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ABSTRACT

Within the urban water cycle, the challenges posed in the operation of combined

sewer systems include changing storms, evolving regulations, and impacts to envi-

ronmental health. While building bigger infrastructure is one way to solve issues

such as sewer overflows, budgetary constraints and increasing stresses to the system,

such as climate change, limit the feasibility of this option for many communities

and utilities. One alternative is posed by an increasing availability of sensors and

data algorithms. Rather than building bigger, the use of real-time data and remote

actuation provides a new avenue to autonomously adapt performance of the entire

existing system.

While promising, there are outstanding knowledge gaps that must be closed to

bring the idea of smart wastewater systems to fruition. 1.) Sewer systems are highly

dynamic and spatially heterogeneous. Thus a static, one-size-fits-all modeling ap-

proach will not accurately reflect the real-world system. This dissertation addresses

this by presenting a data-driven toolchain that learns from historical sensor mea-

surements to estimate current and future combined sewer conditions. By evaluating

this toolchain on sensor data collected across the Detroit combined sewer network, it

is discovered that wastewater and stormwater flow components exhibit distinct spa-

tial and temporal variation, underscoring the importance of flexible re-calibration

using the most relevant window of data. 2.) The efficacy and feasibility of real-time

control across the sewershed poses a number of challenges. In particular, objectives

for control across the scale of a city often force trade-offs between flood reduction

and water quality; without informing control decisions based on these trade-offs,

unintended consequences will affect performance across the system. To address this

challenge, this dissertation introduces a real-time control algorithm to balance loads

across distributed sewer assets and equalize combined sewer flow. The algorithm is

xii



evaluated in a simulated subsection of the Detroit combined sewer network. Trade-

offs between flow and water quality objectives are evaluated to inform algorithm

parameterization and considerations toward implementation. 3.) While the individ-

ual control of either sewer networks or water resource recovery facilities (WRRFs)

has been explored separately, the opportunity to link these system components must

consider the impact that sewer control has on WRRF operation and performance. By

focusing on chemical phosphorus treatment, this dissertation quantifies the impact

that WRRF influent dynamics and chemical addition has on treatment efficacy and

efficiency. Namely, leveraging these two strategies together, phosphorus treatment is

maintained or even improved, while chemical consumption is reduced. These findings

exemplify benefits that can be accomplished by coupling the control and operation

of system-wide assets.
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CHAPTER 1

Introduction and Overview

The management of the urban water cycle is readily acknowledged as one of our

most important environmental challenges. This is particularly true in the context of

wastewater and stormwater, which continue to be the sources of some of our most

pressing environmental woes. While the explicit separation of storm and sewer infras-

tructure has yielded a number of benefits over the past decades, many communities

still operate combined sewer systems. The integration of stormwater and wastewater

into the same pipe network poses a number of challenges, including urban flooding,

sewer overflows, highly variable wastewater treatment performance, strict regulatory

decrees, and even impacts to public health. While these issues have been noted for

decades [1], aging infrastructure and increasing severity of storms are only further

exasperating the situation [2, 3].

Decision makers and operators of urban wastewater systems continue to be tasked

with meeting increasingly stringent regulations, while operating aging systems with

shrinking budgets. For those communities that can afford it, construction of new and

bigger assets (e.g., storage basins, pipes) poses one viable solution. For example, the

city of Chicago has developed and constructed an $4 billion tunnel and reservoir plan

(TARP) to capture storm and sewer water for the last several decades [4]. By most

accounts, the new deep tunnel system has performed well, reducing harmful overflows

and increasing the amount of water treated before being discharged to Lake Michigan

[5]. Most communities across the US and world do not, however, have enough money

1



to respond in a similar fashion. More realistically, most municipalities work with

limited annual budgets, which allow them to fix one small component of the system

at a time — with the hope that the overall collection system and treatment plant will

benefit over the long term. As has been noted, however, smaller individual fixes may

not lead to overall improvements and may, in some cases, lead to worse performance

[6, 7]. This begs the question: what alternatives exist to expensive and massively

disruptive new construction, and how can we build water infrastructure that adapts

to the rapidly changing urban water cycle?

The recent affordability and availability of sensors and wireless communication

technologies has resulted in a growing abundance of new resources to support water

management. This, in concert with remote actuation (e.g., gates, valves, pumps),

enables a paradigm shift in the way that urban wastewater systems are viewed and

managed. Rather than a static, passive system, the vision of smart wastewater

systems is one in which sensors provide a comprehensive look into real-time sewer

and wastewater treatment conditions. Similar to self-driving cars, the behavior of

distributed infrastructure assets can be autonomously adapted to enhance the per-

formance of existing systems. Toward this vision, the goal of this dissertation is to

enable real-time and data-driven modeling and control of urban wastewater systems

by evaluating the role of real-time data in decision-making.

Throughout this dissertation, the specific focus will be on the urban wastewater

system, which includes both the sewer network (stormwater and wastewater drainage

and conveyance) and the water resource recovery facility (WRRF, formerly known

as the wastewater treatment plant, WWTP). The span this dissertation is illustrated

in Figure 1.1.

Realization of this vision demands the closure of key knowledge gaps, which must

be addressed to begin bringing autonomous wastewater systems to fruition:

• We do not yet understand how to develop flexible, real-time models of combined

sewer systems. These systems are temporally dynamic and spatially hetero-

geneous. To leverage the real-time sensor data that capture these nuances, a

data-driven modeling toolchain must learn from historical measurements and

2



incorporate flexible re-calibration using the most relevant window of data.

• We do not understand the scalability of algorithms for the real-time control of

entire, city-scale combined sewer systems. Real-time control of sewer systems

has been demonstrated with a number of control approaches and algorithms.

There is a need to assess the scalability of these approaches to control vastly

distributed sewer assets in a coordinated fashion. Furthermore, impacts of

sewer control must be considered in light of trade-offs between water quantity

and quality objectives, particularly when they are competing.

• We do not understand the impact of collection system control of treatment

operations. On their own, sewer networks and WRRFs are complex systems.

Considering and balancing decisions and objectives across both of these compo-

nents is rarely done. However, leveraging control actions to impact and benefit

the collection system and WRRF presents an exciting opportunity. Quan-

tification of these potential benefits in terms of treatment performance and

operational considerations is still needed.

To advance and build upon the idea of smart urban wastewater management, and

bridge these knowledge gaps, this dissertation builds upon environmental engineer-

ing, data science, and systems analysis. The specific contributions of this dissertation

include:

Chapter 2. A data-driven toolchain for the modeling of combined sewer flows using

signal processing and machine learning (frequency filtering, Gaussian processes,

system identification). The toolchain learns from historical sensor data to sup-

port real-time forecasting and flexible model re-calibration. The methodology

is evaluated across a large, three-year dataset collected by sensors in the Detroit

combined sewer network.

Chapter 3. A real-time control algorithm that balances loads across distributed

sewer storage assets. The algorithm is applied for the equalization of combined

sewer flow and is evaluated in a simulated subsection of the Detroit combined

3



sewer network. Most importantly, the approach is evaluated to analyze trade-

offs between flow and water quality objectives, which is presently missing from

current literature.

Chapter 4. A study that evaluates the impacts of collection system control on

WRRF treatment performance. Motivated by regional environmental concerns,

we quantify the impacts of WRRF influent dynamics and chemical addition

on chemical phosphorus treatment. Specifically, this examines sewer control

scenarios from Chapter 3 and ferric chloride dosing strategies, and assesses

implications for treatment efficacy and efficiency.

1.1 Background

1.1.1 Combined Sewers, Wastewater Treatment, and Water Quality

Combined sewer systems integrate stormwater flows into the wastewater sewer

network (Figure 1.1a), resulting in flows that exhibit distinct, and often undesirable,

peaks during precipitation and snowmelt. These peak events are superpositioned over

the more periodic diurnal wastewater dynamics, making comprehensive modeling

and forecasting a challenge. The combined stressors on these systems often lead to

adverse conditions at the WRRF, which can detrimentally impact surrounding water

quality and sewer operation [1].

Combined sewer overflows. Storage basins in combined sewers divert, collect,

and store excess combined flow during precipitation events, so as to not overwhelm

the downstream WRRF. Once the system is less inundated, the aim is to slowly

reintroduce the stored combined flow back into the system where it can be treated

at the WRRF. However, when the capacity of these basins is exceeded, combined

sewer overflow (CSO) events result, whereby stormwater and wastewater from these

basins are discharged into a surrounding water body such as rivers. This is often

done with little (e.g., primary and disinfection only) to no treatment (Figure 1.1b)

[1].
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Dynamic treatment challenges. Sewer storage basins and CSOs are intended

to buffer the downstream WRRF from being overwhelmed by excess stormwater.

However, the influent to the WRRF is still impacted by precipitation effects, with

impulses of stormwater and variation in pollutant concentrations and mass loads.

This is also the case for separated sewer systems, where stormwater infiltrates into

aging sewer pipes [8]. The dynamic WRRF influent challenges treatment processes by

reducing the efficiency and efficacy of treatment performance (e.g., washout of solids

and microorganism populations from clarifiers and bioreactors) or requiring dynamic

treatment operation (e.g., chemical dosing, aeration, pumping) (Figure 1.1c) [9, 10].

Flooding and sewer backups. Blockages in the sewer system during precipi-

tation events can result in sewer overflows and backups of both stormwater and

wastewater into residential areas and nearby water bodies [11, 12]. Further, over-

utilization of sewer storage can cause them to overflow and result in localized network

flooding.

1.1.2 Sewer Sensor Data and Modeling

Urban wastewater systems are as dynamic and complex as the cities that they un-

derpin. Wastewater generation patterns and stormwater runoff depend on dynamics

that change under a variety of conditions [13–15]:

• Seasonal weather patterns (e.g., warm spring rain on existing snow increases

stormwater volumes and changes rainfall-runoff dynamics via snowmelt)

• Variability in storm characteristics impacted by climate change (e.g., more

frequent and severe storm events inundate sewer infrastructure assets beyond

their design capacity) [15]

• City development and population change (e.g., landuse change alters rainfall-

runoff dynamics; growth or contraction of urban populations impacts wastew-

ater generation patterns)
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• Infrastructure aging, and retrofit and new construction (e.g., aging sewer pipes

experience increased infiltration; augmentation of sewer infrastructure impacts

flow routing)

Due to these dynamics, estimating current or predicted sewer conditions with a

static model of the underlying physical system will not be sufficient. Rather, the

modeling approach must be flexible to continuously incorporate variable, dynamic,

and uncertain features and inputs.

The traditional, physically-based modeling approach in water resources and civil

engineering relies on a thorough physical characterization of the entire urban water

system. This includes the generation of wastewater patterns and precipitation-driven

stormwater runoff, as well as the routing of these flows (and pollutants and other

water quality constituents) throughout the pipe network. Herein, this is referred to

here as physical modeling. An example of this is the description of open channel

flow and surface runoff through Saint-Venant equations, a system of partial differ-

ential equations formulated through a physics-based understanding of underlying

hydrologic and hydraulic processes [16]. While the act of formulating this physical

modeling approach has greatly grown our understanding of hydrologic and hydraulic

processes, their use in real-time modeling at a urban system-scale is limited for sev-

eral reasons: 1) large amounts of data are required to calibrate these highly detailed

and parameterized models, 2) laborious effort is needed to update the model config-

uration as the city changes through time, and 3) model complexity makes continuous

re-calibration in real-time computationally burdensome — if not infeasible — for a

typically-resourced water utility [17–20]. This creates motivation to consider alter-

native uses of data science-based methods to enable a new generation of data-driven

modeling approaches.

Advancements in sensing and wireless communication technologies have enabled

the deployment of sensors throughout the urban wastewater system (Figure 1.1d)

[21]. By deploying an array of sensors in these environments, utilities now have an

unprecedented opportunity to leverage real-time monitoring of system conditions,

including precipitation, water level, flow, and water quality parameters. However,
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monitoring is only one application of these abundant data resources. Indeed, the

development and calibration of system models from historical and real-time sensor

data stands to enhance our understanding of these dynamic water systems, as well

as provide current and future estimates of system conditions. In application, this

will better inform control decisions and enable improved operational response to and

anticipation of storm events [22, 23].

The growth of real-time data resources motivates research into and assessment

of data-driven modeling approaches for describing stormwater and sewer hydrologic

processes. As their name suggests, these approaches build mappings between system

input and output data using statistical features and relationships that are observed

in the data. As data-driven modeling is often used as a catch-all term, there are a

number of approaches that are classified under this umbrella, including regression,

decision trees, genetic algorithms, and neural networks, to name a few [24]. These

techniques can be applied in the context of a black-box system, without knowledge

of the internal structure, learning solely from characteristics of the data. One of

the most common examples of this in the field of hydrology and sewer modeling has

been neural networks [25–31]. There are pros and cons to this black-box approach;

while it doesn’t require underlying knowledge of the system, extracting a physical

interpretation of the system from the learned model is unclear, if not impossible

[32]. There are several techniques to embed some degree of physical knowledge of

the underlying system into the data-driven model [33] or apply data-driven modeling

in conjunction with physical models, largely in developing a data-driven/black-box

model for physical model outputs or errors (between model and measured outputs)

[34, 35]. More research is needed to combine the benefits of physical understanding

and data-driven methods.

In any application of data-driven models, one of the most important questions

pertains to the volume, age, and quality of data that will be used to calibrate a

data-driven model in order to accurately represent the system and thus make model

predictions [14, 23]. It is likely the answer to this question will vary based on model

structure, ability for data pre-processing, and system characteristics (e.g., rate of city

or urban wastewater system change). This thus highlights a need for a data-driven
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modeling toolchain to take advantage of data resources and be flexible for continuous

re-calibration using the most relevant historical measurements.

1.1.3 Coordinated Real-Time Control for Distributed Sewer Assets

Beyond providing real-time estimates or predictions of sewer conditions, the de-

ployment of sensors and the addition of remotely-controllable actuators to urban

wastewater systems enables significant potential to use real-time control [22]. While

local control can improve the operation of a single asset, of more fundamental in-

terest is the coordinated control across the system- and city-scales. By leveraging a

real-time look at the entire urban wastewater system, the aim is to steer the entire

system of distributed assets and actuators toward a system-wide goal via coordinated

decisions (Figure 1.1e). In fact, there has been significant development in system-

wide control to achieve this [22, 36]. There has been documented success of these

efforts toward objectives of mitigating flooding and overflows, and maximizing flow

to the downstream WRRF.

Research efforts into real-time control of urban wastewater systems have largely

focused on water quantity objectives, such as minimizing flooding and CSOs [37–40],

and maximizing flows to the WRRF [41]. However, the ability of system-wide real-

time control to simultaneously trade-off water quantity and water quality objectives

(e.g., minimizing pollutant release, performing treatment processes in distributed

stormwater assets) remains an open area of research. To our knowledge, there are

very limited studies in this area [37].

There are a number of research efforts towards realizing the goal of coordinated

real-time control; most of this work has focused on the development of control al-

gorithms [37, 41, 42]. Additional attention must be dedicated to moving the field

of real-time control in urban wastewater systems from computational and lab-based

studies to real-world implementation. This includes understanding how operators

interact with automated and decision support systems [43, 44], maintaining sewer

conveyance and WRRF performance requirements that may not be directly incorpo-

rated into control objective functions, and investigating and balancing system-wide
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trade-offs.

1.1.4 Coupled Evaluation of Sewer and WRRF Controls and Operations

WRRF treatment performance is inevitably impacted by the dynamic conditions

of the sewer system. Changes in inflows are driven by wastewater and stormwater

dynamics. Inflow fluctuations will impact a number of treatment conditions, includ-

ing chemical addition, energy requirements, and sludge production [9, 10]. In the

particular case of chemical phosphorus removal during WRRF primary treatment,

the efficacy and efficiency of metal salts to react with and precipitate soluble phos-

phorus species varies with influent conditions and other operational variables [45].

As a result, a number of dosing strategies for metal salts have been devised to ac-

count for changes in influent conditions, with varying degrees of success. These have

included constant dose, doses proportional to influent flow or pollutant load, and

feedback control to tune the dose in response to effluent phosphorus concentration

[46–48].

As will be shown, real-time control of distributed sewer assets presents the excit-

ing opportunity to augment and shape influent dynamics, ideally to improve perfor-

mance and efficiency of WRRF processes, among other objectives. While previous

studies have evaluated operational and control strategies at the plant [46–48], inter-

action of sewer control, influent conditions, and WRRF dosing strategies remains an

open question. The extent to which improvements in operation and performance can

be achieved across the urban wastewater system must be explored, which is the goal

of the final chapter of this dissertation.
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CHAPTER 2

An Automated Toolchain for the Data-Driven and

Dynamical Modeling of Combined Sewer Systems

Published as: S. C. Troutman, N. Schambach, N. G. Love, B. Kerkez. An automated

toolchain for the data-driven and dynamical modeling of combined sewer systems.

Water Research, 126: 88–100, 2017. doi:10.1016/j.watres.2017.08.065.

2.1 Introduction

Combined sewers convey large quantities of wastewater and stormwater to down-

stream treatment facilities. The delivery of these waters is highly dynamic, being

dependent not only on diurnal wastewater patterns, but also on highly uncertain

precipitation inputs. The latter is also true in separated sewer systems, which of-

ten become susceptible to infiltration due to aging [8, 49–51]. The sheer size and

complexity of these systems makes it nearly impossible for operators to anticipate

transient changes and optimally control every field-deployed asset, especially dur-

ing spatially variable storms. These assets include, but are not limited to, pumps,

gates, inflatable pillows, and large storage basins, which store, divert, and discharge

excess flows during large storms. Improving how all of these assets are controlled

and coordinated in real-time will not only reduce harmful combined sewer overflows

(CSOs) [41, 52], but will also minimize variability of the wastewater inflows that

impact treatment operations and performance [17, 53–55]. To that end, autonomous
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and coordinated real-time control stands to change how sewer networks are operated

across the scale of entire cities [16, 56–58].

The efficacy of any system-scale control must be underpinned by accurate esti-

mates of field conditions, such as water flow, levels, and quality. The recent availabil-

ity and affordability of wireless sensing technologies will lead to highly instrumented

water systems in the near future [21, 59]. Once sensors become dispersed throughout

sewer networks, the data obtained will form the backbone for real-time management

and decision-making. However, it will not be sufficient to just use the latest measure-

ments for decision making. Depending on the size and complexity of infrastructure,

once a problem is detected in the field, it may already be too late to respond. In

many instances, the combined sewer system or treatment plant will need to be pre-

pared hours or days in advance of storms to ensure that existing assets are maximally

leveraged in anticipation of any given input scenario; e.g., releasing flows from basins

or in-line storage to make room for an incoming storm, or rerouting flows during a

storm to maximize system-wide storage. Akin to steering a large ship around an

obstacle, control actions in large sewer networks will need to be proactive rather

than reactive. In a control theoretic context, this brings up the important need for

model predictive control (making decisions based on predicted future outcomes) [60],

rather than strict feedback control (making decisions based just on real-time con-

ditions). Effective control strategies will require the most up-to-date knowledge of

system dynamics, which may change over time and require model re-calibration. A

reliable forecast of future flow thus becomes imperative.

Once calibrated, a water model does not remain calibrated indefinitely. Many wa-

ter systems exhibit uncertainty, which is driven by short-term shifts in wastewater

patterns, seasonal runoff dependencies, or long-term climate and land use changes

[13–15]. Thus, a vision for smart water infrastructure, which adapts itself in real-

time to human and natural inputs, demands the development of a new generation

of adaptive models, which will ingest unprecedented quantities of streaming sensor

feeds to provide the best possible estimates of current and future conditions. The

development of such flexible modeling toolchain will, however, require a holistic ap-

proach that combines our domain knowledge of water systems with modern advances
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in real-time data processing.

To this end, the goal of this paper is to enable a fully automated and data-

driven approach for the dynamical modeling and prediction of dry- and wet-weather

flows in a combined sewer system. The core innovation behind our toolchain relates

to its automated identification, whereby the toolchain continually re-calibrates the

underlying model using real-time sensor feeds to ensure the best possible forecasts

of future system flows. The reliance on real-time measurements ensures that system

operators and future control algorithms will always be informed by the most up-to-

date understanding of system dynamics, especially as these dynamics evolve due to

changing weather or land uses. While this paper does not explicitly address control

strategies, the toolchain is inherently structured to support predictive control in the

future. The specific contributions of this paper are:

• A new data-driven identification toolchain for combined sewer and stormwater

systems, based on Gaussian Processes and dynamical System Identification,

• A characterization of system uncertainty, which guides how often components

of a model need to be re-calibrated to reflect the uniquely changing nature of

urban water systems.

To justify the need for this approach, we begin by providing an overview of

existing models for combined sewer systems. The proposed toolchain will then be

introduced and evaluated using a novel cloud-based data architecture. Finally, this

entire end-to-end solution will be evaluated on sensor data collected in a large, real-

world combined sewer system.

2.1.1 Existing Approaches

2.1.1.1 Physical Modeling

The most longstanding approach for the modeling of sewer networks has been the

physical model. These models seek to characterize the entire sewer collection system,

including the drainage subcatchments, the wastewater generation patterns, the pipe
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network, and many other physical components. Due to this large degree of charac-

terization, physical models have greatly added to our understanding and manage-

ment of urban water systems. Such a high level of detail requires a correspondingly

high level of parameterization including land use, soil types, and pipe characteris-

tics (e.g., slope, diameter, roughness), as well as less well-defined information (e.g.,

roof downspout connections). Maintaining these models at the city-scale is laborious

and expensive, especially when considering the need to update model parameters in

response to urban development, urban contraction, and the implementation of new

distributed stormwater solutions [18–20]. As such, uncertainty in the dynamics of

the system limits the useful life of physical models. Additionally, the most common

physical models are constructed using systems of partial differential equations, such

as the Saint-Venant equations, requiring advanced analytic or numerical techniques

to generate solutions [16], and demand significant computational effort for model

simulations. Hence, the challenge of using large and high-resolution physical models

for real-time control concerns the computational expense and complexity related to

re-calibration [16, 17].

2.1.1.2 Data-Driven Modeling

The development of data-driven approaches has been increasing in the modeling

of urban water systems. This is most evident in the use of Neural Networks (NNs), a

form of black-box model in which hidden parameters, or weight layers, are adjusted to

“learn” the relationship between measured input and output data [61]. Most often,

the input data comprise a rainfall time series and the NN is trained to predict the

corresponding flows [25, 27–31]. This approach relies only on data, which has made it

a popular and powerful tool across many disciplines beyond water resources. Unlike

in physical models, characterization of the actual water system is not required. The

application of neural networks for the modeling of hydrologic and hydraulic systems

has generally reported good model performance [26, 28–30]. In part, this can be

explained by the ability of NNs to model highly non-linear and nuanced relationships

between input-output data sets [26, 32, 61]. Furthermore, once trained, NNs are
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highly computationally efficient in making fast predictions of future system states

[28–30].

Unlike physical models, however, the parameters of NNs often lack physical inter-

pretation [29, 32, 33, 62]. Since the majority of optimization and control approaches

depend on an explicit description of system dynamics [63], this limits the use of NNs

in robust management and safety-critical control approaches. Most importantly,

perhaps, requirements pertaining to data quality and measurement or model uncer-

tainty have yet to be clarified, which limits the extent to which these models can be

transferred between study areas or accommodate changing conditions.

2.2 Toward a Holistic Real-Time Modeling Toolchain

More so than just a model, the real-time forecasting in sewer networks demands

an end-to-end toolchain. While a model represents the underlying dynamics of the

system, it is only one part of a more complex processing chain, which must ingest

noisy sensor data and convert it to actionable forecasts. The complexities associated

with such a task are best illustrated visually, as shown in Figure 2.1, in which rain

and flows in a combined sewer system are plotted. Real-world sensor data is inher-

ently noisy, often to a degree beyond which it is difficult to visually interpret. Once

filtered, however, the underlying dynamics become more apparent, such as stormwa-

ter inputs or the diurnal wastewater inputs generated by households. Since these

diurnal dynamics and wet-weather flows are described by fundamentally separate

dynamics, calibration of the model becomes challenging because the two input data

streams must first be decoupled.

Furthermore, depending on the location of the sensors in the collection network,

the magnitude of the underlying flows differs, making it impractical to translate

model parameters of one site to another. System-based uncertainty in the measured

signals also introduces significant challenges, as a set of model parameters that were

calibrated in the past may not adequately describe present dynamics due to changing

climate, baseflows, or human inputs. While many more challenges exist, for instance

deploying sensors for water quality as in Banik et al. [64], a set of core requirements

15



Figure 2.1: Example of sensor signal in a combined sewer system, sampled at five-
minute resolution, highlighting the complexities that are present in real-world mea-
surements (Site Q05). The estimated flow was determined using a low-pass Butter-
worth filter to remove high frequency sensor noise. More information about sensor
measurements is included in Section 2.3.3.1.

arises in the development of a robust real-time modeling toolchain:

• Streaming sensor data must be ingested, quality-controlled, and decoupled

(dry-weather flows, wet-weather flows, etc.) rapidly before they can be used to

calibrate or re-calibrate the underlying model.

• The approach should be automated and readily transferable between sites,

requiring only data as an input.
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• The underlying model must be computationally efficient to ensure that fore-

casts can be made within time windows that are suitable for decision-making

and control.

• Ideally, the model dynamics should be structured in a way to interpret the

physical meaning of parameters and enable the use of formal control theoretic

or optimization approaches.

In order to meet these requirements, our approach is data-driven, yet aims to preserve

intuition by decoupling the signal into physically-meaningful flow components (i.e.,

dry- and wet-weather) — that is, rather than being fully abstracted as a black-box,

the underlying models are of a structure that should be familiar and interpretable

to those working in the water domain.

2.3 Methods

Given a rainfall measurement or weather forecast p, our problem is framed by

the need to predict the flow q at time t in a combined sewer or stormwater conduit.

In this section, we first begin by introducing the model structure. We then describe

the core contribution of the paper: an automated identification toolchain used to

continually re-calibrate the underlying model in response to streaming sensor data.

2.3.1 Model Structure

The instantaneous flows in a combined sewer are described by the sum of wet-

weather flows (rainfall runoff) and dry-weather inputs (domestic wastewater). Specif-

ically, we assume that

q(t) = h(t) + d(t), (2.1)

where q is the combined flow, h is the wet-weather flow, and d is the dry-weather

or wastewater flow. The flexibility of this representation permits it to be used for

a number of models. For example, a stormwater network can be represented when

the dry-weather flows are not modeled, while a non-combined sewer network can
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be represented without accounting for wet-weather flows. Our approach does not

explicitly quantify groundwater infiltration into the network since this component is

implicitly included in the “dry-weather” estimates. Infiltration can be a significant

and important component in many systems, and could be estimated, if needed, by

further segmenting the flows.

The dry-weather flows d(t) are governed by a repeating probabilistic process,

which must be learned from the data. The wet-weather flows h(t) are approximated

by an n-th order linear differential equation

dnh

dtn
+ a1

dn−1h

dtn−1
+ · · ·+ an−1

dh

dt
+ anh(t)

= b0
dnp

dtn
+ b1

dn−1p

dtn−1
+ · · ·+ bn−1

dp

dt
+ bnp(t),

(2.2)

where a1, · · · , an and b0, · · · , bn are parameters. When n = 1 the model presents

the familiar and physically-intuitive unit hydrograph, which is used in the hydrologic

sciences to conceptualize the hydrograph resulting from one unit of rainfall (e.g.,

m3/s/mm). Increasing the order of the model permits for more nuanced dynamics

to be represented. The biggest benefit of this representation relates to the ability to

rewrite the model as the impulse-driven system or transfer function [65], enabling

the application of powerful parameter identification tools, which have been developed

in the dynamical systems community [66]. Furthermore, this formalism allows for

feedback control and model predictive control methods to be applied to the system

[63], thus opening the door to future real-time control applications.

2.3.2 Toolchain to Identify and Predict Dry- and Wet-Weather Flows

Given sensor measurements of flow q and rainfall p, our problem is framed by

the need to identify the model order and the parameters describing the wet-weather

flows, as well as the parameters of the dry-weather flows. Once the model parameters

are identified or learned, the resulting model can then be used in a predictive fashion

by taking the measured state q and forward-modeling it using the forecasted or

measured rainfall p.
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For a given sensor pair (flow and rain), our toolchain (Figure 2.2) identifies the

model parameters by training the full model on a set of historical observations of

flows and corresponding rainfall measurements. The first step in our processing chain

involves the learning of the dry-weather flows using a Gaussian Process (Section

2.3.2.2). The full time series of historical dry-weather flows is then estimated and

subtracted from the original flows to derive an estimate of the wet-weather flows,

which are then used along with measured rainfall to identify the parameters of the

wet-weather model (Section 2.3.2.3). This step is very important, as it is particularly

difficult using frequency-based filtering, for example, to separate a storm from the

dry-weather flows when the two have similar magnitudes or occur across the same

timescale. The approach is inherently flexible, as it can be re-calibrated continuously,

or as needed, when more measurements become available. As will be shown, given our

dual identification and estimation formulation, the approach is also highly resilient

to missing or incomplete measurements. The only input requirements are pairs of

flow and rainfall measurements.

2.3.2.1 Flow Separation and Pre-Processing

The first step in the processing chain involves the separation of the dry-weather

flow from the measured signal (Figure 2.2a–b). The observed dry-weather diurnal

patterns display daily repetition (1 1
day

) and approximate semi-daily peaks (2 1
day

).

Thus, to achieve this separation, a Butterworth bandpass filter [67] parameterized

with a range of 0.5 to 3 1
day

is applied. This has the immediate impact of removing

high-frequency sensor noise and low-frequency flows (Figure 2.2b). The outputs of

this operation clearly exhibit the familiar wastewater diurnal pattern, with distinct

dynamics for weekdays and weekends. However, since the filter allows daily com-

ponents through its pass band, daily fluctuations in wet-weather flows are still very

apparent in the output and must be removed before the dry-weather diurnals can be

characterized. To remove the diurnal wastewater patterns distorted by rain storms,

the precipitation input is used to delineate times of “dry” weather. As an additive

step, the filtered signal is separated into daily bins. Simple threshold criteria for
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Figure 2.2: Proposed identification toolchain applied to measured combined sewer
flows.

magnitude and length of the diurnal pattern for each site are used to remove daily

signals influenced by wet-weather flows. This may occur when a rain gauge does

not measure rainfall, but wet-weather flows are still evident. The result of these

operations is a sparse dry-weather time series, which only contains those portions of

the flow that are not impacted by wet-weather inputs (Figure 2.2c). This series is

then used to characterize the dry-weather model (Section 2.3.2.2). Most importantly,

perhaps, the dry-weather model can be used to estimate historical dry-weather flows
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(Figure 2.2d), which can then be subtracted from the measured flows to derive a

historical estimate of wet-weather flows (Figure 2.2e).

2.3.2.2 Dry-Weather Flow Characterization

As evident in Figure 2.2, the task of characterizing dry-weather diurnal patterns

in an arbitrary sensor signal is non-trivial due to daily uncertainty in wastewater

generation and other factors. If accuracy is desired, there is a need to characterize

individual dynamics for each day of the week, and especially the weekends. Fur-

thermore, measurements may not be available on some week days if they have been

obscured by wet-weather flows. As such, the approach has to be robust to missing

measurements. The high level of non-linearity in the dry-weather diurnal dynamics,

as well as their repeating pattern makes them particularly difficult to model as a

function of simple inputs. This likely explains why dry-weather signals are often

modeled in literature as simple static functions [68], rather than the dynamically

changing systems that they really are. Physical models have been proposed as an

alternative, but are highly parameterized [69, 70].

To address these challenges, our approach represents the dry-weather signal using

a non-parametric probability model, which is conditioned on the incomplete dry-

weather data received from the first stages of our processing chain. Specifically, we

assume that for a measured dry-weather signal y at time t,

y(t) = f(t) + ε, (2.3)

where f(t) is the modeled dry-weather and ε ∼ N (0, σn) represents the underlying

model and measurement uncertainty, which is normally distributed with a variance

σn. A powerful model can be obtained by representing the above relation as a

Gaussian Process (GP) [71]. Specifically, rather than learning an explicit mapping

for f(t), it is possible to characterize the distribution over all (possibly infinite) dry-

weather diurnals that describe the observed data. In this setting, the distribution
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over all dry-weather models is given by the Gaussian Process

f(t) ∼ GP (d(t), k(t, t′)) , (2.4)

which is fully characterized by its mean function d(t) and covariance function

k(t, t′) = E[(f(t)− d(t))(f(t′)− d(t′))]. (2.5)

Due to their cyclical patterns and irregular shapes, dry-weather diurnal signals

are difficult to model using standard linear regression techniques, since the underly-

ing basis functions that describe the model are unknown. Rather than defining an

explicit relation that depends on just time, our implementation relies on using the

covariance function k(·, ·) to determine the degree of similarity between points in the

dry-weather signal. When making predictions of dry-weather signals at times when

no measurements are available, this logic dictates that the missing measurements is

most likely similar to its nearest neighbors or to those points that have been observed

on the same day during a different week.

This notion can be encoded through the use of specific covariance functions, or

kernels. Specifically, our models make use of two kernels, which are added together

to model the covariance of the dry-weather signal. The first is a sinusoidal or periodic

kernel

kper(t, t
′) = σ2

p exp

−2 sin2
(
π|t−t′|
p

)
`2p

 . (2.6)

This kernel is characterized by its hyperparameters σp, p, and `p, which must be

learned before predictions can be made. Given two points t and t′ in time, this ker-

nel embeds the notion that similarity between observations is determined according

to a repeating pattern. Simply stated as an example: an observation on a Wednes-

day more closely resembles that made during the same time during another week,

rather than a measurement made on a Saturday morning. This also implies that the

parameters of the kernel embed meaning about the physical and hydrologic nature

of the diurnal wastewater flows, such as periodicity and magnitude, unlike black-box
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models. The p parameter, for example, encodes how often a signal repeats (daily

in our case), while the length-scale parameter `p determines how closely points are

related throughout the day.

Recognizing that the day and time of the week are not the only factors describing

the dry-weather wastewater pattern, we also use a rational quadratic kernel kRQ(·, ·),
which is given by

kRQ(t, t′) = σ2
r

[
1 +
|t− t′|2

2α`2r

]−α
. (2.7)

Once the the hyperparameters σr, α, and `r are learned, the use of this kernel cap-

tures variations in the magnitude of the dry-weather signal that cannot be explained

by simple periodicity, but rather by a proximity to neighboring points in time. This

includes, but is not limited to, seasonal variations in magnitude or short-term fluc-

tuations (e.g., holidays, sporting events).

While the hyperparameters of these kernels could be manually calibrated, the

major task in the use of this probabilistic model relates to using the sensor data to

automate this task. This can be accomplished by storing the observed dry-weather

measurements and their corresponding weekly time stamps in the vectors y and t. It

can be shown that the posterior distribution over all the dry-weather functions that

describe this data is given by applying Bayes’ Rule

P (f |t,y) =
P (f)P (y|t, f)

P (y|t)
, (2.8)

which, given our assumptions, simplifies to

P (f |t,y) ∼ N
(
k(t, t)

[
K(t, t) + σ2

nI
]−1

y ,

k(t, t′)− k(t, t)
[
K(t, t) + σ2

nI
]−1

k(t, t′)
)
.

(2.9)

The hyperparameters can be learned by maximizing the marginal likelihood P (y|t).
Unlike in the predictive distribution, no closed form solution exists for this relation.

However, a gradient-based optimization algorithm can be used to find the optimal

(or near-optimal) hyperparameters by maximizing the log-likelihood, which is given
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by

logP (y|t) = −1

2
yTK−1y − 1

2
log |K| − n

2
log 2π. (2.10)

Once model is learned, Equation 2.9 can then be used to make a prediction y∗ at

a time t∗ via

P (y∗|t∗, t,y) ∼ N
(
k(t∗, t)T

[
K + σ2

nI
]−1

y ,

k(t∗, t∗) + σ2
n − k(t∗, t)T

[
K + σ2

nI
]−1

k(t∗, t)
)
.

(2.11)

2.3.2.3 Wet-Weather Flow Identification

Once the full historical dry-weather flows are estimated, they are subtracted from

the original measurement to derive an estimate of historical wet-weather flows (Figure

2.2). This estimate can then be used to identify the input-output relationship be-

tween precipitation and wet-weather flow, which our toolchain accomplishes through

the use of System Identification [66]. In short, System Identification is a form of

inverse modeling, where input and output data are provided, a model structure is

specified, and the parameters of the model are learned from the data.

In our toolchain, the structure takes the form of a transfer function model [65, 72],

which represents the frequency (s) response of the flow model (Equation 2.2) as

G(s) =
H(s)

P (s)
=
b0s

n + b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
; (2.12)

the input is precipitation data P (s) and output is wet-weather flow data H(s).

The parameters of the differential equation a1, · · · , an, b0, · · · , bn are placed into

the vector θ. For parameter identification, let ZN denote the N -dimensional mea-

sured data set, h(t) denote the measured system output, and ĥ(t|θ) denote the pre-

dicted system output given system parameters θ. The prediction error is given by

ε(t, θ) = h(t)− ĥ(t|θ). (2.13)

The desired parameters maximize the fit between observed and modeled dynamics.
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Mathematically, we seek to minimize a norm of the prediction error, given as

VN(θ, ZN) =
1

N

N∑
t=1

l(ε(t, θ)), (2.14)

where l(·) is a scalar-valued norm function. If the standard choice of l(·) as the

quadratic norm is used

l(ε) =
1

2
ε2, (2.15)

an estimate of the system parameters θ̂ for the measured data set is given by

θ̂ = θ̂(ZN) = arg minθVN(θ, ZN). (2.16)

To minimize VN , parameters are iteratively changed using numerical strategies such

that

θ̂
(i+1)
N = θ̂

(i)
N − µ

(i)
N

[
R

(i)
N

]−1
V ′N

(
θ̂
(i)
N , Z

N
)
, (2.17)

where V ′N is the gradient of VN , R
(i)
N denotes a matrix to dictate the search direction,

and µ
(i)
N is the step size to decrease VN with each iteration. For the quadratic norm,

VN(θ, ZN) =
1

N

N∑
t=1

1

2
ε2(t, θ), (2.18)

which implies that

V ′N(θ, ZN) = − 1

N

N∑
t=1

ψ(t, θ)ε(t, θ), (2.19)

where ψ(t, θ) denotes the gradient of ĥ(t|θ) with respect to θ.

To estimate the parameters, during each numerical iteration, the search direction

is calculated using each using a Gauss-Newton method. Specifically, the search

direction is calculated

R
(i)
N = V ′′N(θ, ZN) =

1

N

N∑
t=1

ψ(t, θ)ψT (t, θ)− 1

N

N∑
t=1

ψ′(t, θ)ε(t, θ), (2.20)
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where ψ′(t, θ) is the Hessian of ε(t, θ). However, determining ψ′ may be computa-

tionally expensive for each iteration. Rather, we assume that there exists θ0 such

that the prediction errors are independent (i.e., ε(t, θ0) = e0(t)). Near θ0, Equation

2.20 can be approximated as

V ′′N(θ, ZN) ≈ 1

N

N∑
t=1

ψ(t, θ)ψT (t, θ) , HN(θ). (2.21)

This ensures the Hessian estimate (HN) is positive semidefinite and thus converges

to a stationary solution (i.e., the global minimum).

2.3.3 Implementation

The entirety of the toolchain developed in this paper, which includes the full

source code, how-to documentation, and implementation details has been made avail-

able on an open-source public web repository (github.com/kLabUM/DRIPS). While

the authors are not at liberty to share all of the raw sensor data used in this study

due to privacy considerations, an anonymized example data set (precipitation and

corresponding flow) has been included in the web repository to allow others to evalu-

ate our approach and implementation. Users should also be able to apply the model

to their own datasets of rainfall and flows.

For this study, all analyses were carried out on a Windows OS laptop and the

software is written in MATLAB (2016b edition). The implementation of the real-time

system is executed on MATLAB as well, but is hosted on a cloud server, specifically

an Amazon Web Services (AWS) Linux instance. The low computational overhead

of the proposed toolchain does not require large server resources, which permits it

to run on a low-cost or free cloud instance.

2.3.3.1 Data Architecture and Study Area

The study was provided with access to observations from 10 flow measurement

sites and 18 precipitation measurement sites, spanning three years (2013–2016) at

5 minute measurement resolution. Precipitation data were measured using tipping
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bucket rain gauges and flow sensors varied across the sewer network, including mag-

netic, Parshall flume, and ultrasonic flow meters. The extent of study area and

location of sensors is shown in Figure 2.3, with geographic and infrastructure iden-

tifiers removed in compliance with the data agreement. The data were retrieved in

real-time using software written in the Python language and stored in the InfluxDB

time series database system [73]. This database architecture is optimized for time

series data, permitting large series to be seamlessly searched and retrieved using

web services and interfaces to popular programming languages, such as Python and

MATLAB. This was particularly important in our approach, which presents an end-

to-end, functional, and real-time data process chain. The toolchain was deployed on

an AWS instance. A visualization interface was also developed on top of the Grafana

time series visualization package [74] and Google Maps [75]. The deployed system

not only permits for data to be visualized, but also executes underlying flow models

and re-calibrates them based on intervals deemed appropriate in our identification

study.

Figure 2.3: Study area extent and location of sensors used in toolchain analysis. Sub-
catchments were delineated based on contributing runoff areas and the pipe system.
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2.3.3.2 Evaluation

While automated, the processing chain (Figure 2.2) for the dry-weather and wet-

weather model still depends on input data, which raises two challenges. Firstly, the

computational complexity of the GP algorithm scales cubically with the number of

input data [71], while the Gauss-Newton method within System Identification typi-

cally has quadratic local convergence rates [76]. As such, to improve computational

efficiency it is generally in the interest to reduce the number of historical observa-

tions that are used to train the models. Secondly, and more importantly, just like

all other models, the proposed toolchain is challenged by system uncertainty, which

means that the age of the data used to calibrate the model may play a large role in

model performance. This is particularly important when considering changing cli-

mate patterns, land use, or human inputs, which may operate on unique timescales.

To determine the impact of the size and age of calibration data, various lookback

periods were evaluated. Wet-weather models were calibrated using one to 24 months

of lookback training data. For each site, the three nearest rain gauges were used as

inputs into the System Identification procedure. A cross validation was then carried

out across a lookback period, whereby System Identification was used on each rain

gauge and flow measurement. The model that most accurately predicted the wet-

weather response of the remaining storms in the lookback period (training data) was

then used to make a prediction on a future storm (testing data). The decision to

train the model on the three closest gauges and then choose the best performing

rain-flow pair was guided by a number of factors. Firstly, the choice was motivated

by practicality, since in most cases the three closest rain gauges were either located

in the same subcatchment as the flow sensor or were close enough to assume some

level of rainfall uniformity. Secondly, this specific pairing of gauges with flow meters

is actually what the city staff had assigned through their judgment, so it provided

a good starting point to begin evaluating the proposed toolchain. It is, of course,

possible to train the flow model on every rain gauge, which proved to be out of the

scope for our initial evaluation and will be reserved for future studies. The model

calibration/identification for each site is carried out in a rolling fashion, whereby
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the approach automatically re-calibrates or re-trains the wet-weather model based

on new measurements. A similar procedure was used to evaluate the dry-weather

model performance. To predict dry-weather flows one month in advance, the model

was trained across one to 24 month lookback periods.

To evaluate the performance of each model, the fit was quantified using the

normalized root mean square error (NRMSE)

NRMSE = 1− ‖xref (t)− x(: t)‖2
‖xref (t)− avg(xref (t))‖2

, (2.22)

where xref denotes the measured data, x denotes the modeled data, and ‖·‖2 denotes

the 2-norm. Since flow magnitudes vary drastically from site to site, this formulation

permits for a relative comparison across the study area. Using this metric, a perfect

fit receives a value of one and increasingly poor fits approach a value of negative

infinity. An NRMSE of zero would indicate that a mean model (simply taking the

average of all historical training data) performs as well as the proposed model.

2.4 Results

2.4.1 Dry-Weather Flow Model

When tested against future data, the GP-based approach accurately modeled

the dry-weather diurnal patterns in the conduits, as evidenced by NRMSE metrics

(Table A.1), as well as a visual inspection (Figure 2.4). In particular, the modeled

dynamics closely resembled those of the measured values. The approach even cap-

tured the nuanced dynamics of individual days, such as weekends (one diurnal peak)

and weekdays (two peaks). The GP model also provided estimates during times of

wet weather (middle section of Figure 2.4), during which measured values were not

available. While the accuracy of these wet-weather diurnals can thus not be calcu-

lated, the modeled dynamics did reflect what could intuitively be expected on those

days.

The impact of lookback periods (how much data was used to train the model)
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Figure 2.4: Predicted dry-weather flow using GP, compared to the observed dry-
weather flow (Site Q02) (average NRMSE value of predictions is 0.7427).

Figure 2.5: Dry-weather prediction performance of GP using different training look-
back windows. Dot on each curve indicate the lookback period that resulted in the
best performing model. Dashed line indicates average model performance.
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was unique to each site (Figure 2.5 and Table A.1). For most sites (Q02, Q04, Q05,

Q06, Q08, Q09), model performance did not drastically improve with longer lookback

periods, showing only marginal improvements when more data was used to train the

model. This is also apparent through visual inspection of the modeled dynamics

(Figure 2.4), which showed very similar model predictions regardless of the duration

of measurements used to train the model. One site (Q10) yielded notably better

performance for short lookback periods, while the remaining sites (Q01, Q03, Q07)

required longer lookback periods for satisfactory model performance. On average, a

lookback period of 6–9 months yielded the best performing dry-weather model. Be-

yond this point, the use of longer periods of historical training data actually resulted

in a worse model performance on average.

2.4.2 Wet-Weather Flow Model

For all sites, a third order wet-weather model structure exhibited the best NRMSE

performance. Visual inspection revealed that the System Identification procedure

accurately parameterized the wet-weather model, as seen in the predicted dynamics

when given a measured rainfall input (Figure 2.6). Generally, the fit of the model im-

proved as the lookback period increased (Figure 2.7 and Table A.2). In other words,

when the model was trained using more historical storms, it generally performed

better at predicting future events. At some point, however, increasing the lookback

period yielded marginal or worse performance. On average, peak model performance

was achieved when using 15 months of training data (Figure 2.7), after which using

more data to train the model actually yielded worse NRMSE performance. For a

few sites, the model performed best when using even shorter lookbacks (Q10, Figure

2.7 and Table A.2).

Rainfall dynamics played one of the largest roles in explaining differences in mod-

eled and measured wet-weather flows. In particular, relatively worse model per-

formance often connected to storms during which measured rainfall dynamics and

measured flows did not correlate. For example, in Figure 2.8a, a storm with dis-

tinct rainfall peaks is shown. While the modeled flows also revealed these peaks,
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Figure 2.6: Predicted wet-weather response during a storm event using System Iden-
tification and various lookback windows for model learning, compared to the mea-
sured wet-weather flow (Site Q03). The plotted rainfall measurements are those of
the gauge that was selected for the model (Section 2.3.3.2).

the actual measured flows did not exhibit one of the major flow episodes (i.e., ap-

proximately mid-way through the third day). While not shown here, the converse

was also observed at times, where no rainfall was measured but a wet-weather flow

was measured. This is likely due to the rain gauge being outside of the contributing
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Figure 2.7: Impact of model learning lookback window on wet-weather response
prediction performance for each site. Dot on each curve indicate the lookback period
that resulted in the best performing model. Dashed line indicates average model
performance.

watershed and underscores the significance of spatially variable storms. As expected,

the model did not predict these flows during these isolated instances.

Models for five of the ten sites also showed a behavior wherein the modeled dy-

namics agreed with measurements for most storms, except during large rain events

(example Figure 2.8b). In these cases, the measured values showed a distinct leveling-

off, whereas the model predicted a sharp hydrograph peak. These dynamics could be

caused by pipe capacity exceedance or, given the interconnected nature of sewer net-
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works, control actions at upstream infrastructure assets, such as pumping stations,

storage dams, and weirs. In this study, it was, however, determined through con-

firmation with the city that these instances corresponded with flows that exceeded

pipe conveyance capacity.

(a) Example of measured rainfall that
does not result in wet-weather response
(Site Q06). The precipitation data
shown here is the rain pair for the given
flow site.

(b) Instance of pipe capacity exceedance
caused by a large storm event (Site Q05).
The precipitation data shown here is the
rain pair for the given flow site.

Figure 2.8: Wet-weather artifacts of the System Identification procedure.

2.4.3 Combining Flows

Once the dry-weather and wet-weather flow models are identified using the pro-

posed toolchain, the combined flows are modeled for a given precipitation input by

summing the two components. While the performance of the final model is thus

clearly underpinned by the performance of the respective sub-models, it is nonethe-

less worth noting that the final model exhibited good performance in predicting com-

bined flows. For example, as shown in Figure 2.9 for site Q05, the combined model

closely adhered to the measured flow both during dry weather and wet weather pe-

riods, aside from a small deviation measured on day five, where a change in flow was

measured but not accompanied by a change in measured rainfall.
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Figure 2.9: Measured and predicted combined flow (Site Q05), obtained by combining
the forecasts made by the dry-weather and wet-weather models. The precipitation
data shown here is the rain pair for the given flow site.

2.5 Discussion

2.5.1 Dry-Weather Identification

As indicated by the results, the GP-based model provides a powerful tool by

which to predict and describe dry-weather diurnal patterns in urban sewer networks.

This is especially evident when considering the complexity of dry-weather dynam-

ics, which not only vary across time, but also between sites. The GP approach

accurately reflected diurnal dynamics of each site using a sparse set of dry-weather

observations. This included the nuances of dry-weather diurnal shapes, magnitudes,

and weekly trends. This should make it a very powerful tool for modeling and pre-

dicting components of sewer flows that have generally been very difficult to model due

to variability of the wastewater generation patterns. It also underscores the need for

a flexible modeling approach that is able to learn from the site-specific data, rather

than being confined to assumed shapes or dynamics. While outside of the scope of

this study, future work will include explicitly quantifying groundwater infiltration
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or baseflows from the dry-weather signal. This can be accomplished by subtracting

the diurnal estimates of the Gaussian Process from the overall flow signal during

dry-weather periods.

The major take-away from the dry-weather analysis relates to the role of the train-

ing data: generally speaking, the best model performance will be achieved when the

model is trained on enough, but not too many historical observations. As expected,

an insufficient amount of training data (in our case fewer than three months, on

average) may lead to relatively poor model performance due to overfitting. Once

enough training data are obtained, however, increasing the length of the lookback

period did not result in drastically improved modeling performance. The notion of

“enough” data will ultimately be guided by practical considerations and modeler

judgment. Nonetheless, for the sites studied in this paper a clear guideline would

focus on choosing the lookback period with the best NRMSE criterion, or the point

at which NRMSE improves only marginally with longer lookback. This underscores

the need to acknowledge uncertainty in the dry-weather diurnal dynamics, which

may be driven by changing wastewater generation patterns, seasonal impacts, or

new connections or repair to the system, indicating that older dry-weather flow sig-

nals no longer represent the current dry-weather diurnal patterns. While the best

performing dry-weather models required about 3–6 months of training data, there

was significant variability around this average, suggesting that changes in long-term

diurnal patterns are unique to each site. As such, this underscores the importance

of a flexible calibration/identification chain, such as the one presented in this paper,

which will continually tune the dry-weather model to ensure that the most relevant

measurements are used to inform forecasting.

One benefit of this dry-weather model is the ability to hindcast, wherein the dry-

weather model is used to project historical estimates of dry-weather flows. These

estimates can then be subtracted from the time-series of historical flows to recon-

struct the series of wet-weather flows. Without a good dry-weather model, the

reconstruction of wet-weather flows becomes very difficult, if not impossible. This

is especially true for sites at which dry-weather and wet-weather flows share similar

timescales and magnitudes. As was shown (Figure 2.2), the resulting wet-weather
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signal becomes much more clear after this operation, especially during small storm

events, which would have otherwise been obscured in the original time series. While

improved historical estimates of dry-weather flows are useful in practical applica-

tions, such as billing, they are perhaps even more valuable because they can then

be coupled with the System Identification procedure to reliably learn the underlying

wet-weather model.

2.5.2 Wet-Weather Identification

The performance of the wet-weather model was highly underpinned by the avail-

ability of training data. The wet-weather lookback period is a proxy for the number

of storms used for training. Given the extent of the analysis area, this number was

the same for all sites. Unlike in the case of the dry-weather model, which depends on

readily-available dry weather observations, the number of available storms to train

the wet-weather model can often be limited, which explains why the wet-weather

model requires longer periods of training data compared to the dry-weather model.

In fact, the number of storms in a particular time period can vary widely based

on the time of year; for instance, for a nine month period, the number of storms

included varied from 5 to 17 storm events. There appears to be a minimum data re-

quirement for the procedure to yield satisfactory results. For most sites, the System

Identification procedure required at least nine months of data to result in the best

relative performance, which suggests that the value of sensor data increases with the

deployment period. As such, investments into sensor networks should be cognizant

of this requirement, especially if prediction of wet-weather flows is desired.

As in the case of the dry-weather flows, the biggest take-away relates to the

discovery that including more data beyond a certain lookback point can actually

degrade the performance of the model. While this optimal period varied for each

site, this feature was evident across almost all sites. In our study, no physiograhic

features of the urban environment or storm characteristics revealed why some sites

require more or less training data than others. These features included position of

sensors in the watershed (i.e., upstream, downstream), size of the noncontributing
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sewersheds, as well as the precipitation intensity and peak rainfall of storm events.

This again suggests that system uncertainty plays a large role in model performance,

even when forecasting wet-weather flows. As such, the ability to predict future

flows depends on re-calibration of the model. The toolchain presented herein offers

the opportunity to autonomously adjust this optimal lookback period for each site,

and thus ensure that each future forecast is based on the most relevant time record

of historical measurements. The approach thus implicitly addresses the need to

re-calibrate and adapt the model as the overall collection system changes due to

changing land uses, climate, or infrastructure upgrades. This will be particularly

important in locations where changes in climate, storms, and infrastructure need to

be accounted for to ensure longevity and accuracy of a model.

Beyond sensor data availability, knowledge of the physical system will also play

a large role in the long-term efficacy of the proposed toolchain. Large storms that

cause pipe capacity exceedance will result in non-linear system behavior that may

not be fully represented by our wet-weather model. As illustrated in Figure 2.8b,

if the wet-weather model is trained on a smaller storm, the linear transfer function

will result in a predicted hydrograph that may exceed the capacity of conduits or

sensing limits. In such rare instances, the model will still have utility, as it will

be able to predict instances of overflows. Also, as mentioned in Section 2.4.2, the

impact of control actions on flow dynamics must be considered in some systems. The

identification approach used here provides the flexibility to learn a dynamical model

with exogenous inputs [66], which will be explored in future work.

As with all modeling approaches, sensor quality will play a large role in predictive

outcomes. Sensor background noise will likely not be the major challenge, as our

toolchain addresses noise via filtering and probabilistic estimation. Extensive studies

on real-time data quality evaluations are available in literature [36, 77, 78]. Beyond

formal methods there will still be a need to subjectively evaluate, on a case-by-case

basis, whether data quality is sufficient for the model to provide adequate forecasts,

especially for critical operations. Ultimately, the quality of the forecasts will be

implicitly determined by the quality of the input data. Once calibrated on reliable

data, if measurements deviate too much from forecasts, as measured by specific
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magnitude or probabilistic bounds, alerts could be sent to operators to maintain or

repair field-deployed sensors.

Additionally, if the toolchain is to be entirely automated across large systems, a

degree of sensor redundancy may be required, which will allow for a more accurate

assessment of any given situation (e.g., broken sensor vs. clogged pipe). Redundancy

will be critical across inputs (rain gauges) as well as outputs (flows), with the latter

offering more flexibility because short-term flow forecasts can still be made given

rainfall alone. Practical guidelines regarding the challenge of sensor quality will

be best learned over time by observing how operators trust, interpret, and use the

forecasts offered by toolchains such as the one presented here.

The need to understand urban rainfall variability will play, perhaps, the largest

role in improving model predictions. This is not only true for the models presented

in this paper, but for any modeling toolchain. This will be particularly true for large

collection systems, such as the one studied in this paper. Since there was no clear

correlation between model performance and the distance of a flow measurement to

its corresponding rain gauge, the role of micro-climate thus needs to be accounted for

as we develop the next generation of high-resolution urban water models. Much of

this is expected to improve as more rain gauges are deployed and as high-resolution

radar data become available.

2.6 Conclusions

Our study underscores the need to understand the uncertain and dynamic nature

of urban water systems. The various components that drive flows in urban sewer and

storm networks change across their own unique timescale. To capture these changes

more measurements are needed to characterize the spatiotemporal variability in flows.

This will be enabled by the rapid rise in sensors that are now being deployed through-

out cities. Sufficient historical observations must be available to train the models,

while also ensuring that data that are “too old” are not used in the identification

of the model. More importantly, the duration of the training periods was unique

for each site and each sub-model. The need to train the dry-weather model on a
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different amount of data than the wet-weather model suggests that a conventional,

broad-sweeping calibration approach would struggle to accomplish such a task. As

such, individual models of each flow component should be uniquely calibrated and

re-calibrated for each site, which is well within the flexibility and computational effi-

ciency of the proposed toolchain. The accuracy of predicted flows may thus depend

on the ability to autonomously re-calibrate a model, perhaps more so than the model

itself. This may permit the use of simpler models to predict flows, as opposed to

more complex models that try to capture higher degrees of complexity.

The proposed toolchain has the potential to serve as an operational tool for sewer

system control, overflow prediction, and treatment control. Since the model explic-

itly separated dry-weather and wet-weather flows, it will also be applicable in the

modeling of separated stormwater or sewer systems. More importantly, the formu-

lation of the toolchain as a dynamical system opens up the possibility of applying a

suite of robust control algorithms that could be used to guide the real-time operation

of the sewer system. While this is beyond the scope of this paper, it was a major

motivation for the specific formulation presented herein. Future work will thus focus

on extending the utility of our proposed models into a holistic and real-time control

toolchain.
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CHAPTER 3

Balancing Water Quality and Flows in Combined

Sewer Systems Using Real-Time Control

Published as: S. C. Troutman, N. G. Love, B. Kerkez. Balancing water quality and

flows in combined sewer systems using real-time control. Environmental Science:

Water Research and Technology, 2020. doi:10.1039/C9EW00882A.

3.1 Introduction

New technologies and data algorithms show promise of enabling a new genera-

tion of smart and connected stormwater and sewer systems. These systems process

distributed sensor data to predict flows, levels, and other relevant states to con-

trol valves, gates, and pumps. This enables entire collection systems to be adapted

to changing storms and inputs in real-time, promising to reduce flooding and im-

prove water quality by making more effective use and achieving high performance

out of existing infrastructure. Most studies evaluating real-time control technologies

have focused on water quantity objectives, in particular the reduction of overflows

and flooding. Comparatively little emphasis has been placed on the role of smart

stormwater systems in controlling water quality. While not regulated explicitly, con-

trolling water quality within the collection system stands to reduce effluent loads

at WRRFs by improving treatment operations, which should ultimately lead to im-

proved water quality in receiving waters.
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In the case of combined sewer systems, the same pipes are used to convey

stormwater and wastewater. Water Resource Recovery Facilities (WRRFs), also

known as wastewater treatment plants (WWTPs), receive these combined flows.

This challenges treatment efficiency due to fluctuations in flows and pollutant loads

during storm events. Given the advent of smart stormwater systems, there is an

opportunity to begin viewing the collection system as a tool for assisting the treat-

ment plant by providing desirable inflows. By dynamically controlling flows in these

combined sewer systems, peak flows to the plant can be minimized, while solids loads

to the plant, for example, can be controlled in response to real-time WRRF states,

such as nutrient loading or treatment capacity. In this paper, we evaluate the po-

tential benefits of such an approach by investigating how the collection system can

be controlled methodically in a real-time and coordinated approach to shape inflows

and loads going to a receiving WRRF.

The specific contributions of this paper are:

• The formulation of a real-time load-balancing algorithm to control distributed

storage assets in the collection system, to improve wet-weather flows and water

quality at a receiving point, and

• An evaluation of this algorithm under simulated conditions, with an analysis

of trade-offs arising during the balancing of flows and total suspended solids

(TSS) going to a WRRF.

We also provide a fully open-sourced implementation of the algorithm, with all code,

model of the study, and results shared to promote transparency, reproducibility, and

broader adoption.

3.1.1 Background

3.1.1.1 Water Quality and Combined Sewer Systems

Combined sewers integrate stormwater and wastewater flows into the same pipe

network, which is connected to the downstream WRRF. Thus, the WRRF often expe-

riences abrupt wet-weather impulses on top of more regular dry-weather wastewater
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inflows. WRRF treatment processes are sensitive to sudden changes in influent dy-

namics, as these can adversely affect treatment efficacy [9]. For instance, peak flows

received at WRRFs can cause washout of settled solids and microorganisms present

in preliminary, primary, and secondary treatment units [10]. Beyond wet-weather

dynamics, variations in pollutant loads (mass of pollutant per time) received by the

WRRF can be driven by seasonal and diurnal wastewater generation patterns, and

other factors [9], further challenging efficiency of WRRF treatment processes [10, 79].

One of the most notable and variable pollutant loads includes particulates, such as

total suspended solids (TSS). Highly variable TSS inflows can drastically affect treat-

ment performance, either due to lack of treatment capacity or the time required to

adjust to inflow variability [10]. It is not surprising, as such, that many research

efforts have been dedicated to investigating WRRF resiliency under highly variable

loads [80].

An ideal WRRF influent is one of constant flow and pollutant loads [81]. However,

this is not trivial to achieve in the real world, even with the construction of a large

equalization basin at the inlet of the WRRF [82], particularly with large and/or

flashy storm events. These large storage structures receive inflow and pump it out

at regulated rates so as to not overwhelm the WRRF [9, 79, 83]. Equalization basins

often require extensive footprints (not to mention capital investments), which does

not make them a viable option for many communities. In lieu of the construction

of expensive storage assets at the inlet of the WRRF, we contend that there is an

opportunity to look further upstream, by evaluating the feasibility of using storage

capacity that already exists in the sewer network as a means of equalizing inflows

to the WRRF. As already demonstrated, control of the collection system can be

achieved by controlling already existing assets, such as storage basins, in-line storage

dams, gates, valves, and pump stations [14, 54, 84–86].

Control of the collection system for broader water quality benefits, especially

at the WRRF, poses a number of new challenges. It is critical to examine not

only the potential of creating close-to-steady-state influent conditions (similar to an

equalization basin) [10], but also to evaluate the impacts that these control actions

have on the conveyance and performance of the combined sewer system itself. For
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instance, the control of upstream combined sewer storage to achieve downstream

objectives should not place the storage assets at greater risk of overflowing and local

flooding. Further, the storage of combined sewer flows within sewer assets could

promote the settling of solids across the collection system [10, 87], a challenge for

which many upstream assets are often not prepared. In particular, upstream assets

are not traditionally designed to accumulate solids, which can require significant

effort to resuspend, flush, or remove, and often have no on-site mechanism for solids

removal, handling, or treatment. As such, any local benefits of real-time control

must consider the system in which it is being deployed and weigh against potential

drawbacks, which is a core motivation of this paper.

3.1.1.2 Benefits of Real-Time Control

Given the recent ubiquity of sensors and connected technologies, the real-time

control of urban stormwater systems has witnessed a surge in studies and adoption

[22, 36]. The idea of autonomously controlled stormwater systems is not necessarily

very recent itself; indeed, real-time control for sewer systems has been investigated

for some time [54, 88–91]. Many of these important studies have laid the groundwork

for today’s ideas — especially for the control of flooding and overflows — and it is

arguably the emergence of readily-available and cost-effective technologies that is

fueling efforts to deploy and study smart stormwater systems. Presently, a number

of operational systems and test beds exist, including model predictive control (MPC)

implementations in Spain [92–94] and Denmark [95], as well as notable market-based

approaches in the USA [96]. The control of separated stormwater systems has also

been evaluated, including the deployment of new open-source technologies that can

be used to retrofit existing stormwater sites with internet-connected valves [23, 97].

These and other studies highlight the potential of real-time control to reduce flooding

and overflows. However, much more research is needed to close knowledge gaps

underpinning scalable and reliable control algorithms.

Despite progress on real-time flow-based monitoring and control, only a few stud-

ies have investigated the benefits of real-time control on water quality. Studies of
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individual stormwater basins have shown that TSS can be captured in retention

basins by strategically controlling retention time using a valve [98–100]. Similar re-

sults have been obtained for dissolved pollutants [101] and bacteria [102]. While

highly promising, existing studies have focused on site-scale benefits and were not

carried out in the scope of system-scale analysis, which leaves much to be discov-

ered with real-time water quality control of entire systems. As a first step toward

a bigger goal, we address this knowledge gap in this paper by formulating a control

methodology that coordinates an entire network of storage assets to achieve desired

downstream TSS objectives.

3.1.1.3 Existing Control Methodologies

A number of system-level control methodologies have risen to prominence for the

real-time control of stormwater systems. One of the most studied involves MPC, a

mathematical approach grounded in dynamical systems theory [37–40, 85, 103, 104].

MPC approximates the flows in a collection system using linearized dynamical equa-

tions, which often take the form of mass-balance reservoirs. It has shown great

potential to reduce overflows and flooding in combined sewer systems [37–40]. How-

ever, given that the approach assumes linear dynamics both for flows and water

quality — which is a considerable simplification of nonlinear water quality dynamics

— this approach has been applied to the control of water quality in a limited capacity

[37]. Further, there has still been little focus on the influence of weighting between

water quantity and quality objectives.

An alternative to MPC is provided in the form of market-based control methods

[96]. These approaches treat storage assets in a system (e.g., basins, pipes) as buyers

and sellers of a commodity (e.g., pipe or storage capacity). In these formulations,

agents trade the commodity as part of a market, where the most stressed assets are

allowed to release water via “purchases” of capacity. An appealing aspect of this

approach is its lack of reliance on explicit system dynamics for the determination of

control actions. Rather it only requires measurements of system states (e.g., water

level, flow, pollutant concentration). While this does not allow it to be analytically
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studied like MPC, it does allow for easier implementation and decentralized applica-

tion. A market-based approach can be viewed as an extension of the “Equal Filling

Degree” approach [41, 105–108], which seeks to balance the filling degree, defined

as the actual stored volume relative to the maximum storage volume in a storage

structure, among all storage assets in a collection system. This is done at each time

step by triggering control actions that increase (or decrease) the stored volume in a

particular asset if it is below (or above) the average filling degree among all assets.

Borsányi et al. [41] extended and compared Equal Filling to include a downstream

structure with a capacity related to the WRRF. The control of all other structures

was inversely related to the filling degree of this downstream asset. For example, if the

filling degree of this downstream asset increases, the upstream assets decrease their

releases to the downstream. Other approaches, such as dynamical systems, neural

network-based, and reinforcement learning-based controls have also been proposed

as intermediate complexity alternatives to MPC and market approaches, showing

good potential to remedy flooding and overflows [109–111].

Given the general emphasis of these methods on controlling flows and flooding, it

is unclear — regardless of actual control methodology — what water quality benefits

can be achieved with them when applied with real-time control at the scale of the

collection system. Integrating water quality optimization into existing real-time flow

control approaches requires significant computational overhead, especially when con-

sidering the need to formulate, linearize, and analyze dynamics with approaches such

as MPC. We contend that before exploring more complex control implementations,

a more general analysis of the trade-offs and benefits of controlling system-level wa-

ter quality is warranted. To that end, we introduce a control technique — coined

Load Balancing — of relatively low complexity but of high flexibility to simulate a

broad range of conditions focused on controlling drainage systems for water quality.

We formulate the technique in a model-free context that allows us to specify flow

and water quality objectives by tuning a small number of intuitive parameters. By

evaluating the range of trade-offs that exist when both water flows and water quality

are controlled, this study provides an assessment of real-time control benefits that

can be expanded in the future using more complex control formulations.
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3.2 Methods

We present a load balancing control methodology built around a set of core

parameters, the analysis of which will provide insight into upstream and downstream

trade-offs when controlling a system in real-time. The control algorithm is evaluated

on an established case study [112], based on a real world-inspired combined sewer

system.

3.2.1 Load Balancing Control Algorithm

Consider a collection system with n total network storage assets (e.g., tanks,

in-line storage facilities) distributed into a set of controllable assets, IC , and a set

of uncontrollable assets IU . At time step t, each asset i is described by a vector of

states of interest

Si(t) =


S1
i (t)
...

Sdi (t)

 , (3.1)

where the d elements of the vector include relevant states that describe the asset

(e.g. water level, outflows, TSS concentration). Each asset also has a corresponding

setpoint vector S∗i (t), which describes the desired states of the asset (e.g. overflow

conditions, maximum desired flows, desired loads). The state vector for each as-

set is user-specified and includes those states that are most relevant to any given

application. In simple applications, one may only seek to control water levels (e.g.

flooding), but in more complex scenarios one can expand the state vectors to include

water quality or other factors.

Some assets may be considered more critical in the system than others. For ex-

ample, operators may want to release water sooner or avoid overflows at one location

more than others due to specific preferences or regulations. To capture this user
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preference, we introduce the system importance factor αi for each asset and state

αi =


α1
i
...

αdi

 . (3.2)

This captures a relative weight of one asset’s state over another in the system —

with a higher number reflecting relatively larger importance in the system. For

controllable assets (i ∈ IC), the importance of each asset is also extended to include

an instantaneous component. For example, a storage tank that is close to capacity

or overflowing, should be considered briefly more important than those that are not

full, so as to minimize overflows or flooding. To capture this notion, we introduce an

instantaneous, or short-term, importance for each asset and state

γi(t) =


γ1i (t)

...

γdi (t)

 , γ1i (t) =
eρS

1
i (t) − 1

eρ − 1
. (3.3)

This exponential factor is computed element-wise for each time step and state within

the state vector Si and can be tuned to reflect user preferences. Given the state of

the asset, the instantaneous importance weight ρ can be tuned to reflect how stressed

an asset is at any given point in time. By analogy, ρ could encapsulate the comfort

level of an operator (e.g., release proportional to water level vs. prioritize an asset

only if it is close to full). For example, if storage capacity is used as an indicator of

importance, with ρ = 1 the instantaneous importance of the asset increases nearly

linearly with water level (Figure 3.1). With ρ = 100 the asset would be considered

important only if it is close to capacity. If asset i is uncontrollable (i ∈ IU), its

importance is not discounted in this state-dependent manner because, regardless of

state, uncontrollable assets will passively release flows (thus γi = 1). Finally, the

overall importance βi(t) is calculated by simply multiplying the system importance
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with the instantaneous importance of each asset:

βi(t) = αi � γi(t), (3.4)

where � indicates the Hadamard, or entrywise, product between αi and γi(t) (that

is β1
i (t) = α1

i γ
1
i (t), etc). At any point in time, this overall importance factor is

used to determine how much water is released from each controllable asset. This is

accomplished by computing the importance-weighted average, which compares the

state of each asset to its desired setpoint

C̄(t) =
1

n

n∑
i=1

βi(t)
> (Si(t)− S∗i (t)) . (3.5)

Note that this C̄, the importance-weighted average, includes all n assets, both con-

trollable and uncontrollable. At each time step t, the set of controllable assets that

will release water, J ⊆ IC , is determined as those whose importance-weighted devi-

ation is greater than the average; that is,

J =
{
j : βj(t) ·

(
Sj(t)− S∗j (t)

)
> C̄(t)

}
. (3.6)

Assets below this average (e.g., storage tanks with available capacity) do not release

flows. Furthermore, the amount of water released from each of these assets in set J

is computed as a relative allotment factor Rj(t) for asset j. This relative allotment

factor is defined as the importance-weighted deviation normalized within set J ; that

is,

Rj(t) =
βj(t)

> (Sj(t)− S∗j (t))− C̄(t)∑
k∈J
(
βk(t)> (Sk(t)− S∗k(t))− C̄(t)

) , (3.7)

where
∑

k∈J is the summation of the importance-weighted deviation over all assets

that will release water (i.e., each asset k in set J). This allotment factor Rj simply

assigns the fraction of a downstream asset’s capacity that will be allotted to an up-

stream asset j and is then multiplied by available downstream capacity to determine

how much to release from each upstream storage asset.
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Figure 3.1: Graphical representation of control procedure. Valves are controlled to
release water from controlled assets, relative to an allotment factor that is assigned
to each controlled asset. The instantaneous importance weight ρ can be tuned to
determine when water is released from each asset.

This procedure is summarized in Algorithm 1 (Figure 3.2).

Figure 3.2: Load balancing control algorithm.
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3.2.2 Case Study

3.2.2.1 Scenario and Implementation

All code for implementation of the above algorithm is provided open-source in a

public web repository (github.com/stroutm/LBCsewer). The algorithm is applied to

Scenario epsilon of the Open-Storm.org pystorms Python package (open-storm.

org/pystorms) (Appendix D) [112]. This package uses PySWMM [113], a Python wrap-

per for the popular U.S. Environmental Protection Agency Stormwater Management

Model (SWMM), to run and dynamically control a sewer model throughout a sim-

ulation. In PySWMM’s step-by-step execution, specified states (e.g., depths, inflows,

pollutant concentrations) are collected, calculations for control actions can be per-

formed in Python, and control asset settings (e.g., gate positions) are set before the

next simulation step is run.

The case study used for this paper is Scenario epsilon of the pystorms package

(Appendix D) [112]. It represents a combined sewer network with a subcatchment

area of 67 km2 (26 mi2) and eleven in-line storage assets with controllable orifices

(Figure 3.3). This scenario was selected due to network topology (i.e., storage assets

in series and parallel) and multiple objectives: regulation of flow and TSS load

at the network outlet (WRRF inlet) and the need to reduce flooding at each of

the upstream storage assets. The collection system receives rainfall runoff, as well

as steady, dry-weather inputs to reflect wastewater diurnal patterns (Figure B.1).

More information regarding this network can be found in the pystorms package

documentation (open-storm.org/pystorms) [112].

There is one downstream WRRF (node 1 in the network) (IU = {1}), which

receives flows from the entire upstream network. Applying the control procedure

described above, for this WRRF we are interested in flow (q) and TSS load (tss)

inflow states:

S1(t) =

[
Sq1(t)

Stss1 (t)

]
, S∗1(t) =

[
Sq∗1 (t)

Stss∗1 (t)

]
, α1 =

[
αq1

αtss1

]
. (3.8)
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Figure 3.3: System subcatchments and network topology of the case study collection
system. Numbered, circular nodes in network topology represent upstream storage
assets; relative size of circles indicate the diameter of the in-line conduit. Relative
areas of the rectangles represent subcatchment areas that directly contribute to the
corresponding storage asset. System physical dimensions are provided in Table B.1.

The flow and TSS load states are normalized to the dry-weather flows in the system.

The goal is to maintain all controlled inflows (volume per time) or loads (pollutant

mass per time) (both wet and dry) at the WRRF below the average dry-weather

flow. This is an aggressive strategy that may not be realizable, but it presents an

upper bound on performance. Striving for dry-weather inflows during wet-weather

conditions should results in benefits compared to the baseline.

The collection system also contains eleven controllable in-line storage assets (IC =

{2, ..., 12}). Each storage asset is a conveyance pipe, whose outlet is controlled

through a valve or inflatable dam. When closed, the water level in the pipe rises and

the available in-line storage capacity is used to keep flow from going downstream.

The state for each of these assets is the water level (h), which is normalized to the

maximum water depth in each controlled pipe. The setpoint for these assets is set

to zero

Si(t) =
[
Shi (t)

]
, S∗i (t) =

[
Sh∗i (t)

]
=
[
0
]

(3.9)
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to reflect the desire to empty the pipes and not keep water in the system, if possible.

The case study considers each of these in-line storage assets as equally important

within the system (the system importance for each asset i ∈ IC is αi =
[
1
]
).

The load balancing control algorithm provides the proportion of downstream

capacity to be allocated to each controllable upstream storage asset j via the rela-

tive allotment factor Rj. To translate this factor into control decisions (e.g., gate

positions), the flow to be released from each upstream asset is determined as a bal-

ance between the downstream objective setpoints, Sq∗1 and Stss∗1 , weighted by the

system importance values, αq1 and αtss1 . In this study, since αq1 and αtss1 are the

weights assigned to the downstream states, larger values of αq1 and αtss1 indicate

higher importance for these downstream objectives relative to upstream. Note that

for implementation with water quality-based control, measurements representative

of average TSS concentrations in each upstream storage asset would be required to

ensure that recommended TSS loads are released. The gate position is then cal-

culated from the desired flow at each upstream asset via orifice and weir equations

[114]. More details for this implementation can be found in the public web repository

(github.com/stroutm/LBCsewer).

3.2.2.2 System Water Quality Model

In the SWMM model, TSS is modeled using built-in pollutant model structures

[115]. The build-up of TSS on subcatchments follows a power structure:

B = min
(
C1, C2 · tC3

)
, (3.10)

where B is the pollutant build-up (mass per unit area), C1 is the maximum possible

build-up (mass per unit area) (16 kg/ha, 14.275 lbm/ac), C2 is the build-up rate

(mass per unit area per day) (7 kg/ha/day, 6.245 lbm/ac/day), t is the antecedent dry

period length (t−C3), and C3 is the exponent. The subcatchment wash-off function

is exponential:

W = E1 · qE2 ·B, (3.11)
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where W is the pollutant wash-off (mass per area per hour), E1 is the wash-off

coefficient (0.5 1/mm, 12.7 1/in), E2 is the wash-off exponent (1.5), q is the runoff

rate (in/h), and B is the pollutant remaining build-up (mass per area). TSS model

structure was taken from [115, 116] and parameter values from [116]. TSS removal

at each upstream asset considered both settling, as a function of depth in the storage

pipe, and resuspension, as a function of flow through the storage pipe:

R = 1− exp

(
− vs ·∆t
DEPTH

)
− exp

(
− a · b
FLOW

)
, (3.12)

where R denotes the percent removal of TSS concentration, vs is the settling velocity

(determined by aggregating the solids classes in Gaborit et al. [116] to yield 0.00419

ft/s), ∆t is the time step, DEPTH is the water depth in the storage pipe, a is

a ratio between velocity and TSS resuspension to result in 100% resuspension for

the maximum velocity through the storage pipe, b is a linear approximation of the

ratio between flow and velocity computed for each upstream in-line storage asset,

and FLOW is the flow through the storage pipe. The assumption of a single set-

tling velocity for all particles is a simplification made here to narrow the focus of

this study. Note that this is a simplification of the representation of the underlying

physical system; it merely serves as a simulation choice. The control approach de-

scribed above requires only measured states from the system, not an entire model.

Thus, whether implemented on a more complex simulation model or on a real-world

system with sensors, this control algorithm would remain the same in structure and

implementation.

3.2.2.3 Performance Evaluation

The performance of the control algorithm was evaluated across an entire year, us-

ing the precipitation time series in Appendix B (Figure B.2). The dynamic behavior

was evaluated by plotting the time series of controlled and uncontrolled scenarios.

The aggregate performance was also summarized across the whole year, using a set

of performance metrics while varying the control parameters (ρ, αq1, and αtss1 ). To
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reflect real world implementation, control decisions were constrained to a 15 minute

window.

Specifically, six performance metrics are evaluated: WRRF flow and TSS load

variance during dry-weather periods, comparison of controlled and uncontrolled WRRF

flow and TSS load peaks, TSS mass remaining in the sewer network, and flooding

volume. Dry-weather periods are defined by the precipitation data as being a full 24

hours after the last occurrence of rain to simplify evaluation. During these periods,

flow variance is computed by

1

T

T∑
t=1

(
Sq1(t)− S̄q1

)2
, (3.13)

where Sq1(t) is the WRRF flow at time step t, S̄q1 is the average WRRF flow over

the dry-weather periods, and T is the total length of the dry-weather periods [117].

The WRRF TSS load variance is computed similarly. Note that these are computed

with respect to absolute, not normalized, flow and TSS load values and so scale

will be indicative of respective units. This dry-weather variance provides a measure

of deviation from the mean dry-weather flow or TSS load, indicating how “flat”

inflow dynamics are, that is a variance of zero indicates perfect steady-state inflow

conditions during dry-weather periods, which is beneficial for steady-state operation

at the WRRF. To focus on wet-weather peaks, peak height is defined to be the

amount of flow or TSS load above the maximum dry-weather flow or TSS load,

respectively. While this would ideally be evaluated on a storm-specific basis, to

automate this calculation the peak reduction is averaged across each week of the

simulation period. Peak reduction is then computed as a normalized factor

1− peakcontrolled/peakuncontrolled. (3.14)

The TSS mass remaining in the sewer network is computed as the difference between

the cumulative TSS load received by the WRRF, normalized against the uncontrolled
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cumulative TSS load:

TSS remaining =

∑T
t=1 TSS loaduncontrolled(t)−

∑T
t=1 TSS loadcontrolled(t)∑T

t=1 TSS loaduncontrolled(t)
. (3.15)

The volume of flooding is calculated in the flow routing statistics by the simulation

of the SWMM input file via PySWMM. This flooding volume is then expressed as a

fraction of total volume that passes through the network.

3.3 Results and Discussion

This section is split into two parts. First, a number of specific control scenarios

are carried out to evaluate the dynamic performance of the algorithm under a set

of objectives and constant control parameters. The Scenario Analysis section is

split into three scenarios, which compare parameterization of the algorithm to (1)

attenuate flows, (2) attenuate TSS loads, and (3) jointly balance flows and TSS loads

at the WRRF. Second, a parameterization analysis is carried out to determine how

specific weight combinations of the control parameters affect the performance of the

controlled system.

3.3.1 Scenario Analysis

3.3.1.1 Scenario 1: Flow Attenuation

The control algorithm is first implemented with the sole objective of attenuating

downstream flows, wherein the upstream storage assets are guided to hold water to

reduce the peaks of dry- and wet-weather events. The normalized downstream flow

setpoint Sq∗1 is 2.5, which was found to correspond with the maximum dry-weather

flow. As such, the control algorithm tries to keep flow as close as possible to a steady-

state without exceeding the maximum dry-weather flow. In this scenario αq1 = 10.0,

meaning that the priority of the downstream flow objective is weighted as being 10

times more important than the desire to keep each upstream storage asset empty.

For this scenario, αtss1 = 0.0 since there is no explicit consideration of water quality
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load dynamics.

Since the assets are controlled, water levels in the upstream storage assets are

higher than the uncontrolled case, both during dry- and wet-weather events (Figure

3.4a). This scenario is able to considerably attenuate wet-weather flow peaks and

equalize dry-weather oscillations when compared to the uncontrolled case (Figure

3.4d). Furthermore, since flows are reduced, the TSS load exiting the combined

sewer system is attenuated as well (Figure 3.4g). During the first two months of the

simulation period, the wet-weather flow peaks at the outlet of the combined sewer

system are reduced by an average of 94.17%, while wet-weather TSS load peaks

are reduced by an average of 104.47% (controlled/uncontrolled peaks of 0.0583 and

-0.0447, respectively; Table 3.1a). The dry-weather flow and TSS load oscillations

are reduced as well; this can be quantified by flow and TSS load variance during

dry-weather days, which is reduced by 78.7% and 78.8%, respectively, from the un-

controlled case (Table 3.1a).

Table 3.1: Summary of results in Figure 3.4 for the first two months of the simulation
period; a summary of results for the one-year period is included in Figure 3.5. Ratio of
peak flows and TSS loads are given as controlled peaks divided by uncontrolled peaks.
Negative values for ratio of peak flows indicate that, on average, wet-weather peaks were
reduced to below the maximum dry-weather levels. Variances are during dry-weather
periods and the scales of values are indicative of their respective units.

Uncontrolled Attenuation Control Scenario
(a) (b) (c)

Flow TSS Flow & TSS

αq1 = 10.0 αtss1 = 10.0
αq1 = 5.0
αtss1 = 5.0

Ratio of Peak Flows — 0.0583 0.2176 0.1320
Ratio of Peak TSS Loads — -0.0447 -0.0361 -0.0413
Flow Variance 364.7 77.7 48.0 44.2
TSS Load Variance 9.37× 10−2 1.99× 10−2 6.37× 10−3 1.20× 10−2

As expected, the control of storage assets reduces peak inflows at the WRRF

(Figure 3.4d). The control not only attenuates peak storm flows, but also reduces
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Figure 3.4: Comparison of three control scenarios during the first two months of
the simulation period. Scenario 1 places an emphasis on flow control, Scenario 2
emphasizes TSS regulation, and Scenario 3 balances both flow and water quality. The
top row shows the upstream normalized depth behind the controlled storage assets
in the network. The flow and TSS load at the network outlet are shown in the second
and third rows. Dashed and solid lines in Subfigures 3.4d–3.4i denote uncontrolled
and controlled cases, respectively. Subfigures 3.4a–3.4c only show results from the
controlled case for clarity.

the variability of the diurnal flows (Table 3.1a). This is due to the utilization of

upstream assets, which now strategically hold back water. Overall, the storage assets

with relatively higher water levels during storms are generally those with higher

contributing and upstream subcatchment areas (in particular, subcatchments 2, 4,

10). Since these assets are more stressed during storms, the control algorithm holds

water in the remaining assets to balance storage capacity across the system. While
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this scenario does not explicitly control for TSS going to the WRRF, TSS loads are

impacted positively because some TSS is held back in the upstream assets. As such,

it can be expected that TSS peaks could be reduced even further by weighting TSS

load, which is done in the next scenario.

3.3.1.2 Scenario 2: TSS Load Attenuation

Compared to the prior scenario, the second scenario parameterizes the control

algorithm to focus solely on attenuating TSS load dynamics (αtss1 = 10.0), without

placing any weight on the flow dynamics (αq1 = 0.0). The normalized downstream

TSS load setpoint Stss∗1 is 2.5, to correspond with the maximum dry-weather TSS

load. As would be expected, this formulation achieves similar TSS load attenuation

relative to the formulation that focuses on flow only. Compared to the uncontrolled

case, TSS load peaks that result from wet-weather events are reduced by an average

of 103.61% over the first two months of the study period (controlled/uncontrolled

peaks of -0.0361; Figure 3.4h and Table 3.1b.) Since water is held to regulate

solids, flows are naturally attenuated as well, with average reductions of 78.24%

(controlled/uncontrolled peaks of 0.2176; Figure 3.4e and Table 3.1b). This is a

lesser degree of flow attenuation compared to Scenario 1 since, during wet-weather,

TSS concentration is generally diluted by stormwater.

This scenario exhibits improved equalization of the dry-weather TSS load oscil-

lations. During the first two months of the simulation period, there is a 93.2% re-

duction in TSS load variance, as well as an 86.8% reduction in flow variance, during

dry-weather days (Figures 3.4e and 3.4h, and Table 3.1b). Thus, there is improved

TSS performance compared to the first scenario.

While both scenarios perform better than the uncontrolled case, there is naturally

a trade-off when comparing one to the other. Placing more emphasis on regulating

TSS load peaks adversely impacts flow peaks, and vice versa. The equalization of

TSS load is most notable during dry-weather, during which the control assets are

used to buffer daily TSS load oscillations into the WRRF.
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3.3.1.3 Scenario 3: Balancing Flow and TSS Load

A natural extension of the prior two scenarios is to combine the flow and TSS

attenuation objectives. This is accomplished by giving the two system importances

equal values (αq1 = αtss1 = 5.0). In this formulation, wet-weather flow and TSS load

peaks are attenuated with an average peak reduction of 86.80% and 104.13%, respec-

tively, during the first two months of the simulation period (controlled/uncontrolled

peaks of 0.1320 and -0.0413, respectively; Figures 3.4f and 3.4i and Table 3.1c). Fur-

ther, similar to the above two scenarios, dry-weather diurnal wastewater oscillations

are reduced; there is a reduction of 87.9% and 87.2% in flow and TSS load variance

during dry-weather days, respectively (Table 3.1c). Overall, the equal weighing of

flow and TSS objectives provides a middle ground relative to the first two scenarios,

and perhaps a realistic strategy for real-world implementation. These weights do not

have to be equal values of αq1 and αtss1 , however; this is explored in the next section.

3.3.2 Parameterization Analysis

3.3.2.1 Balancing Flow against TSS Loads

To assess trade-off sensitivity of weighing flow and TSS load objectives, reduction

in wet-weather peaks and dry-weather variance are averaged over a one-year simu-

lation time period across various combinations of αq1 and αtss1 values (Figures 3.5a

and 3.5e). These plots can be interpreted through the ratio of αq1 and αtss1 , which

conveys how the relative magnitude of each parameter impacts system-wide perfor-

mance. Furthermore, the absolute value of each parameter conveys how upstream

assets are weighted against those downstream: as αq1 and αtss1 increase in magnitude,

the downstream WRRF objectives are weighed more than those of upstream assets

(Figure 3.5a). In general, the trend for wet-weather peak reduction and dry-weather

variance reduction for both flow and TSS load at the sewer network outlet is sim-

ilar: larger system importance values result in better downstream performance by

way of greater peak reduction and damped dry-weather oscillations. This is due to

increased priority on maintaining the downstream flow and/or TSS load below the
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given thresholds as compared to the upstream objective of emptying storage assets.

This implies that, when only considering downstream objectives, control with larger

system importance values αq1 and αtss1 will result in smoother, more constant sewer

network outflow and TSS load during both dry- and wet-weather periods compared

to an uncontrolled case.

The flow system importance value αq1 has more influence on both flow and TSS

load peak reduction than the TSS load system importance value αtss1 (Figures 3.5a

and 3.5d). Further, the TSS load system importance αtss1 has more impact than

the flow system importance αq1 on dampening the dry-weather TSS load oscillations

(Figure 3.5e).

While the coordinated control of upstream sewer storage assets can be used to

achieve flow and water quality objectives at the network outlet, this control must

be sensitive to its impacts on other sewer dynamics that are important for the con-

veyance of water and pollutants through the network. First, the reduction of wet-

weather flow and TSS load peaks at the combined sewer outlet can result in over-

utilization of in-line storage assets, meaning that storage assets in the sewer will

become fuller as capacity is allocated to the downstream outlet, and ultimately in-

crease risk of network flooding. This is particularly pronounced during wet-weather

events, as large volumes of water rapidly enter the sewer system as the contributing

subcatchments drain. Thus, maintaining strict feedback control over storage assets

can result in unanticipated flooding if upstream assets are used too liberally to hold

water. Examples of this can be seen in Figures 3.4a–3.4c during wet-weather events.

Figure 3.5c demonstrates how system importance values, αq1 and αtss1 , impact this

over-utilization and the volume of network flooding by the control algorithm. Both

simulation and intuition confirm that lower system importance values for downstream

objectives result in a reduction in flooding volume; this is particularly true for the

flow system importance αq1. As discussed above, due to the settling and resuspen-

sion of TSS within the storage assets and the dilution of TSS during wet-weather

events, less upstream storage capacity is required to attenuate TSS load peaks when

compared to flow peaks during wet-weather events. As a result, even the moderately

high values of αtss1 considered here result in minimal flooding volume when compared
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to αq1 values of a similar magnitude.

A second effect of control on the system is the accumulation of solids in the sewer

system. Combined sewer flows have a relatively high concentration of solids resulting

from the wastewater flows; typical untreated municipal wastewater has a TSS con-

centration range of 100–400 mg/L [9]. As a result, the settling of solids occurs due to

increased and long-duration storage of combined sewer flows behind sewer assets. In

order to minimize the magnitude of flow and/or TSS load peaks, stored flows must

be slowly released, resulting in low velocities from the storage assets and minimal

resuspension of settled solids in the sewer network. This allows for settled solids to

accumulate in the sewer network. However, most sewers are not designed to manage

these solids in the conveyance network and must employ significant maintenance ef-

forts to manually remove these solids or flush them downstream [10]. Hence, control

algorithms that operate or inform combined sewer control actions should be designed

with solids accumulation as a key consideration. The impact of system importance

parameters, αq1 and αtss1 , on solids accumulation is shown in Figure 3.5f.

When TSS load is more strongly weighted than flow (i.e., below the 1:1 line),

the sewer network retains less solids mass within the storage assets; this is because

flows are released based on the stored TSS concentrations in order to maintain a

TSS load threshold downstream. At storage assets experiencing greater settling, the

suspended solids concentration will be lower, thus requiring larger volumes to be

released, resulting in resuspension. On the other hand, high flow system importance

values (αq1 ≥ 12.5) consistently resulted in greater than 10% solids retention within

the upstream assets, regardless of the TSS load weight. This is likely due to the

requirement for flows to be gradually released from the upstream storage assets to

achieve flow attenuation and equalization at the downstream network outlet. How-

ever, in achieving this, flows are released slowly, resulting in little solids resuspension

and thus solids accumulation in the upstream storage assets.
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3.3.2.2 Willingness to Hold Water

The formulation of the control algorithm presented here also includes the instan-

taneous importance weight ρ, which determines the willingness of an asset to hold

water as levels approach storage capacity. For flow and TSS peak reduction, and

dry-weather flow and TSS load variance, a lower ρ value is associated with better

performance (Figure 3.6, where αq1 = αtss1 = 5.0). However, for most of these first

four metrics, the range of performance does not vary greatly with the values of ρ

considered here, compared with the range of performance values in Figure 3.5. The

exception to this is dry-weather flow variance. In this case, lower ρ values perform

considerably better than higher ρ values (Figures 3.6 and B.3). This is because stor-

age assets fill up with diurnal inflows, and suddenly release flows when at capacity.

Lower ρ values buffer this variability by more steadily releasing water and reducing

impulses to the WRRF.

Figure 3.6: Impact of instantaneous importance weight ρ on performance metrics for
αq1 = αtss1 = 5.0. The right graph demonstrates the relationship between state Si
and instantaneous importance γi for each ρ value for reference. In all scales, a darker
color indicates better performance in that particular metric.

The impact of the instantaneous importance weight ρ is also assessed for network

flooding and solids accumulation (Figure 3.6). While all ρ values considered here
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produce little flooding, flooding volume is inversely proportional to ρ value. To

account for this behavior with respect to flooding, note that upstream storage assets

with higher normalized depths, and thus higher risk for flooding, will release more

water than those that are not prone to overflowing at that particular time. Further,

ρ has little impact on the solids load remaining in the sewer network, though there

is minimal improvement in resuspension with higher ρ values (Figure 3.6).

3.3.3 Towards Implementation

A natural extension from these findings would be the separation and customiza-

tion of control schemes for various system states and inputs. The results suggest

a benefit in adjusting control regimes or parameterizations between wet- and dry-

weather periods (Figure 3.4 and Table 3.1). Flow attenuation (Scenario 1) resulted

in higher flow peak reduction during wet-weather when compared to TSS load at-

tenuation (Scenario 2) (94.17% vs. 78.24%, respectively); however, dry-weather flow

and TSS load oscillations were not dampened as successfully via flow attenuation

(Scenario 1) as with TSS load attenuation (Scenario 2) (flow oscillation damped:

78.7% vs. 86.8% and TSS load oscillation damped: 78.8% vs. 93.2%). Thus, in

this case, flow-driven control during wet-weather events and TSS load-driven con-

trol during dry-weather periods would be a viable strategy towards improving sewer

operation. Indeed, having weather-dependent regimes is a common strategy in more

manual sewer operations [40, 104, 118]. As such, implementations should also look

beyond one-size-fits-all parameterizations in the case of real-time control.

Further, while the system importance parameter assignment has been demon-

strated to achieve improved downstream performance (e.g., peak reduction and os-

cillation dampening), beyond a certain level of weighting, downstream performance

plateaus (αq1, α
tss
1 ≥ 10, Figures 3.5a, 3.5b, 3.5d, and 3.5e). What should determine

system importance parameter values is a balance with upstream or system-wide per-

formance indicators (e.g., flooding, solids accumulation). In this study, there is an

upper limit on downstream system importance values to minimize network flooding

(αq1, α
tss
1 ≤ 10; Figure 3.5c). One approach to mitigate network flooding would be to
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build in a heuristic rule for releasing stored water when an asset becomes too full.

However, maintaining a connection with actual implementation, this strategy would

need to ensure that the emergency release of stored water from upstream assets does

not result in too great a surge of flows at downstream storage assets or the WRRF

inlet.

More interestingly, perhaps, is the presence of a band of higher performance for

solids accumulation across system importance values (for system importance values

such that αq1 + αtss1 ≈ 10; Figure 3.5f). To explain this, note that settling and re-

suspension are dictated by water depth and velocity of releases. For lower system

importance values, there is shallow upstream storage and thus less distance for solids

to settle, and hence more settling. However, the shallow storage also results in lower

velocity when water is released, and thus less resuspension. On the other hand, high

system importance values result in large quantities of water stored behind upstream

assets, requiring small releases due to the strict control against downstream peaks

— and thus minimal resuspension of settled solids. However, between these ranges is

an area of minimal solids accumulation. This indicates not only a trade-off between

high and low system importance values with down- and upstream performance, but

a desirable range of values for the control algorithm parameters. In this case study,

the most desirable performance across all considered system-wide metrics would be

achieved with system importance values that satisfy αq1+αtss1 ≈ 10 and ρ = 1 (Figures

3.5 and 3.6). These parameters may be case study-specific, and parameter values

for other systems may likely vary based on context and system priorities; this will

be explored in future work so that transferability of results can be considered. More

generally, this illustrates the need for optimization and parameter analysis in formu-

lating the control problem and determining priority weights in the objective function.

Similar conclusions can also be found in other studies that highlight the impact of

parameterization on control performance and stability [119, 120]. Overall, this lends

support to trying out a simpler control technique first — such as the one presented

in this paper — before embarking on the application of more complex algorithms.

A first order, simpler analysis may shed insights on performance bands unique to a

given system, which may provide insight to tuning more complex algorithms.
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Complex and interesting dynamics may be missed if control algorithm formula-

tions fail to account for a breadth of upstream and downstream performance mea-

sures. Namely, optimization of one parameter may often come at the cost of another.

Indeed, the concern of sewer solids accumulation has been explored in other works

[87]. While control algorithms for water systems are typically formulated, tested,

and refined in simulation, connection and communication with real-world system op-

erators is crucial to the feasibility of real-time control implementation. For instance,

attempting to maintain downstream flow and/or TSS load strictly below a threshold

may be too restrictive given available storage in sewer assets during high-stress times

(e.g., large and/or flashy storms) and would thus require over-utilization of storage

assets insomuch as they exceed their storage capacity and increase the risk of flooding

in the network and may increase in-line maintenance needs. This study explored this

balance between upstream and downstream objectives using parameters within the

control algorithm, namely system importance values αq1 and αtss1 and instantaneous

importance weight ρ. The realizable values of these parameters will ultimately not

be governed solely by physical constraints, but also human preferences.

The results illustrated here demonstrate a need for further flexibility to avoid or

manage the accumulation of settled solids behind control assets in the sewer network.

Extending beyond the approach discussed here, this flexibility can be incorporated

by introducing dewatering strategies or intentional scour release events that occur

after wet-weather events by releasing water from upstream to downstream assets,

thereby flushing the system to encourage resuspension and conveyance of solids to

the downstream WRRF for treatment and management [10, 121].

3.4 Conclusions

In this study, we demonstrate the use of a control algorithm, flexible to mul-

tiple water quantity and quality objectives, as well as downstream and upstream

objectives. Our parameterization analysis is used to explore trade-offs among these

goals. Our findings highlight the importance of identifying a range of near-optimal

parameter values for control algorithms. Future work should investigate how these
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regions translate to other algorithm formulations. It is critical to note that what

defines “optimal” will be dependent on the system context, human preferences, and

trade-offs between multiple objectives. Overall, bands of near-optimality may arise

and string a balance between most objectives. This however, should be evaluated on

a case-by-case basis. In lieu of one optimal point, this may present a range of aspira-

tional values to appeal to system operators. Sensitivity analyses and decision maker

preferences should be considered in the control process as early as the formulation

of the actual control problem and objective function.
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CHAPTER 4

Impact of Collection System Control on WRRF

Treatment

4.1 Introduction

The operation and performance of water resource recovery facilities (WRRFs)

is heavily influenced by influent conditions. This is particularly true in combined

sewer systems, in which wastewater (dry-weather) and stormwater (wet-weather)

flows are integrated into the same pipe network. Both contributions result in flow and

pollutant dynamics, such as diurnal wastewater patterns and stormwater hydrograph

peaks. Inflow dynamics impact WRRF treatment processes, which in turn affect

operator or control decisions. For instance, dynamic chemical addition and aeration

need to account for changes in pollutant loads and flows. More examples can be

given, but a general notion remains: operations at the WRRF should always adapt

since WRRF operators have limited control over what is received from the sewer. As

described in prior chapters, however, there is an opportunity to exercise significant

control over inflow dynamics by controlling the collection system. This brings to

bear the notion that the collection system is simply an extension of the WRRF, and

should be operated in a holistic, systems context.

The paradigm of coupled sewer-WRRF control has generally be explored through

the concept of integrated modeling and control across the sewer system, WRRF, and

receiving water body (e.g., river). Most of these efforts rely on the development

69



and calibration of highly complex, mechanistic or physically-based models, or in-

forming simplified surrogate models using these complex models for the purpose of

control optimization [16, 56, 122, 123]. Because these integrated systems are so com-

plex, rule-based control is a frequent basis for exploring the benefits of integrated

management [124]. However, these rules require expert knowledge to develop, are

system-specific, and are difficult to scale. While recent literature has implemented

model predictive control to consider WRRF capacity in sewer-based control actions

[125], still little work has been done to evaluate the impacts that expansive sewer-

scale control has on WRRF treatment performance and operation. Evaluating the

impacts of control on both the sewer and WRRF is critical for highlighting benefits

and trade-offs that exist across the urban wastewater system, such as mitigating

flooding and overflows, improving treatment, and maintaining overall system func-

tion. Even further, developing this understanding is crucial for permitting holistic

control of the urban water cycle.

As was demonstrated in previous work (Chapter 3), real-time and coordinated

control of distributed sewer storage assets can successfully attenuate stormwater flow

and pollutant load peaks, as well as dampen wastewater diurnal patterns. While

a key motivation for prior chapters was to improve WRRF efficiency, an explicit

analysis of WRRF conditions under controlled inflows was not evaluated. Since

many impacts to WRRF conditions could be evaluated, to narrow the scope of this

study, this chapter will focus on chemical phosphorus removal in the WRRF primary

system, specifically via ferric chloride dosing. This is motivated by ongoing work

in the greater Detroit area by the Great Lakes Water Authority (GWLA). The

contribution of this chapter is to quantify the impacts of WRRF influent dynamics

and ferric chloride dose on chemical phosphorus treatment efficacy (i.e., phosphorus

removal) and efficiency (i.e., ferric chloride consumption).

4.1.1 Background

Variability of influent flow and composition can be detrimental to the operation

and performance of WRRF treatment processes, including washing out of microor-
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ganisms in bioreactors and disturbing settled solids in clarifiers [9, 10]. The GLWA

WRRF exemplifies this, given that it is a combined sewer system with both pro-

nounced wastewater and stormwater influences. As it is one of the largest WRRFs

in the world, treatment performance at the GLWA WRRF has the capacity to signifi-

cantly impact the quality of the downstream receiving water bodies. To demonstrate

this, consider the case of phosphorus. The GLWA WRRF is a major source of phos-

phorus loading to the Detroit River and Lake Erie further downstream. One study

found that, among watershed contributions, the GLWA WRRF contributes 10% of

the total phosphorus load to the Detroit River system. Moreover, it the largest urban

and point source in the region and so it is one of the biggest single-site opportuni-

ties to reduce phosphorus loads to Lake Erie [126]. Phosphorus pollution in natural

water systems results in eutrophication and algal blooms, both of which have been

increasing occurrences in Lake Erie in recent years. Ultimately this has resulted

in periods of suspended use for recreation, degradation of drinking water supply,

and overall disruption and deterioration of the natural water environment [126, 127].

Hence, phosphorus treatment at the GLWA WRRF is a particularly interesting and

impactful case study and is considered here.

4.1.1.1 Case Study Motivation: Chemical Phosphorus Removal in the

GLWA WRRF

Chemical phosphorus removal is a common treatment route in many WRRFs.

Specifically, at the GLWA WRRF, ferric chloride (FeCl3) is added to precipitate

soluble phosphorus and then settle out the particulate form in primary clarifiers. The

dosing of ferric chloride is determined by dry- and wet-weather operation, as well as

manual measurements of soluble phosphorus in the primary effluent (Appendix C)

[128]. The primary treatment system in the GLWA WRRF has a capacity of 4.5

Mm3/d (1200 Mgal/d), while the secondary treatment system has a capacity of 3.5

Mm3/d (930 Mgal/d) [129]. As a result, primary effluent flow over this 3.5 Mm3/d

threshold is discharged as overflow to the environment directly after the primary

treatment system (Figure 4.1). Thus, any pollutants in these discharged volumes
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receive primary-only treatment before going to the receiving water body, bypassing

the remainder of the WRRF [128–130]. Further, while phosphorus removal through

chemical addition enables WRRFs to reduce phosphorus discharges through WRRF

effluent and overflows, this chemical use comes at cost to the WRRF. For a WRRF

as large as the GLWA facility, this cost can be significant. The GLWA WRRF used

around 1080 dry metric tons (2.38 million dry pounds) of ferric chloride during the

2018–2019 fiscal year, at a cost of $1.17 million for this chemical resource alone [131].

Thus, improvements in the efficiency of ferric chloride use can result in financial

savings.

To generalize the findings of this study, a simulated WRRF is used, which was

inspired by the GLWA facility [132]. The goal of this chapter is not to have an

exact representation of the GLWA primary system, but rather a realistic enough

representation to derive general conclusions. Indeed, though many WRRFs employ

chemical phosphorus removal, specifics regarding location of metal addition, mixing,

dosing strategies, etc. vary significantly based on WRRF and context. Thus, the

ability to discover broad trends is the aim herein. More detail on this simulated

representation is found in Section 4.2.1. The subsequent section provides additional

background into the mechanisms and factors impacting chemical phosphorus removal.

4.1.1.2 Mechanisms and Factors of Chemical Phosphorus Removal

Chemical phosphorus removal broadly describes the addition of metal salts to

react with phosphorus species; these reactions convert soluble phosphorus into insol-

uble phosphorus, which is removed as a precipitate via settling. In the case of ferric

chloride addition, these metal-phosphorus reactions can include several mechanisms:

phosphate adsorption on hydrous ferric oxide (HFO), binding and co-precipitation

of phosphate in the HFO structure, formation and precipitation of ferric phosphate

(FePO4), and precipitation of mixed cation phosphates [133]. Both experimental

and model studies have shown that minimal phosphorus removal occurs through the

FePO4 pathway, particularly at pH values that are common in a wastewater-context

[133, 134] and thus HFO reactions are a primary mechanism for chemical phosphorus
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removal [45]. HFO is a solid that forms as a result of acidic ferric cations reacting

with the alkalinity in the water into which it is dosed. The oxygen sites on and in

the HFO structure enable binding and co-precipitation of phosphate species, thereby

enabling settling of phosphorus species in a particulate form [135].

Before the 2000s there was incomplete, if not incorrect, understandings of the

mechanisms of chemical phosphorus removal [136]. Consequently, many WRRFs

were, and still are, designed to provide unnecessarily high doses of chemical addition,

going beyond what is needed for sufficient phosphorus removal. As a result, WRRFs

experience high chemical costs and production of large amounts of chemical sludge

[45]. However, in the past 10–15 years, extensive experimental and modeling efforts

have contributed to a more nuanced and accurate understanding of the mechanisms

behind chemical phosphorus removal, as well as factors that influence its efficacy.

Type of Metal Salt. The type of metal salt used will impact the efficacy and

efficiency of removal of soluble constituents. In fact, a number of studies directly

compare a variety of chemicals, including ferric- and aluminum-based compounds [45,

137–140]. Given the use of ferric chloride by the GLWA WRRF chemical phosphorus

removal system, this work focuses on its application.

Dose of Metal Salt. Metal salt dose plays a significant role in the efficacy of

chemical phosphorus removal [45, 133, 138] and removal of soluble phosphorus species

increases with relative chemical dose. However, studies have shown that “specific

phosphorus removal decreases with increasing coagulant dose” [45]. This has also

been observed in the chemical phosphorus removal system at the GLWA WRRF,

wherein removal plateaus beyond a ferric chloride dose of 2.5 mg/L [130]. This

could be the result of an upper bound on the amount of phosphorus that can be

incorporated into ferric-based precipitates, as observed in experimental study [45],

though further investigation into the underlying mechanisms of these observations is

needed.
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Influent Pollutant Concentrations. Influent characteristics have been studied

to determine influence on chemical phosphorus removal, concluding that influent

variability can be of particular consequence for devising and adjusting chemical dos-

ing strategies [138]. The most relevant findings to this chapter include concentrations

of species that are being removed via chemical addition. Our focus is on the chemi-

cal removal of phosphate [45, 133]; however, competition with other species, such as

organics and total suspended solids (TSS), can impact and inhibit chemical phospho-

rus removal by reacting with the metal added [45, 135, 141]. Additionally, although

increases in initial soluble phosphorus concentrations result in increases in phospho-

rus removal, very high metal doses (�1 mol FeCl3/mol P, the stoichiometric ratio)

may be required to achieve low concentrations of phosphorus (<0.1 g/m3 as P) [45].

Further analysis into these interactions is outside of the scope of this study and is

left for future work.

Time and Kinetics. The role of time, particularly contact time for chemical re-

actions, in the efficacy of chemical phosphorus removal has been reported in recent

studies. Initial, fast removal of phosphorus through the addition of metal salts was

observed previously; this removal occurred so quickly it was thought to be nearly in-

stantaneous (and is called instantaneous phosphorus removal in the literature). How-

ever, experimental studies have shown that further and non-negligible phosphorus

removal continues to occur over timescales of hours to days, called slow phosphorus

removal [45]. This latter removal mechanism will be important when considering the

design of reactors for mixing, chemical reactions, and precipitation and binding for

both real-world applications and simulations. In particular, the hydraulic residence

time (HRT) of reactors will play a role in chemical phosphorus removal as longer

HRTs will enable more removal via the slow phosphorus removal mechanisms.

Other operational variables also impact chemical phosphorus removal, including

floc age and the mixing regime of the metal salt into the influent wastewater, which

both influence the number of sites on HFO for phosphate adsorption and coprecipi-

tation [45, 133]. These factors will vary based on WRRF context and design of the

broader primary treatment system; further they are outside of the scope of this study
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and will not be considered here.

4.1.1.3 Impact of Influent Dynamics on Chemical Phosphorus Removal

Few studies have explicitly studied the impact of dynamic influent on chemical

phosphorus removal. This will be important for assessing the impact of changes in

influent conditions (e.g., flow) and operational variables (e.g., metal salt dose) on

the effectiveness and efficiency of chemical phosphorus removal. Conidi et al. [135]

studied the impact of solids residence time on phosphorus removal using sequencing

batch reactors; however, the batch environment eliminates short-term temporal dy-

namics in influent conditions. Thus the role of influent dynamics within chemical

phosphorus removal remains largely unexplored.

Several studies have been conducted with a combination of modeling and full-

scale or pilot-scale experiments to explore the potential of control in chemical phos-

phorus removal applications for the dosing of metal salts [46–48]. A constant dose

strategy was often used as a baseline for comparison to other strategies, such as

dosing proportional to influent flow or pollutant load. These studies also compared

the performance of feedback control, commonly using a proportional-integral (PI)

controller. Tik and Vanrolleghem [46] and Ingildsen [47] have reported success of

feedback control with real-time dose changes and closely achieved effluent quality

setpoints. However, the need to consider operational setup of these systems, as well

as lag times between placement of the downstream sensor and location of the metal

salt addition must be highlighted, particularly for transitioning from a modeling

study to real-world application. Otherwise, instability of the feedback controller can

result in oscillatory behavior [48]. Further, there have been no studies found that

simultaneously consider ferric chloride (or, in general, metal salt) dosing strategies

and attenuation or modulation of influent conditions to improve the efficacy and

efficiency of chemical phosphorus removal.
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4.1.2 Opportunity and Motivation

Given the impact WRRFs have on the water quality of their receiving water

bodies, maintaining high treatment performance is the key priority. By providing

more desirable influent conditions (i.e., equalized), there is an opportunity to enable

better WRRF treatment. Specifically, we contend that it is possible to improve

chemical phosphorus removal during times of high phosphorus loading (i.e., storm

events) and minimize phosphorus received by surrounding water bodies, through

both effluent and overflow discharges. Our study quantifies these benefits and informs

how WRRF operation can be simultaneously leveraged to improve the efficiency of

chemical resource use for this aim.

4.2 Methods

4.2.1 WRRF Primary System Modeling

For this chapter, we develop a reduced order model of the GLWA WRRF with

the desire to produce results that can be broadly generalized to other systems. As

such, only phosphorus treatment is presented; other treatment processes are left out

to enhance the focus of our study. To promote generalizability of results, this study

was intentionally designed so that WRRF influent is received in a single pipe, to

which ferric chloride is added before mixing and reaction. More specifically, the

WRRF primary system modeled here consists of ferric chloride (FeCl3) addition

to the WRRF influent, a small CSTR for chemical mixing and reactions (14,583 m3

volume, 10 min dry-weather average HRT), and a volumeless point separator primary

clarifier with a constant solids percent removal of 70% based on previous study [130]

(Figure 4.1). Sumo (Dynamita), a wastewater process simulator, was the modeling

software employed. It was interfaced with Python for executing simulations and

conducting analyses. All code and models for simulation and analysis are provided

in a public web repository (github.com/stroutm/sewerWRRF).

Influent to this WRRF primary system includes flow from the upstream com-

bined sewer network. As shown in Chapter 3, real-time and coordinated control of

76

https://github.com/stroutm/sewerWRRF


Figure 4.1: Schematic description of the connection between the sewer network and
the WRRF primary system. Real-time control of distributed sewer storage assets
(depicted as red valve icons) can achieve peak attenuation in WRRF influent flow.
Interaction of this control with ferric chloride (FeCl3) dosing strategies is investigated.

distributed sewer assets can attenuate precipitation-driven peaks and dampen diur-

nal wastewater patterns at the outlet of a combined sewer network [142]. Specifically,

this should enable improved influent conditions for WRRF operations and perfor-

mance, as proposed in Figure 4.1. Influent data for the WRRF primary system are

generated from Chapter 3 results to simulate dynamic WRRF influent conditions,

for cases of varying sewer control; the process of generating these influent inputs is

described in Section 4.2.4.

Modeling of the chemical phosphorus removal mechanisms in Sumo build from

previous studies, which have shown that HFO reactions with phosphorus are the

primary mechanism for chemical phosphorus removal in wastewater treatment con-

texts [45]. The oxygen sites on and in the HFO structure enable binding and

co-precipitation of phosphate species, thereby enabling settling of the phosphorus

species in a particulate form [135]. Aging of HFO has been observed to reduce
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phosphorus adsorption capacity; specifically, HFO structures become more dense as

they age, limiting diffusion and adsorption of soluble phosphorus into the structure

[143]. Thus, adsorption properties are determined by HFO age. The underlying

model of these processes in Sumo divides HFO species into three classes based on

age and adsorption properties, namely HFOH , HFOL, and HFOold for HFO used in

instantaneous binding (high adsorption capacity, H), slow binding (low adsorption

capacity, L), and old HFO structures, respectively [133]. Specifically these instanta-

neous phosphorus removal reactions occur on the order of seconds or shorter, while

slow reactions have been observed over minutely, hourly, or daily scales [45, 143]. On

the other hand, old HFO structures are modeled as having no phosphorus adsorption

capacity. These HFO reactions are modeled in Sumo and thus is the mechanism for

chemical phosphorus removal used in this study. More detail of this representation

is provided in Appendix C and Figure C.1.

4.2.2 Generating Static Influent Conditions

To investigate the direct impacts of WRRF influent flow and ferric chloride dose,

specifically via dose concentration (FeCl3 mass rate per influent flow rate) on chemical

phosphorus removal, a series of simulations were first conducted, each simulation with

a static influent flow and ferric chloride dose. For example, one simulation may have

an influent flow of 2.1 Mm3/d and ferric chloride dose of 2.0 g/m3, while another

simulation would have an influent flow of 2.6 Mm3/d and ferric chloride dose of 2.5

g/m3. In each simulation, the soluble orthophosphate (SPO4) and total phosphorus

(TP) concentrations in the primary effluent were measured. Note that in these

simulations, the concentrations of the included water quality parameters were not

changed regardless of changes in flow conditions. This was done intentionally to keep

the ratio of ferric chloride dose concentration to influent phosphorus concentration

constant. Further, by changing only the influent flow, the impact of contact time

(via CSTR HRT) was evaluated. Note that HRT is expressed as

HRT =
V

Q
(4.1)
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where V is the volume of the CSTR (14,583 m3) and Q is the flow through the

reactor (m3/d). Thus, increases in flow result in reduced contact and reaction time

in the CSTR.

4.2.3 Generating Dynamic Influent Conditions

While simulation experiments with static conditions can elucidate how certain

variables directly impact chemical phosphorus treatment performance, the reality is

that WRRFs receive dynamic influent. More specifically, we are interested in com-

bined sewer dynamics that exhibit both dry- and wet-weather influences. For this

study, influent inputs into the WRRF primary system exhibit dynamics and are gen-

erated using sewer outflow conditions (at a 30-min temporal resolution) from the

load-balancing control algorithm demonstrated in Chapter 3. These sewer outflow

conditions include wastewater and stormwater dynamics of flow and TSS concentra-

tion for a subsection of the Detroit combined sewer system. It should be noted that

that the sewer subsection used in Chapter 3 has a dry-weather average flow of 0.49

Mm3/d compared to 2.1 Mm3/d for the WRRF considered here. Thus, these sub-

section results were linearly scaled to match the magnitude of the WRRF influent.

This procedure consisted of the following steps:

1. Influent flow and constituent concentrations (total chemical oxygen demand,

TCOD; total Kjeldahl nitrogen, TKN; TP), as observed in a previous study

[130], are used as the average dry-weather influent flow conditions.

2. Series of 75-day sewer outflow conditions (flow and TSS) with various sewer

control scenarios from Chapter 3 were selected. Recalling that these time series

are for a subsection of the Detroit combined sewer network, these dry- and

wet-weather events were linearly scaled so that the average dry-weather flow

matches the average dry-weather WRRF influent conditions from the above

step (Figure 4.2).

3. For simplicity, it is assumed that other constituents in the WRRF influent

follow similar dynamics of TSS and so they are scaled in the same fashion.
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This has been done for TCOD, TKN, and TP (Figure 4.2) as these are influent

inputs in the Sumo model used here. The percentage of orthophosphate (SPO4)

within the total phosphorus concentration is assumed constant throughout at

53.3% (as observed in Yan et al. [130]).

Figure 4.2: WRRF influent flow and water quality composition.

4.2.4 Design of Dynamic Influent Simulation Experiments

Within the 75-day simulation period, five storm events were isolated for analysis.

These are shown in Figure C.2 and summarized in Table C.2. Pairings between three

sewer control scenarios and two ferric chloride dosing strategies were assessed for

simulation experiments with dynamic influent conditions. Three assessment metrics

were used. These are summarized in Figure 4.3; detail for each follows.
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Figure 4.3: Pairings between sewer control scenarios and ferric chloride dosing strate-
gies. The sewer control scenarios compare no attenuation, moderate attenuation,
and strong attenuation. The ferric chloride dosing strategies compare constant and
flow-proportional dosing approaches.

Sewer control scenarios were chosen from Chapter 3 and were selected to consider

a range of stormwater flow peak attenuation scenarios. Namely, these scenarios are

NA: no flow peak attenuation (i.e., no sewer control); MA: moderate flow peak

attenuation (αtss1 = 1.0 from Chapter 3); SA; strong flow peak attenuation (αtss1 =

10.0 from Chapter 3). Note that the SA scenario is in the band of high performance

identified in Chapter 3.

Two ferric chloride dosing strategies were selected for comparison in the dynamic

influent simulations. The first strategy is one of constant ferric chloride dose at

2 g/m3 (C). As this is a constant concentration of ferric chloride, as the influent

flow increases, the mass of ferric chloride added will also increase linearly. The

second dosing strategy is one of flow-proportional ferric chloride dose (F) [128]. In

this case, a constant ferric chloride dose of 1.5 g/m3 is used when influent flow is

below 2.1 Mm3/d, which corresponds to the average dry-weather flow at the WRRF

influent. Above influent flow of 2.1 Mm3/d, the ferric chloride dose increases with

flow, following

FD = (4.45 · 10−7)Q+ 0.566 (4.2)

where Q is influent flow (m3/d) and FD is ferric chloride dose (g/m3). This cor-

81



responds to maintaining 1.64 g/m3 TP in the primary effluent based on the results

generated in Section 4.3.1 and shown in Figure 4.4b. This concentration of 1.64

g/m3 TP is an estimate of what would be achieved with 1.5 g/m3 ferric chloride at

2.1 Mm3/d based on Figure 4.4b. By reducing the ferric chloride dose from 2.0 to

1.5 g/m3 below the average dry-weather flow and increasing the dose as flow (and

correspondingly phosphorus load) increases, the aim was to prioritize ferric chloride

addition during times when phosphorus removal was most crucial. This is based on

elevated phosphorus load to the WRRF during storm events; increases in phospho-

rus mass and flow are a result of stormwater influx. These times of prioritized ferric

chloride addition also importantly occur when there is increased likelihood of expe-

riencing primary treatment-only discharges to the environment, which occur when

flow is over 3.5 Mm3/d.

Each sewer control scenario and ferric chloride dosing strategy pair is assessed

based on:

• Cumulative ferric chloride mass added

• Cumulative total phosphorus mass in the primary effluent

• Cumulative total phosphorus mass discharged via overflow after the WRRF

primary treatment system

These are specifically assessed here through cumulative totals over the duration of

each storm event. To compare the performance of chemical phosphorus removal for

each sewer control scenario and ferric chloride dosing strategy pair across the different

storm events, which have different volumes and flow peaks (Table C.2), each of the

above assessment metrics are also computed relative to that of the C,NA “base

case,” which exemplifies a simple mode of operation (no sewer control attenuation

and constant ferric chloride dosing regardless of weather conditions). These relative

assessment metrics are then averaged across the five storm events, with standard

deviations also calculated to evaluate consistency.

82



4.3 Results and Discussion

4.3.1 Static Influent Simulations

Simulations were first performed using static influent conditions. To investigate

the impact of flow magnitude and ferric chloride dose on chemical phosphorus re-

moval, static influent flow rates were considered, ranging from 1.1–3.1 Mm3/d; recall

that the average dry-weather WRRF influent flow for the context considered here

is 2.1 Mm3/d. For each flow rate, ferric chloride doses were considered, ranging

from 1.5–2.5 g/m3. The resulting SPO4 and TP concentrations in the primary ef-

fluent vary nearly linearly with influent flow and ferric chloride dose (Figures 4.4a

and 4.4b, respectively). Specifically, increases in influent flow rate result in increases

for both SPO4 and TP primary effluent concentrations (i.e., reductions in chemical

phosphorus removal performance). This is explained through Equation 4.1 in that

increases in flow result in decreased HRT in the CSTR and thus reduced contact and

reaction time between phosphate and ferric species (e.g., HFO), particularly through

the slow phosphorus removal reactions.

(a) (b)

Figure 4.4: Impact of influent flow and ferric dose on (a) SPO4 and (b) TP primary
effluent concentrations as conducted by simulations with static influent conditions.
The dashed lines and arrow in Subfigure (a) indicate the increase in ferric chloride
dose required for an increase in influent flow from 2.1 to 2.6 Mm3/d to maintain a
SPO4 primary effluent concentration of 0.9 g/m3.
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Increases in ferric chloride dose result in decreases in SPO4 and TP concentrations

in the primary effluent (Figure 4.4). This is because higher concentrations of ferric

chloride support more reactions between phosphate and ferric species, which trans-

form soluble phosphorus components to particulate and then settle in the primary

clarifier; this is in line with findings in literature [45, 133, 138].

These trends (Figure 4.4) suggests that increases in ferric chloride dose can com-

pensate for reductions in chemical phosphorus removal that would otherwise occur as

a result of increased influent flow. For instance, to achieve a SPO4 primary effluent

concentration of 0.9 g/m3 at an influent flow of 2.1 Mm3/d, a ferric chloride dose of

2.1 g/m3 is required. However, if influent flow increased to 2.6 Mm3/d, ferric chlo-

ride dose should be increased to 2.3 g/m3, a 9.5% increase, to maintain the 0.9 g/m3

primary effluent SPO4 concentration (Figure 4.4a). Moreover, changing the ferric

chloride dose in response to dynamics in influent flow could enable more consistent

phosphorus removal. While this is the case in these simulation experiments, it must

be noted that previous studies of full- and bench-scale systems have observed that

phosphorus removal plateaus beyond certain levels of ferric chloride dose [45, 130].

However, these non-linearities may not be captured in simuation. Moreover, ferric

chloride dosing is the consumption of a resource and so imposes costs (e.g., financial

expense and production of solids). Therefore, its application should not be without

constraint.

Even more promising is the potential to leverage both ferric chloride dosing

and modulation of the influent flow to achieve better chemical phosphorus removal.

Through these static influent condition experiments we can see that by reducing in-

fluent flow magnitude to the WRRF, the dose of ferric chloride can be reduced while

maintaining consistent phosphorus removal. This suggests that efficiency in dosing

can be achieved by regulated inflows, which is explored in the subsequent section.

4.3.2 Dynamic Influent Simulations: Single Storm Event

Simulations were carried out with 75-day, dynamic WRRF influent conditions,

including both dry- and wet-weather behavior. As described, three sewer control
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scenarios are included and correspond to scenarios from Chapter 3: NA, MA, and

SA. The two ferric chloride dosing strategies are C: constant dose at 2 g/m3; and

F: flow-proportional dose (see Section 4.2.4 for more details). Figure 4.5 shows a

comparison of these sewer control scenarios and dosing strategies for a particular

5-day storm event (Storm E: Days 67–72).

Figure 4.5: Impact of sewer control and ferric chloride dosing strategy on dynamic
WRRF response. The time series show (a) WRRF influent flow, (b) cumulative
primary effluent TP load, and (c) cumulative FeCl3 mass added. Subfigure (b) also
depicts the cumulative TP load in flow that exceeds the 3.5 Mm3/d threshold and
is discharged from the WRRF to the environment after primary treatment. Sewer
control scenarios (different colors: NA, MA, SA) and ferric chloride dosing strategies
(line styles: C, F) are compared. One storm event (Storm E) is shown as an example
and cumulative totals begin at time 67 d for visual clarity.

For both ferric chloride dosing strategies (C and F), the attenuation of influent

peaks (both storm-driven and diurnal) results in more consistent phosphorus load

in the primary effluent (closer to a straight line in Figure 4.5(b)). Further, the

cumulative total phosphorus in the primary effluent at the end of this 5-day period

is lower in the scenarios of greater flow peak attenuation, though this difference is

very small (Figure 4.5(b) and Table C.3).

Of greater importance is the phosphorus that is discharged after the WRRF
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primary system. Primary effluent flows above 3.5 Mm3/d are discharged to the

environment from the WRRF. These discharges result in volumes of combined sewer

flow that receive only primary treatment, bypassing secondary treatment benefits

and going directly to the receiving water body. The darker shaded regions in Figure

4.5(b) show the cumulative total phosphorus load that would be discharged in these

overflows. Influent flow peak attenuation has a substantial impact on reducing the

phosphorus load that is discharged after primary-only treatment. This is the result

of the reductions of flow above the 3.5 Mm3/d threshold and thus reductions in

the overflow volume. Indeed, in the MA scenario, less primary effluent volume is

discharged, resulting in less total phosphorus discharged as well (Figure 4.5(b) and

Table C.3). In the SA scenario, there is sufficient attenuation of flow peaks so that

no primary effluent is discharged and all flow proceeds to later stages of treatment in

the WRRF. Not only could this mitigate instances of regulatory non-compliance, but

also enable other means of phosphorus and other pollutant (e.g., carbon and nitrogen

species, depending on the WRRF) treatment that occur later in the WRRF.

For the constant ferric chloride dosing strategy (C), there was little impact of flow

peak attenuation on ferric chloride consumption (Figure 4.5(c) and Table C.3). This

is because the total volume of the storm is the same for each sewer control scenario

(NA, MA, SA). Since the ferric chloride dose remains constant at 2 g/m3 regardless

of flow, the total ferric chloride mass consumed is simply

C · V (4.3)

where C is the ferric chloride dose concentration (2 g/m3) and V is the volume of

the event (m3). However, the cumulative consumption of ferric chloride changes

substantially in the flow-proportional dosing strategy (F) (Figure 4.5(c)). More

specifically, with this ferric chloride dosing strategy, increased flow peak attenuation

results in reduced consumption of ferric chloride. For this particular 5-day storm

event (Storm E), the cumulative ferric chloride consumption in each scenario is (in

metric tons) NA: 22, MA: 22, SA: 19 — a 14% reduction for SA compared to NA.

Relative to the C,NA case (24 metric tons of ferric chloride consumed), the F,SA case
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shows a 21% reduction in ferric chloride consumption (Table C.3). For the GLWA

WRRF, a reduction of this magnitude corresponds with a potential cost savings of

$250,000 per year from ferric chloride usage alone based on historical ferric chloride

expenditures at the WRRF [131].

4.3.3 Dynamic Influent Simulations: Overall Behavior

While Figure 4.5 compares sewer control scenarios and ferric chloride dosing

strategies for a single storm event (Storm E), these results are compiled for the five

storm events in the 75-day simulation (Tables 4.1 and C.3, and Figure C.2). In Table

4.1, each table entry shows the result (e.g., cumulative ferric chloride mass added)

relative to the C,NA base case. Table 4.1 averages these relative results across the

five storm events.

Each pairing of ferric chloride dose strategy and sewer control scenario results

in nearly equal total phosphorus loads in the primary effluent compared to the base

case of C,NA. While this was exemplified with Storm E (Figure 4.5), even when

averaging across the five storm events in the 75-day simulation period, this remains

so (Table 4.1). Again, of more significant result is the reductions in TP that are

discharged after the WRRF primary system. The moderate attenuation scenario

(MA) for both constant (C) and flow-proportional (F) dosing strategies discharge

cumulative TP mass that is 79% (± 14%) and 77% (± 14%) of the C,NA case,

respectively, when averaged across the five storm events (TP discharge reductions of

21% and 23%, respectively). Further, in all five storm events, the strong attenuation

scenario (SA) for both dosing strategies (C and F) completely eliminates primary

effluent discharges, resulting in no TP mass discharged after the WRRF primary

system (Table 4.1).
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Table 4.1: Relative values for each row are summarized by av-
eraging (± standard deviations) across the five storm events
in the 75-day simulation period. This is done for each of the
three sewer control scenarios (NA, MA, SA) and the two ferric
chloride dosing strategies (C, F). Percentages are used to com-
pare cases relative to the C,NA case. Note that cases in which
the percentage is over 100% indicate that values were greater
than the C,NA case (e.g., the F,NA case has 2% greater cumu-
lative TP mass in the primary effluent compared to the C,NA
case).
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C
NA 100% (± 0%) 100% (± 0%) 100% (± 0%)
MA 100% (± 0%) 99% (± 1%) 79% (± 14%)
SA 98% (± 2%) 97% (± 2%) 0% (± 0%)

F
NA 89% (± 3%) 102% (± 0%) 97% (± 1%)
MA 86% (± 2%) 100% (± 1%) 77% (± 14%)
SA 80% (± 2%) 99% (± 2%) 0% (± 0%)

When considering reductions in ferric chloride consumption, the dosing strategy

has an important role. For the constant dose (C), there is little to no change in

the mass of ferric chloride added across the sewer control scenarios (NA, MA, SA)

when compared to the C,NA case (Table 4.1 and Figure C.2). This is because the

total volume of each storm event remains the same and thus the ferric chloride

mass does as well. However, in the flow-proportional strategy, reductions in ferric

chloride consumption are observed across the three sewer control scenarios. Even

in the case of no attenuation (F,NA), only 89% (± 3%) of the ferric chloride mass
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added in C,NA is used (11% reduction). Moreover, flow peak attenuation further

reduces ferric chloride consumption by reducing times of elevated ferric chloride dose.

Respectively, the moderate and strong attenuation scenarios (F,MA and F,SA) utilize

86% (± 2%) and 80% (± 2%) of the ferric chloride mass in C,NA (Table 4.1) (14%

and 20% reductions, respectively). The small standard deviations in these cases

suggest that these results are also consistent across the five storm events in the 75-

day simulation period considered here, even though these storm events vary in total

volume and flow peak (Figure C.2).

While not the primary focus of this study, other factors were briefly investigated

for their impact on the efficacy of chemical phosphorus removal and are included as

supplemental to these results. First, in the previously discussed simulation exper-

iments, a constant temperature of 20°C was used; however, some of the reactions

in chemical phosphorus treatment have temperature-dependent rates [133]. To il-

lustrate this dependence, simulation experiments were conducted for the C,NA case

over the 75-day period, considering wastewater temperatures of 10, 20, and 30°C.

Based on the results of these experiments, temperature plays a negligible role in the

efficacy of chemical phosphorus removal; specifically, temperature changes of ±10°C
to 20°C result in at most 0.4% change in cumulative total phosphorus mass in the pri-

mary effluent over 75 days, with higher temperatures being associated with slightly

greater phosphorus removal (Appendix C and Table C.4). The second factor consid-

ered is the primary clarifier model used within the WRRF primary system model.

Specifically, previous experiments discussed here use a volumeless point separator

model; however, we also compare this to a three compartment model. This model

choice is considered for comparison as the three compartment model has volume for

additional reactions between HFO and phosphorus to potentially occur beyond the

mixing CSTR. Again, simulation experiments over the 75-day period were conducted

for the C,NA case, comparing the volumeless point separator (used previously) and

the three compartment clarifier model (with an additional 2-hr HRT). The additional

reaction time provided by the primary clarifier with the three compartment model

resulted in 1.08% less total phosphorus mass in the primary effluent (Appendix C

and Table C.5). Additional details for both of these experiments are in Appendix C.
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4.3.4 Broader Implications

The key findings of this work are summarized as:

• Influent flow attenuation reduces variability of phosphorous loads to

downstream treatment processes and plant outflows. The benefits of

more equalized conditions are passed to downstream treatment, such as more

stable conditions for biological treatment systems. It also results in fewer

pollutant shocks in the receiving water body, particularly during and after

storm events.

• Influent flow attenuation mitigates overflows from the WRRF and

therefore the mass of phosphorus to receiving water bodies. In certain

cases (SA scenarios), these overflows were completely eliminated, meaning that

all primary effluent is able to be treated in downstream treatment processes

before leaving the WRRF.

• The combination of influent flow attenuation and flow-proportional

ferric chloride dosing reduces the amount of ferric chloride required.

Reduction of this chemical consumption can realize financial savings, possibly

substantial, and potential decreases in chemical sludge production.

While not evaluated here, it is likely these results would extend to the coagula-

tion of other species, such as TSS, in the WRRF primary treatment system. The

GLWA WRRF is working towards having an on-line analyzer for chemical phospho-

rus removal and ferric dosing [128]. This feedback control mechanism may allow for

more precise control of phosphorus in the primary effluent and the WRRF at large.

Ingildsen [47] saw that feedback control with a simple PI controller yielded good

results in the removal of phosphorus via ferric-based dosing. However, tuning will

be important to ensure precision and robustness, and reduce lag and instability [48].

Based on results presented here, it is likely that attenuation of influent flow peaks

(via sewer control) will only further improve treatment performance by reducing

variability, enabling more stable treatment performance, and reducing ferric chloride
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consumption. The financial savings from reductions in ferric chloride usage can be

considerable and depend on the size of the WRRF. For the GLWA WRRF, the F,SA

case has potential savings of around $250,000 per year when compared to the C,NA

case.

In Chapter 3, we concluded that trade-offs across the sewer and urban wastewater

system do exist when conducting system-wide sewer control, specifically noting a

need to balance WRRF influent peak attenuation, local sewer network flooding, and

accumulation of solids in the sewer. Similar trade-offs should also be considered when

planning coordination between sewer and WRRF operational control decisions. The

sewer control scenarios used here (NA, MA, SA) were specifically chosen to show a

range of peak attenuation while experiencing minimal flooding (Figure 3.5 in Chapter

3). However, a full characterization of costs (financial and operational) to the sewer

network and WRRF should be conducted before making control decisions in the real

system.

4.4 Conclusions

There is a large challenge and opportunity for coordinated management across

the urban wastewater system. There is significant potential to leverage sewer stor-

age and control resources to benefit the downstream WRRF. This work has demon-

strated that, when deployed in concert, sewer control to augment WRRF influent

flow dynamics and ferric chloride dosing at the WRRF impact both the efficacy and

efficiency of chemical phosphorus removal. This can result in improved conditions for

treatment further downstream in the WRRF, reduced discharges of partially-treated

wastewater from the WRRF, and savings from reduced chemical consumption. As

control actions and decisions take place in both the sewer and WRRF, coordina-

tion and trade-offs across the urban wastewater system should be evaluated to strike

a balance between the multiple, often competing objectives in this system. Com-

putational algorithms and quantitative assessment of impacts across the sewer and

WRRF, as presented in this and previous work [142], will inform coordinated deci-

sions and enable coupled urban wastewater system management.
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CHAPTER 5

Conclusions, Contributions, and Future Research

Directions

5.1 Conclusions and Contributions

With a data-driven emphasis, this dissertation contributes to the broader knowl-

edge of real-time modeling and control of urban wastewater systems. By working in

the context of a real-world system, this work has focused on technical solutions that

consider and address challenges of implementation. Summaries of these contributions

are detailed below.

Chapter 2 highlights the influence of data quality, age, and volume for training

data-driven models of dynamic and uncertain systems, specifically urban wastewater

systems. This is particularly important in considering the modeling toolchain and re-

calibration scheme for accurately representing such systems. As was illustrated here,

wastewater and stormwater flow components in combined sewers exhibit distinct

spatial and temporal variation across the scale of cities. This work illustrates that

signal processing and machine learning techniques are effective tools to decouple

and separately model these components, learning from the unique characteristics

in the underlying hydraulic and hydrologic processes that are reflected in sensor

measurements. At the crux of the effectiveness of such an approach is the flexibility

to separately and continuously re-calibrate each model component of the broader

system based on individual data requirements.
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Chapter 3 extends the ability to monitor the sewer network towards actual control

of distributed assets. Specifically, through the development and application of a con-

trol algorithm, this work illustrates coordinated control of distributed sewer storage

assets in order to balance multiple water quantity and quality objectives. Param-

eterization analysis within this approach elucidates trade-offs that exist between a

number of objectives. For instance, sole priority given to flow attenuation can re-

sult in sewer network flooding and operational challenges. Rather control strategies

should seek to balance objectives of the system and strongly consider those that

would impede its adoption. To do so, consultation with decision makers and opera-

tors must take place at the beginning of the problem formulation process. Informing

control decisions based on these trade-offs is key to the operation and performance

of the urban wastewater system itself.

Building from the ability to coordinate the control of sewer assets and attenu-

ate WRRF influent flows, Chapter 4 establishes the connection between sewer and

WRRF control and decision making. While focusing on chemical phosphorus re-

moval, this work demonstrates the potential to jointly leverage sewer control and

chemical dosing strategies to maintain or improve phosphorus treatment while si-

multaneously reducing chemical resource requirements. By evaluating the impacts

of sewer control on the WRRF, priorities and trade-offs of each must be more ex-

plicitly considered.

5.2 Future Research Directions

Further investigation is needed into the role of uncertainty in decision making

and control strategies at the scale of urban wastewater systems [144]. Uncertainties

within these systems arise from a number of sources, including sensor measurements

and weather predictions. As a key illustration, consider rainfall measurements and

forecasts which are critical for estimating conditions and making decisions in urban

water systems. Traditional means of generating these data (e.g., rain gauges, weather

radar) are subject to both temporal and spatial uncertainties [145]. At the scale of

cities, the propagation of both measurement and modeling uncertainties will most
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certainly influence control actions. Understanding the robustness of control strate-

gies to these uncertainties is critical for ensuring proper function and mitigating risks

of system failure [22, 107]. Even further, evaluation and quantification of uncertainty

will be critical for developing effective means to communicate, plan for, and build

trust of operators in monitoring and control decision support systems in light of

uncertainty [144]. For illustration, consider noise and anomalies present in sensor

measurements that will directly or indirectly (through model training and predic-

tion) impact control actions that are dictated, especially in data-driven contexts. In

real-time applications, data quality must be assessed and erroneous data corrected

to ensure that high fidelity data can be used for a variety of purposes (e.g., model

calibration, decision making) [146]. Even in the sensor deployment stage, sensor

placement and redundancy to protect against sensor failure are non-trivial problems

that must be addressed. This will be particularly important for expanding the de-

ployment of water quality sensors, which require significant maintenance efforts to

ensure consistent reliability [147]. Further, literature related to optimal sensor place-

ment is present in the field of water distribution systems [148], yet remains largely

unexplored in wastewater and stormwater contexts [117]. Recent work into digital

twin applications and real-time calibration is laying the groundwork towards this end

[149], but this remains an emerging area of research for urban wastewater systems.

While the goal of this work has been to reside in the context and considerations of

real-world systems, significant research efforts must be devoted towards enabling true

adoption and implementation of real-time modeling and control in urban wastewater

systems. Namely, sociotechnical approaches seek to understand the deep coupling

of technical and social aspects of such problems [150]. While some of the technical

challenges have been discussed and addressed here, urban wastewater systems are

inherently complex and umbrella over numerous stakeholders, each with distinct and

often competing priorities and incentives, as well as decision-making processes and

abilities [121, 151]. Technological means alone will not be able to overcome these

social barriers and fully realize the implementation of real-time modeling and control

in urban wastewater systems [150]. Instead, sociotechnical approaches are essential

for understanding the underlying organizational structures [43, 152] and developing
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context-driven decision support processes [44].
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APPENDIX A

Supplementary Information for Chapter 2.

Linear Dynamical System Representation

Equation 2.12 can also be represented as a linear dynamical system [65]

ḣ = Ah+Bp, (A.1)

where

A =



0 · · · 0 0 −an
1 · · · 0 0 −an−1
...

. . .
...

...
...

0 · · · 1 0 −a2
0 · · · 0 1 −a1


; B =



bn − anb0
bn−1 − an−1b0

...

b2 − a2b0
b1 − a1b0


. (A.2)
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APPENDIX B

Supplementary Information for Chapter 3.

Table B.1: System subcatchment and storage asset physical characteristics.

Controllable Directly Contributing Diameter of
Storage Asset Subcatchment Area (km2) In-line Conduit (m)

2 1.66 4.48
3 5.78 2.74
4 21.67 4.27
5 2.64 4.72
6 0.00 4.72
7 0.00 4.72
8 6.64 4.72
9 5.08 3.73
10 13.60 4.72
11 3.54 3.20
12 6.68 3.51
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Figure B.1: Dry-weather inputs to the sewer network. The flow and TSS concen-
tration dynamics at each network inlet follow diurnal wastewater patterns, where
the magnitude of flow (scaled from the normalized flow shown here) is dictated by
the corresponding subcatchment area and TSS has an average concentration of 200
mg/L.

Figure B.2: Precipitation data used for wet-weather inputs into sewer network. Each
subcatchment receives precipitation from one of the seven rain gauges.
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Figure B.3: Comparison of control performance with system importance values
αq1 = 5.0 and αtss1 = 5.0 during the first two months of the simulation period.
Three ρ values used in the state-dependent instantaneous importance γi are shown
in the columns; the upstream normalized depth behind the storage assets, flow at the
network outlet, and TSS load at the network outlet are shown in the rows. Dashed
and solid lines in (d)–(i) denote uncontrolled and controlled cases, respectively.
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APPENDIX C

Supplementary Information for Chapter 4

Dosing Scheme of Ferric Chloride in the GLWA WRRF

In the GLWA WRRF primary treatment system, ferric chloride (FeCl3) is dosed

for chemical phosphorus removal. There are two lines that receive WRRF influent

from different sections of the sewer network. In the first line, which receives combined

sewer flow, ferric chloride is added in a surge basin, which is then followed by a wet

well, pump, and preliminary treatment (bar screen and grit removal), before heading

to the primary system. In this case, mixing of ferric chloride is considered to be very

good. In the second line, which receives sanitary sewer flow, ferric chloride is added

after preliminary treatment and before the primary system; mixing is not assumed

to be good in this case [128].

The ferric chloride dose for these two lines is determined by dry- and wet-weather

operation. During dry-weather, ferric chloride is added at a constant dose of 1.5 g/m3

to the first line (combined sewer), while the second line (sanitary sewer) receives vari-

able ferric chloride dose based on the measured concentration of soluble phosphorus

(SP) in the primary effluent; these measurements are taken 2–3 times a day. Specif-

ically, if primary effluent SP is 0.5–0.75 g/m3, a ferric chloride dose of 1.5 g/m3 is

used; if SP is 0.75–1.0 g/m3, the dose is 2.0 g/m3; if the dose is >1.0 g/m3, the dose
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is 2.5 g/m3. In both lines, if SP is <0.5 g/m3, no ferric chloride is added. When

there is a storm event, the ferric chloride dose in both lines is 2.0 g/m3. However, if

there has been more than 7 days of antecedent dry-weather, the ferric chloride dose

to the first line (combined sewer) is 2.5 g/m3. These elevated doses remain until the

measured primary effluent SP concentrations go below 0.5 g/m3 [128].

Chemical Phosphorus Removal via the HFO Pathway

The chemical phosphorus removal mechanisms as modeled in Sumo include the

following reactions:

• Oxidation of ferric cations to form HFO

Fe→ HFOH

• This newly formed HFO can experience:

– Instantaneous binding of phosphorus species on HFO (denoted by sub-

script H)

HFOH + P → (HFOH + P )

or

– Aging

HFOH → HFOL

followed by slow binding of phosphorus species (denoted by subscript L)

due to reduced phosphorus adsorption capacity

HFOL + P → (HFOL + P )

• Desorption of phosphorus from HFO can occur in either of the above cases

(HFO + P )→ HFO + P
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• In all of these cases, aging of HFO will reduce phosphorus adsorption capacity

HFOH → HFOL

HFOL → HFOold

(HFO + P )→ (HFO + P )old

• Throughout this, HFO can also be reduced with organic matter back to ferric

ions

HFO → Fe

This is summarized in Figure C.1 and the reaction rates used in Sumo are given in

Table C.1.

Figure C.1: Reactions between hydrous ferric oxide (HFO) and phosphorus (P) in
chemical phosphorus removal, including both instantaneous and slow reactions.
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Table C.1: Default hydrous ferric oxide (HFO) kinetics pa-
rameters in Sumo, specifically rates of reactions for both
(nearly) instantaneous (instan.) and slow chemical phospho-
rus (P) removal.

Reaction Rates (1/d) Instan. Slow

Binding of P on Active HFO 150 1
Desorption of P from HFO 100 10
Dissolution of P from Old HFO 100 100
Aging of Active HFO 250 1
Oxidation of Fe 1
Reduction of HFO with Organic Matter 2
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Table C.2: Storm event characteristics in the 75-day simulation period.

Storm
A B C D E

Days 15–19 22–29 29–34 50–59 67–72

Volume (Mm3)
NA 9.7 17.3 11.9 21.3 12.2
MA 9.7 17.3 11.9 21.3 12.2
SA 9.4 17.2 11.8 21.3 11.8

Flow Peak (Mm3/d)
NA 6.8 6.5 3.8 6.8 7.0
MA 4.4 4.1 3.6 4.9 5.0
SA 3.1 3.0 2.9 3.1 3.3

Figure C.2: Impact of sewer control on WRRF response. Time series show (a)
WRRF influent flow, (b) cumulative primary effluent TP mass and that discharged
after the primary WRRF system, (c) cumulative FeCl3 mass added. These com-
pare sewer control scenarios (different colors: no attenuation, moderate attenuation,
strong attenuation) and ferric chloride dosing strategies (line styles: constant at 2
g/m3 and flow proportional with 1.5 g/m3 dose when influent flow is less than 2.1
Mm3/d and a linear increase in dose proportional to flow). These show all of the
75-day simulation. The grey vertical blocks indicate the five storm events that were
isolated within this period and letters at the top of each block indicate the storm
event corresponding to Tables C.2 and C.3.
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Table C.3: Cumulative performance for each storm event comparing the three
sewer control scenarios (no attenuation (NA), moderate attenuation (MA), strong
attenuation (SA)) and the two ferric chloride dosing strategies (constant at 2 g/m3

(C), flow proportional (F)).
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Storm A: Days 15–19 Storm D: Days 50–59

C
NA 19 16 3.0 43 34 3.6
MA 19 15 2.5 43 34 3.3
SA 19 15 0.0 43 34 0.0

F
NA 18 16 2.9 38 35 3.4
MA 17 16 2.4 36 35 3.2
SA 15 15 0.0 35 34 0.0

Storm B: Days 22–29 Storm E: Days 67–72

C
NA 35 27 4.6 24 20 4.5
MA 35 27 4.1 24 20 3.4
SA 34 27 0.0 24 19 0.0

F
NA 31 28 4.5 22 20 4.3
MA 30 28 4.0 22 20 3.3
SA 29 28 0.0 19 19 0.0

Storm C: Days 29–34

C
NA 24 19 0.94
MA 24 19 0.52
SA 24 19 0.00

F
NA 20 19 0.93
MA 20 19 0.52
SA 19 19 0.00
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Impact of Temperature on Chemical Phosphorus Removal

To examine the impact of temperature on chemical phosphorus removal, the

75-day simulation for the C (constant ferric dose), NA (no attenuation) case was

conducted at temperatures of 10, 20, and 30°C (original simulations were at 20°C).

The cumulative total phosphorus (TP) mass in the primary effluent (metric tons)

at these temperatures are shown in Table C.4. From these results, varying the

temperature ±10°C (from 20°C) changes the total phosphorus mass by only 0.4%.

Table C.4: Impact of temperature on chemical phosphorus
removal for the C,NA case and the 75-day simulation.

Cumulative TP Mass in
Temperature (°C) Primary Effluent (metric tons)

10 278
20 278
30 277

To ground these results in the underlying modeled mechanisms, note that tem-

perature plays a limited role in chemical phosphorus removal reactions as developed

in Hauduc et al. [133]. Specifically, only rates of Fe oxidation and HFO reduction

with organic matter are temperature corrected using the Arrhenius equation. This

temperature correction modeled as:

qT = q · θT−Tbase

where q is the base reaction rate, θ is the Arrhenius coefficient for the reaction, T

is the temperature of interest, and Tbase is the base temperature (20°C). For both

Fe oxidation and HFO reduction, the Arrhenius coefficient is θ = 1.040. The base

reaction rate for Fe oxidation is qFe,OX = 1.0d−1 and the base reaction rate for HFO

reduction is qHFO,RED = 2.0d−1. Thus, for T = 30°C, the temperature-corrected
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reaction rates for Fe oxidation and HFO reduction are respectively:

q30°C,Fe,OX = qFe,OX · θT−Tbase = 1.0d−1 · 1.04030°C−20° = 1.48d−1

q30°C,HFO,RED = qHFO,RED · θT−Tbase = 2.0d−1 · 1.04030°C−20°C = 2.96d−1

and for T = 10°C,

q10°C,Fe,OX = qFe,OX · θT−Tbase = 1.0d−1 · 1.04010°C−20°C = 0.68d−1

q10°C,HFO,RED = qHFO,RED · θT−Tbase = 2.0d−1 · 1.04010°C−20°C = 1.35d−1

While these temperature-corrected reaction rates are up to 50% different than the

base rates, other reaction rates, which are not temperature dependent, are still orders

of magnitude greater. These include that of instantaneous phosphorus binding on

HFO at 150 d−1, HFOH aging at 250 d−1, and desorption of phosphorus from HFO at

100 d−1. This thus results in minimal impacts of temperature on chemical phosphorus

removal, as evidenced here.

Impact of Primary Clarifier Model on Chemical Phosphorus Removal

To consider the impact of the primary clarifier model on chemical phosphorus

removal, the original choice of a volumeless point separator was changed to a three

compartment model in Sumo. This change specifically allows for volume, and thus

time for reaction, in the primary clarifier, and thus possibly increased phosphorus and

HFO reactions. This three compartment model was designed to have a dry-weather

average hydraulic residence time (HRT) of 2 hr (the dry-weather average flow is

2.1 Mm3/d and the clarifier volume is 175,000 m3). Based on conversation with

personnel at the Great Lakes Water Authority (GLWA), the time between WRRF

influent and primary effluent is approximately 1.5–2 hrs [128]. Thus the HRT in this

three-compartment model will be slightly more than the estimate of the real WRRF

primary system. The solids percent removal was kept consistent with that of the

volumeless point separator primary clarifier (70%), as observed in previous study for

the GLWA WRRF [130].
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For this comparison, the 75-day simulation was conducted for the C (constant

ferric dose), NA (no attenuation) case. Table C.5 compares the cumulative or-

thophosphate (SPO4) and total phosphorus (TP) mass in the primary effluent for

the volumeless point separator and three compartment primary clarifier models. The

additional 2 hrs of reaction time in the three compartment model yielded a reduction

of approximately 3 metric tons in primary effluent phosphorus mass over the 75-day

simulation; this is a 1.96% reduction in orthophosphate mass and 1.08% reduction

in total phosphorus mass. Because this 3 metric ton reduction is observed in the

orthophosphate mass, it is concluded that this is the result of additional binding

and co-precipitation between soluble phosphorus species and HFO occurring in the

primary clarifier. This is a relatively small difference despite the substantially large

addition of HRT and is likely due to balance struck between HFO-P binding and

HFO aging. As discussed previously, aging of HFO decreases its phosphorus adsorp-

tion capacity. Note that aging of fresh HFO (HFOH) has a reaction rate of 250 d−1,

while the reaction rate of instantaneous phosphorus binding with fresh HFO is 150

d−1 and slow binding with aging HFO is 1 d−1. Thus, as HRT increases, there is

substantial aging of HFO and HFO-P binding ability plateaus.

Table C.5: Impact of primary clarifier model on chemical phosphorus
removal for the C,NA case and the 75-day simulation, comparing
both orthophosphate and total phosphorus for the volumeless point
separator and three compartment clarifier model.

Cumulative P Mass in
Primary Effluent (metric tons)

Clarifier Model AAA SPO4 AA TP AAA

Volumeless Point Separator 153 278
Three Compartment 150 275
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APPENDIX D

pystorms: A Simulation Sandbox for the

Development and Evaluation of Stormwater

Control.

Full paper in preparation for submission. In collaboration and co-authored with S.

P. Rimer (Argonne National Laboratory), A. Mullapudi (University of Michigan), B.

Kerkez (University of Michigan).

D.1 Introduction

The advent of smart cities is poised to transform the management of our built

environment [153, 154]. Specific to stormwater, a new generation of smart and con-

nected stormwater systems promises to reduce flooding and improve water quality

management by autonomously sensing watershed parameters and subsequently con-

trolling corresponding hydraulic components across complete watersheds, both adap-

tively and in real-time. These smart systems will provide an alternative to costly

concrete-and-steel construction by squeezing even more performance out of existing

stormwater and sewer infrastructure, and reimagining the design and operation of

new infrastructure. While the idea of controlling distributed stormwater systems

in real-time dates back to the 1970s [155], the concept has only recently gained
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widespread traction in large part due to the affordability of internet-connected sen-

sors, the increased capacity of data services, and the broader acceptance and popu-

larity of other autonomous systems (e.g. self-driving cars and robots). Relative to

other fields of autonomy, however, smart water systems are still early in their stage

of adoption. Thus, developing and implementing smart water systems presents an

exciting opportunity for researchers and practitioners alike to propose new visions,

standards, and technologies.

The intelligence of smart stormwater systems broadly refers to the acquisition

(i.e. “sensing”) and processing of data into decisions and actions (i.e. “control

strategies”) that are then used to guide the operation of gates, valves, pumps, and

other actuators within a water system. Ultimately, the logic embedded via these

control rules determines how water is moved around the collection system to meet

specific performance objectives or reduce adverse outcomes (e.g. flooding, overflows,

and/or water quality impairments). As such, the emerging field of smart stormwater

systems stands to benefit greatly from researchers and stakeholders who can bring

to bear new control strategies and techniques.

However, due to the complex, bureaucratic nature of watershed management, it

can be impenetrable for new groups working in this field to obtain the necessary

details of how real-world stormwater systems operate, as those details are unlikely

to be opened up to just anyone who wants to try out new ideas of controlling them.

To that end, computational toolchains exist for simulating stormwater systems and

then evaluating various control rules implemented by them. Yet, developing these

simulations and adapting them to specific control strategies often requires a signif-

icant amount of effort and expertise. Furthermore, while a number of promising

control algorithms have been proposed, they have all been evaluated on highly spe-

cific examples and simulators, making it difficult to establish cross-comparisons of

their performance. In an effort to address these limitations, the contribution of this

paper is pystorms, an open-source Python package comprised of:

(i) A collection of real world-inspired smart stormwater control scenarios that

facilitate the quantitative evaluation of control strategies, coupled with
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Figure D.1: pystorms abstracts the control of stormwater systems as scenarios,
which are characterized by a computational representation of a stormwater network,
a corresponding event driver, set of observable states, and controllable assets that
can be leveraged to manipulate the behavior of a stormwater network in real-time to
achieve control objectives. This is coupled with a streamlined programming interface
and a stormwater simulator to provide the users with a standalone package for the
development and evaluation of control algorithms.

(ii) A programming interface and a stormwater simulator to provide a stand alone

package for developing stormwater control strategies.

Our aspiration is for pystorms to emerge as a community-driven resource that fos-

ters accessibility and collaboration amongst smart stormwater control’s field of re-

searchers and practitioners, both novices and experts alike.

D.2 Background

D.2.1 Control of Stormwater Systems

A stormwater control problem can be defined as the development of an infras-

tructural strategy to manipulate the behavior of stormwater in order to achieve a
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desired response. Traditionally, stormwater control has relied on passive solutions,

in which control strategies are large-scale, construction-heavy, and often financially-

burdensome. However, the emergence of microcontrollers, wireless communication

technologies, and low-cost sensors has allowed for small-scale, modular, and auto-

mated control components (e.g. hydraulic valve operated by cellularly-connected

actuator) to be installed at strategic locations throughout a stormwater network for

active control, with decisions that can be automated, adjusted remotely, and made in

real-time. Consequently, stormwater infrastructure can now be instantly redesigned

to respond to its dynamic environment.

Although implemented smart stormwater control engineering solutions were doc-

umented at least a decade earlier, research-oriented discussion of these implementa-

tions did not occur until 1989 [156]. Furthermore, while implementation of smart

stormwater control began at the end of the 20th-century, the 21st-century has seen

far more extensive systematic successes, as seen beginning with the foundational

reviews of Schütze et al. [54] and Vanrolleghem et al. [16]. Some notable adaptive

real-time stormwater control implementations that have been installed hand-in-hand

with extensive research dissemination include Mullapudi et al. [23], Garćıa et al.

[90], Ocampo-Martinez [93], Montestruque [96], Gaborit et al. [98], Vezzaro and

Grum [107], Gaborit et al. [116], Sadler et al. [157]. These references we specif-

ically emphasize as to us they represent diverse and well-documented implemen-

tations of smart stormwater control from single control assets to watershed-scale

implementations. For more comprehensive reviews of stormwater control implemen-

tations, we direct the reader to some recently published survey articles on the topic

[14, 85, 90, 121, 158].

D.2.1.1 Simulating Stormwater Systems

Due to the variability of storm events and the safety concerns of experimental

uncertainty, it is infeasible to test various control strategies on actual stormwater

networks. Thus, a more practical method to test the outcomes of different control

decisions is to use a computational simulation of a stormwater network that is able
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to give us a “good enough” estimate of what the actual in-situ physical results might

be. Often, these simulations can be carried out using computational stormwater

models that have already been developed to inform the design and operation of the

stormwater system being studied.

As a stormwater system is designed to route rainfall and other runoff to a wastewa-

ter treatment plant and/or discharge to a receiving body of water, the computational

components of stormwater models primarily include a (i) runoff module and (ii) a

routing module, and are driven by (iii) precipitation events (e.g. rain, snow). The

runoff module converts precipitation into overland runoff; the overland runoff then

undergoes hydrological processes (e.g. infiltration, evaporation) and is hydraulically

transported to the stormwater collection system, which is carried out computation-

ally via the routing module.

Over the years, several different software applications have been developed for

modeling and simulating stormwater networks. The different software applications

all function in a similar manner in which they computationally estimate the dynamics

of stormwater as it moves through predefined temporal and spatial bounds to vary-

ing degrees of mathematical accuracy and fidelity to the underlying hydraulic and

hydrological governing processes. The US-EPA’s Stormwater Management Model

(SWMM) [114], MIKE URBAN+ from the MIKE Powered by DHI software suite1,

and the Model for Urban Stormwater Improvement Conceptualisation (MUSIC) by

eWater2 are a few examples of widely-used stormwater software applications. Fur-

thermore, in addition to modeling runoff and its routing, some of these software

applications have also been developed with the capabilities of modeling urban flood-

ing (e.g. MIKE FLOOD) as well as the generation and transport of pollutants (e.g.

SWMM). The computational details underlying the models produced by these soft-

ware applications are not the purpose of this paper, and instead for clarity and

further detail, the reader is directed to Rossman and Huber [159], Rossman [160],

and Rossman and Huber [115]. Additionally, we provide further detail about the

hydraulic simulator we utilize in Section D.3.3.

1mikepoweredbydhi.com
2ewater.org.au
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D.2.1.2 Implementing Control

For those unfamiliar with control theory and control systems engineering, the

field can be evasive. Here, we aim to maintain the idea of control in its broadest

but most straightforward meaning: after receiving some sort of cue (for our systems,

this cue may be readings from sensors), an action is taken on the system to alter

it for a desired outcome (an action for stormwater systems may be as simple as the

opening and closing of a valve). When we implement control, we are making decisions

and taking actions that try to optimize our system in order to meet some specified

objective. Thus, a stormwater control strategy can be simplified as the method of

developing rules that determine actions to be implemented by the stormwater system.

The computational process of implementing this method to find these actions is what

we define as the stormwater control algorithm.

It is easy to imagine how finding the “best” actions to implement is a complex

undertaking. Suppose a stormwater system with only one valve was installed, and

that valve could be either completely opened or closed every hour. Deciding on a

pattern for the complete opening and closing of the valve — even over the period of a

few days — in order to meet some sort of objective is actually quite difficult, with no

guarantee of a singularly “correct” solution. Now, imagine if the action could be to

open the valve as a percentage between 0–100% — the combination of actions that

can be implemented becomes even more endless. From an initial perspective, this

process of finding the “best” and “correct” solution from what is an inexhaustible

set of possibilities might seem futile. However, for stormwater applications, finding

such an absolute “best” solution is usually not necessary, and most likely does not

even exist. Instead, a solution that provides a “better” outcome than the current

one is often sufficient and can still drastically benefit the system. Additionally, such

better solutions are actually dependent on how a system’s underlying needs are even

defined. That is, how we define the objective determines what is considered optimal.

Thus, research on stormwater control focuses on both (i) the formulation of control

objectives and (ii) analyzing and differentiating the myriad potential solutions based

on said formulations. While the former research is essential in this field, it is not
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the focus of this paper. Rather, our initiative here concentrates on the latter: via

the presented simulation sandbox pystorms, we aim to develop a systematic means

for analyzing and differentiating control solutions for stormwater systems with pre-

defined objectives.

Thus far, we have discussed “smart stormwater control” in its broadest sense,

which encompasses all layers that a smart stormwater control system would entail —

from the sensors chosen, the communication protocol implemented for those sensors,

the data management of what is sensed, the wireless actuators controlling a control

asset, even to the human operators who may interact or intervene physically with

the system. However, from here on out, we focus our discussion of smart stormwater

control strategies strictly on the computational algorithm that is used to determine

the discrete actions to be taken by the system’s control assets based on information

known regarding the system’s past, current, and/or future state. This algorithm can

allow for the control strategy to be implemented and adjusted over any number of

given time periods, and can be coordinated amongst any number of control assets

within the system. By focusing strictly on the computational algorithm, we are able

to isolate one component of smart stormwater systems that can allow for quantita-

tive cross-comparisons of strategies used across a multitude of stormwater systems.

Additionally, the focus on the computational algorithm also centers the component

of a smart stormwater system that can specifically benefit from experts outside the

discipline of water resources engineering.

D.2.2 The Need for a Simulation Sandbox

Even though smart stormwater control has been successfully implemented for

decades, there still does not exist a standard to systematically evaluate the perfor-

mance of different control strategies across diverse stormwater networks and contexts.

Consequently, this inability to systematically evaluate smart stormwater control di-

rectly impedes our field’s ability to bring new and necessary expertise to solve some

of our most essential and complex problems.

As demonstrated by the smart stormwater control survey papers referenced in
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Section D.2.1, this desire for direct and systematized comparisons of control strate-

gies is not an isolated realization. While there have been previous efforts to introduce

benchmarking stormwater networks for evaluating control strategies [41, 161], we

identify the need to make available a more extensive assortment of example stormwa-

ter networks to the broader research community. This assortment of networks must

be both nonexclusive and nonrestrictive, and capture the complexity and diversity of

features unique to stormwater. Furthermore, we recognize that there is a need for an

unambiguous programming interface that explicates the computational backend and

aids researchers to easily utilize the example networks for prototyping stormwater

control solutions.

We developed pystorms as a Python-based simulation sandbox to accelerate a re-

searcher’s ability to computationally simulate and evaluate stormwater control strate-

gies. pystorms provides a collection of diverse stormwater control scenarios, which

are drawn from real-world urban watersheds to encompass diverse features appertain-

ing to stormwater systems. These scenarios are coupled with a stormwater simulator

and streamlined programming interface, which together provide researchers with a

standalone package that focuses its usage on stormwater control algorithm develop-

ment and testing. Our intention is that pystorms reduces the programming learning

curve that can be a barrier to those aspiring to learn stormwater control, and also

curates an open repository of smart stormwater control examples which foster the

development and evaluation of any number of new control strategies applied to them.

In the following section, we present a detailed overview of the design and architecture

of pystorms, and how it facilitates the systematic evaluation of stormwater control

strategies.

D.3 pystorms

Developed in Python, pystorms is supported on all major operating systems

(OSX, Windows, and Linux) and can be installed using pip3. pystorms is distributed

3pypi.org/project/pystorms
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Table D.1: Terminology defined for the pystorms package and to delineate stormwa-
ter scenarios.

Network Topology We distinguish a network to be the physical system of conduits
(e.g. pipes, culverts), storage elements (e.g. retention and de-
tention basins), and any other subcatchment infrastructure (e.g.
green infrastructure, wetlands) that collect, convey, and/or treat
stormwater runoff.

Event Driver Any inputs or “disturbances” to the network that govern the
generation and flow of runoff are defined as event drivers. Most
often, an event driver is the precipitation generating runoff in the
watershed. It can also include wastewater flows, tidal fluctuations
of connected water bodies, or any other such phenomenon that
influence the flow of runoff in the network.

Controllable Assets Any elements (e.g. basins, wetlands, CSO pump stations) that
are equipped with valves, pumps, or any other flow control in-
frastructure that can be actuated to manipulate stormwater flow.

Observable States The collection of states in the network (e.g. water levels, flows,
pollutants) that can be accessed by the users during a simulation.

Control Objectives The overall goal or set of goals (e.g. preventing flooding, improv-
ing water quality, reducing erosion) of manipulating the behavior
of a stormwater network using controllable assets during a simu-
lation. The ability of a controller to achieve a particular objective
is quantified using a performance metric.

under the GNU General Public GPLv3 license4, which ensures that this package and

its derivatives remain open-source and can be used free of cost. Additionally, source

code for the package is available on Github5, alongside comprehensive documentation

and tutorials to utilize and contribute to its broader development6.
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Table D.2: pystorms includes a curated collection of real world-inspired stormwater
scenarios for developing and quantitatively evaluating the performance of stormwater
control algorithms.

Scenario Network Control Objectives

theta 2 km2 idealized separated
stormwater network

Maintain the flows at the outlet below a
threshold and avoid flooding (2 storage
basin outlets)

alpha 0.12 km2 residential combined
sewer network

Minimize total combined sewer overflow
volume (5 weirs at interceptor connec-
tions)

beta 1.3 km2 separated stormwa-
ter network with a tidally-
influenced receiving river

Minimize flooding (1 detention pond out-
let, 1 storage basin outlet, 1 pump)

gamma 4 km2 highly urban separated
stormwater network

Maintain channel flows below threshold
and avoid flooding (11 detention pond
outlets)

delta 1.7 km2 combined sewer net-
work in which the stormwater
ponds also serve as waterfront

Maintain water levels within upper and
lower thresholds for water quality and aes-
thetic objectives (5 storage basin outlets)

epsilon 67 km2 highly urban combined
sewer network

Maintain sewer network outlet TSS load
below threshold and avoid flooding (11 in-
line storage dams)

zeta 1.8 km2 combined and sep-
arated sewer network (based
on the Astlingen benchmark-
ing network [161, 162])

Maximize flow to downstream wastewater
treatment plant and minimize total com-
bined sewer overflow volume (4 storage
basin outlets)

D.3.1 Scenarios

pystorms abstracts smart stormwater systems as scenarios. Each scenario is

described by (i) an underlying stormwater network–which includes the network’s

topology (e.g. a sewer system draining into a water body) and its event driver (e.g.

4gnu.org/licenses/gpl-3.0.html
5github.com/kLabUM/pystorms
6open-storm.org/pystorms
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storm event)–and its overlaying control system, which includes a set of observable

states (e.g. water levels), controllable assets (e.g. basins with controllable valves

at outlet), and a specific control objective (e.g. preventing flooding). The specific

terminology for a scenario in pystorms is described in further detail in Table D.1,

and the corresponding delineation between (i) and (ii) is illustrated in Figure D.1.

By abstracting our stormwater systems as scenarios, we are able to create new

scenarios with relative ease by interchanging different scenario components. For ex-

ample, let us assume we have evaluated a control algorithm when applied to an

individual scenario. We can now broaden our inquiry and test the algorithm’s scala-

bility by interchanging components of our scenario’s overlaying control system (e.g.

sequentially increase its number of controllable assets), and evaluating the algorithm

on this newly derived set of scenarios. Similarly, we can quantify the generalizability

of a control algorithm as it is applied to a specific control objective (e.g. maintaining

water level set points) by systematically altering the underlying stormwater network

(e.g. cycle through a set of design storms as the event driver) while retaining the

overall control system. We can then calculate a performance metric of the algorithm

when applied across this new subsequent set of scenarios. Thus, not only can can

now evaluate a control algorithm applied to an individual stormwater scenario, but

we can also evaluate it more universally when applied across a spectrum of these

interchanged scenarios.

pystorms provides an collection of seven scenarios, drawn from real-world smart

stormwater systems across North America and Europe and named as a letter from

the Greek alphabet. The collection of scenarios span a multitude of stormwater

systems that address a diverse set of urban watershed needs with various smart

control objectives. The subcatchment areas range from 0.12–67 km2 in size, and

include both combined and separated stormwater arrangements. A brief summary

of the collection’s scenarios are presented in Table D.2, with their more detailed

descriptions provided throughout this paper’s appendices.

While our aim is for this collection of scenarios to be representative of a myriad

of smart stormwater control, we recognize that it is certainly not exhaustive. As

such, we aspire to grow the pystorms repository of stormwater scenarios through
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community-driven contributions of new scenarios. Accordingly, we provide extensive

documentation 7 for users to contribute their own scenarios, or modify the existing

ones.

To demonstrate what is a scenario in the context of pystorms, we present here

Scenario theta, an idealized stormwater network that can be used for rapid pro-

totyping of control strategies. Scenario theta’s network topology can be described

as two 1000 m3 storage basins connected in parallel and draining through a shared

outlet into a downstream water body. The event driver is a synthetic rain event

lasting 9 hr with a peak intensity of 3.2 in. We stipulate the observable states to

be the water levels at the two basins at each 15 min time-step of the simulation,

and the controllable assets are outlet valves of both storage basins adjustable at each

time-step between 0–100% open. The control objective is to maintain the outflow

into the downstream water body below a specified threshold of 0.5 m3s−1, while si-

multaneously preventing flooding at the basins. The ability of a control strategy to

meet theta’s control objective is quantified using a pre-defined performance metric

that computes a penalty for violating the control objective at each time-step, and

sums these penalties across the whole simulation. We provide the specific details

on this performance metric (Equation D.1a) in Section D.4 where we evaluate the

performance of two different example control strategies applied to theta.

D.3.2 Programming Interface

The pystorms programming interface is inspired by the principles of control the-

ory, where the control of a system is abstracted as an iterative process (also known

as a control loop) in which a controller monitors the underlying state(s) of the sys-

tem of interest, and makes calculated adjustments — via control actions — to the

system for it to achieve a desired behavior. In the context of smart stormwater con-

trol, our system of interest is our stormwater network, and the states and control

actions are represented by the set of observable states and the specific control asset

configurations (e.g. valve positions and pump settings). Thus, we have discretized

7open-storm.org/pystorms/docs/build-scenarios
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Figure D.2: pystorms provides a high-level abstraction for simulating control in
stormwater networks for users to quantitatively evaluate the performance of control
strategies with minimal overhead.

the simulation of stormwater control in pystorms as the following series of steps:

1. Query the set of observable states for specified locations in the stormwater

network at the current time-step; then potentially use these queried states to

2. Compute control actions to manipulate the system to achieve a desired

behavior; and finally,

3. Implement the control actions by adjusting the settings of the controllable

assets that serve as inputs into the underlying system.

We initialize a pystorms scenario by creating an instance of it using the state-

ment: pystorms.scenarios.<scenario name>(). As seen in Figure D.2, theta is

initialized with pystorms.scenarios.theta(). The initialization then configures
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the stormwater simulator with the computational representations necessary to sim-

ulate the respective scenario, and returns it as a Python object. This Python object

(env in Figure D.2) can be used to progress and/or pause the stormwater simulator,

read and/or write parameters to the network, and utilize any additional pystorms

functionality. The current state of the underlying stormwater network in the scenario

can be queried using the <scenario object>.state() call (env.state() in Figure

D.2). <scenario object>.step(<actions>) implements the control actions in the

stormwater network, progresses the simulation forward a time-step, and returns the

current status of simulation (True when the simulation has terminated and False

otherwise). In Figure D.2, done = env.step(actions) implements actions in the

stormwater network and progresses the simulation being handled by the env Python

object, which in this case is the Scenario theta. done is assigned True when the

simulation has terminated, and False otherwise.

During the each time-step of the simulation, the ability for the implemented

control actions to achieve the scenario’s control objective are evaluated by com-

puting the time-step’s corresponding performance metric. This computed value is

then stored for each time-step, and can be accessed at any time during the sim-

ulation using <scenario object>.performance() (env.performance() in Figure

D.2). Additional parameters are logged throughout the simulation. While an initial

set of these logged parameters is predefined, the user is able to customize this set for

any additional parameters of interest.

The series of steps for implementing a control loop into our stormwater simulation

is seamlessly integrated throughout the pystorms programming interface. Users

carry out Step 1 using <scenario object>.state(), and Step 3 using

<scenario object>.step(<actions>). Separated out to be defined by the user is

the controller (Step 2), which maps the observed states to control actions. While

implementing the controller into pystorms is ultimately left to the user, for our

example presented here, we implement it as a Python function block (see Figure

D.2).
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D.3.3 Architecture

The pystorms architecture follows the object oriented programming paradigm

which relies on classes as its core building blocks. This style of software architecture

was chosen to allow pystorms to be modular such that users can customize it to meet

their own specific requirements and/or workflows. While the pystorms programming

interface is designed with the intent to be intuitive for all potential users, it particu-

larly caters to those who may only have a rudimentary understanding of stormwater

dynamics and/or basic familiarity with programming in Python. However, it can also

be easily customized to meet the requirements of researchers who want to incorporate

advanced functionality, such as custom water quality or rainfall-runoff modules (for

details on how to utilize pystorms modularity and customization, we again direct

the reader to its online documentation).

The pystorms architecture is organized to accomplish two tasks: (1) the config-

uration of the scenario metadata, and (2) the simulation of the stormwater network.

These two tasks are carried out using three core interacting modules: environment,

scenario, and config. These three modules interface with each other to build and

execute the various scenarios. Figure D.3 provides a schematic of this architecture.

The first two modules handle the stormwater simulation, while the latter handles

the computational representation of the stormwater networks and the metadata per-

taining to the control problem (i.e. states, actions, and objectives).

D.3.3.1 Configuration

The config module is used to manage the configuration in the pystorms archi-

tecture. config contains a configuration file for each scenario, which delineates the

stormwater network, its set of observable states and controllable assets, and the set

of parameters that are used to compute its control objective’s corresponding perfor-

mance metric. The configuration files are written using YAML, a mark-up language

commonly used for developing configuration files in software applications. With

YAML, the parameters of interest defined in the configuration file are formatted

as vertical lists rather than data structures. As a result, the configuration file be-
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pystorms

(*.yaml)

config

alpha

class  theta(scenario):(scenario):

self.env = environment(<config-theta>)

theta

scenario environment

PySWMM External

Modules

Figure D.3: pystorms is built with three interacting core modules: (i) config rep-
resents the metadata and computational representations of the stormwater network
and event driver; (ii) environment acts as an interface for scenarios to interact with
the stormwater simulators; and (iii) scenario provides a consistent structure for the
scenarios in the package. A scenario object in pystorms inherits (represented by
arrows) from the base scenario class, and interfaces (represented by line) with the
stormwater simulator though the environment.

comes more human-readable, and creates a scalable and easy workflow for developing

scenarios.

D.3.3.2 Simulation

Scenarios in pystorms are implemented as Python classes. To ensure consistent

functionality across scenarios, each scenario is instantiated as its own independent

class with an inherited structure from a base scenario module. The scenario classes

interface their corresponding configuration files with the stormwater simulator and

implement any of the functions specific to that scenario (e.g. functions used for

computing performance metrics of corresponding control objectives).

The environment module is the interface between the stormwater simulator (e.g.

EPA-SWMM) and the scenarios. This module is specifically included to ensure
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pystorms is able to remain agnostic to whatever stormwater simulator is used. For

instance, if a user wants to utilize a customized hydrologic solver for simulating

stormwater, they can do so by modifying the environment module to call their

solver when the scenarios query it, thus ensuring compatibility to a wide array of

simulators with minimal overhead.

pystorms uses SWMM as its default stormwater simulator. SWMM, developed

by the US-EPA, is an open-source stormwater simulation model that is extensively

used for the design and analysis of stormwater systems across the world. SWMM

is built with the C programming language, a low-level language that results in sig-

nificant computational efficiency. However, the trade-off for using C is SWMM’s

difficulty to be interfaced with the latest scientific libraries. As a result, there have

been several efforts over the years to build wrappers for SWMM such that its func-

tionality can be exploited via high-level programming languages, such as Python.

PySWMM is a Python implemented package that not only provides a wrapper

to communicate with SWMM, but also yields a high-level user interface for querying

the various stormwater parameters. pystorms — by means of the environment

module — interfaces with SWMM using PySWMM, and as a result, all functionality

included in PySWMM can also be accessed using pystorms. Readers are directed

to the documentation for additional details and examples to customize pystorms to

meet their requirements.

D.4 Demo: Evaluating Control Strategies

Throughout this section, we demonstrate how pystorms facilitates developing

smart stormwater control strategies by evaluating the performance of two control

algorithms applied to Scenario theta.

While there exist many control strategies that can be adopted to achieve theta’s

control objective, to simplify our illustration of pystorms, we implement two basic

control strategies here. The algorithms used to implement the control strategies are

described below and in Figure D.4. Both control strategies are simple reactive control

strategies, in which the valve settings of theta’s two basin outlets are adjusted to
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Figure D.4: Equal-filling controller maintains the flows at the outlet below a desired
threshold by coordinating its actions such that it equally utilizes the storage in the
controllable assets of the network. Algorithm 2 and the corresponding code snippet
illustrate the algorithm and its Python implementation. An interactive example of
algorithm implementation and its evaluation on Scenario theta can be accessed at
open-storm.org/pystorms/demo.

either retain or release storage depending on the observed states compared some

corresponding water level limits.

Rule-Based Control Our basic rule-based control strategy adjusts our basin out-

lets based on their respective water levels. Specifically, each basin’s outlet setting is

equal to its relative water level (i.e., the current water level of the basin divided by

its maximum depth). Therefore, our control algorithm will set a full basin’s outlet

to 100% open, and a basin that is half full will have its outlet set to 50% open,

etc. While this strategy provides a means to mitigate local flooding at each basin, it

notably does not consider the other control objective for the network’s outflow into

the downstream water body to stay below a given threshold.

Equal-Filling Degree Control The equal-filling degree is a control strategy often

applied to stormwater networks with distributed stormwater storage assets, and has

commonly been used as a starting point when comparing more than one control
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strategies [41, 105–108]. For this strategy, we begin by defining a storage asset’s

“filling degree” — which is typically the ratio a storage asset is full based on its

volume or depth — and compute it for each asset in the collection system. The

algorithm seeks to “balance” these filling degrees across the system based on its

average. The exact manner in which this balancing is carried out is not necessarily

consistent in literature. Our method for this balancing is delineated in the algorithm

in Figure D.4. If all assets have a filling degree equal to the average (i.e., all assets

are equally filled), then each should release an equal fraction of the target outflow.

Otherwise, the released flows across the assets should be differentiated such that,

when an asset has a filling degree less than the average, it does not release any flow;

but if an asset is greater than the average, it releases flows based on its deviation

from the average.

The implementation of the equal-filling degree algorithm using pystorms can be

seen in Figure D.4. We carry out the simulation for each of the two algorithms, as

well as for the uncontrolled case, in which control actions are never implemented and

the basin outlets are always open. The resulting hydraulic behavior at the two basins

and the network’s outflow for each of these simulation runs can be seen in Figure

D.5.

Our aim to find a control strategy that can meet theta’s control objective to

maintain the outflow into the downstream water body below a specified threshold of

0.5 m3s−1 and also minimize flooding at the basins. As discussed in Section D.3.1, we

pre-define a performance metric to quantify our control algorithm’s ability to meet

the corresponding control objective. For Scenario theta, this performance metric,

P , is defined as:

P =
T∑
t=0

(
Ht +

2∑
i=1

Gi,t

)
(D.1a)
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Ht =

Qt − 0.5 , if Qt > 0.5

0.0 , otherwise
(D.1b)

Gi,t =

103 , if any flooding at basin i

0.0 , otherwise
(D.1c)

where Ht is a flow exceedance penalty of the stormwater network’s outflow, Qt, over

the 0.5 m3s−1 threshold; and Gi,t is an arbitrary flooding penalty of 103 added when-

ever there exists flooding at either of our two basins, both calculated and summed

across every time-step t in the simulation.

The performance metric calculated across the simulations for both implemented

control algorithms and the uncontrolled case can be seen in Table D.3). Addition-

ally, the hydraulic behavior of our two basins and the network outlet when these

algorithms are applied versus the uncontrolled case can be seen in Figure D.5.

As can be seen, the equal-filling degree strategy is able to achieve the control

objective of the outflow threshold, as well as avoidance of flooding. Alternatively,

the rule-based control strategy only is able to avoid flooding at the basins. The

stormwater network behavior for both strategies follow their corresponding imple-

mented algorithm. For example, as the rule-based control strategy does not directly

consider the outflow threshold when determining the implemented control actions, it

follows that the outflow in the network’s outlet exceeds this threshold (see the outlet

plot in Figure D.5).

The results for each implemented control strategy versus the uncontrolled case are

also captured using theta’s performance metric seen in Equation D.1. As the per-

formance metric is ultimately a sum of penalties for violating the control objective,

a smaller calculated performance metric value indicates a better performing control

algorithm. The respective performance metric values for each control strategy pre-

sented here can be seen in Table D.3. With a calculated performance metric of 0,

the equal-filling degree strategy perfectly meets theta’s control objective; compara-

tively, the rule-based and uncontrolled cases have higher performance metric values,

and thus, we can conclude perform worse than the equal-filling degree.
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Figure D.5: In Scenario theta, the equal-filling degree control strategy is successfully
able to maintain the flows at the outlet of the watershed below the desired threshold
of 0.5 m3s−1 by uniformly using the storage in the networks. Static rule-based control
and uncontrolled responses of the networks are also presented for comparison. The
maximum depth in each of the two basins is 2 m.

Table D.3: Calculated performance metric values from Equation D.1 for simulations
corresponding to the two implemented control algorithms and the uncontrolled simu-
lation. As can be seen, the equal-filling degree control strategy performs better than
the rule-based control strategy, which then outperforms the uncontrolled case.

Control Strategy Performance Metric

Uncontrolled 1630
Rule-based 1624
Equal-filling Degree 0
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D.5 Discussion

This ability for stormwater systems to be instantly modified is critical as com-

munities prepare for more frequent, uncertain, and destructive weather events due

to climate change. More so, often the most basic control strategies can have large-

scale impacts on the complex, dynamic systems they operate, potentially leading to

millions of dollars in savings for the communities they serve. Even though sensor-

actuator components may be successfully deployed at individual sites throughout a

stormwater network, determining strategies for their coordination across the entire

watershed may only add further complexity. As a result, there is a great need —

along with endless opportunities — to develop and implement novel control strate-

gies for transforming stormwater systems. While the sandboxing efforts of pystorms

serves as an initial effort to foster the development of these strategies, we see specific

opportunities to, first, methodically facilitate the development of new simulation

frameworks and control algorithms, and subsequently, to then validate and extend

their efficacy. We expound on these points here, and discuss next steps to put them

into practice.

As discussed in Section D.2.2, a critical limitation to progressing smart stormwa-

ter control research forward is the inability to systematically develop and analyze

smart stormwater simulation workflows and control algorithms. pystorms can be

customized and adapted for a multitude of other uses beyond its initially provided

collection of scenarios and stormwater simulator provided. For example, alternative

stormwater simulation software be easily integrated into pystorms. Furthermore,

new scenarios can be assembled from the assortment of components in the scenario

collection such that additional research questions can be studied. For instance, for

each of the scenarios we provide at the outset, pystorms specifies only a subset

of a scenario’s total observable states that are able to be queried throughout the

simulation. However, this initial subset of observable states is never claimed as the

optimal; in fact, to the best of our knowledge, there does not yet exist a methodology

for identifying an optimal set of observable states. Thus, new scenarios can be made

with different subsets of observable states (e.g. flows, pollutant concentrations), and
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new research questions can now be asked about which states may be most critical

for informing control actions to be taken.

Beyond the coordination and integration of smart stormwater control methods,

we view a more expansive opportunity for pystorms to impel the research commu-

nity to extend its analysis of “control.” Specifically, we see a need for improved

validation of control methods, and an opportunity for new approaches in defining

a control method’s success. In the current iteration of pystorms discussed here,

we present a means to assess the performance of a control algorithm via its ability

to achieve the pre-defined control objective (e.g. maintain flow below a threshold,

avoid flooding). However, there are many other assessment metrics that can define a

control algorithm’s “success,” including computational efficiency, applicability across

real-world contexts, and the incorporation of social considerations for actual imple-

mentation. pystorms can serve as a mechanism for assessing the performance of

control algorithms across these definitions. For example, by increasing the number

of controllable assets available out of the eleven pond outlets presented in Scenario

gamma, one can assess the scalability of a control algorithm as the state-action space

increases. Additionally, control algorithm generalizability across storm character-

istics can be assessed with the multiple rain events provided in Scenario epsilon.

These are just a few illustrations of how pystorms provides a way to broaden and

assess the definition of control efficacy to include factors that are critical for the

implementation of smart stormwater approaches in real-world systems.

D.6 Conclusions and Next Steps

pystorms provides a curated collection of scenarios, coupled with an accessible

programming interface, to enable the development and quantitative evaluation of

stormwater control algorithms. We have developed pystorms with the intent to

make research into smart stormwater control more accessible to the broader research

community. It is our hope that this package will emerge as a community-driven

resource that is able to address key knowledge gaps and enable the advancement of

smart stormwater systems. To this extent, we see proximate opportunities for the
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broader research community to collaborate on pystorms by contributing their own

stormwater scenarios and/or control algorithms to the package initiated here. Like-

wise, we encourage the broader research community to further build upon pystorms

by imparting their own smart stormwater control instances using the pystorms ar-

chitecture and integrating their own stormwater control simulation workflows into

it.
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M. Martinez, V. Puig, and G. Cembrano. Integrated pollution-based real-time
control of sanitation systems. Journal of Environmental Management, 269,
2020. doi: 10.1016/j.jenvman.2020.110798.

[126] J. Read, D. Scavia, B. Kerkez, Y. Hu, A. Dagnew, R. Muenich, S. Bocaniov,
Y.-C. Wang, C. Long, and L. Vaccaro. Watershed Assessment of Detroit River
Phosphorus Loads to Lake Erie. Technical report, University of Michigan Water
Center, 2019.

149



[127] D. Scavia, J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B.
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M. Spérandio. A dynamic physicochemical model for chemical phosphorus
removal. Water Research, 73:157–170, 2015. doi: 10.1016/j.watres.2014.12.053.
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mization of installation and maintenance of water quality sensors in combined
sewers. In International Conference on Urban Drainage, Prague, Czech Re-
public, 2017.

[148] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Faloutsos. Efficient
sensor placement optimization for securing large water distribution networks.
Journal of Water Resources Planning and Management, 134(6):516–526, 2008.
doi: 10.1061/(ASCE)0733-9496(2008)134:6(516).
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