure in the data as well as attain

reasonably low relative errors in terms of both relative Frobenius and spectral norms. We

see that this performance improves for the relevant ranges of regularization as we increase

the sampling rate, and therefore increase the effective sample size.

We can also see the effect that needing to demean the data matrix has on estimator

performance. There is a small but consistent gap in performance between the no-mean and

demeaned estimators when estimating the row precision matrix ρ(B0)−1, but when estimating

the colun precision matrix ρ(B0)−1 the two estimators performn nearly identically, so no cost

is paid from having to also estimate the means.

Figure 3.3 shows how demeaning affects the input correlation estimates Γ̂ij(A0) and

Γ̂ij(B0). Recall that our convergence rate depends on the `∞ error bounds of these terms.

We can see how the demeaning causes very little difference in the distribution of errors

for estimating the A-side correlation, which is consistent with the lack of performance gap

exhibited in Figure 3.2. On the B-side, for small sample sizes the demeaned and low-rank

demeaned estimates exhibit both bias and additional variation compared to the no-mean

estimator, but these quickly decrease as we increase the sample size and the mean is estimated

more accurately.

Figure 3.4 shows how these three estimators perform as we vary the sample size, holding

the ratio m = 4n constant. On the B-side the gap between the demeaned and oracle

estimators decreases as we increase the sample size, matching the results of Theorem 3.2.2.

1MCC is defined as MCC = TP× TN/
√

(TP + FP)(TP + FN)(TN + FP)(TN + TN).
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Figure 3.1: Performance of our penalized precision matrix estimators for ρ(B0)−1 for homogenous
sampling rates over the regularization path. We set m = 400 and n = 160. The top row shows
relative Frobenius and spectral norm errors, while the middle and bottom rows show selection
performance in terms of FPR+FNR and MCC. We let ζ1 = · · · = ζm = ζ, where ζ = 0.7, 0.9.
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Figure 3.2: Performance of our penalized precision matrix estimators for ρ(A0)−1 for homogenous
sampling rates over the regularization path. We set m = 400 and n = 160. The top row shows
relative Frobenius and operator norm errors, while the bottom row shows selection performance in
terms of FPR+FNR and MCC. We let ζ1 = · · · = ζm = ζ, where ζ = 0.7, 0.9.
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Figure 3.3: Comparison of our initial correlation estimator Γ̂ on the demeaned data with the no-
mean estimator using mean zero data. We set m = 400. For A, we present the errors for estimating
the “spoke” connections in each star-block that connect nodes to the center node. For B we present
the density of estimated errors for estimating ρi,i+1(A0), or the 1-off diagonal terms.
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On the A-side these estimators track very closely in performance for the full range. The

no-demean estimator, which applies the zero-mean methodology to a matrix with two-group

means, shows the importance of correctly accounting for the mean in these scenarios. This

estimator that ignores the mean never converges.
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Figure 3.4: Performance of our precision matrix estimators in the presence of two-group mean
structure. Here we set m = 4n and fix ζ = 0.7. We choose groups means to have a difference of
|µ(1) − µ(2)| = 1. Each point shows the optimal λ over a range of values. The left panel shows
performance in terms of relative Frobenius and operator norm error, while the right shows selection
performance.

Figure 3.5 shows the behavior as we vary the sampling rate. As expected our estimators
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perform worse as the sampling rate, and therefore effective sample size, decreases. The

demeaned and no-mean estimators, however, react almost identically as we vary the sampling

rate. This suggests that the additional factors of 1/ζmin that we pay in our theoretical rate

when demaning are likely not binding in practice. In some scenarios it may even be possible

to show tighter rates with respect to ζ.
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Figure 3.5: Performance of our precision matrix estimators in the presence of two-group mean
structure. Here we set m = n = 400 and vary the sampling rate ζ. We choose groups means to
have a difference of |µ(1) − µ(2)| = 1. Each point shows the optimal λ over a range of values. The
left panels show performance in terms of relative Frobenius and operator norm error, while the
right show selection performance.
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Figure 3.6 explores how our estimators react to heterogenous sampling rates. In this

experiment we only vary the sampling rate of 5% of columns. On the B-side we see that this

has very little impact on the estimation performance. This matches our theoretical results,

as the B-side convergence rate in (3.18) depends on an average sampling rate ‖ζ‖, rather

than the minimum. Although ζmin terms are introduced in (3.20), as discussed above in

practice these are likely on non-dominant terms.

Considering the A-side convergence in (3.19), it is then no surprise that the A-side esti-

mation is sensitive to varying a small number of sampling rates, since it is more dependent

on ζmin. So varying the sampling rate of a small number of columns makes a significant

impact on the overall estimation.

Figure 3.7 compares our method to using the standard graphical Lasso with naive mean

imputation. The left panel holds the size of the data matrix constant while we vary the

sampling rate. As expected, we see that the methods are identical when there are no missing

values, but that a significant gap in the relative norm performance quickly appears as we

introduce missing values.

The right panel demonstrates the convergence behavior of the two methods as we hold

the sampling rate constant and increase both n and m, fixing m = 4n. We see that our

proposed method quickly converges to low relative norm errors, while the imputed version

converges at a much slower rate. Theoretically, we do not expect the version with mean

imputation to be able to achieve convergence to zero, since its input covariance estimates

will always be biased by the lack of adjustment.
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Figure 3.6: Performance of our penalized precision matrix estimators for heteogenous sampling
rates. We set m = 400 and n = 160. For 95% of columns we set ζj = 0.9 and for the remaining
5% we set ζj = 0.3, 0.5, 0.7, 0.9. The left column show relative Frobenius and operator norm errors,
while the right column shows selection performance in terms of FPR+FNR and MCC. All panels
in this figure display results for the demeaned estimator.
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Figure 3.7: Comparison of our proposed estimator for ρ(B0)−1 to using the standard graphical
Lasso with naive mean imputation. In the left panel, we fix n and m and vary the sampling rate.
In the right panel we fix the sampling rate and vary n and m. The minimum relative Frobenius
error achieved over a range of penalization values λ is plotted at each point.
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3.4 Conclusion

We have developed a method for estimating the sparse row precision matrix of a matrix-

variate data matrix when there is missing data with varying missing rates by column. We

have shown that this method is effective through both theoretical and empirical investigation,

where our theoretical results rely on recently developed concentration inequalities under

masks. We also present a statistical methodology for performing this estimation in the

presence of two-group mean structure and show the presence of mean structure affects the

convergence rates.

We also note that there are many applications with data that may exhibit these types of

observation-observation dependencies. These methods show promise for applications such as

flexibly correcting for dependent experimental design, estimating the connectivity structure

across both space and time in medical imagining data, or estimating observation-observation

networks in data collected from social or physical networks. In future work we hope to make

this method more flexible, especially in allowing for more complex missing data structures,

to enable more of these types of analyses.
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CHAPTER IV

U.S. Senate Data Analysis

We explore a dataset of U.S. Senate voting records and apply the proposed methodology.1

We will focus on two recent Congresses, the 114th (2015-2016) and 115th (2017-2018). These

took place during the last two years of President Obama’s second term and the first two years

of President Trump’s, and marked a significant shift in the political climate. We will also

compare these results to those from the 106th Congress (1999-2000), during the final two

years of President Clinton’s second term.

In this data, we believe that there should be natural correlations between both senators

and bills. Senators will naturally be correlated with other like-minded senators, not just

due to party membership but also because of factors like the states and geographical areas

they represent, basic ideological and philosophical beliefs, and political considerations like

forming voting blocs. We also think that bills or votes may be correlated. For instance,

multiple bills on similar issues may induce similar voting patterns, or there may be multiple

votes with similar purposes, like rejecting poison-pill amendments to the same bill.

All three of these Congresses exhibit Republican majorities in the Senate. The 106th

and 114th Congresses are in particular very similar, both in the last years of Democratic

presidents and with similar Republican majorities (54 to 46 or 55 to 45). The 115th Congress

has a smaller Republican majority, where they have 50-52 of the votes over the course of the

1This data is part of the public record and open-source code to download and process the data can be
found at https://github.com/unitedstates/congress.

54

https://github.com/ unitedstates/congress


time period.

We remove senators who did not serve full terms as well as unanimous or unanimous-

by-party votes, leaving us with datasets of 96-100 senators and 414-549 votes per Congress.

Missing values in the dataset come from “Not Voting” or “Present” votes, consisting of

roughly 2-3% of all votes. Individual bills have vote rates ranging from 70% to 100%, with

most falling between 90% and 100%. Previous analyses of this data have generally imputed

missing votes, often with “Nay” votes (Banerjee et al., 2008; Guo et al., 2015a). This likely

does not significantly bias results in this dataset given the small missing rates, but other roll

call datasets of interest (such as the European Parliament data studied in Han, 2007) have

significantly higher missing rates and imputation may not be appropriate.

4.1 Related work

Note that the voting data here is binary, while most of the methodology we have developed

in Chapter III is designed for graph estimation of continuous, and especially multivariate

normal data. While we do not present theoretical results for use with binary data in this work,

we do hope to partially bridge this gap with some proposed methodology and simulation

results.

There have been several proposed methods for estimating graphical models with dis-

crete data in the independent case. Many of the most popular models are based on Markov

Random Fields and in particular the Ising model. Ravikumar et al. (2010) develop a neigh-

borhood selection-based estimator for this model based on running individual logistic regres-

sions, similar in spirit to the method in Meinshausen and Bühlmann (2006). Using logistic

regression-based estimators, Guo et al. (2015a) develop an Ising model that separates obser-

vations into categories and allows for differences in the graphs between categories. They use

this model to explore Senate roll call data, assuming senator networks are per-category but

that otherwise votes are independent. Similarly Kolar et al. (2010) estimate a time-varying

model on Senate voting records assuming graph parameters change smoothly over time using
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total variation-penalized logistic regressions.

Banerjee et al. (2008); Kolar and Xing (2008) develop global (rather than neighborhood)

estimators for Ising models based on approximate likelihood upper bounds. Banerjee et al.

(2008) in particular apply their method to Senate voting records data, assuming bills are

independent.

Note that all of the voting recrods applications here use naive imputation techniques,

generally replacing missing votes with either “No” votes or party majorities, and, although

some allow the senator-senator graph to change for different bills, all assume independence

on the bill-side of the data.

A separate line of models involve latent continuous variables, usually multivariate nor-

mal, that are discretized to form observed binary or ordinal data. When the latent variables

are multivariate normal and directly discretized, this is sometimes known as the multivariate

probit model (Ashford and Sowden, 1970). Chib and Greenberg (1998); Guo et al. (2015b)

develop EM-based estimators for this model, while Suggala et al. (2017); Fan et al. (2017);

Feng and Ning (2019) instead propose direct estimators of the latent correlation matrix.

These all allow for estimation of the latent precision matrix and graphical model from dis-

cretized but otherwise fully observed data, but we leave adaptation of these methods to our

setting with dependent and missing data to future work.

4.2 Data model

To obtain binary data with two-way dependence, we consider an Ising model of the

following form.

P (X;µ,A,B) = exp
{ n∑

i=1

m∑
j=1

(11≤i≤n1µ
1
j + 1n1<i≤nµ

2
j)Xij

−
n∑
i=1

n∑
k=i

m∑
j=1

m∑
`=j

I(i,k) 6=(j,`)B
−1
ik A

−1
j` XijXk` − θ(µ,A,B)

} (4.1)
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where θ(µ,A,B) is the normalizing constant. This essentially means the vectorized data

vec(X) is a single draw from a standard Ising model with interaction parameters defined

by the off-diagonal elements of (−A−1 ⊗ B−1). As usual, we then observe X = U ◦ X for

Uij
i.i.d∼ Bernoulli(ρj).

Note that the fully observed data here reduces to the standard independent Ising model in

Banerjee et al. (2008) when B = I and µ1
j = µ2

j . In this i.i.d. case, they develop a Gaussian

approximation to the Ising log-likelihood based on replacing θ() with an upper bound. This

is estimated using a graphical Lasso-type estimator based on the standard sample covariance

Sij =
1

n

n∑
k=1

(Xki − X̄i)(Xkj − X̄j).

In particular, Banerjee et al. (2008) use S + (1/3)I in their estimator due to the nature of

their upper bound.

Viallon et al. (2014) shows that this approximation is competitive with or outperforms

other approximations and exact methods, including the logistic regression-based methods of

Ravikumar et al. (2010). In particular, they use a modification that replaces S+(1/3)I with

the sample correlation matrix and show that this version of the estimator is competitive at

recovering the structure of the Ising model while being significantly computationally cheaper

than the alternatives.

We therefore adopt this methodology to our more complex case, with dependence from

B, µ exhibiting two-group mean structure, and missing data, by replacing the simple sample

correlation with the correlation estimators we develop in Chapter III:

Γ̂ij(A0) =
Âij√
ÂiiÂjj

=
Ŝ(A)ij√

Ŝ(A)iiŜ(A)jj

1√
ζ̂iζ̂j

(3.14)

Γ̂ij(B0) =
B̂ij√
B̂iiB̂jj

=
Ŝ(B)ij√

Ŝ(B)iiŜ(B)jj

tr(X̃ X̃ T )

M̂ij

(3.15)

We show in that chapter that these are consistent estimators for the column- and row-wise
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correlations, respectively. Following Viallon et al. (2014), we then use these in the graphical

Lasso objective.

Â−1
ρ = arg min

A−1
ρ �0,‖A−1

ρ ‖2≤RA
tr(Γ̂(A)A−1

ρ )− log |Aρ|+ λ|A−1
ρ |1,off

B̂−1
ρ = arg min

B−1
ρ �0,‖B−1

ρ ‖2≤RB
tr(Γ̂(B)B−1

ρ )− log |Bρ|+ λ|B−1
ρ |1,off.

(4.2)

Here we simple aim to provide a basic methodology for use with this data, we leave refinement

and a theoretical understanding of these estimators and the Kronecker-product Ising model

presented here to future work.

Figure 4.1 shows how well our estimators recover the Ising structure defined in A−1 and

B−1 for a dataset without two-group mean structure. Due to the challenging nature of

simulating data from the Kronecker Ising model described above, we limit the size of our

simulated data for these exercises. We can see that our model recovery on the smaller B-side

is quite good, while the recovery on the larger A side is more challenging here. The A-side

estimator manages to capture the block structure of the graph, but there is not enough data

to accurately capture individual edges.
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Figure 4.1: Estimator performance on simulated Ising data. We set n = 60, m = 240, and the
sampling rate ζ = 0.95. A = SB(0.5, 10) model and B = AR(0.7).
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In Figure 4.2 we test the convergence behavior in terms of model selection as we fix each

dimension and allow the other dimension to increase. In these smaller examples, we see

that we are able to recover the graph defined by the Ising parameters quite well along either

dimension once we have sufficient data.
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Figure 4.2: Estimator performance on simulated Ising data. We set the sampling rate to ζ = 0.95
and let A = SB(0.5, 10) model and B = AR(0.5) modified to be a full loop graph. Each point is
optimized over a range of penalties and represents the mean of 5 replications.

We now move on to simulations with two-group mean structure. We first validate that,

even if group labels are unknown, clustering algorithms can still accurately recover the group

structure. We consider two spectral clustering algorithms, the “Classify” algorithm from

Blum et al. (2007), which is specialized for separating two populations, and the clustering

algorithm from Ng et al. (2002) using the simple matching coefficient (SMC) as an affinity

measure, which we denote as “Spectral”. Figure 4.3 shows the components and classifications

from each algorithm, and both are able to perfectly recover the group mean structure.

Figure 4.4 shows example graph estimates from the two-group and globally demeaned

estimators on Ising data that is simulated with two-group mean structure. The importance of

two-group demeaning is evident, as global centering makes it impossible to estimate negative

within-group connections due to the mean effect swamping them out.
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Figure 4.3: Spectral clustering components for simulated Ising data with two-group mean structure.
We set n = 60, m = 240, and the sampling rate ζ = 0.95. A = SB(0.5, 10) model and B = AR(0.7).
µ1, µ2 are set so each column has group means of approximately 0.2 and 0.8.

4.2.1 Demeaning

Before we apply our graphical Lasso estimators, the two-party structure of our data

suggests that the two-group methods developed in Chapter III will be applicable in this

setting. Given this data, the natural mean structure to assume is separate means for each

bill and party. Figure 4.5 shows the differences between the raw Democrat and Republican

means by bill. The significant amount of weight away from the center for these differences

in means supports the use of the two parties as group labels.

Figure 4.6 shows the pairwise agreement percentages for senators in the 115th Congress.

The bimodal nature of this distribution is also consistent with the presence of two distinct

groups, likely resulting from within-group and between-group pairs of senators.

To validate that the two parties (including independents as Democrats) are indeed rea-

sonable labels to use for two-group demeaning, we compare several alternative methods for

estimating the mean matrix. None of these methods are specialized for estimating the mean

matrix in the presence of dependent errors X, as we expect to have in our model, but in the

independent setting these are all standard methods for estimating mean matrices M with

two-group structure.
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Figure 4.4: Performance of the B-side precision matrix estimator for simulated Ising data with two-
group mean structure. We set n = 60, m = 240, and the sampling rate ζ = 0.95. A = SB(0.5, 10)
model and B = AR(−0.7). µ1, µ2 are set so each column has group means of approximately 20%
and 80%. The penalty is set at 0.1 and 0.34 for the left and right panels, respectively.

We estimate clusters using the “Classify” and “Spectral” algorithms as described in

Section 4.2. Once the clusters are estimated using these methods, we use those to estimate

two-group means. We also implement and test the low-rank mean estimator proposed in

Section 3.1.1 for rank-2 means, denoted as “Low-rank”.

Table 4.1 compares the mean estimates of these methods to the mean estimate using

the original party labels. The Classify method perfectly recovers the party labels for all the

Congresses, while the Spectral method does for two of the three. As expected, the Low-

rank method deviates somewhat farther, since it does not make the same explicit two-group

assumption on the mean, but still estimates a similar overall mean matrix.

Table 4.1: The difference in mean estimation of our alternative methods compared to using the
true party labels. We present the relative Frobenius differnce ‖M̂−M∗‖F /‖M∗‖F , where M∗ is the
estimated two-group mean matrix using the true party labels.

Method 106th 114th 115th

Classify 0.00 0.00 0.00
Spectral 0.00 0.00 0.09

Low-rank 0.10 0.13 0.15

Figure 4.7 displays the eigenvalue plots from the Spectral method, confirming that using
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Figure 4.5: Histogram of raw group mean difference by bill, plotted as Dem% - Rep%.

a two-group mean structure is appropriate.

These results show that using the two-group mean structure corresponding to the two-

party structure and labels available in the data is a reasonable method of handling the mean

M, and therefore that the demeaning strategies used to form our precision matrix estimators

in Chapter III are appropriate to apply here.
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Figure 4.7: Eigenvalue plots of the spectral clustering algorithm “Spectral”.

4.3 Senator-side analysis

Our demeaned estimator first removes the effect of these by-party means and uses the

demeaned matrix to estimate the precision matrix. By doing so, we attempt to isolate how

senators are connected in terms of how they deviate from their respective party means,

rather than the overall mean vote. So two senators being positively linked might mean they

tend to break with their respective parties at the same time, and in the same direction. If

this two-group demeaning is not performed, cross-party connections are much more diffi-

cult to discover due to the dominating effect of party means. Figure 4.8 demonstrates this
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phenomenon for the senator-side, comparing the results of our demeaned precision matrix

estimator on the left to the non-demeaned estimator on the right. We see how the right panel

is dominated by the mean structure, with separated groups and dense positive connectivity

within each group, while the left panel has a wide variety of more subtle relationships. After

removing the mean component as discussed above, we are now able to examine the relation-

ships contained in the covariance of the error term without the mean effect’s contamination.

Figure 4.8: Estimated links between senators for the 106th Congress. The left panel presents
our two-group demeaned estimator, while the right panel presents the estimator without demean-
ing. Solid lines denote positive partial correlations and dashed lines are negative. Red nodes are
Republicans while Blue nodes are Democrats and Independents (caucasing with Democrats).

Figure 4.9 shows estimated graphs from the precision matrices of each of the Congresses

we consider. Our data is not Gaussian, so we cannot interpret our precision matrix estimates

as conditional dependency graphs, but we can still use the estimated partial correlations to

understand how pairs of senators are correlated after controlling for the behavior of the rest

of the Senate.

In particular, we are interested in comparing the structure of the estimated graphs from

recent years (2015-2018) to a Congress from the past (here we are using the 106th, 1999-

2000). It seems that the number and variety of cross-party connections has decreased sig-

nificantly over time. The connections that have survived to the recent past mostly consist

of connections through the “extremes” of each party, where the most liberal Democrats are

connected positively to the most conservative Republicans. In the 114th and 115th Congress,

these cross-party links tend to connect Tea Party-associated Republicans, some of the most
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conservative senators, positively to the liberal wing of the Democratic party.

The 115th Congress exhibits even fewer connections than the 114th, likely explained by

the election of President Trump and the resulting political dynamic in the Senate, often

described in the media as “dysfunctional” or “broken.” In fact, the graph estimated at

the same tuning levels does not exhibit any cross-party links (Figure 4.10), and when the

penalization is relaxed until cross-party links appear they only consist of links between Rand

Paul and the liberal wing of the Democratic party.

In the 106th Congress you still observe connections between the extremes of the party,

such as Feingold-Smith. But we also see a significantly higher number of non-extreme-to-

extreme connections in the 106th Congress. For instance, Sarbanes and Kennedy, two of the

most liberal senators, are connected positively to a group of the most liberal Republicans:

Collins, Jeffords, and Snowe. But Breaux, a very conservative Democrat, is negatively corre-

lated with this same group. Or the Hollings-Byrd-Helms triangle that connects three socially

conservative senators from South Carolina, West Virginia, and North Carolina, respectively,

all southern east-coast states, despite Hollings and Byrd being Democrats and Helms being

a Republican.

This observed change over time matches previous observations on the increasing polar-

ization and partisanship in American politics (Abramowitz and Saunders , 2008; Hare and

Poole, 2014; Iyengar et al., 2019). As the parties have moved away from each other ideo-

logically and strategically, fewer cross-party connections are observed. The remaining links

likely are connecting extreme-to-extreme because of an “ends vs. the middle” phenomenon,

where the extreme wings of both parties deviate away from their party consensus to vote

against moderate bills for opposite reasons.

Figure 4.11 shows the estimated subgraphs for each party during these time periods.

Looking first at the top row, the Democrats during the 106th and 114th Congresses feature

a mostly-connected core of senators, though the 114th Congress Democrats are significantly

more interconnected. But in the 115th they separate into two distinct factions, as a highly
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Figure 4.10: Estimated links between senators for the 115th (2017-2018) Congress. This tuning
corresponds to the tuning in Figure 4.9 for the 106th and 114th Congresses, which here results in
no cross-party links.

connected liberal wing of the party splits from the rest. Interestingly, this group contains

all of the Democratic senators who had serious interest in presidential campaigns for 2020,

such as Sanders, Warren, Gillibrand, Harris, and Booker. Perhaps all of these senators voted

similarly during this time in order to match trends in public opinion and get publicity to

setup their hopeful campaigns.

Looking at the Republican party, we see an opposite trend over these three Congresses.

In the 106th Congress, there are several mostly-separated factions within the Republican

party. In the lower-right portion of the graph is a group containing much of the conservative

wing of the party, including senators like Sessions, Inhofe, Shelby, and Helms. There is also

a smaller separated clique of Jeffords, Snowe, Collins and Specter (more easily visible in

Figure 4.9, who are all generally known as the four most moderate Republicna senators of

this time. The rest of the party is mostly in a third, larger connected component.

In the 114th Congress we see the same conservative faction, with previous senators like

Session, Inhofe, and Shelby joined now by Tea Party senators like Paul and Lee, as well

as other conservative-wing Republicans like Sasse and Cruz. The rest of the party is still

mostly in another connected component, where the more moderate senators like Collins,
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Murkowski, Kirk, and Ayotte are still identifiably grouped together.

Note that it is this conservative wing that contains all of the connections to the Demo-

cratic party, positively to liberals like Warren and Merkley, but negatively to middle or

moderate senators like Coons and Nelson. This suggests that in this more partisan time, it

is more likely to extremists like Paul and Lee to “cross the aisle” to vote against their party

and with the Democrats, not because they agree with the Democratic position but because

they think the bills proposed are not extreme enough.

In the 115th Congress, however, these Republican factions largely merge into a single

connected component. Note that the Republican majority was significantly smaller during

this time, as they controlled only 50-52 votes compared to the 54-55 votes they had in

the 106th and 114th Congresses. This likely necessitated tighter control over the party by

leadership to get their desired bills passed.

4.3.1 Stability

To test the robustness of our estimated connections to deviations in the data, we conduct

a stability exercise similar to that done in Banerjee et al. (2008). To do this, we divide our

data into 10 folds and, for each fold, we estimate the graph leaving out that fold. We then

compute the average number of entries that are classified differently from the estimator

using the full dataset. This provides an empirical estimate of how unstable our estimator is

in terms of edge classification.

Figure 4.12 shows the estimated instability for the 106th Congress as we vary lambda.

As expected, for small lambda values this instability can be quite high, as the penalization

is not enough to control noise in the data. But for the penalization level we present in

Figures 4.9 and 4.11, the estimated instability is quite low at 0.008, so as we perturb the

data less than 1% of links disagree with the base estimate.

For the bill-side estimates, presented below, we find that the estimated graph in Fig-

ure 4.13 has an estimated instability of 0.001.
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Figure 4.12: Estimated instability in the Senator-Senator graph for the 106th Congress.

4.4 Bill-side analysis

Figures 4.13 and 4.14 show the estimated vote graphs for the 106th (1999-2000) and

114th (2015-2016) Congresses. In each of the graphs, seveal of the more common vote/bill

topics are highlighed.

One of the major acts of Congress during the 106th Congress was H.R. 4444, which

extended permanent normal trade relations (PNTR) to China. In Figure 4.13 votes related

to this bill are tightly grouped into two main groupings, one large one in the top-center of

the panel and another smaller grouping in the middle-left. The middle-left group contains

both the cloture motion and final passage of the bill, both of which had broad non-partisan

support. This likely identifies the other two votes in this group, which were voted down

similarly, as poison pill votes whose passage would’ve likely been tantamount to killing the

bill. The unlabelled vote connected to the middle-left grouping is also interesting, as it is an

unrelated vote from a year earlier regarding trade with Vietnam that was voted down in a

similar matter, another similar hard-line action against trade with an east Asian country.
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Figure 4.13: Estimated links between votes for the 106th (1999-2000) Congress.
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Figure 4.14: Estimated links between votes for the 114th (2015-2016) Congress.
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The top-center grouping consists of votes on several proposed amendments, mostly adding

smaller restrictions or conditions to the PNTR status, none of which passed but which

generally induced similar sets of additional senators to vote against their party consensus on

these bills.

Similar patterns and information can be found by examining other clusters as well. Look-

ing to health care, the tighter grouping just southeast of the middle of the panel is largely

regarding imposing regulations on and adding protections to health care plans, which no-

tably don’t require significant federal funding or financial commitment. But the health care

bills in the bottom-middle intermixed with education and unlabelled votes involve increasing

federal health care spending and moving budget resources, and therefore are closely linked

to many votes involving funding for and investment in education.

On the bill-side the two-group demeaning means that bills are linked because they have

similar patterns of senators that deviate from their party consensus together. Per the simu-

lation results in Figure 3.4, we expect less issues to be caused by not demeaning here than

on the senator-side, but if two-group mean structure is present not demeaning still causes a

significant reduction in model selection performance. Figure 4.15 again shows the differences

between the two-group demeaned and no-demeaning estimators. We see that the latter ex-

hibits a strong separation between bills with high amounts of overall agreement and more

contentious bills. Some of the structures within these groups are similar to those discussed

above using the demeaned estimator, but the tight within-group connectivity and inability to

connect between groups makes it much more difficult to explore more nuanced relationships.
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Figure 4.15: Estimated links between votes for the 106th (1999-2000) Congress.
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4.5 Covariance thresholding

Note that in addition to presenting precision matrix estimators, our work in Section 3.1

also develops correlation estimates for this two-group setting with missing data, including

theoretical rates of concentration for both correlation matrices (Theorems 5.4.1 and ??).

Using these estimators, we also explore applying the covariance thresholding methods studied

in Bickel and Levina (2008) and Cai and Liu (2011). Figure 4.16 shows the results of applying

covariance thresholding to the senator matrix of the 106th and 115th Congresses.

(a) 106th Congress (b) 115th Congress

Figure 4.16: Plots of thresholded correlation estimates using our demeaned input correlation esti-
mators. These correlation estimates are then soft-thresholded by 0.248 for the left panel and 0.337
for the right.

We observe a similar pattern to the one detailed in Section 4.3, where there is signifi-

cantly less between-party connectivity in the more recent Congress. In fact, we observe the

same phenomenon detailed in Mazumder and Hastie (2012), where the pattern of connected

components in the left and right panels closely matches the corresponding precision matrix

estimates show in the top-left panel of Figure 4.9 and Figure 4.10, respectively. Though the

correlation structure is much more tightly bound within-groups than the sparser precision

matrix.

74



CHAPTER V

Theoretical Results for Covariance Estimation for

Matrix-Variate Data with Missing Values and Mean

Structure

In this chapter we prove the theoretical results presented in Chapter III. Section 5.2

first shows the convergence rate of the graphical Lasso estimator given an input correlation

estimate. This is a standard result (see Rothman et al., 2008; Zhou et al., 2010) that we only

slightly modify to account for our additional side constraint.

Section 5.3 proves consistency and convergence results for the zero-mean estimator, or

when we assume oracle knowledge of the mean matrix. For this section we assume the mean

matrix is zero, so M = 0, and therefore have the data

X̄ = U ◦ X for U ∈ {0, 1}n×m, Uij
iid∼ Bernoulli(ζj), (3.26)

and define Γ̄A, Γ̄B to be analogues of the estimators defined in (3.14) and (3.15), replacing

X̃ with X̄ .

The proof of Theorem 3.2.1 then bounds how far the mean estimation causes our estimates

to deviate from this zero-mean baseline. Section 5.4.1 does this for the B-side estimators for

when the masks are known, while Section 5.4.3 bounds the difference in the mask estimates

used to prove Proposition 3.2.2. Section 5.5 proves the same bounds in the error caused by
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the mean estimation for the A-side.

5.1 Preliminaries

Recall that our data model is

X = M + X (3.1)

X = B1/2ZA1/2

For Z ∈ Rm×n is a mean-zero random matrix with independent subgaussian entries with

‖Zij‖ψ2 ≤ K. Then, for column-wise sampling rates ζ1, . . . , ζm, we observe

X = U ◦ (M + X) for U ∈ {0, 1}n×m, Uij
iid∼ Bernoulli(ζj). (3.2)

For some known design matrix D ∈ Rn×2 of the form

D =

 1 · · · 1 0 · · · 0

︸ ︷︷ ︸
n1

0 · · · 0 ︸ ︷︷ ︸
n2

1 · · · 1


T

,

we have M = Dµ, where µ = (µ(1), µ(2))T ∈ R2×m is a matrix of means for each variable and

group.

Let us denote

X = [x1, x2, · · · , xm] = [y1, y2, · · · , yn]T

U = [u1, u2, · · · , um] = [v1, v2, · · · , vn]T

for column vectors xj, uj ∈ Rn and row vectors yi, vi ∈ Rm.
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Recall that

M̂k` =


tr(XX T ) k = `

Sc k 6= `

. (3.13)

where

Sc =
n

n− 1
tr(X TX ◦ M̂)− 1

n− 1
tr(X TX ) (5.1)

Recall that φi(A) are the eigenvalues of A, where φmin(A) is the minimum eigenvalue.

κ(A) is the condition number. a∞ = maxi,j aij, and amin = mini aii. ρ(A) is the correlation

matrix corresponding to the covariance matrix A.

We also denote the sampling rates as ζ = (ζ1, . . . , ζm). Let ζmin = mini ζi. Let C1, C2, . . .

be some absolute constants that may differ from line to line.

5.2 Graphical Lasso consistency

Theorem 5.2.1. Suppose that Assumption 1 holds. Let us say that the event T (B) holds

for an input correlation matrix Γ̂(B) for some parameter δBn,m if Γ̂jj(B) = ρjj(B0) = 1 for

all j

max
j,k,j 6=k

|Γ̂jk(B)− ρjk(B)| ≤ δn,m (5.2)

Let B̂ρ be the unique minimizer defined by (3.11) with the input correlation matrix Γ̂(B0).

Suppose that event T (B0) holds for Γ̂(B0) for some δBn,m such that

δBn,m

√
|B−1

0 |0,off ∨ 1 = o(1) (5.3)

and that for some 0 < ε and ε < 1 we choose λ = δBn,m/ε and R > ‖ρ(B0)−1‖2. Then, on
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event T (B0), we have that for some constant C

‖B̂ρ − ρ(B0)‖2 ≤ ‖B̂ρ − ρ(B0)‖F ≤ Cκ(ρ(B0))2λ
√
|B−1

0 |0,off ∨ 1

‖B̂−1
ρ − ρ(B0)−1‖2 ≤ ‖B̂−1

ρ − ρ(B0)−1‖F ≤
Cλ
√
|B−1

0 |0,off ∨ 1

2φ2
min(ρ(B0))

(5.4)

Here we focus on showing Frobenius norm consistency with an `1 penalty, but note that

we can easily replace the `1 penalty in (3.11) with a nonconvex penalty such as SCAD or

MCP (Fan and Li , 2001; Zhang , 2010). Using the same framework as Loh and Wainwright

(2017), we can then show the same model selection consistency without incoherence results

that they attain for the graphical Lasso. In practice, however, we find that when used with

non-trivial amounts of missing data the nonconvex penalties generally perform similar to or

worse than the `1 penalty, since they interact poorly with the already nonconvex objective.

See Fan et al. (2019) for more details and performance comparisons.

Proof of Theorem 5.2.1. This proof closely follows the consistency proofs of Rothman et al.

(2008) and Zhou et al. (2010), with small changes to account for our additional constraint.

The lemmas and propositions within are proved in those works, so we omit their proofs here.

We first need the following lemma, which is stated and proved in Rothman et al. (2008)

and Zhou (2014). Let S be an index set and W = (wij) be some matrix. Then we write

WS = (wijI(i,j)∈S).

Lemma 5.2.2. Let Φ0 � 0. Let S = {(i, j) : Φ0ij 6= 0, i 6= j} and Sc = {(i, j) : Φ0ij =

0, i 6= j}. Then for all ∆ ∈ Rm×m, we have

|Φ0 + ∆|1,off − |Φ0|1,off ≥ |∆Sc |1 − |∆S|1 (5.5)

Moreover, we have on event T (B0), for all ∆ ∈ Rm×m,

|tr
(
∆(Γ̂(B0)− ρ(B0))

)
| ≤ δn|∆|1,off = δn (|∆Sc|1 + |∆S|1) . (5.6)
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Proposition 5.2.3 is a standard result; see Zhou et al. (2010) for its proof.

Proposition 5.2.3. Let B be a p × p matrix. If B � 0 and B + D � 0, then B + vD � 0

for all v ∈ [0, 1].

Let GB be some convex set such that Φ0 ∈ GB. Define the indicator function

1GB(Φ) =


0 if Φ ∈ GB

∞ otherwise

So 1GB(Φ0) = 0 by assumption.

Let 0 be a matrix with all entries being zero. Let Γ̂(B) be the input correlation matrix.

Let λn := λ. For some Φ � 0, let ∆ := Φ− Φ0 and

Q(Φ) = tr(ΦΓ̂(B))− log|Φ|+ λn|Φ|1,off + 1GB(Φ)

− tr(Φ0Γ̂(B)) + log|Φ0| − λn|Φ0|1,off − 1GB(Φ0)

= tr
(

∆(Γ̂(B)− ρ(B0))
)
− (log|Φ| − log|Φ0|) + tr (∆ρ(B0))

+ λn(|Φ|1,off − |Φ0|1,off) + 1GB(Φ)

Note that Φ̂ minimizes Q(Φ), or equivalently ∆̂ = Φ̂−Φ0 minimizes G(∆) := Q(Φ0 +∆).

Also G(0) = 0 and hence G(∆̂) ≤ G(0) = 0 by definition.

Consider now the set

Tn = {∆ : ∆ = Φ− Φ0,Φ,Φ0 � 0, ‖∆‖F = Mrn},

where by assumption

rn = δn

√
|B−1

0 |0,off ∨ 1 = o(1) and M =
9

2

1 + ε

ε

1

ϕ2
min(ρ(B0))

. (5.7)
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Proposition 5.2.4. Under our assumptions, for all ∆ ∈ Tn, we have by (5.7)

ϕmin(Φ0) > 2Mrn = o(1) (5.8)

so that Φ0 + v∆ � 0,∀v ∈ I ⊃ [0, 1], where I is an open interval containing [0, 1].

Thus we have that log det(Φ0 + v∆) is infinitely differentiable on the open interval I ⊃

[0, 1] of v. This allows us to use the Taylor’s formula with an integral remainder to obtain

the following lemma:

Lemma 5.2.5. On event T (B0), we have G(∆) > 0 for all ∆ ∈ Tn.

We state the following proposition, the proof of which is shown in Zhou et al. (2010).

Proposition 5.2.6. If G(∆) > 0,∀∆ ∈ Tn, then G(∆) > 0 for all ∆ in Vn = {∆ : ∆ =

D − Φ0, D � 0, ‖∆‖F > Mrn for rn as in (5.7)}. Hence if G(∆) > 0, ∀∆ ∈ Tn, then

G(∆) > 0 for all ∆ ∈ Tn ∪ Vn.

By Proposition 5.2.6 and the fact that G(∆̂) ≤ G(0) = 0, we have the following: If

G(∆) > 0,∀∆ ∈ Tn, then ∆̂ 6∈ (Tn∪Vn), that is, ‖∆̂‖F < Mrn, given that ∆̂ = Φ̂n−Φ0, where

Φ̂n,Φ0 � 0. We thus establish that ‖∆B0‖F ≤ Mrn on the event T (B0) by Lemma 5.2.5,

and hence (5.4) holds on event T (B0).

It remains to bound the last set of inequalities. Clearly, on event T (B0), for the choice

of M as in (5.7) and the bound on ‖∆B0‖F < Mrn, we have by (5.8)

‖∆B0‖2 ≤ ‖∆B0‖F < Mrn <
1

2
φmin(Φ0) =

1

2
φmin(ρ(B0)−1)

and φmin(B̂−1) ≥ φmin(ρ(B0)−1)− ‖∆B0‖2 ≥
1

2
φmin(ρ(B0)−1)

Thus we have on T (B0),

‖B̂ − ρ(B0)‖F ≤
‖(B̂)−1 − ρ(B0)−1‖F

φmin(B̂−1)φmin(ρ(B0)−1)
≤ 9(1 + ε)κ(ρ(B0))2λA

√
|B−1

0 |0,off ∨ 1
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Thus all statements in the theorem hold.

5.3 Convergence for the zero-mean covariance estimates

In this section we first establish results for the zero-mean estimator, so throughout we

assume M = 0 and therefore recall that

X̄ = U ◦ X for U ∈ {0, 1}n×m, Uij
iid∼ Bernoulli(ζj). (3.26)

Let us denote

X = [x1, x2, · · · , xm] = [y1, y2, · · · , yn]T

U = [u1, u2, · · · , um] = [v1, v2, · · · , vn]T

for column vectors xj, uj ∈ Rn and row vectors yi, vi ∈ Rm.

Recall that we set

α = CK2 logm‖A0‖2∑m
k=1 akkζ

2
k

+ CK2 log1/2(m ∨ n)

√
a∞‖A0‖2

amin‖ζ‖2

(3.18)

β = CK2 log n‖B0‖2

ζmin tr(B0)
+ CK2 log1/2(m ∨ n)

‖B0‖F
ζmin tr(B0)

(3.19)

for some absolute constant C.

We then prove the following bounds on our masked correlation estimates using this zero-

mean data and estimator.

Theorem 5.3.1. Consider the data generating random matrices as in (3.26) and suppose

Assumptions 1 and 2 hold.

Let B̃ρ, Ãρ be the unique minimizers defined by (3.11) with the input correlation matrices
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Γ̃(B0), Γ̃(A0) (calculated with non-demeaned data). Penalties are chosen as

λB =
1

ε
(6 + 6κ(B0)/

√
n)α λA =

1

ε
(15β)

for some 0 < ε, ε < 1, and RA > ‖ρ(A0)−1‖2, RB > ‖ρ(B0)−1‖2.j Let α, β < 1/3 and let

C3, C4 be some absolute constants.

Then, with probability at least 1− 8/(m ∨ n)2,

‖B̃ρ − ρ(B0)‖2 ≤ ‖B̃ρ − ρ(B0)‖F ≤ C3κ(ρ(B0))2λB

√
|B−1

0 |0,off ∨ 1

‖B̃−1
ρ − ρ(B0)−1‖2 ≤ ‖B̃−1

ρ − ρ(B0)−1‖F ≤
C3λB

√
|B−1

0 |0,off ∨ 1

2φ2
min(ρ(B0))

Similarly, with probability at least 1− 8/(m ∨ n)2,

‖Ãρ − ρ(A0)‖2 ≤ ‖Ãρ − ρ(A0)‖F ≤ C4κ(ρ(A0))2λA

√
|A−1

0 |0,off ∨ 1

‖Ã−1
ρ − ρ(A0)−1‖2 ≤ ‖Ã−1

ρ − ρ(A0)−1‖F ≤
C4λA

√
|A−1

0 |0,off ∨ 1

2φ2
min(ρ(A0))

Proof of Theorem 5.3.1. To prove this result, we simply apply Theorem 5.2.1 using the cor-

relation convergence results in Theorem 5.3.3.

To show this, entry-wise concentration results for the oracle correlation matrix are proved

in Section 5.3.2, and the rates for the mask estimates are shown in Section 5.3.3.

5.3.1 Correlation convergence

Theorem 5.3.2. Consider a data matrix as in (3.26). Let m ∨ n ≥ 3. Then, on event ΛB

as defined in Lemma 5.3.7, for α < 1/3, and Γ̃(B0) as defined in (3.10)

∀i 6= j, |Γ̃ij(B0)− ρij(B0)| ≤ α

1− α
+ |ρij(B0)| α

1− α
≤ 3α
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Similarly, on event ΛA as defined in Lemma 5.3.8, for β < 1/3, and Γ̃(A0) as defined in

(3.7)

∀i 6= j, |Γ̃ij(A0)− ρij(A0)| ≤ β

1− β
+ |ρij(A0)| β

1− β
≤ 3β

Proof. Under ΛB,

|Γ̃ij(B0)− ρij(B0)| =

∣∣∣∣∣ 〈vi ◦ yi, vj ◦ yj〉/Mij

(‖vi ◦ yi‖2/
√
Mii)(‖vj ◦ yj‖2/

√
Mjj)

− ρij(B0)

∣∣∣∣∣
≤

∣∣∣∣∣ 〈vi ◦ yi, vj ◦ yj〉/(
√
biibjjMij)− ρij(B0)

(‖vi ◦ yi‖2/
√
biiMii)(‖vj ◦ yj‖2/

√
bjjMjj)

∣∣∣∣∣
+ |ρij(B0)|

∣∣∣∣∣ 1

(‖vi ◦ yi‖2/
√
biiMii)(‖vj ◦ yj‖2/

√
bjjMjj)

− 1

∣∣∣∣∣
≤ α

1− α
+ |ρij(B0)| α

1− α

The proof of the second statement is identical.

Theorem 5.3.3. Consider a data matrix as in (3.26). Let m∨n ≥ 3. Then, with probability

at least 1− 8/(n ∨m)2, for α < 1/3, and Γ̂(B0) as defined in (3.15)

∀i 6= j, |Γ̂ij(B0)− ρij(B0)| ≤ 6α + (6κ(B0)/
√
n)α

Similarly, with probability at least 1− 8/(n ∨m)2, for β < 1/3, and Γ̂(A0) as defined in

(3.14)

∀i 6= j, |Γ̂ij(A0)− ρij(A0)| ≤ 15β

Proof of Theorem 5.3.3. For the B-side, consider the events ΛB as defined in Lemma 5.3.7

and ΛM as defined in Proposition 5.3.11. Under ΛM ,

∣∣∣∣ ScESc
− 1

∣∣∣∣ ≤ α,

∣∣∣∣ tr(XX T )

E tr(XX T )
− 1

∣∣∣∣ ≤ α√
n
κ(B0).
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Also note that,

Γ̂ij(B0) =
〈vi ◦ yi, vj ◦ yj〉
‖vi ◦ yi‖2‖vj ◦ yj‖2

tr(XX T )

Sc
= Γ̃ij(B0)

tr(XX T )

E tr(XX T )

ESc
Sc

So, using Theorem 5.3.2,

|Γ̂ij(B0)− Γ̃ij(B0)| ≤ |Γ̃ij(B0)|
∣∣∣∣ tr(XX T )

E tr(XX T )

ESc
Sc
− 1

∣∣∣∣
≤ |Γ̃ij(B0)|max

(∣∣∣∣1 + ακ(B0)/
√
n

1− α
− 1

∣∣∣∣, ∣∣∣∣1− ακ(B0)/
√
n

1 + α
− 1

∣∣∣∣)
≤ |Γ̃ij(B0)|max

(
1 +

3

2
α +

3κ(B0)√
n

α− 1, 1−
(

1− α− κ(B0)√
n
α

))
≤ (1 + 3α)

(
3

2
+

3κ(B0)√
n

)
α =

(
3

2
+

3κ(B0)√
n

)
α +

(
9

2
+

9κ(B0)√
n

)
α2

and therefore, when α < 1/3,

|Γ̂ij(B0)− ρij(B0)| ≤ |Γ̂ij(B0)− Γ̃ij(B0)|+ |Γ̃ij(B0)− ρij(B0)|

≤ 6α + (6κ(B0)/
√
n)α

For the A-side, note that

|Γ̂ij(A0)− Γ̃ij(A0)| =

∣∣∣∣∣∣Γ̃ij(A0)

√
ζiζj√
ζ̂iζ̂j

− Γ̃ij(A0)

∣∣∣∣∣∣
= Γ̃ij(A0)

∣∣∣∣∣∣
√
ζiζj√
ζ̂iζ̂j

− 1

∣∣∣∣∣∣
Using Hoeffding’s Inequality, we get that

P

(
|ζ̂i − ζi| ≤

√
3/2

√
logm ∨ n

n

)
≥ 1− 2/(m ∨ n)3

=⇒ P

(
|ζ̂i − ζi| ≤

√
3/2

√
logm ∨ n

n
∀ i

)
≥ 1− 2m/(m ∨ n)3
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So, with probability at least 1− 2/(m ∨ n)2,

|ζ̂i − ζi| ≤ βζmin ∀ i = 1, . . . ,m

We assume that ζmin &
√

logm∨n
n

. So, for appropriately chosen constants,

|ζ̂i − ζi| ≤
√

3/2

√
logm ∨ n

n
=⇒ ζ̂i ≥

ζmin

2

Therefore ∣∣∣∣ζiζ̂i − 1

∣∣∣∣ =
|ζi − ζ̂i|
ζ̂i

≤ 2β

And, for β < 1,

∣∣∣∣∣ζiζjζ̂iζ̂j
− 1

∣∣∣∣∣ =

∣∣∣∣∣
(
ζi

ζ̂i
− 1

)(
ζj

ζ̂j
− 1

)
+
ζi

ζ̂i
− 1 +

ζj

ζ̂j
− 1

∣∣∣∣∣
≤
∣∣∣∣ζiζ̂i − 1

∣∣∣∣
∣∣∣∣∣ζjζ̂j − 1

∣∣∣∣∣+

∣∣∣∣ζiζ̂i − 1

∣∣∣∣+

∣∣∣∣∣ζjζ̂j − 1

∣∣∣∣∣ ≤ 6β

Finally, we note that, for any a and â and ε ∈ [0, 1],

∣∣∣a
â
− 1
∣∣∣ ≤ ε =⇒

√
1− ε ≤

√
a√
â
≤
√

1 + ε

=⇒
∣∣∣∣√a√â − 1

∣∣∣∣ ≤ max(1−
√

1− ε,
√

1 + ε− 1) ≤ ε

So we get that ∣∣∣∣∣∣
√
ζiζj√
ζ̂iζ̂j

− 1

∣∣∣∣∣∣ ≤ 6β (5.9)

And therefore, using Theorem 5.3.2, we get that, for β < 1/3 and with probability at
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least 1− 8/(n ∨m)2,

|Γ̂ij(A0)− ρij(A0)| ≤ |Γ̂ij(A0)− Γ̃ij(A0)|+ |Γ̃ij(A0)− ρij(A0)|

≤ Γ̃ij(A0)

∣∣∣∣∣∣
√
ζiζj√
ζ̂iζ̂j

− 1

∣∣∣∣∣∣+ 3β

≤ (1 + 3β)6β + 3β

= 15β

5.3.2 Concentration results

We use the following results from Zhou (2019),

Theorem 5.3.4 (Theorem 1.2 in Zhou, 2019). Let X = (X1, . . . , Xm) ∈ Rm be a random

vector with independent components Xi satisfying EXi = 0 and ‖Xi‖ψ2 ≤ K. Let ξ =

(ξ1, . . . , ξm) ∈ {0, 1}m be independent of X with independent Bernoulli components ξi such

that Eξi = pi. Let Dξ be the diagonal matrix diag(ξ). Let D0 ∈ Rm×m be a symmetric

matrix, and let A0 = (aij) = D2
0. Define Y = D0X.

Then for any t > 0,

P (|Y TDξY−EY TDξY | > t) ≤ 2 exp

(
−c2 min

(
t2

K4(
∑m

i=1 pia
2
ii +

∑
i 6=j a

2
ijpipj)

,
t

K2‖A0‖2

))

for some absolute constant c2.

Theorem 5.3.5 (Theorem 1.3 in Zhou, 2019). Consider the same setting as in Theo-

rem 5.3.4. Additionally, let X ′ ∼ X be an independent but identically distributed copy

of X that is also independent of ξ. Define Y = D0X and Y ′ = D0X
′.
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Then for any t > 0,

P (|Y TDξY
′−EY TDξY

′| > t) ≤ 2 exp

(
−c2 min

(
t2

K4(
∑m

i=1 pia
2
ii +

∑
i 6=j a

2
ijpipj)

,
t

K2‖A0‖2

))
.

Note that when we incorporate mean estimation we will also use variants of these the-

orems where D0 is not necessarily symmetric and A0 = DT
0 D0. A close examination of the

proofs in Zhou (2019) shows that these results still hold in this case.

These results allow us to obtain the following concentration bound results on the indi-

vidual covariance entries, which we prove later in this section. Note that these results were

first presented in Zhou (2019), but we include the full suite of results and proofs here for

completeness.

Theorem 5.3.6. Consider the generating model in (3.26). We first consider the B-side

correlatione stimation. For t > 0, for each i,

P

(
1

bii

∣∣∣∣∣〈vi ◦ yi, vi ◦ yi〉 −
m∑
k=1

akkζk

∣∣∣∣∣ > t

)

≤ 2 exp

(
−c2 min

(
t2

4K4(
∑m

k=1 a
2
kkζk +

∑
k 6=` a

2
k`ζkζ`)

,
t

2K2‖A0‖2

))

and for each i 6= j,

P

(∣∣∣∣∣〈vi ◦ yi, vj ◦ yj〉√
biibjj

− ρij(B0)
m∑
k=1

akkζ
2
k

∣∣∣∣∣ > t

)

≤ 6 exp

(
−c2 min

(
t2

4K4(
∑m

k=1 a
2
kkζ

2
k +

∑
k 6=` a

2
k`ζ

2
kζ

2
` )
,

t

2K2‖A0‖2

))

Similarly, for estimating the A-side correlations, we get that

P

(
1

aii

∣∣〈ui ◦ xi, ui ◦ xi〉 − ζi tr(B0)
∣∣ > t

)
≤ 2 exp

(
−c2 min

(
t2

4K4ζi‖B0‖F
,

t

2K2‖B0‖2

))

87



and for each i 6= j,

P

(∣∣∣∣〈ui ◦ xi, uj ◦ xj〉√
aiiajj

− ρij(A0)ζiζj tr(B0)

∣∣∣∣ > t

)
≤ 6 exp

(
−c2 min

(
t2

4K4ζiζj‖B0‖F
,

t

2K2‖B0‖2

))

The following lemma combines these concentration results into the appropriate `∞ norms

that we need.

Lemma 5.3.7. Consider data generating model as in (3.26). Let Mii =
∑m

k=1 akkζk and

Mij =
∑m

k=1 akkζ
2
k as defined in (3.9). Then, denote by ΛB the event that the following

inequalities hold simultaneously for j = 1, . . . , n,

∣∣∣∣‖vj ◦ yj‖2
2

bjjMjj

− 1

∣∣∣∣ ≤ CK2 logm‖A0‖2∑m
k=1 akkζk

+ CK2 log1/2(m ∨ n)

√∑m
k=1 a

2
kkζk +

∑
k 6=` a

2
k`ζkζ`∑m

k=1 akkζk

≤ CK2 logm‖A0‖2∑m
k=1 akkζk

+ CK2 log1/2(m ∨ n)

√∑m
k=1 a

2
kkζk +

∑
k 6=` a

2
k`

√
ζkζ`∑m

k=1 akkζk

=: αdiag

(5.10)

and for each i 6= j,

∣∣∣∣∣〈vj ◦ yj, vi ◦ yi〉√
biibjjMij

− ρij(B0)

∣∣∣∣∣
≤ CK2 logm‖A0‖2∑m

k=1 akkζ
2
k

+ CK2 log1/2(m ∨ n)

√∑m
k=1 a

2
kkζ

2
k +

∑
k 6=` a

2
k`ζ

2
kζ

2
`∑m

k=1 akkζ
2
k

≤ CK2 logm‖A0‖2∑m
k=1 akkζ

2
k

+ CK2 log1/2(m ∨ n)

√∑m
k=1 a

2
kkζ

2
k +

∑
k 6=` a

2
k`ζkζ`∑m

k=1 akkζ
2
k

=: αoffd (5.11)

≤ CK2 logm‖A0‖2∑m
k=1 akkζ

2
k

+ CK2 log1/2(m ∨ n)

√
a∞‖A0‖2

amin

√
m

√
m

‖ζ‖2

Then, we get that P (ΛB) ≥ 1− 6
(m∨n)2

, where C are some absolute constants chosen so that

the probability holds.
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Lemma 5.3.8. Consider data generating model as in (3.26). Let Njj = tr(B0)ζj for all j

and Nij = ζiζj tr(B0) for all i 6= j. Denote by ΛA the event that the following two inequalities

hold simultaneously for j = 1, . . . ,m,

∣∣∣∣‖uj ◦ xj‖2
2

ajjNjj
− 1

∣∣∣∣ ≤ CK2 log n‖B0‖2

ζj tr(B0)
+ CK2 log1/2(m ∨ n)

‖B0‖F
tr(B0)ζ

1/2
j

=: βj (5.12)

and for all i 6= j,

∣∣∣∣〈ui ◦ xi, uj ◦ xj〉√
aiiajjNij

− ρij(A0)

∣∣∣∣ ≤ CK2 log n‖B0‖2

ζiζj tr(B0)
+ CK2 log1/2(m ∨ n)

‖B0‖F√
ζiζj tr(B0)

=: βij

(5.13)

Then, we get that P(ΛA) ≥ 1− 6
(m∨n)2

, where C is some absolute constant chosen so that the

probability holds.

Proof of Lemmas 5.3.7 and 5.3.8. We use the first result in Theorem 5.3.6 with

t = CK2 logm‖A0‖2 + CK2 log1/2(m ∨ n)

√√√√ m∑
k=1

a2
kkζk +

∑
k 6=`

ak`ζkζ`.

Using a union bound, we therefore get that

P

(
1

bii

∣∣∣∣∣〈vi ◦ yi, vi ◦ yi〉 −
m∑
k=1

akkζk

∣∣∣∣∣ < t ∀ i = 1, . . . , n

)
≥ 1− 2

n

m4

Similarly, we use the second result with

t = CK2 logm‖A0‖2 + CK2 log1/2(m ∨ n)

√√√√ m∑
k=1

a2
kkζ

2
k +

∑
k 6=`

ak`ζ2
kζ

2
`

and a union bound to get that

P

(∣∣∣∣∣〈vi ◦ yi, vj ◦ yj〉√
biibjj

− ρij(B0)
m∑
k=1

akkζ
2
k

∣∣∣∣∣ < t ∀ i 6= j

)
≥ 1− 6

n(n− 1)

m4
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The proof of Lemma 5.3.8 proceeds similarly with the third and fourth results in Theo-

rem 5.3.6.

Proof of Theorem 5.3.6. B-side. We first consider the diagonal case. Note that yi has

covariance biiA0, so we can write yi = (biiA0)1/2(g1, . . . , gm)T for g1, . . . , gm
i.i.d∼Z, i.e. entries

of g are subgaussian with a subgaussian constant K, mean zero, and unit variance.

We, for D = diag(vi), can then show that

〈vi ◦ yi, vi ◦ yi〉 =
m∑
k=1

m∑
`=1

Dk`y
i
`y
i
k

= gbiiA
1/2
0 DA

1/2
0 gT

Noting that ED = diag(ζ1, . . . , ζm), we can then apply Theorem 5.3.4 to the quadratic form

gA
1/2
0 DA

1/2
0 gT − EgA1/2

0 DA
1/2
0 gT

to get our first inequality.

For the off-diagonal case, we first need the following proposition.

Proposition 5.3.9. Let B0,(i,j) = (bij)
2
i,j=1 ∈ R2×2 be the positive definite submatrix of B0

with rows and columns i, j. Denote it’s unique symmetric square root as

cii cij

cij cjj


Define

D′(i, j) =

ciicij ciicjj

cijcij cijcjj

⊗ A1/2
0 DA

1/2
0
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Then

‖D′(i, j)‖2 ≤
√
biibjj‖A1/2

0 DA
1/2
0 ‖2 (5.14)

‖D′(i, j)‖F ≤
√
biibjj‖A1/2

0 DA
1/2
0 ‖F (5.15)

(5.16)

And, recalling that ρij(B0) = bij/
√
biibjj,

∣∣∣∣ρij(B0)
ciicjj + c2

ij

bij

∣∣∣∣ < 1 (5.17)

Without loss of generality, let i = 1, j = 2. Then we concatenate the vectors y1, y2 to

form (y1, y2) ∈ R2m with covariance matrix B0,(1,2) ⊗ A0. Defining g1, . . . , g2m
i.i.d∼ Z as we

did above, we get that

(y1, y2) = B
1/2
0,(1,2) ⊗ A

1/2
0 gT =

c11A
1/2
0 c12A

1/2
0

c12A
1/2
0 c22A

1/2
0

 gT

Then, for any given matrix D, we get that

m∑
k=1

m∑
`=1

Dk`y
1
ky

2
` = y1Dy2T =

2m∑
k=1

2m∑
`=1

D′k`(1, 2)gkg`

where

E

2m∑
k=1

2m∑
`=1

D′k`(1, 2)gkg` = tr(D′(1, 2)) = b12 tr(A0D).
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Applying this to our setting, let D = diag(vi ⊗ vj). Then

〈vi ◦ yi, vj ◦ yj〉 =
m∑
k=1

yikv
i
kv

j
ky

j
k = yiDyjT

= g(ci ⊗ A1/2
0 )D(cTj ⊗ A

1/2
0 )gT

= g(cic
T
j ⊗ (A

1/2
0 DA

1/2
0 ))gT = gD′(i, j)gT

where ci = (cii, cij)
T and cj = (cij, cjj)

T , and therefore

cic
T
j =

ciicij ciicjj

cijcij cijcjj


If we partition g = (g1, g2), consider the following quadratic forms

Z = g1(A
1/2
0 DA

1/2
0 )gT1 − Eg1(A

1/2
0 DA

1/2
0 )gT1

Z ′ = g2(A
1/2
0 DA

1/2
0 )gT2 − Eg2(A

1/2
0 DA

1/2
0 )gT2

U = g1(A
1/2
0 DA

1/2
0 )gT2 − Eg1(A

1/2
0 DA

1/2
0 )gT2

For Z,Z ′ independent.

For i 6= j we have that ED = diag(ζ2
1 , . . . , ζ

2
m) and

E〈vi ◦ yi, vj ◦ yj〉 = bijE〈A0, D〉 = bij

m∑
k=1

akkζ
2
k .
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So

1√
biibjj

gD′(i, j)gT − E 1√
biibjj

gD′(i, j)gT

=

∣∣∣∣∣ bij√
biibjj

(
1

bij
(〈vi ◦ yi, vj ◦ yj〉 − E〈vi ◦ yi, vj ◦ yj〉)

)∣∣∣∣∣
≤ |ρij(B0)|

(∣∣∣∣ciicijbij
Z +

cijcjj
bij

Z ′
∣∣∣∣+

∣∣∣∣ciicjj + c2
ij

bij
U

∣∣∣∣)
= |ρij(B0)|

(
|s1Z + s2Z

′|+
∣∣∣∣ciicjj + c2

ij

bij
U

∣∣∣∣)
≤ |ρij(B0)||s1Z + s2Z

′|+ |U | (5.18)

where s1 = (ciicij)/bij, s2 = (cijcjj)/bij, and s1, s2 ∈ [0, 1] with s1 + s2 = 1 since B
1/2
0,(i,j) is

positive definite and ciicij + cijcjj = tr(cic
T
j ) = bij.

Therefore, we can use (5.18) to get that

P

(∣∣∣∣∣〈vi ◦ yi, vj ◦ yj〉√
biibjj

− E 〈v
i ◦ yi, vj ◦ yj〉√

biibjj

∣∣∣∣∣ > t

)

= P

(∣∣∣∣∣gD′(i, j)gT√
biibjj

− EgD
′(i, j)gT√
biibjj

∣∣∣∣∣ > t

)

≤ P (|ρij(B0)||s1Z + s2Z
′| > t/2) + P (|U | > t/2)

(a)

≤ P (|ρij(B0)||Z| > t/2) + P (|ρij(B0)||Z ′| > t/2) + P (|U | > t/2)

=: p1 + p2 + p3

where (a) is because s1, s2 ∈ [0, 1] and s1 + s2 = 1 means that |s1Z + s2Z
′| > k =⇒ |Z| >

k and/or |Z ′| > k.

We can apply Theorem 5.3.4 to p1 and p2 with Proposition 5.3.9, noting that p1 =

P (|ρij(B0)||Z| > t/2) ≤ P (|Z| > t/2), to get that

p1, p2 ≤ 2 exp

(
−c2 min

(
t2

4K4(
∑m

k=1 a
2
kkζ

2
k +

∑
k 6=` a

2
k`ζ

2
kζ

2
` )
,

t

2K2‖A0‖2

))
.
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Using Theorem 5.3.5, we get that

p3 ≤ 2 exp

(
−c2 min

(
t2

4K4(
∑m

k=1 a
2
kkζ

2
k +

∑
k 6=` a

2
k`ζ

2
kζ

2
` )
,

t

2K2‖A0‖2

))
.

Adding these probabilities gives us our desired result.

A-side. The diagonal case proceeds similarly to above. We can write xi = (aiiB0)1/2(g1, . . . , gn)T

for g1, . . . , gn
i.i.d∼ Z. So for D = diag(ui), can then show that

〈ui ◦ xi, ui ◦ xi〉 =
n∑
k=1

n∑
`=1

Dk`x
i
`x
i
k

= gaiiB
1/2
0 DB

1/2
0 gT

Where ED = ζiI, we can then apply Theorem 5.3.4 to the quadratic form

gB
1/2
0 DB

1/2
0 gT − EgB1/2

0 DB
1/2
0 gT

to get that

P

(
1

aii

∣∣〈ui ◦ xi, ui ◦ xi〉 − ζi tr(B0)
∣∣ > t

)
≤ 2 exp

(
−c2 min

(
t2

4K4(ζi
∑n

k=1 b
2
kk + ζ2

i

∑
k 6=` b

2
k`)
,

t

2K2‖B0‖2

))

≤ 2 exp

(
−c2 min

(
t2

4K4ζi‖B0‖F
,

t

2K2‖B0‖2

))

The off-diagonal case follows the same steps as the off-diagonal case for the B-side above,

noting that Proposition 5.3.9 and the argument using it are symmetric in A and B. The

94



primary difference being that D = diag(ui ◦ uj) with ED = ζiζjI. This gives us that

P

(∣∣∣∣〈ui ◦ xi, uj ◦ xj〉√
aiiajj

− ρij(A0)ζiζj tr(B0)

∣∣∣∣ > t

)
≤ 6 exp

(
−c2 min

(
t2

4K4(ζiζj
∑n

k=1 b
2
kk + ζ2

i ζ
2
j

∑
k 6=` b

2
k`)
,

t

2K2‖B0‖2

))

≤ 6 exp

(
−c2 min

(
t2

4K4ζiζj‖B0‖F
,

t

2K2‖B0‖2

))

Proof of Proposition 5.3.9. Without loss of generality, let i = 1, j = 2. So

‖c1c
T
2 ‖2

F =

∥∥∥∥∥∥∥
c11c12 c11c22

c12c12 c12c22


∥∥∥∥∥∥∥

2

F

= tr(c2c
T
1 c1c

T
2 )

= ‖c1‖2
2‖c2‖2

2 = (c2
11 + c2

12)(c2
12 + c2

22) = b11b22

So

‖D′(1, 2)‖2
F = ‖c1c

T
2 ⊗ (A

1/2
0 DA

1/2
0 )‖2

F = b11b22‖A1/2
0 DA

1/2
0 ‖F

Thus (5.15) holds. Using a similar argument we can show (5.14).

To show the last inequality,

(c11c22 + c2
12)2 = (c11c22)2 + c4

12 + 2c11c22c
2
12

≤ (c11c22)2 + c4
12 + (c11c12)2 + (c22c12)2

= (c2
11 + c2

12)(c2
12 + c2

22) = b11b22.

So

ρij(B0)
ciicjj + c2

ij

bij
≤ bij√

biibjj

√
biibjj

bij
= 1.
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5.3.3 Mask estimation

Recall that

Sc =
n

n− 1
tr(X TX ◦ M̂)− 1

n− 1
tr(X TX ) (5.1)

and that

M̂k` =


tr(XX T ) k = `

Sc k 6= `

. (3.13)

Proposition 5.3.10. M̂ is an unbiased estimate of the mask M multiplied by tr(B0). So

E tr(XX T ) = E tr(
n∑
i=1

(vi ◦ yi)⊗ (vi ◦ yi)) =
n∑
i=1

tr(E(vi ⊗ vi) ◦ E(yi ⊗ yi))

= tr(M ◦ A0 tr(B0)) =
m∑
i=1

ζiaii tr(B0)

And

ESc = E

(
n

n− 1
tr(X TX ◦ M̂)− 1

n− 1
tr(X TX )

)
=

m∑
j=1

ajjζ
2
j tr(B0)

Proof. Let M i = vi ⊗ vi. Then

tr(X TX ◦ M̂) = tr

(
X TX ◦

( 1

n

n∑
j=1

vj ⊗ vj
))

=
1

n

n∑
j=1

tr(X TX ◦ (vj ⊗ vj))

=
1

n

n∑
j=1

tr

(( n∑
i=1

(vi ⊗ vi) ◦ (yi ⊗ yi)
)
◦ (vj ⊗ vj)

)

=
1

n

n∑
j=1

n∑
i=1

tr(M i ◦ (yi ⊗ yi) ◦M j)

=
1

n

n∑
i=1

tr(M i ◦ (yi ⊗ yi)) +
1

n

n∑
i 6=j

tr(M i ◦ (yi ⊗ yi) ◦M j)

=
1

n
tr(X TX ) +

1

n

n∑
i 6=j

tr(M i ◦M j ◦ (yi ⊗ yi)).
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Taking expectations and recalling that M i, M j, and X are independent,

E tr(X TX ◦ M̂) =
1

n
E tr(X TX ) +

1

n

n∑
i 6=j

tr(E(M i ◦M j) ◦ E(yi ⊗ yi))

=
1

n
E tr(X TX ) + tr(diag(ζ2

1 , . . . , ζ
2
m) ◦ 1

n

n∑
i 6=j

E(yi ⊗ yi))

(a)
=

1

n
E tr(X TX ) + tr(diag(ζ2

1 , . . . , ζ
2
m) ◦ 1

n
(n− 1)A0 tr(B0))

=
1

n
E tr(X TX ) +

n− 1

n
tr(B0)

m∑
i=1

aiiζ
2
i (5.19)

where (a) is because

n∑
i 6=j

E(yi ⊗ yi) = (n− 1)
n∑
i=1

E(yi ⊗ yi) = (n− 1)A0 tr(B0)

Rearranging (5.19) proves the result.

Proposition 5.3.11. With probability at least 1− n2

m4 ,

∣∣∣∣ ScESc
− 1

∣∣∣∣ ≤ α

Also, with probability at least 1− 1/m2,

∣∣∣∣ tr(X TX )

E tr(X TX )
− 1

∣∣∣∣ ≤ αdiag
‖B0‖F
tr(B0)

Let ΛM be the even that both of these hold, which occurs with probability at least 1− 1/m2−

n2/m4.
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Proof. Concentration of Sc. We first decompose Sc into a sum

Sc =
n

n− 1
tr(X TX ◦ M̂)− 1

n− 1
tr(X TX )

=
1

n− 1

n∑
j=1

n∑
i=1

tr(M i ◦M j ◦ (yi ⊗ yi))− 1

n− 1

n∑
i=1

tr(M i ◦ (yi ⊗ yi))

=
1

n− 1

n∑
j=1

n∑
i 6=j

tr(M i ◦M j ◦ (yi ⊗ yi)) =
1

n− 1

n∑
j=1

n∑
i 6=j

tr((vi ⊗ vj) ◦ (yi ⊗ yi))

=
1

n− 1

n∑
j=1

n∑
i 6=j

(yi)Tdiag(vi ⊗ vj)yi,

so

|Sc − ESc| ≤
1

n− 1

n∑
j=1

n∑
i 6=j

|(yi)Tdiag(vi ⊗ vj)yi − E(yi)Tdiag(vi ⊗ vj)yi|.

Note that yi = (biiA0)1/2Zi·, so we can apply Theorem 5.3.4 to each of these terms with

D0 = (biiA0)1/2 and Dξ = diag(vi ⊗ vj) to get that

P
(
∀ i 6= j,

∣∣(yi)Tdiag(vi ⊗ vj)yi − E(yi)Tdiag(vi ⊗ vj)yi
∣∣ ≤ biiτ

)
≥ 1− 2n2 exp

(
−c2 min

(
τ 2

4K4(
∑m

k=1 ζ
2
ka

2
kk +

∑
k 6=` a

2
k`ζ

2
kζ

2
` )
,

τ

2K2‖A0‖2

))

where we applied a union bound over all i 6= j.

Choosing τ = CK2 logm‖A0‖2 +CK2 log1/2(m∨n)
√∑m

k=1 ζ
2
ka

2
kk +

∑
k 6=` a

2
k`ζ

2
kζ

2
` , we get

that with probability at least 1− n2/m4, for all i, j = 1, . . . , n and i 6= j,

1

n− 1

n∑
j 6=i

∣∣(yi)Tdiag(vi ⊗ vj)yi − E(yi)Tdiag(vi ⊗ vj)yi
∣∣ ≤ biiτ

=⇒ 1

n− 1

n∑
i=1

n∑
j 6=i

∣∣(yi)Tdiag(vi ⊗ vj)yi − E(yi)Tdiag(vi ⊗ vj)yi
∣∣ ≤ tr(B0)τ
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Recall that ESc = tr(B0)
∑n

k=1 akkζ
2
k . So

|Sc − ESc| ≤ tr(B0)τ∣∣∣∣ ScESc
− 1

∣∣∣∣ ≤ τ∑n
k=1 akkζ

2
k

=
CK2 logm‖A0‖2 + CK2 log1/2(m ∨ n)

√∑m
k=1 ζ

2
ka

2
kk +

∑
k 6=` a

2
k`ζ

2
kζ

2
`∑n

k=1 akkζ
2
k

≤ α

for α as defined in (3.18).

Concentration of tr(X TX ). We first note that tr(X TX ) = (vec(U) ◦ vec(X))T (vec(U) ◦

vec(X)), where vec(X) has covariance A⊗B. So we can write vec(X) = (A⊗B)1/2g, where

g ∈ Rnm has subgaussian entries with subgaussian constant K, mean zero, and unit variance.

Let D = diag(vec(U)), where ED = diag((ζ1, . . . , ζ1, ζ2, . . . , ζ2, . . . , ζm, . . . , ζm)). Then

we get that

tr(X TX ) = g(A⊗B)1/2D(A⊗B)1/2gT

Applying Theorem 5.3.4 to this quadratic form and plugging in

t = CK2 log(m)‖A0‖2‖B0‖2 + CK2 log1/2(m)

√√√√‖diag(B0)‖2
F

m∑
k=1

a2
kkζk + ‖B0‖2

F

∑
k 6=`

a2
k`ζkζ`

we get that, with probability at least 1− 1/m2,

|tr(X TX )− E tr(X TX )| ≤ t

≤ CK2 log(m)‖A0‖2‖B0‖2 + CK2 log1/2(m)‖B0‖F

√√√√ m∑
k=1

a2
kkζk +

∑
k 6=`

a2
k`ζkζ`
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So, since E tr(X TX ) =
∑m

i=1 ζiaii tr(B0) as shown in Proposition 5.3.10, we have that

∣∣∣∣ tr(X TX )

E tr(X TX )
− 1

∣∣∣∣
≤ CK2 log(m)‖A0‖2∑m

i=1 ζiaii

‖B0‖2

tr(B0)
+
CK2 log1/2(m)

√∑m
k=1 a

2
kkζk +

∑
k 6=` a

2
k`ζkζ`∑m

i=1 ζiaii

‖B0‖F
tr(B0)

≤ αdiag
‖B0‖F
tr(B0)

5.4 Estimation of B with unknown group means

Assume our rows are sorted by group. Denote

U =

U1

U2

 , X =

X1

X2

 , where U1,X1 ∈ Rn1×m and U2,X2 ∈ Rn2×m

Let n1j, n2j be the number of observed values for variables j in group 1 and 2, respectively.

Then we note that

X̃·j = uj ◦ (I − P j)X·j where P j =

 1
n1j

~1n1U1T
·j 0

0 1
n2j

~1n2U2T
·j

 (5.20)

and that (I − P j)X·j = (I − P j)xj.

Recall that for some absolute constants C,C1 we define

α = CK2 logm‖A0‖2∑m
k=1 akkζ

2
k

+ CK2 log1/2(m ∨ n)

√
a∞‖A0‖2

amin‖ζ‖2

(3.18)

100



Table 5.1: Notation

Notation Meaning

Sample Sizes

n = n1 + n2 Total number of rows

n1, n2 Number of rows per group

n1k =
∑n1

i=1 Uik, n2k =
∑n

i=n1+1 Uik Number of observed values per group for column k

n1k` =
∑n1

i=1 UikUi`, n2k` =
∑n

i=n1+1 UikUi` Number of times cols k, ` are both observed per group

n1min = mink n1k, n2min = mink n2k Minimum number of observed values per group

ζ̂k = (n1k + n2k)/n Estimated sampling probability in column k

Matrices

A Column-wise covariance

B =

B1 B12

B21 B2

 Row-wise covariance

Bi·, B·j ith row and jth column of B, respectively

P j , defined in (5.40) Proj matrix, calculates observed group means for col j

Probabilities

ζ̃2k = P (UikUjk = 1 | n1k)
Probs conditional on the number of observed values

ζ̃3k = P (U`kUikUjk = 1 | n1k)

and

αmean =
C1

ζ2
minnmin

(
‖B‖1 +

1

ζmin

tr(B)

nmin

)
+ C1K

2 logm

ζ3
min tr(A)

‖A‖2

+ C1K
2 log1/2(m ∨ n)

‖A‖F
ζ3

min tr(A)
+ α

(3.20)

Proofs of Theorems 3.2.1 and 3.2.2. To prove the B-side of these results, we simply apply

Theorem 5.2.1 using the correlation convergence results in Theorem 5.4.1. We perform a

similar application in Section 5.5.

Theorem 5.4.1. Consider data generating random matrices as in (3.1) and (3.2) and sup-

pose Assumptions 1 and 2 hold.
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Let m ∨ n ≥ 3 and αmean < 1/3. Then, with probability at least 1 − 25/(m ∨ n)2 and

Γ̃(B0) as defined in (3.10), we get that

∀i 6= j, |Γ̃ij(B0)− ρij(B0)| ≤ 3αmean

Similarly, with probability at least 1− 27/(m∨n)2 and Γ̂(B0) as defined in (3.15), we get

that

∀i 6= j, |Γ̂ij(B0)− ρij(B0)| ≤ 9
αmean

ζmin

Proof. Using Corollary 5.4.5 and the proof of the first statement proceeds identically to the

proof of Theorem 5.3.2.

The proof of the second statement is similar to the proof of Theorem 5.3.3 using Propo-

sition 5.4.8.

|Γ̂ij(B0)− Γ̃ij(B0)| ≤ |Γ̃ij(B0)|
∣∣∣∣ tr(XX T )

tr(B0)
∑m

i=1 ζiaii

tr(B0)
∑n

i=1 ζ
2
i aii

Sc
− 1

∣∣∣∣
≤ |Γ̃ij(B0)|max

(∣∣∣∣ 1 + αmean

1− αmean/ζmin

− 1

∣∣∣∣, ∣∣∣∣ 1− αmean

1 + αmean/ζmin

− 1

∣∣∣∣)
≤ |Γ̃ij(B0)|max

(
1 + 3

αmean

ζmin

− 1, 1−
(

1− αmean −
αmean

ζmin

))
≤ (1 + 3αmean)3

αmean

ζmin

= 3
αmean

ζmin

+ 9
α2

mean

ζmin

and therefore, when αmean < 1/3,

|Γ̂ij(B0)− ρij(B0)| ≤ |Γ̂ij(B0)− Γ̃ij(B0)|+ |Γ̃ij(B0)− ρij(B0)| ≤ 9
αmean

ζmin
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5.4.1 Concentration results

Define the Gram matrix Ŝ(B) = X̃ X̃ T . We get that

Ŝ(B) =
m∑
k=1

X̃·kX̃ T
·k

=
m∑
k=1

(uk ◦ (I − P k)xk)(ukT ◦ xkT (I − P k)T )

=
m∑
k=1

(ukukT ) ◦ ((I − P k)xkxkT (I − P k)T ) (5.21)

We now consider the (i, j)th entry of this matrix. There are three cases to consider, when

i = j, i 6= j but i and j are in the same group, and when i and j are in different groups.

The following propositions, which we prove in Section 5.4.2, present concentraion results for

each of these cases.

Proposition 5.4.2. For i 6= j, where i and j are both in group g ∈ {1, 2}, we get that, with

probability at least 1− 1m/(n ∨m)c − 24ng/(n ∨m)c for some constant c,

∣∣∣∣∣ Ŝ(B)ij√
biibjjMij

− ρij(B)

∣∣∣∣∣ ≤ C2
1

ζ2
minng

(
max

1≤k≤ng
|Bg
·k|1 +

tr(Bg)

ng

)
+ CK2 logm

ζ3
min tr(A)

‖A‖2

+ CK2 log1/2(m ∨ n)
‖A‖F

ζ3
min tr(A)

+ αoffd

(5.22)

Proposition 5.4.3. For i = j, where i is in group g ∈ {1, 2}, we get that, with probability

at least 1− 1m/(n ∨m)c − 18ng/(n ∨m)c for some constant c,

∣∣∣∣∣ Ŝ(B)ii
biiMii

− 1

∣∣∣∣∣ ≤ C2

ζ2
minng

(
max

1≤k≤ng
|Bg
·k|1 +

1

ζmin

tr(Bg)

ng

)
+ CK2 logm

ζ3
min tr(A)

‖A‖2

+ CK2 log1/2(m ∨ n)
‖A‖F

ζ3
min tr(A)

+ αoffd

(5.23)

Proposition 5.4.4. Let nmin = ming ng. For i 6= j, where i and j are in different groups,
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we get that, with probability at least 1− 1m/(n∨m)c − 18ng/(n∨m)c for some constant c,

∣∣∣∣∣ Ŝ(B)ij√
biibjjMij

− ρij(B)

∣∣∣∣∣ ≤ C2
1

ζ2
minnmin

max
g

max
1≤k≤ng

|Bg
·k|1 + CK2 logm

ζ3
min tr(A)

‖A‖2

+ CK2 log1/2(m ∨ n)
‖A‖F

ζ3
min tr(A)

+ αdiag

(5.24)

We can combine these results with a union bound to obtain the following overall concen-

tration bound.

Corollary 5.4.5. Let nmin = ming ng. Then, with probability at least 1 − 25/(n ∨m)2, the

following event holds simultaneously for all i, j = 1, . . . , n.

∣∣∣∣∣ Ŝ(B)ij√
biibjjMij

− ρij(B)

∣∣∣∣∣ ≤ C2

ζ2
minnmin

max
g

(
max

1≤k≤ng
|Bg
·k|1 +

1

ζmin

tr(Bg)

nmin

)
+ CK2 logm

ζ3
min tr(A)

‖A‖2

+ CK2 log1/2(m ∨ n)
‖A‖F

ζ3
min tr(A)

+ α =: αmean

5.4.2 Concentration proofs

Proof of Proposition 5.4.2. Without loss of generality, assume i and j are in group 1. Define

the standard basis vectors e′i = (1k=i)
n
k=1 ∈ Rn and ei = (1k=i)

n1
k=1 ∈ Rn1 . Then we get that

Ŝ(B)ij =
m∑
k=1

UikUjk(e
′
i − P k

i· )
TxkxkT (e′j − P k

j·)

=
m∑
k=1

UikUjkXikXjk −
m∑
k=1

UikUjk
1

n1k

(eTi X
1
·k(X

1
·k)

TU1
·k)

−
m∑
k=1

UikUjk
1

n1k

(eTj X
1
·k(X

1
·k)

TU1
·k) +

m∑
k=1

UikUjk
1

n2
1k

((U1
·k)

TX1
·k(X

1
·k)

TU1
·k)

=
m∑
k=1

UikUjkXikXjk − SB1 − SB2 + SB3 (5.25)
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Rearranging, we can decompose our excess error over the mean-zero case as

∣∣∣∣∣Ŝ(B)ij −
m∑
k=1

UikUjkXikXjk

∣∣∣∣∣
≤ |ESB1|+ |SB1 − ESB1|+ |ESB2|+ |SB2 − ESB2|+ |ESB3|+ |SB3 − ESB3|

(5.26)

From here, condition on {n1k}mk=1. Note that even after conditioning on the column

counts, for k 6= h we still get that

Uik ⊥ Uih | {n1k} UikUjk ⊥ UihUjh | {n1k}

U`kUikUjk ⊥ U`hUihUjh | {n1k}

Since the conditioning only induces dependences bewteen entries of U in the same column,

but here we always consider entries across different columns.

We then bound the conditional probabilities of these products given fixed column counts

{n1k}. So let ζ̃3k = P (U`kUikUjk = 1 | n1k) for ` 6= i, j and ζ̃2k = P (UikUjk = 1 | n1k). Note

that ζ̃3k ≤ ζ̃2k. Then we can calculate

ζ̃2k = P (UikUjk = 1 | n1k) =
n1k(n1k − 1)

n1(n1 − 1)

So
ζ̃2k

n1k

=
n1k − 1

n1(n1 − 1)
≤ 1

n1

ζ̃2k

n2
1k

≤ 1

n1(n1 − 1)

n1k(n1k − 1)

n2
1k

≤ 2

n2
1

(5.27)

Lemma 5.4.6 bounds each of the terms in (5.26) conditional on fixing {n1k}mk=1. It is

proved later in this section.

Lemma 5.4.6. We get that

|E(SB1 | {n1k})| ≤
2

n1

tr(A)|B1
·i|1 |E(SB2 | {n1k})| ≤

2

n1

tr(A)|B1
·j|1 (5.28)
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Define

τ2 = CK2 logm
1

n1 min

‖A‖2 + CK2 log1/2(m ∨ n)

n1 min

‖A‖F (5.29)

Then, conditional on {n1k}mk=1, each of the following events holds with probability at least

1− 6n1/(n ∨m)c for some constant c,

|SB1 − ESB1| ≤ n1τ2 |SB2 − ESB2| ≤ n1τ2 (5.30)

We can also show that

|E(SB3 | {n1k})| ≤
2

n2
1

tr(A) tr(B1) (5.31)

and that with probability at least 1− 6n1/(n ∨m)c,

|SB3 − ESB3| ≤
n1

n1 min

τ2 (5.32)

Using Lemma 5.4.6, we get that, conditional on {n1k}, with probability at least 1 −

18n1/(n ∨m)c,

∣∣∣∣∣Ŝ(B)ij −
m∑
k=1

UikUjkXikXjk

∣∣∣∣∣ ≤ 4

n1

tr(A) max
1≤k≤n1

|B1
·k|1 +

2

n2
1

tr(A) tr(B1) + n1τ2 (5.33)

The following lemma helps us decondition on {n1k}, which still remains in this bound

through the terms involving n1 min inside τ2.

Lemma 5.4.7. Assume ζmin &
√

log(m ∨ n)/n1 and 1
ζmin

√
3/2
√

log(n ∨m)/n1 < 1/3.

Then for any value τ , we can show that, with probability at least 1− 1/(n ∨m)2,

n1

n1 min

≤ C3
1

ζmin
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Proof. Using Hoeffding’s bound, we can get that, for some constant c,

P

(
n1k

n1

− ζk ≥ −
√

3/2
√

log(n ∨m)/n1

)
≥ 1− 1/(n ∨m)3

=⇒ P

(
n1 min

n1

− ζmin ≥ −
√

3/2
√

log(n ∨m)/n1

)
≥ 1−m/(n ∨m)3

Rearranging, we get that this event also implies

ζmin

n1 min/n1

≤ 1

1− 1
ζmin

√
3/2
√

log(n ∨m)/n1

≤ 1 + (3/2)3/2 1

ζmin

√
log(m ∨ n)

n1

where the last inequality is true for 1
ζmin

√
3/2
√

log(n ∨m)/n1 < 1/3.

We can therefore rewrite

n1

n1 min

=
n1

n1 min

− 1

ζmin

+
1

ζmin

=

(
n1

n1 min

− 1

ζmin

)
+

1

ζmin

=
1

ζmin

(
ζmin

n1 min/n1

− 1

)
+

1

ζmin

≤ C3
1

ζmin

Where the last inequality uses the assumption that ζmin &
√

log(m ∨ n)/n1.

Combining this lemma with (5.33), we get that with probability at least 1−1/(n∨m)2−

18/(n ∨m)2,

∣∣∣∣∣Ŝ(B)ij −
m∑
k=1

UikUjkXikXjk

∣∣∣∣∣ ≤ C2
tr(A)

n1

(
max

1≤k≤n1

|B1
·k|1 +

tr(B1)

n1

)
+ CK2 logm

ζmin

‖A‖2 + CK2 log1/2(m ∨ n)

ζmin

‖A‖F
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Recall that for i 6= j, Mij =
∑m

k=1 akkζ
2
k ≥ ζ2

min tr(A). Now finally can now show that

∣∣∣∣∣ Ŝ(B)ij√
biibjjMij

− ρij(B)

∣∣∣∣∣
≤ 1√

biibjjMij

∣∣∣∣∣Ŝ(B)ij −
m∑
k=1

UikUjkXikXjk

∣∣∣∣∣+

∣∣∣∣∣
∑m

k=1 UikUjkXikXjk√
biibjjMij

− ρij(B)

∣∣∣∣∣
≤ C2

1

ζ2
minn1

(
max

1≤k≤n1

|B1
·k|1 +

tr(B1)

n1

)
+ CK2 logm

ζ3
min tr(A)

‖A‖2

+ CK2 log1/2(m ∨ n)
‖A‖F

ζ3
min tr(A)

+ αoffd

Proof of Lemma 5.4.6. We can rewrite

SB1 =

n1∑
`=1

m∑
k=1

1

n1k

U`kX`kUjkUikXik =

n1∑
`=1

SB1,`

Here we will bound the bias and deviation of each of the SB1,` terms separately using the

Sparse Hanson-Wright results, and then combine them using union bounds. Note that there

may be some looseness in this union bound, and that directly bounding SB1 using the

techniques in Zhou (2019) may help us achieve tighter raters, but we leave this to future

work.

Then we first can calculate the expectation.

E(SB1,` | {n1k}) =


b`i
∑m

k=1
1
n1k
ζ̃3kakk if ` 6= i, j

b`i
∑m

k=1
1
n1k
ζ̃2kakk otherwise

So this is bounded by

|E(SB1,` | {n1k})| ≤ |b`i|max
k

ζ̃2k

n1k

tr(A) ≤ |b`i|
2

n1

tr(A)
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Which implies that

|E(SB1 | {n1k})| ≤
2

n1

tr(A)|B1
·i|1 (5.34)

Now, for ` 6= i, j, we can write

SB1,` =
m∑
k=1

1

n1k

U`kX`kUjkUikXik = (N1/2X`·)
Tdiag(U`· ◦ Ui· ◦ Uj·)(N

1/2Xi·)

= g(N1/2A1/2)Tdiag(U`· ◦ Ui· ◦ Uj·)(N
1/2A1/2)gT

Where N = diag({1/n1k}k).

We then follow the same proof as the off-diagonal case in Theorem 5.3.6, replacing D =

diag(U`· ◦ Ui· ◦ Uj·), A
1/2
0 DA

1/2
0 with (N1/2A1/2)TD(N1/2A1/2), and A with Ã = (ãij) =

A1/2NA1/2. Note that when Theorems 5.3.4 and 5.3.5 are used, here we use the variants

that allow for D0 to be non-symmetric, as we have D0 = N1/2A1/2.

We therefore get that

P (|SB1,` − ESB1,`| > t | {n1k})

≤ 6 exp

−c2 min

 t2

K4

(
m∑
k=1

ζ̃3kã
2
kk +

∑
h6=k

ζ̃3hζ̃3kã
2
hk

)−1

,
t

K2‖Ã‖2




For constant C, let

τ ′ = CK2 logm‖Ã‖2 + CK2 log1/2(m ∨ n)

(
m∑
k=1

ζ̃3kã
2
kk +

∑
h6=k

ζ̃3hζ̃3kã
2
hk

)1/2

Which implies that, for some constant c,

P (|SB1,` − ESB1,`| > τ ′ | {n1k}) ≤
6

(n ∨m)c
(5.35)

When ` = i or j, we follow the same procedure expect with D = diag(Ui· ◦ Uj·), and
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therefore get the same result except for

τ ′′ = CK2 logm‖Ã‖2 + CK2 log1/2(m ∨ n)

(
m∑
k=1

ζ̃2kã
2
kk +

∑
h6=k

ζ̃2hζ̃2kã
2
hk

)1/2

>= τ ′

We let n1 min = mink n1k and define τ2 as follows, where τ2 ≥ τ ′, τ ′′.

τ ′′ = CK2 logm‖Ã‖2 + CK2 log1/2(m ∨ n)

(
m∑
k=1

ζ̃2kã
2
kk +

∑
h6=k

ζ̃2hζ̃2kã
2
hk

)1/2

≤ CK2 logm
1

n1 min

‖A‖2 + CK2 log1/2(m ∨ n)

(
m∑
k=1

1

n2
1 min

a2
kk +

∑
h6=k

1

n2
1 min

a2
hk

)1/2

≤ CK2 logm
1

n1 min

‖A‖2 + CK2 log1/2(m ∨ n)

n1 min

‖A‖F =: τ2 (5.36)

Combining these with a union bound over ` = 1, . . . , n1,

P (|SB1 − ESB1| < n1τ2 | {n1k}) ≥ 1−
n1∑
`=1

P (|SB1,` − ESB1,`| > τ2 | {n1k}) ≥ 1− 6n1

(n ∨m)c
.

So, conditional on {n1k}, with probability at least 1−6n1/(n∨m)c, we get that |SB1−ESB1| ≤

n1τ2.

SB2 is symmetric with SB1, so we can use the same arguments as above for it.

For the last term, we can write

SB3 =

n1∑
`=1

m∑
k=1

1

n2
1k

U`kUjkUikX2
`k =

n1∑
`=1

SB3,`

Then

E(SB3,` | {n1k}) =


b``
∑m

k=1
1
n2
1k
ζ̃3kakk if ` 6= i, j

b``
∑m

k=1
1
n2
1k
ζ̃2kakk otherwise

So

|E(SB3,` | {n1k})| ≤ b``
2

n2
1

tr(A)
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Which implies that

|E(SB3 | {n1k})| ≤
2

n2
1

tr(A) tr(B1)

Using the same concentration arguments as above, we can show that conditional on {n1k},

with probability at least 1− 6n1/(n ∨m)c,

|SB3 − ESB3| ≤
n1

n1 min

τ2

Proof of Proposition 5.4.3. Without loss of generality, assume i is in group 1. Again, define

the standard basis vectors e′i = (1k=i)
n
k=1 ∈ Rn and ei = (1k=i)

n1
k=1 ∈ Rn1 . Then we get that

Ŝ(B)ii =
m∑
k=1

Uik(e
′
i − P k

i· )
TX·kXT

·k(e
′
i − P k

i· )

=
m∑
k=1

UikX2
ik − 2

m∑
k=1

Uik
1

n1k

(eTi X
1
·k(X

1
·k)

TU1
·k)

+
m∑
k=1

Uik
1

n2
1k

((U1
·k)

TX1
·k(X

1
·k)

TU1
·k)

=
m∑
k=1

UikX2
ik − 2SB4 + SB5 (5.37)

Rearranging,

∣∣∣∣∣Ŝ(B)ii −
m∑
k=1

UikX2
ik

∣∣∣∣∣ ≤ 2|ESB4|+ 2|SB4 − ESB4|+ |ESB5|+ |SB5 − ESB5| (5.38)

From here, we follow very similar steps to those taken in the proof of Lemma 5.4.6, some

of which we omit for bevity. We first note that P (Uik = 1 | n1k) = n1k/n1. Then we can

rewrite

SB4 =

n1∑
`=1

m∑
k=1

1

n1k

U`kX`kUikXik =

n1∑
`=1

SB4,`

Note that this is identical to the decomposition of SB1, except that since i = j we have
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that UjkUik = Uik. So following the same steps as the bound of E(SB1 | {n1k}), we get the

same upper bound on the expectation

|E(SB4 | {n1k)}| ≤
2

n1

tr(A)|B1
·i|1

We also follow the same steps as those used to bound |SB1 − ESB1|, replacing D =

diag(U`· ◦ Ui·) when ` 6= i and D = diag(Ui·) when ` = i. This results in the same upper

bound of |SB4 − ESB4| ≤ n1τ2 with probability at least 1− 6n1/(n ∨m)c.

SB5 shares a similar relationship with SB3, so we again follow the same steps. This results

in bounds of

|E(SB5 | {n1k})| ≤
2

n1n1 min

tr(A) tr(B1)

(noting the difference of a factor of n1/n1 min) and

|SB3 − ESB3| ≤
n1

n1 min

τ2

So, following the same steps as in the proof of Proposition 5.4.2, we can therefore show

that

∣∣∣∣∣ Ŝ(B)ii
biiMii

− 1

∣∣∣∣∣ ≤ 1

biiMii

∣∣∣∣∣Ŝ(B)ii −
m∑
k=1

UikX2
ik

∣∣∣∣∣+

∣∣∣∣∑m
k=1 UikX2

ik

biiMii

− 1

∣∣∣∣
≤ C2

ζ2
minn1

(
max

1≤k≤n1

|B1
·k|1 +

1

ζmin

tr(B1)

n1

)
+ CK2 logm

ζ3
min tr(A)

‖A‖2 + CK2 log1/2(m ∨ n)
‖A‖F

ζ3
min tr(A)

+ αoffd

Proof of Proposition 5.4.4. Without loss of generality assume i is in group 1 and j is in

group 2. Define the standard basis vectors e′i = (1k=i)
n
k=1 ∈ Rn, e1

i = (1k=i)
n1
k=1 ∈ Rn1 , and
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e2
i = (1k=i)

n2
k=1 ∈ Rn2 Then we can rewrite

Ŝ(B)ij =
m∑
k=1

UikUjk(e
′
i − P k

i· )
TX·kXT

·k(e
′
j − P k

j·)

=
m∑
k=1

UikUjkXikXjk −
m∑
k=1

UikUjk
1

n2k

(e2T
i X

2
·k(X

2
·k)

TU2
·k)

−
m∑
k=1

UikUjk
1

n1k

(e1T
j X

1
·k(X

1
·k)

TU1
·k)

=
m∑
k=1

UikUjkXikXjk − SB6 − SB7 (5.39)

Note that SB6 and SB7 are identical to SB1 when g = 2, 1, respectively. So we can use the

steps and results in Proposition 5.4.2 and Lemma 5.4.6 to immediately obtain our result.

5.4.3 Mask estimation with demeaning

Define

S̃c =
n

n− 1
tr(X̃ T X̃ ◦ M̂)− 1

n− 1
tr(X̃ T X̃ ) (5.1)

Where, since we are using the demeaned estimators here, we place X with the demeaned X̃

in the standard definition of Sc.

Proposition 5.4.8. Under the events in Proposition 5.3.11 and Proposition 5.4.3, we get

that ∣∣∣∣∣ tr(X̃ T X̃ )

tr(B0)
∑m

i=1 ζiaii
− 1

∣∣∣∣∣ ≤ αmean

and ∣∣∣∣∣ S̃c
tr(B0)

∑n
i=1 ζ

2
i aii
− 1

∣∣∣∣∣ ≤ 1

ζmin

αmean

Proof. First note that tr((U ◦ X)T (U ◦ X)) is equivalent to estimator studied in Proposi-

tion 5.3.11, where there is no mean. Then we can use the triangle inequality to decompose
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the excess error of tr(X̃ T X̃ ) to the sum of errors of the diagonal terms.

|tr(X̃ T X̃ )− tr((U ◦ X)T (U ◦ X))| =

∣∣∣∣∣
n∑
i=1

Ŝ(B)ii −
m∑
k=1

UikX2
ik

∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣∣Ŝ(B)ii −
m∑
k=1

UikX2
ik

∣∣∣∣∣ ≤ tr(B0)
m∑
i=1

ζiaiiαmean

Where the last inequality uses Proposition 5.4.3 since the second-to-last term is the same as

the LHS of (5.38). We can therefore use Proposition 5.3.11 to show that

|tr(X̃ T X̃ )− tr(B0)
m∑
i=1

ζiaii|

≤ |tr(X̃ T X̃ )− tr((U ◦ X)T (U ◦ X))|+ |tr((U ◦ X)T (U ◦ X))− tr(B0)
m∑
i=1

ζiaii|

≤ tr(B0)
m∑
i=1

ζiaiiαmean +
m∑
i=1

ζiaii‖B0‖Fα

Implying that ∣∣∣∣∣ tr(X̃ T X̃ )

tr(B0)
∑m

i=1 ζiaii
− 1

∣∣∣∣∣ ≤ αmean + α
‖B0‖F
tr(B0)

≤ cαmean

For S̃c, we will bound the error of tr(X̃ T X̃ ) ◦ M̂ by the error of tr(X̃ T X̃ ). To do this,
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note that

tr(X̃ T X̃ ) =
m∑
k=1

X̃ T
·k X̃·k

=
m∑
k=1

(U·k ◦ (I − P k)X·k)T (U·k ◦ (I − P k)X·k)

=
m∑
k=1

(U·k ◦ (I − P k)X·k)T (U·k ◦ (I − P k)X·k)

=
m∑
k=1

(U·k ◦ X·k − U·k ◦ P kX·k)T (U·k ◦ X·k − U·k ◦ P kX·k)

= tr((U ◦ X)T (U ◦ X))

− 2
m∑
k=1

(U·k ◦ P kX·k)T (U·k ◦ X·k) +
m∑
k=1

(U·k ◦ P kX·k)T (U·k ◦ P kX·k)

= tr((U ◦ X)T (U ◦ X))

−
m∑
k=1

1

n1k

(
n1∑
`=1

U1
`kX1

`k

)2

−
m∑
k=1

1

n2k

(
n2∑
`=1

U2
`kX2

`k

)2

Similarly,

tr(X̃ T X̃ ◦ M̂) =
m∑
k=1

X̃ T
·k X̃·kζ̂k

= tr((U ◦ X)T (U ◦ X) ◦ M̂)

−
m∑
k=1

ζ̂k
n1k

(
n1∑
`=1

U1
`kX1

`k

)2

−
m∑
k=1

ζ̂k
n2k

(
n2∑
`=1

U2
`kX2

`k

)2
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and therefore

|tr(X̃ T X̃ ◦ M̂)− tr((U ◦ X)T (U ◦ X) ◦ M̂)|

=
m∑
k=1

ζ̂k
n1k

(
n1∑
`=1

U1
`kX1

`k

)2

+
m∑
k=1

ζ̂k
n2k

(
n2∑
`=1

U2
`kX2

`k

)2

≤
m∑
k=1

1

n1k

(
n1∑
`=1

U1
`kX1

`k

)2

+
m∑
k=1

1

n2k

(
n2∑
`=1

U2
`kX2

`k

)2

= |tr(X̃ X̃ T )− tr((U ◦ X)T (U ◦ X))|

So if we let Sc be the oracle estimator with perfect demaning (as studied in Section 5.3.3),

we can show that

|S̃c − Sc| ≤
n

n− 1
|tr(X̃ T X̃ ◦ M̂)− tr((U ◦ X)T (U ◦ X) ◦ M̂)|

− 1

n− 1
|tr(X̃ T X̃ )− tr((U ◦ X)T (U ◦ X))|

≤ |tr(X̃ T X̃ )− tr((U ◦ X)T (U ◦ X))| ≤ tr(B0)
m∑
i=1

ζiaiiαmean

Using Proposition 5.3.11, we can therefore show that

∣∣∣∣∣ S̃c
tr(B0)

∑n
i=1 ζ

2
i aii
− 1

∣∣∣∣∣ ≤
∑n

i=1 ζiaii∑n
i=1 ζ

2
i aii

αmean + α ≤ 1

ζmin

αmean

5.5 Estimation of A with unknown group means

For convenience we restate our data model and some necessary notation for this section.

Assume our rows are sorted by group. Denote

U =

U1

U2

 , X =

X1

X2

 , where U1,X1 ∈ Rn1×m and U2,X2 ∈ Rn2×m
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Table 5.2: Notation

Notation Meaning

Sample Sizes

n = n1 + n2 Total number of rows

n1, n2 Number of rows per group

n1k =
∑n1

i=1 Uik, n2k =
∑n

i=n1+1 Uik Number of observed values per group for column k

n1k` =
∑n1

i=1 UikUi`, n2k` =
∑n

i=n1+1 UikUi` Number of times cols k, ` are both observed per group

n1min = mink n1k, n2min = mink n2k Minimum number of observed values per group

ζ̂k = (n1k + n2k)/n Estimated sampling probability in column k

Matrices

A Column-wise covariance

B =

B1 B12

B21 B2

 Row-wise covariance

Bi·, B·j ith row and jth column of B, respectively

P j , defined in (5.40) Proj matrix, calculates observed group means for col j

Let n1j, n2j be the number of observed values for variables j in group 1 and 2, respectively.

Then we note that

X̃·j = uj ◦ (I − P j)X·j where P j =

 1
n1j

~1n1U1T
·j 0

0 1
n2j

~1n2U2T
·j

 (5.40)

and that (I − P j)X·j = (I − P j)xj.

Recall that for some absolute constants C,C2 we define

β = CK2 log n‖B0‖2

ζmin tr(B0)
+ CK2 log1/2(m ∨ n)√

n

1

ζmin

√
n‖B0‖F
tr(B0)

(3.19)
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and

βmean = C2
1

ζmin tr(B0)

(
tr(B1)

n1

+
tr(B2)

n2

)
+ C2

1

ζmin tr(B0)

(
1

n1

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+
1

n2

∣∣∣∣∣∑
k 6=`

B2
k`

∣∣∣∣∣
)

+ C2K
2 log n

ζ2
min

‖B1‖2 + ‖B2‖2

tr(B0)
+ C2K

2 log1/2(m ∨ n)

ζ
5/2
min

‖B1‖F + ‖B2‖F
tr(B0)

+ β

(3.21)

Proofs of Theorems 3.2.1 and 3.2.2. Just as in Section 5.5, to prove the A-side of these

results, we simply apply Theorem 5.2.1 using the correlation convergence results in Theo-

rem 5.5.1.

5.5.1 Correlation results

Theorem 5.5.1. Consider data generating random matrices as in (3.1) and (3.2). Define

ζmin = minj=1,...,m ζj. Assume n1, n2 ≡ n and ζmin &
√

log(m∨n)
n

. Let C be some absolute

constant, and define

βmean = C
1

ζmin tr(B0)

(
tr(B1)

n1

+
tr(B2)

n2

)
+ C

1

ζmin tr(B0)

(
1

n1

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+
1

n2

∣∣∣∣∣∑
k 6=`

B2
k`

∣∣∣∣∣
)

+ CK2 log n

ζ2
min

‖B1‖2 + ‖B2‖2

tr(B0)
+ CK2 log1/2(m ∨ n)

ζ
5/2
min

‖B1‖F + ‖B2‖F
tr(B0)

+ β

(3.21)

Let m ∨ n ≥ 3. Then, with probability at least 1 − 26/(m ∨ n)2, for βmean < 1/3, and

Γ̃(A0) as defined in (3.7), we get that

∀i 6= j, |Γ̃ij(A0)− ρij(A0)| ≤ 3βmean

Similarly, with probability at least 1− 26/(m∨n)2 and Γ̂(A0) as defined in (3.14), we get

that

∀i 6= j, |Γ̂ij(A0)− ρij(A0)| ≤ 12β + 3βmean.

118



Proof. Using Proposition 5.5.2 the proof of the first statement proceeds identically to the

proof of Theorem 5.3.2.

From the proof of Theorem 5.3.3 we know that, with probability at least 1−2/(m∨n)2,

∣∣∣∣∣∣
√
ζiζj√
ζ̂iζ̂j

− 1

∣∣∣∣∣∣ ≤ 6β (5.41)

And therefore, using Proposition 5.5.2, we get that with high probability,

|Γ̂ij(A0)− ρij(A0)| ≤ |Γ̂ij(A0)− Γ̃ij(A0)|+ |Γ̃ij(A0)− ρij(A0)|

≤ Γ̃ij(A0)

∣∣∣∣∣∣
√
ζiζj√
ζ̂iζ̂j

− 1

∣∣∣∣∣∣+ 3βmean

≤ (1 + 3βmean)6β + 3βmean

= 6β + 3βmean + 18ββmean ≤ 12β + 3βmean

5.5.2 Covariance concentration

Consider the the (i, j)-th entry of Ŝ(A).

Ŝ(A)ij = X T
cen,iXcen,j

= (X T
i (I − P i)T ◦ uiT )(uj ◦ (I − P j)Xj)

= xiT (I − P i)Tdiag(ui ◦ uj)(I − P j)xj (5.42)

Proposition 5.5.2. Assume ζmin &
√

log(m ∨ n)/nmin and 1
ζmin

√
3/2
√

log(n ∨m)/nmin <

1/3. Recall that Njj = tr(B0)ζj for all j and Nij = ζiζj tr(B0) for all i 6= j. Then with
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probability at least 1− 26/(n ∨m)2, the following event holds simultaneously for all i, j.

∣∣∣∣∣ Ŝ(A)ij√
aiiajjNij

− ρij(A)

∣∣∣∣∣
≤ C

1

ζmin tr(B0)

(
tr(B1)

n1

+
tr(B2)

n2

)
+ C

1

ζmin tr(B0)

(
1

n1

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+
1

n2

∣∣∣∣∣∑
k 6=`

B2
k`

∣∣∣∣∣
)

+ CK2 log n

ζ2
min

‖B1‖2 + ‖B2‖2

tr(B0)
+ CK2 log1/2(m ∨ n)

ζ
5/2
min

‖B1‖F + ‖B2‖F
tr(B0)

+ β := βmean

Proof. For now we consider the matrix from the center of the quadratic form (5.42). We can

write

(I − P i)Tdiag(ui ◦ uj)(I − P j) = diag(ui ◦ uj)−

D1ij 0

0 D2ij


where

D1ij = −diag(u1i ◦ u1j)

(
1

n1j

~1n1u
1jT

)
−
(

1

n1i

~1n1u
1iT

)T
diag(u1i ◦ u1j)

+

(
1

n1i

~1n1u
1iT

)T
diag(u1i ◦ u1j)

(
1

n1j

~1n1u
1jT

)
D2ij = −diag(u2i ◦ u2j)

(
1

n2j

~1n2u
2jT

)
−
(

1

n2i

~1n2u
1iT

)T
diag(u2i ◦ u2j)

+

(
1

n2i

~1n2u
1iT

)T
diag(u2i ◦ u2j)

(
1

n2j

~1n2u
2jT

)

We then get that, for k 6= `,

D1ij
kk =

n1ij − n1i − n1j

n1in1j

u1i
k u

1j
k

D1ij
k` =

n1ij

n1in1j

u1i
k u

1j
` −

1

n1i

u1i
` u

1i
k u

1j
` −

1

n1j

u1j
k u

1i
k u

1j
`
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So for i 6= j, we can decompose our excess error as

Ŝ(A)ij − xiTdiag(ui ◦ uj)xj =

n1∑
k=1

D1ij
kk x

1i
k x

1j
k +

∑
k 6=`

D1ij
k` x

1i
k x

1j
`

+

n2∑
k=1

D2ij
kk x

2i
k x

2j
k +

∑
k 6=`

D2ij
k` x

2i
k x

2j
`

= S1
A1 + S1

A2 + S2
A1 + S2

A2

So

|Ŝ(A)ij − xiTdiag(ui ◦ uj)xj| ≤ |S1
A1|+ |S1

A2 − ES1
A2|+ |ES1

A2|

+ |S2
A1|+ |S2

A2 − ES2
A2|+ |ES2

A2|
(5.43)

We first consider S1
A1 and S2

A1.

S1
A1 =

n1∑
k=1

D1ij
kk x

1i
k x

1j
k =

n1ij − n1i − n1j

n1in1j

n1∑
k=1

u1i
k u

1j
k x

1i
k x

1j
k (5.44)

Lemma 5.5.3. For g = 1, 2, we can bound, for all i 6= j simultaneously,

|SgA1| ≤ C(ζi + ζj)
tr(Bg)

ng
|aij|+ CK2 1

ng(ζi ∧ ζj)
log n‖Bg‖2

√
aiiajj

+ CK2 1

ng
√
ζi ∧ ζj

log1/2(m ∨ n)‖Bg‖F
√
aiiajj

with probability at least 1− 7/(n ∨m)2.

Proof. Without loss of generality assume g = 1. From Lemma 5.3.8, we get that

∣∣∣∣∣
n1∑
k=1

u1i
k u

1j
k x

1i
k x

1j
k − E

n1∑
k=1

u1i
k u

1j
k x

1i
k x

1j
k

∣∣∣∣∣
≤ CK2 log n‖B1‖2

√
aiiajj + CK2 log1/2(m ∨ n)‖B1‖F

√
ζiζj
√
aiiajj

Note that, modifying the proof of Lemma 5.4.7 slightly, we can also show that, for all i, j
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simultaneously,

∣∣∣∣n1ij − n1i − n1j

n1in1j

∣∣∣∣ ≤ n1i + n1j

n1in1j

=
1

n1i

+
1

n1j

≤ C3

n1ζi
+

C3

n1ζj
=
C3

n1

ζi + ζj
ζiζj

≤ C3

n1

1

ζi ∧ ζj

holds with probability at least 1− 1/(n ∨m)2.

Therefore, we can combine these with a union bound to get that, for all i 6= j, with

probability at least 1− 7/(n ∨m)2, the following holds.

|S1
A1| ≤

∣∣∣∣n1ij − n1i − n1j

n1in1j

∣∣∣∣
∣∣∣∣∣
n1∑
k=1

u1i
k u

1j
k x

1i
k x

1j
k

∣∣∣∣∣
≤ C3

n1

ζi + ζj
ζiζj

(∣∣∣∣∣E
n1∑
k=1

u1i
k u

1j
k x

1i
k x

1j
k

∣∣∣∣∣+ CK2 log n‖B1‖2
√
aiiajj

+ CK2 log1/2(m ∨ n)‖B1‖F
√
ζiζj
√
aiiajj

)

≤ C3

n1

(ζi + ζj)tr(B
1)|aij|+ CK2 log n

n1

1

ζi ∧ ζj
‖B1‖2

√
aiiajj

+ CK2 log1/2(m ∨ n)

n1

‖B1‖F
√
ζiζj

ζi ∧ ζj
√
aiiajj

≤ C3

n1

(ζi + ζj)tr(B
1)|aij|+ CK2 log n

n1

1

ζi ∧ ζj
‖B1‖2

√
aiiajj

+ CK2 log1/2(m ∨ n)

n1

‖B1‖F
1√
ζi ∧ ζj

√
aiiajj

Lemma 5.5.4. For g = 1, 2, we can bound, for all i 6= j simultaneously,

|SgA2| ≤ C
1

ngζmin

|aij|

∣∣∣∣∣∑
k 6=`

Bg
k`

∣∣∣∣∣+ CK2 1

ζmin

log n‖Bg‖2
√
aiiajj

+ CK2 1

ζmin

log1/2(m ∨ n)‖Bg‖F
√
aiiajj

with probability at least 1− 20/(n ∨m)2.
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Proof. Without loss of generality assume g = 1. We separate S1
A2, into three terms

S1
A2 =

∑
k 6=`

D1ij
k` x

1i
k x

1j
` =

n1ij

n1in1j

∑
k 6=`

u1i
k u

1j
` x

1i
k x

1j
` −

1

n1i

∑
k 6=`

u1i
` u

1i
k u

1j
` x

1i
k x

1j
`

− 1

n1j

∑
k 6=`

u1j
k u

1i
k u

1j
` x

1i
k x

1j
`

=
n1ij

n1in1j

S1
A2,1 −

1

n1i

S1
A2,2 −

1

n1j

S1
A2,3 (5.45)

Concentration comes from the following proposition

Proposition 5.5.5. With probability at least 1− 19/(n∨m)2, we get that the following hold

simultaneously for all i 6= j.

∣∣S1
A2,1 − ES1

A2,1

∣∣ ≤ CK2 log n‖B1‖2n1(ζi ∧ ζj)
√
aiiajj

+ CK2 log1/2(m ∨ n)‖B1‖Fn1

√
ζiζj
√
aiiajj∣∣S1

A2,2 − ES1
A2,2

∣∣ ≤ CK2 log n‖B1‖2n1(ζi ∧ ζj)
√
aiiajj

+ CK2 log1/2(m ∨ n)‖B1‖Fn1

√
ζiζj
√
aiiajj∣∣S1

A2,3 − ES1
A2,3

∣∣ ≤ CK2 log n‖B1‖2n1(ζi ∧ ζj)
√
aiiajj

+ CK2 log1/2(m ∨ n)‖B1‖Fn1

√
ζiζj
√
aiiajj

Again, a slight modification to Lemma 5.4.7 shows that, for all i, j simultaneously

∣∣∣∣ n1ij

n1in1j

∣∣∣∣ ≤ ∣∣∣∣ 1

n1i

∣∣∣∣, ∣∣∣∣ 1

n1j

∣∣∣∣ ≤ 1

n1i ∧ n1j

≤ C3
1

n1(ζi ∧ ζj)
(5.46)

holds with probability at least 1− 1/(n ∨m)2.
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So we get that, with probability at least 1−20/(n∨m)2, the following holds for all i 6= j.

|S1
A2| ≤

∣∣∣∣ n1ij

n1in1j

S1
A2,1

∣∣∣∣+

∣∣∣∣ 1

n1i

S1
A2,2

∣∣∣∣+

∣∣∣∣ 1

n1j

S1
A2,3

∣∣∣∣
≤ n1ij

n1in1j

(|ES1
A2,1|+ |S1

A2,1 − ES1
A2,1|) +

1

n1i

(|ES1
A2,2|+ |S1

A2,2 − ES1
A2,2|)

+
1

n1j

(|ES1
A2,3|+ |S1

A2,3 − ES1
A2,3|)

≤ C3
1

n1(ζi ∧ ζj)
(|ES1

A2,1|+ |ES1
A2,2|+ |ES1

A2,3|

+ |S1
A2,1 − ES1

A2,1|+ |S1
A2,2 − ES1

A2,2|+ |S1
A2,3 − ES1

A2,3|)

≤ C3
ζiζj

n1(ζi ∧ ζj)

(
|aij|

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+ ζi|aij|

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+ ζj|aij|

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣
)

+ CK2 1

n1(ζi ∧ ζj)
log n‖B1‖2n1(ζi ∧ ζj)

√
aiiajj

+ CK2 1

n1(ζi ∧ ζj)
log1/2(m ∨ n)‖B1‖Fn1

√
ζiζj
√
aiiajj

≤ C
ζiζj

n1(ζi ∧ ζj)
|aij|

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+ CK2 log n‖B1‖2
√
aiiajj

+ CK2 1√
ζi ∧ ζj

log1/2(m ∨ n)‖B1‖F
√
aiiajj

Putting these all together, we get that

|Ŝ(A)ij − xiTdiag(ui ◦ uj)xj|

≤ C(ζi + ζj)|aij|
(

tr(B1)

n1

+
tr(B2)

n2

)
+
ζiζj|aij|
(ζi ∧ ζj)

(
1

n1

∣∣∣∣∣∑
k 6=`

B1
k`

∣∣∣∣∣+
1

n2

∣∣∣∣∣∑
k 6=`

B2
k`

∣∣∣∣∣
)

+ CK2 log1/2(m ∨ n)√
ζi ∧ ζj

(
‖B1‖F
n1

+
‖B2‖F
n2

)
√
aiiajj

+ CK2 log1/2(m ∨ n)√
ζi ∧ ζj

(‖B1‖F + ‖B2‖F )
√
aiiajj

+ CK2 log n

ζi ∧ ζj

(
‖B1‖2

n1

+
‖B2‖2

n2

)
√
aiiajj + CK2 log n(‖B1‖2 + ‖B2‖2)

√
aiiajj
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The proof is completed by noting that

|Ŝ(A)ij − ρij(A)
√
aiiajjNij|

≤ |Ŝ(A)ij − xiTdiag(ui ◦ uj)xj|+ |xiTdiag(ui ◦ uj)xj − ρij(A)
√
aiiajjNij|

and using Lemma 5.3.8 with the last term and then rearranging.

For i = j, we get that

Ŝ(A)ii − xiTdiag(ui)xi = −
n1∑
k=1

1

n1i

u1i
k (x1i

k )2 −
∑
k 6=`

1

n1i

u1i
k u

1i
` x

1i
k x

1i
`

−
n2∑
k=1

1

n2i

u2i
k (x2i

k )2 −
∑
k 6=`

1

n2i

u2i
k u

2i
` x

2i
k x

2i
`

The result is then shown by following the same steps as the i 6= j case, though often simplified

due to the reduction of terms.

Proof of Proposition 5.5.5. We start by rewriting S1
A2,1.

S1
A2,1 = (x1i)T (u1iu1jT − diag(u1iu1jT ))x1j

= (x1i)TDx1j (5.47)

Without loss of generality, let i = 1, j = 2. From here, we condition on U (and therefore D),

holding the sparsity pattern of our data constant.

We concatenate the vectors x11, x12 to form (x11, x12) ∈ R2n1 with covariance matrix

A0,(1,2) ⊗ B0. We g1, . . . , g2n1

i.i.d∼ Z for Z subgaussian with subgaussian constant K, mean

zero, and unit variance, and let cii cij

cij cjj


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be the symmetrix square root of A0,(1,2) and define

D′(i, j) =

ciicij ciicjj

cijcij cijcjj

⊗B1/2
0 DB

1/2
0 .

Then

S1
A2,1 = (x1i)TDx1j =

2n1∑
k=1

2n1∑
`=1

D′k`(1, 2)gkg`

where

E

2n1∑
k=1

2n1∑
`=1

D′k`(1, 2)gkg` = tr(D′(1, 2)) = a12 tr(B0D).

For the concentration, we will need the following proposition, which is a reflection of

Proposition 5.3.9 for this direction.

Proposition 5.5.6. Let A0,(i,j) = (aij)
2
i,j=1 ∈ R2×2 be the positive definite submatrix of A0

with rows and columns i, j. Denote it’s unique symmetric square root as

cii cij

cij cjj


Define

D′(i, j) = B
1/2
0 DB

1/2
0 ⊗

ciicij ciicjj

cijcij cijcjj


Then

‖D′(i, j)‖2 ≤
√
aiiajj‖B1/2

0 DB
1/2
0 ‖2 (5.48)

‖D′(i, j)‖F ≤
√
aiiajj‖B1/2

0 DB
1/2
0 ‖F (5.49)

(5.50)
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And, recalling that ρij(A0) = aij/
√
aiiajj,

∣∣∣∣ρij(A0)
ciicjj + c2

ij

aij

∣∣∣∣ < 1 (5.51)

Proof. This follows the same proof as Proposition 5.3.9.

If we partition g = (g1, g2), consider the following quadratic forms

Z = g1(B
1/2
0 DB

1/2
0 )gT1 − Eg1(B

1/2
0 DB

1/2
0 )gT1

Z ′ = g2(B
1/2
0 DB

1/2
0 )gT2 − Eg2(B

1/2
0 DB

1/2
0 )gT2

U = g1(B
1/2
0 DB

1/2
0 )gT2 − Eg1(B

1/2
0 DB

1/2
0 )gT2

For Z,Z ′ independent.

Then

1
√
aiiajj

gD′(i, j)gT − E 1
√
aiiajj

gD′(i, j)gT

≤
∣∣∣∣ aij√
aiiajj

(
1

aij
(gD′(i, j)gT − EgD′(i, j)gT )

)∣∣∣∣
≤ |ρij(A0)|

(∣∣∣∣ciicijaij
Z +

cijcjj
aij

Z ′
∣∣∣∣+

∣∣∣∣ciicjj + c2
ij

aij
U

∣∣∣∣)
= |ρij(A0)|

(
|s1Z + s2Z

′|+
∣∣∣∣ciicjj + c2

ij

aij
U

∣∣∣∣)
≤ |ρij(A0)||s1Z + s2Z

′|+ |U |

where s1 = (ciicij)/aij, s2 = (cijcjj)/aij, and s1, s2 ∈ [0, 1] with s1 + s2 = 1 since A
1/2
0,(i,j) is

positive definite and ciicij + cijcjj = tr(cic
T
j ) = aij.
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Therefore, we can use this to get that

P

(∣∣∣∣ S1
A2,1√
aiiajj

− E
S1
A2,1√
aiiajj

∣∣∣∣ > t

)
= P

(∣∣∣∣gD′(i, j)gT√
aiiajj

− EgD
′(i, j)gT
√
aiiajj

∣∣∣∣ > t

)
≤ P (|ρij(A0)||s1Z + s2Z

′| > t/2) + P (|U | > t/2)

(a)

≤ P (|ρij(A0)||Z| > t/2) + P (|ρij(A0)||Z ′| > t/2) + P (|U | > t/2)

=: p1 + p2 + p3

where (a) is because s1, s2 ∈ [0, 1] and s1 + s2 = 1 means that |s1Z + s2Z
′| > k =⇒ |Z| >

k and/or |Z ′| > k.

We note that p1 = P (|ρij(B0)||Z| > t/2) ≤ P (|Z| > t/2). Then we can apply Theo-

rem 1.1 from Rudelson and Vershynin (2013) to p1, p2, and p3
1 with Proposition 5.5.6 and

Lemma 5.5.7 to get that

p1, p2, p3 ≤ 2 exp

(
−cmin

(
t2

K4‖B‖2
Fn1in1j

,
t

K2‖B‖2 min(n1in1j)

))
.

So after adding these probabilities, we can show that, conditional on U, with probability

at least 1− 6/(n ∨m)c,

∣∣S1
A2,1 − ES1

A2,1

∣∣
≤ √aiiajj

(
CK2 log n‖B1‖2 min(n1i, n1j) + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

)
≤ CK2 log n‖B1‖2 min(n1i, n1j)

√
aiiajj + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

√
aiiajj

1Note that for U , since g1 and g2 are independnet, we actually only need the easier version of Theorem 1.1
that does not require the decoupling argument.
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Rewriting S1
A2,2, we can similarly show that

S1
A2,2 =

∑
k 6=`

u1i
` u

1i
k u

1j
` x

1i
k x

1j
`

= (x1i)T
(
u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )

)
x1j

Following the same steps as the above proof for S1
A2,2, we get that

∣∣S1
A2,2 − ES1

A2,2

∣∣
≤ √aiiajj

(
CK2 log n‖B1‖2 min(n1i, n1j) + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

)
≤ CK2 log n‖B1‖2 min(n1i, n1j)

√
aiiajj + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

√
aiiajj

The argument for S1
A2,3 is symmetric to that of S1

A2,2. Then by using a union bound over

these events, we get that, with probability at least 1− 18/(n∨m)2, conditional on the mask

U we get that the following hold simultaneously for all i 6= j.

∣∣S1
A2,1 − ES1

A2,1

∣∣ ≤ CK2 log n‖B1‖2(n1i ∧ n1j)
√
aiiajj + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

√
aiiajj∣∣S1

A2,2 − ES1
A2,2

∣∣ ≤ CK2 log n‖B1‖2(n1i ∧ n1j)
√
aiiajj + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

√
aiiajj∣∣S1

A2,3 − ES1
A2,3

∣∣ ≤ CK2 log n‖B1‖2(n1i ∧ n1j)
√
aiiajj + CK2 log1/2(m ∨ n)‖B1‖F

√
n1in1j

√
aiiajj

From here, using Hoeffding’s bound, we can get that,

P

(
n1i

n1

− ζi ≤
√

3/2
√

log(n ∨m)/n1

)
≥ 1− 1/(n ∨m)3

=⇒ P

(
n1i

n1

− ζi ≤
√

3/2
√

log(n ∨m)/n1 ∀ i
)
≥ 1− 1m/(n ∨m)3

Rearranging, we get that this event also implies

n1i

n1ζi
≤
√

3/2
1

ζi

√
log(n ∨m)

n1

≤ C4
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Where the last inequality uses the assumption that ζmin &
√

log(m ∨ n)/n1.

Combining this with the above event with a union bound provides our final result.

5.5.3 Additional results

Lemma 5.5.7. We can show that

‖(B1)1/2(u1iu1jT − diag(u1iu1jT ))(B1)1/2‖F ≤ ‖B1‖2
√
n1in1j

‖(B1)1/2(u1iu1jT − diag(u1iu1jT ))(B1)1/2‖2 ≤ ‖B1‖2 min(n1i, n1j)

and, similarly,

‖(B1)1/2
(
u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )

)
(B1)1/2‖F ≤ ‖B1‖2

√
n1in1j

‖(B1)1/2
(
u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )

)
(B1)1/2‖2 ≤ ‖B1‖2 min(n1i, n1j).

Proof of Lemma 5.5.7. We begin by showing

‖u1iu1jT − diag(u1iu1jT )‖F =
√
|u1i||u1j| − |u1i ◦ u1j| ≤ √n1in1j

‖u1iu1jT − diag(u1iu1jT )‖2 ≤ min(|u1i|, |u1j|) ≤ min(n1i, n1j) (5.52)

and

‖u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )‖F =
√
|u1i||u1i ◦ u1j| − |u1i ◦ u1j| ≤ √n1in1j

‖u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )‖2 ≤ |ui ◦ uj| ≤ min(n1i, n1j). (5.53)

The Frobenius norm bounds come from a simple counting exercise; every element of

u1iu1jT − diag(u1iu1jT ) and u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T ) is either a 1 or a 0, so the

squared frobenius norm of each matrix is the number of 1’s in that matrix.

For the first spectral norm bound (5.52), we note that since all of the elements are 1 or
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0, adding more 1’s to the matrix will never decrease the spectral norm. So

‖u1iu1jT − diag(u1iu1jT )‖2 ≤ ‖u1i~1Tn‖2 = |u1i|

‖u1iu1jT − diag(u1iu1jT )‖2 ≤ ‖~1nu1jT‖2 = |u1j|.

For the second spectral norm bound (5.53), we can similarly show that

‖u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )‖2 ≤ ‖~1n(u1i ◦ u1j)T‖2 = |u1i ◦ u1j|

≤ min(|u1i|, |u1j|)

To get the final bounds, we bound each of the norms as

‖(B1)1/2(u1iu1jT − diag(u1iu1jT ))(B1)1/2‖F

≤ ‖(B1)1/2‖2‖u1iu1jT − diag(u1iu1jT )‖F‖(B1)1/2‖2 ≤ ‖B1‖2
√
n1in1j

‖(B1)1/2(u1iu1jT − diag(u1iu1jT ))(B1)1/2‖2

≤ ‖(B1)1/2‖2‖u1iu1jT − diag(u1iu1jT )‖2‖(B1)1/2‖2 ≤ ‖B1‖2 min(n1i, n1j)

and

‖(B1)1/2
(
u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )

)
(B1)1/2‖F

≤ ‖(B1)1/2‖2‖u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )‖F‖(B1)1/2‖2

≤ ‖B‖2
√
n1in1j

‖(B1)1/2
(
u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )

)
(B1)1/2‖2

≤ ‖(B1)1/2‖2‖u1i(u1i ◦ u1j)T − diag(u1i(u1i ◦ u1j)T )‖2‖(B1)1/2‖2

≤ ‖B‖2 min(n1i, n1j).
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CHAPTER VI

Future Work

6.1 Matrix-variate binary data

We present some initial methodology for using our matrix-variate graph estimators for a

Kronecker-product Ising model in Chapter IV. Although we present some simulation evidence

that we can indeed recover the structure of binary graphical models, there are no theoretical

results for this setting that we know of. We are interested in developing more theoretical

justifications for using this method and the approximations involved, akin to extending the

work of Banerjee et al. (2008) to the matrix-variate case, as well as adapting other estimators

designed for use with binary and discrete data. In particular, we are interested in models

that utilize underlying Gaussian latent variables that are then discretized (e.g. Suggala et al.,

2017; Fan et al., 2017; Feng and Ning , 2019) and in how we might replace the i.i.d. latent

factors with matrix-variate versions.

6.2 Theoretical results for flexible mean estimation with depen-

dence

The two-group mean structure with known group labels studied in Chapters III and V is

quite restrictive even though it is commonly used. Although we provide some guidance on

methods to use when more flexible mean estimation is desired, there is a considerable gap
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here in terms of theoretical results. Developing theory for the low-rank estimator may be

out of reach at the current moment, but it may be possible to provide guarantees for two- or

K-group means with unknown labels by first applying a spectral clustering step to estimate

group labels. The setting in Blum et al. (2007) is a different setting than ours, but provides

a framework for the theoretical tools and results that would be needed.

6.3 Extensions to more general missing structures

Recently, Pavez and Ortega (2019) and Park et al. (2020) have taken steps towards

showing results for covariance estimation with more general missing structures, though both

use settings with independent observations. We make two fairly strong assumptions on

the missingness structure, that whether each entry is observed is independent of whether

other entries are observed, and that the missingness is independent of the data (missing

completely at random, or MCAR). These assumptions are standard, but in application are

rarely expected to be fully satisfied. Extensions of our theory in the matrix-variate case

to allow for relaxations of these assumptions would allow our methods to be used with

significantly more confidence in a wide range of applications.
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APPENDIX A

Appendices to Precision Matrix Estimation with Noisy

and Missing Data

A.1 Proofs of Propositions

Proof of Proposition 1. The optimization problem (2.6) is equivalently

min
Θ,V

φ(Θ, V ) = min
Θ,V
{f1(Θ) + f2(V )} s.t. Avec(V ) +Bvec(Θ) = 0 (A.1)

where f1(Θ) = tr(Γ̂nΘ)− log det(Θ) + 1XR(V ), f2(V ) = gλ(V ), A = −Im2 , and B = Im2 .

Boyd et al. (2010) show that if f1 and f2 are proper convex functions and if (A.1) is

solveable then ADMM converges in terms of the objective value φ(Θt, V t) → φ∗ and dual

variable Λt → Λ∗. Bertsekas and Tsitsiklis (1989, Proposition 4.2) and Mota et al. (2011)

show that if in addition A and B have full column rank then we get convergence of the

primal iterates Θt → Θ∗ and V t → V ∗, where (Θ∗, V ∗) is the solution to (A.1).

Before we prove Proposition 2, we first define directional derivatives and stationary points.

Definition. The directional derivative of a lower semi-continuous function h at Θ in the
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direction ∆ is

h′(Θ; ∆) = lim
t↘0

h(Θ + t∆)− h(Θ)

t
.

Note that we allow h′(Θ; ∆) = +∞. We say that Θ is a stationary point of h if it satisfies

the first-order necessary conditions to be a local extrema, i.e.

h′(Θ; ∆) ≥ 0 for all directions ∆ ∈ Rm×m

Note that this coincides with the definition of stationary point used in Loh and Wain-

wright (2017), though they use slightly different notation. Also note that h′(Θ; ∆) =

〈∇h(Θ),∆〉 when h is continuously differentiable.

Proof of Proposition 2. From the first-order necessary conditions of the subproblems (2.8)-

(2.9), we get that, for all ∆ ∈ Rm×m,

0 ≤ g′λ(V
k+1; ∆)− 〈ρ(Θk − V k+1) + Λk,∆〉

0 ≤ 〈Γ̂n − (Θk+1)−1 + ρ(Θk+1 − V k+1) + Λk,∆〉+ 1′XR(Θk+1; ∆)

(A.2)

And recall that

Λk+1 = Λk + ρ(Θk+1 − V k+1). (A.3)

We can rewrite (A.2)-(A.3) as

g′λ(V
k+1; ∆) ≥ 〈ρ(Θk −Θk+1) + Λk+1,∆〉 (A.4)

0 ≤ 〈Γ̂n − (Θk+1)−1 + Λk+1,∆〉+ 1′XR(Θk+1; ∆) (A.5)

1

ρ
(Λk+1 − Λk) = Θk+1 − V k+1. (A.6)

Now consider a fixed point (Θ∗, V ∗,Λ∗) and consider (A.4)-(A.6) evaluated at this limit

point. From (A.6) we get that Θ∗ = V ∗. This combined with (A.4) gives us that, for all
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∆ ∈ Rm×m,

g′λ(Θ
∗; ∆) ≥ 〈Λ∗,∆〉

Finally, (A.5) gives us that

0 ≤ 〈Γ̂n − (Θ∗)−1 + Λ∗,∆〉+ 1′XR(Θ∗; ∆)

Using the above and recalling the objective f as defined in (2.6), we get that, for all ∆ ∈

Rm×m,

0 ≤ 〈Γ̂n − (Θ∗)−1,∆〉+ 〈Λ∗,∆〉+ 1′XR(Θ∗; ∆)

≤ 〈Γ̂n − (Θ∗)−1,∆〉+ g′λ(Θ
∗; ∆) + 1′XR(Θ∗; ∆) = f ′(Θ∗; ∆)

So Θ∗ is a stationary point of f by definition.

Comparison to Guo and Zhang (2017)

Guo and Zhang (2017) study the problem of condition number-constrained precision

matrix estimation, where they consider the estimator

Θ̂ = arg min
Θ�0,cond(Θ)≤κ

− log det Θ + tr(Γ̂nΘ) + λ‖Θ‖1,off (A.7)

Note that this is quite similar to the estimators we consider in (2.2), as they simply replace the

maximum eigenvalue constraint with a constraint on the ratio of the maximum to minimum

eigenvalues.

However, they do not study the application of their estimator to cases with indefinite

input or its performance in noisy and missing data situations. In particular, constraining

the condition number does not necessarily guarantee that the graphical Lasso objective (2.1)

will be lower bounded, especially when using nonconvex penalties.
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As a simple example, consider the case with an input matrix and iterates

Γ̂n =

1 0

0 −0.2

 Θt = t

0.1 0

0 1


In this case the objective is

f(Θt) = tr(Γ̂nΘt)− log det Θt = −0.1× t− log(0.1× t)

which is unbounded below as t grows even though the condition numbers of the iterates are

constant.

More generally, whenever Γ̂n ∈ Rm×m has eigenvalues σ1, . . . , σm, where σ1 ≥ · · · ≥

σm1 ≥ 0 and 0 > σm1+1 ≥ · · · ≥ σm. Denote S1 =
∑m1

i=1 σi and S2 =
∑m

i=m1+1−σi. Let

V DV T = Γ̂n be the eigendecomposition of the covariance estimate. Then for some condition

number bound κ, we can consider iterates of the form Θt = tV MV T , where M is a diagonal

matrix with entries

Mii =


1 if i ≤ m1

κ if i > m1

Which we note has a condition number of κ. Then we can see that the objective becomes

f(Θt) = t tr(V DV TVMV T )− (m−m1) log(κ) + gλ(tV MV T )

= t(S1 − κS2)− (m−m1) log(κ) + gλ(tV MV T )

So if κ > S1/S2 then this objective is still unbounded below.

Using a spectral norm bound ‖Θ‖2 ≤ R as the side constraint with a indefinite input

guarantees a lower bound on the graphical Lasso objective regardless of the choice of R and

is therefore a more natural side constraint to use.
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A.2 ADMM for general side constraints

In this section we develop an ADMM algorithm for general side constraints, i.e. the

following variant of (2.2).1

Θ̂ ∈ arg min
Θ�0,h(Θ)≤R

tr(Γ̂nΘ)− log det(Θ) + gλ(Θ).

This algorithm has the same convergence guarantees as Algorithm 1, but in practice we

find that Algorithm 1 converges faster and more consistently when the spectral norm side

constraint is used.

Derivation

We first rewrite the objective as

f(Θ) = tr(Γ̂nΘ)− log det(Θ) + gλ(Θ) + 1Xh,R(Θ) (A.8)

where Xh,R = {Θ : Θ � 0, h(Θ) ≤ R} and

1X (Θ) =


0 if Θ ∈ X

∞ otherwise.

We can then introduce auxiliary optimization variables V1, V2 ∈ Rm×m and reformulate the

optimization problem as

Θ̂ = arg max
Θ,V1,V2

{
tr(Γ̂nΘ)− log det(Θ) + gλ(V1) + 1Xh,R(V2)

}
s.t. Θ = V1 = V2

For a penalty parameter ρ > 0 and Lagrange multiplier matrices Λ1,Λ2 ∈ Rm×m, we

1Note that we switch the notation of the side constraint function from ρ to h to avoid confusion with the
ADMM penalty parameter ρ.
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consider the augmented Lagrangian of this problem

Lρ(Θ, V1, V2,Λ1,Λ2) = tr(Γ̂nΘ)− log det(Θ) + gλ(V1) + 1Xh,R(V2)

+
ρ

2
‖Θ− V1‖2

F +
ρ

2
‖Θ− V2‖2

F + 〈Λ1,Θ− V1〉 +〈Λ2,Θ− V2〉
(A.9)

The ADMM algorithm is then, given current iterates Θk, V k
1 , V k

2 , Λk
1, and Λk

2,

V k+1
1 = arg min

V1∈Rm×m

{
gλ(V1) +

ρ

2
‖Θk − V1‖2

F + 〈Λk
1,Θ

k − V1〉
}

(A.10)

V k+1
2 = arg min

V2∈Rm×m

{
1Xh,R(V2) +

ρ

2
‖Θk − V2‖2

F + 〈Λk
2,Θ

k − V2〉
}

(A.11)

Θk+1 = arg min
Θ∈Rm×m

{
− log det Θ + tr(Γ̂nΘ) +

ρ

2
‖Θ− V k+1

1 ‖2
F +

ρ

2
‖Θ− V k+1

2 ‖2
F

+ 〈Λk
1,Θ− V k+1

1 〉+ 〈Λk
2,Θ− V k+1

2 〉
} (A.12)

Λk+1
1 = Λk

1 + ρ(Θk+1 − V k+1
1 ) (A.13)

Λk+1
2 = Λk

2 + ρ(Θk+1 − V k+1
2 ) (A.14)

Considering the V1-subproblem, we can show that the minimization problem in (A.10) is

equivalent to

V k+1
1 = arg min

V1∈Rm×m

{
1

ρ
gλ(V1) +

1

2

∥∥∥∥V1 −
ρΘk + Λk

1

ρ

∥∥∥∥2

F

}
.

Which is a prox operator of gλ/ρ. These have the same form as described in Section 2.2.1.

For the V2-subproblem, we similarly see that (A.11) is equivalent to

V k+1
2 = arg min

V2∈Rm×m

{
1Xh,R(V2) +

1

2

∥∥∥∥V2 −
ρΘk + Λk

2

ρ

∥∥∥∥2

F

}
.

which is equivalent to the projection operator

ProjXh,R

(
ρΘk + Λk

2

ρ

)
= min

V2∈Xh,R

∥∥∥∥V2 −
ρΘk + Λk

2

ρ

∥∥∥∥2

F

(A.15)

Note that if directly projecting onto Xh,R does not have an closed-form solution, we can

140



perform this step using Dykstra’s alternating projection algorithm.

Finally, for the Θ-subproblem, we can again show that (A.12) is equivalent to

Θ = arg min
Θ∈Rm×m

{
− log det Θ + ρ

∥∥∥∥∥Θ− ρV k+1
1 + ρV k+1

2 − Γ̂n − Λk
1 − Λk

2

2ρ

∥∥∥∥∥
2

F

}
(A.16)

Let us define the operator

T̃ρ(A) = arg min
Θ

{
− log det Θ + ρ‖Θ− A‖2

F

}
=

1

2
(A+ (A2 + (2/ρ)I)1/2) (A.17)

whose solution is derived in Section 2.2.1 if we set R = ∞. Then the solution to (A.12) is

T̃ρ((ρV
k+1

1 + ρV k+1
2 − Γ̂n − Λk

1 − Λk
2)/(2ρ)).

Using these results, the algorithm in (A.10)-(A.14) becomes

V k+1
1 = Proxgλ/ρ

(
ρΘk + Λk

1

ρ

)
V k+1

2 = ProjXh,R

(
ρΘk + Λk

2

ρ

)
Θk+1 = T̃ρ

(
ρV k+1

1 + ρV k+1
2 − Γ̂n − Λk

1 − Λk
2

2ρ

)

Λk+1
1 = Λk

1 + ρ(Θk+1 − V k+1
1 )

Λk+1
2 = Λk

2 + ρ(Θk+1 − V k+1
2 )

(A.18)

Convergence

Analogues to Propositions 1 and 2 can also be shown for this algorithm using similar

methods. To do this, we first note that we can rewrite the optimization problem (A.8) as

min
Θ,V

φ(Θ, V ) = min
Θ,V
{f1(Θ) + f2(V )} s.t. Avec(V ) +Bvec(Θ) = 0 (A.19)
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where

f1(Θ) = tr(Γ̂nΘ)− log det(Θ) f2(V ) = gλ(A1V ) + 1Xh,R(A2V )

and

A = −I2m2 B =

Im2

Im2


V =

V1

V2

 A1 =

(
Im 0

)
A2 =

(
0 Im

)

This results in the following augmented Lagrangian that is equivalent to (A.9).

Lρ(Θ, V,Λ) = f1(Θ) + f2(V ) +
ρ

2
‖BΘ + AV ‖2

F + 〈Λ, BΘ + AV 〉

Even though we present our algorithm as a three-block ADMM in Section A.2, this formula-

tion makes it clear that we are using a two-block splitting scheme where (A.10) and (A.11)

are the separable subproblems of the V -step.

Showing similar convergence results to Propositions 1 and 2 can then be done using the

same techniques as in Section A.1

A.3 Additional simulation results

Penalty nonconvexity and R

Suppose gλ is µ-weakly convex and R ≤
√

2
µ
. Then, as shown in Lemma 6 of Loh and

Wainwright (2017), the overall objective function is strictly convex over the feasible set, and

Proposition 2 therefore shows that any limiting point of ADMM algorithm corresponds to

the unique global optimum of the objective. However, this choice of R radius on the ‖·‖2 side

constraint is quite restrictive. In particular, since we also require R ≥ ‖Θ∗‖2 we therefore

need to choose large values of a in the SCAD or MCP penalties to make µ small enough,
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which means in practice we simply recover the performance of the `1 penalized methods.

Though Loh and Wainwright (2017) show statistical properties for when the parameters are

chosen satisfying this condition, in practice we can often do better by allowing the objective

to be nonconvex even though no global optimum will exist.

Once we relax this condition (R >
√

2/µ), the objective becomes nonconvex, and Propo-

sition 2 simply shows that any limiting point of our ADMM algorithm will be a stationary

point of the objective. In our simulations, we generally set µ and R such that this condition

is violated, and yet we show that our algorithm still results in good estimators. In fact,

Figure A.1 demonstrates how, in practice, choosing µ such that this condition is met tends

to eliminate the advantages that nonconvex penalties provide. Here the choice of a = 8 is

the only one that satisfies the condition, and this choice has identical performance as the `1

penalty. Using a smaller value of a violates this condition but allows the estimator to take

advantage of the unbiasedness of the penalty, resulting in better performance in this setting.

Note that for both of these cases, our ADMM algorithm provides a new feasible method

of implementing estimation of this type of side-constrained graphical Lasso objective. This

consideration is related to tuning, where satisfying the (R, µ) condition allows the support

recovery without incoherence statistical results of Loh and Wainwright (2017) but in practice

results in suboptimal performance, as the nonconvex penalties have to be chosen such that

they lose their unbiased advantage over the `1 penalty.

Method comparisons

Tables A.1-A.3 present more detailed comparison based on the models from the Kronecker

sum (KS) and the missing data (MD) models. We compared performance in terms of relative

Frobenius and nuclear norm to the true precision matrix, as well as false positive rate plus

false negative rate (FPRFNR). The Kronecker sum results are reported for two sample sizes

and two values of the noise parameter τB, while the missing data results are reported for
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(a) Nonprojected estimators
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(b) Projected estimators

Figure A.1: Comparing the performance of the graphical Lasso estimators as a (and therefore the
weak convexity constant µ) is changed. Here we present the results using the MCP penalty, so
µ = 1/a. We set R to be the oracle Note that a = 8 is the only value of a that satisfies the
R ≤

√
2/µ condition from Loh and Wainwright (2017). Data is from a missing data model with

A = AR1(0.6), m = 400, n = 80, and ζ = 0.9.

two covariance models and three settings of the sample size and sampling rate ζ.2

Comparing the projected and nonprojected methods, we see that these two methods are

fairly competitive. In terms of model selection, the nonprojected methods tend to perform

similarly or better than the projected methods. This improvement is particularly evident

in the n = 80 settings in Table A.1. If we focus on the methods using the `1 penalty, the

nonprojected method performs at least similarly and sometimes significantly better than the

projected method in terms of norm error. The lower sampling rate regime in Tables A.2

and A.3 shows this trend as well. Overall these results suggest a small but sometimes

2Note that in the initial covariance estimator for the missing data model the effective sample size for
estimating an off-diagonal element of the covariance is nζ2; four settings are designed to keep this effective
sample size roughly constant while changing the sampling rate ζ. The effective sample sizes for the n = 80,
n = 130, and n = 250 settings are 64.8, 63.7, and 62.5, respectively.

144



Table A.1: The relative norm error and FPR + FNR performance of the Kronecker sum estimator
using different methods. Here we set A to be from an AR(0.5) model and choose B from an Erdos-
Renyi random graph. We set m = 400 and let τB = 0.5. Metrics are reported as the minimum
value over a range of penalty parameters λ. The MCP penalty is chosen with a = 2.5, and we set
R = 1.5‖A‖2.

n τB method penalty Frobenius Spectral Nuclear FPRFNR

80 0.3

Nonproj
`1 0.422 0.598 0.406 0.107

MCP 0.450 0.613 0.422 0.106

Proj
`1 0.424 0.610 0.411 0.113

MCP 0.444 0.616 0.429 0.111

Nodewise `1 0.391 0.517 0.383 0.130

160 0.3

Nonproj
`1 0.342 0.509 0.327 0.013

MCP 0.363 0.518 0.345 0.013

Proj
`1 0.356 0.525 0.343 0.016

MCP 0.341 0.493 0.321 0.015

Nodewise `1 0.288 0.429 0.280 0.017

80 0.5

Nonproj
`1 0.469 0.642 0.452 0.174

MCP 0.481 0.659 0.458 0.177

Proj
`1 0.464 0.651 0.450 0.194

MCP 0.483 0.658 0.467 0.197

Nodewise `1 0.466 0.600 0.455 0.250

160 0.5

Nonproj
`1 0.389 0.573 0.369 0.052

MCP 0.422 0.596 0.393 0.054

Proj
`1 0.407 0.593 0.384 0.056

MCP 0.399 0.587 0.377 0.055

Nodewise `1 0.358 0.538 0.349 0.083

significant advantage for the nonprojected methods, supporting the idea that the projected

methods pay a cost in terms of efficiency due to the loss of information in the projection.

There is no significant difference in model selection between MCP and the `1 penalty.

In fact, the different penalties perform almost identically across scenarios regardless of the

`∞-projection step. Intuitively, the primary benefit of nonconvex penalties is their ability to

more accurately estimate large entries, which are easy for the estimators to select.

In terms of norm error, however, there are significant differences depending on the indefi-

niteness of the optimization problem. Table A.4 reports some statistics on the eigenspectrum
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Table A.2: The relative norm error and FPR + FNR performance of the missing data estimator
using different methods. Here we set A to be from an AR(0.6) model and set m = 400. Recall
that ζ is the sampling rate. Metrics are reported as the minimum value over a range of penalty
parameters λ. The MCP penalty is chosen with a = 2.5, and we set R to be 1.5 times the oracle
value for each method.

A Model n ζ method penalty Frobenius Spectral Nuclear FPRFNR

AR(0.6)

80 0.9

Nonproj
`1 0.367 0.506 0.363 0.0089

MCP 0.308 0.533 0.296 0.0088

Proj
`1 0.377 0.520 0.375 0.0085

MCP 0.308 0.527 0.284 0.0083

Nodewise `1 0.292 0.487 0.280 0.0097

130 0.7

Nonproj
`1 0.397 0.597 0.388 0.017

MCP 0.384 0.632 0.363 0.016

Proj
`1 0.417 0.599 0.407 0.019

MCP 0.348 0.626 0.326 0.018

Nodewise `1 0.356 0.592 0.347 0.029

250 0.5

Nonproj
`1 0.420 0.619 0.403 0.028

MCP 0.457 0.680 0.436 0.026

Proj
`1 0.437 0.626 0.429 0.031

MCP 0.391 0.600 0.369 0.032

Nodewise `1 0.412 0.632 0.400 0.078

700 0.3

Nonproj
`1 0.431 0.633 0.411 0.043

MCP 0.505 0.718 0.470 0.040

Proj
`1 0.450 0.644 0.431 0.034

MCP 0.422 0.664 0.391 0.031

Nodewise `1 0.555 0.704 0.517 0.131

of the input matrix. Nonprojected methods with MCP tends to perform relatively better

than its `1 counterpart if the input matrix is close to the positive semidefinite space. Simula-

tion results from the missing data model Tables A.2 and A.3 further support this relationship

between the most negative eigenvalue and the relative performance. Here we see how the

MCP nonprojected estimator goes from being significantly better than its `1 counterpart in

terms of Frobenius error in the ζ = 0.9 case to significantly worse when ζ = 0.5. In the

projected case, which projects away this indefinite issue, the MCP estimator consistently

outperforms its `1 counterpart in terms of Frobenius error.

The nonconvexity of the penalty interacts poorly with indefiniteness of the input matrix.
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Table A.3: The relative norm error and FPR + FNR performance of the missing data estimator
using different methods. Here we set A to be from an Erdos-Renyi random graph and set m = 400.
Recall that ζ is the sampling rate. Metrics are reported as the minimum value over a range of
penalty parameters λ. The MCP penalty is chosen with a = 2.5, and we set R to be 1.5 times the
oracle value for each method.

A Model n ζ method penalty Frobenius Spectral Nuclear FPRFNR

ER

80 0.9

Nonproj
`1 0.398 0.426 0.369 0.133

MCP 0.379 0.444 0.355 0.132

Proj
`1 0.405 0.420 0.375 0.129

MCP 0.367 0.383 0.346 0.126

Nodewise `1 0.349 0.357 0.334 0.160

130 0.7

Nonproj
`1 0.409 0.495 0.372 0.137

MCP 0.410 0.562 0.372 0.137

Proj
`1 0.423 0.497 0.385 0.135

MCP 0.388 0.465 0.354 0.131

Nodewise `1 0.372 0.463 0.346 0.194

250 0.5

Nonproj
`1 0.421 0.556 0.379 0.163

MCP 0.463 0.680 0.401 0.170

Proj
`1 0.437 0.556 0.394 0.163

MCP 0.406 0.535 0.364 0.171

Nodewise `1 0.431 0.654 0.376 0.241

700 0.3

Nonproj
`1 0.427 0.604 0.383 0.193

MCP 0.485 0.701 0.415 0.189

Proj
`1 0.445 0.575 0.401 0.184

MCP 0.423 0.638 0.380 0.191

Nodewise `1 0.500 0.719 0.413 0.276

When the `1 penalty is used, it is better able to “control” the indefiniteness of the input due

to its linear scaling, resulting in better norm error performance. The nonconvex penalty’s

inability to resolve the indefiniteness issue results in a degradation of its relative performance

as the input matrix becomes more indefinite.

Turning to the nodewise estimator, we see similar patterns. Again referring to Table A.4,

it seems that the relative performance of the nodewise estimator varies significantly with the

indefiniteness of the input matrix. When the input matrix is closer to positive semidefinite,

such as the n = 160 situations in Table A.1 or the ζ = 0.9 cases in Tables A.2 and A.3, it

performs comparably in terms of model selection and significantly better in terms of norm

147



Table A.4: Measures of the indefiniteness of the input matrix Γ̂n. σi denote the eigenvalues of
Γ̂n, while σ+

i denote the eigenvalues of Γ̂+
n as defined in Section 2.3.1. We set m = 400. For data

generated from each model, we report the most negative eigenvalue, the maimum eigenvalues of
both the nonprojected and projected sample covariances, the sum of the negative eigenvalues, and
the number of negative eigenvalues.

Model A n minσi maxσi maxσ+
i

∑
σi<0 σi #{σi < 0}

KS AR(0.5)

n = 80, τB = 0.3 -0.51 17.0 15.3 -100.5 320
n = 160, τB = 0.3 -0.42 10.3 9.6 -74.1 240
n = 80, τB = 0.5 -0.93 21.3 18.1 -170.1 320
n = 160, τB = 0.5 -0.78 12.0 10.7 -124.6 243

MD

AR(0.6)
n = 80, ζ = 0.9 -0.26 14.2 13.6 -36.2 320
n = 130, ζ = 0.7 -0.63 12.3 11.0 -116.6 270
n = 250, ζ = 0.5 -1.19 11.4 9.7 -183.6 218
n = 700, ζ = 0.3 -2.17 9.2 7.5 -228.9 188

ER
n = 80, ζ = 0.9 -0.26 13.4 12.7 -36.6 320
n = 130, ζ = 0.7 -0.62 11.7 10.4 -116.7 270
n = 250, ζ = 0.5 -1.20 10.3 8.7 -180.7 214
n = 700, ζ = 0.3 -2.17 8.5 6.9 -223.0 184

error. But when the input matrix is very indefinite, such as the ζ = 0.5 cases in Tables A.2

and A.3 its relative performance quickly degrades.
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