Democratizing Self-Service Data Preparation
through Example-Guided Program Synthesis

by

Zhongjun Jin

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in the University of Michigan
2020

Doctoral Committee:

Associate Professor Michael J. Cafarella, Co-Chair
Professor Hosagrahar V. Jagadish, Co-Chair
Associate Professor Kevyn Collins-Thompson
Associate Professor Jenna Wiens

Zhongjun Jin
markjin@umich.edu

ORCID iD: 0000-0003-1833-8061

© Zhongjun Jin 2020

To my wonderful girlfriend Siyu and my supportive parents Mr. Shaohong
Jin and Mrs. Ying Hu.

i

Acknowledgments

I would like to express my deepest appreciation to my two advisors, shifu,
and friends, Michael Cafarella and H. V. Jagadish, for their relentless sup-
port and dedicated guidance during my PhD journey. Mike and Jag always
put their students at the top of the list. Thanks to them, this adventure
was ample of personal development, self-fulfillment, cheerfulness, and only
a thin slice of bitterness and frustration that usually came along with pa-
per acceptance notifications. They have been and will always be my role
models that inspire and motivate me to become a humble and kind per-
son as they are. Special thanks to Prof. Joe Hellerstein at UC Berkeley
who generously helped me reshape my second project and gave constructive
feedback. It is a heavenly bliss to have ever crossed paths with Joe. His
seminal work in data wrangling also has a large impact on this dissertation.
I also want to extend my sincere thanks to my committee members, Profs.
Kevyn Collins-Thompson and Jenna Wiens, for their insightful feedback
and generous help.

I am also grateful to all my previous collaborators. Mike Anderson is my
first-ever collaborator in grad school and the best colleague I can dream of.
Mike dedicated lots of time helping me get started in my first project Foofah
and stayed supportive and a friend that I cannot spend more time with ever
since. Chris Baik has been a long-time good buddy of mine and we spent
remarkably long time everyday exchanging ideas, sharing new discoveries
or simply chitchating about our PhD lives. We came up with many crazy
project ideas and half of them miserably failed in the end which I usually
took full responsibility for. Chris is a true Christian that is always there
for me when I turn to him for help. Abolfazl Asudeh is another of my
close but more senior collaborator, a mastermind that can develop solid

1ii

mathematical foundation on top of every problem and solution, a genius
that I always admire but never possess. Lastly, Haozhu Wang, a dedicated
deep learning researcher, offered me tremendous help in developing a follow-
up project that cannot go to this dissertation.

I also want to thank the rest of my database group folks and office mates
at various points without whom my school life would be bland and insipid:
Prof. Barzan Mozafari, Prof. Murali Mani, Prof. Prakash Ramanan, Yuval
Moskovitch, Jie Song, Rui Liu, Junghwan Kim, Wenjia He, Irene Yin Lin,
Yuze Lou, Mengjing Xu, Junjie Xing, Dong Young Yoon, Nikita Bhutani, Ji-
amin Huang, Yongjoo Park, Dolan Antenucci, Fei Li, Bernardo Gongalves,
Shirley Zhe Chen, Minghe Yu, Cheng Long, Aditi Sharma, Boyu Tian,
Changfeng Liu, Ishan Patney, Jarrid Rector-Brooks, Giovanni Simonini,
Vaspol Ruamviboonsuk, Nan Zheng, Li Sun, Jaeyoung Kim, Mahmood
Barangi, Idongesit Ebong, Mahdi Aghadjani, Yalcin Yilmaz, Caleb Belth,
Alican Buyukcakir, Di Jin, Puja Trivedi, Yujun Yan, Earlence Fernandes,
Amir Rahmati and Kevin Eykholt.

Finally, I'd like to thank my family: my father—the first college gradu-
ate in my whole family—Shaohong Jin, my mother—a strong woman who,
together with my father, built a successful business in environmental pro-
tection at my hometown, Liaoning, China—Ying Hu, who has been nothing
but supportive of my decision studying abroad and pursuing a PhD degree,
both emotionally and sometimes financially; my girlfriend and a bright and
brave girl pursuing PhD in STEM, Siyu Zheng, who has been my listening
ear and source of joy.

v

Table of Contents

Dedication i

Acknowledgments iii

List of Figures viii

List of Tables xi

Abstract xii

Chapter 1. Introduction 1

1.1 Challenges and Opportunities 4

1.1.1 Challenges for users 5t

1.1.2 Technical challenges 7

1.2 Summary of Contributions 9

Chapter 2. Research Background 11

2.1 Data Preparation Pipeline 11

2.1.1 Data Transformation 11

2.1.2 Data Pattern Profiling 14

2.1.3 Data Integration and Schema Mapping 16

2.2 Program Synthesis 17
Chapter 3. Synthesizing Data Transformation Programs using

User Examples 19

3.1 Imtroduction 19

3.2 Motivating Example 23

3.3

3.4

3.5

3.6
3.7

Problem Definition
3.3.1 Problem Definition
3.3.2 Data Transformation Programs
Program Synthesis o000
3.4.1 Program Synthesis Techniques.
3.4.2 Search-based Program Synthesis
3.4.3 Pruning Techniques for Better Efficiency
3.4.4 Complexity Analysis
3.4.5 Synthesizing Perfect Programs
Experimentso
3.5.1 Benchmarks
3.5.2 Performance Evaluation
3.5.3 Comparing Search Strategies
3.5.4 Effectiveness of Pruning Rules
3.5.5 Adaptiveness to New Operators
3.5.6 User Effort Study
3.5.7 Comparison with Other Systems
Related Work o oo

Conclusion

Chapter 4. Synthesizing Data Format Standardization
grams using Pattern-based Examples

4.1
4.2
4.3

4.4

4.5
4.6

Introduction oo o
Motivating Example o000
Overview
4.3.1 Patterns and Data Transformation Problem
4.3.2 CLx Data Transformation Paradigm
Clustering data on patterns
4.4.1 Initial Clustering Through Tokenization
4.4.2 Bottom-up Pattern Cluster Refinement
4.4.3 Limitations o0
Data Pattern Transformation Program
Program Synthesis
4.6.1 Identify Source Candidates
4.6.2 Token Alignment

vi

26
26
27
30
30
32
44
46
46
48
49
50
52
o4
o4
55
o7
60
62

63
63
67
70
70
73
74
1)
76
79
79
83
84
87

4.7

4.8
4.9

4.6.3 Program Synthesis using Token Alignment Result .
4.6.4 Limitations and Program Repair
Experiments oL
4.7.1 Experimental Setup
4.7.2 User Study on Verification Effort
4.7.3 User Study on Explainability
4.7.4 Expressivity and Efficiency Tests
Related Work

Conclusion

Chapter 5. Synthesis of Complex Schema Mapping Queries
using “Multiresolution” Examples

5.1
5.2
5.3
5.4

2.5

5.6

5.7
0.8

Introduction
Motivating Example
Problem Statement
Query Synthesis Algorithms
5.4.1 Preliminaries
5.4.2 Filter Scheduling
Risks and Limitations
Experiments o Lo
5.6.1 Experimental Setup
5.6.2 Overhead of Multiresolution Constraints
5.6.3 Filter Validation Efficiency
5.6.4 User Validation Effort
Related Work

Conclusion

Chapter 6. Conclusions and Future Work

6.1

Future Work

Bibliography

vii

92
94
96
96
97
101
105
109
112

114
114
118
120
122
123
128
137
139
140
143
145
149
152
154

156
157

159

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11

3.12

List of Figures

An example of business contact data
An example Python script transforming Figure 1.1

Figure 1.1 after transformation
An example pivot table of sales data and its relational form

A spreadsheet of business contact information
A relational form of Figure 3.1.
Intermediate table state
Perform Unfold before Fill
Program created with WRANGLER
Program synthesized with Fooran
Pre-Splitdata
After Spliton 7.o
An example data transformation task
Cell-level edit operations composing the transformation from
Table e; to Table e, in Figure 3.9 (circles are cells, bold ar-
rows are Transforms, dashed arrows are Deletes)
(a) and (b) show number of records and synthesis time
required by FOOFAH in the experiments of Section 3.5.1;
(c) Percentage of successes for different search strategies in
the experiments of Section 3.5.3.
(a) Percentage of tests synthesized in < Y seconds using
different search strategies; (b) Percentage of tests synthe-
sized in <Y seconds with different pruning rules settings;
(c) Percentage of tests synthesized in <Y seconds adding
Wrap variants.

viii

Tt W W N

20
20
23
23
24
24
28
28
39

39

50

52

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

4.12
4.13
4.14

5.1
5.2
2.3
5.4
9.5
0.6
5.7

0.8

2.9

Phone numbers with diverse formats 68

Patterns after transformation 68
Pattern clusters of raw data 68
Suggested data transformation operations 68
“CLX” Model: Cluster-Label-Transform 72
Hierarchical clusters of data patterns 78
UNIFT1 Language Definition 80
Preview Tab oo 84
Combine Extracts 84
Token alignment for the target pattern 7. 84
Scalability of the system usability as data volume and het-

erogeneity increases (shorter bars are better) 99
Verification time (shorter bars are better) 100
User comprehension test (taller bars are better) 100
Completion time (shorter bars are better) 100
Desired schema mapping (SQL-)query generating the tar-

get schema in Table 5.1 115
Examples at various resolutions to describe the target schema 117
Multiresolution constraint for a single cell 122
An example of a filter 127
Possible distribution of the filter query size 136

Number of candidate queries to be validated at the pres-
ence of multiresolution constraints (p € [2,5],7 = 2,s =
BO%, W =2) . . 143
Number of filters to be validated at the presence of mul-
tiresolution constraints (p € [2,5],7 = 2,5 = 50%,w =2) . 144
Compare BN-GREEDY (BN), NAiVE-GREEDY (Naive), and
SHORTEST-FIRST (SF) on the number of validations (p €
[2,5],r=2,s=50%,w=2) 146
Compare BN-GREEDY (BN), NAIVE-GREEDY (Naive), and
SHORTEST-FIRST (SF) on validation time (p € [2,5],r =
2,s=50%,w=2) 147

X

5.10 Number of satisfying schema mapping queries found when
the size of user input increases (r € [2,5],s = 50%,p =

4,w = 2) and when the amount of low-resolution con-
straints in the user input increases (absolute s € [0, 8], =
dp=4,w=2)

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2

List of Tables

Frequently used notation
Data transformation operators used by FOOFAH
Table Edit Operators
Geometric patterns
User study experiment results
Success rates for different techniques on both layout trans-
formation and syntactic transformation benchmarks

Frequently used notations
Token classes and their descriptions
Normalizing messy medical billing codes
Normalizing messy employee names
Explainability test cases details
Benchmark test cases details
User effort simulation comparison.

Desired target schema
Dataset Details L.

X1

26
27
35
43
95

Abstract

The majority of real-world data we can access today have one thing in com-
mon: they are not immediately usable in their original state. Trapped in a
swamp of data usability issues like non-standard data formats and heteroge-
neous data sources, most data analysts and machine learning practitioners
have to burden themselves with “data janitor” work, writing ad-hoc Python,
PERL or SQL scripts, which is tedious and inefficient. It is estimated that
data scientists or analysts typically spend 80% of their time in preparing
data, a significant amount of human effort that can be redirected to better
goals. In this dissertation, we accomplish this task by harnessing knowledge
such as examples and other useful hints from the end user. We develop pro-
gram synthesis techniques guided by heuristics and machine learning, which
effectively make data preparation less painful and more efficient to perform
by data users, particularly those with little to no programming experience.

Data transformation, also called data wrangling or data munging, is an
important task in data preparation, seeking to convert data from one format
to a different (often more structured) format. Our system FOOFAH shows
that allowing end users to describe their desired transformation, through
providing small input-output transformation examples, can significantly re-
duce the overall user effort. The underlying program synthesizer can often
succeed in finding meaningful data transformation programs within a rea-

sonably short amount of time. Our second system, CLX, demonstrates that

xii

sometimes the user does not even need to provide complete input-output
examples, but only label ones that are desirable if they exist in the original
dataset. The system is still capable of suggesting reasonable and explain-
able transformation operations to fix the non-standard data format issue
in a dataset full of heterogeneous data with varied formats. PRISM, our
third system, targets a data preparation task of data integration, i.e., com-
bining multiple relations to formulate a desired schema. PRisSM allows the
user to describe the target schema using not only high-resolution (precise)
constraints of complete example data records in the target schema, but also
(imprecise) constraints of varied resolutions, such as incomplete data record
examples with missing values, value ranges, or multiple possible values in
each element (cell), so as to require less familiarity of the database contents

from the end user.

Xiii

Chapter 1

Introduction

The majority of real-world data have one thing in common: they are not
easily usable in their raw form. Ideally, data are expected to be clean and
in a well-structured data frame or relational form, without missing values
and peculiar data entries. People should be able to immediately perform
regression analysis or train machine learning/deep learning models on such
data. But the sad fact is, these data professionals are often trapped by
a swamp of hairy data quality and usability issues like non-standard data
formats, missing values, outliers, and heterogeneous data sources.

For example, Figure 1.1 is an example of data in an ad-hoc format. De-
spite being comprehensive, Figure 1.1 is still not ready for data analysis in

the following ways.

o Column headers are in the second row rather than the first one.
e Some data values are missing in the first column.
o It uses empty spaces as record breakers.

o Data values in the second column contain secondary column header

information.

Bureau of L. A.

Regional Director | Numbers

Niles C. Tel: (800)645-8397
Fax: (907)586-7252

Jean H. Tel: (918)781-4600
Fax: (918)781-4604

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

Figure 1.1: An example

This data is in a non-standard form and difficult for downstream statistics
and machine learning packages to consume in its original form.

Data preparation denotes a compilation of solutions and strategies that
encompass a variety of data quality issues. The tasks within data prepara-

tion are usually classified into the following categories [39]:

o Exploration. Discovering and creating extra information from the
given target data through data profiling and visualization. The addi-

tional information helps the user understand the target data.

e Structuring. Transforming the structure of data into a shape desired

by the downstream analytics software.

of business contact data

tables are two common shapes that are desired.

» Cleaning. Detecting and fixing the data errors (e.g., inconsistency,

outliers, and missing values) at the cell level.

o Integration. Creating an enriched dataset by combining data from

multiple sources.

Pivot tables and relational

from Operations import *

We hide the details of loading raw data for presentation purpose
, and assume t is the loaded raw table represented by 2d list
in python.

split Column 1 on ':'

t = split(t, 1, ':')

delete rows where Column 2 is null
t = delete(t, 2)

£ill Column O with value above

t = £fill(t, 0)

Unfold on Column 1

t = unfold(t, 1)

Figure 1.2: An example Python script transforming Figure 1.1

Name Tel Fax

Niles C. (800)645-8397 | (907)586-7252
Jean H. (918)781-4600 | (918)781-4604
Frank K. | (615)564-6500 | (615)564-6701

Figure 1.3: Figure 1.1 after transformation

Most data analysts often have to take the role of “data janitor” and resolve
these data quality issues by themselves. To fix these data quality issues,
data users often need to compose some Python, PERL or SQL scripts.
For example, Figure 1.2 is a simple Python script to transform the ad-hoc
dataset in Figure 1.1 into a more well-structured form in Figure 1.3.

Hand-writing these data preparation scripts is tedious and painful as it
requires good programming skills and considerable patience from data users.
Even worse, most of these scripts are customized to ad-hoc data and difficult

to maintain or reused in a new data source.

Large business groups and organizations may afford to hire a group of I'T
professionals or BI engineers to take care of the data preparation chores to
free up their data analysts. However, two groups of people—data analysts
(know the data) and IT professionals (prepare the data)—often need to go
through several interaction cycles before data analysts finally get the desired
data and kick off their work. In a large organization, this could go back and
forth for days to even weeks.

In either case, we see there is a huge waste of time and energy for these
valued professionals: it is estimated that data scientists or analysts typically
spend 80% of their time in preparing data [79]. They can be otherwise
more productive in analyzing data if data preparation could require less
programming skills and user effort.

In this dissertation, we argue that building a program synthesis system
that can leverage the user knowledge in a less effort-consuming fashion and
generate desirable programs for the data user is the key to addressing the
above problem. We demonstrate this idea with several systems for varied
tasks in the domain of data preparation. First, we detail the challenges in
data preparation for human users and challenges we face as researchers in
building such systems (Section 1.1). Next, we give a brief summary of our

contributions in this dissertation (Section 1.2).

1.1 Challenges and Opportunities

As discussed previously, data preparation is a critical, but also painstaking,
part of real-world data analysis workflow. People usually spend a large share
of their time in preparing the required data either manually or through
writing small, ad-hoc program scripts. We elaborate on the difficulties data

users may face in data preparation. Also, we discuss why building user-

friendly data preparation systems is non-trivial and some intuitive solutions.

1.1.1 Challenges for users

For data users, especially non-expert users, performing data preparation by

themselves can be difficult in many ways.

Lack of programming skills — A survey of 719 participants conducted
by KDNuggests in 2014 indicates R and SAS are the top two programming
languages most frequently used for data analysis and data science [81]. Al-
though, certain packages in R or SAS, like stringr and lubridate, offer
functions to perform some data cleaning tasks like trimming whitespaces
in a string or datetime format conversion, many real-world data prepara-
tion or cleaning tasks cannot be complete without writing scripts in other
programming languages like Python, PERL or SQL. Extracting a relational
table Table 1.3 from Table 1.1 is one such example. Yet, many data analysts
and statisticians may have little to no experience in these languages, which
means they either take baby steps to learn new programming languages or
ask more experienced programmers for help. Program synthesis seems to

be a promising trajectory we should follow to address this issue.

Region ‘ Year ‘ Sale
Region | 2015 2016 East 2015 | 2300

West 0866 8822 s

' West 2016 | 8822
Midwest | 2541 2575)\ dwest | 2015 | 2541

Midwest | 2016 | 2575

Figure 1.4: An example pivot table of sales data and its relational form

Lack of domain knowledge — Knowing how to program is fundamen-
tal but not sufficient. To clean data, the user should also be familiar with
transformation operations. Once the data user figures out the desired form
of the data, she must be able to quickly come up with a transformation
plan. Transforming between a pivot table and a relational table can serve
as a good example to illustrate the complexity of the logic behind such a
transformation. The table on the left of Figure 1.4 is a textbook pivot table
of sales data from [87]. We can see that the second column and the third
column both represent the same type of data. To “unpivot” this table, i.e.,
convert it into a relational form, one needs to 1) identify which columns
contain sales data, i.e., Years, 2) create a new column using the cross prod-
uct of Year values and Region values, and 3) map the sale data values to
the corresponding Region and Year value pairs. In the new relational table
(on the right of Figure 1.4), each record is a unique combination of region,
year and sale data. For those data users unfamiliar with the “unpivot”
operation, even writing a Python script to support this transformation can
require some deep thinking. Instead of asking the correct operations to use,
a data preparation system should be able to use hints of other forms, such
as examples, from the end users who are not familiar with data preparation

when synthesizing programs.

Lack of data familiarity — Suppose a data user is both a skilled pro-
grammer and an expert in data cleaning. Data preparation can still be chal-
lenging as the user may need to have deep knowledge of the target data she
wants to clean. For example, in a relational dataset, the user needs to first
identify all existing quality issues, such as typos, missing values and incor-
rect string patterns, before writing any program to fix them. When the data
is large-scale or messy, such problems may be buried deep in the dataset,

and manually scanning through the dataset to identify these problems can

be demanding. Intuitively, automatically discovering and presenting useful
metadata information about the target data should be helpful for users to
be familiar with the data. For example, suppose the task is to convert a
set of dates into the format of “MM/DD/YYYY”, it is useful to first inform the

user what the existing date formats in the dataset are.

1.1.2 Technical challenges

Facing above issues, data users both experienced and inexperienced are
unlikely to prepare data in a simple and efficient manner. Recently, tech-
niques including “Programming by Example” and “predictive interaction”
have been adopted to lower the bar of data preparation for data users. How-
ever, previous solutions usually identified and addressed one of the above
issues leaving the rest untouched. In this dissertation, we target developing
human-in-the-loop (interactive) data preparation systems with all follow-
ing desiderata: 1) capable of automatically generating programs, 2) able to
harness user knowledge and hints in varied forms, 3) does not require the
user to be familiar with the target data to provide hints.

Building such a system poses several key technical challenges on the sys-

tem side detailed below.

Usability — Similar to other interactive systems, a critical quality of our
system is usability—how easy it is for target users to interact with the
system. One critical aspect of usability in a system is efficiency; short
average waiting time in between interaction cycles is key to the system
usability. Designing efficient data preparation program synthesis algorithms
is clearly a major challenge for us here. On the other hand, as the target
user can be a non-expert in data preparation, another usability barrier can

be associated with user input. The challenge then is to explore novel forms

of user input leveraging the user knowledge because the end user is assumed
to be a non-expert and thereby unlikely to provide precise information that
is immediately useful for the system to identify the correct (transformation-
) operation. Unlike the former challenge, the usability of the input side is
less straightforward to evaluate in practice. In the following sections, it will
be measured by several methods including mouse/keyboard clicks, number

of examples, timespan, etc.

Coverage — Besides being interactive, a successful system in our problem
setting should also be able to cover a wide spectrum of particular tasks
within a sub-domain in data preparation so that it can be practical in solving
real-world problems. Further, it is favorable to researchers if the system can
quickly adapt when input data or workflow changes (with minimum extra
engineering effort). Otherwise, researchers will have to go through the hassle

of redesigning the critical components of the system again.

Scalability — A typical concern for a system is that when the amount or
quality of user hints changes, how well the system can scale, i.e., maintain its
efficiency. Most program synthesis problems can be seen as a search problem
in a large program space. The changes in user input may drastically increase
the difficulty of the search problem which affects the system efficiency. Even
worse, not only the user input but also the complexity, like the length, of
the desired output program may similarly affect the system efficiency. The
concern of scalability arises not only at the system level but also at the user
level. For example, if the target data to clean becomes larger and more
heterogeneous, the amount of user input may increase accordingly, which

hurts the system usability in return.

1.2 Summary of Contributions

In this section, we introduce three systems we have constructed over the
years as our main contributions in this dissertation to 1) alleviating the dif-
ficulties end users face when performing data preparation, and 2) addressing
aforementioned issues in human-in-the-loop data preparation.

The first work we present is FOOFAH [45, 46]—a system that synthesizes
straight-line data transformation programs. To describe the desired trans-
formation, the user can provide a small input-output example made from
sampled data records. Our experiments show that FOOFAH costs 60% less
interaction time than the state-of-the-art interactive data transformation
system, TRIFACTAWRANGLER [52], that takes in procedural hints from the
user. Also, the combinatorial-search-based algorithm guided by a novel dis-
tance metric, TED, and a combination of pruning rules we propose can
efficiently discover desired transformation programs in a large search space.
Besides, FOOFAH can be extensible since evidence suggests that it can sup-
port a richer set of transformation operations with minimum tuning effort.

The second system, CLX [49], takes on another important data prepara-
tion task—data pattern (format) standardization. In this project, we pro-
pose a pattern-based Programming-by-Example data pattern transforma-
tion interaction model. Unlike traditional PBE systems for string syntactic
transformation, such as FLASHFILL [29], where end users provide exam-
ples at the instance level, our users could simply select a data pattern CLX
derives from the input data as the desired pattern. The system will then
synthesize a complete set of possible programs converting all non-standard
data patterns to the selected pattern. We show sufficient evidence that in-
teraction time is required when end users interact at the pattern level rather

than the instance level. With the pattern information, end users are able to

quickly identify the data in non-standard formats and alter the suggested
transformations. Lastly, any inferred transformation program in our pro-
posed DSL can be easily translated to a set of RegEx_Replace operations,
which offers an alternative approach to verifying the inferred transformation
programs for end users besides checking the program result.

The last system PRISM [47, 48] targets discovering schema mapping
queries in data integration in a relational database. Previous PBE schema
mapping systems, such as MWEAVER [84] and FILTER [93], ask the end
user to provide high-resolution constraints, i.e., complete data records in
the target schema. This requirement creates challenges for end users who
are not highly familiar with the source dataset. In comparison, PRISM is
able to leverage imprecise user knowledge of the source database in schema
mapping query synthesis: it supports a richer set of example constraints
of varied resolutions, such as incomplete data records with missing values,
multiple possible values or a value range in each element (cell). In the
algorithm design, we propose to apply Bayesian models in scheduling ex-
pensive candidate query validations to speed up the entire schema mapping
query search. Our experiment results show that the use of Bayesian models
achieves a verification workload reduction of up to ~ 69% and a runtime
reduction of up to ~ 30% compared to the baseline strategy used by FIL-
TER.

10

Chapter 2

Research Background

In this chapter, we give a brief overview of some background information
and research work that are related to our work. The discussion is organized

around two broad domains: data preparation and program synthesis.

2.1 Data Preparation Pipeline

The concept of data preparation represents a combination of solutions to
a variety of data usability /quality issues. Some key tasks in data prepara-
tion include transformation/wrangling, cleaning, integration, profiling and
visualization/reporting [39, 51]. In this dissertation, we mainly focus on the

first four task domains.

2.1.1 Data Transformation

Data transformation, also called data wrangling or data munging, is to
convert data stored in different formats into a uniform and desirable format

for ease of access and decision making [86]. There are three particular classes

11

of tasks: syntactic transformations, layout (structure) transformations, and
semantic transformations [30].

Syntactic transformations manipulate data strings at the cell level of-
ten through regular expressions. The goal is typically to transform cell data
from one pattern into another (e.g., transforming phone number format
from “123.456.7890” into “(123) 456-7890”). Previous work on syntactic
transformation include IPBE [107], FLASHFILL [29] and BLINKFILL [94].
FLASHFILL [29] (now a feature in Excel) is an influential work for syntactic
transformation. It designed an expressive string transformation language
and proposed the algorithm based on version space algebra to discover a
program in the designed language. It was recently integrated to PROSE
SDK released by Microsoft. Similarly, similar to FLASHFILL, our second
system, CLX, also targets synthesizing syntactic transformation programs.
Layout transformations, or structure transformations, mainly relo-
cate the cells in a tabular form. The example in Figure 1.4 from Chapter 1
converting a pivot table to a relational table is an illustration of such trans-
formations. Previous research targeting structure transformation includes
ProgFromEx [35] and Wrangler [52]. Our first work, FOOFAH, covers a
wider range of transformation tasks than FLASHFILL, BLINKFILL, IPBE
and ProgFromEx. FLASHFILL, BLINKFILL and IPBE use the same do-
main specific language which manipulates strings within cells (strings) in
a single column, whereas ProgFromEx only rearranges the cell locations
within a spreadsheet (tables) without changing the cell values. In compar-
ison, FOOFAH is more expressive as it includes both layout and syntactic
transformations, same as WRANGLER. Semantic transformations also
transform data at the cell level. Differing from syntactic transformations,
semantic transformations manipulate a string not as a sequence of char-

acters but based on its semantic meaning within a semantic type. An

12

example of semantic transformation is transforming “March” to “03”. Al-
though none of our projects in this dissertation attempts to tackle semantic
transformations, it is still a critical transformation useful in scenarios like
data integration [111] and offered by many commercial data curation tools
like Tamr and Trifacta Wrangler. Unlike certain semantic transformations,
such as converting mile to km, that can be performed by using pre-defined
formulas, a large set of transformations can be quite ad-hoc or large to be
hard-coded. Previous research including DataXFormer [2, 3] and work by
Singh et al. [95] have attempted to automatically learn such transformations
from web tables or the dataset itself, and suggest them in real time.

A large portion of previous work [7, 29, 30, 35, 57, 94, 107] in data trans-
formation have used Programming-by-Example (PBE) as their interaction
interface. In classic PBE, users typically describe their intents through
positive examples, and optionally negative examples. Compared to previ-
ous work like FLASHFILL, CLX allows the user to provide positive exam-
ples at the pattern level (i.e., regular expressions) rather than cell level.
Our user study shows that CLX on average requires 66.3% less user in-
teraction time than FLASHFILL. When the data size grew by a factor of
30, the user verification time required by CLX grew by 1.3x whereas that
required by FLASHFILL grew by 11.4x, which is evidence that the usabil-
ity of PBE at the pattern level scales better than PBE at the cell level.
Same as ProgFromEx [35] and FlashRelate [7], our first system, FOOFAH,
uses the classic PBE model in transforming spreadsheet data. However, as
mentioned, FOOFAH is more expressive than the other two systems.

Another thread of seminal research including [86], WRANGLER [52] and
TRIFACTA created by Hellerstein et al. follow a different interaction paradigm
called “predictive interaction”. They proposed an inference-enhanced visual

platform supporting various data wrangling and profiling tasks. Based on

13

the user selection of columns, rows or text, the system intelligently suggests
possible data transformation operations, such as Split, Fold, or pattern-
based extraction operations. Our first project, FOOFAH, offers the same
set of transformations as WRANGLER but with a PBE interaction model.
Based on our user study result, FOOFAH requires ~ 60% less interaction
time than WRANGLER, which suggests it can conserve user effort. A more
recent PBE project, TDE [37], also targets data transformation. It can
practically solve many real-world data transformation tasks because it sup-
ports a wide range of data transformation operators crawled online and can
express both syntactic and semantic transformations.

Another domain of work, data extraction, is similar to data transfor-
mation. Data extraction seeks to extract data from unstructured or semi-
structured data. Various data extraction tools and synthesizers have been
created to automate this process: TextRunner [6] and WebTables [16] ex-
tract relational data from web pages; Senbazuru [17, 18] and FlashRelate [7]
extract relations from spreadsheets; FlashExtract [57] extracts data from a
broader range of documents including text files, web pages, and spread-

sheets, based on examples provided by the user.

2.1.2 Data Pattern Profiling

Data profiling is the discovery of the metadata of an unknown dataset or
database [1]. Some of the metadata that are commonly profiled in a dataset
include number of missing values, distinct values, and redundancies. Re-
searchers also have made progress in profiling foreign keys [91], functional
dependencies [41, 110] and inclusion dependencies [8, 66] in a relational
database. In our second work, CLX, we focus on clustering ad hoc string

data based on structures and derive the structure information. The LEARN-

14

PADS [25] project is somewhat related. It presents a learning algorithm
using statistics over symbols and tokenized data chunks to discover pattern
structure. LEARNPADS assumes that all data entries follow a repeating
high-level pattern structure. However, this assumption may not hold for
some of the workload elements. In contrast, we create a bottom-up pattern
discovery algorithm that does not make this assumption. Plus, the output
of LEARNPADS (i.e., PADS program [24]) is hard for a human to read,
whereas our pattern cluster hierarchy is simpler to understand. Most re-
cently, DATAMARAN][26] has proposed methodologies for discovering struc-
ture information in a data set whose record boundaries are unknown, but
for the same reasons as LEARNPADS, DATAMARAN is not suitable for our
problem in the second work. FLASHPROFILE [76] is a more recent pattern
profiling system that is more align with our proposal in CLX. Same as CLX,
it targets a messy dataset with varied formats. Also, the returned patterns
are a set of simple data patterns, which is more readable than on one single
gigantic and complex pattern like ones offered by PADS. FLASHPROFILE
proposes a two-phase approach — “clustering” and “profiling” — to return a
fixed number (specified by the user) of patterns representing all data entries
in the dataset. However, this approach is not quite applicable in our case.
First, FLASHPROFILE requires the number of returned patterns/clusters k
be pre-determined by the end user, whereas we believe asking the user to
know k for an unfamiliar dataset can be non-trivial in our case. Second,
the patterns discovered by FLASHPROFILE are mostly for understanding
purposes. Since all patterns returned by FLASHPROFILE are fixed, it is not
as clear how to use these patterns in synthesizing transformation programs

afterwards as if they were subject to change.

15

2.1.3 Data Integration and Schema Mapping

Data integration seeks to combine data from different sources, and present
a unified view of these data to the user [58]. Schema mapping is to discover
a query (or a set of queries) that transform the source data into the target
schema [70] and is fundamental to the data integration problem [10].

In the context of DBMS, schema mapping usually involves creating SQL
queries with joins. Composing SQL queries for schema mapping is known to
be non-trivial and burdensome for both professionals and naive end users.
Researchers from both academia and industry have made attempts to fa-
cilitate this process for end users in the past two decades. These devel-
oped techniques can be generally categorized into two classes based on the
interaction model: schema-driven and sample-driven. IBM Clio [83], Mi-
crosoft BizTalk [104] are notable schema mapping systems that support the
schema-driven model, which requires hints of possible matching relations
and columns from end users. Another thread of research projects [12, 50,
72, 84, 93, 105] focused on supporting a sample-driven model in human-
in-the-loop schema mappings. Instead of soliciting matching hints, these
systems only ask the user for a few data records in the target schema. Al-
though knowing a few data records can be relatively easier than knowing
the database schemas if the user is not familiar with the source database,
the sample-driven schema mapping systems can be still impractical if the
user’s knowledge of the data samples is imprecise and coarse. Our third
project, PRISM, targets at leveraging coarse or inaccurate user knowledge

of target data in schema mapping.

16

2.2 Program Synthesis

Program synthesis is the task to discover programs matching the user intent.
It has garnered wide interest in domains where the end users might not
have good programming skills or programs are hard to maintain or reuse
including data science and database systems.

Program synthesis techniques have been applied to a variety of prob-
lem domains: parsers [59], regular expressions [11], bit-manipulation pro-
grams [31, 44], data structures [97]; code snippets and suggestions in IDEs [67,
88], and SQL query based on natural language queries [60] and data han-
dling logic [20], schema mappings [4]. There are also several projects that
synthesize data transformation and extraction programs, discussed in more
detail next.

Four main categories of algorithmic approaches have been proposed for
program synthesis: logic-solver-based (constraint-based) approach, sketch-
ing, version space algebra, and search-based approach. Gulwani et al. pro-
posed a logic-solver-based program synthesis technique to synthesize loop-
free bit-manipulation programs [32, 44| using logic solvers, like the SMT
solver. Solar-Lezama’s work with sketching [98] attempts to formulate cer-
tain types of program automatically through clever formulation of SAT
solving methods. This approach focuses on programs that are “difficult and
important” for humans to write by hand, such for thread locking or decod-
ing compressed data streams. Version space algebra requires a complete
search space of programs between two states, which make it more suitable
for a Programming By Demonstration problem where the user explicitly
provides intermediate states and the search space between these states is
small [63] or for PBE problems that can be easily divided into independent
sub-problems [29].

17

For most of our work, the first three approaches do not fit. Logic-solver-
based program synthesis does not fit because existing logic solvers could
not scale to solve a large number of constraints quadratic in the input size.
Sketching [98] is computationally infeasible for interactive data transforma-
tion. Version space algebra [29, 55] is usually applied in Programming-by-
Demonstration systems.

In this dissertation, we formulate most of our problems as a search prob-
lem in the state space graph and solve it using a combinatorial-search-based
algorithm. Other program synthesis projects using the search-based ap-

proach include [59, 68, 80, 88].

18

Chapter 3

Synthesizing Data
Transformation Programs using

User Examples

3.1 Introduction

The many domains that depend on data for decision making have at least
one thing in common: raw data is often in a non-relational or poorly struc-
tured form, possibly with extraneous information, and cannot be directly
used by a downstream information system, like a database or visualization
system. Figure 3.1 from [33] is a good example of such raw data. In modern
data analytics, data transformation (or data wrangling) is usually a crucial
first step that reorganizes raw data into a more desirable format that can be
easily consumed by other systems. Figure 3.2 showcases a relational form
obtained by transforming Figure 3.1.

Traditionally, domain experts handwrite task specific scripts to transform

unstructured data—a task that is often labor-intensive and tedious. The

19

Bureau of L.A.
Regional Director | Numbers
Niles C. Tel: (800)645-8397

Fax: -
ax: (907)586-7252 Tel Fox

Joon 1. Tel: (918)781-4600 Niles C. 800)645-8397 | (907)586-7252

Fax: (918)781-4604

((
Jean H. (918)781-4600 | (918)781-4604
Frank K. | (615)564-6500 | (615)564-6701

Frank K. Tel: (615)564-6500
Fax: (615)564-6701

Figure 3.2: A relational form of
Figure 3.1

Figure 3.1: A spreadsheet of busi-
ness contact informa-
tion

requirement for programming hamstrings data users that are capable ana-
lysts but have limited coding skills. Even worse, these scripts are tailored
to particular data sources and cannot adapt when new sources are acquired.
People normally spend more time preparing data than analyzing it; up to
80% of a data scientist’s time can be spent on transforming data into a
usable state [65].

Recent research into automated and assisted data transformation systems
have tried to reduce the need of a programming background for users, with
some success [42, 52, 99]. These tools help users generate reusable data
transformation programs, but they still require users to know which data
transformation operations are needed and in what order they should be
applied. Current tools still require some level of imperative programming,
placing a significant burden on data users. Take WRANGLER [52], for ex-
ample, where a user must select the correct operators and parameters to
complete a data transformation task. This is often challenging if the user

has no experience in data transformation or programming.

20

Existing data transformation tools are difficult to use mainly due to two

usability issues based on our observation in the user study:

o High Skill: Users must be familiar with the often complicated trans-
formation operations and then decide which operations to use and in

what order.

o High Effort: The amount of user effort, including interaction time and

user input, increases as the data transformation program gets lengthy.

To resolve the above usability issues, we envision a data transforma-
tion program synthesizer that can be successfully used by people without
a programming background and that requires minimal user effort. Unlike
WRANGLER, which asks the user for procedural hints, this system should
allow the user to specify a desired transformation simply by providing an
input-output example: the user only needs to know how to describe the
transformed data, as opposed to knowing any particular transformation op-

eration that must be performed.

Our Approach — In this project, we solve the data transformation pro-
gram synthesis problem using a Programming By Example (PBE) approach.
Our proposed technique aims to help an unsophisticated user easily gener-
ate a quality data transformation program using purely input-output ex-
amples. The synthesized program is designed to be easy-to-understand (it
is a straight-line program composed of simple primitives), so an unsophis-
ticated user can understand the semantics of the program and validate it.
Because it is often infeasible to examine and approve a very large trans-
formed dataset synthesizing a readable transformation program is preferred
over performing an opaque transformation.

We model program synthesis as a search problem in a state space graph

and use a heuristic search approach based on the classic A* algorithm to

21

synthesize the program. A major challenge in applying A* to program
synthesis is to create a heuristic function estimating the cost of any pro-
posed partial solution. Unlike robotic path planning, where a metric like
Euclidean distance naturally serves as a good heuristic function, there is
no straightforward heuristic for data transformation. In this work, we de-
fine an effective A* heuristic for data transformation, as well as lossless
pruning rules that significantly reduce the size of the search space. We have
implemented our methods in a prototype data transformation program syn-
thesizer called FOOFAH.

Organization — After motivating our problem with an example in Sec-
tion 3.2 and formally defining the problem in Section 3.3, we discuss the

following contributions:

o We present a PBE data transformation program synthesis technique
backed by an efficient heuristic-search-based algorithm inspired by the
A* algorithm. It has a novel, operator-independent heuristic, Table
Edit Distance Batch, along with pruning rules designed specifically

for data transformation (Section 3.4).

o We prototype our method in a system, FOOFAH, and evaluate it with
a comprehensive set of benchmark test scenarios that show it is both
effective and efficient in synthesizing data transformation programs.
We also present a user study that shows FOOFAH requires about 60%
less user effort than WRANGLER(Section 3.5).

We finish with a discussion of future work in Section 3.7

22

Niles C. | Tel | (800)645-8397 Tl s

Fax | (907)586-7252 Niles C. | (800)645-8397
Jean H. | Tel | (918)781-4600

(615)564-6701
Fax | (918)781-4604
Jean H. (918)781-4600

Frank K. | Tel | (615)564-6500 Frank 1< | (615)564-6500

Fax | (615)564-6701 :

Figure 3.4: Perform Unfold before

Figure 3.3: Intermediate table Fill
i

state

3.2 Motivating Example

Data transformation can be a tedious task involving the application of com-
plex operations that may be difficult for a naive user to understand, as

illustrated by the following simple but realistic scenario:

Example 3.1. Bob wants to load a spreadsheet of business contact infor-
mation (Figure 3.1) into a database system. Unfortunately, the raw data
cannot be loaded in its original format, so Bob hopes to transform it into
a relational format (Figure 3.2). Manually transforming the data record-
by-record would be tedious and error-prone, so he uses the interactive data
cleaning tool WRANGLER [52].

Bob first removes the rows of irrelevant data (rows 1 and 2) and empty
rows (rows 5, 8, and more). He then splits the cells containing phone
numbers on “:”, extracting the phone numbers into a new column. Now
that almost all the cells from the desired table exist in the intermediate
table (Figure 3.3), Bob intends to perform a cross-tabulation operation that
tabulates phone numbers of each category against the human names. He
looks through WRANGLER's provided operations and finally decides that
Unfold should be used. But Unfold does not transform the intermediate table
correctly, since there are missing values in the column of names, resulting

in “null” being the unique identifier for all rows without a human name

23

1 Delete row 1

2 Delete row 2

3 Delete rows where column 2 is null
4 Split column 2 on ':'

5 Fill split with values from above
6 Unfold column 2 on column 3

Figure 3.5: Program created with Wrangler

1t =split(t, 1, ':")
2 t = delete(t, 2)

3t = fill(t, 0)

4 t = unfold(t, 1)

Figure 3.6: Program synthesized with Foofah

(Figure 3.4). Bob backtracks and performs a Fill operation to fill in the
empty cells with the appropriate names before finally performing the Unfold

operation. The final data transformation program is shown in Figure 3.5.

The usability issues described in Section 3.1 have occurred in this ex-
ample. Lines 1-3 in Figure 3.5 are repetitive as it consists of three Delete
operations (High Effort). Lines 5—6 require a good understanding of the
Unfold operation, which can be difficult for naive users (High Skill). Note
that Deletes in Lines 1-2 are different from the Delete in Line 3 in that the
latter could apply to the entire file. Non-savvy users may find such condi-
tional usage of Delete difficult to discover, further illustrating the High Skill
issue.

Consider another scenario where the same task becomes much easier for

Bob, our data analyst:

24

Example 3.2. Bob decides to use an alternative data transformation sys-
tem, FOOFAH. To use FOOFAH, Bob simply needs to choose a small sample
of the raw data (Figure 3.1) and describe what this sample should be af-
ter being transformed (Figure 3.2). FOOFAH automatically infers the data
transformation program in Figure 3.6 (which is semantically the same as
Figure 3.5, and even more succinct). Bob takes this inferred program and
executes it on the entire raw dataset and finds that raw data are transformed

exactly as desired.

The motivating example above gives an idea of the real-world data trans-
formation tasks our proposed technique is designed to address. In general,
we aim to transform a poorly-structured grid of values (e.g., a spreadsheet
table) to a relational table with coherent rows and columns. Such a trans-

formation can be a combination of the following chores:

—_

. changing the structure of the table
removing unnecessary data fields
filling in missing values

extracting values from cells

ARl R <

creating new cell values out of several cell values

We assume that the input data should be transformed without any extra
semantic information, so, for example, transforming “NY” to “New York”
is not possible (previous projects [3, 19, 95| have addressed such semantic
transformations). Transformations should not add new information that is

not in the input table, such as adding a column header.

25

Notation Description

P={py, . Pn} Data transformation program
p; = (op;,par,,...) Transformation operation with operator op, and parameters
pary, par,, ete.

R Raw dataset to be transformed

e, ER Example input sampled from R by user

e, =Ple;) Example output provided by user, transformed from e,
E=(e;e,) Input-output example table pair, provided as input to the sys-

tem by user

Table 3.1: Frequently used notation

3.3 Problem Definition

To help the user synthesize a correct data transformation program, we take
a Programming By Example (PBE) approach: the user provides an input-
output example pair set, made out of a subset of the input data, and the
system generates a program satisfying the example pairs and hopefully can

transform the entire input data correctly.

3.3.1 Problem Definition

With all notations summarized in Table 3.1, we define this problem formally:

Problem Given a user’s set of input-output examples & = (e;, e,), where
e; is drawn from raw dataset R and e, is the desired transformed form of e,
synthesize a data transformation program P, parameterized with a library
of data transformation operators, that will transform e; to e,.

Like previous work in data transformation [35, 52|, we assume the raw
data R is a grid of values. X might not be relational but must have some
regular structure (and thus may have been programmatically generated).

Further, & may contain schematic information (e.g., column or row headers)

26

Operator Description

Drop Deletes a column in the table

Move Relocates a column from one position to another in the table

Copy Duplicates a column and append the copied column to the end of the
table

Merge Concatenates two columns and append the merged column to the end
of the table

Split Separates a column into two or more halves at the occurrences of the
delimiter

Fold Collapses all columns after a specific column into one column in the
output table

Unfold “Unflatten” tables and move information from data values to column
names

Fill Fill empty cells with the value from above

Divide Divide is used to divide one column into two columns based on some
predicate

Delete Delete rows or columns that match a given predicate

Extract Extract first match of a given regular expression each cell of a desig-
nated column

Transpose Transpose the rows and columns of the table

Wrap (added) Concatenate multiple rows conditionally

Table 3.2: Data transformation operators used by Foofah

as table values, and even some extraneous information (e.g., “Bureau of LA
in Figure 3.1).

Once the raw data and the desired transformation meet the above criteria,
the user must choose the input sample and specify the corresponding output
example. More issues with creating quality input-output examples will be

discussed in detail in Section 3.4.5.

3.3.2 Data Transformation Programs

Transforming tabular data into a relational table usually require two types of

transformations: syntactic transformations and layout transformations [30].

27

Numbers Numbers

Tel:(800)645-8397 Tel (800)645-8397
Fax:(907)586-7252 Fax (907)586-7252
Figure 3.7: Pre-Split data Figure 3.8: After Split on ¢’

Syntactic transformations reformat cell contents (e.g., split a cell of "mm/d-
d/yyyy” into three cells containing month, day, year). Layout transforma-
tions do not modify cell contents, but instead change how the cells are
arranged in the table (e.g., relocating cells containing month information to
be column headers).

We find that the data transformation operators shown in Table 3.2 (de-
fined in Potter’s Wheel project [85, 86] and used by state-of-art data trans-
formation tool WRANGLER [52]) are expressive enough to describe these two
types of transformations. We use these operations in FOOFAH: operators
like Split and Merge are syntactic transformations and operators like Fold,
and Unfold are layout transformations. To illustrate the type of operations
in our library, consider Split. When applying Split parameterized by *:” to
the data in Figure 3.7, we get Figure 3.8 as the output. Detailed definitions
for each operator are shown in [46].

Our proposed technique is not limited to supporting Potter’s Wheel op-
erations; users are able to add new operators as needed to improve the
expressiveness of the program synthesis system. We assume that new oper-
ators will match our system’s focus on syntactic and layout transformations
(as described in Section 3.2); if an operator attempts a semantic transfor-
mation, our system may not correctly synthesize programs that use it. As
we describe below, the synthesized programs do not contain loops, so novel

operators must be useful outside a loop’s body.

28

We have tuned the system to work especially effectively when operators
make “conventional” transformations that apply to an entire row or column
at a time. If operators were to do otherwise — such as an operator for
“Removing the cell values at odd numbered rows in a certain column”, or
for “Splitting the cell values on Space in cells whose values start with ‘Math’
7 — the system will run more slowly. Experimental results in Section 3.5.5
show evidence that adding operators can enhance the expressiveness of our

synthesis technique without hurting efficiency.

Program Structure — All data transformation operators we use take in
a whole table and output a new table. A reasonable model for most data
transformation tasks is to sequentially transform the original input into a
state closer to the output example until we finally reach that goal state. This
linear process of data transformation results in a loop-free or straight-line
program, a control structure that can express a wide range of computations
and applied by many previous data transformation projects [35, 52, 55,
106]. We use the operators mentioned above as base component and loop-
free programs as the program control structure. Although the synthesized
programs will be without loops, they are still challenging to generate given
the sheer exponential search space.

Still, the loop-free program structure could restrict us from synthesiz-
ing programs that require an undetermined number of iterations of a data
transformation operation, or could lead to verbose programs with “unrolled
loops”™. For example, if the user wants to “Drop column 1 to column |k/2]
where k is the number of columns in the table” our system will be unable
to synthesize a loop-based implementation and instead will simply repeat
Drop many times.

Motivated by the above considerations, we formally define the data trans-

formation to be synthesized as follows:

29

Definition 3.1 (Data transformation program P). P is a loop-free series of
operations (py, Pa, ..., Pi) Such that: 1. Each operation p; = (op;, pary,...) : ty, = tou-
p; includes operator op; with corresponding parameter(s) and transforms an

input data table t;, to an output data table t,,,. 2. The output of operation
p; s the input of p;. 4.

3.4 Program Synthesis

We formulate data transformation program synthesis as a search problem.
Other program synthesis approaches are not efficient enough given the huge
search space in our problem setting (Section 3.4.1). We thus propose an
efficient heuristic search method, inspired by the classic A* algorithm. In
Section 3.4.2, we introduce a straw man heuristic and then present our novel
operator-independent heuristic, Table Edit Distance Batch (TED Batch),
based on a a novel metric, Table Edit Distance (TED), which measures the
dissimilarity between tables. In addition, we propose a set of pruning rules
for data transformation problems to boost search speed (Section 3.4.3). We
compare the time complexity of our technique with other previous projects
(Section 3.4.4). Finally, we discuss issues about creating examples and
validation (Section 3.4.5).

3.4.1 Program Synthesis Techniques

In Section 3.3.2, we described the structure of our desired data transforma-
tion program to be component-based and loop-free. Gulwani et al. proposed
a constraint-based program synthesis technique to synthesize loop-free bit-
manipulation programs [32, 44| using logic solvers, like the SMT solver.

However, the constraint-based technique is impractical for our interactive

30

PBE system because the number of constraints dramatically increases as
the size of data increases, scaling the problem beyond the capabilities of
modern logic solvers.

Other methods for synthesizing component programs include sketching
and version space algebra. Solar-Lezama’s work with sketching [98] at-
tempts to formulate certain types of program automatically through clever
formulation of SAT solving methods. This approach focuses on programs
that are “difficult and important” for humans to write by hand, such for
thread locking or decoding compressed data streams, so it is acceptable
for the solver to run for long periods. In contrast, our aims to improve
productivity on tasks that are “easy but boring” for humans. To preserve
interactivity for the user, our system must find a solution quickly.

Version space algebra requires a complete search space of programs be-
tween two states, which make it more suitable for a Programming By
Demonstration problem where the user explicitly provides intermediate
states and the search space between these states is small [63] or for PBE
problems that can be easily divided into independent sub-problems [29]. In
our problem, the search space of the synthesized programs is exponential,
and thus version space algebra is not practical.

Search-based techniques are another common approach used by previous
program synthesis projects [59, 68, 80, 88]. For our problem, we formulate
program synthesis as a search problem in a state space graph defined as

follows:

Definition 3.2 (Program synthesis as a search problem). Given input-
output examples & = (e;,e,), we construct a state space graph G(V,A)
where arcs A represent candidate data transformation operations, vertices
V' represent intermediate states of the data as transformed by the operation

on previously traversed arcs, e; is the initial state vy, and e, is the goal state

31

v,,. Synthesizing a data transformation program is finding a path that is a

sequence of operations leading from vy to v, in G.

Graph Construction — To build a state space graph G, we first expand
the graph from v, by adding out-going edges corresponding to data trans-
formation operators (e.g., Drop, Fold) with all possible parameterizations
(parameters and their domains for each operator are defined both in [86]
and [46]). The resulting intermediate tables become the vertices in G. Since
the domain for all parameters of our operator set is restricted, the number
of arcs is still tractable. More importantly, in practice, the pruning rules
introduced in Section 3.4.3 trim away many obviously incorrect operations
and states, making the actual number of arcs added for each state reason-
ably small (e.g., the initial state e, in Figure 3.10 has 15 child states, after
161 are pruned).

If no child of v, happens to be the goal state v,,, we recursively expand the
most promising child state (evaluated using the method introduced in Sec-
tion 3.4.2) until we finally reach v,,. When the search terminates, the path
from v, to v,, is the sequence of operations that comprise the synthesized

data transformation program.

3.4.2 Search-based Program Synthesis

Given our problem formulation, what is needed is a search-based program
synthesis algorithm, i.e., an algorithm finding a program that is “consistent
with all the user-provided examples and fits the syntactic template of the
native language” [5]. As the search space is exponential in the number of
the operations in the program, searching for a program in a space of this size
is non-trivial. Brute-force search quickly becomes intractable. As a PBE

solution needs to be responsive to preserve interactivity, we are exposed to

32

a challenging search problem with a tight time constraint. Therefore, the
major consideration in designing the search algorithm is efficiency (besides
correctness). Another less critical consideration is the complexity of the
synthesized programs. In our problem, we prefer shorter programs over
longer ones, because shorter programs are generally easier to understand
than longer ones.

Given the above concerns, we develop a heuristic search algorithm for
synthesizing data transformation programs inspired by the classic pathfind-
ing algorithm, the A* algorithm [36] and some of the recent work in program
synthesis [59, 88]. To find a path in the graph from the initial state to the
goal state, the A* algorithm continually expands the state with the mini-
mum cost f(n) = g(n) + h(n), where g(n) is the cost to reach state n from
the initial state and heuristic function h(n) is the approximate cost of the
cheapest path from state n to the goal state. The definition of cost depends
on the performance measure of the search task. In robotic pathfinding, the
cost is typically distance traveled, an admissible heuristic that guarantees
the search is the most efficient and the discovered path is also the shortest.

As we discussed, we are concerned more with search efficiency and also
the synthesized program complexity in our problem, and hence take the

number of operations as the cost. Formally, we define cost as follows:

Definition 3.3 (Data transformation cost). Given any two states (v;,v;)
in graph G, cost is the minimum number of data transformation operations

needed to transform v; to v;.

For simplicity, we treat all operators equally. Although, some operators
like Fold might be conceptually more complex for users to understand, we
observe that such operators rarely occur more than once in our benchmarks.

Assigning different weights for different operators is possible in the current

33

architecture but is not a focus in this project.

Ideally, we want an admissible heuristic like that used by robotic pathfind-
ing to guarantee the search efficiency and program readability. However, in
our problem setting, designing such a heuristic is almost impossible. Hence,
we relax the need for admissibility, accepting less-than-perfect search effi-
ciency and a synthesized program that is slightly longer than the program

with the minimal length.

Naive Heuristic — Possibly the most straightforward heuristic is a rule-
based one. The intuition is that we create some rules, based on our domain
knowledge, to estimate whether a certain Potter’s Wheel operator is needed
given &, and use the total count as the final heuristic score in the end. An
example heuristic rule for the Split operator is “number of cells from T;[k]
(i.e., the row k in T;) with strings that do not appear fully in T [k], but do
have substrings that appear in T, [k].” (This is a reasonable rule because the
Split operator splits a cell value in the input table into two or more pieces
in the output table, as in Figures 3.7 and 3.8.) The details about this naive
heuristic are presented in [46].

Although this naive heuristic might appear to be effective for our problem,
it is weak for two reasons. First, the estimation is likely to be inaccurate
when the best program entails layout transformations. Second, the heuristic
is defined in terms of the existing operators and will not easily adapt to
new operators in the future. We expect different operators to be helpful in
different application scenarios and our framework is designed to be operator
independent.

To overcome these shortcomings, we have designed a novel heuristic func-

tion explicitly for tabular data transformation.

34

Operator Description

Add Add a cell to table
Delete Remove a cell from table
Move Move a cell from location (zq,y;) to (z4,Yys)

Transform Syntactically transform a cell into a new cell

Table 3.3: Table Edit Operators

Table Edit Distance

The purpose of the heuristic function in A* is guiding the search process
towards a more promising direction. Inspired by previous research [88],
which used edit distance as the heuristic function, we define Table Edit

Distance (TED), which measures the table dissimilarity:

k
TED(T,,T,) = (pl,...,pil)leirlg(Tl,TQ) ; cost(p;) (3.1)
TED is the minimum total cost of table edit operations needed to trans-
form T} to Ty, where P(T},T,) denotes the set of edit paths transforming
T, to T, and cost(p;) is the cost of each table edit operation p,. The ta-
ble edit operations include Add, Delete, Move, Transform (see Table 3.3 for
definition).

Inspired by the graph edit distance algorithm [74], we designed an algo-
rithm to calculate the exact TED [46]. Unfortunately, computing TED in
real time is not practical: it is equivalent to computing graph edit distance,
which is NP-complete [27].

We therefore designed an efficient greedy algorithm to approximate TED,
shown in Algorithm 1. The idea behind Algorithm 1 is to greedily add the

cheapest operations among the candidate operations to formulate each cell

35

Algorithm 1: Approximate TED Algorithm

Data: Intermediate Table e, = {uq,uq,..., u|e$‘}, where u; represents a cell from e,;
Example Output Table e, = {v{,vq, ..., U‘ED|}, where v, represents a cell from e,
Result: cost, edit path
1 Pfinal A @;
2 ptemp — 0;
3 for win e, do
4 L add AddCandTransform(w,vy) to Piemp;
5 add Add(vy) t0 Diemps
6 Dfinal < ATgMinypey, - cost(p) ;
7 Let {uy,...,u;} & {vy,..., v} be processed cells;
8 while j<|e, | and k <| e, | do
9 ptemp A w;
10 for we {uj q1,...,u, |} do
11 L add AddCandTransform(w, vy 1) t0 Premp;
12 add Add(v,q) to Ptemps
13 if cost(argminvpeptemp cost(p)) > oo then
14 Premp — 0;
15 for w € {uy, ...,y } do
16 L add AddCandTransform(w,vg.1) to Premp;
17 add Add (vi1) t0 Premps
18 pfinal « pfinal U argmianEp,,emp COSt<p) >
19 Let {uy,...,u;} & {vq,..., vy} be processed cells;
20 if j<|e, | then
21 for we {uj 1., up,} do
22 | add Delete (w) t0 pfipar
23 if k<|e, | then
24 for g € {vji1,s- Ve, |} do
25 ptemp — @§
26 for w e {uy,...,u,} do
27 L add AddCandTransform(w,q) to piemp;
28 add Add (q) t0 Premps
29 pfinal « pfinal U argmianeptemp COSt(p))

30 Return COSt(pfinal)7 Prinal

36

in the output table e , building up a sequence of edits until we obtain a
complete edit path. The edit path formulates the entire output table. The
final heuristic score is the total cost of this path.

Algorithm 1 consists of three core steps. We use Figure 3.10, which
describes the edit path found to transform input table e; to e, in Figure 3.9,

as an example to explain each step.

Step 3.1. (lines 3-19) For each unprocessed cell in the output table (picked
in row-magjor order), we choose the cheapest cell-specific operation sequence
(a tie is broken by row-major order of the cell from the input table), from

one of:

1. Transformation from an unprocessed cell in e, into a cell ine,. Trans-
formation sequences for a pair of cells are generated by the function
“AddCandTransform” and can include a Move operator (if the cell
coordinates differ), a Transform operator (if the cell contents differ),

or both operators (if both conditions apply).
2. Add a new cell to e,.

After picking an operation sequence, we hypothesize an edit path (ptemp)
for each cell that consists of all edits made so far, plus the chosen operation.
We measure the cost of each edit path using the cost function. By default,
all table edit operations have equal cost; however, we assign a cost of infinity
to: (1) Transform operations between cells with no string containment rela-
tionship and (2) Add operations for non-empty cells. (These fall into the
category of tasks beyond the scope of our technique described in Section 3.2.)

For example, for @, in Figure 3.10!, Algorithm 1 finds that transforming

from 7,5 to O to is the best, because the costs of transforming from 7, 75,

1@,, means cell n from e,. J,, means cell m from e,.

37

and J are all infinite (no string containment), and although transforming
from J, or J4 costs the same as transforming from J,, 75 has a higher row-
major order in the input table. For O,, we find that transforming from any
unprocessed cell in the input example (i.e., 7, 3 4 5 ¢) to Oq yields an infinite
cost, so using only the unprocessed cells would not result in a reasonable edit
path. We fix this problem by adding transformations from the processed
cells in lines 13—18; this helps find the cheapest edit operation to formulate

O,: transforming from J, to O,.
Step 3.2. (line 20-22) Delete all unprocessed cells from e,

In our running example, after we have discovered edit operations for all
cells in the output example, we find that cells 1, 3, and 5 from the input
example remain unprocessed. We simply add Delete operations to remove
them.

Step 3.3. (line 23-29) When we have unprocessed cells in e,, but no re-
maining unprocessed cells in e,,, our only options are to: (1) Transform from
a processed cell in e, (we process every input cell at least one time before

processing any cell for a second time) OR (2) Add a new cell.

38

Niles | C. | Tel: (800)645-8397
Jean | H. [Tel: (918)781-4600
_|Frank | K. [Tel: (615)564-6500
split(0,’)/' <

\

c \
2 h |
Niles C. | Tel: (800)645-8397 Tel | (800) 645-8397
Jean H. | Tel: (918)781-4600 [--------- -+ Tel | (918)781-4600
Frank K. | Tel: (615)564-6500 Tel | (61 5)964-6500
e; -7 e

, . o
drop(0) ™5 [800)645-8397
Tel: (918)781-4600
)

Tel: (615)564-6500
¢y

Figure 3.9: An example data transformation task

—
< :S1,1,“Niles C.”) (1,2, “Tel:(800)645-8397")] | (1,1, “Tel”) (1,2, “(800)645-8397”) |

_____ - - |

|(2,1, “Jean H.”) (2,2, “Tel:(800)781-4600")| | 2,1, “Tel”) (2,2, “(800)781-4600”) |
b .. C ~. [(3 -7 |
2,1, “Frank K.”) (3,2, “Tel:(800)564-6500") |(3,1, “Tel”) (3,2, “(800)564-6500") |

‘I';--_.._.-_-‘-@____\;’/ |

Input Example Output Example

Figure 3.10: Cell-level edit operations composing the transformation
from Table e¢; to Table ¢, in Figure 3.9 (circles are cells,
bold arrows are Transforms, dashed arrows are Deletes)

The edit path discovered in Figure 3.10 is as follows:?

(Transform((1,2),(1,1)), Move((1,2),(1,1)))
Transform((1,2),(1,2)), Transform((2,2),(2,1))
Move((2,2),(2,1)), Transform((2,2),(2,2))

P02 Transform((3.2),(31)), Move(3.2).(3,1)
Transform((3,2),(3,2)), Delete((1,1))
L Delete((2,1)), Delete((3,1)))

2Transform((a,a5),(b;,by)) means Transform the cell at (a;,a,) in e; to the cell at
(by,by) in e,.
Move((aq,a5),(bq,b5)) means Move the cell from (aq,a5) in e; to (by,by) in e,
Delete((cq,c5)) means Delete the cell at (¢q,¢5) in e;.

39

Figure 3.9 shows a data transformation task, where e, is the input ex-
ample and e, is the output example. ¢; and c, are two child states of e;
representing outcomes of two possible candidate operations applied to e;.
Below we define P, and P,, the edit paths discovered by Algorithm 1 for ¢,

and cy:
(Transform((1,1),(1,1)), Transform((1,1),(1,2)))
Move((1,1),(1,2)) , Transform((2,1),(2,1))
P, = q Transform((2,1),(2,2)), Move((2,1),(2,2)) ;
Transform((3,1),(3,1)), Transform((3,1),(3,2))
L Move((3,1),(3,2)))
(Transform((1,3),(1,1)), Move((1,3),(1,1)))
Transform((1,3),(1,2)), Move((1,3),(1,2))
Transform((2,3),(2,1)), Move((2,3),(2,1))
Transform((2,3),(2,2)), Move((2,3),(2,2))
P, = < Transform((3,3),(3,1)), Move((3,3),(3,1)) ,
Transform((3,3),(3,2)), Move((3,3),(3,2))
Delete((1,1)), Delete((2,1))
Delete((3,1)), Delete((1,2)),
Delete((2,2)), Delete((3,2))

. The actual cost of edit paths P, P;, and P, are 12, 9, and 18, respectively.
These costs suggest that the child state c¢;, as an intermediate state, is
closer to the goal than both its “parent” e; and its “sibling” c¢,. Those costs
are consistent with the fact that Drop(0) is a more promising operation
than Split(0,*

is needed to get from c; to e,,

") from the initial state. (Only one operation—Split(1,":")—
whereas three operations are needed to

transform ¢, to e,). This example shows that our proposed heuristic is

40

effective in prioritizing the good operations over the bad ones.

Table Edit Distance Batch

Although TED seems to be a good metric for table dissimilarity, it is not
yet a good heuristic function in our problem because (1) it is an estimate
of the cost of table edit path at a cell level which is on a scale different
from our data transformation operations cost defined in Definition 3.3 and
(2) the TED score depends on the number of cells in the example tables
The scaling problem in our setting cannot be fixed by simply multiplying
the cost by a constant like has been done in other domains [43], because
different Potter’s Wheel operators affect different number of cells.

We have developed a novel method called Table Edit Distance Batch
(TED Batch) (Algorithm 2) that approximates the number of Potter’s
Wheel operators by grouping table edit operations belonging to certain
geometric patterns into batches and compacting the cost of each batch.
The intuition behind this methodology is based on the observation that
data transformation operators usually transform, remove or add cells within
the same column or same row or that are geometrically adjacent to each
other. Consider Split, for example: it transforms one column in the input
table into two or more columns, so instead of counting the individual table
edit operations for each affected cell, the operations are batched into groups
representing the affected columns.

The definitions of the geometric patterns and related data transformation
operators are presented in Table 3.4. For example, “Vertical to Vertical”
captures the edit operations that are from vertically adjacent cells (in the
same column) in the input table to vertically adjacent cells in the output
table. In Figure 3.10, Deletes of J, 5 5 are a batch of edit operations that

follow “Vertical to Vertical” pattern.

41

Algorithm 2: Table Edit Distance Batch

o A W N =

®

10

11

12
13
14
15
16

17

18

Data: pyipq = {1 = V1, -, U1, = Y1, }, patterns from Table 3.4
Result: cost

batchyepm, < 0;

batch ginq < 0;

Giype < Group pyipq by table edit operators type ;

for g € Gy, do

for p € patterns do

L batch < batchyey,, U Group g by p;

temp

while (J batch ;,,,; is not a complete edit path do
batch,, . < argmambebatchtempsize(b) ;

if batch,, ., NJbatchsi,q = 0 then
L add batch,,q, to batch g,q

| batchyey,, < batchye,,,\batch,, .
cost < 0;

for group € batchy;,q do

sum < 0;

for editOp € group do

L sum — sum + cost(editOp);

cost < cost + sum/size(group);

Return cost;

which consists of the following three steps. We use Figure 3.10 and F, to

To recalculate the heuristic score using this idea, we propose Algorithm 2,

demonstrate each step.

Step 3.1. (lines 3 —6) Find all sets of edit operations (from the edit path
obtained by Algorithm 1) following each geometric pattern. FEach set is a
candidate batch. Each edit operator could only be batched with operators of
the same type (e.g., Move should not be in the same batch as Drop); line 3

first groups operations by types.

42

Pattern Formulation (X is a table edit operator) Related Opera-

tors
Horizontal to Horizontal {X((z;,v;), (z;,9;)), X((z;,y; + 1), (z;,y; +1)),...} Delete(Possibly)
Horizontal to Vertical {X (=5, 9:), (2,95), X(z5,y; + 1), (z; +1,9;)),...} Fold, Transpose
Vertical to Horizontal {X (=5, 9:), (25,95), X(z; + 1,9;), (®5,y; +1)),...} Unfold, Transpose
Vertical to Vertical {X<(‘Ti7yi>v(xjvyj))vx«xi+17y1)7(xj+17yj>)7 } l\/love, COPY7

Merge, Split,
Extract, Drop

One to Horizontal {X<($i»yi>9(mjvyj))’X«xi?yi)v(mjvyj+1))7“‘} FOId(POSSibIY)y
Fill(Possibly)

One to Vertical {X<(x'uy2>9(mgyyj))vX«mz?yz)v(m]+1»yj)>7} FOId: Fill

Remove Horizontal {X(z;,9:), X(z;,y; +1)),...} Delete

Remove Vertical {X((x;,93)), X((x; +1,9;)), .- } Drop, Unfold

Table 3.4: Geometric patterns

In P, Transform((1,2),(1,1)) (74 to O, in Figure 3.10) should be grouped
by pattern “Vertical to Vertical” with Transform((2,2),(2,1)) (7, to O5) and
Transform((3,2),(3,1)) (J4 to O5). Meanwhile, it could also be grouped by
pattern “One to Horizontal” with Transform((2,2),(2,2)) (7, to O,).

Step 3.2. (lines 7 — 11) One edit operation might be included in multiple
batches in Step 3.1. To finalize the grouping, Algorithm 2 repeatedly chooses
the batch with the maximum number of edit operations, and none of the
operations in this batch should be already included batchy, . The finalization

terminates when batchg,, covers a complete edit path.

In the example in Step 3.1, Transform((1,2),(1,1)) will be assigned to the
“Vertical to Vertical” group because it has more members than the “One to

Horizontal” group.

Step 3.3. (lines 13 — 17) The final heuristic score is the sum of the mean

cost of edit operations within each chosen batch.

In this case, the cost of the batch with Transform((1,2),(1,1)), Trans-
form((2,2),(2,1)) and Transform((3,2),(3,1)) will be 1, not 3. Finally, the

43

batched form of P, is {py, ps, P3, P4}, Where

p; = {Transform((1,2),(1,1)), Transform((2,2),(2,1)),
Transform((3,2),(3,1))},

po = {Transform((1,2),(1,2)), Transform((2,2),(2,2)),
Transform((3,2),(3,2))},

ps = {Move((1,2),(1,1)), Move((2,2),(2,1)), Move((3,2),(3,1))},

py = {Delete((1,1)), Delete((2,1)), Delete((3,1))}.

The estimated cost of B, is reduced to 4 which is closer to the actual Potter’s
Wheel cost and less related to the number of cells than using TED alone.
Likewise, cost of P, is now 3 and cost of P, is now 6. In general, this shows
that the TED Batch algorithm effectively "scales down” the TED heuristic

and reduces the heuristic’s correlation to the table size.

3.4.3 Pruning Techniques for Better Efficiency

If we indiscriminately tried all possible operations during graph expansion,
the search would quickly become intractable. However, not all the potential
operations are valid or reasonable. To reduce the size of the graph and im-
prove the runtime of the search, we created three global pruning rules (which
apply to all operators) and two property-specific pruning rules (which apply
to any operators with certain specified properties). The following pruning
rules are designed to boost efficiency; our proposed data transformation

program synthesis technique is still complete without them.

Global Pruning Rules — These pruning rules apply to all operations in

the library.

44

o Missing Alphanumerics — Prune the operation if any letter (a-—z, A—
Z) or digit (0-9) in e, does not appear in the resulting child state.
We assume transformations will not introduce new information, thus
if an operation completely eliminates a character present in e, from

current state, no valid path to the goal state exists.

o No Effect — Prune the operation that generates a child state identical
to the parent state. In this case, this operation is meaningless and

should be removed.

o Introducing Novel Symbols — Prune the operation if it introduces a
printable non-alphanumeric symbol that is not present in e,. If an
operator were to add such a symbol, it would inevitably require an

additional operation later to remove the unneeded symbol.

Property-specific Pruning Rules — The properties of certain operators

allow us to define further pruning rules.

o Generating Empty Columns — Prune the operation if it adds an empty
column in the resulting state when it should not. This applies to Split,
Divide, Extract, and Fold. For example, Split adds an empty column
to a table when parameterized by a delimiter not present in the input

column; this Split is useless and can be pruned.

e Null In Column — Prune the operation if a column in the parent
state or resulting child state has null value that would cause an error.
This applies to Unfold, Fold and Divide. For example, Unfold takes in
one column as header and one column as data values: if the header
column has null values, it means the operation is invalid, since column

headers should not be null values.

45

3.4.4 Complexity Analysis

The worst-case time complexity for our proposed program synthesis tech-
nique is O((kmn)9), where m is the number of cells in input example e;, n
is the number of cells in the output example e, k is the number of candi-
date data transformation operations for each intermediate table, and d is
the number of components in the final synthesized program. In compari-
son, two of the previous works related to our project, PROGFROMEX and
FLASHRELATE, have worst-case time complexities that are exponential in
the size of the example the user provides. PROGFROMEX’s worst-case time
complexity is O(m™), where m is the number of cells in the input exam-
ple and n is the number of cells in the output example. FLASHRELATE’s
worst-case complexity is O(t=2), where ¢ is the number of columns in the
output table.

In practice, we believe the complexity exponential in input size will not
cause a severe performance issue because none of the three PBE techniques
require a large amount of user input. However, if a new usage model
arises in the future that allows the user to provide a large example eas-

ily, PROGFROMEX might become impractical.

3.4.5 Synthesizing Perfect Programs

Since the input-output example &€ is the only clue about the desired trans-
formation provided by the user, the effectiveness of our technique could
be greatly impacted by the quality of £. We can consider its fidelity and

representativeness.

Fidelity of & — The success of synthesizing a program is premised on
the fidelity of the user-specified example &: the end user must not make

any mistake while specifying £&. Some common mistakes a user might make

46

are: typos, copy-paste-mistakes, and loss of information. This last mistake
occurs when the user forgets to include important information, such as col-
umn headers, when specifying £. When such mistakes occur, our proposed
technique is almost certain to fail. However, the required user input is
small, and, as we show in Section 3.5.6, our system usually fails quickly.
This could be a simple sign for the end user that their input may be errotic
and needs to be fixed. In Section 3.7, we describe future work that allows

tolerance for user error.

Representativeness of & — Once a program P is generated given the
user input, the synthesized program is guaranteed to be correct: P must
transform the input example e; to the output example e,. However, we do
not promise that P is perfect, or guarantees to transform the entire raw data
R as the user may expect. How well a synthesized program generalizes to R
relies heavily on the representativeness of £, or how accurately &€ reflects the
desired transformation. Our proposed synthesis technique requires the user
to carefully choose a representative sample from X as the input example to
formulate £. With a small sample from R, there is a risk of synthesizing a P
that will not generalize to & (similar to overfitting when building a machine
learning model with too few training examples). Experimentally, however,
we see that a small number (e.g., 2 or 3) of raw data records usually suffices
to formulate & (Section 3.5).

Validation — In Section 3.1, we mentioned that one way the user can
validate the synthesized program is by understanding the semantics of the
program. Alternatively, the user could follow the sampling-based lazy ap-
proach of Gulwani et al. [35] To the best of our knowledge, no existing work
in the PBE area provides guarantees about the reliability of this approach

or how many samples it may require. Of course, not only PBE systems,

47

but work in machine learning and the program test literature must wrestle
with the same sampling challenges. Our system neither exacerbates nor

ameliorates the situation, so we do not address these issues here.

3.5 Experiments

In this section, we evaluate the effectiveness and efficiency of our PBE data
transformation synthesis technique and how much user effort it requires.
We implemented our technique in a system called FOOFAH. FOOFAH is
written in Python and C++ and runs on a 16-core (2.53GHz) Intel Xeon
E5630 server with 120 GB RAM.

We first present our benchmarks and then evaluate FOOFAH using the

benchmarks to answer several questions:

o How generalizable are the synthesized programs output by FOOFAH?
(Section 3.5.2)

o How efficient is FOOFAH at synthesizing data transformation pro-

grams? (Section 3.5.2)

o How is the chosen search method using the TED Batch heuristic better
than other search strategies, including BFS and a naive rule-based
heuristic? (Section 3.5.3)

» How effectively do our pruning rules boost the search speed? (Sec-
tion 3.5.4)

o What happens to FOOFAH if we add new operators to the operator
library? (Section 3.5.5)

e How much effort does FOOFAH save the end users compared to the

baseline system WRANGLER? (Section 3.5.6)

48

o How does FOOFAH compare to other PBE data transformation sys-
tems? (Section 3.5.7)

Overall, when supplied with an input-output example comprising two
records, FOOFAH can synthesize perfect data transformation programs for
over 85% of test scenarios within five seconds. We also show FOOFAH re-
quires 60% less user effort than a state-of-art data transformation tool,

WRANGLER.

3.5.1 Benchmarks

To empirically evaluate FOOFAH, we constructed a test set of data trans-
formation tasks. Initially, we found 61 test scenarios used in related work
including PROGFROMEX [35], WRANGLER [52], Potter’s Wheel (PW) [85,
86] and Proactive Wrangler (Proactive) [33] that were candidate bench-
mark tests. However, not all test scenarios discovered were appropriate for
evaluating FOOFAH. One of our design assumptions is that the output/-
target table must be relational; we eliminated 11 scenarios which violated
this assumption. In the end, we created a set of benchmarks with 50 test

3 among which 37 are real-world data transformation tasks col-

scenarios
lected in Microsoft Excel forums (from PROGFROMEX [35]) and the rest
are synthetic tasks used by other related work.

For test scenarios with very little data, we asked a Computer Science
student not involved with this project to synthesize more data for each of
them following a format similar to the existing raw data of the scenario.
This provided sufficient data records to evaluate each test scenario in Sec-

tion 3.5.2.

3https://github.com/markjin1990/foofah_benchmarks

49

https://github.com/markjin1990/foofah_benchmarks

9}
.% . Worst =« Average [BFS NoPrune []BFS
wn —_—
§ 20 ,_g [Rule Based [TED Batch
- s 30 » 100
5 10 S ’
2 - 2 20 g
E 0 o 10 2 50
z. g ° D
ecofa Co\”ds {0\)06 = X
v 2T ot = 0 0 20 40 60 80 100 0
Number of example records % of test cases A LenePY mpte*
(a) Nllrn‘be(lji Of. I‘eC(iI‘di (b) Worst and average Test cases and breakdowns
reaived in et syt e () Pescontage of suc
each interaction cess breakdowns

perfect programs

Figure 3.11: (a) and (b) show number of records and synthesis time
required by Foofah in the experiments of Section 3.5.1;
(c) Percentage of successes for different search strategies
in the experiments of Section 3.5.3.

3.5.2 Performance Evaluation

In this section, we experimentally evaluate the response time of FOOFAH
and the perfectness of the synthesized programs on all test scenarios. Our
experiments were designed in a way similar to that used by an influential
work in spreadsheet data transformation, PROGFROMEX [35], as well as

other related work in data transformation [7, 57].

Overview — For each test scenario, we initially created an input-output
example pair (made out of the first record in the output data) and sent this
pair to FOOFAH to synthesize a data transformation program. We executed
this program on the entire raw data of the test scenario to check if the
raw data was completely transformed as expected. If the inferred program
did transform the raw data correctly, FOOFAH synthesized what we term a

perfect program. If the inferred program did not transform the raw data

50

correctly, we created a new input-output example (made out of the second
record in the output data), making the example more descriptive. We gave
the new example to FOOFAH and again checked if the synthesized program
correctly transformed the raw data. We repeated this process until FOOFAH

found a perfect program, giving each round a time limit of 60 seconds.

Results — Figure 3.11a shows numbers of data records required to synthe-
size a perfect program. FOOFAH was able to synthesize perfect programs
for 90% of the test scenarios (45 of 50) using input-output examples com-
prising only 1 or 2 records from the raw data. FOOFAH did not find perfect
programs for 5 of the 50 test scenarios. The five failed test scenarios were
real-world tasks from PROGFROMEX, but overall FOOFAH still found per-
fect programs for more than 85% of the real-world test scenarios (32 of
37).

Among the five failed test scenarios, four required unique data transfor-
mations that cannot be expressed using our current library of operators;
FOOFAH could not possibly synthesize a program that would successfully
perform the desired transformation. The remaining failed test scenario re-
quired a program that can be expressed with FOOFAH’s current operations.
This program has five steps, which contain two Divide operations. FOOFAH
likely failed in this case because Divide separates a column of cells in two
columns conditionally, which requires moves of cells following no geometric
patterns we defined for TED Batch. The TED Batch heuristic overestimates
the cost of paths that include Divide. FOOFAH required more computing
time to find the correct path, causing it to reach the 60 second timeout.

Figure 3.11b shows the average and worst synthesis time of each interac-
tion in all test scenarios. The y-axis indicates the synthesis time in seconds
taken by FOOFAH; the x-axis indicates the percentage of test scenarios that

completed within this time. The worst synthesis time in each interaction

51

BFS NoPrune — BFS NoPrune PropPrune NoWrap — W1

Rule TED Batch GlobalPrune — FullPrune WI1&W2 — W1&W2&W3
—~ —~ —
n n n
'-g 60 E '_g 60
8 50 8 8 50
O 40 5] O 40
2 30 2 L 30
o 20 I} o 20
g 10 = = 10
- 0 - 0 e 0
= 0 20 40 60 80 100 = 0 20 40 60 80 100 & 0 20 40 60 80 100

% of test cases % of test cases % of test cases
(a) Compare search (b) Effectiveness of (c) Adding new opera-

strategies pruning rules tors

Figure 3.12: (a) Percentage of tests synthesized in < Y seconds using
different search strategies; (b) Percentage of tests synthe-
sized in <Y seconds with different pruning rules settings;
(c) Percentage of tests synthesized in <Y seconds adding
Wrap variants.

is less than 1 second for over 74% of the test scenarios (37 of 50) and is
less than 5 seconds for nearly 86% of the test scenarios (43 of 50), and the
average synthesis time is 1.4 seconds for successfully synthesized perfect
programs.

Overall, these experiments suggest that FOOFAH, aided by our novel
TED Batch heuristic search strategy, can efficiently and effectively syn-
thesize data transformation programs. In general, FOOFAH can usually find
a perfect program within interactive response times when supplied with an

input-output example made up of two data records from the raw data.

3.5.3 Comparing Search Strategies

In this section, we evaluate several search strategies to justify our choice of
TED Batch.

52

Overview — We considered Breadth First Search (BFS) and A* search
with a rule-based heuristic (Rule), both mentioned in Section 3.4, and
a baseline, Breadth First Search without pruning rules (BFS NoPrune).
Based on the conclusion from Section 3.5.1, we created a set of test cases
of input-output pairs comprising two records for all test scenarios. In this
experiment, each search strategy was evaluated on the entire test set and
the synthesis times were measured. The perfectness of the synthesized pro-
grams was not considered. A time limit of 300 seconds was set for all tests.
When a program was synthesized within 300 seconds, we say FOOFAH was

successful for the given test case.

Results — Figure 3.11c shows that TED Batch achieves the most successes
among all four search strategies and significantly more than the baseline
“BFS NoPrune” over the full test suite. To understand the performance
of the search strategies in different type of data transformation tasks, we
examined the data for two specific categories of test cases.

We first checked the test cases requiring lengthy data transformation
programs, since program length is a key factor affecting the efficiency of the
search in the state space graph. We considered the program to be lengthy
if it required four or more operations. Figure 3.11c shows the success rate
for all four search strategies in lengthy test cases. TED Batch achieves
the highest success rate of any of the strategies, with a margin larger than
that for over all test cases. This indicates that our proposed strategy, TED
Batch, is effective at speeding up the synthesis of lengthy programs.

Since end users often feel frustrated when handling complex data trans-
formations, we wished to know how TED Batch fared compared to other
search strategies on complex tasks. We considered test cases that required
the operators Fold, Unfold, Divide, Extract to be complex. Figure 3.11c shows

the success rate for those complex test cases. TED Batch outperforms the

53

other three strategies.

Figure 3.12a shows the time required to synthesize the programs for our
set of tests for each search strategy. The TED Batch search strategy is
significantly the fastest, with over 90% of the tests completing in under 10

seconds.

3.5.4 Effectiveness of Pruning Rules

One contribution of our work is the creation of a set of pruning rules for data
transformation. We examine the efficiency of FOOFAH with and without
these pruning rules to show how effectively these pruning rules boost the
search speed, using the benchmarks from Section 3.5.1.

Figure 3.12b presents the response times of FOOFAH with pruning rules
removed. The pruning rules do improve the efficiency of the program syn-
thesis. However, the difference between the response time of FOOFAH with
and without pruning rules is not very significant (< 10s in 86% of the test
cases). This is because the search strategy we use—TED Batch—is itself
also very effective in “pruning” bad states, by giving them low priority in
search. In comparison, if we look at “BFS NoPrune” and “BFS” in Fig-
ure 3.12a, the difference between their response time is more significant
(< 10s in only 56% of the test cases), showing that the pruning rules are

indeed quite helpful at reducing the size of the search space.

3.5.5 Adaptiveness to New Operators

A property of our program synthesis technique is its operator-independence,
as we discussed in Section 3.4. To demonstrate this, we compared the effi-
ciency of our prototype, FOOFAH, with and without a newly added operator:
Wrap. Wrap has three variants: Wrap on column z (W1), Wrap every n

o4

WRANGLER Fooran

Test Complex > 4 Ops Time ty SEt{,V Mouse Key Time tp vs ty SEt%‘ Mouse Key
PW1 No No 104.2 16.4 17.8 11.6 49.4 \,52.6% 10.1 20.8 22.6
PW3 (modified) No No 96.4 17.0 28.8 26.6 38.6 \,60.0% 6.2 14.2 23.6
ProgFromEx13 Yes No 263.6 91.7 59.0 16.2 145.8 N\ 44.7% 16.8 43.6 78.4
PW5 Yes No 242.0 65.6 52.0 15.2 58.8 \\75.7% 7.4 31.4 32.4
ProgFromEx17 No Yes 72.4 14.9 18.8 11.6 48.6 \,32.9% 10.8 18.2 15.2
PW7 No Yes 141.0 12.9 41.8 12.2 44.4 \,68.5% 1.8 19.6 35.8
Proactivel Yes Yes 324.2 80.3 60.0 13.8 104.2 \67.9% 14.6 41.4 57.0
Wrangler3 Yes Yes 590.6 9.4 133.2 29.6 137.0 \,76.8% 13.2 58.6 99.8

Table 3.5: User study experiment results

rows (W2) and Wrap into one row (W3). We examined the responsiveness
of FOOFAH on all test cases as we sequentially added the three variants of
Wrap.

Figure 3.12c shows the response time of FOOFAH as we add new variants
of Wrap, using the same set of test cases as in Section 3.5.3. The addi-
tion of the Wrap operations allowed more test scenarios to be successfully
completed, while the synthesis time of overall test cases did not increase.
This is evidence that the system can be improved through the addition of
new operators, which can be easily incorporated without rewriting the core

algorithm.

3.5.6 User Effort Study

FoorAH provides a Programming By Example interaction model in hopes
of saving user effort. In this experiment, we asked participants to work on
both WRANGLER and FOOFAH and compared the user effort required by
both systems.

Overview — We invited 10 graduate students in Computer Science De-
partment who claimed to have no experience in data transformation to
participate in our user study. From our benchmark test suite, we chose

eight user study tasks of varied length and complexity, shown in Table 3.5.

55

Y

Column “Complex” indicates if a task requires a complex operator: Fold,
Unfold, Divide, and Extract. Column “> 4 Ops” indicates if a task requires
a data transformation program with 4 or more operations.

Before the experiment, we educated participants on how to use both
WRANGLER and FOOFAH with documentation and a complex running ex-
ample. During the experiment, each participant was given four randomly
selected tasks, covering complex, easy, lengthy, and short tasks, to complete

on both systems. Each task had a 10 minute time limit.

Evaluation Metrics — To quantify the amount of user effort on both
systems, we measured the time a user spends to finish each user study task.
In addition to time, we also measured the number of user mouse clicks and

keystrokes.

Results — Table 3.5 presents the measurement of the average user efforts
on both WRANGLER and FOOFAH over our 8 user study tasks. The per-
centages of time saving in each test is presented to the right of the time
statistics of FOOFAH. The timing results show that FOOFAH required 60%
less interaction time in every test on average. FOOFAH also saved more
time on complex tasks. On these tasks, FOOFAH took one third as much
interaction time as WRANGLER. In the lengthy and complex “Wrangler3”
case, 4 of 5 test takers could not find a solution within 10 minutes using
WRANGLER, but all found a solution within 3 minutes using FOOFAH.

In Table 3.5 we see that FOOFAH required an equal or smaller number
of mouse clicks than WRANGLER. However, Table 3.5 also shows that
FoOFAH required more typing than WRANGLER, mainly due to FOOFAH’s
interaction model. Typing can be unavoidable when specifying examples,

while WRANGLER often only requires mouse clicks.

56

Layout Trans. Syntactic Trans.

FOOFAH 88.4% 100%
PrRoGFROMEX 97.7% 0%
FLASHRELATE 74.4% 0%

Table 3.6: Success rates for different techniques on both layout trans-
formation and syntactic transformation benchmarks

3.5.7 Comparison with Other Systems

FOOFAH is not the first PBE data transformation system. There are two
other closely related pieces of previous work: PROGFROMEX [35] and
FLASHRELATE [7]. In general, both PROGFROMEX and FLASHRELATE
are less expressive than FOOFAH; they are limited to layout transforma-
tions and cannot handle syntactic transformations. Further, in practice,
both systems are likely to require more user effort and to be less efficient
than FOOFAH on complex tasks.

Source code and full implementation details for these systems are not
available. However, their published experimental benchmarks overlap with
our own, allowing us to use their published results in some cases and hand-
simulate their results in other cases. As a result, we can compare our
system’s success rate to that of PROGFROMEX and FLASHRELATE on at
least some tasks, as seen in Table 3.6. Note that syntactic transformation
tasks may also entail layout transformation steps, but the reverse is not

true.

ProgFromEx

The PROGFROMEX project employs the same usage model as FOOFAH:

the user gives an “input” grid of values, plus a desired “output” grid, and

57

the system formulates a program to transform the input into the output.
A PROGFROMEX program consists of a set of component programs. Each
component program takes in the input table and yields a map, a set of
input-output cell coordinate pairs that copies cells from the input table to
some location in the output table.

A component program can be either a filter program or an associative
program. A filter program consists of a mapping condition (in the form of
a conjunction of cell predicates) plus a sequencer (a geometric summary
of where to place data in the output table). To execute a filter program,
PROGFROMEX tests each cell in the input table, finds all cells that match
the mapping condition, and lets the sequencer decide the coordinates in the
output table to which the matching cells are mapped. An associative pro-
gram takes a component program and applies an additional transformation
function to the output cell coordinates, allowing the user to produce output
tables using copy patterns that are not strictly one-to-one (e.g., a single cell

from the input might be copied to multiple distinct locations in the output).

Expressiveness — The biggest limitation of PROGFROMEX is that it can-
not describe syntactic transformations. It is designed to move values from
an input grid cell to an output grid cell; there is no way to perform op-
erations like Split or Merge to modify existing values. Moreover, it is not
clear how to integrate such operators into their cell mapping framework.
In contrast, our system successfully synthesizes programs for 100% of our
benchmark syntactic transformation tasks, as well as 90% of the layout
transformation tasks (see Table 3.6). (Other systems can handle these crit-
ical syntactic transformation tasks [33, 52, 86], but FOOFAH is the first PBE
system to do so that we know of). PROGFROMEX handles slightly more
layout transformations in the benchmark suite than our current FOOFAH

prototype, but PROGFROMEX’s performance comes at a price: the system

58

administrator or the user must pre-define a good set of cell mapping condi-
tions. If the user were willing to do a similar amount of work on FOOFAH

by adding operators, we could obtain a comparable result.

User Effort and Efficiency — For the subset of our benchmark suite that
both systems handle successfully (i.e., cases without any syntactic transfor-
mations), PROGFROMEX and FOOFAH require roughly equal amounts of
user effort. As we describe in Section 3.5.1, 37 of our 50 benchmark test
scenarios are borrowed from the benchmarks of PROGFROMEX. For each
of these 37 benchmarks, both PROGFROMEX and FOOFAH can construct
a successful program with three or fewer user-provided examples. Both

systems yielded wait times under 10 seconds for most cases.

FlashRelate

FLASHRELATE is a more recent PBE data transformation project that, un-
like PROGFROMEX and FOOFAH, only requires the user to provide output
examples, not input examples. However, the core FLASHRELATE algo-
rithm is similar to that of PROGFROMEX: it conditionally maps cells from
a spreadsheet to a relational output table. FLASHRELATE’s cell condition
tests are more sophisticated than those in PROGFROMEX (e.g., they can
match on regular expressions and geometric constraints).

Expressiveness — Like PROGFROMEX, FLASHRELATE cannot express
syntactic transformations, because FLASHRELATE requires exact matches
between regular expressions and cell contents for cell mapping. Moreover,
certain cell-level constraints require accurate schematic information, such as
column headers, in the input table. FLASHRELATE achieves a lower success
rate than FOOFAH in Table 3.6. In principle, FLASHRELATE should be able
to handle some tasks that PROGFROMEX cannot, but we do not observe

59

any of these in our benchmark suite.

User Effort and Efficiency — FLASHRELATE only requires the user
to provide output examples, suggesting that it might require less overall
user effort than FOOFAH or PROGFROMEX. However, on more than half
of the benchmark cases processed by both FLASHRELATE and FOOFAH,
FLASHRELATE required five or more user examples to synthesize a correct
transformation program, indicating that the effort using FLASHRELATE
may be no less than either PROGFROMEX or FOOFAH. Published results
show that more than 80% of tasks complete within 10 seconds, suggesting
that FLASHRELATE’s runtime efficiency is comparable to that of FOOFAH
and PROGFROMEX.

3.6 Related Work

Both program synthesis and data transformation have been the focus of
much research, which we discuss in depth below.

Program Synthesis — Several common techniques to synthesize pro-
grams have been discussed in Section 3.4.1: constraint-base program syn-
thesis [32, 44] does not fit our problem because existing logic solvers could
not scale to solve a large number of constraints quadratic in the input size;
sketching [98] is computationally infeasible for interactive data transfor-
mation; version space algebra [29, 55| is usually applied in PBD systems.
Therefore, we formulate our problem as a search problem in the state space
graph and solve it using a search-based technology with a novel heuristic—
TED Batch—as well as some pruning rules.

Researchers have applied program synthesis techniques to a variety of
problem domains: parsers [59], regular expressions [11], bit-manipulation

programs [31, 44], data structures [97]; code snippets and suggestions in

60

IDEs [67, 88], and SQL query based on natural language queries [60] and
data handling logic [20], schema mappings [4]. There are also several
projects that synthesize data transformation and extraction programs, dis-

cussed in more detail next.

Data Transformation — Data extraction seeks to extract data from un-
structured or semi-structured data. Various data extraction tools and syn-
thesizers have been created to automate this process: TextRunner [6] and
WebTables [16] extract relational data from web pages; Senbazuru [17, 18]
and FlashRelate [7] extract relations from spreadsheets; FlashExtract [57]
extracts data from a broader range of documents including text files, web
pages, and spreadsheets, based on examples provided by the user.

Data transformation (or data wrangling) is usually a follow-up step after
data extraction, in which the extracted content is manipulated into a form
suitable for input into analytics systems or databases. Work by Wu et
al. [107, 108, 109], as well as FlashFill [29, 96] and BlinkFill [94] are built
for syntactic transformation. DataXFormer [3] and work by Singh and
Gulwani [95] are built for semantic transformation. ProgFromEx [35] is
built for layout transformation, and Wrangler [52] provides an interactive
user interface for data cleaning, manipulation and transformation.

Some existing data transformation program synthesizers follow Program-
ming By Example paradigm similar to FOOFAH [7, 29, 30, 35, 57, 94, 107,
108, 109]. ProgFromEx [35] and FlashRelate [7] are two important projects
in PBE data transformation which have been compared with our proposed
technique in Section 3.5.7. In general, their lack of expressiveness for syn-
tactic transformations prevent them from addressing many real-world data

transformation tasks.

61

3.7 Conclusion

In this project, we have presented a Programming By Example data trans-
formation program synthesis technique that reduces the user effort for naive
end users. It takes descriptive hints in form of input-output examples from
the user and generates a data transformation program that transforms the
input example to the output example. The synthesis problem is formulated
as a search problem, and solved by a heuristic search strategy guided by
a novel operator-independent heuristic function, TED Batch, with a set of
pruning rules. The experiments show that our proposed PBE data transfor-
mation program synthesis technique is effective and efficient in generating
perfect programs. The user study shows that the user effort is 60% less
using our PBE paradigm compared to Wrangler [52].

In the future, we would like to extend our system with an interface allow-
ing the user to easily add new data transformation operators and to explore
advanced methods of generating the geometric patterns for batching. Ad-
ditionally, we would like to generate useful programs even when the user’s
examples may contain errors. We could do so by alerting the user when the
system observes unusual example pairs that may be mistakes, or by syn-
thesizing programs that yield outputs very similar to the user’s specified

example.

62

Chapter 4

Synthesizing Data Format
Standardization Programs using

Pattern-based Examples

4.1 Introduction

Data transformation, or data wrangling, is a critical pre-processing step es-
sential to effective data analytics on real-world data and is widely known
to be human-intensive as it usually requires professionals to write ad-hoc
scripts that are difficult to understand and maintain. A human-in-the-
loop Programming By Example (PBE) approach has been shown to reduce
the burden for the end user: in projects such as FLASHFILL [29], BLINK-
FiLL [94], and FOOFAH [46], the system synthesizes data transformation

programs using simple examples the user provides.

Problems — Most of existing research in PBE data transformation tools
has focused on the “system” part — improving the efficiency and expres-

sivity of the program synthesis techniques. Although these systems have

63

demonstrated some success in efficiently generating high-quality data trans-
formation programs for real-world data sets, verification, as an indispens-
able interaction procedure in PBE, remains a major bottleneck within ex-
isting PBE data transformation system designs.

Any reasonable user who needs to perform data transformation should
certainly care about the “correctness” of the inferred transformation logic.
In fact, a user will typically go through rounds of “verify-and-specify” cy-
cles when using a PBE system. In each interaction, a user has to verify the
correctness of the current inferred transformation logic by validating the
transformed data instance by instance until she identifies a data instance
mistakenly transformed; then she has to provide a new example for correc-
tion. Given a potentially large and varied input data set, such a
verification process is like “finding a needle in a haystack” which
can be extremely time-consuming and tedious, and may deter the
user from confidently using these tools.

A naive way to simplify the cumbersome verification process is to add
some visual aids to the transformed data so that the user does not have to
read them in their raw form. For example, if we can somehow know the de-
sired data pattern, we can write a checking function to automatically check
if the post-transformed data satisfies the desired pattern, and highlight data
entries that are not correctly transformed.

However, a visual aid alone can not solve the entire verification issue; the
discovered transformation logic is undisclosed and mystifying to the end
user. Users can at best verify that existing data are converted into the right
form, but the logic is not guaranteed to be correct and may function
unexpectedly on new input (see Section 4.2 for an example). Without
good insight into the transformation logic, PBE system users cannot tell if

the inferred transformation logic is correct, or when there are errors in the

64

logic, they may not be able to debug it. If the user of a traditional PBE
system lacks a good understanding of the synthesize program’s
logic, she can only verify it by spending large amounts of time
testing the synthesized program on ever-larger datasets.

Naively, previous PBE systems can support program explanation by pre-
senting the inferred programs to end users. However, these data transforma-
tion systems usually design their own Domain Specific Languages (DSLs),
which are usually sophisticated. The steep learning curve makes it unrealis-
tic for most users to quickly understand the actual logic behind the inferred
programs. Thus, besides more explainable data, a desirable PBE system
should be able to present the transformation logic in a way that most people

are already familiar with.

Insight — Regular expressions (regexp) have been known to most pro-
grammers of various expertise and regexp replace operations have been
commonly applied in data transformations. The influential data trans-
formation system, WRANGLER (later as TRIFACTA), proposes simplified
natural-language-like regular expressions which can be understood and used
even by non-technical data analysts. This makes regexp replace opera-
tions a promising candidate as an explainable transformation language for
non-professionals. The challenge then is how to automatically synthesize
regexp replace operations as the desired transformation logic in a PBE
system.

A regexp replace operation takes in two parameters: an input pattern
and a replacement function. Suppose an input data set is given, and the
desired data pattern can be known, the challenge is to determine a suitable
input pattern and the replacement function to convert all input data into
the desired pattern. Moreover, if the input data set is heterogeneous with

many formats, we need to find out an unknown set of such input-pattern-

65

and-replace-function pairs.

Pattern profiling, or syntactic profiling, is another useful technique to
address the problem. It is to discover the structural patterns that summarize
the data [76]. For example, given a set of messy phone numbers, multiple
formats could be discovered, such as “\d{3}-\d{3}-\d{4}”, “\d{7}”, and
so on. Some of the important work in automatic pattern profiling include
PADS [25], Datamaran [26], and FlashProfile [76]. The patterns discovered
by a pattern profiler can be naturally used to generate RegExp Replace
operations. Moreover, it can also serve as a data explanation approach
helping the user quickly understand the pre- and post-transformation data

which reduces the verification challenge users face in PBE systems.

Proposed Solution — In this project, we propose a new data transfor-
mation paradigm, CLX, to address the two specific problems within our
claimed verification issue. The CLX paradigm has three components: two
algorithmic components—-clustering and transformation—with an interven-
ing component of [abeling. Here, we present an instantiation of the CLX
paradigm. We present (1) an efficient pattern clustering algorithm that
groups data with similar structures into small clusters, (2) a DSL for data
transformation, that can be interpreted as a set of regular expression replace
operations, (3) a program synthesis algorithm to infer desirable transforma-
tion logic in the proposed DSL.

Through the above means, we are able to greatly ameliorate the usability
issue in verification within PBE data transformation systems. Our experi-
mental results show improvements over the state of the art in saving user
verification effort, along with increasing users’ comprehension of the inferred
transformations. Increasing comprehension is highly relevant to reducing
the verification effort. In one user study on a large data set, when the data

size grew by a factor of 30, the CLX prototype cost 1.3x more verification

66

time whereas FLASHFILL cost 11.4x more verification time. In a sepa-
rate user study accessing the users’ understanding of the transformation
logic, CLX users achieved a success rate about twice that of FLASHFILL
users. Other experiments also suggest that the expressive power of the
CLX prototype and its efficiency on small data are comparable to those of
FLASHFILL.

Organization — After motivating our problem with an example in Sec-

tion 4.2, we discuss the following contributions:

o We define the data transformation problem and present the PBE-like
CLX framework solving this problem. (Section 4.3)

o We present a data pattern profiling algorithm to hierarchically cluster

the raw data based on patterns. (Section 4.4)

o We present a new DSL for data pattern transformation in the CLX

paradigm. (Section 4.5)

o We develop algorithms synthesizing data transformation programs,
which can transform any given input pattern to the desired standard

pattern. (Section 4.6)

o We experimentally evaluate the CLX prototype and other baseline

systems through user studies and simulations. (Section 4.7)

We finish with a discussion of future work in Section 4.9.

4.2 Motivating Example

Bob is a technical support employee at the customer service department.
He wanted to have a set of 10,000 phone numbers in varied formats (as in

Figure 4.1) in a unified format of “(xxx) xxx-xxxx". Given the volume and

67

(734) 645-8397

(734)586-7252 \({digit}3\){digit}3\-{digit}4
734-422-8073 (734)586-7252 ... (2572 rows)
734.236.3466 {digit}3\-{digit}3\-{digit}4

734-422-8073 ... (3749 rows)
\({digit}3\)\ {digit}3\-{digit}4
Figure 4.1: Phone numbers with | (734) 645-8397 ... (1/36 rows)
diverse formats {digit}3\.{digit}3\.{digit}4
\({digit}3\)\ {digit}3\-{digit}4 734.236.3466 ... (631 rows)
(734) 645-8397 ... (10000 rows)

Figure 4.2: Patterns after trans- Figure 4.3: Pattern clusters of raw
formation data

Replace '/“\(({digit}H3})\) ({digitH3P)\-({digit}{4$/' in
columnl with '($1) $2-8$3'

Replace '/~ ({digit}{3})\-({digitH3M\-({digit}{4})$/' in columnl
with '($1) $2-$3'

Figure 4.4: Suggested data transformation operations

the heterogeneity of the data, neither manually fixing them or hard-coding
a transformation script was convenient for Bob. He decided to see if there
was an automated solution to this problem.

Bob found that Excel 2013 had a new feature named FLASHFILL that
could transform data patterns. He loaded the data set into Excel and per-

formed FLASHFILL on them.

Example 4.1. Initially, Bob thought using FLASHFILL would be straight-
forward: he would simply need to provide an example of the transformed
form of each ill-formatted data entry in the input and copy the exact value
of each data entry already in the correct format. However, in practice, it

turned out not to be so easy. First, Bob needed to carefully check each phone

68

number entry deciding whether it is ill-formatted or not. After obtaining
a new input-output example pair, FLASHFILL would update the transfor-
mation results for the entire input data, and Bob had to carefully examine
again if any of the transformation results were incorrect. This was tedious
given the large volume of heterogeneous data (verification at string level
is challenging). After rounds of repairing and verifying, Bob was finally
sure that FLASHFILL successfully transformed all existing phone numbers
in the data set, and he thought the transformation inferred by FLASHFILL
was impeccable. Yet, when he used it to transform another data set, a phone
number “+1 724-285-5210" was mistakenly transformed as “(1) 724-2857,
which suggested that the transformation logic may fail anytime (unexplain-
able transformation logic functions unexpectedly). Customer phone
numbers were critical information for Bob’s company and it was important
not to damage them during the transformation. With little insight from
FLASHFILL regarding the transformation program generated, Bob was not
sure if the transformation was reliable and had to do more testing (lack of

understanding increases verification effort).
Bob heard about CLX and decided to give it a try.

Example 4.2. He loaded his data into CLX and it immediately presented
a list of distinct, natural language-like string patterns for phone numbers
in the input data (Figure 4.3), which helped Bob quickly tell which part of
the data were ill-formatted. After Bob selected the desired pattern, CLX
immediately transformed all the data and showed a new list of string pat-
terns as Figure 4.2. So far, verifying the transformation result was
straightforward. The inferred program is presented as a set of Replace
operations on raw patterns in Figure 4.3, each with a picture visualizing the

transformation effect (like Figure 4.8). Enhanced by visualizations and nat-

69

Notation Description

S ={s1,89, .} A set of ad hoc strings s, 85, ... to be transformed.

P ={ps, 02y} A set of string patterns derived from S.

p; = {t1,ty, ... } Pattern made from a sequence of tokens ¢,

T The desired target pattern that all strings in & needed

to be transformed into.

£ ={(p1, 1), (pa, f2),...} Program synthesized in CLX transforming data the pat-
terns of P into T .

E The expression £ in £, which is a concatenation of Ex-
tract and/or ConstStr operations. It is a transformation
plan for a source pattern. We also refer to it as an Atomic
Transformation Plan in this section.

Q(E, D) Frequency of token t in pattern p
g Potential expressions represented in Directed Acyclic
Graph.

Table 4.1: Frequently used notations

ural language-like pattern representations, these Replace operations seemed
not difficult to understand and verify. Like many users in our User Study
(Section 4.7.3), Bob had a deeper understanding of the inferred
transformation logic with Clx than with FlashFill, and hence, he
knew well when and how the program may fail, which saved him

from the effort of more blind testing.

4.3 QOverview

4.3.1 Patterns and Data Transformation Problem

A data pattern, or string pattern, is a “high-level” description of the at-
tribute value’s string. A natural way to describe a pattern could be a regular
expression over the characters that constitute the string. In data transfor-

mation, we find that groups of contiguous characters are often transformed

70

together as a group. Further, these groups of characters are meaningful
in themselves. For example, in a date string “11/02/20177, it is useful to
cluster “2017” into a single group, because these four digits are likely to
be manipulated together. We call such meaningful groups of characters as
tokens.

Table 4.2 presents all token classes we currently support in our instantia-
tion of CLX, including their class names, regular expressions, and notation.
In addition, we also support tokens of constant values (e.g., “,”, “:”). In the
rest of the section, we represent and handle these tokens of constant values
differently from the 5 token classes defined in Table 4.2. For convenience of
presentation, we denote such tokens with constant values as literal tokens
and tokens of 5 token classes defined in Table 4.2 as base tokens.

A pattern is written as a sequence of tokens, each followed by a quantifier
indicating the number of occurrences of the preceding token. A quantifier
is either a single natural number or “4”, indicating that the token appears
at least once. In the rest of this section, to be succinct, a token will be
denoted as “(t)q” if q is a number (e.g., (D)3) or “(f)+” otherwise (e.g.,
(D)+). If t is a literal token, it will be surrounded by a single quotation
mark, like :> When a pattern is shown to the end user, it is presented as a
natural language-like reqular expression proposed by WRANGLER [52] (see
regexps in Fig 4.4).

With the above definition of data patterns, we hereby formally define the
problem we tackle using the CLX framework—data transformation. Data
transformation or wrangling is a broad concept. Our focus in this project
is to apply the CLX paradigm to transform a data set of heterogeneous
patterns into a desired pattern. A formal definition of the problem is as

follows:

Definition 4.1 (Data (Pattern) Transformation). Given a set of strings

71

Token Class Regular Expression Example Notation

digit [0-9] “197 (D)
lower [a-z] “car” (L)
upper [A-Z] “IBM” (U)
alpha [a-zA-Z] “Excel” (A)
alpha-numeric [a-zA-Z0-9_-] “Excel2013” (AN)

Table 4.2: Token classes and their descriptions

Labeling x
I
I
I
I
Messy Raw Dat. .
W
Clustering ‘= Transforming .

Figure 4.5: “CLX” Model: Cluster—Label-Transform

S ={s1,...,8,}, generate a program £ that transforms each string in S to

an equivalent string matching the user-specified desired target pattern T .

L ={(p1, 1) (ps, f5), ... } is the program we synthesize in the transform-
ing phase of CLX. It is represented as a set regexp replace operations,
Replace(p, f)*, that many people are familiar with (e.g., Fig 4.4).

With above definitions of patterns and data transformations, we present

the CLX framework for data transformation.

4p is the regular expression, and fis the replacement string indicating the operation on
the string matching the pattern p.

72

4.3.2 CIlx Data Transformation Paradigm

We propose a data transformation paradigm called Cluster-Label-Transform
(CLX, pronounced “clicks”). Figure 4.5 visualizes the interaction model in

this framework.

Clustering — The clustering component groups the raw input data into
clusters based on their data patterns/formats. Compared to raw strings,
data patterns is a more abstract representation. The number of patterns
is fewer than raw strings, and hence, it can make the user understand the
data and verify the transformation more quickly. Patterns discovered during
clustering is also useful information for the downstream program synthesis
algorithm to determine the number of regexp replace operations, as well as

the desirable input patterns and transformation functions.

Labeling — Labeling is to specify the desired data pattern that every data
instance is supposed to be transformed into. Presumably, labeling can be
achieved by having the user choose among the set of patterns we derive in
the clustering process assuming some of the raw data already exist in the
desired format. If no input data matches the target pattern, the user could

alternatively choose to manually specify the target data form.

Transforming — After the desired data pattern is labeled, the system
automatically synthesizes data transformation logic that transforms all un-
desired data into the desired form and also proactively helps the user un-
derstand the transformation logic.

In this section, we present an instantiation of the CLX paradigm for
data pattern transformation. Details about the clustering component and
the transformation component are discussed in Section 4.4 and 4.6. In
Section 4.5, we show the domain-specific-language (DSL) we use to represent

the program £ as the outcome of program synthesis, which can be then

73

presented as the regexp replace operations. The paradigm has been designed
to allow new algorithms and DSLs for transformation problems other than
data pattern transformation; we will pursue other instantiations in future

work.

4.4 Clustering data on patterns

In Crx, we first cluster data into meaningful groups based on their pattern
structure and obtain the pattern information, which helps the user quickly
understand the data. To minimize user effort, this clustering process should
ideally not require user intervention.

PADS [25] is a seminal project that also targets string pattern discovery.
However, PADS is orthogonal to our effort in that their goal is mainly to
find a comprehensive and unified description for the entire data set whereas
we seek to partition the data into clusters, each cluster with a single data
pattern. Also, the PADS language [24] itself is known to be hard for a
non-expert to read [112]. Our interest is to derive simple patterns that are
comprehensible. Besides the explainability, efficiency is another important
aspect of the clustering algorithm we must consider, because input data can
be huge and the real-time clustering must be interactive.

A recent work FLASHPROFILE [76] targets the same problem of pattern
profiling for a dataset. Compared to previous work, FLASHPROFILE is
more in line with our expectation for a pattern profiler in that 1) it is able
to profile patterns for a messy dataset with varied formats, 2) it returns
multiple simple patterns instead of one giant and complex pattern as the
final output, which are more readable, 3) it allows the user-defined atoms
(atomic patterns).

However, the approach proposed by FLASHPROFILE is not quite appli-

74

cable in our case. First, FLASHPROFILE requires the number of returned
patterns/clusters k be pre-determined by the end user, whereas we believe
asking the user to know k for an unfamiliar dataset can be non-trivial in
our case. Second, the patterns discovered by FLASHPROFILE are mostly
for understanding purposes. Since all patterns returned by FLASHPRO-
FILE are final, it is not as clear how to use these patterns in synthesizing
transformation programs afterwards as if they were subject to change.

In this project, we design an automated means to hierarchically cluster
data based on data patterns given a set of strings. The data is clustered
through a two-phase profiling: (1) tokenization: tokenize the given set of
strings of ad hoc data and cluster based on these initial patterns, (2) bot-
tom-up refinement: recursively merge pattern clusters to formulate a pat-
tern cluster hierarchy. In this case, the patterns for each data entry
from the raw dataset can be in varied generalities, which 1) allows the end
user to view /understand the pattern structure information in a simpler and
more systematic way, and also 2) facilitates the subsequent transformation

program synthesis.

4.4.1 Initial Clustering Through Tokenization

Tokenization is a common process in string processing when string data
needs to be manipulated in chunks larger than single characters. A simple
parser can do the job.

Below are the rules we follow in the tokenization phase.

o Non-alphanumeric characters carry important hints about the string
structure. Each such character is identified as an individual literal

token.

o We always choose the most precise base type to describe a token.

1)

For example, a token with string content “cat” can be categorized as
“lower”, “alphabet” or “alphanumeric” tokens. We choose “lower” as

the token type for this token.

o The quantifiers are always natural numbers.

Here is an example of the token description of a string data record discovered

in the tokenization phase.

Example 4.3. Suppose the string “Bob123@gmail.com” is to be tokenized.
The result of tokenization becomes [(U), (L)2, (D)3, ‘@’, (L)5, *’, (L)3].

After tokenization, each string corresponds to a data pattern composed of
tokens. We create the initial set of pattern clusters by clustering the strings
sharing the same patterns. Each cluster uses its pattern as a label which

will later be used for refinement, transformation, and user understanding.

Find Constant Tokens — Some of the tokens in the discovered patterns
have constant values. Discovering such constant values and representing
them using the actual values rather than base tokens helps improve the
quality of the program synthesized. For example, if most entities in a faculty
name list contain “Dr.”, it is better to represent a pattern as [‘Dr..\ 7, (U,
“(L)+’] than [(U)’, «(L)’, <, *\ ", «(U)’, «(L)+’]. Similar to [25], we find
tokens with constant values using the statistics over tokenized strings in
the data set.

4.4.2 Bottom-up Pattern Cluster Refinement

In the initial clustering step, we distinguish different patterns by token
classes, token positions, and quantifiers, the actual number of pattern clus-
ters discovered in the ad hoc data in the tokenization phase could be huge.

User comprehension is inversely related to the number of patterns. It is not

76

Algorithm 3: Refine Pattern Representations
Data: Pattern set P, generalization strategy g
Result: Set of more generic patterns P ¢,
‘Tfinalﬂ'?raw A Q);

C)raw — {};
for p, € P do
Pparent < getParent(p;, q);
add pparent 10 Praws
| eraw [pparent] = eraw [pparent] +1;

for pparent € Praw ranked by C,.,,, from high to low do

o N W N -

~

8 Pparent-child < {pj|ij € T,pj.isChild(pparent)};
9 add Pparent to ?final;
10 TEMOVe Dy peny-Child from P;

11 Return P, ;3

very helpful to present too many very specific pattern clusters all at once
to the user. Plus, it can be unacceptably expensive to develop data pattern
transformation programs separately for each pattern.

To mitigate the problem, we build pattern cluster hierarchy, i.e., a hierar-
chical pattern cluster representation with the leaf nodes being the patterns
discovered through tokenization, and every internal node being a parent
pattern. With this hierarchical pattern description, the user can under-
stand the pattern information at a high level without being overwhelmed
by many details, and the system can generate simpler programs. Plus, we
do not lose any pattern discovered previously.

From bottom-up, we recursively cluster the patterns at each level to ob-
tain parent patterns, i.e., more generic patterns, formulating the new layer
in the hierarchy. To build a new layer, Algorithm 3 takes in different gener-
alization strategy g and the child pattern set 2 from the last layer. Line 3-5

clusters the current set of pattern clusters to get parent pattern clusters us-

7

Parent Patterns 7°3 <AN>+@<AN>+.<AN>+

Parent Patterns 7°2 @+<D>+@<A>+-<AB <<A>+@.)

<L>+<D>+...) ...

Leaf Nodes 7°0 @<L>2<D>3@<L>s.<§ €u><|_>3_)

Parent Patterns 7°1 @+<L>+<D>+@<L>+'<9

Figure 4.6: Hierarchical clusters of data patterns

ing the generalization strategy g. The generated set of parent patterns may
be identical to others or might have overlapping expressive power. Keeping
all these parent patterns in the same layer of the cluster hierarchy is unnec-
essary and increases the complexity of the hierarchy generated. Therefore,
we only keep a small subset of the parent patterns initially discovered and
make sure they together can cover any child pattern in . To do so, we

use a counter C,,,, counting the frequencies of the obtained parent pat-

w
terns (line 6). Then, we iteratively add the parent pattern that covers the
most patterns in 2 into the set of more generic patterns to be returned
(line 7-10). The returned set covers all patterns in P (line 11). Overall,
the complexity is O(nlogn), where n is the number of patterns in P, and
hence, the algorithm itself can quickly converge.

In this project, we perform three rounds of refinement to construct the

new layer in the hierarchy, each with a particular generalization strategy:

1. natural number quantifier to ‘+’
2. (L), (U) tokens to (A)
3. (A), (N), -’ ¢’ tokens to (AN)

Example 4.4. Given the pattern we obtained in Fxample /.3, we suc-

cessively apply Algorithm 3 with Strategy 1, 2 and 3 to generalize parent

78

patterns Py, Py and Py and construct the pattern cluster hierarchy as in
Figure 4.6.

4.4.3 Limitations

The pattern hierarchy constructed can succinctly profile the pattern infor-
mation for many data. However, the technique itself may be weak in two
situations. First, as the scope of this project is limited to addressing the
syntactic transformation problem (Section 4.5), the pattern discovery pro-
cess we propose only considers syntactic features, and no semantic features.
Ignoring semantic features may introduce the issue of “misclustering”. For
example, a date of format “MM/DD/YYYY” and a date of format “DD/M-
M/YYYY” may be grouped into the same cluster of “(N)2/(N)2/(N)4",
and hence, transforming from the former format into the latter format is
impossible in our case. Addressing this problem requires the support for
semantic information discovery and transformation, which will be in our
future work. Another possible weakness of “fail to cluster” is also mainly
affected by the semantics issue: we may fail to cluster semantically-same
but very messy data. E.g., we may not cluster the local-part (everything
before ‘@Q’) of a very weird email address “Mike'John.Smith@gmail.com”
(token (AN) cannot capture ‘"’ or *). Yet, this issue can be easily resolved
by adding additional regexp-based token classes (e.g., emails). Adding more

token classes is beyond the interest of our work.

4.5 Data Pattern Transformation Program

As motivated in Section 4.1 and Section 4.3, our proposed data transforma-

tion framework is to synthesize a set of regexp replace operations that people

79

Program £ := Switch((by,&4), ..., (b,,,E,,))
Predicate b := Match(s, p)
Expression & := Concat(fy,..., f,,)
String Expression f := ConstStr(5) | Extract(fi,’:j)
Token Expression t; := (f;, v, q,1)

Figure 4.7: UniFi Language Definition

are familiar with as the desired transformation logic. However, representing
the logic as regexp strings will make the program synthesis difficult. Instead,
to simplify the program synthesis, we propose a new language, UNIF, as a
representation of the transformation logic internal to CLX. The grammar
of UNIFT is shown in Figure 4.7. We then discuss how to explain an inferred
UNIF'T program as regexp replace operations.

The top-level of any UNIF1 program is a Switch statement that condition-
ally maps strings to a transformation. Match checks whether a string s is an
exact match of a certain pattern p we discovered previously. Once a string
matches this pattern, it will be processed by an atomic transformation plan

(expression & in UNIF1) defined below.

Definition 4.2 (Atomic Transformation Plan). Atomic transformation plan
is a sequence of parameterized string operators that converts a given source

pattern into the target pattern.

The available string operators include ConstStr and Extract. ConstStr(5)
denotes a constant string s. Extract(’:i,’:j) extracts from the " token to
the j'" token in a pattern. In the rest of the section, we denote an Extract
operation as Extract(7,j), or Extract(i) if i = j. A token t is represented as

(’:, t,q,1): t is the token class in Table 4.2; v represents the corresponding

80

regular expression of this token; q is the quantifier of the token expression;
i denotes the index (one-based) of this token in the source pattern.

As with FLASHFILL [29] and BLINKFILL [94], we only focus on syntactic
transformation, where strings are manipulated as a sequence of characters
and no external knowledge is accessible, in this instantiation design. Seman-
tic transformation (e.g., converting “March” to “03”) is a subject for future
work. Further—again like BLINKFILL—our proposed data pattern transfor-
mation language UNIFT does not support loops. Without the support for
loops, UNIFT may not be able to describe transformations on an unknown
number of occurrences of a given pattern structure.

We use the following two examples used by FLASHFILL and BLINKFILL
to briefly demonstrate the expressive power of UNIFI, and the more de-
tailed expressive power of UNIFT would be examined in the experiments in
Section 4.7.4. For simplicity, Match(s,p) is shortened as Match(p) as the

input string s is fixed for a given task.

Example 4.5. This problem is modified from test case “Example 37 in
BLINKFILL. The goal is to transform all messy values in the medical billing
codes into the correct form “[CPT-XXXX]” as in Table 4.5.

Raw data Transformed data
CPT-00350 CPT-00350
[CPT-00340 CPT-00340
[CPT-11536] CPT-11536
CPT115 CPT-115]

Table 4.3: Normalizing messy medical billing codes

The UNIF1 program for this standardization task is

Switch((Match(”\[<U>+\-<D>+"),
(Concat(Extract(1,4),ConstStr(’]’)))),
(Match("<U>+\-<D>+"),

81

(Concat(ConstStr(’[),Extract(1,3),
ConstStr(’]’))))
(Match(”<U>+<D>+"),
(Concat(ConstStr(’["),Extract(1),
ConstStr(’-"),Extract(2),ConstStr(’]’)))))

Example 4.6. This problem is borrowed from “Example 9”7 in FLASH-

FivL. The goal is to transform all names into a unified format as in Ta-

ble 4.4.

Raw data Transformed data
Dr. Eran Yahav | Yahav, E.
Fisher, K. Fisher, K.
Bill Gates, Sr. Gates, B.
Oege de Moor Moor, O.

Table 4.4: Normalizing messy employee names

A UNIF1 program for this task is

Switch((Match("<U><L>+\.\ <U><L>+\ <U><L>+"),
Concat(Extract(8,9),ConstStr(’,’),

ConstStr(’ 7),Extract(5))),

(Match("<U><L>+\ <U><L>+\,\ <U><L>+\"),
Concat(Extract(4,5),ConstStr(’,’),

ConstStr(’ ’),Extract(1))),
(Match("<U><L>+\ <U>+\ <U><L>+"),
Concat(Extract(6,7),ConstStr(’,”),

ConstStr(’ ’),Extract(1))))

Program Explanation — Given a UNIFT program L, we want to present
it as a set of regexp replace operations, Replace, parameterized by natural-
language-like regexps used by Wrangler [52] (e.g., Figure 4.4), which are

straightforward to even non-expert users. Each component of (b,), within

82

the Switch statement of L, will be explained as a Replace operation. The
replacement string f in the Replace operation is created from p and the
transformation plan & for the condition b. In f, a ConstStr(5) operation
will remain as §, whereas a Extract(ﬂ-,t}) operation will be interpreted as
$t~i $t;. The pattern p in the predicate b = Match(s, p) in UNIFT naturally
becomes the regular expression p in Replace with each tokens to be extracted
surrounded by a pair of parentheses indicating that it can be extracted.
Note that if multiple consecutive tokens are extracted in p, we merge them
as one component to be extracted in p and change the f accordingly for
convenience of presentation. Figure 4.4 is an example of the transformation
logic finally shown to the user.

In fact, these Replace operations can be further explained using visual-
ization techniques. For example, we could add a Preview Table (e.g., Fig-
ure 4.8) to visualize the transformation effect in our prototype in a sample
of the input data. The user study in Section 4.7.3 demonstrates that our
effort of outputting an explainable transformation program helps the user

understand the transformation logic generated by the system.

4.6 Program Synthesis

We now discuss how to find the desired transformation logic as a UNIFT
program using the pattern cluster hierarchy obtained. Algorithm 4 shows
our synthesis framework.

Given a pattern hierarchy, we do not need to create an atomic trans-
formation plan (Definition 4.2) for every pattern cluster in the hierarchy.
We traverse the pattern cluster hierarchy top-down to find valid candidate
source patterns (line 6, see Section 4.6.1). Once a source candidate is iden-

tified, we discover all token matches between this source pattern in Q;peq

83

Extract(1) Extract(2)

Input Data Af Output Data ‘ () @ Before

+186 - (769) - 858-438 +106- (769) -858-438 Combining
+83-(973) -757-831 +83-(973) -757-831 N traciz After
+62- (647) -787-775 +62- (647)-787-775 xtract(1) xtrac(2)__combining

+172-827-587-632 +172-(027) - 507-632

+72-(0@1) -850-856 +72-(0@1) 850-856
Extract(1,2)

Figure 4.8: Preview Tab
Figure 4.9: Combine Extracts

Candidate Source ‘ . ‘ ‘4 ______
Pattern P cang N
\
Extract(l) Extract(1) EXtI’alCt(5)

onstSt onstSt onstSt| onstSt
.

Target Pattern 7~ Extract(3) --~ Extract(3)

Figure 4.10: Token alignment for the target pattern T

and the target pattern (line 7, see Section 4.6.2). With the generated token
match information, we synthesize the data pattern normalization program
including an atomic transformation plan for every source pattern (line 11,
see Section 4.6.3).

4.6.1 Identify Source Candidates

Before synthesizing a transformation for a source pattern, we want to quickly
check whether it can be a candidate source pattern (or source candidate),
i.e., it is possible to find a transformation from this pattern into the target
pattern, through validate. If we can immediately disqualify some
patterns, we do not need to go through a more expensive data
transformation synthesis process for them. There are a few reasons

why some pattern in the hierarchy may not be qualified as a candidate

84

source pattern:

1. The input data set may be ad hoc and a pattern in this data set can
be a description of noise values. For example, a data set of phone
numbers may contain “N/A” as a data record because the customer
refused to reveal this information. In this case, it is meaningless to

generate transformations.

2. We may be fundamentally not able to support some transformations
(e.g., semantic transformations are not supported as in our case).
Hence, we should filter out certain patterns which we think semantic
transformation is unavoidable, because it is impossible to transform

them into the desired pattern without the help from the user.

3. Some patterns are too general; it can be hard to determine how to
transform these patterns into the target pattern. We can ignore them
and create transformation plans for their children. For instance, if
a pattern is “(AN)+,(AN)+7”, it is hard to tell if or how it could
be transformed into the desired pattern of “(U)(L)+ : (D)+”. By
comparison, its child pattern “(U)(L)+, (D)+" seems to be a better

fit as the candidate source.

Any input data matching no candidate source pattern is left unchanged
and flagged for additional review, which could involve replacing values with
NULL or default values or manually overriding values.

Since the goal here is simply to quickly prune those patterns that are
not good source patterns, the checking process should be able to find un-
qualified source patterns with high precision but not necessarily high recall.
Here, we use a simple heuristic of frequency count that can effectively re-

ject unqualified source patterns with high confidence: examining if there

85

Algorithm 4: Synthesize UNIF1 Program

Data: Pattern cluster hierarchy root 7 p, target pattern T
Result: Synthesized program £

1 Qunsolved’ Qsolved — [])
2 £+ 0;
3 push ‘?R to Qunsolved;
4 while Qunsolved # 0 do
5 D < pop Qunsolved;
6 if validate(p,7) =T then
7 G < findTokenAlignment(p, T);
8 puSh {p7 9} to ’Qsolved;
9 else
10 L push p.children to Q. o1ved;
11 £ < createProgs(9, ived);
12 Return £

are sufficient base tokens of each class in the source pattern matching the
base tokens in the target tokens. The intuition is that any source pattern
with fewer base tokens than the target is unlikely to be transformable into
the target pattern without external knowledge; base tokens usually carry
semantic meanings and hence are likely to be hard to invent de novo.

To apply frequency count on the source pattern p; and the target pattern
Py, validate (denoted as V) compares the token frequency for every class
of base tokens in p; and p,. The token frequency Q of a token class (f) in
p is defined as

n
((H).p) = > {tyaltname = ()}, p={t,,....t,} (4.1)

=1

If a quantifier is not a natural number but “+”, we treat it as 1 in computing
Q.

86

Suppose ¥ is the set of all token classes (in our case, T = [(D), (L), (U), (A), (AN)]),
V is then defined as

true if O((6),py) = 2((),po), V(D) €T

(4.2)
false otherwise

V<p17p2> = {

Example 4.7. Suppose the target pattern T in Example 4.5 is [‘[’, (U)+,
D)+, ‘'], we know

A pattern ['[’, (U)3, -7, (D)5] derived from data record “[CPT-00350" will

be identified as a source candidate by validate, because

Another pattern [[, (U)3, '] derived from data record “[CPT-" will be

rejected because

9((D),p) =0 < Q(D),T)

4.6.2 Token Alignment

Once a source pattern is identified as a source candidate in Section 4.6.1,
we need to synthesize an atomic transformation plan between this source
pattern and the target pattern, which explains how to obtain the target
pattern using the source pattern. To do this, we need to find the token
matches for each token in the target pattern: discover all possible operations

that yield a token. This process is called token alignment.

87

Algorithm 5: Token Alignment Algorithm

Data: Target pattern T = {tq, ..., t,,}, candidate source pattern P
{t1,...,t,,}, where t, and ¢/ denote base tokens
Result: Directed acyclic graph G
7 {0,..,n} 0% < 0; 0" «n; & {};
for t; €T do
for t; € P .4pq do
if SyntacticallySimilar(t;,t}) = T then
e < Extract(t});
add e to 5(1_1,i);

cand —

o oA W N+

if t;.type = ‘literal’ then
e < ConstStr(t,.name);
add e to E(iil’”;

w

10 forie{l,...,n—1} do

11 §in < {Ve, €&1,4), €p is an Extract operation};
12 Eout < {Veq €& i41), €4 is an Extract operation};
13 fore, €¢;,, do

14 fore, €¢,,; do

15 if e,.srcldr +1 = e .srcldz then

16 e < Extract(e,.t;, e,.t;);

17 L add e to 5(1’—1,14—1);

18 G < Dag(n,n°,n",§);
19 Return G

For each token in the target pattern, there might be multiple different
token matches. Inspired by [29], we store the results of the token alignment
in Directed Acyclic Graph (DAG) represented as a DAG(7,n%,n%, &) . 7
denotes all the nodes in DAG with 7® as the source node and 7' as the
target node. Each node corresponds to a position in the pattern. £ are the
edges between the nodes in 7 storing the source information, which yield the
token(s) between the starting node and the ending node of the edge. Our

proposed solution to token alignment in a DAG is presented in Algorithm 5.

88

Align Individual Tokens to Sources — To discover sources, given the

target pattern 7 and the candidate source pattern 7 we iterate through

cand’

each token ¢, in 7 and compare ¢, with all the tokens in 7,4
For any source token t} in P, 4 that is syntactically similar (defined in
Definition 4.3) to the target token ¢, in T, we create a token match between

t and ¢; with an Extract operation on an edge from ¢, ; to ¢; (line 2-9).

Definition 4.3 (Syntactically Similar). Two tokens t; and t; are syntacti-
cally similar if: 1) they have the same class, 2) their quantifiers are identical

natural numbers or one of them is ‘+’ and the other is a natural number.

When ¢, is a literal token, it is either a symbolic character or a constant
value. To build such a token, we can simply use a ConstStr operation (line 7-
9), instead of extracting it from the source pattern. This does not violate
our previous assumption of not introducing any external knowledge during

the transformation.

Example 4.8. Let the candidate source pattern be [(D)3, ', (D)3, <
(D)4] and the target pattern be [‘(°, (D)3, ‘)’, <7, (D)3, ', (D)4]. Token

alignment result for the source pattern P.,,q ond the target pattern T,

can
generated by Algorithm 5 is shown in Figure 4.10. In Figure 4.10, a dashed
line is a token match, indicating the token(s) in the source pattern that
can formulate a token in the target pattern. A solid line embeds the actual

operation in UNIFT rendering this token match.

Combine Sequential Extracts — The Extract operator in our proposed
language UNIFT is designed to extract one or more tokens sequentially from
the source pattern. Line 4-9 only discovers sources composed of an Ex-
tract operation generating an individual token. Sequential extracts (Extract

operations extracting multiple consecutive tokens from the source) are not

89

discovered, and this token alignment solution is not complete. We need to
find the sequential extracts.

Fortunately, discovering sequential extracts is not independent of the
previous token alignment process; sequential extracts are combinations of
individual extracts. With the alignment results £ generated previously, we
iterate each state and combine every pair of Extracts on an incoming edge
and an outgoing edge that extract two consecutive tokens in the source
pattern (line 10-17). The Extracts are then added back to . Figure 4.9 vi-
sualizes combining two sequential Extracts. The first half of the figure (titled
“Before Combining”) shows a transformation plan that generates a target
pattern pattern (U)(D)+ with two operations— Extract(1) and Extract(2).
The second half of the figure (titled “After Combining”) showcases merging
the incoming edge and the outgoing edge (representing the previous two
operations) and formulate a new operation (red arrow), Extract(1,2), as a
combined operation of the two.

A benefit of discovering sequential extracts is it helps yield a “simple”

program, as described in Section 4.6.3.

Correctness — Algorithm 5 is sound and complete, which is proved below.

Theorem 4.1 (Soundness). If the token alignment algorithm (Algorithm 5)
successfully discovers a token correspondence, it can be transformed into a

UN1F1 program.

Proof. Recall that an atomic transformation plan for a pair of source pat-
tern and target pattern is a concatenation of Extract or ConstStr operations
that sequentially generates each token in the target pattern. Every token
correspondence discovered in Algorithm 5 corresponds to either a ConstStr
operation or a Extract, both of which will generate one or several tokens in

the target pattern. Hence, a token correspondence can be possibly admitted

90

into an atomic transformation plan, which will end up becoming part of a

UNIFT1 program. The soundness is true. [

Theorem 4.2 (Completeness). If there exists a UNIF1 program, the token
alignment algorithm (Algorithm 5) will for sure discover the corresponding

token correspondence matching the program.

Proof. Given the definition of the UNIFI and candidate source patterns,
the completeness is true only when the token alignment algorithm can dis-
cover all possible parameterized Extract and/or ConstStr operations which
combined will generate all tokens for the target pattern. In Algorithm 5,
line 4-6 is certain to discover any Extract operation that extracts a single
token in the source pattern and produces a single token in a target pattern;
line 7-9 guarantees to discover any ConstStr operation that yields a single
constant token in a target pattern. Given the design of our pattern pro-
filing, an Extract of a single source token can not produce multiple target
tokens, because such multiple target tokens, if exist, must have the same
token class, and should be merged as one token whose quantifier is the sum
of all these tokens. Similarly, the reverse is also true. What remains to
prove is whether Algorithm 5 is guaranteed to generate an Extract of mul-
tiple tokens, i.e., Extract(p,q)(p < q), in the source pattern that produces
multiple tokens in the target pattern. In Algorithm 5, line 4-6 is guaranteed
to discover Extract(p), Extract(p + 1), ..., Extract(q). With these Extracts,
when performing line 11-17 when i = p 4+ 1 in Algorithm 5, it will discover
the incoming edge representing Extract(p) and the output edge represent-
ing Extract(p + 1) and combine them, generating Extract(p,p + 1). When
i = p+ 2, it will discover the incoming edge representing Extract(p,p + 1)
and the outgoing edge representing Extract(p 4+ 2) and combine them, gen-
erating Extract(p,p + 2). If we repeat this process, we will definitely find

91

Extract(p, q) in the end. Therefore, the solution is complete. O

4.6.3 Program Synthesis using Token Alignment Result

As we represent all token matches for a source pattern as a DAG (Algo-
rithm 5), finding a transformation plan is to find a path from the initial
state 0 to the final state [, where [is the length of the target pattern 7.

The Breadth First Traversal algorithm can find all possible atomic trans-
formation plans for this DAG. However, not all of these plans are equally
likely to be correct and desired by the end user. The hope is to prioritize
the correct plan. The Occam’s razor principle suggests that the simplest
explanation is usually correct. Here, we apply Minimum Description
Length (MDL) [90], a formalization of Occam’s razor principle, to gauge
the simplicity of each candidate program, and rank them.

Suppose M is the set of models. In this case, it is the set of atomic
transformation plans found given the source pattern 2_,,, and the target
pattern T. & = f,f, ... f,, € M is an atomic transformation plan, where f
is a string expression. Inspired by [86], we define Description length (DL)

as follows:
L(E&,T)=L(E)+ L(T|E) (4.3)

L(&) is the model description length, which is the length required to

encode the model, and in this case, £. Hence,
L(&) =|&|logm (4.4)

where m is the number of distinct types of operations.
L(T|E) is the data description length, which is the sum of the length

92

required to encode J using the atomic transformation plan &. Thus,

L(T|E) =) log L(f;) (4.5)

fie€

where L(f;) the length to encode the parameters for a single expression. For
an Extract(i) or Extract(i,j) operation, L(f) = log |P .4nal* (recall Extract(i)
is short for Extract(i,i)). For a ConstStr(5), L(f) = logcl®l, where ¢ is the
size of printable character set (¢ = 95).

With the concept of description length described, we define the minimum

description length as

L, (T, M) =min |L(E)+ L(T|E) (4.6)

man Eem

In the end, we present the atomic transformation plan £ with the min-
imum description length as the default transformation plan for the source
pattern. Also, we list the other k transformation plans with lowest descrip-

tion lengths.

Example 4.9. Suppose the source pattern is “(D)2/(D)2/(D)4”, the tar-
get pattern T is “(D)2/(D)2”. The description length of a transformation
plan £, = Concat(Extract(1,3)) is L(E,,T) = 1logl + 2log3. In com-
parison, the description length of another transformation plan £, = Con-
cat(Eztract(1), ConstStr(‘/’),Extract(3)) is L(E4,T) = 3log?2 + log3? +
log95 + log 32 > L(&,,T). Hence, we prefer £y, a simpler plan than &,,

and more likely to be correct from our perspective.

93

4.6.4 Limitations and Program Repair

The target pattern T as the sole user input so far is more ambiguous com-
pared to input-output example pairs used in most other PBE systems. Also,
we currently do not support “semantic transformation”. We may face the is-
sue of “semantic ambiguity”—mismatching syntactically similar tokens with
different semantic meanings. For example, if the goal is to transform a date
of pattern “DD/MM/YYYY” into the pattern "MM-DD-YYYY” (our clus-
tering algorithm works in this case). Our token alignment algorithm may
create a match from “DD” in the first pattern to “MM” in the second pattern
because they have the same pattern of (D)2. The atomic transformation
plan we initially select for each source pattern can be a transformation that
mistakenly converts “DD/MM/YYYY” into “DD-MM-YYYY".

Fortunately, as our token alignment algorithm is complete and the pro-
gram synthesis algorithm can discover all possible transformations and rank
them in a smart way, the user can quickly find the correct transformation
through program repair: replace the initial atomic transformation plan with
another atomic transformation plans among the ones Section 4.6.3 suggests
for a given source pattern.

To make the repair even simpler for the user, we deduplicate equivalent

atomic transformation plans defined below before the repair phase.

Definition 4.4 (Equivalent Plans). Two Transformation Plans are equiv-
alent if, given the same source pattern, they always yield the same transfor-

mation result for any matching string.

For instance, suppose the source pattern is [(D)2, ‘/’, (D)2]. Two trans-
formation plans £; = [Extract(3), Const(‘/’), Extract(1)] and &, = [Extract(3),
Extract(2), Extract(1)] will yield exactly the same output because the first

and third operations are identical and the second operation will always gen-

94

erate a ‘/” in both plans. If two plans are equivalent, presenting both rather
than one of them will only increase the user effort. Hence, we only pick the
simplest plan in the same equivalence class and prune the rest. Checking
whether a candidate transformation plan P, is equivalent to another candi-

date transformation plan P, is performed through the following procedures:

1. Split each Extract(m, n) operation in both plans into Extract(m),Extract(m-+
1), ..., Extract(n).

2. Assuming P, = {opi,opi,...,opL} and P, = {op?,op3,...,0p2,}. If
m # n, we stop checking and return False. Otherwise, from left to
right, we compare operations of two plans one by one. For example,
we first compare op} with op?, then opi with op3, and so on. The

check continues when
a) opi is exactly the same as op?, or

b) Op}ﬁ is not same as opi. However, one of them is an Extract
operation and the other is a ConstStr operation, and the first
operation extracts a constant string whose content is exactly the

same as the content of the second operation.

3. We stop and return True if we reach the end of both plans.

The computational complexity of above pairwise comparison is clearly
linear to the length of the plan, and is therefore inexpensive.

Overall, the repair process does not significantly increase the user effort.

95

4.7 Experiments

We make three broad sets of experimental claims. First, we show that as
the input data becomes larger and messier, CLX tends to be less work to
use than FLASHFILL because verification is less challenging (Section 4.7.2).
Second, we show that CLX programs are easier for users to understand
than FLASHFILL programs (Section 4.7.3). Third, we show that CLX’s
expressive power is similar to that of baseline systems, as is the required

effort for non-verification portions of the PBE process (Section 4.7.4).

4.7.1 Experimental Setup

We implemented a prototype of CLX and compared it against the state-of-
the-art PBE system FLASHFILL. For ease of explanation, in this section,
we refer this prototype as “CLX”. Additionally, to make the experimental
study more complete, we had a third baseline approach, a non-PBE fea-
ture offered by TRIFACTAWRANGLER® allowing the user to perform string
transformation through manually creating Replace operations with simple
natural-language-like regexps (referred as REGEXREPLACE). All experi-
ments were performed on a 4-core Intel Core i7 2.8G CPU with 16GB RAM.
Other related PBE systems, FOOFAH [46] and TDE [37], target different
workloads and also share the same verification problem we claim for PBE

systems, and hence, are not considered as baselines.

STRIFACTAWRANGLER is a commercial product of WRANGLER launched by Trifacta
Inc. The version we used is 3.2.1

96

4.7.2 User Study on Verification Effort

In this section, we conduct a user study on a real-world data set to show that
(1) verification is a laborious and time-consuming step for users when using
the classic PBE data transformation tool (e.g., FLASHFILL) particularly on
a large messy data set, (2) asking end users to hand-write regexp-based
data transformation programs is challenging and inefficient, and (3) the
CLX model we propose effectively saves the user effort in verification during
data transformation and hence its interaction time does not grow fast as

the size and the heterogeneity of the data increase.

Test Data Set — Finding public data sets with messy formats suitable
for our experiments is very challenging. The first experiment uses a column
of 331 messy phone numbers from the “Times Square Food & Beverage
Locations” data set [75].

Overview — The task was to transform all phone numbers into the form
“(D)3-(D)3-(D)4". We created three test cases by randomly sampling the
data set with the following data sizes and heterogeneity: “10(2)” has 10
data records and 2 patterns; “100(4)” has 100 data records and 4 patterns;
“300(6)” has 300 data records and 6 patterns.

We invited 9 students in Computer Science with a basic understanding
of regular expressions and not involved in our project. Before the study, we
educated all participants on how to use the system. Then, each participant
was asked to work on one test case on a system and we recorded their
performance.

We looked into the user performances on three systems from various per-
spectives: overall completion time, number of interactions, and verification
time. The overall completion time gave us a quick idea of how much the

cost of user effort was affected when the input data was increasingly large

97

and heterogeneous in this data transformation task. The other two metrics
allowed us to check the user effort in verification. While measuring comple-

tion time is straightforward, the other two metrics need to be clarified.

Number of interactions. For FLASHFILL, the number of interactions is
essentially the number of examples the user provides. For CLX we define
the number of interactions as the number of times the user verifies (and
repairs, if necessary) the inferred atomic transformation plans. We also add
one for the initial labeling interaction. For REGEXREPLACE, the number

of interactions is the number of Replace operations the user creates.

Verification Time. All three systems follow different interaction paradigms.
However, we can roughly divide the interaction process into two parts, verifi-
cation and specification: the user is either busy inputting (typing keyboards,
selecting, etc.) or paused to verify the correctness of the transformed data
or synthesized /hand-written regular expressions.

Measuring verification time is meaningful because we hypothesize that
PBE data transformation systems become harder to use when data is large
and messy not because the user has to provide a lot more input, but it

becomes harder to verify the transformed data at the instance level.

Results — As shown in Figure 4.11a, “100(4)” cost 1.1x more time than
“10(2)” on CLX, and “300(6)” cost 1.2x more time than “10(2)” on CLX. As
for FLASHFILL, “100(4)” cost 2.4x more time than “10(2)”, and “300(6)”
cost 9.1x more time than “10(2)”. Thus, in this user study, the user effort
required by CLX grew slower than that of FLASHFILL. Also, REGEXRE-
PLACE cost significantly more user effort than CLX but its cost grew not as
quickly as FLASHFILL. This shows good evidence that (1) manually writ-
ing data transformation script is cumbersome, (2) the user interaction time

grows very fast in FLASHFILL when data size and heterogeneity increase,

98

i REGEXREPLACE i REGEXREPLACE REGEXREPLACE

I FrasnFiL I FrasuFiL + FrasnFILL
Il cux S I cux + CLX
T T T
— 500 o 8 - 400
Z 400 S 6 < 300
300 bS] 200
£ 200 g 2 | § 100
B 100 4 E‘ 2 | 0 [
0 E O 2 4 6 8
10(2)100(4B00(6) 10(2)100(4B00(6) Interaction #
(a) Overall completion (b) Rounds of interac- (c) Interaction times-
time tions tamps for 300(6)

Figure 4.11: Scalability of the system usability as data volume and
heterogeneity increases (shorter bars are better)

and (3) the user interaction time in CLX also grows, but not as fast.

Now, we dive deeper into understanding the causes for observation (2)
and (3). Figure 4.11b shows the number of interactions in all test cases
on all systems. We see that all three systems required a similar number
of interactions in the first two test cases. Although FLASHFILL required 3
more interactions than CLX in case “300(6)”, this could hardly be the main
reason why FLASHFILL cost almost 5z more time than CLX.

We take a close look at the three systems’ interactions in the case of
“300(6)” and plot the timestamps of each interaction in Figure 4.11c. The
result shows that, in FLASHFILL, as the user was getting close to achieving
a perfect transformation, it took the user an increasingly longer amount
of time to make an interaction with the system, whereas the interaction
time intervals were relatively stable in CLX and REGEXREPLACE. Obvi-
ously, the user spent a longer time in each interaction NOT because an
example became harder to type in (phone numbers have relatively similar
lengths). We observed that, without any help from FLASHFILL, the user
had to eyeball the entire data set to identify the data records that were

99

" il REGEXREPLACE
i REGEXREPLACE

i REGEXREPLACE
I II FLASHFILL
| FrasuFiL || c || FLASHFILL
Il cix g = Il cux
= 0.8 B
45 0.6 | H
S 04
% 0.2 z I
3 0
gk ek 20k D
102)100(4400(6) e e o Yk Zpeke 3
Figure 4.13: User .
Figure 4.12: Verifi- Figure 4.14: Com-
. compre- .
cation . pletion
B hension .
time time
test
(shorter (shorter
(taller
bars are bars are
bett bars are better)
r r
etter) better)

still not correctly transformed, and it became harder and harder to do so
simply because there were fewer of them. Figure 4.12 presents the average
verification time on all systems in each test case. “100(4)” cost 1.0x more
verification time than “10(2)” on CLX, and “300(6)” cost 1.3x more veri-
fication time than “10(2)” on CLX. As for FLASHFILL, “100(4)” cost 3.4x
more verification time than “10(2)”, and “300(6)” cost 11.4x more verifica-
tion time than “10(2)”. The fact that the verification time on FLASHFILL
also grew significantly as the data became larger and messier supports our
analysis and claim.

To summarize, this user study presents evidence that FLASHFILL be-
comes much harder to use as the data becomes larger and messier mainly
because verification is more challenging. In contrast, CLX users generally

are not affected by this issue.

100

Task ID | Size AvgLen MaxLen DataType

Task1l 10 11.8 14 Human name
Task2 10 20.3 38 Address
Task3 100 16.6 18 Phone number

Table 4.5: Explainability test cases details

4.7.3 User Study on Explainability

Through a new user study with the same 9 participants on three tasks,
we demonstrate that (1) FLASHFILL users lack understanding about the
inferred transformation logic, and hence, have inadequate insights on how
the logic will work, and show that (2) the simple program generated by CLX
improves the user’s understanding of the inferred transformation logic.
Additionally, we also compared the overall completion time of three sys-

tems.

Test Set — Since it was impractical to give a user too many data pattern
transformation tasks to solve, we had to limit this user study to just a few
tasks. To make a fair user study, we chose tasks with various data types
that cost relatively the same user effort on all three systems. From the
benchmark test set we will introduce in Section 4.7.4, we randomly chose 3
test cases that each is supposed to require same user effort on both CLX and
FrasuFiLL: Example 11 from FlashFill (task 1), Example 3 from PredProg
(task 2) and “phone-10-long” from SyGus (task 3). Statistics (number of
rows, average/max/min string length of the raw data) about the three data

sets are shown in Table 4.5.

Overview — We designed 3 multiple choice questions for every task ex-
amining how well the user understood the transformation regardless of the
system he/she interacted with. The complete set of questions are shown as

follows:

101

. For task 1, if the input string is “Barack Obama”, what is the output?
A. Obama
B. Barack, Obama
C. Obama, Barack
D. None of the above
. For task 1, if the input string is “Barack Hussein Obama”, what is
the output?

A. Obama, Barack Hussein

B. Obama, Barack

C. Obama, Hussein

D. None of the above
. For task 1, if the input string is “Obama, Barack Hussein”, what is
the output?

A. Obama, Barack Hussein

B. Obama, Barack

C. Obama, Hussein

D. None of the above
. For task 2, if the input is “155 Main St, San Diego, CA 92173”, what
is the output

A. San

B. San Diego

C. St, San

102

D. None of the above
. For task 2, if the input string is “14820 NE 36th Street, Redmond,
WA 980527, what is the output?

A. Redmond

B. WA

C. Street, Redmond

D. None of the above
. For task 2, if the input is “12 South Michigan Ave, Chicago”, what is
the output?

A. South Michigan

B. Chicago

C. Ave, Chicago

D. None of the above
. For task 3, if the input string is “+1 (844) 332-282”, what is the
output?

A. +1 (844) 282-332

B. +1 (844) 332-282

C. +1 (844)332-282

D. None of the above

. For task 3, if the input string is “844.332.282”, what is the output?
A. +844 (332)-282
B. +844 (332) 332-282

103

C. +1 (844) 332-282
D. None of the above

9. For task 3, if the input string is “+1 (844) 332-282 ext57”, what is
the output?

A. +1 (844) 322-282

B. +1 (844) 322-282 ext57
C. +1 (844) 282-282 ext57
D.

None of the above

During the user study, we asked every participant to participate all three
tasks, each on a different system (completion time was measured). Upon
completion, each participant was asked to answer all questions based on the

transformation results or the synthetic programs generated by the system.

Explainability Results — The correct rates for all 3 tasks using all
systems are presented in Figure 4.13. The result shows that the partici-
pants were able to answer these questions almost perfectly using CLX, but
struggled to get even half correct using FLASHFILL. REGEXREPLACE also
achieved a success rate similar to CLX, but required higher user effort and
expertise.

The result suggests that FLASHFILL users have insufficient understanding
about the inferred transformation logic and CLX improves the users’ under-
standing in all tasks, which provides evidence that verification in CLX can

be easier.

Overall Completion Time — The average completion time for each task
using all three systems is presented in Figure 4.14. Compared to FLASH-
FILL, the participants using CLX spent 30% less time on average: ~ 70%

104

Sources # tests AvgSize AvglLen MaxLen DataType

SyGus [100] 27 63.3 11.8 63 car model ids, human name, phone
number, university name and address
FlashFill [29] 10 10.3 15.8 57 log entry, phone number, human name,

date, name and position, file directory,
url, product name

BlinkFill [94] 4 10.8 14.9 37 city name and country, human name,
product id, address

PredProg [96] 3 10.0 12.7 38 human name, address

Prose [89] 3 39.3 10.2 44 country and number, email, human
name and affiliation

Overall 47 43.6 13.0 63

Table 4.6: Benchmark test cases details

less time on task 1 and ~ 60% less time on task 3, but ~ 40% more time
on task 2. Task 1 and task 3 have similar heterogeneity but task 3 (100
records) is bigger than task 1 (10 records). The participants using FLASH-
FiLL typically spent much more time on understanding the data formats
at the beginning and verifying the transformation result in solving task 3.
This provides more evidence that CLX saves the verification effort. Task 2
is small (10 data records) but heterogeneous. Both FLASHFILL and CLX
made imperfect transformation logic synthesis, and the participants had to
make several corrections or repairs. We believe CLX lost in this case sim-
ply because the data set is too small, and as a result, CLX was not able
to exploit its advantage in saving user effort on large-scale data sets. The
study also gives evidence that CLX is sometimes effective in saving user

verification effort in small-scale data transformation tasks.

4.7.4 Expressivity and Efficiency Tests

In a simulation test using a large benchmark test set, we demonstrate that
(1) the expressive power of CLX is comparable to the other two baseline sys-
tems FLASHFILL and REGEXREPLACE, and (2) CLX is also pretty efficient

105

in costing user interaction effort.

Test Set — We created a benchmark of 47 data pattern transformation test
cases using a mixture of public string transformation test sets and example
tasks from related research publications. The information about the number
of test cases from each source, average raw input data size (number of rows),
average/max data instance length, and data types of these test cases are
shown in Table 4.6.

Among the 47 test cases we collected, 27 are from SyGus (Syntax-guided
Synthesis Competition), which is a program synthesis contest held every
year. In 2017, SyGus revealed 108 string transformation tasks in its Pro-
gramming by Examples Track: 27 unique scenarios and 4 tasks of different
sizes for each scenario. We collected the task with the longest data set in
each scenario and formulated the pattern normalization benchmarks of 27
tasks. We collected 10 tasks from FlashFill [29]. There are 14 in their paper.
Four tests (Example 4, 5, 6, 14) require a loop structure in the transfor-
mation program which is not supported in UNIFT and we filter them out.
Additionally, we collected 4 tasks from BLINKFILL [94], 3 tasks from Pred-
Prog [96], 3 tasks from Microsoft PROSE SDK [89].

For test scenarios with very little data, we asked a Computer Science stu-
dent not involved with this project to synthesize more data. Thus, we have
sufficient data for evaluation later. Also, the current CLX prototype system
requires at least one data record in the target pattern. For any benchmark
task, if the input data set violated this assumption, we randomly converted
a few data records into the desired format and used these transformed data
records and the original input data to formulate the new input data set
for the benchmark task. The heterogeneity of our benchmark tests comes
from the input data and their diverse pattern representations in the pattern

language described previously in the paper.

106

Overview — We evaluated CLX against 47 benchmark tests. As conduct-
ing an actual user study on all 47 benchmarks is not feasible, we simulated a
user following the “lazy approach” used by Gulwani et al. [35]: a simulated
user selected a target pattern or multiple target patterns and then repaired
the atomic transformation plan for each source pattern if the system pro-
posed answer was imperfect.

Also, we tested the other two systems against the same benchmark test
suite. As with CLX, we simulated a user on FLASHFILL; this user provided
the first positive example on the first data record in a non-standard pattern,
and then iteratively provided positive examples for the data record on which
the synthetic string transformation program failed. On REGEXREPLACE,
the simulated user specified a Replace operation with two regular expressions
indicating the matching string pattern and the transformed pattern, and
iteratively specified new parameterized Replace operations for the next ill-

formatted data record until all data were in the correct format.

Evaluation Metrics — In experiments, we measured how much user effort
all three systems required. Because systems follow different interaction
models, a direct comparison of the user effort is impossible. We quantify

the user effort by Step, which is defined differently as follows

o For CLX, the total Steps is the sum of the number of correct pat-
terns the user chooses (Selection) and the number of repairs for the
source patterns whose default atomic transformation plans are incor-
rect (Repair). In the end, we also check if the system has synthesized

a “perfect” program: a program that successfully transforms all data.

o For FLASHFILL, the total Steps is the sum of the number of input
examples to provide and the number of data records that the system

fails to transform.

107

Baselines ‘ CLx Wins Tie CLX Loses

vs. FLASHFILL 17 (36%) 17 (36%) 13 (28%)
vs. REGEXREPLACE | 33 (70%) 12 (26%) 2 (4%)

Table 4.7: User effort simulation comparison.

o For REGEXREPLACE, each specified Replace operation is counted as
2 Steps as the user needs to type two regular expressions for each Re-
place, which is about twice the effort of giving an example in FLASH-

FiLL.

In each test, for any system, if not all data records were correctly trans-
formed, we added the number of data records that the system fails to trans-
form correctly to its total Step value as a punishment. In this way, we
had a coarse estimation of the user effort in all three systems on the 47

benchmarks.

Expressivity Results — CLX could synthesize right transformations for
42/47 (~ 90%) test cases, whereas FLASHFILL reached 45/47 (~ 96%).
This suggests that the expressive power of CLX is comparable to that of
FrAsHFILL.

There were five test cases where CLX failed to yield a perfect transforma-
tion. Only one of the failures was due to the expressiveness of the language
itself, the others could be fixed if there were more representative examples in
the raw data. “Example 13”7 in FlashFill requires the inference of advanced
conditionals (Contains keyword “picture”) that UNIFI cannot currently ex-
press, but adding support for these conditionals in UNIFT is straightforward.
The failures in the remaining four test cases were mainly caused by the lack
of the target pattern examples in the data set. For example, one of the test

cases we failed is a name transformation task, where there is a last name

108

“McMillan” to extract. However, all data in the target pattern contained
last names comprising one uppercase letter followed by multiple lowercase
letters and hence our system did not realize “McMillan” needed to be ex-
tracted. We think if the input data is large and representative enough, we
should be able to successfully capture all desired data patterns.

REGEXREPLACE allows the user to specify any regular expression replace
operations, hence it was able to correctly transform all the input data existed
in the test set, because the user could directly write operations replacing
the exact string of an individual data record into its desired form. However,
similar to UNIF1, REGEXREPLACE is also limited by the expressive power
of regular expressions and cannot support advanced conditionals. As such,
it covered 46/47 (~ 98%) test cases.

User Effort Results — As the Step metric is a potentially noisy measure
of user effort, it is more reasonable to check whether CLX costs more or less
effort than other baselines, rather than to compare absolute Step numbers.
The aggregated result is shown in Table 4.7. It suggests CLX often requires
less or at least equal user effort than both PBE systems. Compared to
REGEXREPLACE, CLX almost always costs less or equal user effort.

4.8 Related Work

Data Transformation — FLASHFILL (now a feature in Excel) is an in-
fluential work for syntactic transformation by Gulwani [29]. It designed
an expressive string transformation language and proposed the algorithm
based on version space algebra to discover a program in the designed lan-
guage. It was recently integrated to PROSE SDK released by Microsoft.
A more recent PBE project, TDE [37], also targets string transformation.

109

Similar to FLASHFILL, TDE requires the user to verify at the instance level
and the generated program is unexplainable to the user. Other related PBE
data cleaning projects include [46, 94].

Another thread of seminal research including [86], WRANGLER [52] and
TRIFACTA created by Hellerstein et al. follow a different interaction paradigm
called “predictive interaction”. They proposed an inference-enhanced vi-
sual platform supporting many different data wrangling and profiling tasks.
Based on the user selection of columns, rows or text, the system intelli-
gently suggests possible data transformation operations, such as Split, Fold,

or pattern-based extraction operations.

Pattern Profiling — In our project, we focus on clustering ad hoc string
data based on structures and derive the structure information. The LEARN-
PADS [25] project is somewhat related. It presents a learning algorithm
using statistics over symbols and tokenized data chunks to discover pattern
structure. LEARNPADS assumes that all data entries follow a repeating
high-level pattern structure. However, this assumption may not hold for
some of the workload elements. In contrast, we create a bottom-up pattern
discovery algorithm that does not make this assumption. Plus, the output
of LEARNPADS (i.e., PADS program [24]) is hard for a human to read,
whereas our pattern cluster hierarchy is simpler to understand. Most re-
cently, DATAMARAN[26] has proposed methodologies for discovering struc-
ture information in a data set whose record boundaries are unknown, but
for the same reasons as LEARNPADS, DATAMARAN is not suitable for our
problem. FLASHPROFILE [76] is a more recent pattern profiling system
that is closer to our focus in this project. Most importantly, it targets a
messy dataset with varied formats. Second, it allows the user-defined atoms
(atomic patterns), which makes it more expressive. Third, the returned pat-

terns are more readable. FLASHPROFILE proposes a two-phase approach —

110

“clustering” and “profiling” — to return a fixed number of patterns repre-
senting all data entries in the dataset. However, this approach is not quite
applicable in our case. First, FLASHPROFILE requires the number of re-
turned patterns/clusters k be pre-determined by the end user, whereas we
believe asking the user to know k for an unfamiliar dataset can be non-trivial
in our case. Second, the patterns discovered by FLASHPROFILE are mostly
for understanding purposes. Since all patterns returned by FLASHPRO-
FILE are fixed, it is not as clear how to use these patterns in synthesizing

transformation programs afterwards as if they were subject to change.

Program Synthesis — Program synthesis has garnered wide interest in
domains where the end users might not have good programming skills or
programs are hard to maintain or reuse including data science and database
systems. Researchers have built various program synthesis applications to
generate SQL queries [60, 84, 105], regular expressions [11, 62], data cleaning
programs [29, 107], and more.

Researchers have proposed various techniques for program synthesis. [32,
44] proposed a constraint-based program synthesis technique using logic
solvers. However, constraint-based techniques are mainly applicable in the
context where finding a satisfying solution is challenging, but we prefer
a high-quality program rather than a satisfying program. Version space
algebra is another important technique that is applied by [29, 55, 56, 71].
[22] recently focuses on using deep learning for program synthesis. Most of
these projects rely on user inputs to reduce the search space until a quality
program can be discovered; they share the hope that there is one simple
solution matching most, if not all, user-provided example pairs. In our
case, transformation plans for different heterogeneous patterns can be quite

distinct. Thus, applying the version space algebra technique is difficult.

111

4.9 Conclusion

Data transformation is a difficult human-intensive task. PBE is a leading
approach of using computational inference to reduce human burden in data
transformation. However, we observe that standard PBE for data transfor-
mation is still difficult to use due to its laborious and unreliable verification
process.

We proposed a new data transformation paradigm CLX to alleviate the
above issue. In CLX, data patterns are initially constructed given a column
of string data to be transformed. They are to help the user quickly iden-
tify both well-formatted and ill-formatted data which immediately saves
the verification time. CLX also infers regexp replace operations as the de-
sired transformation, which many users are familiar with and boosts their
confidence in verification.

We presented an instantiation of CLX with a focus on data pattern trans-
formation including (1) a pattern profiling algorithm that hierarchically
clusters both the raw input data and the transformed data based on data
patterns, (2) a DSL, UNIF1I, that can express many data pattern transfor-
mation tasks and can be interpreted as a set of simple regular expression
replace operations, (3) algorithms inferring a correct UNIFT program.

We presented two user studies. In a user study on data sets of various
sizes, when the data size grew by a factor of 30, the user verification time
required by CLX grew by 1.3x whereas that required by FLASHFILL grew
by 11.4x. The comprehensibility user study shows the CLX users achieved
a success rate about twice that of the FLASHFILL users. The results provide
good evidence that CLX greatly alleviates the verification issue.

Although building a highly-expressive data pattern transformation tool is

not the central goal of this project, we are happy to see that the expressive

112

power and user effort efficiency of our initial design of CLX is comparable
to those of FLASHFILL in a simulation study on a large test set in another
test.

CLX is a data transformation paradigm that can be used not only for data
pattern transformation but other data transformation or transformation
tasks too. For example, given a set of heterogeneous spreadsheet tables
storing the same information from different organizations, CLX can be used
to synthesize programs converting all tables into the same standard format.

Building such an instantiation of CLX will be our future work.

113

Chapter 5

Synthesis of Complex Schema
Mapping Queries using

“Multiresolution” Examples

5.1 Introduction

Most data analysts and machine learning practitioners expect their data to
be prepared in a well-structured, stand-alone data frame or table. However,
in reality, input data is often spread across multiple different relations or
schemas in a single database, or even worse, scattered in a data lake, a
repository that stores both structured and unstructured data at various
scales collected from heterogeneous data sources. To prepare the data,
schema mapping is often a critical first step, converting data from source
databases with different schemas to a target schema, or mediated schema,
i.e. a desirable schema that provides an integrated view of the data sources
of interest.

Composing a schema mapping query for a real-world complex database

114

1
2
3
4
5
6
7
8
9

km? km”
State Area Lake Name #rea
(State) (Lake)
California | 411,047 Lake Tahoe 497
Oregon 251,418 Crater Lake 53.2

Florida 151,939 | Fort Peck Lake 981

Table 5.1: Desired target schema

SELECT
Province.Name, Province.Area,
Lake.Name, Lake.Area
FROM
geo__lake, Lake, Province
WHERE
geo_ Lake.Lake = Lake.Name
AND
geo_ Lake.Province = Province.Name

Figure 5.1: Desired schema mapping (SQL-)query generating the tar-
get schema in Table 5.1

is non-trivial, as it requires data analysts to 1) be familiar with the schema
mapping query language (e.g., SQL) and 2) have a deep understanding of
both the source database schemas and the target schema. To alleviate this
problem, recent research [12, 50, 72, 84, 93, 105] has proposed a sample-
driven or example-based approach to simplify schema mapping for the end
user in the hope that users can describe their desired schema mapping by
providing ezample data records—a few data records in the target schema.
Consider a quest to find all lakes, their areas and the states they belong
to and the state areas from MONDIAL [69]—a relational geography dataset

integrated from a number of data sources. The expected SQL query to

115

obtain such a table is shown in Figure 5.1. With a sample-driven schema
mapping system, the user only needs to provide a few data records as shown
in Table 5.1.

Problems — While using examples to describe the target schema can po-
tentially impose a lower requirement for non-expert users, an implicit as-
sumption of ezample correctness and consistency behind these techniques
may impede them from being effective in many use cases. Due to this
requirement, the user has to make sure the data values in the provided ex-
amples are not only correct but also precisely consistent with the database
in order for their algorithms to be functional (demonstrated in Section 5.2).
This poses a pragmatic challenge for end users without perfect domain
knowledge.

The issue itself cannot be easily addressed. First, auto-completion is
limited to fixing user typos without considering factual errors. Users cannot
simply check the database for the actual values because without a deep
knowledge of the source database schema, it can be difficult to locate the
schema elements of interest where the values exist. Second, acquiring exact
data values from external data sources, such as Google and Wikipedia,
may also fail due to the common problem of data value-level inconsistency:
the value found in an external data source for the same element may be

inconsistent to that in the source database.

Proposal — Instead of relaxing the correctness and consistency assump-
tion, we increase the expressivity of the example description language for
end users. In addition to exact values, the user can choose from an en-
riched set of constraints, including disjunctions of possible values and value
ranges, to describe each cell. We denote these constraints as multiresolution

constraints. In this case, the likelihood that the user mistakenly specifies

116

Resolution Col #1 Col #2 Col #3 Col #4

High

California 411,047 Lake Tahoe Y
|Ca|ifornia OR Nevada | 411,047 | Lake Tahoe | 497 |‘i
\
| california OR Nevada | [250000,+>] | LakeTahoe | [400,600] |*
\
Low [california OR Nevada | Number | LakeTahoe | [400,600] |

Figure 5.2: Examples at various resolutions to describe the target
schema

incorrect or inconsistent examples will likely drop. Figure 5.2 exhibits a few
different ways to specify the first record in Table 5.1 at various resolutions.

Once the user describes the target schema using these multiresolution
constraints, we can synthesize the schema mapping queries matching the

constraints.

Risks and Challenges — As multiresolution constraints are more relaxed
than traditional sample-driven constraints, supporting schema mapping in
this setting poses the risk of inefficiency: the time spent to synthesize sat-
isfying candidate queries may significantly increase, forcing the user to wait
longer, possibly an unacceptably long time.

This inefficiency arises due to two reasons. First, the complexity of the
search space is @(n?), where n is number of matching columns in the source
database for a single column in the target schema, and d is the number
of columns in the target schema. Allowing more relaxed constraints will
substantially increase n, making the search space grow polynomially. Sec-
ond, validating potential schema mapping queries against user constraints
requires issuing expensive SQL queries on the database, which can be time-

consuming.

Our Approach — We adapt an exploratory search approach used in [84]

117

to quickly find a space of candidate solutions for our proposed workload
and filter-based technique from [93] to validate the candidate queries. The
validation process involves issuing SQL queries to the source database and
creates a major performance bottleneck in many sample-driven schema map-
ping systems. To reduce the number of validations performed and improve
the validation efficiency, we propose a wvalidation scheduling strateqy guided
by a probabilistic relational model—BN-GREEDY. In our experiments, the
BN-GREEDY strategy achieves a verification workload reduction of up to
~ 69% and a runtime reduction of up to ~ 30% compared to the best

baseline strategy.

Organization — After motivating our problem with an example in Sec-

tion 5.2, we summarize our contributions as follows:

1. We formally define the multiresolution constraint and the problem of

sample-driven schema mapping with such constraints. (Section 5.3)

2. We propose a query validation scheduling strategy based on the Bayesian
model to reduce the overall validation overhead (Section 5.4.2) in a

filter-based query verification technique we adopt.

We experimentally evaluate the effectiveness of our proposed verification

scheduling strategy in Section 5.6 and explore related work in Section 5.7.

5.2 Motivating Example

MONDIAL is a relational geography dataset, integrated from a number of
data sources. Sharon, a graduate student from the department of Earth
Science, wants to study the ground water availability for each state and
needs to create a list of all lakes, their areas, and the states they belong to

along with the state areas, using this data set.

118

Initially, Sharon chooses to use MWEAVER [84], a classic sample-driven
schema mapping system. To describe her desired table on MWEAVER,
Sharon needs to provide a few complete example data records from the
table she desires. Initially, Sharon inputs “Lake Tahoe” as the first example.
Although Sharon knows that Lake Tahoe is at the boundary of California
and Nevada, she is not sure which state Lake Tahoe actually belongs to in
MONDIAL and she wants to check the database to make sure. She finds a
relation called “Lake” in MONDIAL and thinks it appears likely to contain
this information; but she is disappointed to find that it in fact does not. As
Sharon is not familiar with the database schema of MONDIAL, she cannot
immediately figure out where else to find this information in the database.
As a result, she simply puts “California” in the first cell as her best guess.
She searches Wikipedia and finds the area of California is 423970km? (it
is 411047km? on MONDIAL), so she puts this number in the second cell.
In terms of the area of Lake Tahoe, Sharon only vaguely knows that it is
between 400 and 600 km?2. She finds that the area is 490km? on Wikipedia
and puts this number in the fourth cell (the area is in fact 497km? on
MONDIAL). Not surprisingly, MWEAVER fails to find a matching schema
mapping query and returns an empty result indicating that the example
Sharon provides may be incorrect. In fact, there are mistakes in the second
and fourth cell and no query exists to provide this record.

In contrast, with our proposed system, PRISM, Sharon has more options
to specify examples at an imperfect resolution. For the state information,
Sharon inputs two possible values, “California” and “Nevada”, and for the
state area Sharon knows that both states are at least 250000km?, so she
puts “[250000, co]” for the second cell. For area, she inputs a value range
of “[400,600]”. Figure 5.2 demonstrates this new example.

With the new example, PRISM immediately finds the exact schema map-

119

ping query shown in Figure 5.1 as Sharon desires.

5.3 Problem Statement

In this project, we consider the source database, which is a relational
database 2D with a schema graph G and d relations {R;,...,R;}. In the
schema graph G = (V, E), the vertices V correspond to the relations in 2D
and edges F correspond to foreign/primary key constraints.

The objective is to derive a desired schema mapping query ¢, which pro-
duces the target schema T of ¢ projected columns/attributes on the source
database 2. The end user offers a query & to describe T, which is formalized

as follows.

Definition 5.1 (User Input for Sample-driven Schema Mapping). The user
input & is composed of a set of rows {&4,...,E,} denoting n example data
records in the result table (D). Fach row &, is comprised of a sequence of

cells {E;15 -+, €1}, where E;; mapped to the j-th column in T .

When the user provides an exact value for a cell, we say the cell con-
straint is in the perfect resolution. However, when a precise cell value is
not available, the constraint describing this cell needs to be in a “lower”
resolution, such as an interval for ordinal data or a set of values for cat-
egorical data. In this project, we propose multiresolution constraints as a
unified representation for cell values of various resolutions in the user input
for sample-driven schema mapping. In this project, we focus on slightly
relaxing the “exact value” requirement in traditional schema mapping (not
changing it) at the cell level and limit the representation of multiresolution
constraints to include cell values, value ranges and data types. Supporting

other forms of low-resolution constraints, such as semantics and data types

120

at the column level, is a possible direction to extend the current work and
will be our future work. However, they may make assumptions different
from that in the previous schema mapping research, and are hence, not
examined in the current project.

We formally define the multiresolution constraint as follows:

Definition 5.2 (Multiresolution Constraint). A multiresolution constraint
is a disjunction or conjunction of atomic constraints {py,...,p}, where an

atomic constraint p can be
e an expression describing a textual or numerical value,
e an expression describing a numerical range,

o an expression describing the data type of the cell (number, text or

datetime),

”»

e “%7 indicating that anything can be a match for this cell.

The syntax for multiresolution constraints is formally presented in Fig-
ure 5.3.

Given user input & with multiresolution constraints, discovering the de-
sired schema mapping query ¢, is to find a query that matches &, which is

formalized as follows.

Definition 5.3 (Query Matching User Input Examples). Given user input
&, a query q, and database D, q matches £ if VE; ={E;1,..., €} € &, there
exists a record v = {&y,...,E} € q(D) such that VE; € r: 1) £; matches
one of the atomic constraints in £; when &, is a disjunction of constraints,
or 2) &; matches all atomic constraints in &; when &, is a conjunction of

constraints.

121

(mulres-cstr) := (atom-cstr) V (atom-cstr) V ...
| (atom-cstr) A (atom-cstr) A ...
| %

(atom-cstr) := “data-value” (op) const
| “data-range” (op) (range)
| “data-type” (op) (type)

) i= [(val), (val))

(type) := “text” | “num” | “datetime”

)iz i |5

)

= const | —oo | 4+ 0
Figure 5.3: Multiresolution constraint for a single cell

Following previous research [84, 93], we derive only Project-Join (PJ)
SQL queries in this project. As a small set of examples usually do not
uniquely identify the desired query ¢, we return all PJ queries satisfying &.
While different ranking schemes have been proposed in previous research,
reordering the returned result is beyond the interest of our work.

We formalize the query discovery problem as follows:

Problem 5.1. Given user input &, where each cell is a multiresolution
constraint, and the source database D, find the set of Project-Join queries,
Q,, such that Vq € Q,, q matches &.

o’

5.4 Query Synthesis Algorithms

We walk through a classic query discovery framework suitable for our prob-

lem in Section 5.4.1 and present a new scheduling technique to speed up

122

the query validation process in Section 5.4.2.

5.4.1 Preliminaries

To find a complete set of satisfying PJ queries matching &£, an efficient
two-phase “explore-and-verify” query discovery paradigm used by [93] is

adopted:

1. Quickly reduce the search space to a set of candidate queries.

2. Efficiently verify the candidate queries by validating their sub-queries

noted as filters.

Find Candidate Queries — Actual definitions of candidate queries and
the techniques for finding them can vary for different query synthesis tasks
as long as 1) candidate queries are a superset of all satisfying queries re-
turned as the system output, 2) search process is efficient. Following the

same practice used by [84, 93], we discover candidate columns in two steps:

1. Locate candidate columns for each column in the target schema T .

2. Discover candidate queries by finding paths connecting candidate columns

on the schema graph G.

Candidate Column. Candidate columns, A,, are columns in the
source database D that can potentially be matched to the columns in T .

Assuming the column j in the user input £ contains cells denoted as
{€1j5 > €n - By the definition used in [93], the candidate columns A_.[j]

for the column j in T is as follows:

Ac[.j] = ﬂ Ac[gij]a (5-1>

123

where A _[€;;] denotes the columns in D containing the cell A [&,;].

In traditional sample-driven schema mapping, an inverted index J is
usually leveraged to enable a rapid search for A [&,;], where all cell &,;
values are perfect-resolution (&,;
AE

= J.[&;;]. However, in our setting which includes low-resolution
cell constraints, J is not immediately helpful as it only returns the loca-

is a single atomic constraint). Hence,

ij]

tions of a single value, not a disjunction (or conjunction) of possible values
(or ranges). To be able to benefit from using an inverted index in candidate

column search, we use the following property.

Theorem 5.1. Given cell constraints {1, ..., E,,;} in column j of the user
input &, where each cell constraint &;; is a multiresolution constraint, and

the inverted index J, the candidate columns for column j are:

ﬁ flc[\n; P4l = ﬁ (U 7[pd]>, if &= \77pd
Adl=q% & R i (5.2)
NALAPd= 0 (N Tpdl). #E5= A pa

=1 d=1 i=1 “d=1 d=1

The property can be proved by induction as below.

m
Proof. In the first scenario, where &;; = \/ py, let m =1,
d=1

\/ = A.[p:] =Ip,] = U (5.3)

Hence, the first half of Theorem 5.2 is true when m = 1.

Assuming when m = k,

k k
ﬂc[\/ Pq) = U Ipal- (5.4)
d=1

d=1

124

is true. Let m =k + 1,

k+1 k

AL\ pd = AL\ paV Pl (5.5)
d=1 d=1

Recall the definition of A_[€] is the set of all columns containing at least a

cell matching the constraint £. Given two distinct constraints £; and &, it

is axiomatic that the union of 1) columns containing at least a cell matching

&, and 2) columns containing at least a cell matching &, is equivalent to

the columns containing at least a cell matching &; or &5, noted as
‘Ac[el] U AC[GQ] = "40[6)1 \ 62] (56)

Based on (5.4) and (5.6), continue with (5.5)

k k
Ac[\/ PaV Pr] = \/ JU A [ppid]
d=1 d=1
k k+1
= U [pal VI Pk+1] U I[p4)
d=1 d=1

Thus, the first half of Theorem 5.2 is true when m = k+1. By the principle
of induction, the first half of Theorem 5.2 must hold for m € N. The proof
of the second half of Theorem 5.2 is same as that of the first half. Therefore,

we have proved the correctness of Theorem 5.2. [

Candidate Query. A candidate query (CQ), 9, = (J., P, M,), is
a Project-Join (PJ) query, where projected columns P, = {a,, ... ,acol(T)}
(a; € A.lj]), join path 7, is a connected subgraph (tree) of G, and M is a

one-to-one mapping between column a; and column j in 7.

J
To search for a CQ given A, and G, we use an explorative-search al-

125

gorithm similar to the TPW algorithm proposed in [84], which recursively
“weaves” short join paths to formulate longer join paths in G covering more

columns in 7 until a complete CQ covering all columns in T is found.

Query Verification Through Filters — Although each column in each
CQ discovered thus far matches its corresponding column in 7, it is uncer-
tain if each CQ matches the user input & (Definition 5.3) from a record-wise
perspective because joins have yet to be evaluated.

Iteratively executing these CQs on 2D and checking their query result
against £ can be expensive. We leverage the concept of filters and two re-
lated properties—Filter-Query Dependency and Inter-Filter Dependency—
proposed in [93] to efficiently validate CQs (prune invalid CQs).

Filters and Filter-Query Dependency. A filter is a succinct sub-
structure of a candidate query used to partially verify a row £, € £. Suppose
&, in Figure 5.4 is a row from the user input £. To verify if a candidate
query O, matches &, a subsection of O, in the area circled by dotted lines
can be taken as a new query 9, to verify the last two columns of &; at
a fairly low cost. If the query result of O, does not contain the last two
columns of &,%, Q. will not include &; in its query result either, and is
thereby invalid for £ (9, does not match &). In this case, O is a filter for
9., and this relationship between 9, and O is referred to as Filter-Query
Dependency, denoted as 9 >_ Q.

Moreover, multiple candidate queries that have overlapping join paths
will also have a subset of filters in common, which means if any filter in this
subset fails, all CQs sharing this filter will be pruned. To that end, pruning
invalid CQs through filter evaluation can potentially reduce more system

execution time.

6For simplicity, we say Q ¢ Jails.

126

R 1 California OR Nevada [400,000,+c<] LakeTahoe [400,600]

Figure 5.4: An example of a filter

Inter-Filter Dependency. More than one filter can be derived from
a CQ, and if one is a subgraph (subsection) of another, a similar property
exists between them as well. Suppose filter O, is a subgraph of filter 9 ,
if Oy fails to match & (for its pertinent columns), 9, fails too, denoted
as Op >»_ Qg . Conversely, if 9 #, matches &, 9 succeeds too, denoted as
9 =4 Qp . Therefore, a filter is not limited to just verifying (or pruning)
a CQ but also other filters sharing the same (sub-)structures. We refer to
this property as Inter-filter Dependency.

Due to the above two properties between filters and CQs, [93] proposes
Algorithm 6 to efficiently verify (prune) the candidate queries. It first de-
rives all filters for the given set of candidate queries O, and user examples
&. Next, it iteratively evaluates every filter on 2, and use each result to

prune CQs and filters accordingly.

Challenges — Low-resolution cell constraints introduce more ambiguity
into the user input &£. In this case, the number of candidate queries dis-
covered in the first phase may significantly increase as more columns in 2
are admitted as candidate columns (demonstrated in Section 5.6.2). This
poses a potential performance risk to the second phase of candidate query

verification/validation, i.e., Algorithm 6, which takes the bulk of system

127

Algorithm 6: Validate candidate queries using filters
Data: Candidate queries O, user input examples &
Result: Set of queries matching &

1 F < GetAllFilters(Q, &);
2 while & # () do
3 9 « SelectNextFilter(7);

4 Evaluate 9 on 2;

5 if Q4 fails then

6 Remove {0.|09, € Q,q; »_ Q_} from O;

7 Remove {Q [0 € F,qp =_ Qp} from F;
8 else

9 | Remove {Q/|Qp € F,q; =, Qp} from F;
10 | Remove 9y from 7;
11 Return 9;

run time.

Algorithm 6 can also be separated into two parts: 1) filter discovery
(line 1), and 2) filter validation (line 2-10). In Section 5.4.2, we present a
Bayesian network-based filter scheduling strategy, BN-Greedy, as a solution
to SelectNextFilter (line 3 in Algorithm 6)—a critical base component of

Algorithm 6—to improve the efficiency of the filter validation process.

5.4.2 Filter Scheduling

The presence of low-resolution constraints in the user input introduces more
uncertainties in candidate query discovery and places a higher burden on
the follow-up candidate query validation phase. Since candidate query val-
idation requires querying the database system frequently, it can be a major
performance bottleneck. Therefore, it is reasonable to pursue a strategy

associated with our proposed workload in order to maintain the interactive

128

speed of the schema mapping system.

In each iteration of Algorithm 6, a filter will be chosen by SelectNextFil-
ter (line 3), issued on the source database (line 4) and the validation result
is used to prune other related filters/candidate queries following the Filter-
Query Dependency and Inter-Filter Dependency properties (line 6-9). Once
the user input examples are given, the set of candidate queries, and subse-
quently, the set of filters to validate are also fixed, the act of arranging the
validation of filters, or filter scheduling (i.e., function SelectNextFilter in
Algorithm 6 line 3), is essentially a critical base component that impacts the
filter validation and overall system efficiency. In this project, we consider
this problem of filter scheduling as the key problem to resolve, formalized

as follows.

Problem 5.2 (Filter Scheduling). Given a set of filters &, generated from
the CQ set, find a sequence for these filters F = (Qp |1 € [1,]F]), such

that the overall time cost of validating F is minimal.

This problem is proven to be NP-hard [93]. In this project, we use Al-
gorithm 6 for candidate query validation and propose a Bayesian
network-based strategy, BN-Greedy, for SelectNextFilter in Al-
gorithm 6, which is built upon a baseline strategy Naive-Greedy
and achieves a better performance in validating filters with mul-

tiresolution constraints.

Baseline Strategies

We first discuss two strategies used in previous work.
Shortest-First Strategy. By definition, a “shorter” filter (a filter
with small number of projected columns verifying a small portion of a CQ)

is cheaper to validate and tends to be shared by more CQs, leading to a

129

higher pruning power when it fails. Conversely, a longer filter has a lower
pruning power if it fails. [84] leverages this property and adopts a simple
strategy of always prioritizing validations of the shortest filter. We call this
strategy the Shortest-First Strategy.

Naive-Greedy Strategy. The Shortest-First Strategy is most effective
only when all filters are equally likely to fail. In reality, a shorter filter is
less likely to fail compared to a longer filter, which undermines its prun-
ing power. [93] formalizes this intuition as a greedy strategy balancing the

pruning power and the probability of failure when choosing a filter, shown

as follows.
5 aremax 2V slF))
2 = ngegr cost(Q) (5.7)
E(W(Q15)) = (1— Py, W.(Q,|F) + Py, W.(Q|F) (58)

E(W(Qf|F)) denotes the expected pruning power of a filter O, where 1)
Py, denotes the probability that Q fails, 2) W (Q4F) and W_(Q4|F)
denote the number of filters in F that are respectively pruned when 9
succeeds and fails. In each iteration of Algorithm 6, this greedy algorithm
chooses the filter with the highest expected pruning power per unit of cost.

While W, (Q;|F) and W_(Q;|F) are determined once f and J are given,

estimating PQf remains a problem to resolve which is formalized as follows.

Problem 5.3 (Filter Failure Probability (FFP) Estimation). Given a Q;
and the source database D, estimate the probability that Q fails on D, noted
as PQf_-

Instead of assigning the same likelihood of failure/success for all filters in
the Shortest-First Strategy, [93] assumes the failure probability of a filter

is proportional to its number of projected columns, and proposes a naive

130

model for the filter failure probability as ngi =p- %, where n is the
number of projected columns in the filter O, Col(T) is the total number of
columns in the target schema T (equal for all filters), and p is a pre-defined

constant. We refer to this as the Naive-Greedy strategy.

Bayesian Network-based Greedy Strategy (BN-Greedy)

When multiresolution constraints are included in user-provided examples,
both the Shortest-First and Naive-Greedy strategies fail to account for the
impact of the actual values of the multiresolution constraints within each

filter and inter-column correlations, as illustrated by the following example.

Example 5.1. Among the filters created for our motivating example, sup-
pose both filters Q¢ and Q verify if any row contains the value “Califor-
nia” with a property of value ranging from 4007 to “6007. Qy joins the
table “Lake” and “geo__Lake” and assumes “Province” (name) and “Area”
(in km?) are two corresponding attributes to project. 9, only projects
a single table on “Province” (name) and “Population”. Since the schema
mapping system has access to the source database, it can have a vague
knowledge of the underlying data, it is definitely certain that California’s
population is far more than 600. Therefore, we have ngli < ng% in real-
ity. In this case, it is reasonable to prioritize the validation of 9y, , because
EW (9 |F)) <EW(Qy,|F)), which means O will in fact have a larger
pruning power than Qfl'

However, Shortest-First assigns an equal priority to Q 7, and 9 , because
they have the same length, i.e., ng, =MNo, - On the other hand, Naive-
Greedy Strategy prefers Qp over Oy because it also assumes PQfl, = ng%
given g, =no and when W_(Qy |F) > W_(Qy, |F) is always true, it
concludes that E(W (9, [F)) > E(W (9, |F)).

131

Worse, let’s assume there is a third constraint Q fa with the same projected
columns verifying if the query constraints “Nevada” with a property of value
“x”, which means Qfs is the least likely to fail, i.e., ng& < ngli < PQf%,
since “x” can match anything. However, both Shortest-First and Naive-

Greedy will once again make poor decisions and prioritize Oy or Qy, .

Here, we present the BN-Greedy strategy, built upon Naive-
Greedy, replacing its heuristic way to compute filter failure proba-
bilities (FFP) (i.e., Py, in (5.8)) with a Bayesian networks method.

By definition, a filter O, = (J;, P, M, & M) can be written as a
Select-Project-Join (SPJ) query, where #, are projected columns corre-
sponding to a subset of columns in the target schema T, J; are the join
conditions, & and M, constitutes selections. Estimating the FFP of O is
equivalent to predicting the likelihood that the result set of 9 is empty, a
problem similar to selectivity estimation for a SPJ query.

The query result size along with an intermediate result—the joint fre-
quency (probability)—required to compute the query result size in many
selectivity estimation techniques is valuable information for computing the
FFP. That is, the transformation from the selectivity estimation probability

to the Bernoulli variable Q; can be captured as
Py, =p(|94(D)| < 1), (5.9)

where |0 ;(D)| denotes the size of the filter O, on the database 2.
Below, we first show a Bayesian network-based approach estimating the
query result size of a filter, and then present how to perform the above

transformation to finally estimate FFP.

132

Estimate filter result size using Bayesian models

Result size of filters with exact constraints in a single relation —
First, assume that a filter 9 validates data only from a single relation R
(df=0),also Py = {Ay,...., A}, € ={cl",...,ct} and M, = {A; —

rn

cty ..oy A, — cp'}h. The relational algebra expression of O is
Qf =T4,,.., An(aﬂlzc;n /ln:cnm(R)) (5.10)

The expected result size of O, E[|Q(D)]|], becomes

E[|Q;(D)|] = P(Ay =", ..., A, = ') - R, (5.11)
where P is the joint probability mass function (PMF)7 of the source database
D, and |R| is the table size.

Chain rule of probability dictates that the joint probability can be com-
puted using conditional probabilities and marginal probabilities [92]. Apply-
ing it to (5.11), we have

ElQ (D) =P(Ay = " | Ay = ¢ s Ay = 7
P(Ay=cl"|As=ct", ..., A, =c) (5.12)

- P(A, =) - |R|

Pre-computing all above conditional probabilities among different attributes
in a database would give us a perfect P, in which case both E[|Q;(D)]] and
the FFP of O, would be achieved at a high accuracy (in fact, deterministic).
Yet, this can be extremely expensive and thereby infeasible in a real-world

database.

Tor probability density function (PDF) if attributes are continuous

133

Instead, we use Bayesian networks (BN) to model an approzimated joint
probability distribution of a database under the conditional independence
assumption and to estimate E[|Q(D)]].

Actually constructing a Bayesian network based on a single relation (equiv

alent to a standalone dataset) has been extensively studied in the past [13,
15, 21] and we use the classic K2 algorithm [21] with the default configura-
tion offered by Weka [40] (version 3.8.0) in our actual implementation for
model construction. Other algorithms are also possible.

Given a Bayesian network learned for R, (5.12) becomes

n
E[Q4(D)]] =]| P(A; = ¢ [parents(A; = ")) - |R| (5.13)
i=1
Result size of filters with exact constraints across multiple re-
lations — So far, O is limited to project data from only one relation.
However, a filter may span over multiple relations in a database. [28] ex-
tends the definition of the BN to Probabilistic Relational Model (PRM) by
introducing join indicator variables between tables in the database. We here
adapt the concept of join indicator to address the problem of constructing
a BN in a relational database setting to estimate the FFP we propose in
the project.
A join indicator is a binary variable that helps to model correlations
between columns from two relations that can be joined by a PK-FK.
Now, suppose 9 includes a join between two relations Ry and R,. Then

Q ¥ becomes

Qf = WAI,...,A,L(UAI:CT,...,An:c;;L(Rl Ry)) (5.14)

134

By (5.11)-(5.13), E[|Q(D)|] becomes

E[]Q¢(D)] = P(Ay = e, o s Ap = &3y - Ipip, = 1) - [Ry]| Ry

ﬁp — ¢ |parents(A; = c™), Jg . = 1) - |Ry||Ry| (5:15)

L. 1Ry
Actually constructing a Bayesian network to estimate the joint probability
in (5.15) is beyond our interest in this project and we use the same approach
described in Algorithm 1 in [103], which generally involves two steps 1)
construct a Bayesian network for each single relation (as we did before
(5.13)), 2) model join indicators alone with two most correlated attributes

of the joining relations involved. More implementation details can be found
in Section 4 in [103].

Result size of filters with multiresolution constraints — So far, es-
timating the result size of a filter has been only focused on filters with only
exact values (atomic predicate constraints). However, in this project, filters
can alternatively be a disjunction (or conjunction) of values or “x”.

In a filter Qf, when a cell constraint &;; is a disjunction of predicate

constraints, i.e., & \/ pg, we can divide 9, into a set of mutually

d=1
exclusive filters with only atomic constraints, {Q Fooee oy }, where Eij =

{pd}7 g’LJ c V,Qfd, d - {1, ees ,m}.
When {Q frreer 9 fn} are mutually exclusive, Probability Theory dictates
that the joint probability of 9 is

ij =

P(Qy) :dZP 9;), (5.16)
=1

and each of P(9) can be obtained by (5.15).

135

probability

I
|
|
|
|
|
|
0 1 u query size
Figure 5.5: Possible distribution of the filter query size
Alternatively, if a cell constraint &,; from a filter O is specified as “x”
indicating that it can match anything, we borrow the same idea in above
dividing 9 into a set of mutually exclusive filters with atomic constraints,
{9, ’Qf\/zj\}’ where &;; in each O is a unique value in the column A,

to which &;; is mapped to. In this case, (5.16) and (5.15) can be leveraged
to obtain P(Q;).

Infer FFP using Bayesian models

Obtaining an approximated result size or joint probability of a filter is not
sufficient. Our objective is to compute the probability that the result set is
empty (result size is less than one).

If we could model the underlying probability distribution (possibly a bell-
shaped distribution like Figure 5.5 with mean equal to P(Q 7):|R|), we would
be able to estimate the FFP (the shaded area in Figure 5.5).

A Bayesian network is an approximation of the joint distribution of a
dataset. Imprecisions occur in various steps in Bayesian network learning,
such as structure learning, parameter learning. Accurately propagating all
these imprecisions to the final result is non-trivial [53] and unnecessary, and

thereby beyond the scope of our project. We here take a different approach.

136

We assume that the assumption of row-independence holds in the database
D: correlation does not exist across data entries in the database. In this
case, given a random data instance in the dataset, the probability that it
matches all constraints involved in the filter O, is P(Q;). With that, to
calculate the likelihood that the set of data matching 9 is empty, we can
model this problem as a biased coin toss problem where the number of total
flips is |R|, i.e., the table size, and the biased probability of “head” in each
independent flip is P(Q).

Probability theorem dictates that the probability distribution of all possi-
ble outcomes (selectivity size) in tossing a biased coin follows the Binomial
distribution. We use the results from the central limit theorem and the re-
lationship between Binomial and Normal distribution [54] and, considering
|R| to be a sufficiently large number, model the selectivity size distribution
B(R|. P(Q,)) as

P(X) = N(u=|R|- P(Q)), o = |R|- P(Q))-(1— P(2)) (5.17)

Now,using Equation 5.9 (Figure 5.5), the failure probability for a filter
’inSPQf_ :P<X<1)

To use the standard Normal distribution, let us define the variable Z =
(X — p)/o. Then, using the Z-table, the failure probability (FFP) is

1—M):q>(1—[R[- P(9y))

Py, = ®(
g VIR P(2g) - (1= P(2)))

(5.18)

5.5 Risks and Limitations

The effectiveness of our proposed technique depends on the fidelity of the

source schema and user input, and also subjected to certain limitations in

137

expressivity.

Accessibility of source schema § — We assume that the source schema
G is provided, i.e., the primary/foreign keys constraints are already known
(to our system, not to the end user). In situations where such information
is not explicitly given, we can first apply a PK/FK constraint discovery

mechanism [91].

Fidelity of user input & — Successfully discovering the desired schema
mapping query ¢ (assuming one exists) using our proposed solution is pred-
icated on the fidelity of the user input £: the examples provided in & must
perfectly match a subset of the result set of ¢. Yet, this is still a weaker
assumption than that made in previous sample-based schema mapping re-
search. Users who are able to use previous systems must be able to use
ours, and even if they cannot provide exact examples they may still be able
to contribute some vague knowledge on our system, which is aligned to the

general expectation for our research.

Expressivity of the synthesized queries — The expressive power of
the inferred schema mapping queries is limited to PJ queries in this project.
Recent QRE research [23, 61, 102, 105] has shown some success in inferring
SPJ queries with selection predicates. However, these works usually make
a closed-world assumption on the input &: the complete result set of the
desired schema J needs to be provided. The closed-world assumption is
usually applicable in a non-interactive situation where the problem is to
reverse engineer a SPJ query when the complete query result can be ob-
tained. However, in a human-in-the-loop setting, the user is expected to
provide all the hints based on her knowledge. In this case, the closed-world
assumption is much less realistic than an open-world assumption, which we

make in this project, where the input can be a subset of the result set of

138

the desired schema, usually a few instances. With the closed-world assump-
tion, inferring correct select predicates or filters can be almost impossible
with only a few example instances [93] because there can be almost infinite
number of PJ queries with the satisfying selection predicates. For exam-
ple, suppose the Table 5.1 contains all the examples provided by the user.
In an open-world setting, as no information is given about what colum-
n/attribute a potential selection predicate could set be on, possible list of
candidate predicates can include LakeArea < 1000, LakeArea < 2000,
LakeArea < 3000 and so on. Therefore, we take a step back and only infer
PJ queries in this project. Developing better forms of user constraints that
are both 1) easy to provide for the user and 2) helpful for the system to
discover the right selection predicates to enable the synthesis of SPJ queries

will be our future work.

5.6 Experiments

Despite that our proposed multiresolution constraints for sample-driven
schema mapping targets on reducing the requirement for user knowledge
of the source data, it is still interesting to understand how the usability of
the new schema mapping system changes from two perspectives: 1) system
execution time, 2) user validation effort.

In this section, we present experiments to answer the following questions

in the rest of this section.

o How does the number of candidate queries and candidate query valida-
tion time change in the presence of low-resolution constraints (without

any optimization)?

o How does the system validation cost of the proposed Bayesian-model-

139

Name # tables # cols # key pairs Max # joins Data types

MONDIAL 40 167 48 4 Numeric, String,
Temporal
Financial 8 55 9 5 Numeric, String,
Temporal
Hepatitis 7 26 6 2 String

Table 5.2: Dataset Details

based filter scheduling strategy compare with the baseline approach?
(Section 5.6.3)

o How does the user validation effort change with low-resolution con-
straints? (Section 5.6.4)

5.6.1 Experimental Setup

Hardware and SQL Engines — We implemented our proposed schema
mapping method along with different filter scheduling strategies in a pro-
totype system called PRisM. For the underlying database systems, we used
MySQL 5.5.59. All systems were running on a 16-core Intel Xeon server
with 128 GB RAM.

Data Sets — We used the following three real-world relational data sets®,
with their statistics shown in Table 5.2.
o Mondial: A geography dataset compiled from various geographical

Web data sources including CIA World Factbook, Wikipedia and etc.

e Financial: A financial database of financial data used in the 1999
European KDD Cup [9].

8All available at https://relational.fit.cvut.cz/

140

https://relational.fit.cvut.cz/

o Hepatitis: A Hepatitis database used in PKDD 2002 Discovery Chal-

lenge.

Synthetic User Queries for Experiments — To perform a comprehen-
sive evaluation on above questions, we choose to conduct a simulation study
on a wide range of synthesized test cases with various multiresolution con-
straints in four categories: Exact, Disjunctive, Incomplete, Mix. An actual
user study on a PRISM will be our future work.

Exact. In each test case, the input is a sample of data records in the
target schema. All cell values are exact and complete; no empty cell is
allowed. This is the input accepted by traditional sample-driven schema
mapping systems.

Disjunctive. This is similar to an exact test case, except that a
disjunction of possible values or value ranges are allowed in one or multiple
cells in the provided example.

Incomplete. The examples in the use input are exact and complete,
except that there can be cells with “x” in the user input, indicating the
values are missing and they can match anything.

Mix. Some of the cells can be a disjunction of possible values or value
ranges, and some of the cells can be “x”. The rest are exact and complete
cell values. (mixture of Disjunctive and Incomplete cells)

To obtain a large collection of various test cases, we propose the following

approach to synthesize a test case:

1. Take a Project-Join query generated by a random walk on the schema
graph of the source database as the target schema mapping query. The
join path lengths (# of joins) of these PJ queries range from 2 to the

max join length in each database.

141

2. Execute the PJ query on the source database and sample some result

tuples as exact test cases,

3. Randomly select a sampled portion of cells in the above examples
and replace them with multiresolution constraints to formulate dis-
junctive/incomplete test cases. To create a test case representing in-
complete user input, we simply set the values to “x” for the chosen
cells. To create a test case with disjunctive cell values, indicating the
user is uncertain about the actual values, we simply couple the actual
cell value with several distinct values. For example, if the actual value
is “California”, we replace it by “California V Nevada V...”. When
the cell value is numerical, we replace the value by a value range +/\,
where A = 50%, and append multiple other distinct value ranges,

similar to disjunctive textual constraints.

Many critical metrics we use for evaluating system performance, such as
execution time and number of filters, can be largely impacted by different
factors in these synthetic test cases. To develop a comprehensive under-
standing of the problem and system performance, we synthesize the test

cases varying the following factors:

 p: number of columns in the target schema (and desired schema map-
ping query).
e 7: number of rows in the user input.

o s: the density (ratio) of cells with low-resolution constraints in the

user input.

o w: number of atomic constraint in each cell with a disjunctive con-

straint (clause) in the user input.

142

4+ Exact -# Disjunctive + Exact -# Disjunctive + Exact -# Disjunctive

Incomplete + Mix Incomplete + Mix Incomplete + Mix

E }0 T E Gg T T T T

o Z 600 S 3l]

: 2 = %

= T 400 = 20 :

< i =

E T 200 ERs y

< < <

: : : | | | |

° s ° 3 03 4 s

= 3= Ik

(a) Hepatitis (b) Mondial (c) Financial
Figure 5.6: Number of candidate queries to be validated at the pres-

ence of multiresolution constraints (p € [2,5],r = 2,5 =
50%, w = 2)

5.6.2 Overhead of Multiresolution Constraints

Before assessing the effectiveness of our proposed optimizations for our pro-
posed constraints, we should first understand the motivation behind it. In
this section, we demonstrate that the use of multiresolution constraints in
describing the target schema may introduce a critical system performance

issue and eventually hurt the system usability.

Overview — We examine the baseline systems on exact, disjunctive, in-
complete test cases. To understand how severe the performance issue be-
comes as the schema mapping task becomes more complicated, we vary the
number of columns, p, from 2 to 5, and choose a reasonable set of values for
the rest of the factors: r = 2, s = 50%, w = 2. For each test setting, we pick
50 random test cases with simulated user input and correspondingly schema
mapping query (for verifying purposes). Recall that candidate queries are
PJ queries created through finding a path connecting multiple candidate
columns on the schema graph, without running it on the database and ex-

amining its query result (Section 5.4.1). Multiresolution constraint is a

143

+ Exact # Disjunctive + Exact - Disjunctive + Sample -# Disjunctive
Incomplete + Mix Incomplete + Mix Incomplete + Mix
-10°
L5] 100
& £ 6,000 z
9] [9]
= = =
= = 4,000 =
= 5 5
2,000
k= 3 3k
0 0
(a) Hepatitis (b) Mondial (c) Financial

Figure 5.7: Number of filters to be validated at the presence of mul-
tiresolution constraints (p € [2,5],7 = 2,5 = 50%, w = 2)

softer constraint, as opposed to traditional exact sample-driven constraints,
which may consequently induce the discovery of more candidate queries.
The increased number of candidate queries will certainly result in an esca-
lation of validation effort (possibly quantified by number of filters) in the
query validation phase and also system execution time. Therefore, to eval-
uate the increased system overhead, we measure the execution of each test

case from two perspectives: 1) number of candidate queries, 2) number of

filters.

Results — The three line charts in Figure 5.6 show the average numbers
of candidate queries in three classes of user input for all three different
datasets as the number of projected columns increases. Figure 5.7 presents
the number of filters derived from these candidate queries.

In Hepatitis, as the number of columns in the target schema p grows
from 1 to 5, the number of candidate queries in the Disjunctive test cases
and Incomplete test cases increases by 503x and 503, more rapidly than
traditional Exact test cases, which is 300 x. In terms of number of filters,

Incomplete test cases grow by >8000x, which is also much faster than Exact

144

test cases 1000x.

In terms of the Financial test set, although the number of candidate
queries does not vary much between different classes of input or numbers
of projected columns, an interesting observation is that the number of fil-
ters increases much faster than the number of candidate columns when p
increases. This is because more filters need to be derived to verify a longer
candidate query.

The above results provide evidence that the amount of filters increases
faster than the number of candidate queries, which means the later filter
validation workload also increases rapidly. Also, low-resolution constraints
provided in the user input impose a large overhead on the system, which
suggests that further optimizing the filter validation strategy is in great

necessity.

5.6.3 Filter Validation Efficiency

Since the validation result of an individual filter may prune other filters,
the ordering of filter validation may dramatically impact the actual number
of filters being validated on the source database, and thereby influence the
overall filter validation and system efficiency. In Section 5.4.2, we proposed
a machine-learning (Bayesian-network) based approach, BN-GREEDY, to
arrange the sequence of filters to be validated and reduce the actual number
of filters validated. Here, we evaluate the effectiveness of our proposed

approach in saving the amount of verification required.

Overview — In this experiment, we experimentally compared BN-GREEDY
with the baseline strategies NAIVE-GREEDY and SHORTEST-FIRST on tasks
with different classes of constraints on all data sets, and measured the num-

ber of actual filter validations on the database system. The end goal of filter

145

I BN Il Naive I SF
30,000 [

20,000

10,000 |-

of validations

of validations

0
(a) Hepatitis, Exact

I BN I Naive I SF

2 3 4 5
(g) Mondial, Exact

I BN I Naive I SF

IS
(=)
o
=)
o

)

[\
=]
o
o
o

)

plete

I BN I Naive I SF

40,000

20,000

of validations

2 3 4 5 0

I BN I Naive I SF

(b) Hepatitis, Incom- (c) Hepatitis, Mix

I BN I Naive I SF

2 3 4 5

plete

Z 100
£ 80 g 80 £ 100
-
o = = 80
= 60 < 60 =
= T 40 = 9
g B 20 £
‘8 20 - 0 ”5 20
I 0 L . 5 3 4 5 I 0
. . e) Financial Incom- . . .
(d) Financial, Exact () plete ’ (f) Financial, Mix
I BN Il Natve I SF
Il BN I Naive I
) NAIVE SF % 6,000)
: 5 :
= 3,000 |- S 4,000 |- £ 4,000 -
= 2,000 |- = =
< > 2,000 |- < 2.000
% 1,000 |- = %
BiS 0
S1S 0 Ik 0

I BN I Naive T SF

2 3 4 5

(h) Mondial, Incom- (i) Mondial, Mix

Figure 5.8: Compare BN-Greedy (BN), Naive-Greedy (Naive), and
Shortest-First (SF) on the number of validations (p €

[2,5],7 = 2,5 = 50%,w = 2)

scheduling is to improve the filter validation efficiency. However, the ac-

tual time can be greatly impacted by many other factors, such as database

146

- I BN Il Naive Il SF 2

g
E ~—
! g
[«5)
£ 60,000 - £
-
o 40,000 |- g
.2 b=
£ 20,000 | 8
E =
= 0 §
= 2 3 4 5

(a) Hepatitis, Exact

2 I BN I Naive I sF &
£ &
Q [¢b)
g 4,000 g
= =
=) =)
2 2,000 S
+ +
o] o]
= =
.g 0 .5
2 2 3 4 5 =
(d) Financial, Disjunc- (e)
tion

z I BN I Naive I SF &
— 3,000 [Q
&) ’ =
= =
Z 2,000 |- o
5 S
= 1,000 | =
< [}
g =)
I =
= 2 3 4 5

(g) Mondial, Exact

(b) Hepatitis,

(h) Mondial,

BN I Naive It SF_ I BN Il Natve Il sF

E
60,000 2 1-105 -
40,000 =
g 50,000 |-
20,000 2
g
0
= 0
2 3 4 5 &
= 2 3 4 5

plete fneom- (c) Hepatitis, Mix

BN I Naive Il SF — I BN I Naive I sF

)
2,000 Q
g 4,000
-+~
1,000 o
S 2,000
2
g
0 = 0
2 3 4 5 B
< 2 3 4 5
Financial Incom- . . .
’ (f) Financial, Mix
plete

BN B Naive I SF sy | watve B sE

& 8,000 F

6,000 |-)
£ 6,000

4,000 |- e
o 4,000

2,000 |- R
£ 2,000

0 =
o— O

2 3 4 5 §

= 2 3 4 5

plete Incom=" 3y Nondial, Mix

Figure 5.9: Compare BN-Greedy (BN), Naive-Greedy (Naive), and
Shortest-First (SF) on validation time (p € [2,5],7 = 2,5 =

50%, w = 2)

configurations, cost model used, etc. Still, in this experiment, we measured

147

the actual filter validation timespan for curiosity.

To simulate tasks of different difficulties, we vary the number of columns,
p, from 2 to 5, and set the rest of the factors to default values r = 2,5 =
50%, w = 2, same as Section 5.6.2.

Results — Figure 5.8 shows the actual number of filters validated on the
source database given different classes of user input for all three data sets. In
experiments with the Hepatitis data set, BN-GREEDY achieves a reduction
of up to 43.8% and 25.8% on average compared to NAIVE-GREEDY. When
compared to the other strategy, SHORTEST-FIRST, BN-GREEDY achieves
a reduction of up to 44.0% and 26.1% on average. In experiments with Fi-
nancial, BN-GREEDY on average saves 39.5% in the actual number of filter
validations, compared to the NAIVE-GREEDY strategy. In the Incomplete
test set, the reduction is as much as ~ 69% when the number of columns in
T is four or five. The reduction relative to SHORTEST-FIRST is even higher
in Financial, which is up to 84.7% and 52.2% on average. As for experi-
ments with the Mondial data set, the reduction is up to 25.7% compared to
NAIVE-GREEDY, and 30.2% compared to SHORTEST-FIRST, which is not
as significant as those in previous two test sets. This is mostly because
Mondial is a data set with facts where fewer strong correlations between
different columns exist, unlike the previous two datasets. This is usually
not where data modeling methods like Bayesian networks shine at.

The actual system runtime cost for the same set experiments is shown in
Figure 5.9. In terms of the first data set, Hepatitis, BN-GREEDY manages
to save 18.0% runtime on average compared to NAIVE-GREEDY and 11.6%
runtime on average compared to SHORTEST-FIRST. On the Financial data
set, BN-GREEDY achieves on average reduces ~ 10% time cost compared
to NAIVE-GREEDY. In particular, the average reduction is ~ 30% in the

expensive cases when p = 4. Compared to the other baseline strategy,

148

SHORTEST-FIRST, the reduction is up to 59.3% and 20.5% on average. As
for Mondial, BN-GREEDY achieves a decrease in filter validation time of up
to 12.4% and 16.5% compared to NAIVE-GREEDY and SHORTEST-FIRST.

Overall, the BN-GREEDY filter scheduling strategy we proposed yields
the least number of actual filter validations in almost all test cases. Consid-
ering that there is a lower bound for both metrics (# of filter validations and
time) because there is an optimal sequence of filters to validate in theory,
this experiment provides strong evidence that BN-GREEDY is effective in 1)
harnessing the pruning power of filters to a greater extent, and 2) alleviate
the performance issue introduced by low-resolution constraints allowed in
proposed schema mapping framework compared to the other two scheduling

strategies.

5.6.4 User Validation Effort

Multiresolution constraints give the user more freedom in composing queries
with imprecise and/or incomplete knowledge. The tradeoff, however, is that
as samples with multiresolution constraints may not be precise, the system
will lose some “pruning power” while searching in a large space of possible
schema mapping queries. A potential risk is that the system may end up
returning 10x as many CQs to the user as the satisfying CQs. The task of
schema mapping is not complete until the end user read and understand the
returned schema mapping queries and finally pick the desired one among
them, which we refer to as “user validation”. A 10x boost of the end re-
sult size may significantly increase the user effort in validating them, and
ultimately hurt the usability of the system supporting multiresolution con-
straints. In this experiment, we evaluated PRiSM from the angle of its user

validation effort.

149

+ Exact + Disjunctive + Exact +# Disjunctive

Incomplete + Mix Incomplete + Mixcolor
T T T T T T T
£ 150 1 1 2 4} |
= 100 © 13
{6‘ 50 [H L‘a 2 [% |
i 0 m * 0 | | | |
2 3 4) 2 3 4 5)
(a) Mondial (b) Financial
+ Exact -+ Disjunctive +~ Exact -+ Disjunctive
Incomplete + Mix Incomplete + Mix
" 30T T T T T T T T " T T T T T T
g S 4 =
=
o o 9l |
S 10| B ;
F F
ob—r oLb—t 11
012345678 012345678
(c) Mondial (d) Financial

Figure 5.10: Number of satisfying schema mapping queries found when
the size of user input increases (r € [2,5],s = 50%,p = 4, w =
2) and when the amount of low-resolution constraints in
the user input increases (absolute s € [0,8],7 =4,p =4, w =

2)

Overview — The amount of user validation effort for a given schema map-
ping task may be associated with many properties of the returned query set,
including query complexity, database complexity, and the size of the query
set, etc. In this experiment, we consider the most obvious factor, query set
size, i.e., the number of the satisfying schema mapping queries output by
the system, with the intuition that if the system were to return relatively
the same number of satisfying schema mapping queries for test cases with

different kinds of user queries, the comprehensibility of the system output

150

should be similar for different classes of user constraints.

What might significantly impact the size of the output is 1) number of
user constraints and 2) density of low-resolution constraints. Intuitively,
the more constraints the user provides, the fewer satisfying schema mapping
queries should exist. Similarly, the less precise the constraints are, the more
schema mapping queries would suffice.

To this end, we performed two experiments varying 1) number of rows of
constraints when the ratio of cells with low-resolution constraints remains
the same, and 2) number of cells of low-resolution constraints when the
number of rows of constraints remains the same. We used three synthetic
test sets introduced in Section 5.6.1.

In the first experiment, we varied the number of rows of the user con-
straints, r, from two to five. Similar to previous experiments, the density of
low-resolution constraints, s, was set to 50%. In the second experiment, we
varied the number of cells with low-resolution constraints from zero to eight.
Note that when this value is zero, the test case is essentially an
“Exact” test case (with only complete sample-driven constraints).
The number of rows of user constraints, 7, was set to four, so that we could
have enough cells to be replaced by low-resolution constraints. In both ex-
periments, we chose the synthetic queries with the maximum number of

joins for the target schemas in each data set.

Results — Figure 5.10 shows the number of satisfying schema mapping
queries matching the user input & as the number of rows of user constraints
increases in tests and the number of satisfying queries found as the number
of low-resolutions cells increases when the size of the user input & is fixed
(r = 4) with both Financial and Mondial data sets.

In experiments with the Financial dataset, the number of output sat-

isfying schema mapping queries are low in all different test sets, and no

151

significant difference can be observed between different test sets. In tests
on Mondial, when r goes from 2 to 3, the number of satisfying queries of the
Mix test set drops from more than 300 to less than 100 (> 70%). Similarly,
the Disjunctive test also experiences a substantial decrease (> 51%) in the
number of output queries. While the decrease is slight in the Incomplete
test cases, when r = 3, when it goes to 4, the actual number of queries
still becomes quite close to that of the Exact test case (~ 2x). Also, when
r = 4, the output sizes of both Disjunctive and Mix are almost same as
that of Exact. The result is still acceptable considering that the user only
provides only half as much information as she needs to provide for a tra-
ditional sample-driven schema mapping system (50% of cells in Incomplete
are empty).

In tests with both Mondial and Financial, we observe that the number
only slightly fluctuates which suggests that when the user is able to provide
four examples to describe the target schema, having some low-resolution
constraints in these examples does not impact the effort to validate the

returned satisfying queries.

5.7 Related Work

Schema mapping and query discovery — Composing SQL queries for
schema mapping is known to be non-trivial and burdensome for both pro-
fessionals and naive end users. Researchers from both academia and in-
dustry have made attempts to facilitate this process for end users in the
past two decades. These developed techniques can be generally catego-
rized into two classes based on the interaction model: schema-driven and
sample-driven. IBM Clio [83], Microsoft BizTalk are notable schema map-

ping systems that support the schema-driven model, which requires hints of

152

possible matching relations and columns from end users. Another thread of
research projects [12, 50, 72, 84, 93, 105] focused on supporting a sample-
driven model in human-in-the-loop schema mappings. Instead of soliciting
matching hints, these systems only ask the user for some data records in
the target schema.

Based on the assumption about the user input, these works can be cate-
gorized into two classes: open-world and closed-world. Our work along with
[84, 93] make an open-world assumption about the user input: the user
can provide a subset of possible tuples of the desired schema. [84, 93] as-
sume that the user example is precise (high-resolution). Our project targets
leveraging coarse (low-resolution) user knowledge in schema mapping. On
the other hand, [23, 61, 77, 101, 102, 105] make a closed-world assumption
about the user input that the user is expected to provide a complete result
set of the desired schema, where the search problem is more tractable since

the search space is smaller than that in an open-world setting.

Program synthesis — Our end goal is to synthesize schema mapping
programs. The problem of program synthesis is the automatic construction
of programs using hints from the users like constraints and examples and has
recently drawn interest from many researchers. Besides schema mapping,
program synthesis has been broadly explored in many problem domains
such as data cleaning [7, 29, 46], schema mapping [12, 72, 84, 93, 105],
regular expressions [11], bit-manipulation programs [31], and recently neural
networks [113], where writing programs is non-trivial for humans.
Different technical approaches have been proposed to resolve the program
synthesis problem. The logic-solver-based approach [32, 44] does not ap-
ply because it requires modeling the entire source database using second
order logic which is infeasible. Another approach—version space algebra—

usually fits the situation where finding matching programs is inexpensive

153

and the space of matching programs is large and is thereby not applicable
in our problem setting. We formulate our problem as a search problem and,
inspired by [84, 93], we developed a machine-learning-guided search-based

algorithm to discover a complete set of matching schema mapping queries.

Selectivity estimation — Selectivity estimation has been critical for query
optimization in DBMS and we apply this concept to schema mapping to
reduce the candidate query validation overhead. Techniques of selectivity es-
timation often seek to construct succinct representations (e.g., samples [34,
64], histograms [14, 73, 82] and probabilistic models [28, 38, 78, 103]) of
underlying data to approximate its joint distribution through scanning the
database. Like [28, 78, 103], we leverage probabilistic models rather than
sample-based methods because the selectivities of the queries (filters) we
consider in our problem setting is often small and may not be covered by
the chosen samples. Histogram-based methods are often used to estimate
queries with a small number of attributes which make it not realistic in
our problem because the target schema is not limited to only two or three
columns. Unlike [14, 78], we are blind to the upcoming queries (or fil-
ters) and construct the model offline whereas [14, 78] take an query-driven
approach and adaptively learn data representations from previous query

results.

5.8 Conclusion

In this project, we presented a sample-driven schema mapping paradigm
with support for a richer set of constraints to describe the target schema.
The user may provide constraints at various “resolutions”: not only ex-
act values at row level, but also multiple possible values or value ranges.

To tackle a more challenging query search problem posed by the new con-

154

straints, we present a Bayesian network-based scheduling strategy to speed
up the query verification process, which achieves a verification workload re-
duction of up to ~ 69% and a runtime reduction of up to ~ 30% compared
to the best baseline strategy in our experiments. In the future, we would like
to extend PRISM to consume more user knowledge in various forms to fur-

ther reduce the required expertise for non-expert users in schema mapping.

155

Chapter 6

Conclusions and Future Work

Data preparation is a tedious process for data users and the traditional so-
lution of composing ad-hoc programs may require high programming skills
that are beyond many data users. In this dissertation, we try to address
this issue by presenting three example-guided program synthesis, or Pro-
gramming By Example (PBE), systems—Foo0rAH, CLX, and PRISM—that
are able to generate executable data preparation programs for data users
without expertise in programming. FOOFAH and CLX targets transforming
spreadsheet or string data into a desired form. Presumably, the FOOFAH
user provides input-output examples—sample input spreadsheet data in
its raw form and the target form—and FOOFAH will derive a data trans-
formation program—a sequence of parameterized pre-defined operations—
converting the raw spreadsheet data in its original form into the target form.
CLX on the other hand applies PBE in a slightly different task domain—
string data transformation. A pattern discovery step is prepended to PBE in
CLX so that users can identify data format errors and specify positive exam-
ples in forms of patterns, a representation easier to understand and specify

than strings used by other PBE string transformation systems. PRISM con-

156

siders the problem of SQL query synthesis using the example data records
from the target table. Besides exact data records, imprecise data records—
data records with disjunctions, value ranges or null values—can also be
provided to the system which makes it more accessible to users less familiar
with the database content.

There are multiple directions in which this dissertation can be extended

in order to make the technology we propose prevalent in the future.

6.1 Future Work

Increase the expressivity of PBE data transformations — In Chap-
ter 3, we present FOOFAH, a PBE system that is able to generate a matching
data transformation program in the form of a sequence of traditional trans-
formation operations defined in [86]. When workflow changes, existing op-
erators may be insufficient to describe the desired transformation and new
operations may need to be defined and added to the PBE system. Future
work includes exploring a systematic approach to define data transforma-
tion operations for spreadsheet data or relational data and incorporate them

into the PBE synthesizer core.

PBE data transformation with machine learning based program
synthesizers — Both FOOFAH and CLX rely on enumerative search and
rule-based heuristics to discover programs matching the user input. Such
a design is usually specific to a fixed set of operators, but if new operators
are incorporated to adapt to a new workflow, rules-based heuristics may be
hard to reuse. Redesigning new heuristics can only be done by experts who
are familiar with the domain and hence costly. Thus, we think future work

may include exploring opportunities to use machine learning to guide the

157

search and to optimize the combination of heuristic and pruning rules.

Data-aware pattern discovery algorithms for PBE transformations
— In Chapter 4, we propose to use patterns as a representation alterna-
tive to actual strings in PBE data transformation to lower the difficulty of
specifying examples for end users. CLX uses a rule-based pattern cluster-
ing strategy to identify patterns within the given dataset. Although the
hierarchy itself is helpful in reducing the number of patterns users initially
need to comprehend, users may still be shown a large number of patterns
since the pattern clustering strategy will eventually discover a complete set
of patterns at all levels of abstraction. Future work should include advanc-
ing the pattern discovery algorithm that is able to make smart decisions to

present patterns at appropriate levels of abstraction for a given dataset.

Explore bounds of example representations for PBE data prepara-
tion — CLX and PRISM is an attempt to explore varied forms of examples
(patterns as examples or imprecise examples) as opposed to precise and
highly-specific examples users provide in classic PBE data preparation. We
envision that opportunities could be explored to 1) support column-based
descriptions/hints (as opposed to row-based examples), such as semantic
hints, metadata constraints, tackle tasks like schema mappings, 2) iden-
tify other sub-domains within data preparation (e.g., data migration and
data exploration) where new forms of examples that are more friendly to

non-expert users could be allowed and leveraged in PBE data preparation.

158

Bibliography

Z. Abedjan, L. Golab, and F. Naumann. “Profiling Relational Data:
A Survey”. In: The VLDB Journal 24.4 (Aug. 2015), pp. 557-581.
ISSN: 1066-8888.

Z. Abedjan, J. Morcos, M. N. Gubanov, I. F. Ilyas, M. Stonebraker,
P. Papotti, and M. Ouzzani. “Dataxformer: Leveraging the Web for
Semantic Transformations”. In: CIDR 2015, Seventh Biennial Con-
ference on Innovative Data Systems Research, Asilomar, CA, USA,
January 4-7, 2015, Online Proceedings. www.cidrdb.org, 2015.

Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M.
Stonebraker. “DataXFormer: A robust transformation discovery sys-
tem”. In: 32nd IEEE International Conference on Data Engineering,
ICDE 2016, Helsinki, Finland, May 16-20, 2016. IEEE Computer
Society, 2016, pp. 1134-1145.

B. Alexe, B. T. Cate, P. G. Kolaitis, and W.-C. Tan. “Characteriz-
ing schema mappings via data examples”. In: ACM Transactions on
Database Systems 36.4 (2011), p. 23.

R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama. “Search-based
program synthesis”. In: Communications of the ACM 61.12 (2018),
pp. 84-93.

M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O.
Etzioni. “Open Information Extraction from the Web”. In: Proceed-
ings of the 20th International Joint Conference on Artifical Intel-
ligence. IJCAT’07. Hyderabad, India: Morgan Kaufmann Publishers
Inc., 2007, pp. 2670-2676.

159

[13]

[14]

[15]

D. W. Barowy, S. Gulwani, T. Hart, and B. Zorn. “FlashRelate: Ex-
tracting Relational Data from Semi-Structured Spreadsheets Using
Examples”. In: Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI "15.
Portland, OR, USA: Association for Computing Machinery, 2015,
pp. 218-228.

J. Bauckmann, U. Leser, F. Naumann, and V. Tietz. “Efficiently
Detecting Inclusion Dependencies” In: 2007 IEEE 23rd International
Conference on Data Engineering. 2007, pp. 1448-1450.

P. Berka. PKDD99 discovery challenge. http://1lisp.vse.cz/
pkdd99/chall.htm, 1999. 1999.

P. A. Bernstein and L. M. Haas. “Information integration in the
enterprise”. In: Communications of the ACM 51.9 (2008), pp. 72-79.

A. Blackwell. “SWYN: A visual representation for regular expres-
sions”. In: Your Wish Is My Command: Programming by FExample
(2001), pp. 245-270.

A. Bonifati, U. Comignani, E. Coquery, and R. Thion. “Interactive
Mapping Specification with Exemplar Tuples”. In: Proceedings of the
2017 ACM International Conference on Management of Data. SIG-
MOD ’17. Chicago, Illinois, USA: Association for Computing Ma-
chinery, 2017, pp. 667-682. 1ISBN: 9781450341974.

R. R. Bouckaert. “Bayesian belief networks: from construction to
inference”. PhD thesis. 1995.

N. Bruno, S. Chaudhuri, and L. Gravano. “STHoles: A Multidimen-
sional Workload-Aware Histogram”. In: Proceedings of the 2001 ACM
SIGMOD International Conference on Management of Data. SIG-
MOD ’01. Santa Barbara, California, USA: Association for Comput-
ing Machinery, 2001, pp. 211-222. 1SBN: 1581133324.

W. Buntine. “A guide to the literature on learning probabilistic net-
works from data”. In: IEEE Transactions on knowledge and data
engineering 8.2 (1996), pp. 195-210.

160

http://lisp.vse.cz/pkdd99/chall.htm, 1999
http://lisp.vse.cz/pkdd99/chall.htm, 1999

[16]

[17]

[18]

[19]

[20]

[21]

22]

M. J. Cafarella, A. Halevy, D. Z. Wang, E. Wu, and Y. Zhang.
“Webtables: exploring the power of tables on the web”. In: Proceed-
ings of the VLDB Endowment 1.1 (2008), pp. 538-549.

Z. Chen and M. Cafarella. “Automatic web spreadsheet data extrac-
tion”. In: Proceedings of the 3rd International Workshop on Semantic
Search over the Web. 2013.

7. Chen, M. Cafarella, J. Chen, D. Prevo, and J. Zhuang. “Sen-
bazuru: a prototype spreadsheet database management system”. In:
Proceedings of the VLDB Endowment 6.12 (2013), pp. 1202-1205.

Z. Chen, M. Cafarella, and H. Jagadish. “Long-tail vocabulary dic-
tionary extraction from the web”. In: WSDM. ACM. 2016, pp. 625—
634.

A. Cheung, A. Solar-Lezama, and S. Madden. “Optimizing database-
backed applications with query synthesis™ In: PLDI. 2013.

G. Cooper and E. Herskovits. “A Bayesian method for the induc-
tion of probabilistic networks from data” In: Machine Learning 9.4
(1992), pp. 309-347.

J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A.-r. Mohamed, and
P. Kohli. “Robustfill: Neural program learning under noisy i/o”.
In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. JMLR. org. 2017, pp. 990-998.

A. Fariha and A. Meliou. “Example-Driven Query Intent Discovery:
Abductive Reasoning using Semantic Similarity”. In: 2019.

K. Fisher and R. Gruber. “PADS: A Domain-specific Language for
Processing Ad Hoc Data”. In: PLDI. Vol. 40. 6. ACM. 2005, pp. 295—
304.

K. Fisher, D. Walker, K. Q. Zhu, and P. White. “From dirt to shov-
els: fully automatic tool generation from ad hoc data” In: ACM
SIGPLAN Notices. Vol. 43. 1. ACM. 2008, pp. 421-434.

161

[26]

[27]
28]
[29]

[30]

[35]

[36]

Y. Gao, S. Huang, and A. Parameswaran. “Navigating the data
lake with datamaran: Automatically extracting structure from log
datasets”. In: Proceedings of the 2018 International Conference on
Management of Data. 2018, pp. 943-958.

M. R. Gary and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. 1979.

L. Getoor, B. Taskar, and D. Koller. “Selectivity estimation using
probabilistic models”. In: ACM SIGMOD. 2001.

S. Gulwani. “Automating string processing in spreadsheets using
input-output examples”. In: POPL. 2011.

S. Gulwani, W. R. Harris, and R. Singh. “Spreadsheet data manipu-
lation using examples”. In: Communications of the ACM 55.8 (2012),
pp. 97-105.

S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Component based
synthesis applied to bitvector circuits. Tech. rep. Technical Report
MSR-TR-2010-12, Microsoft Research, 2010.

S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. “Synthesis of
loop-free programs”. In: 2011.

P. J. Guo, S. Kandel, J. M. Hellerstein, and J. Heer. “Proactive wran-
gling: Mixed-initiative end-user programming of data transformation
scripts”. In: UIST. 2011.

P. J. Haas, J. F. Naughton, and A. N. Swami. “On the relative cost of
sampling for join selectivity estimation”. In: Proceedings of the thir-
teenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems. ACM. 1994, pp. 14-24.

W. R. Harris and S. Gulwani. “Spreadsheet table transformations
from examples”. In: PLDI. 2011.

P. E. Hart, N. J. Nilsson, and B. Raphael. “A formal basis for the
heuristic determination of minimum cost paths”. In: Systems Science
and Cybernetics, IEEE Transactions on 4.2 (1968), pp. 100-107.

162

[37]

[38]

[39]

[40]

[46]

Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaud-
huri. “Transform-Data-by-Example (TDE): An Extensible Search
Engine for Data Transformations™ In: PVLDB. 2018.

M. Heimel, M. Kiefer, and V. Markl. “Self-Tuning, GPU-Accelerated
Kernel Density Models for Multidimensional Selectivity Estimation”.

In: SIGMOD Conference. 2015.

J. M. Hellerstein, J. Heer, and S. Kandel. “Self-Service Data Prepa-
ration: Research to Practice.” In: IEEE Data Eng. Bull. 41.2 (2018),
pp- 23-34.

G. Holmes, A. Donkin, and I. H. Witten. “Weka: A machine learning
workbench”. In: Proceedings of ANZIIS’94-Australian New Zealnd
Intelligent Information Systems Conference. IEEE. 1994, pp. 357
361.

Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivonen. “TANE:
An efficient algorithm for discovering functional and approximate
dependencies”. In: The computer journal 42.2 (1999), pp. 100-111.

D. Huynh and S. Mazzocchi. OpenRefine. http://openrefine.org.
2012.

F. Islam, V. Narayanan, and M. Likhachev. “Dynamic Multi-
Heuristic A*”. In: IEEE International Conference on Robotics and
Automation. 2015.

S. Jha, S. Gulwani, S. Seshia, A. Tiwari, et al. “Oracle-guided
component-based program synthesis”. In: ICSE. 2010.

Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish. “Foofah:
A Programming-By-Example System for Synthesizing Data Trans-
formation Programs”. In: Proceedings of the 2017 ACM International
Conference on Management of Data. SIGMOD ’17. Chicago, Illinois,
USA: ACM, 2017, pp. 1607-1610.

Z. Jin, M. R. Anderson, M. Cafarella, and H. V. Jagadish. “Foofah:
Transforming Data By Example”. In: SIGMOD. 2017.

163

http://openrefine.org

[47]

Z. Jin, C. Baik, M. Cafarella, and H. V. Jagadish. “Beaver: Towards
a Declarative Schema Mapping”. In: Proceedings of the Workshop on
Human-In-the-Loop Data Analytics. HILDA’18. Houston, TX, USA:
ACM, 2018, 10:1-10:4.

Z. Jin, C. Baik, M. Cafarella, H. Jagadish, and Y. Lou. “Demon-
stration of a Multiresolution Schema Mapping System”. In: CIDR.
2019.

Z. Jin, M. Cafarella, H. V. Jagadish, S. Kandel, M. Minar, and J. M.
Hellerstein. “CLX: Towards verifiable PBE data transformation”. In:
EDBT. 2019.

D. V. Kalashnikov, L. V. Lakshmanan, and D. Srivastava. “FastQRE:
Fast Query Reverse Engineering”. In: SIGMOD. 2018.

S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. “Enter-
prise data analysis and visualization: An interview study”. In: IEFE
Transactions on Visualization and Computer Graphics 18.12 (2012),
pp. 2917-2926.

S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. “Wrangler: Inter-
active visual specification of data transformation scripts”. In: CHI
ACM. 2011, pp. 3363-3372.

G. D. Kleiter. “Propagating imprecise probabilities in Bayesian net-
works”. In: Artificial Intelligence 88.1-2 (1996), pp. 143-161.

K. Krishnamoorthy. Handbook of statistical distributions with appli-
cations. Chapman and Hall/CRC, 2016.

T. A. Lau, P. M. Domingos, and D. S. Weld. “Version Space Algebra
and its Application to Programming by Demonstration.” In: ICML.
2000.

T. Lau, S. A. Wolfman, P. Domingos, and D. S. Weld. “Programming
by demonstration using version space algebra”. In: Machine Learning
53.1-2 (2003), pp. 111-156.

V. Le and S. Gulwani. “FlashExtract: A framework for data extrac-
tion by examples”. In: PLDI. Vol. 49. 6. ACM. 2014, pp. 542-553.

164

[58]

[59]

[60]

M. Lenzerini. “Data integration: A theoretical perspective”. In: Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems. 2002, pp. 233-246.

A. Leung, J. Sarracino, and S. Lerner. “Interactive parser synthesis
by example”. In: PLDI. 2015.

F. Liand H. Jagadish. “Constructing an interactive natural language
interface for relational databases”™ In: Proceedings of the VLDB FEn-
dowment 8.1 (2014), pp. 73-84.

H. Li, C.-Y. Chan, and D. Maier. “Query from examples: An itera-
tive, data-driven approach to query construction”. In: Proceedings of
the VLDB Endowment 8.13 (2015), pp. 2158-2169.

Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and H.
Jagadish. “Regular expression learning for information extraction”.
In: EMNLP. 2008.

H. Lieberman. Your wish is my command: Programming by example.
Morgan Kaufmann, 2001.

R. J. Lipton, J. F. Naughton, and D. A. Schneider. Practical selec-
tivity estimation through adaptive sampling. Vol. 19. 2. ACM, 1990.

S. Lohr. “For big-data scientists, janitor work is key hurdle to in-
sights”. In: The New York Times 17 (2014).

S. Lopes, J.-M. Petit, and F. Toumani. “Discovering interesting in-
clusion dependencies: application to logical database tuning”. In: In-
formation Systems 27.1 (2002), pp. 1-19.

D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. “Jungloid mining;:
helping to navigate the API jungle”. In: PLDI. 2005.

H. Massalin. “Superoptimizer: a look at the smallest program”. In:
ASPLOS II. 1987.

W. May. Information Eztraction and Integration with FLORID: The
MONDIAL Case Study. Tech. rep. 131. Available from http://dbis.
informatik.uni-goettingen.de/Mondial. Universitit Freiburg,
Institut fir Informatik, 1999.

165

http://dbis.informatik.uni-goettingen.de/Mondial
http://dbis.informatik.uni-goettingen.de/Mondial

[74]

[75]

[76]

R. J. Miller, L. M. Haas, and M. A. Hernandez. “Schema mapping
as query discovery”. In: VLDB. Vol. 2000. 2000, pp. 77-88.

T. M. Mitchell. “Generalization as search”. In: Artificial intelligence
18.2 (1982), pp. 203-226.

D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. “Exem-
plar queries: Give me an example of what you need”. In: PVLDB.
2014.

M. Muralikrishna and D. J. DeWitt. “Equi-Depth Histograms For
Estimating Selectivity Factors For Multi-Dimensional Queries”. In:
SIGMOD. 1988.

M. Neuhaus and H. Bunke. Bridging the gap between graph edit dis-
tance and kernel machines. World Scientific Publishing Co., Inc.,
2007.

N. OpenData. Times Square Food & Beverage Locations” data set.
https://opendata.cityofnewyork.us/. 2017.

S. Padhi, P. Jain, D. Perelman, O. Polozov, S. Gulwani, and T.
Millstein. “FlashProfile: a framework for synthesizing data profiles”.
In: Proceedings of the ACM on Programming Languages 2.00PSLA
(2018), pp. 1-28.

K. Panev and S. Michel. “Reverse Engineering Top-k Database
Queries with PALEO.” In: EDBT. 2016, pp. 113-124.

Y. Park, S. Zhong, and B. Mozafari. “QuickSel: Quick Selectivity
Learning with Mixture Models”. In: SIGMOD. 2019.

D. Patil. Data Jujitsu. 7 O’Reilly Media, Inc.”, 2012.

P. M. Phothilimthana, A. Thakur, R. Bodik, and D. Dhurjati. “Scal-
ing up superoptimization”. In: ASPLOS. 2016.

G. Piatetsky. “Four main languages for analytics, data mining, data
science”. In: URL http://www. kdnuggets. com/2014/08/four-main-
languages-analyticsdata-mining-data-science. html (2014).

V. Poosala and Y. E. loannidis. “Selectivity Estimation Without the
Attribute Value Independence Assumption”. In: VLDB. 1997.

166

https://opendata.cityofnewyork.us/

[83]

[84]
[85]
[86]

[87]

L. Popa, Y. Velegrakis, M. A. Hernandez, R. J. Miller, and R. Fagin.
“Translating web data”. In: Proceedings of the 28th international
conference on Very Large Data Bases. VLDB Endowment. 2002,
pp. 598-609.

L. Qian, M. J. Cafarella, and H. Jagadish. “Sample-driven schema
mapping”. In: SIGMOD. 2012.

V. Raman and J. Hellerstein. An Interactive Framework for Data
Cleaning. Tech. rep. 2000.

V. Raman and J. M. Hellerstein. “Potter’s Wheel: An interactive
data cleaning system”. In: VLDB. Vol. 1. 2001, pp. 381-390.

T. Rattenbury, J. M. Hellerstein, J. Heer, S. Kandel, and C. Car-
reras. Principles of Data Wrangling: Practical Techniques for Data
Preparation. 7 O’Reilly Media, Inc.”, 2017.

V. Raychev, M. Schéfer, M. Sridharan, and M. Vechev. “Refactoring
with synthesis”. In: OOPSLA. 2013.

M. Research. Microsoft Program Synthesis using Examples SDK.
https://microsoft.github.io/prose/. 2017.

J. Rissanen. “Modeling by shortest data description”. In: Automatica
14.5 (1978), pp. 465-471.

A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser.
“A machine learning approach to foreign key discovery.” In: WebDB.
2009.

D. A. Schum. The evidential foundations of probabilistic reasoning.
Northwestern University Press, 2001.

Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik. “Dis-
covering queries based on example tuples”. In: SIGMOD. 2014.

R. Singh. “BlinkFill: Semi-supervised programming by example for
syntactic string transformations”. In: Proceedings of the VLDB FEn-
dowment 9.10 (2016), pp. 816-827.

167

https://microsoft.github.io/prose/

[95]

[101]

[102]

[103]

[104]

[105]

[106]

R. Singh and S. Gulwani. “Learning semantic string transformations
from examples”. In: Proceedings of the VLDB Endowment 5.8 (2012),
pp. 740-751.

R. Singh and S. Gulwani. “Predicting a correct program in program-
ming by example”. In: CAV. 2015.

R. Singh and A. Solar-Lezama. “Synthesizing data structure manip-
ulations from storyboards”. In: ESEC/FSE. 2011.

A. Solar-Lezama. Program synthesis by sketching. ProQuest, 2008.

M. Stonebraker, D. Bruckner, I. F. Ilyas, G. Beskales, M. Cherniack,
S. B. Zdonik, A. Pagan, and S. Xu. “Data Curation at Scale: The
Data Tamer System”. In: CIDR. 2013.

S.-G. Synthesis. SyGuS-COMP 2017: The jth Syntax Guided Syn-
thesis Competition took place as a satellite event of CAV and SYNT
2017. http://www.sygus.org/SyGuS-COMP2017 .html. 2017.

Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. “Query by output”.
In: Proceedings of the 2009 ACM SIGMOD International Conference
on Management of data. ACM. 2009, pp. 535—548.

Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. “Query reverse en-
gineering”. In: The VLDB Journal 23.5 (2014), pp. 721-746.

K. Tzoumas, A. Deshpande, and C. S. Jensen. “Efficiently adapting
graphical models for selectivity estimation”. In: VLDB 22.1 (2013),
pp. 3-27.

C. F. Vasters. BizTalk Server 2000: A Beginner’s Guide. McGraw-
Hill Professional, 2001.

C. Wang, A. Cheung, and R. Bodik. “Synthesizing Highly Expressive
SQL Queries from Input-Output Examples” In: Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2017. Barcelona, Spain: Association for
Computing Machinery, 2017, pp. 452-466.

I. H. Witten and D. Mo. “TELS: Learning text editing tasks from
examples”. In: Watch what I do. MIT Press. 1993, pp. 183-203.

168

http://www.sygus.org/SyGuS-COMP2017.html

107]

[108]
[109]

[110]

[111]

[112]

[113]

B. Wu and C. A. Knoblock. “An Iterative Approach to Synthesize
Data Transformation Programs”. In: Proceedings of the 24th Interna-
tional Conference on Artificial Intelligence. IJCAI’15. Buenos Aires,
Argentina: AAAI Press, 2015, pp. 1726-1732.

B. Wu, P. Szekely, and C. A. Knoblock. “Learning data transforma-
tion rules through examples: Preliminary results”. In: I1Web. 2012.

B. Wu, P. Szekely, and C. A. Knoblock. “Minimizing user effort in
transforming data by example”. In: TUL. ACM. 2014, pp. 317-322.

H. Yao and H. J. Hamilton. “Mining functional dependencies from
data” In: Data Mining and Knowledge Discovery 16.2 (2008),
pp- 197-219.

E. Zhu, Y. He, and S. Chaudhuri. “Auto-join: joining tables by lever-
aging transformations” In: vol. 10. 10. VLDB Endowment, 2017,
pp. 1034-1045.

K. Zhu, K. Fisher, and D. Walker. “Learnpads++: Incremental in-
ference of ad hoc data formats”. In: Practical Aspects of Declarative
Languages (2012), pp. 168-182.

B. Zoph and Q. V. Le. “Neural Architecture Search with Reinforce-
ment Learning”. In: 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017.

169

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1. Introduction
	Challenges and Opportunities
	Challenges for users
	Technical challenges

	Summary of Contributions

	Chapter 2. Research Background
	Data Preparation Pipeline
	Data Transformation
	Data Pattern Profiling
	Data Integration and Schema Mapping

	Program Synthesis

	Chapter 3. Synthesizing Data Transformation Programs using User Examples
	Introduction
	Motivating Example
	Problem Definition
	Problem Definition
	Data Transformation Programs

	Program Synthesis
	Program Synthesis Techniques
	Search-based Program Synthesis
	Pruning Techniques for Better Efficiency
	Complexity Analysis
	Synthesizing Perfect Programs

	Experiments
	Benchmarks
	Performance Evaluation
	Comparing Search Strategies
	Effectiveness of Pruning Rules
	Adaptiveness to New Operators
	User Effort Study
	Comparison with Other Systems

	Related Work
	Conclusion

	Chapter 4. Synthesizing Data Format Standardization Programs using Pattern-based Examples
	Introduction
	Motivating Example
	Overview
	Patterns and Data Transformation Problem
	Clx Data Transformation Paradigm

	Clustering data on patterns
	Initial Clustering Through Tokenization
	Bottom-up Pattern Cluster Refinement
	Limitations

	Data Pattern Transformation Program
	Program Synthesis
	Identify Source Candidates
	Token Alignment
	Program Synthesis using Token Alignment Result
	Limitations and Program Repair

	Experiments
	Experimental Setup
	User Study on Verification Effort
	User Study on Explainability
	Expressivity and Efficiency Tests

	Related Work
	Conclusion

	Chapter 5. Synthesis of Complex Schema Mapping Queries using ``Multiresolution'' Examples
	Introduction
	Motivating Example
	Problem Statement
	Query Synthesis Algorithms
	Preliminaries
	Filter Scheduling

	Risks and Limitations
	Experiments
	Experimental Setup
	Overhead of Multiresolution Constraints
	Filter Validation Efficiency
	User Validation Effort

	Related Work
	Conclusion

	Chapter 6. Conclusions and Future Work
	Future Work

	Bibliography

