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Abstract 
 

HIV infects several cell types in the body including CD4+ T cells and macrophages. 

The viral accessory protein Vpr is highly conserved in primate lentiviruses and 

promotes infection of both T cells and macrophages in vivo by unknown mechanisms. 

Previous studies demonstrated that Vpr enhances expression of HIV Env in 

macrophages and that this effect accelerates viral spread in macrophage cultures. 

Interesting, Vpr did not significantly enhance HIV infection in T cell cultures.  The 

discrepancy between Vpr’s effect on T cell infection in vivo and in vitro was, until 

recently, unexplained. In a series of studies, we determined that Vpr and its cellular 

co-factor, DCAF1, are necessary to enhance infection of macrophages and co-

cultured CD4+ T cells.  Remarkably, we found evidence that Vpr counteracted a 

macrophage-specific, intrinsic antiviral pathway that targeted Env protein and Env-

containing virions to lysosomes. When infected macrophages were co-cultured with 

uninfected, autologous CD4+ T cells we observed efficient spread via virological 

synapses, structures that form when Env on an infected macrophage binds CD4 on 

an uninfected T cell. By enhancing Env expression, Vpr enhanced formation of 

virological synapses and viral spread from macrophages to T cells. We found that the 

restriction of Env we observed in macrophages was mediated through detrimental 

interactions between mannose residues on Env and the macrophage mannose 

receptor (MR). Vpr counteracted this effect by reducing transcription of MR. Silencing 



 viii 

MR or genetically deleting mannose residues on Env rescued Env expression in HIV-

1-infected macrophages lacking Vpr and increased spread from macrophages to T 

lymphocytes. Surprisingly, these experiments also demonstrated that disrupting 

interactions between Env and MR reduced initial infection of macrophages by cell-free 

virus, indicating that Env’s interaction with MR promotes viral entry. Together these 

results reveal a Vpr-Nef-Env axis that hijacks a host defense mechanism to boost viral 

entry then disables MR to alleviate detrimental interactions that inhibit viral egress. 
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Chapter 1 

 

Introduction 

 

Human immunodeficiency virus (HIV-1) is a leading cause of morbidity and mortality 

around the globe. Due to increased access to antiretroviral therapy the number of deaths 

caused by HIV has halved from ~2 million/year in 2007 to ~1 million/year in 2017, but the 

population of persons living with HIV has swelled to 37 million (Frank et al., 2019). 

Persons receiving antiretroviral treatment still experience significant cognitive and 

cardiovascular symptoms due to infection (Montoya et al., 2017) and psychological 

symptoms due to social stigma (Lowther et al., 2014). We do not fully understand the 

physiology of these symptoms, highlighting the need to investigate understudied aspects 

of HIV pathogenesis. In this chapter I will provide an introduction to HIV biology with 

particular emphasis on infection of macrophages and the effects thereof. This will include 

a review of the innate defenses in macrophages that restrict infection and the viral 

proteins that counteract host defenses. 
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Macrophages in health and disease 

 Distribution and variety of macrophages 

  There are numerous types of macrophages in the human body that are specialized 

for their particular role and anatomical location. Some macrophages are derived from 

monocytes, which circulate in the blood and can differentiate into several different cell 

types including macrophages and dendritic cells (Jakubzick et al., 2017). Monocytes, in 

turn, are derived from hematopoietic progenitor cells in the bone marrow (Fogg et al., 

2006). In recent years evidence has accumulated that another set of cells, collectively 

referred to as tissue resident macrophages, are derived from myeloid progenitors that 

migrate from the embryonic yolk sac within the first weeks of development (Perdiguero et 

al., 2015). These precede the development of monocytes derived from bone marrow and 

persist for the life of an organism (Hashimoto et al., 2013). The fraction of macrophages 

that are monocyte derived and the fraction that are embryonic varies across anatomical 

sites and is a matter of ongoing study. In the liver, macrophages known as Kupffer cells 

are primarily derived from yolk-sac myeloid progenitors (Ikarashi et al., 2013; Naito et al., 

2004). By contrast in skin, Langerhans cells are thought to be derived from a mix of yolk 

sac progenitors and monocytes (Collin and Milne, 2016). The central nervous system is 

home to multiple types of macrophages that can be distinguished by surface receptors, 

location, and morphology. Of these, astrocytes are derived from neural stem cells (Yang 

et al., 2013) and microglia from myeloid progenitors (McKercher et al., 1996). In the lungs, 

alveolar macrophages develop from myeloid progenitors during embryogenesis 

(Guilliams et al., 2013) and are replaced by monocyte derived cells slowly or not at all 

(Murphy et al., 2008). These cells are primarily identified by surface markers, of which the 
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most useful for studies in humans are CD68 (Micklem et al., 1989), CD11b (Taylor et al., 

2005), and CD14 (Becher et al., 1996; Matsuura et al., 1994) although immature 

monocytes also express CD14 (Goyert and Ferrero, 1987). 

 

Macrophage functions 

  A wide array of receptors on the surface of macrophages allow macrophages to 

detect and respond to various stimuli [reviewed in (Taylor et al., 2005)]. A major target of 

macrophages are host cells displaying apoptotic markers, which are recognized by 

numerous receptors and phagocytosed (Arandjelovic and Ravichandran, 2015). This 

allows the clearance of dead and dying host cells and avoids activating an inflammatory 

response (Aderem and Underhill, 1999). The most common apoptotic marker is 

phosphotidylserine, a phospholipid that is restricted to the cytoplasmic side of the plasma 

membrane in healthy cells, but is transported to the extracellular side of the membrane 

during apoptosis and detected by the macrophage receptor TIM4 (Miyanishi et al., 2007).  

  Macrophages are among the first lines of defense in the innate immune system, 

primarily due to their ability to phagocytose pathogens. Phagocytosis can be mediated by 

a wide variety of receptors on the plasma membrane including pattern recognition 

receptors (PRRs), which directly bind pathogen-associated molecular patterns (PAMPs); 

complement receptors, which bind components of the complement system; and Fc 

receptors, which bind the constant regions of antibodies. Within these categories are 

numerous subtypes that collectively provide the capacity to phagocytose nearly any 

pathogen under the right circumstances including fungi (Erwig and Gow, 2016), parasites 

(Keen et al., 2007; Murta et al., 1999),  Listeria monocytogenes (Schnitger et al., 2011), 
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influenza A virus (Benne et al., 1997), foot-and-mouth disease virus (McCullough et al., 

1988), and Staphylococcus aureus (Peiser et al., 2000) among others. For those 

pathogens that do no express sufficient PAMPs to be phagocytosed directly, soluble 

factors including IgG (Indik et al., 1995), complement, and antimicrobial peptides (Wan et 

al., 2014) bind pathogens and significantly enhance phagocytosis. 

  Phagocytosis destroys targeted pathogens and is the first step in the 

macrophage’s role as a professional antigen presenting cell (APC). Macrophages, along 

with dendritic cells and B cells, degrade ingested proteins and present the resulting 

peptides on MHC class I and class II molecules to activate T cell responses. This process 

has been demonstrated in numerous types of macrophages including Kupffer cells 

(Winwood and Arthur, 1993), adipose tissue macrophages (Morris et al., 2013), and 

alveolar macrophages (Miyata and van Eeden, 2011). Presentation of exogenous 

antigens on MHC class I, a process called cross-presentation, only occurs in professional 

APCs and this process in macrophages is crucial for activating CD8+ cytotoxic T 

lymphocytes (Brode and Macary, 2004; Ramirez and Sigal, 2002; Tobian et al., 2004). 

 

 Infection of macrophages by pathogens 

  In addition to their role in clearing pathogens, macrophages can also be the target 

of infection. Due to their natural ability to phagocytose foreign bodies, they are particularly 

vulnerable to intracellular bacteria (Weiss and Schaible, 2015) including Mycobacterium 

tuberculosis  (Schorey et al., 1997), Legionella pneumophila (Nash et al., 1984), and 

Listeria monocytogenes (Schnitger et al., 2011). Macrophages are also infected by a 

variety of viruses. Dengue virus (DENV) has been found in macrophages in the liver, lung, 
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and skin. Repeated infections of DENV in an individual are significantly more virulent than 

initial infection, and it is thought that this is due to highly-efficient, antibody-dependent 

infection of macrophages (Halstead, 1989). In monkeys, macrophages are infected by 

SIV (Simon et al., 1992), which leads to dissemination to the central nervous system of 

infected monkeys (Chakrabarti et al., 1991). Similar results have been observed during 

HIV infection in humans (Ho et al., 1986), and will be discussed in detail later in this 

chapter. 

 

 Macrophage models 

  Due to their significance in homeostasis, immunity, and infection by various 

pathogens, models that facilitate investigation of macrophages are in high demand. 

Mature macrophages harvested from human tissues are the most physiologically relevant 

but are limited by costs and ethical concerns. Lymphoid tissue collected from 

tonsillectomies are often used when 3 dimensional structures and other cell types are 

desired (Jayakumar et al., 2005). For models of isolated macrophages, alveolar 

macrophages obtained from bronchoalveolar lavage can also be used for ex vivo studies 

(Mautino et al., 1997; Wewers et al., 1984). Primary macrophages can also be generated 

from monocytes, of which tens of millions can be obtained from peripheral blood of an 

individual. These are stimulated in vitro using macrophage colony stimulating factor (M-

CSF) often in conjunction with other cytokines such as granulocyte-macrophage colony 

stimulating factor (GM-CSF) and interleukin 4 (IL-4). Different stimulation conditions 

cause differential expression of key macrophage proteins including CD4, PRRs, and 

chemokines receptors (Lee et al., 1999). Additionally there is significant variability across 
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donors (Krapp et al., 2016), which can generate misleading results if a small number of 

donors are used. 

  A handful of cell line models exist and provide useful clues about macrophage 

biology. The most common is the THP-1 line, derived from a patient with monocytic 

leukemia (Tsuchiya et al., 1980). These monocyte-like cells can be induced to 

differentiate into macrophage-like cells with various combinations of phorbol-12-

myristate-13-acetate (PMA), lipopolysaccharide (LPS), and vitamin D3. These stimulated 

THP-1s replicate some but not all features of primary monocyte derived macrophages 

(Daigneault et al., 2010).  

 

Mannose receptor 

 Cell biology of mannose receptor 

  Mannose receptor (MR) is a multidomain, multifunctional pattern recognition 

receptor, which is highly expressed on macrophages and a handful of other cell types, 

including dendritic cells and epithelial cells (Linehan et al., 1999; Martinez-Pomares, 

2012).  It bears significant similarity to three other proteins in the mannose receptor family, 

of which MR was the first characterized (East and Isacke, 2002). They are all type I 

transmembrane proteins composed of an N-terminal cysteine rich domain, a fibronectin 

type II domain, and 8-10 C type lectin domains before the transmembrane domain and 

cytoplasmic tail (Figure 1.1). The cysteine rich domain binds sulfonated sugars such as 

6-SO(4)-N-acetylglucosamine and multiple hormones (Leteux et al., 2000). The 

fibronectin type II domain binds collagen (Martinez-Pomares et al., 2006; Napper et al., 

2006), which leads to endocytosis of collagen and is an important part of maintaining the 
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extracellular matrix (Madsen et al., 2011; Madsen et al., 2013). MR contains 8 C type 

(calcium dependent) lectin domains, which bind mannose and several other hexoses. 

When the domains are tested in isolation, lectin domain 4 has by far the highest affinity 

for mannose, but when multiple domains are tested together, a fragment containing 

domains 4 -8 has higher binding affinity still, indicating that binding is multivalent (Taylor 

et al., 1992; Taylor and Drickamer, 1993). That multiple MR domains can bind the same 

ligand simultaneously is also supported by the observation that MR has higher affinity for 

multiply branched polysaccharides than linear ones (Kery et al., 1992). 

  MR expression and function has been studied extensively in macrophages. It is 

estimated that at any given moment approximately 100,000 copies of MR are available 

for binding on the surface of a macrophage and that 5 times that number are in internal 

compartments (Stahl et al., 1980). Mannose-containing particles are internalized within 5 

minutes of binding and this process was not inhibited by cycloheximide, which blocks 

translation of new proteins, indicating that newly synthesized MR is not required for MR 

activity (Stahl et al., 1980). This suggests that mannose receptor recycles to the cell 

membrane to bind and endocytose cargo repeatedly. The protein has been demonstrated 

to have a very long half-life of 33h (Lennartz et al., 1989), which means each MR molecule 

binds and endocytoses hundreds of ligands during its lifetime. Newly synthesized MR 

cannot bind mannose until 10-30 minutes post translation, indicating that a post 

translational maturation step, most likely in the Golgi, is required for activation (Pontow et 

al., 1996) 
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Microbial interactions with mannose receptor 

  MR’s activity as a pattern recognition receptor that leads to endocytosis is an 

important part of macrophages’ function as immune cells. MR binds polysaccharides and 

lipopolysaccharides found in capsules and cell walls of numerous species of bacteria, 

leading to endocytosis (Zamze et al., 2002). MR also binds mannoproteins, i.e. 

glycoproteins with mannose residues, on the fungal pathogen Cryptococcus neoformans. 

This leads to activation of CD4+ T cells and mice that lack MR (MRC1-/-) are significantly 

less likely to survive infection by C neoformans (Dan et al., 2008).  

  MR can also be hijacked by pathogens to evade immunity and enhance 

pathogenesis.  Mannose-capped lipoarabinomannans produced by Mycobacterium 

tuberculosis bind MR and inhibit production of IL-12, TNF-α, and TGF-β (Knutson et al., 

1998; Nigou et al., 2001). MR is responsible for binding and internalization of 

Streptococcus pneumoniae by macrophages, which results in intracellular survival and 

reduced inflammation (Subramanian, Neill et al. 2019). MR also mediates entry of S. 

pneumoniae to olfactory ensheathing cells (Macedo-Ramos et al., 2011) and Schwann 

cells (Macedo-Ramos et al., 2014), which provide a path through which the bacterium 

accesses the central nervous system. Several viruses also use MR to enhance entry. 

Most notably, MR increases infection of macrophages by DENV and increases 

inflammation (Miller et al., 2008). Treatment of MDM with vitamin D3 lowers MR 

expression, which reduces DENV infection and release of inflammatory cytokines (Alzate 

et al., 2017). 

  HIV has previously been shown to interact with MR, but the mechanisms by which 

this occurs and the implications for viral replication are not clear. One group found that 
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MR binds HIV on the plasma membrane of macrophages and transfers virions to CD4+ 

T cells, a process called trans-infection (Nguyen and Hildreth, 2003). They did not 

investigate direct infection of macrophages. Another group observed that HIV infection 

decreases phagocytic function in alveolar macrophages (Koziel et al., 1993), which 

correlates with the virus’s effect on MR expression (Koziel et al., 1998). Consistent with 

this finding, the highly related simian immunodeficiency virus (SIV) reduces MR staining 

of glial cells in the brains of infected macaques (Holder et al., 2014). Although a reduction 

in MR expression by HIV infection has been observed repeatedly and is likely clinically 

relevant, the mechanism for this action has not been established.  

 

Human Immunodeficiency Virus 

 Basic biology 

  Human immunodeficiency virus type I (referred to as simply HIV throughout this 

dissertation) is a lentivirus of the retroviridea family (Levy, 2013). The viral particle 

contains two copies of a positive strand RNA genome, a capsid composed of the viral 

protein Gag, and a lipid membrane derived from the producer cell. The viral protein Env 

is anchored in the membrane and is responsible for binding the main HIV receptor CD4 

and a co-receptor, either CCR5 or CXCR4 (Figure 1.2). Env structure and function is 

described in greater detail below. HIV can only infect cells that express CD4 and CCR5 

or CXCR4, which to the best of our knowledge limits the virus’s tropism to immune cells, 

namely CD4+ T cells (Stein et al., 1987), macrophages (Gartner et al., 1986), and 

hematopoietic stem and progenitor cells (Alexaki and Wigdahl, 2008; Carter et al., 2010). 
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  After entry to the cell, a  double-stranded cDNA copy of the viral genome is reverse 

transcribed by the virally encoded enzyme reverse transcriptase. The cDNA genome is 

imported into the nucleus where it is integrated into the host genome by the viral protein 

integrase. Whereas most retroviruses wait for the nuclear membrane to be dissolved 

during mitosis, the nuclear import capability of HIV enables it to infect non-dividing cells 

and categorizes it specifically as a lentivirus (Narayan and Clements, 1989). The 

integrated viral genome can continue the replication cycle by making new copies of viral 

proteins and RNA genomes or it can enter a latent state, in which transcription of the viral 

genome is suppressed. The latent state can persist for years or even decades before 

being reactivated, at which point the genome can produce fully functional virus. 

  When the HIV genome is active, host transcriptional and translational machinery 

are induced to generate numerous viral proteins and genomes. Host RNA polymerase II 

transcribes full length RNA copies of the viral genome, most of which are spliced by host 

machinery to generate mRNAs specific for a single viral protein. In later stages of infection 

full length viral genomes are exported, which serve multiple critical functions. The full 

length viral RNA can be translated to produce Gag or Gag-Pol, two polyproteins that are 

cleaved to form most of the virus’s structural proteins including the capsid, reverse 

transcriptase, and integrase. The full length genome also contains a packaging sequence 

that causes it to bind the capsid and be packaged into new virions. 

  In addition to structural and regulatory proteins that are essential to the replication 

cycle, HIV also encodes accessory proteins that do not actively participate in replication 

processes, but which alter the host cell environment to maximize virion production and 

persistence. Vif, Vpu, and Nef counteract numerous innate and adaptive defenses. They 
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enhance infection in cell lines, primary CD4+ T cells and primary macrophages (Balliet et 

al., 1994; Collins et al., 1998; Sheehy et al., 2002). By contrast the viral accessory protein 

Vpr primarily enhances infection of primary macrophages (Balliet et al., 1994; Mashiba et 

al., 2014). The functions of Vpr and Nef are discussed in greater detail below. 

 

 Evidence for HIV infection of macrophages 

  HIV has been detected in macrophages isolated from infected humans at many 

anatomical sites, including lymph nodes (Embretson et al., 1993) brain (Koenig et al., 

1986), urethra (Ganor et al., 2019), and liver (Kandathil et al., 2018). Infection of 

macrophage cultures is less productive than infection of CD4+ T cells when measured by 

Gag p24 ELISA of the supernatant (Ochsenbauer et al., 2012), which has led some to 

speculate that macrophage infection is of limited importance in a natural infection. 

However, in infected persons viral production by macrophages maintains high viremia 

even after CD4+ T cell counts fall (Orenstein et al., 1997). Also, studies in transgenic mice 

that produce human macrophages but not human T cells replicate significant aspects of 

HIV infection in humans. The myeloid/macrophage-only-mouse can sustain infection for 

at least 10 weeks, at which point HIV was detected in numerous tissues throughout the 

body (Honeycutt et al., 2016). A follow up study using the same mouse model found that 

anti-retroviral treatment led to a rapid decrease in viremia. After treatment interruption, 

viral rebound was observed in 3 of 9 mice, indicating that macrophages can act as a long 

lived reservoir (Honeycutt et al., 2017). An important caveat of this study is that the 

transgenic mouse produces human macrophages derived from monocytes, but its tissue 

resident macrophages are murine only and therefore cannot be infected by HIV. Because 
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tissue resident macrophages are long-lived and self-renewing, an in vivo model that lacks 

these cells may not fully recapitulate the long term role of macrophages in HIV infection.  

  Whereas most HIV infected T cells undergo apoptosis within days of infection, HIV 

infected macrophages survive for weeks or months (Aquaro et al., 2002). This is likely 

because they are less susceptible to the cytopathic effects of the virus (Gendelman et al., 

1988; Orenstein et al., 1988). The number of alveolar macrophages in humans is virtually 

unaffected by HIV infection (Koziel et al., 1998), but defects in alveolar macrophage 

function have been observed, namely reduced phagocytosis of Candida albicans (Crowe 

et al., 1994) and Plasmodium falciparum (Keen et al., 2007). HIV infected macrophages 

are thought to be the primary driver of HIV-associated cardiomyopathy and 

atherosclerosis (Crowe et al., 2010) and HIV-associated neurocognitive disorders 

(Gannon et al., 2011).  

  In addition to direct effects on macrophages, HIV infection of macrophages 

contributes to overall pathogenesis by increasing viral loads in infected individuals. 

Because macrophages are not killed even by long term infection, macrophages are the 

dominant source of viremia in late stages of AIDS (Orenstein et al., 1997). Replication 

competent virus has been recovered from monocytes and macrophages of people 

receiving antiretroviral therapy (Lambotte et al., 2000), suggesting that they may 

contribute to viral rebound after therapy is withdrawn. In ex vivo experiments using 

explants of human lymphoid tissue, infection of macrophages boosts virion production 

significantly, despite comprising a small fraction of infected cells (Eckstein et al., 2001). 

This suggests that macrophages amplify infection in other cell types. 
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  There is significant evidence that HIV spreads via cell-to-cell contact and that this 

method is particularly important in macrophages. Direct cell-to-cell spread is mediated 

through a virological synapse, a connection that is formed when viral Env on an HIV 

infected cell binds CD4 on a neighboring uninfected target (Jolly et al., 2004). This 

connection allows multiple viral particles to be transmitted to a single target cell, greatly 

enhancing the likelihood that the virus establishes a successful infection (Del Portillo et 

al., 2011). Transmission via synapses is resistant to neutralization by antibodies 

(Schiffner et al., 2013), meaning it may pose an additional barrier to developing a useful 

HIV vaccine. Finally, this efficient, robust method of transmission has been demonstrated 

from infected macrophages to uninfected T cells (Groot et al., 2008), which may explain 

how the presence of macrophages boosts viral burden in lymphoid tissues containing T 

cells (Eckstein et al., 2001). 

 

 The role of macrophages in HIV transmission 

  Whether and to what degree macrophages contribute to HIV transmission is a 

matter of much debate. Early studies of tropism found that most HIV isolates from early 

stages of infection did not infect T cell lines and were thus thought to be “macrophage 

tropic” (Schuitemaker et al., 1991; van't Wout et al., 1994). More recent studies found that 

this observation, though correct, was misleading, because most T cell lines do not 

express CCR5, the co-receptor used by most viral isolates (Joseph et al., 2014). Viruses 

isolated within the first few weeks of transmission, called transmitted/founder or T/F 

viruses, can infect primary CD4+ T cells and macrophages (Ochsenbauer et al., 2012). 

This study found that over 4-14 days T/F viruses replicated to higher titers in T cells than 
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in macrophages, suggesting that T/F viruses have a greater capacity for infection of T 

cells, which express high levels of CD4 (Joseph et al., 2014).  

  There is significant in vivo evidence that indicates macrophages may facilitate 

transmission. Macrophages are present in semen, urethra, foreskin, vaginal mucosa, 

rectal mucosa, and cervical mucosa (Iijima et al., 2008), making them a potential source 

or target of HIV in a sexual transmission event. In infected male humans HIV has been 

found in CD4+ T cells and macrophages in semen (Quayle et al., 1997) and in the urethra 

(Ganor et al., 2019). In infected macaques, SHIV (an SIV – HIV hybrid) was found in 

macrophages in the testes and epididymis (Shehu-Xhilaga et al., 2007). In infection 

simulation experiments using explants of human cervical tissue, HIV has been found in 

macrophages and T cells (Cummins et al., 2007; Greenhead et al., 2000). In both of these 

studies, infected macrophages were more abundant than infected T cells, although the 

strain used (BaL) is notably macrophage tropic. One study (Greenhead et al., 2000) 

attempted the same experiment with two lab adapted, T cell tropic clones (IIIB and RF) 

and saw very little infection of any cell type. Similar studies using HIV clones isolated 

early in infection would be highly informative.  

 

The HIV structural protein Env 

  The HIV gene env produces a large glycoprotein responsible for mediating binding 

and entry of the virion to target cells. Env is synthesized as a 160kDa polyprotein which 

is processed into two components, gp120 and gp41 via the host protease furin (Checkley 

et al., 2011). Entry to a target cell requires the presence of two host proteins, the primary 

receptor CD4 and one of two potential co-receptors CCR5 or CXCR4. The receptor CD4 



 15 

is bound first, which induces a conformational change in gp120 that exposes the co-

receptor binding site. Binding by CCR5 or CXCR4 induces another conformational 

change that exposes the fusion peptide, a hydrophobic region of gp41 that inserts into 

the membrane of the target cell and promotes fusion (Bosch et al., 1989). 

 

 Env biosynthesis 

  Env is a large and structurally complex protein which must be produced in the 

secretory pathway, where it undergoes numerous post-translational modifications 

(Figure 1.4). It is a type 1 transmembrane protein, meaning it has an N terminus facing 

the lumen/extracellular space, a single transmembrane domain, and a C terminus in the 

cytosol. A signal peptide in Env causes it to be translated directly into the lumen of the 

rough ER where, simultaneously with translation, it is glycosylated at numerous 

asparagine residues (Leonard et al., 1990). At each of these residues the enzyme 

complex oligosaccharyltransferase attaches a glycan tree (Aebi, 2013) that is identical for 

all asparagine-linked (N-linked) glycosylation (Figure 1.4A). The glycan tree, composed 

of 3 glucoses, 9 mannoses and 2 N-acetylglucosamines (Glc3Man9GlcNAc2) is trimmed 

by removing the glucoses after translation is complete but before the protein transits to 

the Golgi. At this point all branches of the glycan tree terminate in mannose (Figure 1.4B). 

This form is called oligomannose, Man5-9GlcNAc2, or high-mannose (Doores et al., 2010). 

  As most glycoproteins transit through the Golgi, the terminal mannose residues 

are removed by mannosidases (Kornfeld and Kornfeld, 1985). These are replaced by 

many possible sugar conformations composed of fucose, galactose, sialic acid, and n-

acetylglucosamine (Stanley et al., 2017). Collectively these are known as “complex 
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glycans” and they do not terminate in mannose residues (Figure 1.4C). Because terminal 

mannose is removed from healthy host proteins, it serves as a useful PAMP. 

  HIV Env does not complete this process like most eukaryotic proteins. Due to the 

unusually high number of glycosylation sites on Env and the fact that it forms a trimer in 

the cis-Golgi, some of the glycan trees cannot be accessed by mannosidases (Doores et 

al., 2010). These sites retain high mannose glycans rather than complex glycans. Studies 

of Env in which N-linked glycosylation sites are removed one at a time found that the loss 

of some sites leads to >25% loss of oligomannose, presumably by increasing accessibility 

of neighboring glycans (Coss et al., 2016). The final step of its synthesis, cleavage by 

host protease furin to produce gp120 and gp41, occurs in the trans-Golgi and is required 

for Env function (McCune et al., 1988).  

  Due to its distinctly non-eukaryotic glycan structures and position as the only viral 

protein outside the viral membrane, Env is the target of numerous innate and adaptive 

immune mechanisms. Env is the most common target of antibodies produced in infected 

humans (Kwong and Mascola, 2012) and has therefore been the target of most efforts to 

generate an antibody based vaccine (Haynes and Mascola, 2017). That Env can be 

targeted by innate mechanisms was first determined by studies that demonstrated that 

interferon-a (IFNa) treatment reduces infectivity of virions by inhibiting Env assembly 

(Hansen et al., 1992). Since then, two interferon-inducible innate immune factors have 

been shown to restrict Env. Guanylate binding protein 5 (GBP5) is expressed in the Golgi 

following interferon treatment and prevents proper Env processing (Hotter et al., 2017). 

Interferon-inducible transmembrane protein 3 (IFITM3) binds Env and reduces infectivity 

of virions (Wang and Su, 2019; Wang et al., 2017). 
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The HIV accessory protein Vpr 

  The HIV gene vpr produces a 96 amino acid 14kDa protein (Wong-Staal et al., 

1987) that has many known biochemical functions, but its role in the viral replication cycle 

has been a subject of much debate. Evolutionary analysis provides evidence that it is 

crucial for infection in vivo. Vpr is conserved in all primate lentiviruses (Tristem et al., 

1998) and individuals infected with Vpr mutants are extremely rare. The first known case 

was an occupational transmission of HIV HxB2, which contains a truncation in Vpr at 

amino acid 78. This mutation reverted to wildtype in vivo (Beaumont et al., 2001). The 

second and third were a mother-child pair. The mother was infected via blood transfusion 

and the child via breastfeeding. Both displayed no loss of CD4+ T cells or any other 

symptoms for at least 13 years (Wang et al., 1996). The final known infection by a Vpr 

mutant was via a needlestick containing ∆Vpr NL4-3. After 10 years of close observation 

the infected person’s viral load has usually been clinically undetectable (<20 copies per 

mL) and CD4+ T cell count has been unaffected (Ali et al., 2018). Combined these results 

indicate that Vpr is a critical factor in HIV pathogenesis and transmission. 

  Because Vpr is packaged in the HIV virion (Cohen et al., 1990) it has long been 

thought that it plays a role in early infection events. Packaging of Vpr is dependent on the 

p6 component of the Gag polyprotein, and Vpr is packaged at a nearly 1:1 molar ratio 

with Gag (Paxton et al., 1993). A later study found that a conserved L-X-S-L-F-G motif in 

p6 Gag is necessary and sufficient to package Vpr and that the interaction between these 

proteins is direct (Bachand et al., 1999). Vpr localizes to the nucleus/nuclear envelope in 

PBMCs (Lu et al., 1993) and macrophages (Jacquot et al., 2007), suggesting it may play 

a role in integration, although later studies have not observed this (Mashiba et al., 2014; 
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Wang and Su, 2019). Early studies of Vpr’s biochemistry identified a host protein, 

originally named Vpr binding protein or VprBP (Zhao et al., 1994), that 

immunoprecipitates with Vpr, but the purpose of this interaction was unknown. This 

protein, which was later renamed DCAF1, is required for Vpr to mediate many of its 

functions (Belzile et al., 2007). 

 

 Vpr-mediated cell cycle arrest 

  The most easily observable and most studied function of Vpr is that it arrests the 

cell cycle at the transition from G2 to M phase (Jowett et al., 1995). This arrest at G2 

phase increases activity of the HIV LTR and virion production (Goh et al., 1998), but it 

also induces apoptosis (Stewart et al., 1997). These opposing effects may be why Vpr 

does not have a clear positive or negative impact on infection of cycling CD4+ T cells in 

vitro (Balliet et al., 1994).  

  Various models of Vpr cell cycle arrest have been proposed (Figure 1.5). There is 

broad agreement that the proximal cause of Vpr mediated arrest is hyperphosphorylation 

of the host protein cdc2, a regulator of the DNA damage checkpoint, which prevents cdc2 

from becoming activated (He et al., 1995). Activity of cdc2 is controlled by at least two 

inputs, the phosphatase cdc25 and the kinase Wee1, and Vpr has been demonstrated to 

affect both. One group demonstrated that Wee1 is necessary for Vpr-mediated cell cycle 

arrest by silencing Wee1 in HeLa cells (Yuan et al., 2003), which prevented Vpr’s action. 

Another group later demonstrated that Vpr enhances Wee1 activity by directly binding to 

the kinase domain of Wee1 (Kamata et al., 2008), although they found several Vpr 
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mutants that bind and activate Wee1 but do not induce cell cycle arrest, indicating that 

binding Wee1 is not sufficient for cell cycle arrest. 

  It is very likely that Vpr also arrests the cell cycle via the other regulator of cdc2 

activity, cdc25. During the normal cell cycle, tyrosine residues on cdc2 are de-

phosphorylated by the phosphatase cdc25. Vpr has been shown to inhibit cdc25 which 

leads to hyperphosphorylation of cdc2 (Bartz et al., 1996). cdc25 is under the control of 

at least three upstream kinases, chk1, which is in turn controlled by ATM, chk2, which is 

controlled by ATR, and Srk1, which is activated by various stress responses (López-

Avilés et al., 2005). Of these, only ATM is definitively not involved in Vpr-mediated arrest 

(Bartz et al., 1996). One study found that Srk1 is directly bound by Vpr, which increases 

Srk1-mediated phosphorylation of cdc25 and leads to a reduction in cdc25 activity (Huard 

et al., 2008).  

  There is evidence from several studies indicating that Vpr can also act via ATR 

(ATM and Rad3 related protein), a host protein that arrests the cell cycle in response to 

DNA damage (Paulsen and Cimprich, 2007). Inhibition of ATR by RNAi or overexpression 

of a dominant-negative mutant prevents Vpr-mediated G2 arrest (Roshal et al., 2003). 

The mechanism by which Vpr activates ATR has not been fully elucidated, but several 

studies have demonstrated potential pathways. One found that in infected T cells, Vpr 

induces formation of replication protein A foci, which are known to activate ATR 

(Zimmerman et al., 2006). Another demonstrated that Vpr’s interaction with UNG2 

promotes excision of uracil from viral cDNA (Norman et al., 2011). Abasic sites left behind 

when UNG2 excises uracil have been demonstrated to activate ATR in cancerous cells 

(Buisson et al., 2017). It is possible that these are steps of the same pathway, i.e. that 
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UNG2’s activity leads to the formation of replication protein A foci or vice versa, but this 

has not yet been tested. 

  Although there is disagreement on how Vpr initiates the signal that leads to cell 

cycle arrest, it is universally agreed that it relies on DCAF1 to do so. The determinants 

within DCAF1 and Vpr necessary for Vpr to induce G2 arrest are well established (Gérard 

et al., 2014; Hrecka et al., 2007; Le Rouzic et al., 2007; Wen et al., 2007). Interestingly, 

one group identified mutations near the C terminus of Vpr that abrogate cell cycle arrest 

but do not affect DCAF1 binding, indicating that binding to DCAF1 is not sufficient to arrest 

the cell cycle (Belzile et al., 2007).  

  Following a 2014 paper by Laguette at al., there has been considerable attention 

given to a model in which Vpr and DCAF1 act via components of the SLX complex 

(SLXcom), a multi-protein complex that resolves Holliday junctions following DNA repair 

by homologous recombination. SLX4 functions as a scaffold protein that recruits and 

assembles other subunits including the endonucleases MUS81 and EME1. SLX4 

expression is required for Vpr to induce G2 arrest in HeLa cells and MEFs (Laguette et 

al., 2014). This study also demonstrated that Vpr directly interacts with SLX4 and DCAF1, 

which led to decreased steady state levels of MUS81 and EME1 and activation of 

SLXcom. They also demonstrated that this activation causes HIV reverse transcripts to 

co-immunoprecipitate with SLX4 and prevents induction of an interferon response. The 

authors proposed that evading IFN may be the true purpose of SLXcom activation by Vpr 

and that G2 arrest may be a side effect. The details of this mechanism have been 

debated. A study in our laboratory confirmed that Vpr decreased steady state levels of 

MUS81 protein and IFNA1 mRNA in primary MDM and CD4+ T cells (Mashiba et al., 
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2014). A study by another group found that activation of SLX4 is not broadly conserved 

across isolates of HIV-1 and HIV-2 and that SLX4 is not required to mediate G2 arrest in 

U2OS and 293T cells (Fregoso and Emerman, 2016). A third group found that neither 

SLX4 nor DCAF1 binding was required for Vpr-mediated downregulation of MUS81 and 

EME1 and that downregulation of MUS81 and EME1 was not sufficient to arrest the cell 

cycle at G2 (Zhou et al., 2016). The differences between these findings and those of 

Laguette et al. may be due to differences in viral strains and cell lines used. Neither 

Fregoso and Emerman nor Zhou et al. investigated Vpr-mediated reduction of IFN, which 

may require SLX4. Follow up studies focused on the mechanism of IFN evasion in primary 

cells would be highly informative. 

 

 Vpr role in viral replication 

  The first investigations of Vpr’s activity in infected cell cultures found that it did not 

have significant effects in CD4+ T cells (Balliet et al., 1994; Eckstein et al., 2001). 

Recently there is evidence that Vpr enhances T cell infection under certain conditions. 

Vpr causes ubiquitination and subsequent proteasomal degradation of helicase like 

transcription factor (HLTF), a multi-domain, multi-functional protein that activates post 

replication DNA repair (Hrecka et al., 2016; Lahouassa et al., 2016). Vpr-mediated 

degradation of HLTF enhances HIV replication in CD4+ T cells, but this effect is only 

apparent in competition assays (Yan et al., 2019). Also silencing HLTF did not fully restore 

replication by the Vpr mutant, indicating that Vpr has additional functions. 

  Vpr has a much stronger effect in macrophages, which has been documented by 

numerous laboratories over decades (Balliet et al., 1994; Connor et al., 1995; Eckstein et 



 22 

al., 2001; Hattori et al., 1990; Mashiba et al., 2014; Westervelt et al., 1992). Vpr enhances 

infection of human lymphoid tissue, which contains macrophages and T cells in a three 

dimensional environment, but only when an M-tropic strain is used (Eckstein et al., 2001). 

An early model proposed that Vpr enhanced nuclear import of the viral cDNA genomes, 

but the evidence has been mixed. Assays using H9 cells demonstrated that Vpr enhanced 

the appearance of 2-LTR circles, a form of double stranded viral cDNA that only forms in 

the nucleus (Popov et al., 1998). Production of 2-LTR circles by Vpr-null HIV was rescued 

by addition of cytosol from HeLa cells, indicating that the nuclear import function of Vpr 

can be performed by unidentified host factors in some cell types. A study in our laboratory 

(Mashiba et al., 2014) indicated that Vpr-null HIV 89.6 did not display a defect in the first 

round of infection of monocyte derived macrophages (MDM), indicating that Vpr was not 

required for nuclear import under these conditions. That Vpr is not necessary for nuclear 

import is also supported by an earlier finding that providing Vpr in trans, i.e. packaged in 

the virion but not encoded in the genome, does not fully rescue ∆Vpr virus; therefore Vpr’s 

main functions occur after integration (Connor et al., 1995). 

  

 Vpr-mediated degradation of host proteins 

  In addition to the host proteins implicated in Vpr-mediated cell cycle arrest 

described above, Vpr alters the expression of numerous other host proteins (Greenwood 

et al., 2019). Several of these are direct targets, which Vpr ubiquitylates using its cellular 

cofactor DCAF1. DCAF1’s normal function in the cell is to direct the activity of the DCAF1-

DDB-Cullin4 E3 ligase complex, which ubiquitylates host proteins, usually to cause their 

degradation, but occasionally to regulate their activity (Nakagawa et al., 2015). Vpr 
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simultaneously binds DCAF1 and its protein targets, which changes the ligase complex’s 

substrate specificity. 

  It is well established that Vpr degrades UNG2 and SMUG1, two uracil 

deglycosylases (Schrofelbauer et al., 2007; Schrofelbauer et al., 2005), although the 

purpose of this is unclear. Degradation is mediated by Vpr binding directly to both UNG2 

and DCAF1 (Ahn et al., 2010; Wu et al., 2016). Different studies of UNG2 have 

determined that its effect on viral replication can be negative, positive, or neutral. One 

study found that in addition to depleting UNG2 in infected cells, Vpr recruits UNG2 to 

virions, which reduces the mutation rate of reverse transcription (Chen et al., 2004). This 

study also demonstrated that a mutation in Vpr (W54R) that prevents binding to UNG2 

increased mutation of HIV genomes in MDM. A different study found that UNG2 caused 

the degradation of uracilated viral cDNA, indicating that UNG2 is a viral restriction factor, 

although in their cell line model Vpr did not counteract the restriction (Weil et al., 2013). 

A third study found that UNG2 had no effect, positive or negative, on viral infection of 

several cell lines and MDM (Kaiser and Emerman, 2006). 

  More recently, Vpr has been implicated in the regulation of TET2, a member of the 

TET family that regulates 5’ methylation of cytosine. In the absence of HIV and Vpr, 

DCAF1 monoubiquitylates TET2, which increases its affinity for chromatin (Nakagawa et 

al., 2015) and therefore its activity. A follow up study found that Vpr induces 

polyubiquitylation and subsequent degradation of TET2. Because TET2 inhibits 

transcription of the IL6 gene, Vpr’s anti-TET2 activity increased IL-6 expression (Lv et al., 

2018). A later paper by the same group found that Vpr mediated degradation of TET2 
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prevented induction of interferon inducible trans-membrane protein 3 (IFITM3) which 

interferes with Env processing (Wang and Su, 2019). 

 

 Vpr and the interferon response 

  Through mechanisms that are incompletely understood, HIV induces a relatively 

weak interferon response, and Vpr contributes to this evasion. Vpr reduces transcription 

of IFNa (Mashiba et al., 2014), IFNb and Mxa, an antiviral interferon stimulated gene, by 

activating SLXcom which leads to degradation of incompletely transcribed viral cDNA 

genomes (Laguette et al., 2014). It has also been demonstrated that Vpr acts via a 

different pathway to specifically prevent induction of IFNb (Doehle et al., 2009). In 293T 

cells, this is achieved by Vpr-mediated degradation of interferon regulatory factor 3 

(IRF3), in which the HIV accessory protein Vif also plays a role (Okumura et al., 2008). 

Vpr has also been demonstrated to act further upstream by dysregulating TANK-binding 

kinase, which prevents activation of IRF3 (Harman et al., 2015). Given that Vpr alters 

expression of numerous host proteins (Greenwood et al., 2019), it is possible that Vpr 

affects interferon signaling by multiple mechanisms. 

  The understanding of Vpr-mediated evasion of innate immunity was advanced 

significantly by an earlier study in our laboratory (Mashiba et al., 2014) that demonstrated 

that Vpr counteracts a restriction factor in macrophages. Crucially this study found that 

Vpr does not boost first round infection of MDM, indicating that the enhancement of 

nuclear import/integration is not important in these cells. Recently a study by another 

group confirmed that at very early time points (2 days post infection) Vpr does not affect 

infection of MDM (Wang and Su, 2019). Mashiba et al. found that Vpr enhances infection 
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frequency starting on day 4  and continuing for up to 20 days. This study confirmed prior 

observations that Vpr enhances virion production in MDM as measured by Gag p24 

concentrations in the culture supernatant (Balliet et al., 1994; Vodicka et al., 1998). 

Crucially this effect is eliminated if the virus lacks Env (Mashiba et al., 2014), suggesting 

that Env is the proximal target of a restriction pathway. Western blot from infected MDM 

revealed that in the absence of Vpr, all three forms of Env (gp160, gp120, and gp41) are 

degraded, indicating the factor can act early in the secretory pathway. Finally this study 

found that degradation of Env could be inhibited by treatment with ammonium chloride, 

indicating that degradation occurred in the lysosome. Although this study provided 

important details about the action of the proposed restriction factor, the identity of the 

factor remained unknown. 

 

The HIV accessory protein Nef 

  Like Vpr, Nef is not strictly required to complete the viral replication cycle but it 

significantly enhances replication in vivo and in many cell culture models. Nef is 

myristoylated (Allan et al., 1985), which causes it to concentrate on the cytosol facing 

side of the plasma and organellular membranes. This localization allows Nef to bind the 

cytoplasmic tails of host defense factors and traffic them to lysosomes (Collins and 

Collins, 2014). Nef uses this mechanism to downmodulate the expression of MHC class 

I on the surface of infected cells (Schwartz et al., 1996), which prevents recognition and 

killing by HIV-specific CD8+ T cells (Collins et al., 1998). The molecular mechanism of 

this process has been well established. Nef and the host trafficking complex AP-1 

simultaneously bind MHC-I at the Y320 site of its cytoplasmic tail, which has been 
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demonstrated genetically (Wonderlich et al., 2008) and is evident in a crystal structure of 

the three-way interaction (Jia et al., 2012). Normally MHC-I moves from the trans Golgi 

to the plasma membrane, but Nef-mediated recruitment of AP-1 redirects it to Rab7+ 

endosomes (Roeth et al., 2004) and eventually lysosomes, where it is degraded 

(Schaefer et al., 2008).  

  Another major target of Nef is the HIV receptor CD4, which is removed from the 

cell surface to prevent superinfection and facilitate viral egress. Nef causes CD4 to be 

endocytosed from the cell surface and this process is dependent on a dileucine motif in 

CD4’s cytoplasmic tail (Aiken et al., 1994). Nef forms an interaction between the 

cytoplasmic tail of CD4 and the AP-2 complex, which induces clathrin-mediated 

endocytosis (Chaudhuri et al., 2007). In addition to downmodulating the main HIV 

receptor, Nef also downmodulates the co-receptors CCR5 (Michel et al., 2005) and 

CXCR4 (Venzke et al., 2006), although the mechanisms of action have not been defined.  

  Finally, Nef also causes mannose receptor (MR) to be removed from the cell 

surface in macrophages and transfected 293T cells (Vigerust et al., 2005). The 

cytoplasmic tail of MR, which includes a SDXXLf motif similar to the SQXXLL motif in the 

tail of CD4, was sufficient to induce endocytosis of a chimeric surface protein (Vigerust et 

al., 2005). Interestingly CD4 was degraded following its endocytosis but MR was not, 

suggesting MR does not enter the same endocytic pathway or it is resistant to lysosomal 

degradation, presumably because it repeatedly traffics cargo to lysosomes as part of its 

normal host functions (Stahl et al., 1980). The implications of Nef-mediated MR removal 

from the cell surface for HIV replication and pathogenesis has not yet been established. 
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Summary of dissertation 
 

Previous work in our laboratory provided significant evidence that HIV Vpr counteracts a 

macrophage-specific restriction factor that targets viral Env. Our goal has been to 

characterize the effects of Vpr on viral spread from macrophages and to identify this 

restriction factor. Chapter 2 presents the results of a study that investigated viral spread 

from HIV infected macrophages to uninfected, autologous CD4+ T cells. We found that 

this form of spread to T cells is far more efficient than direct infection by cell-free virus 

and that this process was boosted significantly by Vpr. Chapter 3 presents the results of 

a study that identified the restriction factor as mannose receptor (MR). We present 

evidence that HIV Vpr reduces transcription of the gene that produces MR and confirm 

an earlier finding that Nef dysregulates MR trafficking. The combined effect of Vpr and 

Nef reduces MR expression dramatically, which rescues Env expression, virion release, 

and spread from macrophages to T cells. Chapter 4 provides a discussion of the context 

and implications of these findings, including proposals for future experiments that would 

illuminate the mechanisms by which Vpr and Nef antagonize MR and how this activity 

enhances HIV pathogenesis. 
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Figure 1.1 Structure of mannose receptor (MR)1 Graphical depiction of the domains of 
MR and the ligands bound by each domain. CRD – cysteine rich domain, which binds 
sulfonated sugars. FNII – Fibronectin type II domain, which binds collagen. C-type lectin 
domains – Calcium-dependent domains that bind mannose, fucose, and N-
acetylglucosamine.  
  

                                                        
1 This figure was created by Jay Lubow 
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Figure 1.2 Replication cycle of HIV 2 Graphical depiction of the major events of the HIV 
replication cycle. Viral entry is mediated by binding of Env to CD4 and a co-receptor 
(CXCR4 or CCR5). After the capsid has entered the cytoplasm, the viral RNA genome is 
reverse transcribed by Pol into a double stranded cDNA genome. This viral genome is 
transported into the nucleus where it integrates into the host genome. The host RNA 
polymerase transcribes RNA copies of the genome, which are exported in an unspliced 
form to produce Gag and Gag-Pol or various spliced forms to produce the other viral 
                                                        
2 This figure was adapted by Jay Lubow from earlier versions by Mark Painter and Thomas Zaikos. 
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proteins. Unspliced RNA genomes are also packaged into newly formed virions.  Most 
viral protein translation occurs in the cytoplasm, but Env gp160 is translated into the 
lumen of the rough ER and transported through the secretory pathway where it is 
glycosylated and  cleaved by furin into gp120 and gp41. 
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Figure 1.3 Biosynthesis HIV Env in the secretory pathway3. Graphical depiction of 
translation and glycosylation of Env in the endoplasmic reticulum followed by post-
translational modifications in the Golgi. Mannose oligomers are depicted in green. The 
mannose patch is depicted as three densely packed glycans. For a detailed depiction of 
the monomers composing the glycans see Figure 1.4. 

                                                        
3 This figure was generated by Jay Lubow. 
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Figure 1.4 Structures of glycans at various stages of N-linked glycosylation4 
 (A) Graphical depiction of the glycan structure transferred to all N-linked glycosylation 
sites by the enzyme complex oligosaccharyltransferase in the rough ER. The three 
terminal glucose monomers are removed before exiting the ER. (B) Graphical 
representation of the high-mannose glycan at N-linked glycosylation sites as newly 
synthesized proteins enter the Golgi. For certain sites on HIV Env this is the final form of 
the glycan. (C) Graphical representation of two complex type glycans that are present on 
mature eukaryotic proteins. These are just two of the dozens of forms the final mature 
glycan structure can take. The sugar monomers are drawn according to the updated 
recommendations for symbol nomenclature for glycans [SNFG (Neelamegham et al., 
2019)] 

                                                        
4 This figure was generated by Jay Lubow 
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Figure 1.5 Model of G2/M cell cycle arrest and mechanisms by which it is induced by Vpr5. 
Graphical depiction of the cdc2-mediated cell cycle arrest pathway, including points at which Vpr 
has been demonstrated to alter signaling in order to promote arrest. Kinases are depicted in white. 
The only phosphatase, cdc25, is depicted in black. EME1 and MUS81, depicted in green, are 
endonucleases that resolve Holliday junctions. Vpr activates MUS81 prematurely, which causes 
the SLX complex to cleave viral DNA and prevents induction of interferon. Vpr also degrades 
MUS81 which leads to accumulation of unresolved replication intermediates and ultimately 
causes cell cycle arrest via ATR (Laguette et al., 2014).  
  

                                                        
5 This figure was generated by Jay Lubow 
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Chapter 2 

Vpr Promotes Macrophage-Dependent HIV Infection of CD4+ T Lymphocytes1 

 
 
Summary 

 Vpr is a conserved primate lentiviral protein that promotes infection of T 

lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its 

cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from 

macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support 

direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-

specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ 

lysosomal compartments. This restriction of Env also impaired virological synapses 

formed through interactions between HIV-1 Env on infected macrophages and CD4 on T 

lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha 

induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. 

These results provide a mechanism that explains the in vivo requirement for Vpr and 

suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary 

conservation of Vpr. 

 

																																																								
1	This chapter was published in the following manuscript: Collins D. R., Lubow J., Lukic Z., Mashiba M. 
and Collins K. L. (2015). "Vpr Promotes Macrophage-Dependent HIV-1 Infection of CD4+ T 
Lymphocytes." PLoS Pathog 11(7): e1005054.		
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Introduction 

HIV-1 Vpr is conserved in all lentiviruses. However, decades of research have not 

revealed a functional explanation for its evolutionary conservation. CD4+ T lymphocytes 

are the most abundant cellular target of HIV-1 in vivo and are widely regarded as the main 

drivers of viremia, persistence and progression to acquired immunodeficiency syndrome 

(Rockstroh et al.). While Vpr enables robust T lymphocyte infection and rapid disease 

progression in vivo (Hoch et al., 1995; Lang et al., 1993) and in ex vivo human lymphoid 

tissue (Rucker et al., 2004), Vpr is dispensable and may actually be detrimental to HIV-1 

replication in T lymphocytes in vitro (Balliet et al., 1994; Planelles et al., 1995; Rogel et 

al., 1995). Recent work using transformed cell lines has defined a molecular mechanism 

by which Vpr limits immune detection of HIV-1 through modulation of host cellular 

ubiquitin ligase pathways and activation of a cellular nuclease (Laguette et al., 2014). Vpr 

modulates these pathways at least in part through its interaction with its cellular co-factor 

DCAF1 (also known as VprBP) (Belzile et al., 2010; Le Rouzic et al., 2007). Vpr utilizes 

this pathway to counteract a macrophage-specific restriction of HIV-1 Env glycoprotein 

expression (Mashiba et al., 2014). However, in T lymphocytes, there is no defect in Env 

expression in the absence of Vpr (Mashiba et al., 2014) and it remains unclear how Vpr 

enhances HIV-1 replication in CD4+ T lymphocytes in vivo (Guenzel et al., 2014; 

Kirchhoff, 2010). 

In this study, we describe cell culture conditions in which HIV-1 infection of primary 

T lymphocytes depended entirely on contact-dependent spread from macrophages; a 

mode of spread that evaded neutralization by some antibodies. Under these conditions, 

Vpr enhanced the formation of virological synapses (VS) between infected macrophages 

and primary T lymphocytes. Mechanistic studies revealed that Vpr functioned to prevent 
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an innate immune response that dramatically reduced HIV-1 Env expression, normal 

virion trafficking and VS formation in macrophage-T lymphocyte co-cultures. The addition 

of exogenous interferon-α (IFN) effectively counteracted the ability of Vpr to promote 

spread from macrophages to T lymphocytes. Our results highlight the importance of 

macrophages in HIV-1 pathogenesis and explain a requirement for Vpr in HIV-1 infection 

of T lymphocytes, providing a previously elusive explanation for Vpr’s strong evolutionary 

conservation. 

 

Results  

Efficient infection of primary CD4+ T lymphocytes requires contact-dependent HIV-1 

spread from infected macrophages. 

 To evaluate a role for Vpr in T lymphocyte infection that explained in vivo 

observations, we developed an assay to measure HIV-1 spread from primary 

macrophages to autologous CD4+ T lymphocytes. As outlined in Figure 2.1A, we 

inoculated primary monocyte-derived macrophages (MDM) with HIV-1 and allowed 

infection to establish for two days before co-cultivation with activated autologous CD4+ T 

lymphocytes for an additional two days to enable viral spread. MDM-T lymphocyte co-

cultures produced an average of nine-fold more HIV-1 than infected MDM alone, 

suggesting that co-cultivation resulted in efficient spread between macrophages and T 

lymphocytes (Figure 2.1B). 

To measure the frequency of infection in each cell type, we used flow cytometry to 

distinguish macrophages from T lymphocytes by expression of surface markers and 

measured infection by intracellular Gag staining (Figure 2.2A). Detection of Gag+ cells 
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was dependent on reverse transcriptase activity demonstrating that our assay measures 

productive HIV-1 replication (Figure 2.2B). Although HIV-1 infects and depletes CD4+ T 

lymphocytes to cause acquired immunodeficiency syndrome in vivo, infection of primary 

CD4+ T lymphocytes by cell-free virus was inefficient in vitro after two days of continuous 

culture (Figures 3.1A, 3.2A) using an inoculum comparable to the amount of virus 

present in MDM-T lymphocyte co-cultures (data not shown). In comparison, co-cultivation 

of activated T lymphocytes with infected MDM increased T lymphocyte infection by thirty-

fold (Figure 2.1C). 

 The capacity for MDM to efficiently infect autologous primary CD4+ T lymphocytes 

depended on direct cell-to-cell contact because infection was not detected when the cells 

were separated by a virus-permeable transwell insert (Figures 3.1D,E). Direct cell-to-cell 

transmission of HIV-1 across virological synapses between infected and target cells has 

been previously described and is known to be highly resistant to antibody neutralization 

(Durham et al., 2012; Schiffner et al., 2013). Consistent with this mode of spread, we 

observed that MDM-dependent spread to autologous primary CD4+ T lymphocytes was 

highly resistant to neutralizing antibodies against Env gp120 (b12), Env gp41 (Z13E1) 

and CD4 (SIM2) that were capable of neutralizing greater than 95% of free virus infection 

of MDM (Figure 2.1F). When added at the time of co-cultivation, only 2G12, which has 

been previously demonstrated to block cell-to-cell spread (Duncan et al., 2014), was able 

to efficiently neutralize MDM-dependent T lymphocyte infection (Figure 2.1F). 

 Previous studies have demonstrated that uninfected dendritic cells and MDM can 

infect T lymphocytes through a “trans” mechanism in which virions bound to lectin 

receptors are transferred to T lymphocytes (Figure 2.1G) (McDonald, 2010; Peressin et 
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al., 2014). This contrasts with “cis” infection that requires HIV-1 replication in MDM. To 

determine the mode of infection that was active in our system, we used the protocol 

described in Figure 2.1A but substituted an HIV-1 molecular clone that can infect T 

lymphocytes but not macrophages (NL4-3). Similar to HIV-1 89.6, NL4-3 did not infect 

primary T lymphocytes when cultured with free virus. Consistent with previous reports 

(O'Doherty et al., 2000), however, this virus infected a high percentage of T lymphocytes 

upon spinoculation (Figure 2.1H). As expected, NL4-3 did not infect MDM (Figure 2.1H) 

and MDM treated with NL4-3 as outlined in Figure 2.1A did not spread infection to primary 

CD4+ T lymphocytes (Figure 2.1H). Thus, spread of infection from MDM to primary CD4+ 

T lymphocytes required productive HIV-1 replication in MDM under the conditions of our 

assay. In summary, efficient infection of primary CD4+ T lymphocytes required contact-

dependent, neutralizing antibody-resistant, cis-mediated virus transfer from HIV-1 

infected macrophages. 

 

Vpr enables macrophage-dependent T lymphocyte infection. 

The HIV-1 Vpr protein is necessary for optimal infection and spread in MDM 

cultures but can actually be detrimental to spread of infection in actively replicating cells 

due to its inhibitory effects on cell cycle progression (Goh et al., 1998; Rogel et al., 1995; 

Stivahtis et al., 1997). Because CD4+ T lymphocytes are the main target of HIV-1 in vivo, 

Vpr’s role in HIV-1 infection and its evolutionary conservation across lentiviral species 

targeting a wide range of primates has remained enigmatic (Mashiba and Collins, 2013). 

We hypothesized that the mode of spread we describe here in which T lymphocyte 

infection is entirely dependent on infected MDM might reveal a crucial role for Vpr in 
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enabling efficient T lymphocyte infection. To address this, we co-cultivated activated 

primary CD4+ T lymphocytes with autologous MDM infected by HIV-1 89.6 containing or 

lacking Vpr (Figure 2.3A). Indeed, we observed a striking enhancement of infection by 

Vpr in our co-culture assay as measured by virion production (nine-fold, Figure 2.3B) and 

frequency of T lymphocyte infection (three-fold, Figure 2.3C). 

Because Vpr stimulates HIV-1 spread among macrophages (Figure 2.3C) 

(Connor et al., 1995; Mashiba et al., 2014), it was possible that the stimulation of T 

lymphocyte infection we observed may result from an increase in the number of infected 

MDM that could amplify virus production. To address this, we measured spread of HIV-1 

from infected MDM to T lymphocytes under conditions in which HIV-1 could only infect 

MDM for a single round and subsequent spreading infection could only occur in T 

lymphocytes. This was accomplished by using T-lymphotropic HIV-1 NL4-3 pseudotyped 

with macrophage-tropic YU2 Env (Figure 2.3D). This virus utilizes YU-2 Env protein to 

efficiently infect MDM for one round of viral replication. However, de novo virions 

produced by the infected macrophages express only NL4-3 Env and thus can only infect 

T lymphocytes. As previously reported (Mashiba et al., 2014), this virus initially infected 

macrophages equally in the presence or absence of Vpr expression (Figure 2.3E). 

Remarkably, however, Vpr significantly enhanced spread of HIV-1 from infected MDM to 

T lymphocytes (four-fold, Figure 2.3E). In contrast, Vpr did not stimulate direct infection 

of primary T lymphocytes via spinoculation (Figure 2.3E), consistent with previous 

studies (Balliet et al., 1994). These data indicate that Vpr promotes the directional spread 

of HIV-1 from macrophages to T lymphocytes and that this activity of Vpr is conserved in 

diverse HIV-1 isolates. 
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Vpr-dependent HIV-1 spread from macrophages to T lymphocytes requires DCAF1. 

 Vpr interacts with the cellular protein DDB1-and-CUL4-associated factor 1 

(DCAF1, also known as VprBP) to modulate ubiquitylation and proteasomal degradation 

pathways (Ahn et al., 2010; Belzile et al., 2010; Casey Klockow et al., 2013; Collins and 

Collins, 2014). Recent work has demonstrated that DCAF1 is an essential co-factor for 

Vpr to evade the induction of a type I interferon response, and thereby counteract 

macrophage restriction of Env and virion production (Laguette et al., 2014; Mashiba et 

al., 2014). To determine whether this pathway was required for spread of HIV-1 from 

infected MDM to primary T lymphocytes, we employed the Vpr Q65R mutant of 89.6 that 

is deficient at interacting with DCAF1 and relatively defective at inducing DCAF1-

dependent cell cycle arrest (DeHart et al., 2007; Mashiba et al., 2014). We found that Vpr 

Q65R was proportionally defective at enhancing HIV-1 spread from MDM to CD4+ T 

lymphocytes (Figure 2.4A). To more directly address the requirement of DCAF1 for Vpr-

dependent spread, we silenced DCAF1 in infected MDM and co-cultured these cells with 

autologous T lymphocytes (Figure 2.4B). Remarkably, we found that DCAF1 silencing 

abrogated the ability of Vpr to stimulate transmission of HIV-1 from MDM to CD4+ T 

lymphocytes (Figure 2.4C). These data demonstrate that Vpr requires DCAF1 to promote 

MDM-to-T lymphocyte spread of HIV-1. 

 

Vpr prevents lysosomal targeting of Env-containing virions in macrophages.  

 MDM infected by HIV-1 lacking Vpr mount an innate immune response that 

restricts Env expression by accelerating lysosomal degradation of Env, and Vpr prevents 
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the induction of this pathway via a DCAF1-dependent mechanism (Mashiba et al., 2014). 

Because DCAF1 was also required for Vpr-dependent MDM-T lymphocyte spread of HIV-

1 (Figures 3.4A-C), we assessed whether this pathway was active in MDM-T lymphocyte 

cocultures. We analyzed co-culture whole-cell lysates for steady-state Env expression by 

quantitative immunoblot in the presence or absence of Vpr (Figure 2.4D). Indeed, we 

observed a loss of Env gp160, gp120 and gp41 relative to the HIV Gag precursor pr55 in 

the absence of Vpr in cocultures (Figure 2.4E), similar to what was previously reported 

in HIV-1 infected MDM (Mashiba et al., 2014). 

Because virions incorporate HIV-1 Env and because Env is required for Vpr-

dependent changes in virion production (Mashiba et al., 2014), we hypothesized that in 

the absence of Vpr, Env-containing virions are targeted for lysosomal degradation in 

macrophages. To test this, we examined the localization of mature virions (Gag MAp17+) 

with LAMP1, a marker of lysosomes. Because HIV-infected cells form syncytia, infected 

MDM are frequently multinucleated, which we also observed (Figure 2.5A). Remarkably, 

in the absence of Vpr, mature virions (magenta puncta in Figure 2.5A, lower two panels) 

frequently co-localized with LAMP1. In comparison, expression of Vpr reduced co-

localization of mature virions with lysosomal markers (Figures 3.5A,B). In addition, we 

observed more virions present in LAMP1+ compartments when lysosomal acidification 

was blocked by NH4Cl treatment, indicating that colocalization with LAMP1 represents 

bona fide lysosomal targeting that results in significant degradation (Figure 2.5B). 

Vpr also prevented targeting of virions to lysosomes in MDM infected by YU-2 Env-

pseudotyped HIV-1 NL4-3. Moreover, lysosomal targeting of virions was not observed 

without expression of Env from the integrated provirus (YU-2 Env-pseudotyped HIV-1 
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NL4-3env−, Figure 2.5C). These studies reveal that in the absence of HIV-1 Vpr, MDM 

restrict HIV-1 by targeting Env-containing virions for lysosomal degradation. Furthermore, 

the capacity of Vpr to counteract this restriction is conserved among disparate HIV-1 

clones. 

Because restriction of Env expression and virion release by infected MDM is 

inducible by type I interferon (Mashiba et al., 2014), we treated MDM with exogenous 

IFNα to assess its effects on virion localization. Interestingly, IFNα stimulated lysosomal 

targeting of virions even in MDM expressing Vpr (Figure 2.5B), confirming the model that 

Vpr acts primarily by preventing the induction of an innate immune restriction pathway. 

 

Vpr increases Env-dependent virological synapse formation between macrophages and 

T lymphocytes. 

 Infection of T lymphocytes in our culture system occurs by direct cell-to-cell spread, 

which requires formation of a transient VS between the infected cell and its target. 

Formation of VS requires interactions between HIV-1 Env on infected cells and CD4 on 

target cells (Jolly et al., 2004). Upon VS formation, high concentrations of mature virions 

localize to VS to mediate cell-to-cell spread (Dale et al., 2013). Because Vpr rescues Env 

and Env-containing virions from lysosomal degradation, we hypothesized that Vpr would 

also enable the formation of VS in the co-culture system. To determine whether Vpr 

affects VS formation between MDM and primary T lymphocytes, we used laser-scanning 

confocal microscopy to visualize areas of co-localization between surface CD4 on T 

lymphocytes and mature virions in MDM. We pre-stained T lymphocytes with an anti-CD4 

antibody (DK4003) that does not disrupt the ability of CD4 to bind Env, and co-cultured 
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these cells with infected MDM briefly to allow formation of cellular contacts. We then 

washed away unbound cells and stained with an antibody against Gag MAp17 to visualize 

mature virions, as previously described (Duncan et al., 2014; Giese and Marsh, 2014; 

Groot et al., 2008). Virological synapses were identified as regions of co-localization 

between CD4 (green puncta in Figure 2.6A) on T lymphocytes and mature Gag on MDM 

(red puncta in Figure 2.6A). We identified similar numbers of MDM infected with wild type 

and mutant virus, and infected MDM were frequently multi-nucleated syncytia (Figure 

2.6A). However, we consistently observed significantly more VS per infected MDM in the 

presence of Vpr (Figures 3.6A,B). These results explain why spread of HIV-1 from MDM 

to T lymphocytes is dramatically enhanced by Vpr. 

As has been shown for other types of cell-to-cell spread (Jolly et al., 2004), we 

observed that VS between MDM and primary T lymphocytes did not form in the absence 

of de novo Env expression (YU2 Env-pseudotyped HIV-1 89.6env−) (Figure 2.6C). 

Furthermore, consistent with a previous report (Massanella et al., 2009), VS formation 

was efficiently blocked by treating infected MDM with a high concentration (10 µg/ml) of 

the broadly-neutralizing anti-Env gp120 antibody b12 at the time of co-culture (Figure 

2.6C). Thus, VS formation between HIV-1 infected MDM and primary T lymphocytes 

requires HIV-1 Env expression and is dramatically enhanced by expression of Vpr in 

MDM. 

Vpr enhances Env expression by preventing the induction of a type I interferon-

inducible restriction that degrades Env (Mashiba et al., 2014) and targets Env-containing 

virions for lysosomal degradation (Figure 2.5). Therefore we asked whether the addition 

of IFN-α to infected macrophages affected VS formation with T lymphocytes. Indeed, we 
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observed that IFN-α significantly reduced the number of VS detected per infected MDM 

even when MDM expressed Vpr (Figure 2.6C). In sum, these results are consistent with 

a model in which Vpr increases HIV-1 infection of T lymphocytes by preventing the 

induction of a type I interferon-mediated restriction of Env-dependent VS formation in 

MDM. 

 

Discussion 

Vpr is a highly conserved HIV-1 protein that is required for full pathogenesis in vivo 

by a mechanism that is poorly understood. Here we show that under conditions in which 

efficient CD4+ T lymphocyte infection required contact-dependent VS formation with 

infected MDM, Vpr promoted VS-mediated transmission of HIV-1. Moreover, we provide 

evidence that Vpr promoted infection by counteracting an IFN-inducible restriction of HIV-

1 Env expression in MDM. 

Although CD4+ T lymphocytes are the most abundant HIV-1-infected cell type in 

vivo and are responsible for much of its pathogenesis, T lymphocytes are relatively 

refractory to infection by cell-free HIV-1 in vitro. In contrast, we observed significantly 

more HIV-1 infection of activated primary CD4+ T lymphocytes when T lymphocytes were 

co-cultured with autologous infected MDM, despite similar amounts of free virus in the co-

culture supernatant. These results are consistent with research from other investigators 

showing cell-to-cell spread is much more efficient than infection of T lymphocytes by cell-

free virus (Del Portillo et al., 2011; Groot et al., 2008). We also observed that once low-

level initial infection of T lymphocytes by cell-free virus was established, subsequent 

spread within the culture became highly efficient and Vpr-independent. Thus, in the in 
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vitro co-culture system, Vpr and macrophages help the virus overcome a bottleneck to 

initial infection, accelerating infection of T lymphocytes. In this respect, the co-culture 

system recapitulated the in vivo requirement for Vpr for maximal T lymphocyte infection 

and provides a mechanism that helps explain its evolutionary conservation. 

As reported by others (Duncan et al., 2014; Groot et al., 2008), we demonstrate 

that HIV-1-infected MDM efficiently spread HIV-1 to T lymphocytes across Env-

dependent VS, and that this mode of spread is resistant to neutralization by some 

antibodies. Furthermore, we show that productive infection of MDM was required for 

spread to T lymphocytes; passive trans-infection of T lymphocytes by uninfected MDM 

was not observed under the conditions of our assay. These results reveal a critical role 

for macrophage infection in maximal HIV-1 infection of T lymphocytes. 

Our previous work indicates that Vpr increases MDM infection by preventing 

lysosomal degradation of Env and amplifying release of Env-containing virions (Mashiba 

et al., 2014). We report herein that in the absence of Vpr, virions containing Env were 

targeted to macrophage lysosomes and fewer virions were localized to Env-dependent 

VS between MDM and T lymphocytes. Indeed, our results illustrate that Vpr from multiple 

HIV-1 isolates promoted efficient macrophage-dependent T lymphocyte infection by this 

mechanism. This conserved function of Vpr provides a mechanistic explanation for its 

evolutionary conservation. 

Finally, we provide confirmatory evidence that Vpr prevents the activation of an 

innate immune restriction of HIV-1 in MDM. Vpr activates the SLX4 endonuclease 

complex through its adaptor protein, DCAF1, allowing HIV-1 to evade the induction of a 

type I IFN response (Laguette et al., 2014). This pathway is active in MDM and may 
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explain how Vpr prevents macrophage-specific restriction of Env (Mashiba et al., 2014). 

Consistent with this, we demonstrated that treatment of infected MDM with exogenous 

IFN increased Env-dependent lysosomal targeting of virions and impaired Env-dependent 

VS formation with T lymphocytes. While the involvement of DCAF1 and IFN in Vpr-

dependent HIV-1 spread from MDM to T lymphocytes supports a potential role for SLX4-

mediated immune evasion, this has not yet been directly demonstrated. 

IFN has several well-documented antiviral effects and likely acts through multiple 

mechanisms to inhibit HIV-1 infection and spread. While we cannot exclude the possibility 

that IFN affects VS formation through additional mechanisms, our results suggest that the 

Env-dependent restriction observed in MDM in the absence of Vpr is inducible by 

exogenous IFN treatment. Whether the restriction observed in Vpr-null-HIV-1-infected 

MDM requires secreted IFN is an interesting possibility that requires further study. 

Restriction of HIV-1 by IFN is of particular interest in light of recent evidence that IFN 

treatment may shrink the HIV-1 reservoir (Azzoni et al., 2013; Sun et al., 2014). Further 

elucidation of this pathway, including the mechanism by which HIV-1 is detected and the 

identity of the IFN-stimulated macrophage restriction factor are important areas for future 

investigation. 

In sum, we report a novel role for Vpr in promoting VS-mediated HIV-1 infection of 

T lymphocytes by counteracting IFN-inducible restriction of Env in MDM. These results 

underscore the importance of macrophages in HIV-1 pathogenesis and antiviral immunity, 

and provide a compelling explanation for the in vivo function and evolutionary 

conservation of Vpr. 
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Materials and Methods 

Antibodies 

Antibodies to CAp24 (KC57-FITC, Beckman Coulter), CD3 (OKT3-Pacific Blue, 

BioLegend) and CD14 (HCD14-APC, BioLegend) were used for flow cytometry. 

Antibodies to the following proteins were used for immunoblot analysis: DCAF1 (11612-

1-AP Proteintech), GAPDH (Santa Cruz Biotech), Gag pr55 (HIV-Ig), Env gp160/120, Env 

gp41, and Vpr (AIDS Reagent Program, Division of AIDS, NIAID, NIH:  Catalog 288 from 

Dr. Michael Phelan (Hatch et al., 1992), 11557 from Dr. Michael Zwick (Zwick et al., 2001), 

3951 from Dr. Jeffrey Kopp, and 3957 from NABI and NHLBI). Antibodies to the following 

proteins were used for microscopy: CD4 [DK4003 (Centre for AIDS Reagents, NIBSC, 

contributed by Dr. D Healey)], Gag MAp17 [4C9 (Centre for AIDS Reagents, NIBSC, 

contributed by Drs. R B Ferns and R S Tedder)] and LAMP1 [H4A3 (Abcam)]. Secondary 

antibodies were FITC-conjugated goat anti-mouse IgG (H+L) and AlexaFluor 647-

conjugated goat anti-mouse IgG2a (BD Biosciences). Neutralizing antibodies 2G12, b12, 

SIM.2, and Z13E1 (AIDS Reagent Program, Division of AIDS, NIAID, NIH:  Catalog 1476 

from Dr. Hermann Katinger (Buchacher et al., 1994), 2640 from Dr. Dennis Burton and 

Carlos Barbas (Burton et al., 1991), 723 from Dr. James E.K. Hildreth (McCallus et al., 

1992)) were used at a 1:1000 dilution for neutralization studies at the time of coculture, 

and b12 was used at 1:100 to block VS formation. 

 

Viral constructs 

p89.6 and pNL4-3 were obtained through the AIDS Reagent Program, Division of 

AIDS, NIAID, NIH: catalogs 3552 and 114 from Dr. Ronald G. Collman and  Dr. Malcolm 

Martin, respectively (Adachi et al., 1986; Collman et al., 1992; Li et al., 1991). p89.6vpr-, 
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p89.6env-, p89.6vprQ65R, pNL4-3env-, pNL4-3vpr-, and pNL4-3vpr-env- were 

constructed as previously described (Mashiba et al., 2014). pSIV3+, psPAX2, pAPM-1221 

(shNC) and pDCAF-APM.1-3 (shDCAF1) were obtained from Dr. Jeremy Luban (Pertel 

et al., 2011). pYU-2env was obtained from Joseph Sodroski (Sullivan et al., 1995). 

 

Virus preparation 

Virus stocks were obtained by transfection of 293T cells with virus expression 

plasmids using polyethylenimine, as described (Mashiba et al., 2014; McNamara et al., 

2012). Pseudotyped virus was produced by co-transfecting 293T cells with provirus and 

Env expression plasmid, as described (Mashiba et al., 2014). Viral supernatants were 

collected at 48h and centrifuged at 1500 rpm to remove cell debris. Virus was stored at -

80°C and quantified by CAp24 ELISA, as described (Mashiba et al., 2014). 

 

Cell isolation, HIV-1 infection and MDM-T lymphocyte coculture 

Leukocytes isolated from anonymous donors by apheresis were obtained from 

New York Blood Center Component Laboratory. Peripheral blood mononuclear cells 

(PBMC) were purified by Ficoll density gradient separation, as described (Norman et al., 

2011). CD14+ monocytes and CD4+ T lymphocytes were isolated as previously described 

(Mashiba et al., 2014). Briefly, monocytes were isolated by positive selection with an 

EasySep magnetic sorting kit (StemCell Technologies). Monocyte-derived macrophages 

(MDM) were obtained by culturing monocytes in R10 [RPMI-1640 with 10% Certified 

endotoxin-low fetal bovine serum (Gibco, Invitrogen)], penicillin (10 Units/ml), 

streptomycin (10 μg/ml), L-glutamine (292 μg/ml), carrier-free M-CSF (50 ng/ml, R&D 
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Systems) and GM-CSF (50 ng/ml R&D Systems) for seven days. MDM were incubated 

with 5 µg HIV-1 for six hours and cultured in fresh medium for two to four days. CD4+ T 

lymphocytes were isolated by CD8 negative selection (DynaBeads, Life Technologies), 

cultured in R10 for several days and activated with 5 μg/ml phytohaemagglutinin (PHA-L, 

Calbiochem) overnight before addition of 500 IU/ml recombinant human IL-2 (R&D 

Systems). T lymphocytes were infected with 5 µg or 50 µg HIV-1 by spinoculation at 2500 

RPM for 2-3h with 8 µg/ml polybrene (Sigma) 72h following PHA stimulation, as described 

(Norman et al., 2011), or incubated with virus for two days, where indicated. For coculture 

experiments, HIV-1-infected MDM were cocultured with autologous CD4+ T lymphocytes 

72 hours after PHA activation for two days. Infected T lymphocyte monocultures or 

cocultures were maintained in R10 and IL-2 until analyzed. 

 

Flow cytometry 

Surface staining for CD3 and CD14 was performed before fixation and intracellular 

staining for Gag CAp24 as described previously (Carter et al., 2010; Mashiba et al., 2014). 

Flow cytometric data was acquired using a FACSCanto instrument with FACSDiva 

collection software (BD) or a FACScan (BD, Cytek) with FlowJo software (TreeStar) and 

analyzed using FlowJo. Cell cycle analysis of 293T cells was performed previously 

(Mashiba et al., 2014). 

 

Immunoblot 

MDM or MDM-T lymphocyte cocultures were lysed in Blue Loading Buffer (Cell 

Signaling), sonicated with a Misonix sonicator (Qsonica, LLC.) and clarified by 
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centrifugation at 13000 RPM. Lysates were analyzed by SDS-PAGE immunoblot and 

protein levels were quantified using Adobe Photoshop as described (Mashiba et al., 2014; 

Norman et al., 2011). 

 

CAp24 ELISA 

CAp24 ELISA was performed as previously described and quantitation of mass is 

based upon commercial standards (ViroGen) (Mashiba et al., 2014). 

 

RNAi 

Short hairpin RNA-mediated knockdown of DCAF1 was performed as previously 

described (Mashiba et al., 2014; Pertel et al., 2011). Briefly, we spinoculated primary 

monocytes with VSV-G-pseudotyped SIV3+ for 2 hours with 10 μg/ml polybrene to allow 

Vpx-dependent downmodulation of SAMHD1. Cells were then incubated overnight in R10 

with M-CSF (50 ng/ml) and GM-CSF (50 ng/ml) plus 20 μg VSV-G-pseudotyped lentivirus 

containing a shRNA cassette targeting luciferase (Control) or DCAF1. Following an 

overnight incubation, the cells were cultured for 3 days in fresh medium before addition 

of 10 μg/ml puromycin for 3 additional days prior to HIV-1 infection. 

 

Laser-scanning confocal microscopy (LSCM) 

LSCM of MDM or MDM-T lymphocyte VS was performed as described previously 

(Duncan et al., 2014; Groot et al., 2008), with modifications. Briefly, MDM were 

differentiated on Nunc Lab-Tek 4-well chambered borosilicate cover glass (Thermo 

Fisher). For VS visualization, autologous, PHA/IL-2-activated CD4+ T lymphocytes were 
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pre-stained for surface CD4 for one hour with primary antibody plus 30 minutes with 

secondary antibody and cocultured for four hours at room temperature with MDM before 

gentle washing with warm RPMI. For experiments using exogenous IFN, infected MDM 

were treated with 500U/mL recombinant IFNα (Calbiochem) two days before harvest. For 

LAMP1 staining, infected MDM were treated with 20 µM ammonium chloride for the final 

eight hours to prevent lysosomal acidification. Cells were fixed in 4% paraformaldehyde 

for one hour at room temperature and permeabilized with 0.1% saponin (Sigma) in 10% 

pooled human AB and goat sera for FC-receptor blocking for one hour at room 

temperature, and endogenous biotin was blocked using endogenous biotin-blocking kit 

(Life Technologies) before staining for Gag p18 and/or LAMP1 for one hour primary and 

30 minutes secondary using the antibodies listed above. Actin cytoskeleton was 

visualized by Phalloidin-TRITC (Sigma) and nuclei were stained using DAPI (Fisher 

Scientific). Cells were preserved in ProLong Gold anti-fade (Life Technologies) and 

visualized on a Leica SPX5 inverted confocal microscope at the University of Michigan 

Microscopy and Image-Analysis Laboratory. Images of optical sections of approximately 

1 µm depth were captured at 20X dry or 100X oil-immersion objective magnification. 

Images were processed using ImageJ (NIH) and co-localization was quantitated by 

automated spots analysis using Imaris (BitPlane). Each Gag MAp17+ puncta with signal 

2-fold or greater above background based on a raltegravir-inhibited infected MDM control 

was identified in an automated manner, and fluorescence intensity in each channel was 

quantitated for each Gag+ spot. Co-localization was defined as the number of Gag+ spots 

that were also positive for LAMP1 or CD4 (VS) two-fold or greater above isotype staining 

controls, per Gag+ cell imaged. 
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Figure 2.1: Efficient HIV infection of T lymphocytes requires contact with infected 
macrophages. (A) Graphical outline of experimental setup depicting HIV-1 infection of 
macrophages and co-cultivation with autologous, PHA-activated CD4+ T lymphocytes as detailed 
in Methods. (B) Summary graph of relative quantity of virions released into culture supernatant 
as measured by Gag CAp24 ELISA (n=6 donors). (C) Summary graph of relative infected cell 
frequency in the indicated cultures as measured by flow cytometry (n=11 donors for CD4+ T or 17 
donors for MDM and CC). (D) Diagrammatic representation of virus-permeant transwell. (E) 
Summary graph of relative infected cell frequency in cocultures prepared as shown in A in the 
presence or absence of transwell inserts (n=4 donors). (F) Summary graph of relative infected 
cell frequency in the indicated cultures prepared as shown in A. Neutralizing antibodies to HIV 
Env gp120 (2G12, b12), gp41 (Z13E1) or CD4 (SIM.2) were added at the time of initial infection 
(MDM) or at the time of CD4+ T addition and cocultivation (CC). (G) Diagram illustrating trans- 
and cis-infection of T lymphocytes. (H) Summary graph of infected cell frequency in the indicated 
cell type after addition of HIV-1 NL4-3 as described in A. For “spin” condition, PHA activated CD4+ 
primary T lymphocytes were centrifuged at 2500 RPM with 50μg HIV-1 NL4-3 in polybrene (n=4 
donors). Error bars represent SEM. **p<0.01, student’s paired t-test.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________ 
1 The data in this figure was created by David Collins.  
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Figure 2.2: Flow cytometric analysis of HIV infection in macrophage-T lymphocyte 
cocultures. (A) Representative flow cytometric dot plots illustrating segregation of CD14+ MDM 
from CD3+ T lymphocytes in cocultures and subsequent assessment of HIV-1 infection by 
intracellular Gag CAp24 stain after treatment of the indicated cultures treated as shown in Figure 
2.1A. (B) Representative flow cytometric dot plots of intracellular Gag CAp24 staining (x-axes) 
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vs. surface CD3 expression (y-axes) of MDM-CD4+ T lymphocyte cocultures infected as shown 
in Figure 2.1A in the presence or absence of the reverse transcriptase inhibitor zidovudine (AZT).2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________ 
2 The data in this figure was created by David Collins.  
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Figure 2.3: Vpr enhances macrophage-dependent infection of CD4+ T lymphocytes. (A) 
Graphical outline of experimental setup as in Figure 2.1A. (B) Summary graph of relative quantity 
of virions released into the supernatant of the indicated cultures after inoculation with type (black 
bars) or vpr-null (gray bars) HIV-1 89.6 (n=6 donors). (C) Summary graph of relative infected cell 
frequency in the indicated cultures (n=11 donors for CD4+ T or 17 donors for MDM and CC). (D) 
Diagram illustrating HIV-1 NL4-3 pseudotyped with YU-2 Env (Buchacher et al.) to infect 
macrophages for a single round and subsequently spread to T lymphocytes using NL4-3 Env 
(blue). (E) Summary graph of relative infected cell frequency in the indicated cell type after 
addition of HIV-1 YU-2 pseudo-NL4-3 as described in A. For “spin” condition, PHA activated CD4+ 
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primary T lymphocytes were centrifuged for 2500 RPM with 50μg HIV-1 NL4-3 in polybrene (n=3 
donors). Data normalized relative to wild-type MDM. Error bars represent SEM. *p<0.05, 
***p<0.001, student’s paired t-test.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
______________________________ 
3 The data in this figure was created by David Collins and Jay Lubow. 
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Figure 2.4: DCAF1 is required for Vpr-dependent HIV-1 spread from macrophages to CD4+ 
T lymphocytes. (A) Scatter-plot of Vpr-dependent cell cycle arrest of 293T cells (x-axis) versus 
Vpr-dependent increase in cocultured T lymphocyte infection (y-axis). Best-fit curve from linear 
regression analysis, R2=0.99 (n=4 donors). (B) Immunoblot of DCAF1 and GAPDH in MDM seven 
days after transduction with lentivirus encoding shRNA targeting luciferase (“control”) or DCAF1. 
(C) Summary graph showing infection frequency of T lymphocytes in co-culture (Figures 3.1A and 
3.3A) by MDM treated with the indicated shRNA (n=3 donors). (D) Immunoblot of HIV-1 89.6 Env 
and Gag in MDM-T lymphocyte coculture whole-cell lysates diluted as indicated. Arrows denote 
lysates with comparable levels of Gag pr55 in the presence and absence of Vpr. (E) Summary 
graph of Env levels quantified by densitometry and normalized to Gag pr55 levels (n=4 donors). 
Error bars represent SEM. *p<0.05, ***p<0.001, “n.s.”p>0.05, student’s paired t-test.4 
 
 
 
______________________________ 
4 The data in this figure was created by David Collins and Jay Lubow.  
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Figure 2.5: Vpr prevents Env-dependent targeting of HIV virions to lysosomes in 
macrophages. (A) Representative confocal micrographs depicting subcellular localization of 
lysosome marker LAMP1 (green) and HIV-1 Gag MAp17 (magenta) in MDM infected by wild type 
or Vpr-null HIV-1 89.6 for ten days. Merged images (right panels) include phalloidin staining of 
actin cytoskeleton (Buchacher et al.) and DAPI staining of nuclei (blue). (B) Summary graph of 
LAMP1+ Gag MAp17+ co-localized puncta per Gag+ cell across ‘n’ number of MDM from four 
donors infected as shown in Figure 2.1A expressed as percent colocalization relative to vpr-null. 
MDM from donor 4 were treated with IFNα for the final two days of infection. Lysosomal 
acidification was blocked with NH4Cl for the final 8 hours where indicated. (C) Summary graph as 
in B of MDM from two donors infected with wild-type, vpr-null, env-null, or vpr- and env-null NL4-
3 pseudotyped with YU-2 Env and treated with NH4Cl for the final 8 hours. **p<0.01, ***p<0.001, 
Fisher’s exact test.5 
 
 
 
 
______________________________ 
5 The data in this figure was created by David Collins.  
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Figure 2.6: Vpr promotes Env-dependent virological synapse formation between 
macrophages and CD4+ T lymphocytes. (A) Representative confocal micrographs of MDM 
infected as shown in Figures 3.1A and 3.3A and briefly cocultured with CD4+ T lymphocytes pre-
stained for surface CD4. Co-localization between HIV-1 Gag MAp17 (Buchacher et al.) in MDM 
and surface CD4 (green) on T lymphocytes at 100X magnification is indicated as virological 
synapses (VS). Merged images include phalloidin staining of actin (magenta) and DAPI staining 
of nuclei (blue). Inset depicts magnified VS from same image (top) or from a different 
representative image (bottom). (B) Summary graph of VS observed at 20X magnification per ‘n’ 
number of Gag+ MDM from three donors infected by wild type or vpr-null HIV-1 89.6.  (C) Summary 
graph of VS as in B of MDM infected with YU-2 Env-pseudotyped env-null 89.6 (third column), 
wild type 89.6-infected MDM treated with anti-Env gp120 neutralizing antibody b12 during co-
cultivation with CD4+ T lymphocytes (fourth column) or treated for two days prior to coculture with 
interferon-α (IFNα, final column). *p<0.05 **p<0.01 ***p<0.001, Fisher’s exact test.2 
 

																																																								
2	The data in this figure was created by David Collins.	
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Chapter 3 
 

Mannose Receptor Is an HIV Restriction Factor Counteracted by Vpr in 
Macrophages1. 

 
 
 
Summary 
  
 Earlier publications and Chapter 2 of this dissertation provided significant evidence 

of the existence of a macrophage-specific restriction factor that targets Env and, by 

extension, the HIV replication cycle. This factor degrades Env, degrades Env-associated 

virions, restricts virion release, and inhibits formation of virological synapses between 

infected macrophages and uninfected CD4+ T cells. Crucially, this factor is absent in CD4+ 

T cells and is counteracted in macrophages by Vpr, which rescues the previously 

mentioned restrictions. Here, we report that the macrophage mannose receptor (MR), is 

a restriction factor targeting Env in primary human monocyte-derived macrophages. Vpr 

acts synergistically with HIV Nef to target distinct stages of the MR biosynthetic pathway 

and dramatically reduce MR expression. Silencing MR or deleting mannose residues on 

Env rescues Env expression in HIV-1-infected macrophages lacking Vpr. However, we 

also show that disrupting interactions between Env and MR reduces initial infection of 

macrophages by cell-free virus. Together these results reveal a Vpr-Nef-Env axis that 

hijacks a host mannose-MR response system to facilitate infection while evading MR’s 

normal role, which is to trap and destroy mannose-expressing pathogens. 

                                                        
1 This chapter was published as the following manuscript: Lubow, J., Virgilio, M.C., Merlino, M., Collins, 

D.R., Mashiba, M., Peterson, B.G., Lukic, Z., Painter, M.M., Gomez-Rivera, F., Terry, V., et al. (2020). 
Mannose receptor is an HIV restriction factor counteracted by Vpr in macrophages. Elife 9:e51035 
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Introduction 
 

Vpr is a highly conserved HIV accessory protein that is necessary for optimal 

replication in macrophages (Balliet et al., 1994) but its mechanism of action is poorly 

understood. Studies using human lymphoid tissue (HLT), which are rich in both T cells 

and macrophages, have found that loss of Vpr decreases virus production (Rucker et al., 

2004) but only when the virus strain used is capable of efficiently infecting macrophages 

(Eckstein et al., 2001). These studies provide evidence that Vpr enhances infection of 

macrophages and increases viral burden in tissues where macrophages reside. Because 

Vpr is packaged into the virion (Cohen et al., 1990) and localizes to the nucleus (Lu et al., 

1993), it may enhance early viral replication events. However, in mononuclear 

phagocytes vpr-null virus in which Vpr protein is provided by trans-complementation in 

the producer cells replicates poorly compared to wild-type virus (Connor et al., 1995), 

indicating that Vpr’s role in the HIV replication cycle continues into late stages. 

Previous work by our group demonstrated that Vpr counteracts an unidentified 

macrophage-specific restriction factor that targets Env and Env-containing virions for 

lysosomal degradation (Mashiba et al., 2014). This restriction could be conferred to 

permissive 293T cells by fusing them with MDM to create 293T-MDM heterokaryons. A 

follow up study demonstrated that by increasing steady state levels of Env, Vpr increases 

formation of virological synapses between infected MDM and autologous uninfected T 

cells, enhancing HIV infection of T cells (Chapter 2). This enhances spread to T cells and 

dramatically increases levels of Gag p24 in the culture supernatant. This finding helps 

explain the paradoxical observations that Vpr is required for maximal infection of T cells 

in vivo (Hoch et al., 1995) but numerous studies have shown Vpr only marginally impacts 

infection of pure T cell cultures in vitro [e.g. (Mashiba et al., 2014)].  
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Our goal in the current study was to identify and characterize the myeloid 

restriction factor targeting Env that is counteracted by Vpr. We reasoned that 

macrophage-specific Env-binding proteins, including the carbohydrate binding protein 

mannose receptor (MR), were candidates. MR is expressed on several types of 

macrophages in vivo (Liang et al., 1996; Linehan et al., 1999) and is known to mediate 

innate immunity against various pathogens (Macedo-Ramos et al., 2014; Subramanian 

et al., 2019). MR recognizes mannose rich structures including high-mannose glycans, 

which are incorporated in many proteins during synthesis. In eukaryotic cells most high-

mannose glycans are cleaved by a-mannosidases and replaced with complex-type 

glycans as they transit through the secretory pathway. By contrast, in prokaryotic cells, 

high-mannose residues remain intact, making them a useful target of pattern recognition 

receptors including MR. Some viral proteins, including HIV-1 Env, evade mannose 

trimming (Coss et al., 2016) and retain enough high-mannose to bind MR (Lai et al., 2009; 

Trujillo et al., 2007). There is evidence that HIV-1 proteins Nef and Tat decrease 

expression of MR based on studies performed in monocyte derived macrophages (MDM) 

and the monocytic U937 cell line, respectively (Caldwell et al., 2000; Vigerust et al., 2005). 

Nef dysregulates MR trafficking using an SDXXLF motif in MR’s cytoplasmic tail (Vigerust 

et al., 2005), which is similar to the sequence in CD4’s tail that Nef uses to remove it from 

the cell surface (Bresnahan et al., 1998; Cluet et al., 2005; Greenberg et al., 1998). 

Whether MR or its modulation by viral proteins alters the course of viral replication has 

not been established. 

Here we confirm that Nef reduces MR expression in primary human MDM, 

although in our system, the effect of Nef alone was relatively small. In contrast, we report 

that co-expression of Vpr and Nef dramatically reduced MR expression. In the absence 
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of both Vpr and Nef, MR levels normalized indicating that Tat did not play a significant, 

independent role in MR downmodulation. Deleting mannose residues on Env or silencing 

MR alleviated mannose-dependent interactions between MR and Env and reduced the 

requirement for Vpr. Although the post-infection interactions between MR and Env 

reduced Env levels and inhibited viral release, we provide evidence that these same 

interactions were beneficial for initial infection of MDM. Together these results reveal that 

mannose residues on Env and the accessory proteins Nef and Vpr are needed for HIV to 

utilize and then disable an important component of the myeloid innate response against 

pathogens intended to thwart infection. 

 

Results 
 
Identification of a restriction factor counteracted by Vpr in primary human monocyte-

derived macrophages.  

Because we had previously determined that Vpr functions in macrophages to 

counteract a macrophage specific restriction factor that targets Env, we reasoned that 

Env-binding proteins selectively expressed by macrophages were potential candidate 

restriction factors. To determine whether any factors fitting this description were targeted 

by Vpr, we cultured macrophages under conditions that achieve a saturating infection by 

both wild-type and Vpr-null mutant viruses (Figures 3.1A and B). We found that mannose 

receptor (MR), which is highly expressed on macrophages and has been previously 

shown to bind Env (Fanibunda et al., 2008; Lai et al., 2009; Trujillo et al., 2007), was 

significantly decreased by wild-type HIV 89.6 but not by 89.6 vpr-null (Figures 3.1C and 

D, p<0.01). In contrast, we observed no significant effect of Vpr on the expression of 

GAPDH. We also observed that stimulator of interferon genes (STING) was unaffected 
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by Vpr (Figure 3.2). Relative expression of known restriction factors GBP5 and IFITM3 

varied in infected MDM from multiple donors (Figure 3.2), but unlike MR they were not 

consistently reduced in the wild-type condition, indicating they are not targeted by Vpr. 

To confirm the effect of Vpr on Env during HIV infection of primary human 

macrophages in which MR was downmodulated, we performed quantitative western blot 

analysis. As shown in Figures 3.1E and F, we confirmed that amounts of Vpr sufficient 

for MR downmodulation were also sufficient for stabilizing expression of Env (gp160, 

gp120, gp41). Compiled data from nine donors clearly demonstrated results that were 

similar to our prior publication (Mashiba et al., 2014); under conditions of matched 

infection in which there was no significant difference in HIV Gag pr55 levels between wild-

type and vpr-null infections, all three forms of Env were significantly more abundant in the 

wild-type infection (gp160: 4-fold, p<0.002; gp120: 6-fold, p<0.002; gp41: 3-fold, p 

<0.001). 

 

Vpr and Nef counteract MR expression in infected macrophages via independent and 

additive mechanisms. 

Because an earlier report indicated that Nef decreases surface expression of MR 

(Vigerust et al., 2005), we asked whether Nef was playing a role in MR downmodulation 

in our systems. Because HIVs lacking Vpr and Nef spread too inefficiently in MDM to 

observe effects on host proteins by western blot analysis, we utilized a replication 

defective HIV with a GFP marker (NL4-3 ∆GPE-GFP, Figure 3.3A) to allow measurement 

of MR expression via flow cytometry following single-round transduction. This construct 

has the additional advantage that it eliminates potentially confounding effects of 

differences between wild-type and mutant HIV viral spread. We generated truncation 
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mutations in nef and vpr and confirmed that these mutations only affected expression of 

the altered gene product in transfected 293T (Figure 3.3B). For these experiments, 

primary MDM were harvested earlier than the experiments described in Figure 1 (five 

days versus ten days) because the viruses could not replicate and the GFP marker 

allowed identification of transduced cells (Figure 3.3). Under these conditions, we found 

that MR expression was dramatically reduced in a subset of GFP+ cells when both Vpr 

and Nef were expressed (Figure 3.3C-E). Both Nef and Vpr contributed to MR 

downmodulation; loss of function mutation in either Vpr or Nef reduced the severity of MR 

downmodulation similarly, and there was no statistical difference between MR levels in 

macrophages expressing either Vpr or Nef alone (Figure 3.3E). In addition, complete 

elimination of downmodulation required mutation of both Vpr and Nef (Figure 3.3C-E). 

These results indicate that both Vpr and Nef are required for maximal MR 

downmodulation in HIV-infected macrophages and that neither alone is sufficient. 

Vpr was previously demonstrated to interact with a cellular co-factor called DCAF1, 

a component of the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex. (Hrecka et 

al., 2007; Lahouassa et al., 2016; Le Rouzic et al., 2007; McCall et al., 2008; Wu et al., 

2016; Zhou et al., 2016).  The interaction between Vpr and DCAF1 can be disrupted 

through a Vpr mutation (Q65R) that inhibits many Vpr-dependent functions, including 

reversal of Env degradation in macrophages (Mashiba et al., 2014).  To determine 

whether this mutant is defective at MR downmodulation, we generated the mutation in 

the NL4-3 ∆GPE-GFP parent (Figure 3.3A),  confirmed expression in transfected 293T 

cells (Figure 3.3F) and tested the effect of the mutation on MR levels in macrophages.  

As expected, we found that in transduced MDM the vpr-Q65R mutant behaves similarly 
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to vpr-null (Figure 3.3E). These results indicate interactions between  Vpr and DCAF1 

are required to mediate Vpr’s effects on MR.  

The differences in MR downmodulation we observed using this system were not 

due to variations in multiplicity of infection of the different viral constructs as MDM 

transduced with the mutant viral constructs had roughly similar transduction rates as the 

parental construct (Figure 3.3G) but demonstrated less MR downmodulation (Figure 

3.3E). 

To determine whether the relatively modest effect of Nef alone on MR levels was 

due to using HIV to deliver Nef as compared to an adenoviral vector delivery system used 

in a prior publication (Vigerust et al., 2005), we repeated the experiment using an 

adenoviral vector expressing Nef. These experiments confirmed that levels of Nef 

sufficient to downmodulate the HIV receptor, CD4, on nearly all MDM in the culture 

achieved only modest effects on MR in a subset of cells (Figure 3.3H) similar to what 

was observed using the HIV reporter construct (Figure 3.3E). Thus, Nef and Vpr have 

modest but significant effects on MR when expressed individually, however the combined 

effects of both proteins can achieve nearly complete downmodulation at least in a subset 

of infected cells. 

While the effect of Nef has been previously reported and found to be due to 

disruption of MR intracellular trafficking (Vigerust et al., 2005), the effect of Vpr on MR is 

a novel observation. Vpr is known to target cellular proteins involved in DNA repair 

pathways for proteasomal degradation via interactions with Vpr binding protein [DCAF1, 

(McCall et al., 2008)]. Using this mechanism, Vpr degrades the uracil deglycosylases 

UNG2 and SMUG1 in 293T cells following co-transfection (Schrofelbauer et al., 2007; 

Schrofelbauer et al., 2005). To determine whether Vpr directly targets MR using a similar 
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strategy, we co-transfected NL4-3 ∆GPE-GFP or a vpr-null derivative with expression 

vectors encoding an UNG2-FLAG fusion protein or MR  (Liu et al., 2004)] in 293T cells. 

We then analyzed expression of MR or UNG2 by flow cytometry and western blot (Figure 

3.4).  We found that Vpr in 293T cells virtually eliminated UNG2 expression when 

measured by flow cytometry and noticeably reduced UNG2 by western blot. However, 

Vpr  had no effect on expression of MR measured by either method. Thus, we concluded 

that Vpr does not degrade MR by the direct, proteasomal mechanism it uses to degrade 

UNG2. Because MR expression in this system is controlled by a heterologous CMV 

promoter; the lack of effect by Vpr suggested its action may depend on MR’s native 

promoter. 

 

Vpr reduces transcription of MRC1. 

In addition to targeting proteins for degradation, Vpr also functions to inhibit 

transcription of genes such as IFNA1 (Laguette et al., 2014; Mashiba et al., 2014). 

Therefore, we hypothesized that Vpr may reduce MR expression via inhibition of 

transcription. To examine this, we assessed transcriptional activity in primary human 

MDM transduced with the wild-type or Vpr-null reporter virus (Figure 3.5A) using cells 

isolated based on GFP expression (Figure 3.5B). We found that the MR gene (MRC1) 

was consistently reduced in cells transduced by vpr-competent virus compared to cells 

transduced by vpr-null virus (Figure 3.5C and D, p=0.001). In contrast, any effects of Vpr 

on the housekeeping genes ACTB  (b-actin) and POL2A (RNA polymerase 2A) were 

significantly smaller (Figure 3.5D, p<0.01). Similar results were obtained when each gene 

was normalized to ACTB instead of  GAPDH  (Figure 3.6A-B). The magnitude of the 

effect on MRC1 is consistent with prior reports of HIV-1 inhibiting MRC1 transcription- 
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though this was not previously linked to Vpr (Koziel et al., 1998; Sukegawa et al., 2018). 

Relative MRC1 expression in untransduced MDM was heterogeneous, varying over a 

ten-fold range. When compiled across donors, MRC1 levels in mock-transduced samples 

were not significantly different than transduced (Figure 3.6C-F). 

 

Combined effect of Vpr and Nef dramatically enhances Env levels in primary human 

MDM.  

To determine whether the striking downmodulation of MR we observed with 

expression of both Nef and Vpr affected viral spread in MR+ macrophages, we generated 

additional mutations in HIV-1 89.6 to create a nef-null mutant and a vpr-nef-null double 

mutant. As expected, in transfected 293T cells these mutations did not alter Env protein 

levels (Figure 3.7A) or release of virions as assessed by measuring Gag p24 into the 

supernatant by ELISA (Figure 3.7B). However, in primary human MDM infected with 

these HIVs, the mutants demonstrated defects in viral spread, with the double mutant 

having the greatest defect (Figure 3.7C and D). The defect in spread was caused in part 

by diminished virion release, which we previously showed occurred in the absence of Vpr 

(Mashiba et al., 2014); MDM infected with the HIV mutants released less Gag p24 even 

after adjusting for the frequency of infected cells (Figure 3.7D, right panel).  

To determine whether combined effects of Nef and Vpr on MR expression affected 

Env restriction, we assessed Env levels in primary human MDM infected with each 

construct. Because the frequency of infected cells as assessed by intracellular Gag 

staining (Figure 3.7C) and Gag pr55 western blot (Figure 3.7E) was lower in the mutants 

than in the wild-type infection, lysate from the wild-type sample was serially diluted to 

facilitate comparisons. Remarkably, we found that the vpr-nef-null double mutant, which 
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retains near normal MR levels, exhibited the greatest defect in Env expression (Figure 

3.7E, compare lanes with similar Gag as indicated). In sum, Vpr and Nef-mediated 

downmodulation of MR correlated inversely with Env levels, consistent with MR being the 

previously described but unidentified HIV restriction factor that targets Env for lysosomal 

degradation in macrophages and is counteracted by Vpr (Mashiba et al., 2014). 

Combined effects of Nef on MR and other Env binding proteins including CD4 (Aiken et 

al., 1994) and chemokine receptors (Michel et al., 2006) may also play a role in 

stabilization of Env.  

 

Mannose-containing glycans in Env are required for macrophage restriction of HIV in the 

absence of Vpr.  

A particularly dense mannose containing structure on Env,  known as the mannose 

patch, may mediate interactions between Env and MR . This structure is present on all 

HIV Env proteins that require Vpr for stability in macrophages [89.6, NL-43 and AD8 

(Mashiba et al., 2014)]. Interestingly, a macrophage tropic strain YU-2, which was isolated 

from the CNS of an AIDS patient (Li et al., 1991), lacks a mannose patch. This structure 

is the target of several broadly neutralizing antibodies including 2G12, to which YU-2 is 

highly resistant (Trkola et al., 1996). If Vpr targets MR to counteract detrimental 

interactions between MR and mannose residues on Env, we hypothesized that HIV Envs 

lacking a mannose patch would have a reduced requirement for Vpr. To test this 

hypothesis, we first examined the extent to which virion release and Env expression were 

influenced by Vpr in primary human MDM infected with YU-2 or 89.6 HIVs. Consistent 

with our hypothesis, we observed no significant difference in Gag p24 release between 

wild-type and vpr-null YU-2 infection of MDM (Figure 3.8A). Moreover, the vpr-null mutant 
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of YU2 displayed only a minor defect in Env expression compared to Vpr null versions of 

89.6 and NL4-3 (Figure 3.8B).  

Because there are a number of other genetic differences between YU-2 and the 

other HIVs, we constructed a chimeric virus, which restricted the differences to the env 

open reading frame. As shown in Figure 3.8C, a fragment of the YU-2 genome containing 

most of env but none of vpr (Figure 3.8C, shaded portion) was cloned into NL4-3 and 

NL4-3 vpr-null. As expected, these genetic alterations did not affect Env protein levels or 

virion release in transfected 293T cells (Figures 3.8D and E). To confirm that the chimeric 

Env was still functional, we examined infectivity in T cells prior to performing our analyses 

in primary human MDM. Conveniently, sequence variation within the gp120 region allows 

YU-2 Env to only utilize the co-receptor CCR5 for entry, whereas NL4-3 can only utilize 

CXCR4. Thus, we expected the NL4 3envYU2 chimera would switch from being CXCR4- 

to CCR5-tropic. To test this, we utilized a T cell line expressing both chemokine receptors 

(MOLT4-R5) and selectively blocked entry via CXCR4 and CCR5 entry inhibitors 

[AMD3100 and maraviroc, respectively (Figure 3.8F)]. As expected, entry of MOLT4-R5 

cells by NL4-3 was blocked by AMD3100 but not maraviroc, indicating CXCR4-tropism. 

The chimeric NL4-3 envYU2 and wild-type YU-2 demonstrated the inverse pattern, 

indicating CCR5-tropism. These results demonstrated that we had made the expected 

changes in the chimeric Env without disrupting its capacity to infect cells. 

To determine whether swapping a limited portion of YU-2 containing Env into NL4-

3 alleviated the requirement for Vpr, we examined Env expression and virion release in 

primary human MDM infected with these viruses. Because the parental NL4-3 virus 

required pseudotyping with a macrophage-tropic Env for entry and was unable to spread 

in MDM, all infections were treated with entry inhibitors AMD3100 and maraviroc starting 
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at 48 hours after inoculation and maintained throughout the culture period to block 

subsequent rounds of infection. Consistent with our hypothesis that YU-2 Env lacked 

determinants necessary for the restriction that was alleviated by Vpr, we observed that 

wild-type NL4-3 Env but not chimeric NL4-3 envYU2 required Vpr for maximal expression 

(Figure 3.8G). Moreover, MDM infected with the chimeric HIV had a reduced requirement 

for Vpr for maximal virion release (Figure 3.8H and Figure 3.9). This experiment provides 

strong evidence that the requirement for Vpr can be alleviated by genetic changes within 

the env open reading frame. These results are consistent with a model in which YU-2 env 

confers resistance to the effects of MR due to the absence of the mannose rich structure 

on the YU-2 Env glycoprotein. 

 

Deletion of N-linked glycosylation sites in Env reduces Env restriction in HIV infected 

human primary MDM and diminishes the need for Vpr and Nef. 

To more directly assess the role of mannose in restricting expression of Env in 

HIV-1 infected primary human MDM, we engineered a version of 89.6 Env in which two 

N-linked glycosylation sites, N230 and N339 (HIV HxB2 numbering) were deleted by 

substituting non-glycosylated amino acids found at analogous positions in YU-2 Env 

(Figure 3.10A). The glycosylation sites N230 and N339 were selected because they 

contain high-mannose glycan structures (Leonard et al., 1990) that are absent in YU-2 

Env. Loss of N230 limits neutralization by glycan specific antibodies (Huang et al., 2014). 

Loss of N339 decreases the amount of oligomannose (Man9GlcNAc2) present on gp120 

by over 25%, presumably by opening up the mannose patch to processing by a-

mannosidases (Pritchard et al., 2015). These substitutions (N230D and N339E) in 89.6 
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did not alter virion production (Figure 3.10B) or Env protein expression (Figure 3.10C) 

in transfected 293T cells. 

To confirm that mutation of N230 and N339 disrupted the mannose patch on Env, 

we assayed the ability of 2G12, which recognizes epitopes in the mannose patch 

(Sanders et al., 2002; Scanlan et al., 2002) to neutralize wild-type and mutant Env. As 

shown in Figure 3.10D, wild-type but not mannose deficient N230D N339E Env was 

neutralized by 2G12. In addition, we found that these substitutions did not disrupt infection 

of a T cell line that does not express MR (Figure 3.10E). However, somewhat 

unexpectedly, we found that HIV containing the N230D N339E Env substitutions was 

approximately 40% less infectious to primary human macrophages expressing MR than 

the wild-type parental virus (Figure 3.10E, p=0.002). This macrophage-specific difference 

in infectivity suggested that mannose on Env may facilitate initial infection through 

interactions with MR, which is highly expressed on differentiated macrophages. To 

examine this possibility further, we asked whether soluble mannan, which competitively 

inhibits MR interactions with mannose containing glycans (Shibata et al., 1997), was 

inhibitory to HIV infection of macrophages. As a negative control, we tested 89.6 ∆env 

pseudotyped with vesicular stomatitis virus G-protein Env (VSV-G) which has only two N-

linked glycosylation sites, both of which contain complex-type rather than high-mannose 

glycans (Reading et al., 1978). Therefore VSV-G should not bind MR or be inhibited by 

mannan. As expected, we found that infection of a T cell line lacking MR was not sensitive 

to mannan (Figure 3.10F, left panel). However, infection of MDM by wild-type HIV-1 was 

inhibited up to 16-fold by mannan (Figure 3.10F, right panel). This was specific to HIV 

Env because mannan did not inhibit infection by HIV lacking env and pseudotyped with 

heterologous VSV-G Env. Interestingly, mannan also inhibited baseline macrophage 
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infection by mannose-deficient Env (89.6 Env N230D N339E), indicating that N230D 

N339E substitutions did not completely abrogate glycans on Env that are beneficial to 

initial infection. In sum, our results demonstrate that interactions with mannose binding 

receptors are advantageous for initial HIV infection of macrophages and that the glycans 

remaining on Env N230D N339E retain some ability to bind glycan receptors on 

macrophages that facilitate infection. 

While interactions between high-mannose residues on Env and MR were 

advantageous for viral entry, we hypothesized that they interfered with intracellular Env 

trafficking and were deleterious to egress of Env-containing virions in the absence of Vpr 

and/or Nef. To test this, we examined virion release and Env expression by HIVs encoding 

the mannose-deficient Env N230D N339E in the presence or absence of Vpr. In a 

spreading infection of MDM, we found that virus expressing mannose-deficient Env had 

a reduced requirement for Vpr for maximal virus release compared with the parental wild-

type virus (Figure 3.10G, p<0.001). In addition, in single-round infections of MDM, the 

mannose-deficient Env had a reduced requirement for both Nef and Vpr (Figure 3.10H 

and Figure 3.11, p<0.001). Single round infection assays cultured for ten days were used 

to assess the vpr-nef double mutant because depletion of mannose on Env did not rescue 

spread under conditions that were most comparable to our ten day spreading infections. 

The defect in spread is likely due to pleiotropic effects of Nef that disrupt interference by 

the HIV receptors, CD4, CXCR4 and CCR5 (Lama et al., 1999; Michel et al., 2005; 

Venzke et al., 2006) combined with the reduced infectivity of the mannose deficient Env. 

Finally, we asked whether the mannose-deficient Env had increased stability in 

primary human MDM lacking Vpr and/or Nef by western blot analysis. We found that the 

Env mutant (N230D. N339E) was more stable in the absence of Vpr (Figure 3.10I, right 
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side, black bars) and Nef (Figure 3.10I, right side, gray bars) once differences in infection 

frequency were accounted for by matching pr55 expression in the dilution series. These 

data provide strong support for a model in which MR restricts Env expression via direct 

interaction with high-mannose residues on Env and this restriction is counteracted by Vpr 

and Nef. 

 

Silencing MR alleviates restriction of Env in primary human MDM lacking Vpr. 

To directly test the hypothesis that MR is a restriction factor in MDM that is 

counteracted by Vpr, we examined the effect of MR silencing on Env expression in HIV-

infected MDM lacking Vpr. Consistent with our hypothesis, we observed that silencing 

MR stabilized Env relative to Gag pr55 (Figure 3.12A). These results support the 

conclusion that the Env restriction observed in the absence of Vpr is dependent on 

expression of MR. 

Previous work in our laboratory demonstrated that restriction of Env in primary 

human MDM disrupted formation of virological synapses and cell-to-cell spread of HIV 

from infected MDM to T cells. Expression of Vpr alleviated these effects, dramatically 

increasing viral transmission – especially under conditions of low initial inoculum of free 

virus. To expand on these findings, we measured Vpr-dependent HIV-1 spread from 

primary human MDM to autologous T cells, as diagrammed in Figure 3.13A. Co-cultured 

cells were stained for CD3 to distinguish T cells and CD14 to distinguish MDM as shown 

in Figure 3.13B, accounting for differences in autofluorescent background in the two cell 

types by using isotype controls  (Figure 3.13C)  We confirmed our prior finding that Vpr 

enhances HIV-1 89.6 spread from MDM to T cells (Figure 3.13D) and extended this 

finding to the transmitted/founder (T/F) clone REJO (Figure 3.13E). Consistent with our 
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previous findings, we observed that a higher frequency of T cells became infected 

following co-culture with infected MDM as compared to incubation with high titer cell free 

virus [(47-fold (89.6, p=0.0002) and 38-fold (REJO, p=0.048)].  

  To determine whether Vpr stimulated spread from macrophages to T cells by 

counteracting MR restriction, we measured spread to T cells from macrophages in which  

MR had been silenced as diagrammed in Figure 3.12B. Using the gating strategy shown 

in Figure 3.13B, infected MDM and infected T cells were identified by intracellular Gag 

stain (Figure 3.12C). We found that silencing MR reduced the difference between wild 

type and Vpr-null infected macrophage spread to T cells from 7-fold (p=0.003) to 2-fold 

(p=0.02) (Figure 3.12D). These results provide strong evidence that MR is the previously 

described but unidentified restriction factor in macrophages that reduces HIV spread from 

macrophages to T lymphocytes in the absence of Vpr. 

 

Discussion 

We previously reported that Env and Env-containing virions are degraded in 

macrophage lysosomes in the absence of Vpr, impairing virion release, virological 

synapse formation, and spread of HIV to T cells (Mashiba, Collins et al. 2014).  Moreover, 

this requirement for Vpr was conferred to heterokaryons comprised of macrophages and 

permissive cells, suggesting the existence of a previously unidentified host restriction 

factor that is counteracted by Vpr in macrophages (Mashiba, Collins et al. 2014). Results 

presented here clearly define mannose receptor (MR) as the HIV restriction factor 

counteracted by Vpr in macrophages to enhance viral dissemination. We provide strong 

evidence that Env mannosylation is required for HIV restriction of Env and virion release 

in macrophages in the absence of Vpr, and that MR silencing relieves a requirement for 
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Vpr to overcome this restriction. Moreover, we confirm and extend a prior report that Nef 

also acts to downmodulate MR from the macrophage cell surface (Vigerust, Egan et al. 

2005) and demonstrate that Vpr and Nef cooperate to counteract MR in an additive 

fashion through independent mechanisms. 

Other investigators have reported that HIV inhibits MRC1 transcription in 

macrophages and that MR inhibits virion egress upon exogenous expression in 293T cells 

(Sukegawa et al., 2018). In contrast to results we report here, the prior study observed 

effects on virions that were Env-independent and did not examine effects of Vpr on MR. 

In primary macrophages, Vpr-sensitive virion restriction only occurs when virions contain 

Env (Mashiba et al., 2014) and genetic changes in the env open reading frame – 

especially those that alter N-linked glycosylation sites – critically affect the requirement 

for Vpr. The effect of MR on Env and Env-containing virion release reported here helps 

explain previous observations that primate lentivirus infection reduces MR activity in 

humans (Koziel et al., 1998; Koziel et al., 1993) and monkeys (Holder et al., 2014). By  

confirming and extending our prior finding that Vpr-mediated stabilization of Env promotes 

macrophage to T cell spread we also provide an explanation for how Vpr increases 

infection of human lymphoid tissue ex vivo (Eckstein et al., 2001; Rucker et al., 2004), 

which contain macrophages and T cells in a highly physiological, three-dimensional 

environment.  

As Nef had already been shown to reduce MR surface expression (Vigerust et al., 

2005), the observation that HIV encodes a second protein, Vpr, to reduce MR expression 

was unanticipated, but not unprecedented; other host proteins are known to be affected 

by more than one lentiviral accessory protein. The HIV receptor, CD4, is simultaneously 

targeted by Vpu, Nef and Env in HIV-1 (Chen et al., 1996) and tetherin is alternately 
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targeted by Vpu, Nef, or Env in different strains of primate lentiviruses (Harris et al., 2012). 

Nef has also been shown to downmodulate the viral co-receptors CXCR4 (Venzke et al., 

2006) and CCR5 (Michel et al., 2005), which may also interfere with Env expression and 

viral egress in infected cells. Nef’s activity against CXCR4, CCR5, and MR presumably 

has the same ultimate purpose as its activity against CD4, namely to stabilize Env, 

enhance virion release and prevent superinfection of the producer cell (Lama et al., 1999; 

Ross et al., 1999).  The impact of these deleterious interactions is clearly demonstrated 

by the profound loss of Env we observed in HIV-infected macrophages lacking both Vpr 

and Nef.   

The need for both Vpr and Nef to counteract MR may be explained by the high 

level of MR expression, estimated at 100,000 copies per macrophage (Stahl et al., 1980). 

The potent combined effect likely derives from synergistic targeting of MR at two different 

stages of MR synthesis. Nef was shown to alter MR trafficking (Vigerust et al., 2005) and 

we show Vpr inhibits MR transcription.  

  In addition, our results suggest that maximal MR downmodulation is time-

dependent in macrophages, which have the capacity to survive while infected for weeks; 

western blot analysis of whole cell lysates from saturated, ten-day infected cultures 

achieved a more striking reduction than was observed by flow cytometric analysis of five 

day cultures of macrophages infected with non-spreading viruses expressing GFP. This 

time dependency is potentially explainable in part by very long half-life of MR [33 hours 

(Lennartz et al., 1989)] combined with the large amount of MR expressed per cell 

discussed above.   

In sharp contrast to the effect we observed in MDM, Vpr did not affect MR protein 

levels when MR was expressed via a heterologous promoter in the 293T cell line, which 
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is derived from human embryonic kidney cells and is not a natural target of HIV. The cell 

type selectivity in these experiments is likely due to differences in the promoters driving 

MR expression, however, we cannot rule out the existence of other macrophage specific 

pathways required to recreate the effect of Vpr on MR. Further work will be needed to 

examine these questions and determine other mechanistic details. 

Our findings also implicate the Vpr binding protein [VprBP/DCAF1 (McCall et al., 

2008)], a component of the cellular DCAF1-DDB1-CUL4 E3 ubiquitin ligase complex in 

downmodulation of MR by Vpr. This complex is required for most of the known functions 

of Vpr, including: disruption of the cell cycle, disruption of cellular DNA repair pathways 

in dividing cells (Belzile et al., 2007; Hrecka et al., 2007; Lahouassa et al., 2016; Le 

Rouzic et al., 2007; Wen et al., 2007; Wu et al., 2016; Zhou et al., 2016) and 

transcriptional inhibition of type I interferons in response to infection in macrophage 

cultures (Laguette et al., 2014; Mashiba et al., 2014). Additional research is now needed 

to determine how interactions between Vpr and DCAF1 mediate these pleiotropic effects. 

Deleterious interactions between MR and Env that are alleviated by Vpr and Nef,  

likely occur along the secretory pathway and continue at the cell surface. This is based 

on previously published work showing  that Env-containing virions are retained at the cell 

surface and targeted to lysosomes in macrophages lacking Vpr.  Our prior studies also 

provided evidence that unprocessed Env gp160 is affected and targeted to lysosomal 

compartments albeit to a lesser degree (Mashiba et al., 2014). Because Env processing 

occurs via furin-mediated cleavage in the trans-Golgi network (TGN), the effect on 

unprocessed Env provides evidence that in addition to acting at the surface, MR likely 

also interacts with Env along the secretory pathway prior to its arrival and processing in 

the TGN.  
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MR’s interaction with Env appears to be mediated by the unusually high density of 

N linked glycosylation sites on Env that retain high-mannose glycans, which is a known 

pathogen-associated molecular pattern (McGreal et al., 2006; Stahl and Ezekowitz, 

1998). Here, we show that selective deletion of mannose residues alleviated the 

requirement for Vpr. Deletion of individual glycosylation sites is known to lead to changes 

in the processing of neighboring glycans and deletions at certain sites lead to larger than 

expected losses of oligomannose (Balzarini, 2007) presumably because their removal 

allows greater access to mannosidases and facilitates trimming of surrounding glycans. 

Selective pressure to maintain mannose residues on Env may be due to the enhanced 

attachment they mediate. Indeed, we provide strong evidence that Env’s interaction with 

MR boosts initial infection of MDM. This finding is supported by a prior report that MR 

enhances HIV-1 binding to macrophages and transmission of the bound virus to co-

cultured T cells (Nguyen and Hildreth, 2003). Our study adds to these findings by 

providing evidence that interactions with mannose binding receptors also enhance direct 

infection of macrophages. Moreover, the capacity of Vpr and Nef to mitigate the effect of 

detrimental intracellular interactions during viral egress limits the negative impact of 

retaining high-mannose on Env. In addition, the dense glycan packing, which is privileged 

from antibody recognition through immune tolerance, is believed to play a role in evasion 

of the antibody response (Stewart-Jones et al., 2016).  

Because MR has both positive and negative effects on infection, the interpretation 

of some experiments examining spreading infection in the setting of MR silencing or 

mutations in Env that reduced mannose content were complex to interpret. Some donors 

had increased infection resulting from MR silencing whereas others had a small decrease 

at the ten-day time point (data not shown). By using viral systems that allowed us to focus 
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independently on viral entry and exit, we nevertheless clearly discerned that MR can 

serve as a positive factor for entry and a negative factor for egress.   

Thus far, all viral Envs we have tested (NL4-3, AD8 and 89,6) require Vpr for stable 

expression in macrophages except YU2. We show here that genetically altering the 

mannose patch on 89.6 so that it mirrored changes in the YU-2 mannose patch altered 

the behavior of 89.6 to resemble that of YU-2 with respect to Vpr phenotypes. This is 

strong evidence supporting our model that Vpr alleviates deleterious interactions caused 

by the Env mannose patch. Interestingly, YU-2 was cloned from the central nervous 

system and 89.6 was directly cloned from peripheral blood. Because the blood-brain 

barrier limits exposure to antibodies, CNS isolates may have a diminished requirement 

for high mannose residues, which protect from antibody responses.  

Here we also confirm and extend our prior observation in Chapter 2 that co-

culturing T cells with infected MDM boosted HIV infection compared to direct infection of 

T cells with cell-free virus. Similar to clone 89.6, T cell infection by the transmitter/founder 

virus, REJO, was enhanced by co-culture with MDM, and spread from MDM to T cells 

was enhanced by Vpr. In the context of natural person-to-person transmission, 

accelerated spread to T cells may be critical to establishing a persistent infection before 

innate and adaptive immune responses are activated. The strong selective pressure to 

retain Vpr despite its limited effect on T cell-only cultures indicates there is more to learn 

about the role of Vpr, macrophages and T/F viruses in HIV transmission and 

pathogenesis. Collectively, these studies suggest that novel therapeutic approaches to 

inhibit the activity of Vpr and Nef in macrophages would potentially represent a new class 

of antiretroviral drug that could be an important part of a treatment or prophylactic cocktail.  
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Materials and Methods 
 
Viruses, viral vectors, and expression plasmids 

The following molecular clones were obtained via the AIDS Reagent Program: 

p89.6 [cat# 3552 from Dr. Ronald G. Collman), pNL4-3 (cat# 114 from Dr. Malcolm 

Martin), pREJO.c/2864 (cat# 11746 from Dr. John Kappes and Dr. Christina 

Ochsenbauer) and pYU2 (cat# 1350 from Dr. Beatrice Hahn and Dr. George Shaw). Vpr-

null versions of 89.6, NL4-3, and YU2 were created by cutting the AflII site within vpr and 

filling in with Klenow fragment. The vpr-null version of REJO was created using by doing 

the same at the AvrII site. A nef-null version of 89.6 was created by deleting nef from its 

start codon to the XhoI site. To do this, a PCR amplicon was generated from the XhoI site 

in env to env’s stop codon. The 3’ reverse primer added a XhoI site after the stop codon. 

The 89.6 genome and the amplicon were digested with XhoI and ligated together. (5’ 

primer CACCATTATCGTTTCAGACCCT and 3’ primer TCTCGAGTTTAAA 

CTTATAGCAAAGCCCTTTCCA). The NL4-3 envYU2 chimera consists of the pNL4-3 

plasmid in which the fragment from the KpnI site in env to the BamHI site in env has been 

replaced with the equivalent fragment of pYU-2. Because the KpnI site is not unique within 

the plasmid, the fragment from the SalI site to BamHI site (which are unique) was cloned 

into pUC19, the change was made in env, and the fragment from SalI to BamHI was 

inserted back into pNL4-3. To generate p89.6 N230D N339E a synthetic DNA sequence 

(ThermoFisher, Waltham, Massachusetts) was purchased commercially. The synthetic 

gene contained the following nucleotide mutations, counting from the start of 89.6 env: 

694 A>G, 701 C>A, 1018 A>G, 1020 T>A. This sequence was substituted into p89.6 

using the KpnI and BsaBI sites within env.  
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pSIV3+, pSPAX2, pAPM-1221 and pMD2.G were obtained from Dr. Jeremy Luban 

(Pertel et al., 2011). pSIV3+ vpr-null was generated using a synthesized DNA sequence 

(ThermoFisher) containing a fragment of the SIV genome in which the Vpr start codon 

was converted to a stop codon (TAG). This was substituted into pSIV3+ using the sites 

BstBI and SapI. pYU2 env was obtained from Dr. Joseph Sodroski (Sullivan et al., 1995). 

Creation of pNL4-3 ∆GPE-GFP was described previously (McNamara et al., 2012; Zhang 

et al., 2004). Notably, the transcript containing the gfp gene retains the first 42 amino 

acids of env, including the signal peptide, which creates a fully fluorescent Env-GFP 

fusion protein. The vpr-Q65R mutant of NL4-3 ∆GPE-GFP was created using the Q5 site-

directed mutagenesis kit from New England Biolabs (Ipswich, MA). The forward primer 

was AGAATTCTGCGACAACTGCTG and the reverse primer 

TATTATGGCTTCCACTCC. After synthesis by PCR, the entire provirus was confirmed 

by sequencing. 

pCDNA.3.hMR was obtained from Dr. Johnny J. He (Liu et al., 2004). pPROA-

3FLAG-UNG2-EYFP was obtained from Dr. Marit Otterlei (Akbari et al., 2010) and 3x 

FLAG tagged UNG2 was amplified using the 5’ primer 

CTAGCTCGAGACCATGGACTACAAAGACCATGAC, which added an XhoI site, and the 

3’ primer GTTAACTCACAGCTCCTTCCAGTCAATGGGCTT, which added an HpaI site. 

The amplicon was cloned into the XhoI and HpaI sites of pMSCV IRES-GFP (Van Parijs 

et al., 1999) to generate pMSCV 3xFLAG UNG2 IRES-GFP. 

 

Primary MDM and T cell isolation and culture 

Leukocytes isolated from anonymous donors by apheresis were obtained from the 

New York Blood Center Component Laboratory. The use of human blood from 
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anonymous, de-identified donors was classified as non-human subject research in 

accordance with federal regulations and thus not subjected to formal IRB review. 

Peripheral blood mononuclear cells (PBMCs) were purified by Ficoll density gradient. 

CD14+ monocytes were positively selected using a CD14 sorting kit (cat# 17858, 

StemCell Technologies, Vancouver, Canada) following the manufacturer’s instructions. 

Monocyte-derived macrophages (MDM) were obtained by culturing monocytes in R10 

[RPMI-1640 with 10% certified endotoxin-low fetal bovine serum (Invitrogen, 

ThermoFisher)], penicillin (10 Units/mL), streptomycin (10 μg/mL), L-glutamine (292 

μg/mL), carrier-free M-CSF (50 ng/mL, R&D Systems, Minneapolis, Minnesota) and GM-

CSF (50 ng/mL, R&D Systems) for seven days. Monocytes were plated at 5x105 cells/well 

in a 24 well dish, except for those to be transduced with lentivirus and puromycin selected, 

which were plated at 1 x106 cells/well. 

CD4+ T lymphocytes were prepared from donor PBMCs as follows: anti-CD8 

Dynabeads (cat# 11147D, ThermoFisher) were used to deplete CD8+ T lymphocytes and 

the remaining cells, which were mainly CD4+ lymphocytes, were maintained in R10 until 

the time of stimulation. Lymphocytes were stimulated with 5 μg/mL phytohemagglutinin 

(PHA-L, Calbiochem, Millipore Sigma, Burlington, Massachusetts) overnight before 

addition of 50 IU/mL recombinant human IL-2 (R&D Systems). 

 

Cell Lines 

The 293T cell line was obtained from ATCC and independently authenticated by 

STR profiling. It was maintained in DMEM medium (Gibco) supplemented with 100 U/mL 

penicillin, 100 �g/mL streptomycin, 2 mM glutamine (Pen-Strep-Glutamine, Invitrogen), 

10% fetal bovine serum (Invitrogen), and 0.022% plasmocin (Invivogen). The MOLT-R5 
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cell line was obtained from the NIH AIDS Reagent Repository, which confirmed the lot is 

mycoplasma negative. It was maintained in RPMI-1640 medium (Gibco) supplemented 

with 100 U/mL penicillin, 100 �g/mL streptomycin, 2 mM glutamine (Pen-Strep-

Glutamine, Invitrogen), 10% fetal bovine serum (Invitrogen), and 0.022% plasmocin 

(Invivogen). 

 

Silencing by shRNA 

Sequences within MRC1 suitable for shRNA-based targeted were identified using 

the program available at http://katahdin.mssm.edu/siRNA/RNAi.cgi?type=shRNA 

maintained by the laboratory of Dr. Ravi Sachidanandam. The sequence chosen, 5’-

AGTAACTTGACTGATAATCAAT-3’ was synthesized as part of larger DNA 

oligonucleotides with the sequences TCGAGAAGGTATATTGCTGTTGACAGTG 

AGCGAGTAACTTGACTGATAATCAATTAGTGAAGCCACAGATGTAATTGATTATCAG

TCAAGTTACTTGCCTACTGCCTCGG (forward) and AATTCCGAGGCAGTAGGCAA 

GTAACTTGACTGATAATCAATTACATCTGTGGCTTCACTAATTGATTATCAGTCAAG

TTACTCGCTCACTGTCAACAGCAATATACCTTC (reverse). These oligos were 

annealed, which created overhangs identical to those produced by digestion with the 

enzymes EcoRI and XhoI. This double stranded DNA oligomer was inserted into the 

EcoRI and XhoI sites of pAPM-1221 to generate pAPM-MRC1-C. 

Short hairpin RNA-mediated silencing was performed as previously described 

(Mashiba et al., 2014; Pertel et al., 2011). Briefly, we spinoculated freshly isolated primary 

monocytes with VSV-G-pseudotyped SIV3+ vpr-null at 2500 rpm for 2 hours with 4 μg/mL 

polybrene to allow Vpx-dependent degradation of SAMHD1. Cells were then incubated 

overnight in R10 with M-CSF (50 ng/mL) and GM-CSF (50 ng/mL) plus VSV-G-
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pseudotyped lentivirus containing an shRNA cassette targeting luciferase (pAPM-1221 or 

“shNC”) or MR (pAPM-MRC1-C or “shMR”). The following day, media was removed and 

replaced with fresh R10 with M-CSF (50 ng/mL) and GM-CSF (50 ng/mL). Three days 

later 10 μg/mL puromycin was added and cells were cultured for 3 additional days prior 

to HIV-1 infection. shRNA target sequences used: Luciferase: 5'-

TACAAACGCTCTCATCGACAAG-3', MRC1: 5’-ATTGATTATCAGTCAAGTTACT-3’ 

 

Virus production 

Virus stocks were obtained by transfecting 293T cells (ATCC, Manassas, Virginia) 

with viral DNA and polyethylenimine (PEI). Cells were plated at 2.5x106 cells per 10cm 

dish and incubated overnight. The following day 12 µg of total DNA was combined with 

48 µg of PEI, mixed by vortexing, and added to each plate of cells. For NL4-3 ∆GPE-GFP 

cells were transfected with 4 µg viral genome, 4 µg pCMV-HIV, and 4 µg pHCMV-V (VSV-

G expression plasmid). For SIV3+ vpr-null the cells were transfected with 10.5 µg of viral 

genome and 1.5 µg pHCMV-V. For shLentivirus (shNC or shMR) cells were transfected 

with 6µg pAPM-1221 or pAPM-MRC1-C, 4.5µg pSPAX2, and 1.5µg pMD2.G. Viral 

supernatant was collected 48 hours post-transfection and centrifuged at 1500 rpm 5 min 

to remove cellular debris. SIV3+ vpr-null was pelleted by centrifugation at 14,000 rpm for 

4 hours at 4°C and resuspended at 10x concentration. Virus stocks were aliquoted and 

stored at -80°C. 

 

Co-transfections 

Co-transfections of HIV and MR or UNG2 were performed in 293T cells. Cells were 

plated at 1.6x105 per well in a 12-well dish. The following day 10 ng of pcDNA.3.hMR or 
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10ng of pMSCV 3xFLAG UNG2 IRES-GFP, 250 ng of NL4-3 ∆GPE-GFP, and 740 ng 

pUC19 plasmid was combined with 4µg PEI, mixed by vortexing, and added to each well. 

48 hours later, cells were lifted using enzyme free cell dissociation buffer (ThermoFisher, 

cat# 13150016) and analyzed by flow cytometry or lysed in 500µL blue loading buffer 

(cat# 7722, Cell Signaling Technology, Danvers, Massachusetts) and analyzed by 

western blot.  

 

HIV infections of MDM 

Prior to infection, 500µL of medium was removed from each well and this 

“conditioned” medium was saved to be replaced after the infection. MDM were infected 

by equal inocula of HIV as measured by Gag p24 mass in 500µL of R10 for 6 hours at 

37°C. After 6 hours, infection medium was removed and replaced with a 1:2 mixture of 

conditioned medium and fresh R10. Where indicated, HIV spread was blocked by 

AMD3100 (10µg/mL, AIDS Reagent Program cat# 8128) and/or maraviroc (20µM, AIDS 

Reagent Program cat# 11580) added 48 hours post-infection and replenished with each 

media change every three days. 

 

Spin transduction of MDM with NL4-3 ∆GPE-GFP 

MDM were centrifuged at 2500rpm for 2 hours at 25°C with equal volume of NL4-

3 ∆GPE-GFP or an isogenic mutant in 500uL total medium. Following infection, medium 

was removed and replaced with a 1:2 mixture of conditioned medium and fresh R10.  
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Adenoviral transduction of MDM 

Adenovirus was prepared by the University of Michigan Vector Core, and the 

transduction of MDM was performed as previously described (Leonard et al., 2011) at an 

MOI of 1000 based on 293T cell infection estimations and the concentration of particles 

as assessed by OD280. 

 

Infection of T cells  

Activated T cells were infected by two methods as indicated. For direct infection, 

5 x105 cells were plated per well with 50µg HIV p24 in 500µL R10 +50IU/mL of IL-2 and 

incubated at 37°C for 48 hours. For co-culture with autologous, infected MDM medium 

was removed from MDM wells and 5 x105 T cells were added in 1mL R10 + 50IU/mL of 

IL-2. All T cell infections were collected 48 hours post infection. 

 

Flow cytometry  

Intracellular staining of cells using antibodies directed against HIV Gag p24, MR 

and FLAG-UNG2 was performed by permeabilizing PFA-fixed cells with 0.1% Triton-X in 

PBS for 5 min, followed by incubation with antibody for 20 minutes at room temperature. 

For Gag and MR, PE-conjugated primary antibodies were used. For FLAG-UNG2 cells 

were stained with a PE-conjugated goat anti-mouse IgG1 secondary antibody for 20 

minutes at room temperature.  Surface staining for CD4, CD3 and CD14 was performed 

before fixation as described in Chapter 2. Flow cytometric data was acquired using a 

FACSCanto instrument with FACSDiva collection software (BD, Franklin Lakes, New 

Jersey) or a FACScan (Cytek, BD) with FlowJo software (TreeStar, Ashland, Oregon) and 
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analyzed using FlowJo software. Live NL4-3 ∆GPE-GFP transduced cells were sorted 

using a FACSAria III (BD) or MoFlo Astrios (Beckman Coulter) and gating on GFP+ cells. 

 

Quantitative RT-PCR  

MDM sorted as described above in “Flow cytometry” were collected into tubes 

containing RLT buffer (Qiagen, Hilden, Germany) and RNA was isolated using RNeasy 

Kit (Qiagen) with on-column DNase I digestion. RNA was reverse transcribed using 

qScript cDNA SuperMix (Cat #95048, Quantabio, Beverly, Massachusetts). Quantitative 

PCR was performed using TaqMan Gene Expression MasterMix (ThermoFisher, cat# 

4369016) on an Applied Biosystems 7300 Real-Time PCR System using TaqMan Gene 

Expression primers with FAM-MGB probe. The primer/probe sets for ACTB 

(Hs99999903), MRC1 (Hs00267207), POL2A (Hs02786624), and GAPDH (Hs00172187) 

were purchased from ThermoFisher. Reactions were quantified using ABI Sequence 

Detection software compared to serial dilutions of cDNA from mock-treated cells. 

Measured values for all genes were normalized to measured values of GAPDH or ACTB 

as indicated. 

 

Immunoblot  

MDM cultures were lysed in Blue Loading Buffer (cat# 7722, Cell Signaling 

Technology), sonicated with a Misonix sonicator (Qsonica, LLC., Newtown, Connecticut), 

boiled for 5 min at 95°C and clarified by centrifugation at 8000 RPM for 3 minutes. Lysates 

were analyzed by SDS-PAGE immunoblot. The proteins MR, GAPDH and pr55 were 

visualized using AlexFluor-647 conjugated secondary antibodies on a Typhoon FLA 9500 

scanner (GE, Boston, Massachusetts) and quantified using ImageQL (GE). The proteins 
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gp160, gp120, gp41, Nef, Vpr, GFP, Env-GFP, STING, GBP5, and IFITM3 were 

visualized using HRP-conjugated secondary antibodies on film. Immunoblot films were 

scanned and the mean intensity of each band, minus the background, was calculated 

using the histogram function of Photoshop CC (Adobe, San Jose, California).  

 

Virion Quantitation 

Supernatant containing viral particles was lysed in Triton X lysis buffer (0.05% 

Tween 20, 0.5% Triton X-100, 0.5% casein in PBS). Gag p24 antibody (clone 183-H12-

5C, AIDS Reagent Program cat# 1519 from Dr. Bruce Cheseboro and Dr. Hardy Chen) 

was bound to Nunc MaxiSorp plates (ThermoFisher cat# 12-565-135) at 4°C overnight. 

Lysed samples were captured for 2 hr and then incubated with biotinylated antibody to 

Gag p24 (clone 31-90-25, ATCC cat# HB-9725) for 1 hr. Clone 31-90-25 was biotinylated 

with the EZ-Link Micro Sulfo-NHS-Biotinylation Kit (ThermoFisher cat# PI-21925). Clones 

31-90-25 and 182-H12-5C were purified using Protein G columns (GE Healthcare, cat# 

45-000-054) following the manufacturer’s instructions. Samples were detected using 

streptavidin-HRP (Fitzgerald, Acton, Massachusetts) and 3,3′,5,5′-

tetramethylbenzidine substrate (Sigma cat# T8665-IL). CAp24 concentrations were 

measured by comparison to recombinant CAp24 standards (cat# 00177-V, ViroGen, 

Watertown, Massachusetts). 

 

Antibodies  

Antibodies to CAp24 (clone KC57-PE cat# 6604667 and KC57-FITC cat# 

6604665, Beckman Coulter, Brea, California), CD3 (clone OKT3-Pacific Blue, cat# 

317313, BioLegend, San Diego, California), CD14 (clone HCD14-APC, cat# 325608, 
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BioLegend), CD4 (clone OKT4, cat#17-0048-42, Invitrogen, ThermoScientific), FLAG 

(clone M2, cat#F3165, Sigma), and MR (clone 19.2-PE, cat# 555954, BD) were used for 

flow cytometry. Antibodies to the following proteins were used for immunoblot analysis: 

MR (cat# ab64693, Abcam, Cambridge, Massachusetts), GAPDH (clone 3C2, cat# 

H00002597-M01, Abnova, Taipei, Taiwan), Gag pr55 (HIV-Ig AIDS Reagent Program 

cat# 3957), Env gp160/120 (AIDS Reagent Program cat# 288 from Dr. Michael Phelan), 

89.6 and YU-2 Env gp41 (clone z13e1, AIDS Reagent Program cat# 11557 from Dr. 

Michael Zwick), NL4-3 Env gp41 (clone CHESSIE-8, AIDS Reagent Program cat# 526 

from Dr. George Lewis), Vpr (AIDS Reagent Program cat# 3951 from Dr. Jeffrey Kopp), 

GFP (cat# ab13970, Abcam), Nef (AIDS Reagent Program cat# 2949 from Dr. Ronald 

Swanstrom), FLAG (clone M2, cat# F3165, Sigma), STING (D2P2F, cat# 13647, Cell 

Signaling Technology), GBP5 (sc-160353, which was a generous gift from Dr. Frank 

Kirchhoff), and IFITM3 (cat# 11714-1-AP, Proteintech, Rosemont, IL). Neutralizing 

antibody 2G12 (AIDS Reagent Program cat# 1476 from Dr. Hermann Katinger) was used 

at a 1 μg/mL at the time of infection. Antibody clone CHESSIE-8 was purified using Protein 

G columns (GE Healthcare, cat# 45-000-054) following the manufacturer’s instructions. 
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Figure 3.1: HIV Vpr reduces steady state levels of host mannose receptor in MDM and 
increases steady state levels of viral Env protein2. (A) Diagram of the HIV 89.6 proviral 
genome. The shaded box shows the location of vpr, which was disrupted by a frame shift mutation 
to create the Vpr-null version (Mashiba et al., 2014). HIV-1 89.6 is a dual CXCR4/CCR5-tropic 
HIV molecular clone isolated from the peripheral blood of an AIDS patient (Collman et al., 1992). 
(B) Summary graph depicting MDM infected by HIV 89.6 wild-type and vpr-null with matched 
infection frequencies of at least 50% 10 days post infection as measured flow cytometrically by 
intracellular Gag p24 staining. This subset with high frequencies of infection was selected to 
examine potential effects on host factors. (C) Western blot analysis of whole cell lysates from 
MDM prepared as in B. (D) Summary graph displaying relative expression of MR in wild-type and 

                                                        
2 The data in this figure was generated by Jay Lubow. 
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mutant 89.6 from blots as shown in C. Western blot protein bands were quantified using a 
Typhoon scanner. Values for MR expression in MDM infected with Vpr-null HIV were normalized 
to GAPDH and then to wild-type for each donor. Statistical significance was determined using a 
two-tailed, ratio t-test. ** p=0.005 (E) Western blot analysis of HIV protein expression in MDM 
infected as in B. (F) Summary graph of HIV protein expression from western blot analysis as in E 
and quantified as described in methods. The ratio of expression in wild-type to vpr-null infection 
is shown. Data from 9 independent donors with similar frequencies of infection (within 2-fold) 
following ten days of infection are shown. Statistical significance was determined using a two-
tailed, ratio t-test, N.S. – not significant, p=0.31, ** p<0.01, *** p<0.001. Data from each donor is 
represented by the same symbol in all charts. Mean values are indicated. 
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Figure 3.2: HIV Vpr reduces steady state levels of MR but not GBP5, STING or IFITM33. (A) 
Western blot analysis of whole cell lysates from MDM infected with wild-type or vpr-null HIV-1 
89.6 for 10 days. (B) Western blot analysis of whole cell lysates from MDM infected with wild-type 
or vpr-null HIV-1 89.6 and YU2-pseudotyped NL4-3 for 10 days. n=3 independent donors. 

 

                                                        
3 The data in this figure was produced by Jay Lubow and Zana Lukic. 
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Figure 3.3: Combined effects of Nef and Vpr completely remove MR from a significant 
proportion of infected cells at early time points4. (A) Diagram of HIV NL4-3 ∆GPE-GFP. (B) 
Western blot analysis of whole cell lysates from 293T cells transfected with the indicated viral 
expression construct. (C) Flow cytometry plots indicating the gating strategy used to identify live 
GFP+ vs GFP- cells and the fraction of cells that are MRlow. (D) Representative flow cytometric 
analysis of MDM at five days post transduction by the indicated virus. The percentage of GFP+ 
cells that fell into the MRlow gate is indicated in each panel (E) Summary graph depicting the 
percentage of GFP+ cells that fell into the MRlow gate in transduced MDM. For the uninfected 
column the results from GFP- cells are displayed. (each dot indicates an independent donor, range 
3-11). (F) Western blot analysis of whole cell lysates from 293T cells transfected with the indicated 
viral expression construct. (G) Summary graph depicting the frequency of transduced (GFP+) 
MDM at the time of harvest. (H) Representative flow cytometric plots of MDM transduced with the 
indicated adenoviral vector (n=3 independent donors). Mean +/- standard deviation is shown. 
Statistical significance was determined by a two-tailed, paired t-test. N.S. not significant, ** 
p<0.01, *** p<0.001, **** p<0.0001. 

 
  

                                                        
4 The data in this figure was produced by Jay Lubow and Brian Peterson. 
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Figure 3.4: HIV Vpr reduces steady state levels of UNG2 but not MR in co-transfected 293T 
cells5. (A) Flow cytometric plots of 293T cells co-transfected with NL4-3 ∆GPE-GFP, pCDNA3.1-
hMR, and pMSCV 3x FLAG UNG2 IRES-GFP as indicated. (B) Western blot analysis of 293T 
cells co-transfected exactly as in A. Env-GFP indicates the location of the fusion protein 
containing the N terminus of Env followed by GFP as described in Methods. 

 
  

                                                        
5 The data in this figure was produced by Madeline Merlino and Jay Lubow. 
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Figure 3.5: Vpr reduces transcription of MRC16. (A) Diagram of HIV NL4-3 ∆GPE-GFP. (B) 
Flow cytometry plots indicating the gating strategy used to sort live GFP+ vs GFP- cells for 

subsequent qPCR analysis. (C) Summary graph of mannose receptor (MRC1), b-actin (ACTB) 
and RNA Polymerase 2A (POL2A) mRNA expression in MDM transduced with the indicated HIV 
reporter and sorted for GFP expression by FACS. All data are normalized to GAPDH mRNA 
expression. (D) Summary graph of MRC1, ACTB and POL2A expression normalized to the Vpr-
null condition in each donor. (n=7 independent donors). Geometric mean +/- geometric standard 
deviation is shown. Statistical significance was determined by a two-tailed, ratio t-test. N.S. = not 
significant p=0.81, ** p<0.01. 

 

                                                        
6 The data in this figure was generated by Jay Lubow, Francisco Gomez-Rivera, and Gretchen 
Zimmerman. 
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Figure 3.6: Vpr does not reduces transcription of housekeeping genes7. (A) Summary graph 
of mannose receptor (MRC1), RNA Polymerase 2A (POL2A) and GAPDH mRNA expression in 
MDM transduced with Vpr-competent or Vpr-null HIV NL4-3 ∆GPE-GFP and sorted for GFP 
expression by FACS. All data are normalized to ACTB mRNA expression. (B) Summary graph of 
same data as A normalized to the Vpr+ condition in each donor. (n=8 independent donors). 

                                                        
7 The data in this figure was generated by Jay Lubow, Francisco Gomez-Rivera, and Gretchen 
Zimmerman. 
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Geometric mean is indicated by the line. (C) Summary graph of MRC1, ACTB and POL2A mRNA 
expression in untransduced MDM and MDM transduced with Vpr-competent HIV NL4-3 ∆GPE-
GFP. All data are normalized to GAPDH. (D) Summary graph of MRC1, POL2A and GAPDH 
mRNA expression in untransduced MDM and MDM transduced with Vpr-competent HIV NL4-3 
∆GPE-GFP. All data are normalized to ACTB. (E) Summary graph of MRC1, ACTB and POL2A 
mRNA expression in untransduced MDM and MDM transduced with Vpr-null HIV NL4-3 ∆GPE-
GFP. All data are normalized to GAPDH. (F) Summary graph of MRC1, POL2A and GAPDH 
mRNA expression in untransduced MDM and MDM transduced with Vpr-null HIV NL4-3 ∆GPE-
GFP. All data are normalized to ACTB. Statistical significance was determined by a two-tailed, 
ratio t-test. N.S. = not significant, ** p<0.01, **** p<0.0001. 
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Figure 3.7: Combined effect of Vpr and Nef dramatically enhances Env levels in primary 
human MDM8. (A) Western blot analysis of whole cell lysate from 293T transfected with the 
indicated HIV construct. (B) Summary graph of virion release from 293Ts transfected as in A as 
measured by Gag p24 ELISA. (n = 5 independent transfections). The mean +/- standard deviation 
is shown. Statistical significance was determined by one-way ANOVA. (N.S. – not significant) (C) 
Frequency of infected primary human MDM infected with the indicated HIV and analyzed over 
time by flow cytometric analysis of intracellular Gag. (For parts C-E, n= 2 independent donors) 
(D) Virion release by primary human MDM infected with the indicated HIV and analyzed by Gag 
p24 ELISA 10 days post infection. In the right panel, virion release was adjusted for frequency of 
infected cells as measured in part C. (E) Western blot analysis of whole cell lysate from primary 
human MDM infected with the indicated HIV. Within each donor, lanes 2-6 are a serial dilution 
series of the wild-type sample. The arrows below the Gag pr55 bands indicate the dilution of wild-
type that has approximately the same amount of Gag pr55 as the vpr-nef-null double mutant. 

                                                        
8 The data in this figure was generated by Jay Lubow. 
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Figure 3.8: HIV YU2, which lacks a mannose rich patch, does not require Vpr for robust 
Env protein expression and spread in MDM9. (A) Virion release over time by primary human 
MDM infected with the indicated HIV as measured by ELISA (n=2 independent donors). (B) 
Western blot analysis of whole cell lysate from MDM infected for 10 days with the indicated HIV. 
Because NL4-3 infects MDM poorly, NL4-3 was pseudotyped with a YU-2 Env expression plasmid 
co-transfected in the producer cells as described in Methods. Subsequent spread was blocked in 
all samples by the addition of entry inhibitors AMD3100 and maraviroc initially added 48 hours 
post-infection and maintained throughout the culture period. (C) Diagram of the HIV NL4-3 
genome. The shaded portion represents the sequence that was replaced with sequence from HIV 
YU2 to create the NL4-3 envYU-2 chimera. (D) Western blot analysis of 293T cells transfected with 
the indicated HIV constructs. YU-2 gp41 is detected by the monoclonal antibody z13e1 and NL4-
3 gp41 is detected by the monoclonal antibody CHESSIE-8. (E) Virion release from 293T 
transfected as in E as measured by p24 ELISA. (n=3 experimental replicates). (F) Relative 
infection of MOLT4-R5 cells 48 hours after inoculation by the indicated viruses and treated with 
entry inhibitors as indicated. The frequency of infected cells was measured by intracellular Gag 
stain and normalized to the untreated condition for each infection. (G) Western blot analysis of 
primary human MDM infected for 10 days with the indicated virus as in B. (n=2 independent 
donors) (H) Summary graph showing virion release as measured by p24 ELISA for primary human 
MDM infected as in G. Virus production was adjusted for infection frequency as determined flow 
cytometrically using an intracellular Gag stain. The mean +/- standard deviation is shown. (n=4 
independent donors). N.D. – no difference. Statistical significance was determined using a two-
tailed, ratio t-test. N.S. – not significant, * p<0.05.               

 

  

                                                        
9 The data in this figure was generated by Jay Lubow. 
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Figure 3.9: Raw p24 ELISA and intracellular gag data 10 days post infection by NL43envYU2.  
10  (A) Summary graph showing Gag p24 concentration of supernatant from MDM cultures 10 
days post infection with the indicated virus.  (B) Summary graph showing the fraction of MDM that 
are Gag+ 10 days post infection with the indicated virus. (C) Summary graph showing the  p24 
concentration normalized to the fraction of cells that are Gag+ for each donor. n= 4 independent 
donors. 
 

 

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        

  

                                                        
10 The data in this figure was generated by Jay Lubow. 
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Figure 3.10: Deletion of N-linked glycosylation sites in env reduces the requirement for Vpr 
and Nef for virion release and Env expression in HIV-1 infected primary human MDM11. (A) 
Upper panel, diagram of HIV genome encoding the mutations N230D and N339E (indicated in 
red) to prevent N-linked glycosylation at those sites. Lower panel, diagram of HIV 89.6 N230D 
N339E mutant Env protein. Branched symbols represent N-linked glycans. (B) Summary graph 
showing virion release from 293Ts transfected with the indicated HIV construct as measured by 
p24 ELISA. (n=3 experimental replicates). Statistical significance was determined by one-way 
ANOVA. (C) Western blot analysis of 293T transfected as in B. (D) Summary graph showing 
relative infection frequency of MOLT4-R5 T cells by the indicated HIV following treatment as 
indicated with the neutralizing antibody 2G12. The percentage of infected cells was measured by 
intracellular Gag stain and normalized to the untreated condition for each virus. (n= 2 independent 
experiments, both are plotted). (E) Summary graphs of relative infection of the indicated cell type 
by mutant or parental wild-type HIV. The frequency of infected cells was measured flow 
cytometrically by intracellular Gag stain and normalized to the wild-type virus. (n=5 experimental 
replicates for MOLT4-R5; n=2 experimental replicates for MDM from 4 independent donors). (F) 
Summary graph depicting relative infection of the indicated cell type by each virus plus or minus 
increasing concentrations of mannan as indicated. The frequency of infected cells was measured 
by intracellular Gag stain and normalized to the uninhibited (0 mg/mL mannan) condition for each 
virus. 89.6 pVSV-G indicates 89.6 ∆env pseudotyped with VSV-G protein. (n=2 independent 
donors for 89.6 wild-type and 89.6 ∆env pVSV-G; n=1 donor for 89.6 env N230D N339E) (G) 
Summary graph of virion release from primary human MDM following 10 days of infection by the 
indicated HIV as measured by p24 ELISA. Virion release was normalized to the infection 
frequency assessed flow cytometrically by intracellular Gag stain. The result for each vpr-null 
mutant was normalized to the vpr-competent virus encoding the same env. (n=6 independent 
donors) (H) Summary graph of virion release from primary human MDM following 10 days of 
infection by the indicated HIV as measured by p24 ELISA. Virion release was normalized to the 
infection frequency assessed flow cytometrically by intracellular Gag stain. For this single round 
infection assay, all viruses were pseudotyped with YU2 Env and viral spread was blocked 48 
hours later by addition of AMD3100 and maraviroc. (n=8 independent donors) The result for each 
vpr-null or vpr-nef-null mutant was normalized to the vpr- and nef-competent virus encoding the 
same env. (I) Western blot analysis of MDM infected as in E. The lysates from the vpr-competent 
and nef-competent infections were diluted to facilitate comparisons to vpr- and nef-null mutants. 
(n=2 independent donors) For summary graphs, the means +/- standard deviation is shown. In 
panels G and H statistical significance was determined by a two-tailed, paired t-test * p=0.01, ** 
p<0.01, *** p<0.001. 

  

                                                        
11 The data in this figure was generated by Jay Lubow. 
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Figure 3.11: Raw p24 ELISA and intracellular gag data 10 days post infection by 89.6 Env 
N230D N339E12 (A) Summary graph showing Gag p24 concentration of supernatant from MDM 
cultures 10 days post infection with the indicated virus, which were allowed to spread in culture. 
Data correspond to Figure 3.10G. (B) Summary graph showing the fraction of MDM that are Gag+ 
10 days post infection with the indicated virus. (C) Summary graph showing the  p24 concentration 
normalized to the fraction of cells that are Gag+ for each donor. A-C n= 6 independent donors. 
(D) Summary graph showing Gag p24 concentration of supernatant from MDM cultures 10 days 
post infection with the indicated virus. Viral replication was blocked by AMD3100 and maraviroc 
48 hours post infection. Data correspond to Figure 3.10H. (E) Summary graph showing the 
fraction of MDM that are Gag+ 10 days post infection with the indicated virus. (F) Summary graph 
showing the  p24 concentration normalized to the fraction of cells that are Gag+ for each donor. 
D-F n= 8 independent donors. 
 
  

                                                        
12 The data in this figure was generated by Jay Lubow. 
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Figure 3.12: Knockdown of MR enhances Env expression and spread to T cells in vpr-null 
infection of MDM13. (A) Western blot analysis of MDM from two independent donors treated with 
the indicated silencing vector and infected with the indicated HIV for 10 days. The shRNA 
sequences encoded by the negative control vector (shNC) and the MR silencing vector (shMR) 
are described in Methods. (B) Schematic diagram of experimental protocol used for silencing 
experiments. (C) Representative flow cytometric plots showing frequency of infected (Gag+) 
primary T cells following two days of co-culture with autologous, HIV 89.6 infected primary MDM. 
T cells were identified in co-culture by gating on CD3+ CD14- cells as shown in Figure 3.13B. (D) 
                                                        
13 The data in this figure was generated by Jay Lubow and Valeri Terry. 
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Summary graph displaying relative infection of MDM and T cells as measured in C (n=5 
independent donors). Data in the left panel are unnormalized. In the right panel the data have 
been normalized to the wild-type condition for each donor and shRNA. 
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Figure 3.13: Cell-to-cell infection from macrophages to autologous CD4+ T cells is highly 
efficient and enhanced by Vpr14. (A) Diagram of the MDM and T cell co-culture experiments 
depicted in parts B, D, and E. (B) Representative flow cytometric plots and gating strategy used 
to identify MDM and T cells in co-culture and the fraction of Gag+ cells of both types. (C) Flow 
cytometric histograms illustrating the PacBlue signal detected in the indicated cell type following 
treatment with the indicated antibody. (D) Summary graph of the percentage of cells of the 
indicated type that are Gag+ following infection by HIV-1 89.6 (E) Summary graph of the 
percentage of cells of the indicated type that are Gag+ following infection by HIV-1 T/F clone 
REJO. 

 

                                                        
14 The data in this figure was generated by Jay Lubow and Valeri Terry. 
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Chapter 4 

 

Discussion 

 

 

Summary of results 

The results presented here are the latest addition to a long list of evidence for the 

importance of macrophages in HIV infection. This has included detection of HIV infected 

macrophages at numerous anatomical sites in vivo (Embretson et al., 1993; Ganor et al., 

2019; Kandathil et al., 2018; Koenig et al., 1986) and evidence from cultures of monocyte 

derived macrophages in vitro (Crowe et al., 1994; Gendelman et al., 1988; Orenstein et 

al., 1988). Perhaps the most convincing line of evidence for the importance of 

macrophages in HIV infection comes from the conservation of HIV accessory proteins 

that enhance macrophage infection (Balliet et al., 1994). Vpr enhances infection of 

macrophages dramatically but has only a minor effect on the direct infection of T cells 

(Mashiba et al., 2014).  

The results described in Chapter 2 highlight the importance of Vpr in macrophages 

by demonstrating that Vpr drives viral transmission to neighboring CD4+ T cells. Earlier 

work had observed that Vpr enhances infection of CD4+ T cells in human lymphoid tissue 

(Eckstein et al., 2001), but the exact mechanism by which this occurs was not known. 
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Separately other groups demonstrated that HIV efficiently transmits across virological 

synapses, connections that form when Env on an infected cell binds CD4 on a 

neighboring uninfected cell (Groot et al., 2008; Jolly et al., 2004; Schiffner et al., 2013). 

Our findings demonstrated that these two processes are intimately related. We observed 

that virological synapses formed between infected macrophages and uninfected CD4+ T 

cells, which led to significantly higher infection rates than incubation of cell-free HIV with 

CD4+ T cells alone. HIV spread from macrophages to T cells was boosted by expression 

of Vpr. To ensure that the result observed in T cells was not simply due to Vpr’s well 

established ability to enhance infection within macrophage cultures, we used 

pseudotyped virions to establish a one-way infection of macrophages in which HIV can 

spread from macrophages to T cells but not to uninfected macrophages. This allowed us 

to achieve an equal infection of wild-type and Vpr-null MDM, and under these conditions 

we still observed significantly more spread to T cells by the wild-type virus. To our 

knowledge this is the first demonstration that Vpr enhances T cell infection in short term 

assays. This finding explains earlier observations that Vpr was required to drive high 

infection and depletion of CD4+ T cells in ex vivo human lymphoid tissue (Rücker et al., 

2004). 

The results presented in Chapter 2 detail the mechanism by which Vpr enhances 

cell-to-cell spread. We used confocal microscopy to identify virological synapses, points 

at which HIV Gag in an infected macrophage co-localizes with CD4 on an infected T cell 

at junctions between these two cells. Co-localization of Gag and CD4 was entirely 

dependent on Env, indicating that these were virological synapses and not immunological 

synapses. Vpr significantly enhanced expression of Env and this correlated with 
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enhanced formation of virological synapses. The effect of Vpr on synapse formation could 

be abrogated by addition of exogenous IFNa, suggesting that Vpr acts by preventing an 

interferon-mediated response. This is consistent with previous reports that Vpr prevents 

induction of type I interferons (IFNa and IFNb) and MxA, an interferon stimulated gene 

(Laguette et al., 2014; Mashiba et al., 2014). Additional microscopy experiments 

demonstrated that in macrophages not expressing Vpr, Env-containing virions were 

targeted to lysosomes. Crucially, when Env was not present, virions were not observed 

in lysosomes, adding to the evidence presented by Mashiba et al. that Env is the proximal 

target of a macrophage-specific restriction factor. 

Chapter 3 details multiple lines of evidence that indicate mannose receptor (MR) 

is the restriction factor that targets HIV Env and is counteracted by Vpr. In MDM cultures, 

MR expression was decreased by HIV infection and this effect was dependent on Vpr. 

Our findings demonstrated that unlike other host targets, e.g. UNG2, Vpr did not degrade 

MR via direct ubiquitylation using a host ligase complex, but rather decreased MRC1 

mRNA levels. Unexpectedly, when we investigated MR expression in individual cells by 

flow cytometry, we observed that Vpr-null virus decreased MR expression, although this 

effect was smaller than by wildtype virus. This partial phenotype indicated that MR was 

targeted by one or more additional HIV proteins. Because an earlier study indicated that 

Nef dysregulates MR trafficking (Vigerust et al., 2005), we tested the ability of a Nef-null 

mutant to decrease MR expression. We found that the Nef-null mutant produced partial 

downmodulation of MR similar to that displayed by the Vpr-null mutant. We then 

generated a Vpr-null, Nef-null double mutant, and found this virus had no effect at all on 

MR. This indicated that Vpr and Nef worked separately, but additively to, reduce MR 
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expression. A previous study had implicated HIV Tat in MR downmodulation (Caldwell et 

al., 2000), however, in our assay we did not observe any evidence of an effect by Tat in 

the absence of Vpr and Nef. 

If MR is responsible for the restrictions observed in the absence of Vpr (Mashiba 

et al., 2014), and if Nef also downmodulates MR, we reasoned that Nef-null mutants 

should display defects in Env expression and virion release similar to those displayed by 

Vpr-null mutants. Indeed, we observed that in infection by Nef-null HIV Env expression 

and virion release was reduced compared to wildtype HIV. These effects were even more 

striking in a Vpr-null, Nef-null double mutant, which spread very poorly and produced 

much less Env than wild type virus.  

These results led us to a model of restriction in which mannose receptor directly 

binds to Env, most likely via a structure of dense mannose-containing glycans known as 

the mannose patch (Coss et al., 2016; Sanders et al., 2002). We investigated two viral 

Envs that lack the mannose patch, YU-2 and a mutated form of 89.6 engineered to mimic 

YU-2. We observed that both Envs were less dependent on Vpr than wildtype 89.6 or 

NL4-3.  These experiments also demonstrated that the mannose deficient form of 89.6 

was significantly less infectious in MDM than wildtype 89.6. Infection of MDM by 89.6 Env 

could be competitively inhibition by D-mannan, a natural ligand of MR (Shibata et al., 

1997), indicating that interactions between MR and Env facilitate HIV entry of MDM. This 

is consistent with a previous study that found that MR on the plasma membrane of 

macrophages binds HIV and passes the virus to T cells (Nguyen and Hildreth, 2003), but 

this study did not investigate cis-infection of macrophages themselves. Endocytosis and 

degradation of pathogens is a primary function of MR, so it is surprising that HIV can use 
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it to enhance infection. However MR has also been implicated in enhancing Dengue virus 

infection (Miller et al., 2008), indicating that at least one other virus can bind MR and 

evade degradation. Further work is needed to determine if MR’s interaction with HIV Env 

affects HIV tropism and transmission. 

To confirm that the factor responsible for restricting Env was MR, rather than 

another mannose binding lectin, we performed a series of experiments using MDM in 

which MR had been silenced. In these assays we observed that Env expression and 

spread from MDM to autologous CD4+ T cells were no longer Vpr dependent. This 

provided conclusive evidence that MR is the restriction factor counteracted by Vpr. 

Because Nef counteracts the restriction factors SERINC3 and SERINC5 (Usami et al., 

2015) and downmodulates HIV receptors that impede viral egress, we do not expect that 

knockdown of MR would rescue defects observed in Nef-null HIV infection. Nonetheless, 

our combined results indicate that Vpr and Nef work together to dramatically lower MR 

expression and facilitate viral spread within macrophages and from macrophages to T 

cells. 

Because macrophages are present at mucosal surface of the genitals (Anderson 

et al., 2011; Ganor et al., 2013; Shen et al., 2009) and rectum (Smith et al., 2003), they 

may play an important role in sexual transmission of HIV. The ability of HIV isolated in 

early stages of infection to infect macrophages has a subject of considerable debate 

(Joseph and Swanstrom, 2018), although it has been clear for decades that HIV can be 

detected in macrophages at the earliest stages of infection (Popovic and Gartner, 1987).  

In recent years attempts to computationally reconstruct the genome sequences of 

transmitted HIV have produced a set HIV clones known as transmitted/founder (T/F) 
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viruses. One study investigated infection by T/F viruses and found that they replicated to 

higher titers in T cells than in macrophages (Ochsenbauer et al., 2012). However, in our 

assays comparing infection by the T/F clone REJO in mono-cultures of T cells, mono-

cultures of macrophages, or co-cultures of both, we observed maximal infection in co-

cultures followed closely by macrophages. T cells alone displayed the least infection, in 

contrast to the findings reported by Ochsenbauer et al.  

A number of features of our co-culture assay may explain the difference between 

our findings and those described by Ochsenbauer et al. First, we investigated infection 

by measuring the fraction of cells expressing Gag 48 hours after inoculation rather than 

by supernatant ELISA over 14 days. This allows us to investigate very early events, which 

may be critical in establishing infection before immune effectors are activated. Second, 

our assays included a co-culture condition, which likely model physiological conditions 

more accurately. Finally, our protocol for isolation of monocytes and stimulation of 

macrophages differs significantly from Ochsenbauer et al. The stimulation conditions of 

MDM dramatically affect expression of surface proteins, including MR, CD4, and CCR5 

(Lee et al., 1999). Given our finding that interactions between MR and Env enhance viral 

entry, further work is needed to determine if MR expression increases the infectability of 

macrophages. If so, earlier findings about the ability of HIV clones to infect macrophages 

may need to be re-tested in MRhi and MRlow macrophages. 

 

Working Model 

 Findings from other laboratories and from our own (Mashiba et al., 2014) 

presented significant evidence that Vpr enhances pathogenesis of HIV in vivo and 
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infection of primary macrophages cultures in vitro. Based on their observations we 

constructed a model in which Vpr evades the activation of an interferon response, which 

prevents activation of an unidentified host restriction factor. In the absence of Vpr, or 

when exogenous interferon is added, this restriction factor degrades Env and Env-

associated virions, reduces virion release, and inhibits spread. Because the reduction in 

virion release is abrogated in ∆Env infections, we proposed that Env is the direct target 

of the restriction factor and through Env the factor degrades the whole virion. Vpr-

mediated evasion of the restriction factor is dependent on Vpr’s association with DCAF1. 

Most likely Vpr uses DCAF1 to redirect the DCAF1-DDB1-Cullin4 ubiquitin ligase to target 

novel substrates. 

 The findings presented in this dissertation have allowed us to expand and refine 

this model considerably, most notably by increasing its scope to include viral spread from 

macrophages to T cells and identifying the factor that restricts Env (and therefore the 

entire HIV replication cycle). In the updated model (Figure 4.1), MR binds Env via high-

mannose glycans, especially the mannose patch, a structure formed by a high density of 

N-linked glycosylation sites in close proximity in the 3 dimensional structure of Env trimers 

(Checkley et al., 2011; Coss et al., 2016; Stewart-Jones et al., 2016). On the plasma 

membrane, the interaction between MR and Env enhances viral entry and infection, but 

when progeny virions are produced the interaction leads to degradation of Env, reduced 

formation of virological synapses, and reduced virion release. Combined these effects 

significantly hinder spread of HIV to new macrophages and CD4+ T cells. To counter this 

restriction, HIV utilizes two accessory proteins. Vpr reduces transcription of MRC1, the 

gene that produces MR. We confirmed that Vpr-mediated reduction of MR expression 
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requires Vpr’s interaction with DCAF1, and therefore likely involves ubiquitylation of a 

host factor, but that ubiquitylated factor is not MR itself. An earlier study by Vigerust et al. 

demonstrated that Nef dysregulates trafficking of MR, and our experiments demonstrated 

that the combined effect of Vpr and Nef dramatically lowers MR expression. When MR 

expression is low, Env expression is high, which allows formation of virological synapses 

and spread via direct cell-to-cell contact (Figure 4.2). Additionally low MR expression 

allows virions to be efficiently released into the supernatant. Combined these effects 

accelerate infection in cell culture and enhance pathogenesis in vivo. 

 

Future Directions 

 The proposed model can continue to be refined and the relevance of the work 

increased by investigating broader implications of macrophage infection. The most 

important questions remaining about the model pertain to the mechanism by which Vpr 

reduces MR expression. We found that Vpr reduces steady state levels of MRC1 mRNA, 

but there are several mechanisms by which Vpr might do this. It has been demonstrated 

that transcription of murine MRC1 is controlled, at least in part, by the transcription factors 

PU.1, which is myeloid specific, and SP1, which is ubiquitous (Eichbaum et al., 1997). A 

study of the promoter of rat MRC1 demonstrated that PU.1 and USF were required for 

transcription, but SP1 was not (Egan et al., 1999). The 400bp preceding the transcription 

start site of human MRC1 contains 3 PU.1 binding sites (TTCCT), one of which is 

conserved in both mouse and rat, suggesting it may be particularly important in gene 

regulation. Experiments to determine if the human promoter is bound and activated by 

PU.1, SP1, and USF would be highly informative. Western blots of lysates of infected 



 153 

cells could detect Vpr-mediated changes in steady state levels of these transcription 

factors, but the TFs may not be abundant enough to detect. Assessing transcription of 

other genes known to be regulated by these factors may be a more sensitive way to detect 

Vpr-mediated changes in these transcription factors. A worthwhile target is macrophage 

colony stimulating factor (M-CSF), of which transcription is induced by PU.1 (Zhang et 

al., 1994). When transcription regulators have been identified, Vpr’s ability to degrade 

them can be tested using straightforward transfection experiments similar to those in 

Chapter 3 that demonstrated UNG2 is directly degraded by Vpr, but MR is not. 

Although a simple model in which Vpr directly degrades factors that control 

transcription of MRC1 is appealing, it is possible that Vpr-mediated reduction is the result 

of the numerous changes in proteins that regulate cell cycle checkpoints and interferon 

signaling induced by Vpr. The mechanism by which Vpr induces cell cycle arrest has been 

studied extensively but is not completely understood. There is strong evidence that Vpr 

activates the ATR-mediated DNA damage response, which begins a signal cascade that 

arrests the cell cycle until the damaged DNA has been repaired. Several competing 

models for Vpr-mediated ATR activation have been proposed, but none demonstrated 

definitively. One provocative study found that Vpr uses DCAF1 and PLK1 to activate the 

SLX complex, specifically by interactions with the subunits SLX4 and MUS81 (Laguette 

et al., 2014). According to their model, in the absence of Vpr multiple copies of partially 

reverse transcribed viral cDNA genomes accumulate in the cell, which activates the ATR-

mediated DNA damage response. However, when Vpr is present these partial genomes 

are degraded so ATR is not activated, which in turn prevents induction of type I interferons 

and induces cell cycle arrest. Other groups have presented data indicating that SLX4 and 
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MUS81 are not required for Vpr-mediated cell cycle arrest (Fregoso and Emerman, 2016; 

Zhou et al., 2016), but they did not investigate whether these host factors are required for 

Vpr-mediated evasion of interferon, which is arguably the more relevant phenotype. 

These studies, while informative, were performed in cell lines; given that many Vpr 

phenotypes we have described are macrophage-specific, confirmatory experiments in 

primary MDM would be highly informative. Previous work in our lab has confirmed that 

Vpr reduces steady state levels of PLK1 in MDM (Mashiba et al., 2014). We have also 

demonstrated in MDM that DCAF1 is required for Vpr to reduce MR expression. Using 

MR expression as a read out, future experiments can quickly determine if the other host 

factors identified by Laguette et al. (PLK1, SLX4 and MUS81) are part of this pathway. 

As the determinants for Vpr’s interactions with PLK1, SLX4 and MUS81 are not currently 

know, gene knockouts similar to those we employed for MR will be required.  

In addition to providing clues about Vpr, these studies would illuminate our 

knowledge of MR expression more broadly. As MR is required for collagen recycling, 

innate immunity, antigen presentation (especially cross presentation) and infection by 

some intracellular pathogens, the regulation of its expression is of interest to many 

aspects of human health. Methods to increase MR activity could be beneficial for treating 

certain infections or establishing immunity by vaccination. Methods to reduce MR 

expression could be used to treat infections of pathogens that enter cells using MR, such 

as Dengue virus. Using monocyte derived macrophages, one group has already 

demonstrated that vitamin D3 reduces MR expression on macrophages, which led to 

restricted infection by Dengue virus and reduced production of TNF-a, IL-1b, and IL-10 

(Alzate et al., 2017). Pro-inflammatory TNF-a has been implicated as a primary mediator 
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of Dengue-induced hemorrhage (Chen et al., 2007; Dewi et al., 2004), indicating that 

interventions to reduce its production could improve patient outcomes. Given that HIV is 

a chronic infection, interventions to modulate MR in order to reduce infection are likely 

not feasible. Short term, targeted interventions, at the vaginal epithelium for example 

(Fanibunda et al., 2011; Greenhead et al., 2000), could be useful to inhibit transmission. 

Our data in chapter 3 provide strong evidence that MR can enhance HIV infection 

of MDM, an unexpected result that warrants further investigation. Earlier reports indicated 

that MR mediates entry of HIV to astrocytes (Liu et al., 2004; Trujillo et al., 2007) and 

spermatozoa (Cardona-Maya et al., 2006). Of these, Trujillo et al. did not observe signs 

of productive infection, but the other two groups did. To our knowledge, our experiments 

provide the first conclusive evidence that MR promotes productive infection of MDM. The 

most likely mechanism for MR-enhanced infection is that Env’s interaction with MR, which 

is highly expressed on macrophages (Stahl et al., 1980), brings HIV virions in close 

proximity to the plasma membrane and thus increases the odds that Env binds CD4, 

which is expressed at low density on macrophages (Joseph et al., 2014). This model is 

supported by an earlier report that fleeting association between virions and cell 

membranes reduced infection in cell culture systems (Platt et al., 2010). The first step to 

testing this model is to determine if MR-enhancement of infection is dependent on CD4 

and CCR5/CXCR4, using competitively inhibitory antibodies and small molecules (e.g. 

AMD3100 and maraviroc). If this infection is mediated through the classical CD4 entry 

pathway, we would expect that MR-mediated enhancement is most beneficial on cells 

expressing low levels of surface CD4. This can be tested using affinofile cells, 293T cells 

that express CD4 and CCR5 under the control of inducible promoters (Chikere et al., 
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2013). Cells can be induced to express low or high CD4 and then transiently transfected 

with MR to determine if MR-mediated enhancement is more important in conditions in 

which CD4 is limiting.  

If these experiments confirm that high MR expression can enhance infection of 

cells expressing low CD4, conclusions about macrophage tropism may need to be re-

evaluated. It has been demonstrated that Envs from different HIVs vary significantly in 

their affinity for CD4. In vitro, some Envs infect cells with high CD4 well and cells with low 

CD4 poorly or not at all. Other Envs infect cells with low CD4 only slightly less efficiently 

than cells with high CD4, indicating they have high CD4 affinity (Arrildt et al., 2015). Envs 

with high CD4 affinity are often found in the CNS (Martín-García et al., 2006; Schnell et 

al., 2011) and at late stages of infection (Arrildt et al., 2015). Because macrophages 

express relatively low amounts of CD4, this has led some to conclude that “macrophage 

tropic” HIV only emerges late in infection and at sites that are irrelevant for transmission. 

However, this is discordant with in vivo observations of infected macrophages throughout 

the course of HIV infection (Gartner et al., 1986; Schuitemaker et al., 1991; Smith et al., 

2003), indicating that virus that is categorized as “not macrophage tropic”  by in vitro 

assays readily infects macrophages in vivo.  

Infection of macrophages by HIVs that are categorized as “not macrophage tropic” 

can be explained in several ways. This may be due to infection through virological 

synapses, which is much more efficient than transfer of cell-free virus (Duncan et al., 

2014; Groot et al., 2008; Jolly et al., 2004), but intriguingly transfer from infected CD4+ T 

cells to uninfected macrophages via a virological synapse has never been demonstrated 

(Baxter et al., 2014; Bracq et al., 2018). The reverse, HIV transfer from infected 
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macrophages to uninfected CD4+ T cells, has been widely documented and characterized 

by many earlier reports (Bracq et al., 2018; Duncan et al., 2014; Gousset et al., 2008) 

and by experiments described in Chapter 2 of this dissertation. Simple experiments to 

determine if and under what conditions CD4+ T cells transmit HIV via virological synapses 

to macrophages would determine if this method of spread is likely in vivo. Another 

possible route of infection of macrophages is through phagocytosis of infected CD4+ T 

cells (Baxter et al., 2014). Finally, it is possible that in vitro assays which rely on MDM do 

not accurately reflect the ability of HIV to infect macrophages in vivo. This may be 

because tissue resident macrophages, i.e. those of non-monocytic origin, are more 

susceptible to infection than MDM. Due to the inaccessibility of tissue resident 

macrophages, they have not been characterized as completely as MDM and are not used 

for routine tropism assays. Additionally, the various stimulation conditions used to 

generate MDM affect expression of CD4 and CCR5 (Lee et al., 1999) and of MR (our own 

unpublished results), which presumably affects susceptibility to HIV, although this has not 

been formally demonstrated. The protocols of different laboratories vary in the cytokines 

added, concentrations of those cytokines, serum used and length of stimulation. A set of 

experiments to determine the degree to which these parameters affect HIV infection could 

help the field adopt a standard approach. Given the disconnect between in vitro assays, 

which report HIV rarely infects macrophages, and in vivo studies, which find numerous 

infected macrophages, MDM protocols that generate greater HIV infection may be more 

physiologically relevant. 
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Conclusions 

In combination, the findings presented in this dissertation provide significant insight 

into the role of macrophages in HIV infection. It establishes MR as an unusual hybrid of 

entry factor and restriction factor, which the virus uses to establish infection but must 

disable to permit egress. The importance of efficient viral egress is underscored by the 

finding that HIV encodes two accessory proteins, Vpr and Nef, to counteract MR-

mediated restriction. Perhaps most importantly, these findings demonstrate that although 

Vpr counteracts a restriction factor that is only expressed in macrophages, this function 

boosts infection of CD4+ T cells as well. By demonstrating that Vpr has a robust and 

immediate effect on T cell infection, this work provides a rationale for conservation of Vpr. 

It has identified new targets for future research and potential interventions that may 

reduce the pathogenesis and transmission of HIV. 
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Figure 4.1: HIV restriction by MR1. Graphical depiction of our proposed model for HIV 
restriction by MR in macrophages. In this model MR binds Env directly via high mannose 
glycans in Env. This causes Env and Env-associated virions to be degraded in the lysosome. 
Due to low levels of Env on the cell surface, virological synapses do not form, which inhibits 
spread to CD4+ T cells.  
  

                                                        
1 This figure was generated by Jay Lubow. 
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Figure 4.2: Vpr and Nef mediated downmodulation of MR lifts restriction of HIV in 
macrophages2. Graphical depiction of our proposed model in which Vpr reduces transcription 
of MRC1, the gene that produces MR, and Nef binds to MR to remove it from the cell surface. 
Low MR expression allows for high Env expression, efficient virion release, and formation of 
virological synapses between infected macrophages and uninfected CD4+ T cells. 
  

                                                        
2 This figure was generated by Jay Lubow. 
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