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ABSTRACT

Experimental observations of strikingly large transverse single-spin asymmetries

(TSSAs) opened a window into quark and gluon dynamics present in hadronic colli-

sions, revealing large spin-momentum correlations within nucleons and in the process

of forming hadrons. Though originally measured in lower energy fixed target exper-

iments, they have been found to persist in collisions with momentum transfer well

into the perturbative regime of quantum chromodynamics (QCD) and yet their ori-

gin remains poorly understood. The Relativistic Heavy Ion Collider (RHIC) is the

only collider in the world that can run polarized proton beams, allowing for these

asymmetries to be measured at higher energies, with center of mass energies ranging

from
√
s = 60 to 500 GeV. TSSA measurements have allowed for the development of

both transverse momentum dependent and collinear twist-3 descriptions of nonper-

turbative spin-momentum correlations for both initial- and final-state effects.

Results are presented for the TSSAs of direct photons, neutral pions, and eta

mesons in the pseudorapidity range |η| < 0.35 from p↑ + p collisions with
√
s = 200

GeV at PHENIX. As hadrons, π0 and η mesons are sensitive to both initial- and final-

state effects. At midrapidity, π0 and η measurements are sensitive to the dynamics

of gluons along with a mix of quark flavors. Comparisons of the differences in the

π0 and η TSSAs are sensitive to potential effects from strangeness, isospin, or mass.

These results are a factor of three increase in statistical precision and extend to higher

transverse momentum when compared with previous PHENIX measurements in this

kinematic region. Because direct photon production does not include hadronization,

the direct photon TSSA is only sensitive to spin-momentum correlations in the pro-

xiii



ton. The kinematics of this result in particular make the direct photon TSSA a clean

probe of gluon dynamics in the transversely polarized proton. This is the first time

direct photons have been used as a probe of spin-momentum correlations in polar-

ized protons at RHIC. All three of these asymmetries will help constrain the twist-3

trigluon collinear correlation function as well as the gluon Sivers function, improving

our knowledge of spin-dependent gluon dynamics in QCD.

xiv



CHAPTER I

Introduction

1.1 Quantum Chromodynamics

The strong nuclear force is one of four fundamental forces of nature. It is respon-

sible for both binding protons and neutrons together into an atomic nucleus as well

as binding quarks and gluons together to form protons, neutrons, and other strong

force bound states, called hadrons. This process is responsible for 98% of the mass in

the visible universe. Quantum Chromodynamics (QCD) is the quantum field theory

for the strong nuclear force and describes interactions between quarks and gluons,

which are collectively referred to as partons.

The “chromo” refers to color charge. In Quantum Electrodynamics (QED) the

charge can either be positive or negative, but in QCD there are three types of charges

which are referred to as: red, blue, and green. They are governed by the SU(3) color

symmetry group, which is non-Abelian. Each quark can be either red, blue, or green

and each antiquark can be antired, antiblue, or antigreen. They can change their

color charge by exchanging gluons. The gluon is the force carrier in QCD, similar

to the photon in QED, except that photons are not electrically charged and so do

not interact with other photons. Gluons do carry color charge and so interact with

other gluons. There are eight independent gluon color charges which are made up of

combinations of quark colors and anticolors.
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Color charge is meant to be an analogy to light where combing red, blue, and

green light creates white light. Equivalently combining a red, a blue, and a green

quark creates a color neutral three-quark bound state called a baryon, which includes

protons and neutrons. A quark-antiquark pair can also combine to form a color-

neutral bound state referred to as a meson which includes pions and eta mesons.

There are six different types of quarks, or quark flavors, which in order of lightest

to heaviest are: up, down, strange, charm, bottom, and top. Protons consist of

two up quarks and one down quark, as wells as quark-antiquark pairs of the lightest

three flavors (up, down, and strange) which pop in and out of existence via gluon

splitting: g → qq̄. These virtual quark-antiquark pairs are collectively referred to as

“sea quarks”.

1.1.1 Asymptotic Freedom

The value of the strong force coupling constant, αs, changes as a function of in-

teraction energy. This comes from higher order corrections to the coupling constant

and is not unique among quantum field theories. But for QCD the coupling constant

decreases as a function of interaction energy unlike in QED where the coupling con-

stant increases. This concept is referred to as asymptotic freedom: with increasing

scattering energy quarks and gluons become asymptotically closer to being free, [1,2]

for which the Nobel prize was awarded in 2004. Figure 1.1 shows a summary of mea-

surements of αs, displaying how the constant falls off with scattering energy. [3] This

figure also shows how well these measurements agree with perturbative calculations.

In practice this means that perturbative Quantum Chromodynamics (pQCD) is

only able to describe collisions between quarks and gluons at high energies or “hard”-

scale energies. Fixed order pQCD calculations become less and less accurate with

decreasing scattering energy until eventually there is a cut off where the energy of a

partonic collision is so low that pQCD can longer describe these strong force inter-

2



Figure 1.1: Summary of the measurements of the strong coupling constant, αs, over
a wide range of energy scales. [3]

actions. These are referred to as nonperturbative interactions or “soft”-scale interac-

tions. Exactly where this cut off exists depends on the calculation, but perturbative

QCD calculations must be done for energies much larger than ΛQCD ∼ 200 MeV and

in general are only done for collisions with momentum transfers of at least 1-2 GeV.

Alternatively these hard-scale perturbative interactions can be described as “short-

range” nuclear interactions, while soft-scale nonperturbative scattering is described

as a “long-range” nuclear interaction. In the context of pQCD, the radius of the

proton, which is on the order of 10−15 meters, is considered a “long” range and so

proton structure cannot be calculated perturbatively.

1.1.2 Color Confinement

Perturbative QCD is only capable of directly calculating scattering between ap-

proximately free partons, but these high energy scatterings between individual quarks

and gluons cannot be directly observed. This is due to a property of the strong force

called color confinement (often referred to as just confinement) which states that no

color charged object can ever be observed on its own. So even though the existence

of quarks was confirmed over 50 years ago, [4, 5] a quark has never directly been

3



Figure 1.2: A cartoon explaining color confinement by depicting what would happen
if we tried to pull the quark-antiquark pair within a meson apart. [6]

observed and if color confinement remains true, never will be. Unlike asymptotic

freedom, color confinement has yet to be analytically proven.

To build some physical intuition behind this curious property, one can think

through the thought experiment of pulling apart the quark-antiquark pair within

a meson. This is depicted in Figure 1.2 where the red quark is pictured as red and

the antired antiquark is depicted as magenta. [6] These quarks are being held together

by the strong force and the further they are pulled apart, the more the potential en-

ergy in the gluon field between them increases, similar to stretching a rubber band.

Eventually there is enough energy built up, that another quark-anti quark pair ap-

pears, similar to a rubber band breaking when it is pulled too hard. So instead of

extracting the quarks from their color-neutral bound state, we are left with two sep-

arate mesons and this process repeats as we continue to attempt to pull apart these

quark-antiquark bound states. This is a heuristic description of how color confinement

works, but serves to show how closely asymptotic freedom and color confinement are

linked.

1.1.3 Cross Sections and Nonperturbative Functions

Because of asymptotic freedom, perturbative QCD calculations can only be ap-

plied to quark and gluon scattering with large enough momentum transfer. And these

4



high energy partonic interactions cannot be directly observed in the laboratory be-

cause due to color confinement, we can only manipulate and observe hadrons. Thus,

in order to use pQCD to interpret the results from high energy collisions we must use

nonperturbative functions to parameterize the effects of the bound-state structure of

hadrons. Parton distribution functions (PDFs) describe the nonperturbative partonic

structure of a proton relevant when probed at high energies and fragmentation func-

tions (FFs) are used to capture the nonperturbative process of hadronization. These

functions cannot be directly calculated with pQCD and need to be measured in data.

Quark PDFs are often denoted as fq/h(x,Q
2) for a quark of flavor q that is be-

ing scattered out of an initial-state hadron h with squared momentum transfer Q2.

Bjorken x, commonly referred to as just x, is the longitudinal fraction of the proton’s

momentum that this quark was carrying: x = pq/ph and can range from 0 to 1. At

leading order (LO) in the strong coupling constant, fq/h(x,Q
2) can be interpreted as

the probability of finding a quark of flavor q with longitudinal momentum fraction x

when probing a hadron h at scattering energy Q. But next to leading order (NLO)

pQCD contributions make the physical interpretation of these functions less straight

forward. Most of the early information about parton distribution functions came from

high energy collisions between protons and leptons, `+ p→ `+X, such as electrons,

muons, and neutrinos, which do not interact via the strong force. These collisions

are referred to as deep inelastic scattering (DIS) if the energy of the collision is high

enough such that the proton breaks apart and the behavior of individual quarks and

gluons can be resolved. The energy and scattering angle of the lepton provides di-

rect access to both Q2 and x, where a smaller lepton scattering angle corresponds to

the proton being probed at lower x. Flavor dependent PDFs can be measured with

semi-inclusive deep inelastic scattering (SIDIS) where in addition to the scattered

lepton at least one final state hadron is measured, ` + p → ` + h + X. Drell-Yan,

p+ p→ `+ + `− +X, has served as another clean probe of proton structure because
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Figure 1.3: The 2014 MMHT extraction of NNLO parton distribution functions at
Q2 = 10 GeV2 and Q2 = 104 GeV2. [7]

there are no strong force interactions in the final-state, and it is also sensitive to the

antiquark PDFs via quark-antiquark annihilation. There are also gluon PDFs, often

denoted as G(x,Q2), which have proven more difficult to constrain because gluons

do not have electric charge and so QED processes like SIDIS and Drell-Yan are not

sensitive to gluon dynamics in the proton at leading order.

Today parton distribution functions are extracted from global analyses of available

hard scattering data, including data from electron-proton, proton-proton, and proton-

antiproton collisions. Figure 1.3 shows the 2014 next-to-next to leading order (NNLO)

extraction of proton PDFs from the Martin, Motylinski, Harland-Lang, Thorne theory

group (MMHT) for Q2 = 10 GeV2 and Q2 = 104 GeV2. [7] As expected for a proton,

the valence up quark PDF (uv) is about two times larger than the valence down quark

PDF (dv). Thus the valence quark PDFs dominate at higher momentum fractions of

about 0.1 and at lower x the sea quarks and gluons have a much higher contribution.

This MMHT 2014 extraction was specifically done with the high energy proton-proton

collisions at the Large Hadron Collider (LHC) in mind and the fact that they include

charm and bottom sea quark PDFs in their extraction is atypical of the field. It

is generally assumed that the contributions of “intrinsic” charm and bottom to the
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proton are negligible, especially at the comparatively lower collision energies of the

results that will be presented later in this document.

Note that the gluon PDF plotted Figure 1.3 is divided by 10 such that it can fit

on the plot, indicating just how much gluons dominate the proton at lower x. Lower

x corresponds to a lower parton momentum where it is possible to have more partons.

By definition there cannot be more than one parton with x > 0.5, but in principle

there could be 104 partons with x = 10−4. The theory of gluon saturation predicts

that at low enough x there are enough low momentum gluons that gluon splitting

becomes just as likely as two gluons recombining into one and the total number of

gluons in the proton reaches some kind of equilibrium. This saturated gluon regime

has yet to be unambiguously observed. [8] More data is needed to sufficiently describe

the low x behavior of the proton, but suffice it to say that it is dominated by gluon

dynamics.

Recent progress in lattice QCD provides a potential way forward to calculating

PDFs from first principles. Lattice QCD is an alternative method to pQCD techniques

where partons are placed on a three dimensional discrete lattice and their strong

force interactions are captured via computationally intensive methods. Unlike pQCD,

lattice QCD can be evaluated at all energy scales and recent innovations in lattice

techniques have shown promise towards calculating the full x dependence of some

PDFs. [9] These studies are still at an early stage, but show tremendous promise

in expanding our knowledge of nucleon structure especially as computational power

limitations become less of an issue.

Hadronization is the process by which a quark turns into a color-neutral bound

state that can be directly observed in the lab. This nonperturbative process is de-

scribed in cross section calculations with fragmentation functions (FFs). The quark

FF Dh
q (z,Q2) describes the nonperturbative process of a quark q hadronizing into a

particular hadron h which carries a longitudinal fraction z of the initial quark’s mo-
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mentum: z = ph/pq. Just like x, the longitudinal momentum fraction z ranges from

0 to 1. At LO, Dh
q (z,Q2) has its own probabilistic interpretation as the probability

that a quark q exiting a high energy scattering event with momentum transfer Q will

produce hadron h that carries z of the quark’s momentum before it hadronized. But

again this physical interpretation becomes more complicated when we consider NLO

effects from gluon radiation. FFs have been constrained with data from SIDIS and

also from e+e− annihilation, which does not include effects from initial-state nucleon

structure.

As indicated by Figure 1.3, PDFs change with the energy of the scattering event

just like αs. Increasing the energy of an interaction can be thought of as shortening

the length scale at which the proton is being probed, allowing an experiment to resolve

smaller distances and so see higher contributions from gluons and sea quarks. Frag-

mentation functions also depend on the scattering energy of the interaction. Also, the

probability that a quark or gluon will radiate another gluon depends on the amount of

energy that is available, which in turn will affect the momentum distribution of the

partons. This effect is captured in the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi

(DGLAP) evolution equations, which allow for PDFs and FFs that are measured at

one energy scale to be evolved and applied at a different energy scale. [10–12] These

equations allow us to extract information about the gluon PDFs even from DIS data,

where gluons do not interact directly with the scattering lepton.

A full cross section calculation of a proton-proton collision to a single hadron will

require both parton distribution functions and fragmentation functions, in addition

to the pQCD calculation of all of the relevant parton 2-to-2 scattering processes. The

fact that all three of these processes: the initial-state nonperturbative effects, the

perturbative hard scattering, and the nonperturbative final-state hadronization, are

described with separate expressions is referred to as factorization. Which nonpertur-

bative functions need to be included in a cross section calculation depends heavily on
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the process. For example, the Drell-Yan (p+p→ `++`−+X) cross section calculation

does not include any FFs because Drell-Yan itself does not include hadronization. In

contrast, e+ e− annihilation does not include any effects from initial-state nucleon

structure and so e+ + e− → h + X cross sections do not include PDFs. Factor-

ization is generally assumed for all cross section calculations, but it has only been

rigorously proven in the following processes: `+ + `− → h + X, ` + p → ` + X and

p+ p→ `+ + `−+X. [13] Tightly coupled with the assumption of factorization is the

assumption of universality. This assumes that all of these nonperturbative functions

will remain the same regardless of the interaction that they are describing. So the

PDFs that were measured by the high energy electron-proton collider HERA, can

be used to analyze proton-proton data at the LHC. Universality also allows PDF

extractions like the one in Figure 1.3 to fit to data sets from multiple different col-

lision systems. By assuming both factorization and universality, perturbative QCD

has been able to successfully interpret high energy collisions involving hadrons for a

wide variety of colliding systems.

1.2 Transverse Single-Spin Asymmetries

In 1976 the spontaneous polarization of the Λ0 baryon was measured for the first

time in collisions between an unpolarized proton beam on a beryllium target. It

was found to be about 30% [14] even though pQCD calculations had found that the

spin-momentum correlations from NLO quark and gluon scattering are small and

fall off with increasing collision energies. [15] Around the same time the left-right

asymmetry of charged pions was measured to be up to about 40% in collisions be-

tween a transversely polarized proton beam and an unpolarized hydrogen target. [16]

This observable would later come to be known as a transverse single-spin asymmetry

(TSSA), which is a spin-momentum correlation that is measured in hadronic collisions

between one transversely polarized particle and one unpolarized one. As depicted in
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Figure 1.4: Diagram of the transverse single-spin asymmetry in proton-proton colli-
sions. TSSAs are measured in collisions between one transversely polarized proton
and one unpolarized proton. They measure the difference in yields of particles that
travel to the left versus the right of the polarized-proton-going direction. [17]

Figure 1.4, it measures the asymmetry in yields of particles that travel to the left

versus the right with respect to the direction that the transversely polarized particle

is traveling:

AN =
σL − σR
σL + σR

(1.1)

Following the NLO pQCD results from Ref. [15], if the sole source of these asym-

metries was hard partonic scattering, these asymmetries would be very small (less

than 1%) and be proportional to AN ∼ αsmq/pT , where mq is the mass of the scat-

tering quark and pT is the measured hadron momentum transverse to the beam.

But large nonzero TSSAs have been measured for a wide range of collision energies

as shown in Figure 1.5. [16, 18–20] The asymmetries in this plot are evaluated as a

function of Feynman x, xF = 2pz/
√
s where pz is the pion’s momentum parallel to

the beam, which allows for the comparison of results from hadronic collisions with

multiple center of mass energies. Nonzero forward π0 TSSA have also been measured

at collision energies up to
√
s = 500 GeV with pT = 7 GeV/c [21], well into the

perturbative regime of QCD. Because the perturbative part of the calculation cannot
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Figure 1.5: The charged pion TSSA has been measured to have a large xF dependence
over a wide range of collision energies. [22]

account for the large spin-momentum correlations that have been measured, we must

reexamine our nonperturbative functions. This led to the development of two theo-

retical frameworks: transverse momentum dependent functions and twist-3 collinear

correlation functions which describe spin-momentum correlations within the nucleon

and in the process of hadronization.

1.2.1 Transverse Momentum Dependent Functions

Traditional PDFs and FFs are collinear, meaning they only depend on the lon-

gitudinal momentum fractions and integrate over the nonperturbative dynamics of

partons within the proton and in hadronization. Transverse momentum dependent

functions (TMDs), as the name implies, explicitly depend on relative parton trans-

verse momentum. In order for TMD factorization to apply, this parton transverse

momentum needs to be nonperturbative and much smaller than the hard scattering

energy. Thus, it is most straightforward to extract a TMD function from a two-scale

process that is sensitive to both a soft- and a hard-momentum scale. This includes

SIDIS where the energy and scattering angle of the electron can be used to directly

measure the hard-scale energy and the transverse momentum of the hadron can serve

as the soft-scale. The Collins-Soper-Sterman (CSS) evolution equations describe how

these TMD functions evolve with the hard scattering energies, [23, 24] similar to the

11



DGLAP evolution equation for the collinear functions. But unlike the DGLAP evo-

lution equations, CSS evolution depends on nonperturbative contributions [25] which

are still in the process of being constrained by data. [24]

The TMD formalism began with the Sivers TMD PDF, f⊥1T (x, k2
T ), which was first

proposed by Dennis Sivers in 1990 as a way of explaining the large TSSA measure-

ments in Figure 1.5. [26,27] The Sivers function describes the correlation between the

transverse spin of the proton and the nonperturbative transverse momentum, kT , of

the parton within it. It has a QED analogue in the hyperfine structure: the shifting

of atomic spectral lines due to the coupling between the orbital angular momentum of

the electron and the spin of the nucleus. This spin-momentum correlation was shown

to be able to generate these large TSSAs in p↑ + p collisions, a phenomenon which is

known today as the “Sivers Effect”. A few years later, John Collins published a pa-

per claiming that the Sivers function had to be zero because it violated time reversal

invariance. As an alternative explanation for these large TSSA, he proposed a trans-

verse momentum dependent fragmentation function which came to be known as the

Collins function, H⊥1 (z, j2
T ). [28] The Collins function describes the spin-momentum

correlation between the transverse spin of a quark and the soft-scale relative trans-

verse momentum, jT , of the unpolarized hadron it produces. The Collins function

was shown to be able to generate these large TSSAs in p↑ + p collisions with what

came to be known as the “Collins effect”: the Collins function is convolved with

the transversity function, a (in this case) collinear PDF that describes the spin-spin

correlation between the transverse spin of the proton and the transverse spin of the

scattering quark.

Nearly a decade later, Brodsky, Hwang, and Schmidt pointed out that Collins’

Sivers function calculation was not fully gauge invariant in the TMD framework. [29]

This concept was later dubbed “naive T-odd,” or more accurately parity and time

(PT) reversal odd, when Collins revised his argument to show that the Sivers function
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could be nonzero if the scattered quark engaged in a soft gluon exchange with a left-

over proton fragment. This concept led to the prediction of modified universality for

the Sivers function: there should be a relative sign between the Sivers function for the

Drell-Yan (p+ p→ `+ + `−+X) and SIDIS (`+ p→ `+h+X) processes. [30,31] In

SIDIS, this soft gluon exchange happens after the QED hard scattering event, between

the scattered quark and the left over proton fragment. Since this quark and proton

fragment were once combined into a color-neutral bound state, they have opposite

color charge, which means that this is an attractive interaction. In Drell–Yan, a quark

is scattered out of a proton and exchanges a soft gluon with the fragment of the other

proton. This gluon exchange happens before the QED hard scattering event such that

the quark and fragment of the other proton have the same color charge, making this

a repulsive interaction. The HERMES collaboration [32] and later the COMPASS

collaboration [33] confirmed that the Sivers function was nonzero by extracting it from

transversely polarized SIDIS collisions. Recent measurements of the Sivers function

in Drell-Yan [34] and Drell-Yan like processes [35] favor the modified universality

prediction, but because these results are statistically limited, more measurements will

be needed to draw a firmer conclusion. The fact that the Sivers function is PT-odd

becomes even more interesting when considering the scattering process of proton-

proton to hadrons where soft gluon exchanges can happen both before and after the

hard partonic scattering event. This idea led to the prediction of color entanglement

effects and factorization breaking in the p+ p→ h1 + h2 +X scattering process. [36]

Because most information about the Sivers function has come from SIDIS, the gluon

Sivers function has remained poorly constrained in comparison to the quark Sivers

functions.

The Collins function has also been measured to be nonzero in both in SIDIS [32]

and in e+e− annihilation. [37,38] Because it is chiral odd, the Collins function needs

to be measured in conjunction with another chiral odd function to make the overall
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hadronic scattering process chiral even. This is why the Collins effect involved the

convolution between the Collins function and the chiral odd transversity function.

In the case of e+e− annihilation two final state hadrons are measured such that one

Collins function is convolved with another. In unpolarized SIDIS the Collins function

can be measured with the Boer-Mulders function, h⊥1 (x, k2
T ). [39] This is another PT-

odd TMD PDF which describes the spin-momentum correlation between a quark’s

transverse spin and its own soft-scale transverse momentum kT . [40]

Because leptons are not composite particles, QED processes like SIDIS and Drell-

Yan are able to provide direct access to the kinematics of the scattering event. This

is not possible when studying hadronic collisions that only reconstruct a single final-

state particle. Not only must the hard scale be approximated with e.g. the transverse

momentum of that final state particle, pT , there is no way to access a soft momentum

scale. In order to do so one would need to measure more particles in the event, such as

multiparticle angular correlations [41–43] or particle-in-jet asymmetry measurements.

[21, 44] But inclusive TSSA measurements have the advantage of a higher statistical

precision when compared to multiparticle correlations or particle-in-jet asymmetries

and do not include the systematic uncertainties associated with measuring jets. While

both the Sivers function and Collins function were proposed as a way of explaining

the strikingly large TSSAs present in Figure 1.5, they need to be integrated over

their soft-scale transverse momentum dependence in order to be applied to those

measurements. These calculations do indicate that the Collins effect [45] may have a

smaller contribution than the Sivers effect [46] for TSSAs in p↑+p→ h+X collisions,

which is supported by the small Collins asymmetry that was measured in a forward

rapidity π0-in-jet measurement. [21] But both the Sivers and Collins effects are needed

for a full phenomenological study of hadron TSSA in proton-proton collisions, because

measuring the asymmetry as a function of pT provides no clear way of separating out

initial- from final-state effects.
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1.2.2 Twist-3 Collinear Correlation Functions

The “twist” of a nonperturbative function is defined as the mass dimension minus

spin of the operator within a matrix element in the Operator Product Expansion. [13]

Traditional PDFs and FFs are leading twist, or twist-2, and only consider the scat-

tering of one parton at a time. The next term in this expansion is not scattering off

of two partons, but the quantum mechanical interference between scattering off of

one parton versus scattering off of two. These are referred to as twist-3 correlation

functions and are split into two types: the quark-gluon-quark functions (qgq) and

the trigluon (or three-gluon) functions (ggg). When considering initial-state effects

from proton structure, the qgq functions describe the quantum mechanical interfer-

ence from scattering off of one quark versus scattering off of a gluon and a quark of

the same flavor, while the ggg functions capture the quantum mechanical interference

between scattering off of one gluon versus scattering off of two. There are also re-

lated twist-3 correlation functions for final-state hadronization effects which describe

the quantum mechanical interference between two partons undergoing hadronization

together versus a single parton hadronizing on its own.

These multiparton correlation functions can be used to describe spin-momentum

correlations from both initial-state and final-state effects. They have the added ben-

efit that they do not depend on a soft momentum scale and so are uniquely suited

to describe TSSA in proton-proton collisions where only one final state particle is

measured. Rather than representing entirely new nonperturbative parton dynamics,

many of these twist-3 correlation functions are related to the kT moments of twist-2

TMD PDF and FFs. [47,48] The fact that these twist-3 functions are nonzero reflects

that scattering partons do in fact interact with their surrounding color fields.
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In the twist-3 collinear QCD factorization scheme, the polarized cross section for

a general A↑ +B → C +X process is written as:

dσ(ST ) = H ⊗ fa/A(3) ⊗ fb/B(2) ⊗DC/c(2)

+H ′ ⊗ fa/A(2) ⊗ fb/B(3) ⊗DC/c(2)

+H ′′ ⊗ fa/A(2) ⊗ fb/B(2) ⊗DC/c(3)

(1.2)

where fa/A(t) is the PDF associated with the parton a in the transversely polarized

hadron A↑, fb/B(t) is the PDF associated with the parton b in the unpolarized hadron

B, and DC/c(t) is the FF associated with parton c producing the final-state (unpo-

larized) hadron C. The number in the subscripts of the nonperturbative functions

corresponds to the twist of that function. (Technically both PDFs and FFs are defined

as twist-2 objects, but phrases like “twist-3 PDFs” and “twist-3 FFs” are common in

the literature.) The H, H ′, and H ′′ are the hard pQCD parts of the calculation and

the ⊗ symbol denotes the convolution of each term across the appropriate momen-

tum fractions. Evaluating this expression for a given scattering process will include

summing over all appropriate scattering channels and parton flavors. [49]

The first term of Equation 1.2 is often described as the “Sivers-like” term and

contains spin-momentum correlations from partons in the polarized hadron. Depend-

ing on the process, fa/A(3) can include contributions from both qgq and ggg twist-3

correlation functions. The second term is referred to as the “Boer-Mulders-like” term

and contains spin-momentum correlations of a transversely polarized parton within

the unpolarized hadron. fb/B(3) only includes quark-gluon-quark functions and not

trigluon correlation functions because gluons are massless and so cannot be trans-

versely polarized. (A twist-3 linearly polarized gluon correlation function is not gen-

erally included with phenomenological discussions of TSSA at this point in time.)

The third term in Equation 1.2 is often described as “Collins-like,” where the source

of the spin-momentum correlation comes from the process of hadronization. Unlike

16



twist-2 parton distribution functions, twist-3 initial-state correlation functions do not

have a probabilistic interpretation so there are less constraints placed on them, which

poses a challenge to extracting these collinear twist-3 functions from data.

The initial-state quark-gluon-quark correlation functions are often split into two

different terms: the soft-gluon pole (SGP) and the soft-fermion pole (SFP). These

terms arise because TSSA are PT-odd which causes a pole in the complex plane to

appear in the hard scattering part of the calculation. This pole will cause either the

gluon or the quark in the multiparton correlator to vanish, which leads to either a SGP

or a SFP in the qgq correlator, respectively. [49] The Qiu-Sterman function, GF (x, x),

is the SGP of the quark-gluon-quark function in the polarized proton. [50, 51] (Note

there are a few common notations for the Qiu-Sterman function in the literature

which also include FFT (x, x) and TF (x, x).) It is related to the Sivers TMD PDF,

f⊥1T (x, k2
T ), by:

GF (x, x) = ∓ 1

πM2
N

∫
d2kT k

2
T f
⊥(±)
1T (x, k2

T ). (1.3)

where the ± superscript takes into account the predicted Sivers sign change and MN

is the nucleon mass. [48] While both TMD and twist-3 collinear correlation functions

provide a way forward into including a more complete three dimensional picture of

the proton, there are a few subtleties hiding in the simplicity of these types of expres-

sions. The first is that f⊥1T (x, k2
T ) is only defined for a very specific range of kT and

this relation will depend on what range of kT it integrates over. The second is that

while f⊥1T (x, k2
T ) and GF (x, x) probably both contain some of the same color force dy-

namics present inside of the proton, this expression converts between the NLO term

of two different types of perturbative expansions. But while expressions like Equa-

tion 1.3 might contain some implicit caveats, they have allowed twist-3 correlation

function phenomenology to take advantage the comparatively well-established TMD

formalism, allowing them to describe TSSAs in proton-proton collisions. Just like

the polarized proton, the unpolarized proton has an equivalent SGP term for its own
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quark-gluon-quark function, EF (x, x), which is related to the Boer-Mulders function,

h⊥1 (x, k2
T ), by a similar kT moment:

EF (x, x) = ± 1

πM2
N

∫
d2kT k

2
T h
⊥(±)
1 (x, k2

T ). (1.4)

where the ± superscript takes into account that the Boer-Mulders functions is also

PT-odd. [48] EF (x, x) is chiral odd and needs to be convolved with another chiral

odd function, like the collinear twist-2 transversity function, to make the overall

term chiral even. The qgq correlation functions also include SFP terms for both the

polarized and unpolarized protons.

The trigluon correlation function is only present in the first term of Equation 1.2.

While the Qiu-Sterman function is able to take advantage of the previously extracted

quark Sivers function, the trigluon correlation function has no equivalent to Equa-

tion 1.3 because the gluon Sivers function remains comparatively poorly constrained.

The trigluon correlation function was first proposed in Ref. [52] but was later clarified

to have two independent trigluon correlation functions due to the difference in the

contraction of color indices. [53, 54] These complex functions are often denoted as

N(x1, x2) and O(x1, x2), where x1 and x2 are the linear momentum fractions of the

single gluon and the gluon pair. The overall cross section becomes real when x1 is

set to x2, creating a soft gluon pole (SGP) in these ggg function terms. Current pre-

dictions for the trigluon correlation function’s contribution to various TSSAs involve

parameterizing in terms of the twist-2 unpolarized gluon PDF, G(x).

Heavy flavor TSSA measurements at the Relativistic Heavy Ion Collider (RHIC)

are uniquely sensitive to the trigluon correlation function because most heavy flavor

quarks that are produced at RHIC collision energies are created through gluon-gluon

fusion. This means that only the first term in Equation 1.2 is nonzero, because

the collinear twist-2 transversity function (fa/A(2) Equation 1.2’s notation) is zero for
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gluons since they cannot be transversely polarized. Based off the kinematics of the

twist-3 cross section for p↑ + p → D + X, where D denotes a heavy flavor D meson

which carries a charm quark, an estimate [55] of the ggg function’s contribution to

the D meson TSSA assumed O(x, x) = O(x, 0) = N(x, x) = −N(x, 0) and chose two

different models for O(x, x):

Model 1 :O(x, x) = 0.004xG(x) (1.5)

Model 2 :O(x, x) = 0.001
√
xG(x) (1.6)

The coefficients 0.004 and 0.001 were determined such that the calculated ADN did

not exceed the RHIC preliminary data for ADN . These two model ansatz were chosen

in order to study the effect of the three-gluon correlations in comparison with the

gluon density and study the sensitivity of the TSSA to small-x behavior. [55] The

PHENIX forward open heavy flavor TSSA was found to be consistent with zero and

also consistent with this trigluon correlation function prediction. [56] The TSSA of

forward production of J/Psi, a charm-anticharm bound state, was also measured to

be consistent with zero. [57]

The forward pion TSSA in proton-proton collisions has been measured to be

nonzero both at STAR [58, 59], BRAHMS [20] and PHENIX [60]. Forward is in

relation to the polarized proton going direction and so samples a higher x region of

the polarized proton when compared to other collision kinematics. This means that

light hadron production in the forward region is dominated by valence quarks in the

polarized proton. For many years it was assumed that the Qiu-Sterman function was

the dominant source of these large forward pion AN [51, 61, 62]. From Equation 1.3

it follows that there are two ways to extract the Qiu-Sterman function: directly from

the p↑p → πX TSSA [61, 62] and by taking the kT moment of the Sivers function

that has already been extracted from SIDIS data. [63] It was discovered however that
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these two approaches yielded different results which disagreed by a sign. [64] The

contribution from the unpolarized proton (the second term in Equation 1.2) had pre-

viously been found to be negligible. [65,66] Using the models that were developed for

the open heavy flavor TSSA in Ref. [55], the ggg correlation function’s contribution

to light hadron TSSAs was found to be too small to account for this “sign-mismatch”

problem. [67] And the same went for the SFP term of the qgq correlation function in

the polarized proton. [68]

Eventually the there was enough progress on the hadronization contribution to

TSSA, [69] that the third term of Equation 1.2 could be included in descriptions of

the forward pion asymmetries. Ref. [70] found that it could simultaneously describe

forward Aπ
0

N and Aπ
±
N results when they included these twist-3 effects from hadroniza-

tion. This result demonstrated progress towards resolving the “sign-mismatch” dis-

crepancy since the Qiu-Sterman function that was used in this calculation came from

applying Equation 1.3 to two different extractions of the Sivers function from SIDIS

data. Part of the twist-3 final-state effects were described by a quark-gluon-quark

correlation term that is related to the kT moment of the Collins function. These fits

used an additional collinear twist-3 final-state correlation function which corresponds

to the imaginary part of the qgq matrix element. It was parameterized in terms of the

standard twist-2 collinear unpolarized FF. This term was found to be the dominant

contribution to these large forward pion asymmetries, while the contribution from the

kT moment of the Collins function term was small. Further measurements of these

twist-3 fragmentation effects is needed before these forward pion asymmetries can be

fully understood. But the fact that they found that the Collins effect is small agrees

with both the TMD formalism [45, 46] and a forward π0-in-jet Collins asymmetry

measurement. [21]

Since their inception, there has been theoretical evidence that the collinear twist-3

and TMD factorization pictures could combine to form a unified picture of TSSAs in
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hard processes. This concept was recently put to the test with the first simultaneous

global analysis of TSSAs in SIDIS, Drell-Yan, e+e− annihilation, and proton-proton

collisions. [71] This study used quark TMD PDFs and FFs to describe the asymmetries

in processes that are sensitive to the soft scale momentum, i.e. SIDIS, Drell-Yan, and

e+e− annihilation. To describe the forward pion asymmetries that were measured at

RHIC, they used twist-3 qgq correlation functions that were calculated by taking the

kT moments of the same TMD functions that were used to describe TSSAs in the

QED processes above. They concluded that their simultaneous description of these

TSSAs across multiple collision species indicated that all TSSAs had a common origin

related to the quantum mechanical interference from multiparton interactions.

1.3 π0 and η Mesons

At forward rapidity, the polarized proton is being probed at relatively high x and

so light hadron TSSAs are dominated by valence quark spin-momentum correlations.

The forward π0 asymmetry has been used to constrain quark-gluon-quark correlation

functions both from the polarized proton and the process of hadronization. [61, 62,

70,71] In contrast, midrapidity π0 and η measurements probe the polarized proton at

comparatively moderate x and so are sensitive to both quark and gluon dynamics at

leading order. This can be seen in Figure 1.6 which shows the fractional contributions

of different parton scattering processes to midrapidity π0 and η production. [72] Since

π0 and η mesons are both hadrons, their TSSAs are sensitive to quark and gluon spin-

momentum correlations both in the proton and also in the process of hadronization.

Midrapidity π0 TSSA results from PHENIX have already been used to constrain

the gluon Sivers function, [73, 74] which continues to have large uncertainties com-

pared to the quark Sivers functions because Sivers asymmetries measured with SIDIS

are not sensitive to gluon dynamics at leading order. These TMD calculations are

done in what is often referred to as the generalized parton model (GPM) which takes
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Figure 1.6: The fractional contribution of parton scattering processes to π0 and η
meson at midrapidity in proton-proton collisions with

√
s = 200 GeV. [72]

the kT moment of TMD functions such that they can be applied to single-scale mea-

surements and also conditionally assumes that TMD PDFs and FFs are universal by

not including NLO interactions with the proton fragments. The color gauge invari-

ant generalized parton model (CGI-GPM) relaxes this assumption of universality by

allowing for initial- and final-state interactions through the one-gluon exchange ap-

proximation. The CGI-GPM has been shown to reproduce the quark Sivers function’s

predicted sign change between the SIDIS and Drell-Yan processes. The midrapidity

π0 TSSA has been shown to have the potential of distinguishing between the GPM

and CGI-GPM frameworks. [75] Similarly, midrapidity light hadron TSSAs have also

been also shown to be sensitive to the poorly constrained trigluon correlation function

in the transversely polarized proton. [67]

There are enough similarities between π0 and η mesons to make differences in their

results interesting. They are both flavorless pseudoscalar mesons which are made up

of light quarks, so they are produced under more or less similar circumstances. But

because their quark content differs, π0 = 1√
2
(uū − dd̄) and η ≈ 1√

6
(uū + dd̄ − 2ss̄),
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differences in Aπ
0

N and AηN results are sensitive to the potential effects that isospin and

strangeness have on spin-momentum correlations. Also since the η meson is about

four times heavier than the π0, differences in their TSSA results could also be caused

by hadron mass. At midrapidity, previous measurements of both asymmetries have

been consistent with zero, but at forward rapidity there has been some indication

that the η meson asymmetry is slightly larger than the π0. [59, 76] However, more

data is needed in order to make a more definitive statement.

The updated midrapidity π0 and η asymmetries presented in this document are

a factor of 3 increase in precision from previously published results and extend to

higher pT . [60] Since these analyses use PHENIX’s last polarized proton data set,

these will be the final midrapidity π0 and η TSSA results from PHENIX.

1.4 Direct Photons

In contrast to π0 and η mesons, direct photons do not undergo hadronization

and so are only sensitive to initial-state effects, i.e. proton structure. At leading

order in pQCD, direct photons are produced directly from the hard scattering of

partons. At large transverse momentum they are predominately produced in QCD

2-to-2 hard scattering subprocesses: quark-gluon Compton scattering (g+ q → γ+ q)

and quark-antiquark annihilation (q̄ + q → γ + g). As Figure 1.7 shows, Compton

scattering dominates over quark-antiquark annihilation at midrapidity [41] because

the gluon PDF is much larger than the antiquark PDFs even at smaller x. This

means that direct photon production is sensitive at leading order to both quark and

gluon distributions in the proton. So quark PDFs that have already been previously

measured in cleaner QED processes like DIS can be used as inputs to direct photon

phenomenological calculations such that the gluon PDF can be cleanly extracted.

At NLO, photons can also be produced by a quark emitting bremsstrahlung ra-

diation. Results that include these fragmentation photons not only depend on final-
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Figure 1.7: The fractional contribution of different partonic processes to direct photon
production at midrapidity in proton-proton collisions with

√
s = 200 GeV. [41]

state nonperturbative effects, but analyzing them requires using parton-to-photon

fragmentation functions which are poorly constrained compared to their parton-to-

hadron counterparts. [77] An isolation cut is used to suppress the contribution from

these fragmentation photons (in addition to photons from hadronic decays) by re-

quiring that the energy of the photon be much greater than the energy of all of the

surrounding event activity. [78] The remaining contribution of fragmentation photons

to the isolated direct photon sample has been estimated to be less than 15% [41] and

results using these isolated direct photons can then be compared with NLO calcu-

lations which apply the same isolation criteria. Isolated direct photons at PHENIX

have been used to measure nonperturbative transverse momentum effects in azimuthal

correlations [41–43] and used to probe the dynamics present in different heavy ion

collision systems. [79]

Direct photons do not interact via the strong force and so do not undergo hadroniza-

tion. Thus, the direct photon TSSA has been proposed as a clean probe of both

quark and gluon spin-momentum correlations in the proton. At forward rapidity,
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direct photon production is dominated by valence quarks in the polarized proton and

so the forward direct photon TSSA has been found to be sensitive to the quark-

gluon-quark correlation functions. Ref. [80] calculated the full quark-gluon-quark

correlation functions’ contribution to the direct photon TSSA, which included the

SGP and SFP terms for both the polarized and unpolarized proton. The SGP term

for the unpolarized proton was calculated for the first time using the Boer-Mulders

function and Equation 1.4. The SFP contribution from the unpolarized proton dis-

appeared after summing over all possible Feynman diagrams. After combining all

contributions, they found as expected that the qgq contribution would be negligible

at backward rapidity. At forward rapidity, they found that the Qiu-Sterman function

dominated to produce an overall negative asymmetry. Because the trigluon correla-

tion function’s contribution is small at forward rapidity, the forward direct photon

TSSA has been proposed as a method of cleanly extracting the Qiu-Sterman function

and even having the potential for providing insight into the Sivers sign change. The

Qiu-Sterman function’s contribution to the direct photon TSSA has also been studied

in the context of color entanglement in the twist-3 factorization framework. It was

found that this contribution changed when one considered the quantum mechanical

effects of simultaneous initial- and final-state soft gluon exchanges. This means that

the forward direct photon TSSA could also serve as a potential probe of nontrivial

gauge links in collinear factorization. [81] A calculation of the quark Sivers function’s

contribution to the forward direct photon TSSA predicted the opposite sign for the

asymmetry. [46] So it could also be used as a way of comparing the collinear twist-3

and TMD approaches and evaluating the validity of parton model identities like those

in Equations 1.3 and 1.4.

At backward rapidity, the transversely polarized proton is being probed at much

lower x and so the direct photon TSSA is dominated by gluon dynamics in the po-

larized proton. Calculations of the ggg function’s contribution to the direct photon
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TSSA have shown that the backward rapidity asymmetry is sensitive to the magnitude

of the trigluon correlation function. [82] This calculation used the same parameteriza-

tions to make the open heavy flavor TSSA prediction in Ref. [55] and found that for

xF < 0 (backward production) the direct photon asymmetry is sensitive to the rela-

tive sign between the O(x1, x2) and N(x1, x2) functions. The direct photon TSSA at

RHIC energies has also been found to be sensitive to the gluon Sivers function in the

TMD factorization framework, both at midrapidity and backward rapidity. Ref. [83]

found that at backward rapidity where the contributions from quark spin-momentum

correlations are the most suppressed, the direct photon TSSA could be as large as

10% with current constraints to the gluon Sivers function and that this potentially

large asymmetry was suppressed with the inclusion of soft gluon exchanges.

At midrapidity the direct photon TSSA is sensitive to both quark and gluon

dynamics in the proton and it is not affected by hadronization. The only previous

direct photon TSSA measurement was published in 1995 by the E704 experiment at

Fermilab. It was measured with a 200 GeV/c polarized proton beam on a unpolarized

proton target and found to be consistent with zero with large error bars. [84] This

will be the first direct photon TSSA published at RHIC, which will help constrain

gluon spin-momentum correlations in the transversely polarized proton.

Transverse single-spin asymmetries are spin-momentum correlations which probe

parton dynamics present in the proton and the process of hadronization. They can

be analyzed through the TMD framework which explicitly keeps information on non-

perturbative parton transverse momentum. Alternatively, collinear twist-3 functions

describe the quantum mechanical interference between interacting with two partons

versus interacting with one and have been shown to be able to generate large TSSAs.

The TMD and collinear twist-3 frameworks both encode spin-momentum correlations

that come from partons interacting with their surrounding color fields. The results

presented in this dissertation measure the TSSA of a single particle produced in a
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proton-proton collision event and calculate the asymmetry as a function of this parti-

cle’s pT . Thus in order to analyze these TSSA measurements in the TMD framework

the kT moment of TMD functions must be taken, while collinear twist-3 functions

can be applied to these TSSA measurements directly. This dissertation describes the

direct photon TSSA which is a clean probe of proton structure and the TSSAs of

π0 and η mesons which are sensitive to both initial- and final-state effects. These

results will constrain the trigluon collinear twist-3 function as well as the gluon Sivers

function.
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CHAPTER II

Experimental Set Up

2.1 Relativistic Heavy Ion Collider

The Relativistic Heavy Ion Collider (RHIC) is located on Long Island, New York

at Brookhaven National Lab (BNL). It is one of two high-energy hadronic colliders

in the world that are currently operating and the only collider that is able to run

polarized proton beams. This allows for studies of spin-spin and spin-momentum

correlations at much higher energies compared to polarized fixed target experiments.

RHIC is also unique in that it is able to run a wide variety of light and heavy ion

beams including gold, deuterium, copper, and uranium.

RHIC is 3.8 km in circumference and made up of two separate rings that are

capable of running both heavy ion and polarized proton beams. The beam that

travels counterclockwise is referred to as the yellow beam and the clockwise beam

is called the blue beam, as illustrated in Figure 2.1, named for the colored stripes

painted on their respective magnet systems. Each beam has 120 separate bunches

that collide in 106 ns intervals at up to six interaction points. Originally there were

four major detectors taking data at the RHIC complex: PHENIX, STAR, BRAHMS,

and PHOBOS, of which STAR is the only experiment that is still currently taking

data. STAR will be joined by a follow up experiment to PHENIX called sPHENIX,

which is scheduled to start taking data in 2023. [85, 86]
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Figure 2.1: Schematic of the RHIC-AGS equipment required to run polarized proton
beam

A number of technological developments were required to make RHIC not only

polarize the proton beam but maintain the polarization as the beam is steered around

the RHIC ring by strong magnetic fields. Polarized proton bunches are injected into

RHIC one bunch at a time, which allows the polarization direction of each bunch

to be selected independently. Not only does this reduce the systematics of polarized

measurements, it also allows for polarization-averaged analyses to be done with the

same proton-proton data sets. The polarization direction of each bunch is set at

the beginning of the fill and care is taken to ensure that there are nearly the same

number of bunches that are polarized up as polarized down. The fact that the polar-

ization direction changes can also be used as a tool in spin-spin and spin-momentum

correlation measurements.
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2.1.1 Polarized Source and Injection

The source for polarized proton beams is optically polarized H− ions and is re-

ferred to as the Optically-Pumped Polarized Ion Source (OPPIS). [87] It starts with

unpolarized protons picking up electrons that were polarized in an optically pumped

rubidium vapor that was placed in a high magnetic field, making hydrogen atoms

with a polarized electron. The electron’s polarization is then transferred over to the

proton nucleus with static magnetic fields. These atoms then pick up a second un-

polarized electron from a sodium vapor negative-ionizer cell, forming H− ions with

polarized proton nuclei.

A pulse of polarizedH− ions is then transferred to the Radio Frequency Quadrupole

(RFQ) cavities and then the Linear Accelerator (LINAC) where is it accelerated to

200 MeV. As it is injected into the Booster, the H− ions are stripped of their electrons

producing a bunch of polarized protons that the Booster then accelerates to 1.5 GeV.

This bunch is then transferred to the Alternating Gradient Synchrotron (AGS) and

accelerated to 25 GeV before being injected into RHIC where it can be accelerated

to a maximum of 255 GeV. Each bunch is accelerated in the AGS and injected into

RHIC separately, allowing for the polarization direction to differ bunch to bunch.

For Run-15 p+p data, taken in 2015, each polarized proton beam was accelerated

to 100 GeV for a total center of mass energy of
√
s = 200 GeV. Of the 120 bunches,

109 bunches were filled with protons and nine consecutive bunches were left empty

to give the abort kicker magnet enough time to raise its current to the level needed

to dump the beam. Two additional bunches were left empty to serve as a crosscheck

for the bunch patterns. These empty bunches are called the abort gap. A collision

between two bunches in separate beams is called a crossing. The beam luminosity for

Run-15 was about 1029 to 1032 cm-2s-1 and the average beam polarization was 55%.

The integrated luminosity delivered to the PHENIX interaction point was 196.7 pb-1.

Each cycle of beam storage is referred to as a fill and identified by a fill number.
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Each fill typically runs for about 8 hours, though it can be dumped earlier because of

nonideal beam conditions such as low intensity or polarization or due to equipment

problems.

2.1.2 Maintaining the Polarization of the Beam

Once the polarized proton bunches are injected into RHIC, the next challenge

is maintaining the polarization. Over the course of a fill some loss of polarization

is unavoidable because of the magnetic fields used to steer the beam. But certain

depolarization effects can be additive due to the procession of the protons around the

ring. The precession of the spin vector ~P of a relativistic proton traveling in a circle

is given by the Thomas-BMT equation: [88, 89]

d~P

dt
= −

( e

γM

)(
Gγ ~B⊥ + (1 +G) ~B‖

)
× ~P (2.1)

where e is the electric charge of the proton, M is the proton mass, γ is the relativistic

Lorentz factor and G = 1.7928 is the anomalous magnetic moment of the proton.

~B⊥ is the component of the magnetic field that is perpendicular to the plane of the

accelerator and ~B‖ is the longitudinal component. For this equation, ~P is measured

in the rest frame of the proton. As the speed of the proton increases, so does γ which

means the ~B⊥ term will dominate. The magnetic field is of course necessary to steer

the protons around the ring and the equation of motion for a charged particle orbiting

in a magnetic field is:

d~v

dt
= −

(
e

γM

)
~B⊥ × ~v (2.2)

By comparing Equations 2.1 and 2.2, we can see that for each revolution around the

RHIC ring the spin of each proton precesses Gγ times. νsp = Gγ is referred to as the

spin tune.
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Looking at Equation 2.1 we can see that the polarization direction would be stable

if ~B‖ were negligible and if ~P and ~B⊥ pointed in the same direction. For this reason,

each proton bunch is polarized perpendicular to the accelerator plane for the majority

of time that it travels through RHIC.

But magnetic fields that are parallel to the beam axis are unavoidable and can

cause additive depolarization effects that occur when the spin precession frequency is

such that the polarization is pointing in the exact same direction each time the bunch

encounters a particular depolarizing field. These resonance effects are categorized into

two different types: imperfection and intrinsic resonances. Imperfection resonances

are caused by small errors in the magnetic currents and alignments which occur more

or less randomly around the ring. These imperfections cause resonant depolarization

when the spin tune is an integer, νsp = Gγ = n. Intrinsic resonances are caused

by the beam focusing quadrupole magnets. Intrinsic resonances occur when νsp =

Gγ = kP ± νy, where k is an integer and P is the superperiodicity or the regularity

of the focusing-defocusing lattice; at RHIC P = 12. νy is the vertical component of

the betatron tune or the number of oscillations per beam revolution possible during

a stable beam in the vertical plane; at RHIC νy ≈ 8.8. The closer νsp gets to these

resonant frequencies, the faster the beam polarization is lost.

In order to avoid both imperfection and intrinsic resonances, a series of spin-

rotating helical dipoles called Siberian snakes are installed around both the RHIC and

AGS rings. Each RHIC ring has two Siberian snakes [90] at diametrically opposite

points along the rings, which flip each bunch’s spin direction 180◦ without distorting

the trajectory of the beam. This makes the spin tune a half integer and causes these

additive effects from the RHIC magnets to cancel out. The AGS does not have enough

space for a full snake, but has two partial snakes that rotate the spin vector by less

than 180◦ to keep the spin tune away from integer values.
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Even though transversely polarized proton beams are the most stable, there is

still interesting physics to be measured with a longitudinally polarized proton beam.

In particular, double longitudinal-spin asymmetries are sensitive to the helicity dis-

tributions of partons within the proton. To achieve these collisions, spin rotators

are located outside of the interaction regions of both PHENIX and STAR which can

rotate each bunch’s polarization from transverse to longitudinal. After the crossing,

the longitudinally polarized bunch is then returned to a transverse polarization by

another spin rotator as it leaves either PHENIX or STAR. This way each experiment

can independently choose the polarization direction for each of their data sets.

2.1.3 Polarimeters

Knowing the polarization of the beam is not only important for monitoring the

performance of the beam, but the absolute polarization is needed as a correction

in spin analyses. The RHIC polarimeters are located at the 12 o’clock position on

the ring and use two separate polarimeters to measure the beam polarization in the

vertical direction. The basic idea behind measuring the polarization is to measure

an already known physics asymmetry, AN . The measurement of this asymmetry, εN ,

will then be diluted by the beam polarization, P beam:

AN =
1

P beam
εN (2.3)

If the beam were 100% polarized then εN = AN , but since it is not, the measured

asymmetry can then be compared to the physics asymmetry and used to calculate the

polarization of the beam: P beam = εN/AN . Thus, the usefulness of the polarimetry

measurement method is determined both by how precisely the raw asymmetry can

be measured and by how well the physics asymmetry is known.
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The proton-carbon (pC) polarimeter [91] studies the elastic scattering of polarized

protons on a carbon target using an array of silicon detectors. This asymmetry is

caused by Coulomb-nuclear interference (CNI) or the interference of the electromag-

netic and hadronic elastic scattering amplitudes. The pC polarimeter measures the

left-right asymmetry of elastically scattered protons off of a carbon target, which is

known to be ApCN ≈ 0.01:

P beam =
1

ApCN

√
N↑LN

↓
R −

√
N↓LN

↑
R√

N↑LN
↓
R +

√
N↓LN

↑
R

(2.4)

where N↑ and N↓ refer to counts where the polarization of the beam was pointing

up or down respectively, and NL and NR refer to the number of carbon atoms that

recoil to the left or right of the polarized beam going direction. (This equation can

be compared to Equation 3.11 in Section 3.3.2.) This is a fast measurement that can

get up to 2 or 3% statistical precision within a few minutes of data taking and so this

measurement can be performed multiple times in a fill to monitor the depolarization

of the beam. The physics asymmetry for this process, however, is not known to very

high precision, so the absolute asymmetry needs to be measured using a different

method.

The hydrogen jet target (H-jet) polarimeter [92] uses a similar method to the pC

but with a polarized Atomic Beam Source (ABS) target which flips the polarization

direction every 10 minutes. The absolute polarization of the ABS is measured very

precisely by a Breit-Rabi polarimeter and is typically about 92%. The protons from

the RHIC beam scatter off of the ABS target and the left-right asymmetry of elasti-

cally scattered protons due to the CNI process is measured. Even though the physics

asymmetry of this process is not precisely known, the asymmetry can be measured

twice: once when taking into account the polarization of the target and averaging

over the spin state of the beam (εtargetN ) and again by using the polarization direction
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of the beam and averaging over the polarization of the target (εbeamN ). Since the target

polarization is precisely known, it can be used calculate absolute polarization of the

beam:

AN =
εtargetN

P target
=

εbeamN

P beam
=⇒ P beam = P target ε

beam
N

εtargetN

(2.5)

Low target density however means that this measurement needs to be taken over a

long period of time. Even after collecting data for an entire fill, the asymmetries are

measured with a statistical uncertainty of about 5%. In contrast, the pC can take a

precise measurement in less than 10 seconds and can get to 2-3% precision within a

few minutes. Therefore the pC is used to monitor the polarization of the beam as it

changes across the fill and also how the polarization changes between fills and the H-

jet polarization measurements are averaged over multiple fills and used to normalize

the pC results.

2.2 The PHENIX Experiment

The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is lo-

cated at the 8 o’clock position along the RHIC ring. PHENIX was designed to measure

a wide variety of probes to study both cold and hot nuclear matter in p+p, p/d/h+A

and A+A systems. Figure 2.2 shows the two central arms of the PHENIX detector,

which are nearly back-to-back and each cover ∆φ = π/2 in azimuth and |η| = 0.35 in

pseudorapidity. The PHENIX detector design sacrificed acceptance for the ability to

measure rare processes with a combination of high energy and spatial resolution, high

rate capability, and advanced trigger systems. Additionally, there are two forward

arms which both cover full azimuth and 1.2 < |η| < 2.4 with spectrometers designed

to measure muons and decays from heavy flavor. The very far forward Zero Degree

Calorimeter (ZDC) is a hadronic calorimeter designed to detect very far forward neu-
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trons, which can be used to identify diffractive events and calculate centrality in heavy

ion collisions, a proxy for the impact parameter between two nuclei in a relativistic

collision. In 2012 and 2013 two silicon detectors were installed to provide secondary

vertex measurement capabilities for heavy flavor decays: the forward FVTX located

at 1 < |η| < 3 and the VTX covering the barrel region around the interaction vertex.

The Muon Piston Calorimeters (MPCs) are two forward electromagnetic calorimeters

that are placed inside of the piston holes of the Muon Magnets. Their primary goal

was to identify and measure π0 and η mesons and they cover −3.7 < η < −3.1 on

the south arm and 3.1 < η < 3.9 on the north arm. An overview of the PHENIX

detector can be found at [93].

2.2.1 Beam-Beam Counters

Global event information like the timing, vertexing, and luminosity are determined

by the Beam-Beam Counters (BBC). [94] They consist of an array of quartz Cherenkov

radiators that surround the beam pipe and are placed±144 cm away from the nominal

collision point. The BBC cover full azimuth and 3.0 < |η| < 3.9 in pseudorapidity

and are designed to detect charged particles with velocity β > 0.7. The z-vertex of

inelastic collisions is calculated using the difference in the average hit times between

the north and south side of the BBC. Thus, it is critical that the BBC have excellent

timing resolution. Each element in the BBC has an intrinsic resolution of roughly

50 ps, which translates to a vertex resolution of roughly two cm in p + p collisions.

This timing information is also used to calculate the time zero of each event which is

crucial for measuring time of flight and the PHENIX Level1 trigger system.

The minimum bias trigger fires on crossings where at least one charged particle is

measured in both the north and south sides of the BBC. This trigger detects about

50% of all inelastic p + p collisions with
√
s = 200 GeV. The standard BBC level

1 trigger has an online vertex requirement of ±30 cm. The amount of times each
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Figure 2.2: A diagram of the subsystems of the PHENIX central arms after the 2012
running period. In this diagram the beam pipe extends in and out of the page.

crossing fires this trigger is used to calculate the relative luminosity between polar-

ization configurations which will be described in Section 3.2.3 and used to calculate

the TSSA.

2.2.2 Central Arms

PHENIX central detector coverage consists of two arms referred to as west and east

and shown in Figure 2.2. Each arm covers roughly π/2 in azimuth and |η| < 0.35 in

pseudorapidity. These arms are not exactly back-to-back but slightly offset such that

instead of having an angle of π/2 between them, the angle at the top is 3π/8 and at the

bottom is 5π/8. The sub detectors in the central arms are highly segmented leading

to excellent spatial resolution. One of the primary subdetectors is the electromagnetic

calorimeter (EMCal) which measures the position and energy of charged particles and

photons. Charged tracks are measured using hits from the Drift Chamber (DC) and

the Pad Chamber (PC). The Ring Imaging Cherenkov (RICH) detector is used for

37



charged particle identification and combined with signals from the EMCal as part of

the EMCal RICH Trigger (ERT) which triggers on rare high pT processes.

Cylindrical coordinates are generally used to describe the geometry of the PHENIX

detector with the z-axis and θ = 0 pointing north and along the beam axis. The y

axis and φ = π/2 points directly up from the ground, which leaves the x axis and

φ = 0 pointing towards the west arm.

2.2.2.1 EMCal

The central detector furthest from the beamline is the EMCal [95] whose primary

purpose is to measure the spatial position and energy of photons and electrons. This

energy information can be used for particle identification and triggering on high pT

events. There are a total of 24,768 individual towers split between eight sectors, six

of which are made of lead scintillating (PbSc) sampling calorimeters and two of which

are made of lead glass (PbGl) Cherenkov calorimeters. The PbSc and PbGl sectors

have different properties and different strengths and weaknesses, so they often have to

be treated differently during calibration and analysis. The two different technologies

for the EMCal allow independent cross checks of results within the same experiment.

The PbSc sectors are referred to as a shashlik type sampling calorimeter because

each tower is made of alternating plates of lead and scintillator, as shown in Fig-

ure 2.3. The PbSc has a nominal energy resolution of 8.1%/
√
E[GeV] ⊕ 2.1%, a

radiation length of 18 X0, and an intrinsic timing resolution better than 200 ps for

electromagnetic showers.

There are a total of 15,552 PbSc towers which collectively take up approximately

48 square meters. These towers produce a pseudorapidity (∆η) and azimuthal (∆φ)

resolution of ∆η ×∆φ ≈ 0.011× 0.011. Each tower contains 66 layers of alternating

lead and scintillator plates which are connected with wavelength-shifting, fiber-optic

cables that penetrate longitudinally through the tower to connect to PhotoMultiplier
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Figure 2.3: Interior view of the PbSc module showing the alternating scintillator and
lead plates and the wavelength shifting fiber readout. [95]

Tubes (PMTs) at the back which read out the light produced by the electromag-

netic shower. The edges of each tower are plated with aluminum and then they

are mechanically attached into groups of four which are called modules. Thirty-six

of these modules are grouped together into what are called supermodules that are

held together by welded stainless steel skins on the outside to form a rigid structure.

Eighteen of these supermodules are held together in a two-meters-by-four-meters steel

frame to form a sector. The PbSc sectors also have better energy linearity and faster

timing when compared to the PbGl.

The PbGl sectors however have a higher energy resolution of 5.9%/
√
E[GeV] ⊕

0.8% and finer spatial resolution with ∆η × ∆φ ≈ 0.008 × 0.008. The PbGl also

has a lower radiation length of about 14 X0 when compared to the PbSc. There are

a total of 9216 PbGl towers which occupy the lower two EMCal sectors in the east

arm. These sectors were previously used in the WA98 CERN experiment. Each PbGl

sector is comprised of 192 supermodules in an array of 16 supermodules wide and 12
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Figure 2.4: Interior view of a lead PbGl supermodule where the front part of this
image is the part of the supermodule closest to the interaction point. [95]

high. Each supermodule, shown in Figure 2.4, is made up of 24 lead glass towers that

are arranged in an array of 6 towers wide and 4 towers high. These 24 towers are

individually wrapped in aluminized mylar and shrink tube and then glued together

with carbon fiber and epoxy resin. A single PMT is attached to the end of each tower

behind the lead glass matrix to read out the signal of each electromagnetic shower.

2.2.2.2 DC and PC

The primary subsystem used for PHENIX central tracking is the DC [96] which

measures the trajectory of charged particles in the r − φ plane. The curvature of

these charged tracks in the PHENIX magnetic field can then be used to calculate the

pT of the charged particle. The DC is located on both of the PHENIX central arms

as shown in Figure 2.2 and the cylindrical frames are filled with a gas mixture of

50% argon and 50% ethane. When a charged particle passes through the DC, the gas

mixture ionizes. Wires within the chamber are held at a high enough voltage such

that the resulting charged particles drift towards them. Which wire detects these

40



charged particles can then be used to reconstruct track position information using

the drift time of the electrons. Each frame has six types of wires that are stacked

radially and run the length of the DC in the direction parallel to the beam. The wires

themselves do not run parallel to each other, but instead are attached at an angle

such that signals from multiple wires can be used to reconstruct the full r, φ, and z

information.

The PC is used to improve the track z and pT resolution and also reduces com-

binatorial background from tracks in the DC. Each of the components of the PC

contains a plane of anode wires surrounded by a gas chamber. This anode plane is

sandwiched between two cathode planes, one of which is finely segmented into an

array of pixels. When a charged particle passes through the gas volume, it starts

an avalanche on an anode wire which induces charge on this cathode plane which is

then read out by electronics specially designed for the PC. There are three separate

PC multiwire chambers that are labeled PC1, PC2, and PC3 which can be seen in

Figure 2.2. The PC1 is the innermost pad chamber plane, located between the DC

and the RICH. It measures the z coordinate of a track as it exits the DC. The PC2 is

located only on the west arm just behind the RICH and the PC3 is mounted on both

arms just in front of the EMCal. In photon analyses the track position information

from the PC3 is used to eliminate EMCal clusters that are associated with charged

tracks.

2.2.3 EMCal-RICH Trigger

The ERT is designed to identify rare processes in PHENIX by firing on high pT

photons and electrons. EMCal towers are grouped into what are called tiles over

which the deposited energy is summed. If this total tile energy is above some preset

threshold, then this event is recorded as firing this trigger. The energy threshold of

the triggers is set depending on the center of mass energy of the collision system.
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The electron ERT trigger uses non-overlapping 2 x 2-tower tiles in conjunction with

the RICH. The high pT photon trigger uses overlapping 4 x 4-tower tiles and there

are three different types of this trigger: the ERTA, ERTB, and ERTC. Each has a

different energy threshold and the trigger with the highest energy threshold is the

ERTB while the trigger with the lowest energy threshold is the ERTC.
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CHAPTER III

Analysis Details

3.1 Data Selection

These transverse single-spin asymmetry results were calculated using the 2015 p+p

data set with
√
s = 200 GeV. The total recorded luminosity of transversely polarized

collisions was 60 pb-1 and the average polarization of the yellow beam was 59% while

the average blue beam polarization was 57%. Because both of the proton beams are

transversely polarized and the polarization direction changes bunch to bunch, the

same TSSA can be calculated twice using the same data set. Once by keeping track

of the polarization directions for only the yellow beam and effectively averaging over

the polarization directions of the blue beam; we shall refer to this as the yellow beam

asymmetry. Then the asymmetry can be calculated for a second time by considering

the polarization directions of the blue beam and effectively averaging over the yellow,

which we will call the blue beam asymmetry. These two asymmetry measurements

are completely statistically independent and are averaged together to find the final

result.

3.1.1 Run Quality Assurance

All data taken at PHENIX is segmented into what are called runs which corre-

spond to one cycle of DAQ data-taking which typically lasts about an hour. Each
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run is identified by its own run number and required to pass certain criteria to be

included in these analyses. Eight runs are eliminated because of either a low vertex

distribution or a low trigger efficiency.

The beam spin information, like the polarization directions of each crossing and

the bunch-to-bunch luminosity, is taken from PHENIX’s spin database. All informa-

tion put into this spin database has already undergone its own quality assurance to

ensure all of its information is as accurate as possible and any runs that were flagged

as bad by the spin data base quality assurance are eliminated from the data sam-

ple. Additionally, seven runs are eliminated because the recorded bunch by bunch

luminosity was either small or zero. Another nine runs are removed from the sample

because their overall fill relative luminosity was significantly different from the other

calculated relative luminosities, see Section 3.2.3. After run quality assurance, there

are a total of 797 runs remaining.

3.1.2 Event Selection

In high energy physics, an event refers to the set of outgoing particles produced

in a collision between two incoming particles. Like most high energy experiments,

all of PHENIX’s detectors are read out for each triggered bunch crossing such that

they collect as much information about the event as possible. Each event used in the

TSSA analyses is required to fire at least one of ERT 4 x 4 photon triggers and pass

a vertex cut of |zvtx| ≤ 30 cm. Photons that came from events that occurred during

empty crossings are also eliminated.

3.1.3 Photon Selection

The direct photon, π0, and η meson analyses all use photons that are measured as

clusters in the EMCal, which measures the photon’s position and energy information.

The corrected cluster energy that was calculated during data calibration is referred
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to as Ecore. In the PbSc sectors this means that the energy is corrected for fiber

attenuation, energy leakage, and incident angle. Clusters in the PbGl have had

their energy corrected for the incident angle and nonlinear detector effects. These

corrections assume that the cluster is formed by an electromagnetic shower and the

“core” subscript refers to the assumption that the majority of the cluster’s energy

should be concentrated at its center. Because photons have zero charge, their paths

do not curve as they travel in the magnetic field. Since they are massless, the position

and energy information from the EMCal can be used to directly calculate the photon’s

momentum: ~p = Ecore~x.

These clusters are required to pass certain fiducial cuts which include an energy

cut of 0.5 < Ecore < 20 GeV. There are also shower shape cuts designed to eliminate

clusters from charged hadrons which tend to have wider particle showers. These cuts

look for narrower clusters with a Gaussian shape and also perform a χ2 < 3 on clusters

in PbSc sectors and a dispersion cut on clusters in PbGl sectors. Hot and dead map

cuts eliminate clusters whose central tower either is or is next to an EMCal tower that

had previously been identified as problematic. The edge tower cut eliminates clusters

whose central tower is either on the edge or one over from the edge of the sector. The

time of flight cut requires that |TOF | < 5 ns in order to remove additional detector

noise.

An additional list of hot towers is also created for this analysis. These are EMCal

towers that due to electronic noise, fire many more times than all of the other towers

in the sector. In order to identify hot towers, hot maps like the one in Figure 3.1

are created. (Here the sectors are numbered clockwise from the west arm such that

sector 0 is the PbSc sector at the bottom of the west arm and sector 7 is the PbGl

sector at the bottom of the east arm.) These are sector-by-sector two dimensional

histograms of the central tower for all clusters in Run-15 that have passed the cuts

listed in the previous paragraph. Towers are considered “hot” if the total number
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(h) Sector 7

Figure 3.1: Example of a hot tower map: a sector by sector comparison hits per tower
used to identify problematic towers in Run-15. The x-axis corresponds to the tower’s
position along the sector’s z coordinate and the y-axis is the tower’s y coordinate in
the sector. This example is for clusters with 0.5 < Ecore < 5 GeV. The contour levels
of each histogram are set to be the same to showcase the towers that have the largest
difference in hits from the rest of the sector.
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of hits is larger than 6 times the RMS of hits for that sector. This RMS should not

include any values from towers that have been previously flagged as hot. And so,

this becomes an iterative process: hot towers are flagged, the RMS is recalculated

without using the counts from these flagged towers, more towers are now flagged as

having counts that are 6 times higher than this new lower RMS value and so on. This

process is repeated until no new hot towers are found. There are two different lists

created for different bins in energy: one for clusters with energies between 0.5 and 5

GeV (Figure 3.1) and another for energies between 5 and 20 GeV. This is to ensure

that higher energy clusters are not eliminated based on how their towers behaved at

lower energies, since there are four times as many towers in the lower energy list than

the high energy one. Since clusters consist of multiple adjacent towers, the hot tower

cut not only eliminates clusters whose central tower is on the hot tower list, but also

clusters whose central tower is adjacent to a flagged tower.

In order to be added to the photon sample, clusters are also required to pass a

charged track veto cut. This helps eliminate electrons as well as charged hadrons

that have not been eliminated by the shower shape cut, by checking that all photons

candidates do not have a matching angle with a charged track as determined by the

PC3. This is an elliptical cut of 12 cm in z and 8 cm in φ. This cut does not require

that the area of the PC3 in front of the photon cluster be live, just that no matching

charged track is found.

3.1.3.1 Photon pair selection

π0 and η mesons are measured via their diphoton decay channel which has a

branching fraction of about 99% for π0s and 39% for ηs. All of the photons that are

included in these h → γγ pairs are required to pass all of the fiducial photon cuts

described earlier in this section in addition to some photon pair cuts. First the pairs

are required to be in the same arm of the PHENIX detector and be at least 8 cm
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Figure 3.2: Invariant mass distribution of all diphoton pairs in Run-15.

apart from each other in the EMCal. All diphoton pairs with invariant mass less

than 1 GeV/c2 that pass these cuts are shown in Figure 3.2. The π0 invariant mass

peak can clearly be seen around 0.13 GeV/c2 and the η peak can be seen somewhat

less clearly around 0.55 GeV/c2. There are less η → γγ photon pairs measured than

π0 → γγ partially because of the different branching fractions and partially because

there are about twice as many π0s produced because of their lighter mass. Photon

pairs used in π0 and η analyses are also required to pass an energy asymmetry cut

of α =| E1 − E2 | /(E1 + E2) < 0.8. This cut is designed to eliminate asymmetric

decays which are more difficult to reconstruct partially because of PHENIX’s limited

central acceptance and partially because there is a higher contribution from detector

noise at lower energies.

The higher energy photons in the diphoton pairs are also required to pass addi-

tional cuts. They must have pT ≥ 1.5 GeV/c such that their energy is high enough

for the ERT efficiency to be constant. The higher energy photon also needs to pass

the ERT check by being in the same supermodule that fired one of the three 4 x 4

ERTs. This ensures that the photon is at least in the same region of the detector that

48



fired the ERT trigger since we cannot verify what particle actually fired the trigger.

The higher energy photon also needs to be the photon with the highest energy in the

event. This is to avoid random benefit: when a lower energy photon just happens to

be in the supermodule that fired the ERT, so it passes the ERT check but did not

actually fire the trigger itself.

Photon pairs are considered to be within the π0 invariant mass peak if they have

112 < Mγγ < 162 MeV/c2 and the π0 combinatorial background is studied with

photon pairs with 47 < Mγγ < 97 MeV/c2 or 177 < Mγγ < 227 MeV/c2. The signal

range used for the η invariant mass peak is 480 to 620 MeV/c2 and the combinatorial

background is studied with the invariant mass ranges 300 to 400 MeV/c2 and 700 to

800 MeV/c2, both of which are the same ranges that were used in Ref. [60].

3.1.3.2 Direct Photon Selection

In addition to the previously listed photon requirements, clusters are required to

pass additional cuts to be included in the direct photon sample. This includes the

ERT check that was described in the previous section. Tagging cuts are used to

eliminate photons that are tagged as coming from either a π0 or η decay. The photon

in question is matched with another photon in the same event that has passed all of

the photon cuts listed at the beginning of Section 3.1.3. If these matched photons

are in the same arm, have more than 8 cm between them in the EMCal, and have an

invariant mass of either 105 < Mγγ < 165 MeV/c2 for π0 tagging or 480 < Mγγ < 620

MeV/c2 for η tagging, then these photons are eliminated by the tagging cut. The

invariant mass range used for the π0 tagging cut is looser than the signal region used

in the π0 TSSA analysis described in the previous paragraph which ensures that the

tagging cut eliminates as many decay photons as possible.

Isolation cuts have a been standard practice for direct photon analyses at PHENIX.

[41–43, 78] These are designed to suppress the background contribution from decay
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photons as well as NLO fragmentation photons. Since direct photons come directly

from the hard scattering, they should have an energy that is much higher than the

energy of the surrounding event:

Eγ · 10% > Econe (3.1)

Here Eγ is the energy of the photon in question and it is required to be 10 times

larger than Econe: the sum of the energies of all of the surrounding clusters and the

momenta of all of the surrounding tracks that are within r =
√

∆φ2 + ∆η2 < 0.4

radians of this photon. The clusters that are included in the cone sum have to pass

much less stringent cuts than what is needed to be included in a photon sample

since they are only being used to characterize the surrounding event. Similarly, the

tracks whose momenta are included in Econe are also only required to pass a bare

minimum of quality cuts. The charged hadron veto cut is still implemented to ensure

charged particles are not being double counted by the energy that they deposit in the

EMCal and the momentum from a reconstructed charged track, but no shower shape

cuts are used. This ensures that neutral hadrons and charged hadrons that were not

reconstructed as charged tracks, can still contribute to Econe with energy that they

deposit in the EMCal.

The main source of background for direct photons comes from hadronic diphoton

decays where one of the photons is missed. There are three things of note that can

happen when a hadron decays to two photons: (1) both photons are measured, (2)

only one of the photons is measured, and (3) the two photons are so close together

that they are reconstructed as a single cluster, also known as merging. When both

photons from a h → γγ decay are measured, these photons are eliminated from the

direct photon sample by the tagging cut. Missing the second photon is especially

a concern with PHENIX’s limited central acceptance, but it can also happen if the
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other photon hits a dead area of the detector or its energy is too low to pass the

minimum energy requirement of 0.5 GeV. In contrast, merging is a much smaller

effect at the pT range of this analysis and is further mitigated with the shower shape

cuts, this will be discussed in more detail in Section 3.4.2.2.

In order to be included in the direct photon sample, a photon from a h → γγ

decay would need to have its sister photon missed and also pass the isolation cut. In

order to study this isolated background, a photon pair isolation cut is used:

Eγ · 10% > Econe − Epartner (3.2)

In this equation the photon with energy Eγ has been matched into a photon pair with

a second photon of energy Epartner. This pair isolation cut is slightly more lenient than

the photon isolation cut from Equation 3.1 with the idea being that if the energy from

second the photon, Epartner, had not been measured, then this photon with energy

Eγ would have passed the photon isolation cut and been added to the direct photon

sample. These tagged photons that are in an isolated pair will be used to estimate

the background contribution to the direct photon sample in Section 3.4.2.2.

3.2 Corrections to the Asymmetry

For TSSAs measured at RHIC, the raw asymmetry measures difference in yields of

particles that travel to the left versus the right of the polarized proton going direction.

These asymmetries need to be corrected for the relative luminosity between different

beam polarization configurations, the absolute polarization of the beam, and for being

measured across a wide range in azimuth.
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Figure 3.3: An example of extracting the TSSA from a sinusoidal fit function. The
forward η TSSA [76] had full azimuthal acceptance and a relatively large asymmetry.
So the analyzers were able to measure the raw asymmetry as a function of φ and
extract AN as the magnitude of a fit that used a sinusoidal function. Here is an
example for a single xF bin for data from the south arm of the MPC.

3.2.1 Acceptance Correction

The TSSA describes the azimuthal-angular dependence of particle production rel-

ative to the transverse-spin direction of the polarized proton. An azimuthally depen-

dent polarized cross section can be parameterized as:

dσ

dΩ
=

(
dσ

dΩ

)
0

(1 + P · AN · cosφ) (3.3)

where

(
dσ
dΩ

)
0

is the unpolarized differential cross section and P is the beam polar-

ization which will be discussed in the next section. Here, φ is the azimuthal angle

around the beam axis where φ = 0 is defined as an angle of π/2 to the left of the spin

direction such that φ = 0 and φ = π are where the cross section is maximal. The

TSSA can then be extracted by measuring εN(φ), the raw asymmetry as a function
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of φ, and fitting it to a sinusoid to extract the amplitude AN :

P · AN · cosφ = εN(φ) (3.4)

This was the method that was used for the PHENIX forward η meson TSSA which

measured photons with the MPC which has full azimuthal acceptance. [76] Figure 3.3

shows an example of a sinusoidal fit to the raw asymmetry to extract the AN for a

single bin in xF .

At central rapidity, however, this is less practical. Not only do the central arms

only cover 180◦ in azimuth, these midrapidity asymmetries tend to be consistent with

zero and statistically limited. So while it is possible to extract an amplitude that is

consistent with zero from a sinusoidal fit function (Section 3.3.3 will explain how this

is used as a cross check), it is much more straightforward to integrate over the full φ

range of each arm. But now this means that the asymmetry is being diluted across

a wide range in φ and needs to be corrected by 〈| cosφ |〉, the azimuthal acceptance

correction:

AN =
1

P

1

〈| cosφ |〉
ArawN (3.5)

Assuming uniform azimuthal coverage across each PHENIX arm, the acceptance

correction could be calculated as:

〈| cosφ |〉 =

∫
| cosφ | dφ∫

dφ
(3.6)

However, the φ distributions in Figures 3.4 and 3.5 show that this is not the case.

Figure 3.4 shows the φ distribution for all photons in the direct photon sample.

Not only are there gaps between the sectors because of the edge tower cuts, but

there are also some fluctuations in yields across the sectors due to dead areas and

the difference in the behaviors of the PbSc and PbGl calorimeters. These plots use
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Figure 3.4: The isolated direct photon φ distribution is not uniform across both arms.

PHENIX coordinates such that the block on the left side of Figure 3.4(a) corresponds

to the sector at the bottom of the west arm and the block on the right side of

Figure 3.4(b) corresponds to the PbGl sector at the bottom of the east arm. Because

the φ distribution is not flat across both arms, the azimuthal acceptance correction is

instead calculated by taking the average | cosφ | value for all direct photon candidates:

〈| cosφ |〉 =

∑N
i=1 | cosφi |

N
(3.7)

For the direct photon analysis this 〈| cosφ |〉 is found to be 0.878 in the west arm

and 0.882 in the east arm.

The acceptance correction for diphoton pairs is slightly more complicated because

their azimuthal acceptance changes as a function of pT , which is shown with example

plots in Figure 3.5. In the rest frame of the hadron, the photons from a h → γγ

decay travel back to back to conserve momentum. In the lab frame, they travel with

some decay angle between them and the faster that this hadron was traveling, the

smaller this decay angle tends to be. At lower pT , the decay angle tends to be wider

and η → γγ decays tend to have wider decay angles than π0 → γγ decays at the

same momentum. This is because η mesons are about four times heavier than π0s

and so their decays have access to a wider range of phase space. So in Figure 3.5(b),
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(b) η pairs: 2 < pηT < 3 GeV/c
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(d) η pairs: 5 < pηT < 6 GeV/c
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(f) η pairs: 10 < pηT < 20 GeV/c

Figure 3.5: Example plots of the φ distribution photon pairs in the west arm with
invariant mass in either the π0 or η peak . These plots clearly show that the azimuthal
acceptance of diphoton decays changes a function of pT .
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the structure of the separate EMCal sectors from the single photon spectrum in

Figure 3.4 is almost completely washed out in this lower pT η photon pair azimuthal

spectrum and the number of detected pairs falls off towards the edges of the detector

arm. For photon pairs with invariant mass near the π0 peak, the lower pT azimuthal

distribution in Figure 3.5(a) shows some of the separate EMCal structure from the

single photon spectrum because of the smaller decay angle. The smaller peaks in

between the wider sector peaks represent pairs where the photons are detected in

adjacent sectors. Again, the higher the pT of the photon pair, the smaller the decay

angle, so in Figures 3.5(c) and 3.5(e) the π0 azimuthal distribution even more closely

resembles the single photon spectrum. In Figures 3.5(d) and 3.5(f) the η azimuthal

distribution starts to resemble the lower pT π
0 φ spectrum in Figure 3.5(a). Thus, it

is crucial that the acceptance correction from Equation 3.7 is calculated as a function

of pT for the photon pair TSSAs. The π0 and η azimuthal acceptance corrections

range in the west arm from about 0.95 at low pT to about 0.89 at high pT . In the east

arm there is far more dead area, so the acceptance correction stays roughly constant

with pT at about 0.88.

3.2.2 Beam Polarization

Collisions from unpolarized protons dilute the TSSA measurement, causing the

measured asymmetry to be smaller than it would have been had the beam had a

higher level of polarization. Thus, the asymmetry needs to be corrected by dividing

by the average polarization of the beam. The fill by fill polarization values for both

the blue and yellow beams are measured by the CNI polarimetry group and plotted

in Figure 3.6. A description of how the absolute beam polarization is measured can

be found in Section 2.1.3.
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Figure 3.6: The beam polarization as a function of fill number for both the blue and
yellow beams.
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Figure 3.7: The relative luminosity as a function of fill number for the both blue and
yellow beams.

3.2.3 Relative Luminosity

The relative luminosity formula is a method of calculating the TSSA that uses the

fact that the beam can be polarized either up or down and will be described in more

detail in Section 3.3.1. One has to be careful to avoid the potential systematic effect

from having more p↑ + p collisions than p↓ + p collisions or vice versa. To correct for

such effects, this formula includes the relative luminosity between when the beam is

polarized up versus when the beam is polarized down: R = L↑/L↓.

These crossing-dependent luminosities are calculated by summing the GL1P scalers.

These are numbers taken from the spin database that keep track of how many times

each crossing fires a particular Global Level 1 (GL1) trigger over the course of a run.
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These TSSA analyses used the GL1P scaler for the minimum bias BBC Local Level-1

(BBCLL1) trigger which incorporates a 30 cm vertex cut. The relative luminosity

is calculated as the sum of these scalers for when the crossings were spin up for a

particular beam divided by the sum for when the crossings were spin down for that

same beam. This has to be done separately for the blue and yellow beams since their

spin configurations are independent from each other. The relative luminosity values

that are used in these analyses are between 0.9 and 1.1 and are shown as a function

of fill number in Figure 3.7.

3.3 Calculating the Asymmetry

The data is broken into different fill groups with a separate asymmetry calculated

for each data group that is corrected by the corresponding polarization and relative

luminosity. This ensures that the trigger and reconstruction efficiencies for that spe-

cific data group cancel out in the ratio and also makes the polarization correction

more accurate since the polarization of both beams decreased over the length of Run-

15 (see Figure 3.6). The statistical uncertainty for the asymmetry is calculated using

standard error propagation which assumes Poissonian statistics, so each count that

is plugged into every fill group’s asymmetry is required to be 10 or higher. If any

of the counts are less than 10, then the data from this fill group is thrown out for

that particular pT bin. In order to increase the number of pT bins possible, these

asymmetries combine data from two separate fills together instead of calculating the

asymmetry fill by fill. The fills are grouped together chronologically such that the

first two fills of Run-15 become the first group, the third and fourth fills are put into

the second group, and so on. These asymmetries are then plotted as a function of fill

group to ensure that there are no systematic effects that would cause the asymmetry

to change over time, an example of which is shown in Figure 3.8 for the direct photon

asymmetry. The polarization values used for these fill groups are the average polar-
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Figure 3.8: An example plot of the asymmetry as function of fill group for the direct
photon blue beam, left relative luminosity asymmetry for 5 < pγT < 6 GeV/c.

ization of the two fills weighted by each fill’s luminosity. These plots are then fit to

a constant which effectively takes the average of the asymmetry over all fill groups,

weighted by the statistical error.

3.3.1 Relative Luminosity Formula

Even though TSSAs are usually described as “left-right” asymmetries, comparing

particle yields from different parts of a detector involves correcting for the differ-

ences in the detector reconstruction efficiencies. This is especially important for the

PHENIX EMCal where the entire west arm is made of all PbSc sectors and the east

arm is half PbSc and half PbGl sectors. The relative luminosity formula combines

data in such a way that these detector effects cancel out by taking advantage of the

fact that the proton beam can either be polarized up or polarized down. So instead

of comparing the number of particles to the left when the beam is polarized up, N↑L,
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to the counts to the right when the beam polarization points in the same direction,

N↑R, the N↑L counts are compared to the number of particles of the left when the beam

was polarized down, N↓L:

AN =
1

P

(
σ↑ − σ↓

σ↑ + σ↓

)
=

1

P

1

〈| cosφ |〉
N↑L −R ·N

↓
L

N↑L +R ·N↓L
(3.8)

The N↓L counts are equivalent to the N↑R ones but do not need to be corrected for any

detector effects. This is an exact expression of the asymmetry and because it takes

the ratio of counts that are all found in the same side of the detector, effects from

detector acceptance and efficiency cancel out. However, this formula does need to be

corrected by R, the relative luminosity between the different beam configurations,

which was discussed is Section 3.2.3. There is an equivalent formula for the right-

side counts, where the signs in the numerator are flipped to preserve the left-right

asymmetry convention.

There are four different relative luminosity formula results, two for each beam,

which are all shown for the direct photon asymmetry in Figure 3.9. These are all

statistically independent from each other and will be averaged together to calculate

the final asymmetry after correcting for background, discussed in Section 3.4. Before

averaging the results, we can also check their consistency with each other. A T test

provides a way of quantifying the differences between the left and right asymmetries:

T (pT ) =
ALeftN − ARightN√

(σLeft)2 + (σRight)2
(3.9)

To demonstrate that the differences between these results are not statistically signif-

icant, we would expect the T values to follow a normal distribution: an even split

between positive and negative values, with approximately 68% of them having a

magnitude that is less than 1, and about 95% with a magnitude less than 2. But as

Figure 3.9 shows, it is difficult to apply Gaussian statistics to only eight points. Still,
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asymmetry results

Figure 3.9: The direct photon asymmetry left and right asymmetry results calcu-
lated using the relative luminosity formula. These results are for the direct photon
asymmetry before the background correction that will be discussed in Section 3.4.

six out of eight of the T values have a magnitude that is less than 1 and only a single

T value has a magnitude greater than 2. And two out of the eight points are positive

which is two points away from an even four-four split. Thus, this T test shows no

evidence that the results are not consistent with one another.

To get the yellow and blue beam results, the weighted average of the left and

right asymmetries are taken, which is shown for the direct photon asymmetry in

Figure 3.10. The difference between these results can also be quantified with a similar

T test:

T (pT ) =
AY ellowN − ABlueN√

(σY ellow)2 + (σBlue)2
(3.10)

Again it is somewhat impractical to apply Gaussian statistics to the four points that
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Figure 3.10: Relative luminosity yellow and blue beam asymmetries for the direct
photon asymmetry before the background correction, which will be explained in Sec-
tion 3.4.

are present in Figure 3.10(b), but all of the T values have a magnitude that is either

less than or close to 1 and are not systematically positive or negative.

3.3.2 Square Root Formula Cross Check

The square root formula is an alternative way of calculating the TSSA using a

geometric mean and will be used as a cross check for the relative luminosity formula

result. The square root formula is not an exact expression for the asymmetry, but to

first order effects from both detector acceptance and the relative luminosity cancel

out:

AN =
1

P

1

〈| cosφ |〉

√
N↑LN

↓
R −

√
N↓LN

↑
R√

N↑LN
↓
R +

√
N↓LN

↑
R

(3.11)

The relative luminosity and square root formulas calculate the asymmetry with

a slightly different method, but the results are still 100% correlated because they

are using the exact same data set. Thus, the T test formula used to quantify the

differences between the formula results has a minus sign in the denominator:

T (pT ) =
ASqrtN − ALumiN√
|(σSqrt)2 − (σLumi)2|

(3.12)
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(e) Final Averaged Asymmetry
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(f) T test comparing the averaged asymme-
try results for the square root and relative
luminosity formulas

Figure 3.11: Comparing the results of the relative luminosity and square root formulas
for the direct photon asymmetry before the background correction, which will be
discussed in detail in Section 3.4.
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An example of this is shown in Figure 3.11 for the direct photon asymmetry, where

Figure 3.11(e) shows the averaged asymmetry values for the different beam asymme-

tries. The different formula results already show a excellent agreement, but this will

be further improved once the asymmetry is corrected for background, which can be

seen in Figure 3.15.

3.3.3 sinφs Modulation Cross Check

Section 3.2.1 describes how the TSSA is generally extracted by measuring the raw

asymmetry as a function of φ and fitting to a sinusoid to measure the amplitude.

At midrapidity this becomes more difficult not only because the PHENIX central

detectors do not have full azimuthal coverage, but also because these asymmetries

are both consistent with zero and statistically limited. Thus, this method is only used

as another cross check. A modified version of the relative luminosity formula is used:

AN · sinφs =
1

P
εN(φs) =

1

P

N↑(φs)−R ·N↓(φs)
N↑(φs) +R ·N↓(φs)

(3.13)

Unlike the azimuthal angle used in Section 3.2.1, φs is the angle from the spin up

direction (y = 0 in PHENIX coordinates). It increases to the left of the polarized

proton beam going direction, preserving the left-right asymmetry convention. P is the

beam polarization from Section 3.2.2 and R is the same relative luminosity explained

Section 3.2.3. No azimuthal correction is needed because we are no longer integrating

over φ.

Each arm is split into three bins in φs, as shown in Figure 3.12. This is the

direct photon asymmetry for the blue and yellow beam results for the lowest pT bin.

Even though this bin has the highest number of counts, these asymmetries become

statistically limited when they are split across the six φs bins. Even though there is

no clear sinusoidal distribution like what is shown in Figure 3.3, these asymmetries
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Figure 3.12: Example plots of the AN sinφs fits for the direct photon asymmetry.
The raw direct photon asymmetry for 5 < pγT < 6 GeV/c measured as a function of
φs, divided by the beam polarization, and fit with the function AN sinφs.
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Figure 3.13: Comparison of the direct photon asymmetry from sinusoidal fits to the
asymmetry from integrating over the φ ranges of the arms. These points have been
slightly offset in pT such that they are more visible.
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are still fit to a AN sinφs function to extract the amplitude, as shown in the red curves

in Figure 3.12. These fits are done separately for the yellow and blue beam results

and then averaged together. Figure 3.13 shows an example of the final results from

these fits for all pT bins plotted with the results calculated by integrating over the φ

range of the arms explained in Section 3.3.1. This process is repeated for the π0 and

η asymmetries, which also showed a excellent level of agreement. This indicates that

the acceptance correction from Section 3.2.1 is being calculated correctly.

3.4 Background Correction

Correcting for background in TSSA analyses is not as simple as subtracting off the

estimated contribution from background like what would be done to the yields used

in a cross section analysis. This is because all of the yields used in TSSA calculations

have beam polarization information associated with them. Thus, we must instead

correct for the effects from background by subtracting off the background asymmetry:

ASN =
AS+B
N − rABN

1− r
(3.14)

where S stands for signal, B stands for background, and r = NB/(NB + NS) is

the background fraction. The background subtraction formula is applied separately

for the different beam and arm results, i.e. the yellow left background asymmetry,

ABN is subtracted off of the yellow left sample asymmetry, AS+B
N , using a background

fraction that is specifically calculated for east arm, the arm to the left of the direction

that the yellow beam is traveling. This background correction procedure has been

used for all previously published PHENIX asymmetries including [60,76]
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3.4.1 Background Asymmetries

By definition, the background within a sample cannot be directly measured, be-

cause otherwise it would have been eliminated with a cut. Thus, the background

asymmetries must be calculated using some kind of proxy.

Since π0 and η mesons are collected via their diphoton decays, their main source of

background comes from combinatorial photon pairs: two photons that just happened

to be in the same event, pass all of the pair cuts, and have an invariant mass that

fell under either the π0 or η peak, but are not actually produced in a diphoton decay.

So, for these photon pair analyses the background subtraction formula becomes:

AsigN =
ApeakN − rAbgN

1− r
(3.15)

where ApeakN is the asymmetry calculated using photon pairs within this invariant

mass peak and AbgN is calculated using photon pairs with invariant mass ranges near

this peak, but not within it. These background ranges are stated explicitly in Sec-

tion 3.1.3.1 and are chosen such that the behavior of the combinatorial background

within the peak is well approximated, but the background asymmetry contains none

of the physics asymmetry from the actual h→ γγ decays. Figure 3.14 shows example

plots of these invariant mass spectra for both the π0 and η analyses at different pT .

The blue region represents the peak photon pairs that are used to calculate ApeakN

and the red regions represent the side band ranges that are used to calculate AbgN . By

noting that the invariant mass range of the η plots overlap with Mγγ range of the π0

plots, one can see how many more photon pairs are within the π0 invariant mass peak

as compared to the η peak.

For direct photons, the main source of background comes from isolated photons

that are from a diphoton decay, but the second photon was missed. The vast majority

of these photons are from either π0 or η meson decays and so the direct photon TSSA
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(b) η pairs: 2 < pηT < 3 GeV/c
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(f) η pairs: 10 < pηT < 20 GeV/c

Figure 3.14: Example plots of the west arm diphoton invariant mass spectra around
the π0 and η peak as a function of hadron pT . The middle blue bands represent the
invariant mass regions used for the ApeakN asymmetries and the red regions show the
invariant mass regions used to calculate the AbgN asymmetries. The red curves are the
fits to these distributions that are used to calculate the background fraction.

68



background subtraction formula becomes:

AdirN =
AisoN − rπ0Aiso,π

0

N − rηAiso,ηN

1− rπ0 − rη
(3.16)

where AisoN is the TSSA of the direct photon candidate sample (photons that have

passed both the isolation cut and tagging cuts) that were shown previously in Fig-

ures 3.9 through 3.11. Aiso,π
0

N and Aiso,ηN are the asymmetries of photons that are

tagged as coming from either π0 → γγ or η → γγ decays respectively and pass the

photon pair isolation cut (Equation 3.2), such that if the second photon from the

decay had been missed these decay photons would have been added to the direct

photon sample.

These asymmetries need to be measured as a function of decay photon pT or

undergo a complicated conversion from hadron to decay photon pT . However, this

makes these background asymmetries statistically limited especially in the pT range of

this analysis which is above 5 GeV/c. But the midrapidity Aπ
0

N and AηN asymmetries

have been measured to be consistent with zero, so instead of plugging Aiso,π
0

N and

Aiso,ηN into the background subtraction formula and vastly increasing the statistical

uncertainty of the direct photon results, these background asymmetries are set to

zero:

AdirN =
AisoN

1− rπ0 − rη
(3.17)

This means that the direct photon background is treated like a dilution: there is some

direct photon physical TSSA that is being diluted by photons from π0 and η decays

whose TSSAs are zero and so the direct photon asymmetry must be rescaled by the

background fraction. There is a systematic uncertainty assigned due to setting the

background asymmetry to zero and it dominates the total systematic uncertainty for

the direct photon TSSA, as shown in Table 4.3.
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pT (GeV/c) West Arm East Arm
2 - 3 0.104 0.107
3 - 4 0.0838 0.0869
4 - 5 0.0769 0.0803
5 - 6 0.0746 0.0780
6 - 7 0.0733 0.0791
7 - 8 0.0812 0.0811
8 - 9 0.0879 0.0841
9 - 10 0.0834 0.0803
10 - 12 0.0683 0.0791
12 - 20 0.0631 0.0556

Table 3.1: The fraction contribution of combinatorial background to the π0 TSSA.

pT (GeV/c) West Arm East Arm
2 - 3 0.715 0.712
3 - 4 0.606 0.601
4 - 5 0.554 0.552
5 - 6 0.520 0.519
6 - 7 0.501 0.497
7 - 8 0.483 0.502
8 - 10 0.466 0.482
10 - 20 0.452 0.487

Table 3.2: The fraction contribution of combinatorial background to the η TSSA.

3.4.2 Background Fraction

The background fraction is the estimated contribution from background to the

data sample: r = NB/(NB+NS). Because this generally changes as a function of pT ,

r is calculated separately for each pT bin. Also, because the reconstruction efficiencies

are different for the two arms, there are two separate background fractions calculated

for the west and east arms. The background correction for the cross-check square

root formula result uses the average value between the two arms.

3.4.2.1 Photon Pair Background Fraction

The photon pair background fraction is calculated by fitting to the invariant mass

spectra, as shown in the red curves in Figure 3.14. A Gaussian is used to model the

70



behavior of the h → γγ signal and a third order polynomial is used to model the

combinatorial background. Tables 3.1 and 3.2 show these background fractions for

the π0 and η analyses respectively. Consistent with what is shown in Figure 3.14, the

η analysis has a much higher fractional background contribution when compared to

the π0 analysis. The Mγγ ranges used for these fits will affect the resulting fit func-

tion, which will affect the calculated background fractions, which will in turn cause

the overall asymmetry calculated with Equation 3.15 to change slightly. Thus, the

uncertainty on these background fractions is estimated by adjusting the Mγγ ranges

used for these fits slightly and seeing how much that affects the overall background

corrected asymmetry. These uncertainties becomes a component for the final result’s

systematic error and are listed in Tables 4.1 and 4.2.

3.4.2.2 Direct Photon Background Fraction

The main source of background for isolated direct photons are photons that came

from hadronic diphoton decays where the second photon is missed. Using the photon

yield notation detailed in Table 3.3, this background fraction can be expressed as:

rh =
N iso,h
miss

N iso
(3.18)

where N iso,h
miss is a subset of N iso which cannot be directly measured. The one-miss

ratio, Rh, [78] is a quantity measured in single particle Monte Carlo. It is defined

as the number of photons where only one photon in the simulated h → γγ decay

is measured divided by the number of photons where both photons are measured.

This calculation is done as a function of photon pT : Rh = Nh
miss(p

γ
T )/Nh

tag(p
γ
T ). The

one-miss ratio can then be used to convert from the number of tagged decay photons

71



N iso

The direct photon candidate sample, the number of isolated photons
(Equation 3.1) where the photons that are tagged as coming from
either π0 or η decays have already been eliminated.

N iso,h
tag

The number of photons that are removed from the direct photon
sample because they are tagged as coming from a h → γγ decay
which also happen to be in an isolated photon pair (Equation 3.2).
This is not a subset of the direct photon candidate sample and can
be measured in data.

N iso,h
miss

The number of isolated photons that came from hadronic decays, but
the second photon was missed. These photons are not eliminated by
the tagging cut and are a subset of N iso and must be estimated using
Monte Carlo.

N iso
merge

The number of merged π0 → γγ clusters that pass the photon isola-
tion cut. This a very small subset of N iso and needs to be estimated
using Monte Carlo.

Table 3.3: The notation used for discussing the direct photon background fraction.

to the numbers of missed photons:

rh =
N iso,h
miss

N iso
≈ Nh

miss

Nh
tag

N iso,h
tag

N iso
= Rh

N iso,h
tag

N iso
(3.19)

where N iso,h
tag are photons that have been tagged as coming from isolated photon pairs

as determined by Equation 3.2. So if the second photon had been missed, these

photons would have passed the photon isolation cut, Equation 3.1, and been added

to the N iso,h
miss sample.

These background fractions are calculated separately for π0 and η decays: rπ0 =

Rπ0
N iso,π0

tag

N iso
tag

and rη = Rη
N iso,η
tag

N iso
tag

. This is done partially because there are about four times

more π0 → γγ photon pairs produced than η → γγ photon pairs. This difference will

be captured in the N iso,h
tag /N iso ratios which are calculated using the photon yields

measured in data. However, η mesons also tend to have wider decay angles between

their photons as compared to π0s. (This is illustrated in Figure 3.5.) This means that

for the same hadron pT , it is slightly more likely to miss one of the photons from an

η → γγ decay than from a π0 → γγ decay. The difference in their decay kinematics is

captured with separate single particle Monte Carlo simulations to calculate different
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rπ0 rη
pT [GeV ] West Arm East Arm West Arm East Arm

5 to 6 0.384 ± 0.003 0.409 ± 0.004 0.085 ± 0.001 0.087 ± 0.001
6 to 8 0.320 ± 0.004 0.343 ± 0.005 0.073 ± 0.002 0.078 ± 0.002
8 to 10 0.225 ± 0.009 0.257 ± 0.011 0.055 ± 0.004 0.063 ± 0.005
10 to 18 0.124 ± 0.011 0.137 ± 0.013 0.035 ± 0.005 0.046 ± 0.007

Table 3.4: The fraction contribution of decay photons to the direct photon asymmetry.

one-miss ratios for the different mesons. To ensure that the simulations capture the

decay photon pT spectra accurately, these hadrons are simulated to have a power law

pT spectrum whose exponents are extracted from power law fits to previous PHENIX

π0 [97] and η [72] cross sections from p + p collisions with
√
s = 200 GeV. The

simulated hadrons are then run through a full detector simulation which considered

EMCal dead areas and various data cuts.

As shown in Table 3.4, the background fractions are up to 5% larger in the east

arm when compared to the west because the PbGl sectors have more dead area than

the PbSc sectors. The background fraction is lower at higher pT partially because

the production mechanisms for π0 and η mesons falls off with pT more quickly when

compared the direct photon production mechanism. But the main reason that the

background fraction decreases at higher pT is that the h → γγ decays have smaller

decay angles and so it is less likely that only one photon will be measured. The

uncertainties on rh are assigned through standard error propagation of the statistical

uncertainty for both Rh and N iso,h
tag /N iso. These uncertainties are then propagated

through Equation 3.17 and used to assign an additional systematic uncertainty to

the direct photon asymmetry, Table 4.3. Figure 3.15 shows the results for the direct

photon asymmetry after being corrected for background. When comparing to Fig-

ure 3.11 one can see that many of the T value magnitudes have now been reduced and

now there is a more even split between positive and negative values. The background

corrected π0 and η TSSA results can be seen in Appendix A. The differences in the

relative luminosity and square root formula results (Figure 3.15(e) for the direct pho-
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ton asymmetry) are assigned as an additional systematic uncertainty for all three

TSSA results, which are listed in Tables 4.1, 4.2, and 4.3.

The background fraction due to π0 merging is comparatively negligible for the pT

range of this direct photon analysis. η → γγ merging does not contribute at all to this

direct photon background because η meson decays tend to have wider decay angles

when compared to a π0 at a similar pT and so they do not start to merge until about

pηT > 50 GeV/c at PHENIX, which is well beyond the scope of this measurement.

The background fraction due to π0 merging is calculated using a very similar method

to the previous direct photon background fractions:

rmerge =
N iso
merge

N iso
≈ Nmerge

Ntag

N iso,π0

tag

N iso
(3.20)

where N iso,π0

tag /N iso is the same ratio that is used to calculate rπ0 . The Nmerge/Ntag

ratio is calculated using π0 → γγ single particle Monte Carlo. It is the number of

merged photon clusters divided by the number of photons that are reconstructed as

individual clusters and tagged as coming from a π0 diphoton decay. Similar to the

one-miss ratio, this value is used to convert from the number of tagged photons to the

number of merged clusters. The simulated π0 decays are fed through a full detector

simulation that took into account the geometry of the EMCal and the clustering

algorithm. Once a shower shape cut is implemented, the Nmerge/Ntag ratio reduces

by several order of magnitude at high pT . This makes sense given that this shower

shape cut requires that most of the cluster’s energy be concentrated at its center.

rmerge is calculated as a function of cluster pT and found to range from about 0.02%

at low pT to about 0.1% at high pT . The contribution from merged photons, while

still negligible, increases at higher pT because this is when the angle between diphoton

pairs tends to be the smallest. Because rmerge is so small, it is added to the uncertainty
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of rπ0 (which is included in Table 3.4) and contributes (very slightly) to the overall

systematic uncertainty of the direct photon TSSA (Table 4.3).

3.5 Systematic Studies

3.5.1 Bunch Shuffling

Bunch shuffling is a technique used to investigate potential sources of systematic

uncertainty that could cause the measured results to vary from the true values beyond

statistical fluctuations. It involves randomizing the polarization directions of the

beam such that the physics asymmetry disappears and all that is left are the statistical

fluctuations present in the data. For each fill, the polarization directions of each

crossing are randomized, and the asymmetry is calculated using the fill group method

explained at the beginning of Section 3.3. The square root formula (Section 3.3.2) is

used to avoid having to recalculate the relative luminosity. There are 10,000 of these

randomized asymmetries calculated such that there is more than enough statistics to

evaluate fluctuations in the data set with Gaussian statistics. Each of these shuffled

asymmetries is divided by its statistical error and added to a histogram. Figure 3.16

shows the bunch shuffling histograms for all four direct photon TSSA pT bins. These

distributions are fit to a Gaussian to measure how closely they resembled random

noise. As expected, the means of all of the fits in Figure 3.16 are consistent with

zero and the widths are all close to one, which means that there is no evidence that

there are additional systematic errors present in the data. This process is repeated

for the π0 and η TSSA analyses which included the asymmetries calculated with

photon pairs within the invariant mass peaks and also the background asymmetries.

The Gaussian fits to all of these bunch shuffling histograms also have means that are

consistent with zero and widths that are consistent with 1, except for the lowest pT

bin for both the π0 and η results which can be seen in Appendix B. The widths of
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(d) 10 < pγT < 18 GeV/c

Figure 3.16: Results from bunch shuffling for the direct photon asymmetry.

these Gaussians are a few percent larger than 1, which is used to assign an additional

systematic uncertainty to this lowest pT bin for both of the π0 and η results. This value

dominates the systematic uncertainty for that bin, which can be seen in Tables 4.1

and 4.2.

3.5.2 Direct Photon Cross Section

The direct photon analysis does not have an invariant mass spectrum to demon-

strate that the yields are being extracted correctly. Instead, the direct photon cross

section and isolation ratios are calculated and compared to previously published

PHENIX results for p + p collisions at
√
s = 200 GeV. [78] To simplify both the

efficiency and the luminosity calculations needed for this cross check, only the ERTA
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data is used because this was the only 4 x 4 ERT trigger that was taken in coincidence

with the MB trigger that had a 30 cm vertex cut. The analysis also only uses runs

where the ERTA scale down was set to zero, which is about 80% of the runs. This

invariant cross section is calculated with the following formula:

E
d3σdir
dp3

=
1

L
· 1

2π
· 1

pT
· Ctrig

eff (pT ) · Cgeo
eff (pT ) · CBBCbias

p+p · Ndir

∆pT∆y
(3.21)

Here Ndir is the direct photon yield and quantity of interest. It is calculated by

subtracting off the contribution from background photons:

Ndir = Nincl − (1 +Rπ0) ·Nπ0 − (1 +Rη) ·Nη (3.22)

where Nincl is the number of inclusive photons before tagging cuts are applied and

Nπ0 and Nη are the number of photons that are tagged as coming from π0 → γγ and

η → γγ decays respectively. No isolation cut is used to allow for an apples-to-apples

comparison to the previously published inclusive cross section. All three of these

photon counts (Nincl, Nπ0 , and Nη), are required to be: in a run where the ERTA

scale down was set to zero, in an event that fired the scaled ERTA trigger, and in an

EMCal supermodule that fired this ERTA trigger. Rπ0 and Rη are the one-miss ratios

that are described Section 3.4.2.2 and allow us to estimate the number of photons

from h → γγ decays but the second photon was missed. This calculation is done

separately for the west and east arms and then the yields are averaged together.

In order to be converted to the direct photon invariant cross section, the direct

photon yield first needs to be corrected by the width of the pT bin, ∆pT , and the

width of the rapidity range, ∆y , which has been set to 1. CBBCbias
p+p is the BBC

bias factor for measuring ERT events. Even though the BBC efficiency is about

50% for all inelastic p + p collisions at
√
s = 200 GeV, PHENIX is optimized such

that the BBC has an efficiency of about 75% for midrapidity ERT events, [78] the
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Figure 3.17: The inclusive direct photon cross section cross check plotted with previ-
ously published results, from [78].

reciprocal of which is CBBCbias
p+p = 1.337. The geometric efficiency factor, Cgeo

eff (pT ),

corrects for the EMCal’s limited acceptance both from detector geometry and from

data cuts. This is calculated with photon single particle Monte Carlo and includes the

conversion from PHENIX’s limited central pseudorapidity range of ∆η = 0.7 to the

full unit in rapidity ∆y = 1 that is used for this calculation. Ctrig
eff (pT ) is the trigger

efficiency factor which is calculated by counting how many ERTA trigger photons

were in the minimum bias trigger sample. The pT that is plugged into Equation 3.21

is the average pT value for that bin and the factor of 1/2π comes from integrating

the cross section over φ. The integrated luminosity, L, is 36.62 pb−1 for the specific

data set used for this cross check. Figure 3.17 shows that this analysis’s cross section

is consistent with the previous PHENIX cross section from [78], indicating that the

inclusive direct photon yield Ndir is being calculated correctly.
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Figure 3.18: Isolation Ratios for the direct, π0, and η meson photons.

In order to verify that the isolation cut is being implemented correctly, the ratio

of isolated to inclusive yields is compared to previous results from [78]. The number

of isolated direct photons is calculated using a slightly different formula from the

inclusive photon yield:

N iso
dir = N iso −Rπ0 ·N iso,π0

tag −Rη ·N iso,η
tag (3.23)

This expression uses the notation explained in Table 3.3. N iso is the direct photon

sample so the photons that are tagged as coming from either π0 or η decays have al-

ready been eliminated. N iso,π0

tag and N iso,η
tag are some of these tagged decay photons that

are also in an isolated photon pair as determined by Equation 3.2. Figure 3.18 shows

these ratios compared to what was found in [78], where the inclusive direct photon

yield is calculated using Equation 3.22. (The direct photon ratios in Figure 3.18(a)

are slightly larger than 1 at high pT because N iso
dir and Ndir are calculated using these

different formulas.) These plots also show the ratio of N iso,π0

tag and N iso,η
tag photons to

the number of inclusive tagged π0 and η photons respectively. The figures show the

same shape in isolation ratios for the direct photon and π0 yields as a function of pT ,

indicating that the isolation cut used for the direct photon TSSA is being applied

correctly. The magnitude of these values is slightly different because the previously
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published ratios used an isolation cut with different requirements for what tracks and

clusters could be included in the Econe sum and a larger cone radius. The fact that

the isolated over inclusive yield ratios for both the π0 and η mesons are less than 1,

shows that the isolation cut is doing its job in reducing the direct photon background

due to decay photons.
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CHAPTER IV

Results

The midrapidity π0 and η TSSA were found to be consistent with zero and achieve

a factor of three increase in precision when compared to the previously published

PHENIX TSSA results for the transversely polarized p + p,
√
s = 200 GeV data set

that was taken in 2008. [60] Run-15 is PHENIX’s last ever polarized proton data set

and as such these new asymmetries are the definitive results from PHENIX for these

observables. Because they measure hadrons, the π0 and η asymmetries are sensitive

to both initial- and final-state effects. Light hadron TSSA results at forward rapidity

sample the polarized proton at higher x and so are dominated by valence quark

spin-momentum correlations. At midrapidity, the polarized proton is being sampled

at more moderate x and so these midrapidity π0 and η TSSA results are sensitive

at leading order to both quark and gluon dynamics in the polarized proton. These

results have the potential to further constrain the gluon Sivers function as well as the

trigluon twist-3 collinear correlation function.

Figure 4.1 shows the final result for this midrapidity π0 TSSA analysis which

extends into higher pT when compared to the previously published result from [60].

There is an additional global uncertainty of 3% from the polarization normalization

on this result and all other new results in this chapter. [98] The final Aπ
0

N values

along with the statistical and systematic errors are listed in Table 4.1 where the
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Figure 4.1: The final midrapidity π0 TSSA measured in p↑+p collisions with
√
s = 200

GeV and plotted with the previously published results. [60]

Sys. unc.
Sys. unc. Sys. unc. (from

pT π0 Statistical (rel lumi (from bg bunch Sys unc.
(GeV/c) Asymmetry uncertainty vs. sqrt) fraction) shuffling) (total)

2.58 0.000143 0.000281 5.71e-05 3.92e-07 0.000106 0.000120
3.42 -0.000343 0.000321 1.73e-05 3.92e-06 0 1.77e-05
4.40 0.000335 0.000571 6.56e-05 1.91e-06 0 6.57e-05
5.40 0.00233 0.00106 9.61e-05 6.68e-07 0 9.61e-05
6.41 -0.000689 0.00187 0.000112 2.11e-05 0 0.000114
7.42 0.00193 0.00311 0.000341 7.61e-05 0 0.000350
8.43 -0.00238 0.00488 0.000245 0.000399 0 0.000469
9.43 0.000404 0.00703 0.000331 0.000116 0 0.000351
10.79 0.00734 0.00799 9.71e-05 0.000313 0 0.000328
13.53 -0.0105 0.0127 0.000686 1.15e-05 0 0.000686

Table 4.1: The final midrapidity π0 TSSA summary table with statistical and sys-
tematic errors.
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Figure 4.2: The final midrapidity η TSSA measured in p↑+p collisions with
√
s = 200

GeV plotted with previously published results. [60]

Sys. unc.
Sys. unc. Sys. unc. (from

pT η Statistical (rel lumi (from bg bunch Sys unc.
(GeV/c) Asymmetry uncertainty vs. sqrt) fraction) shuffling) (total)

2.39 0.00244 0.00183 0.000518 4.58e-05 0.000620 0.000809
3.53 -0.00199 0.00159 8.36e-05 3.31e-05 0 8.99e-05
4.39 -0.00331 0.00248 0.000144 4.55e-05 0 0.000151
5.40 -0.00139 0.00421 0.000241 3.59e-05 0 0.000244
6.41 0.00222 0.00709 0.00112 6.35e-06 0 0.00112
7.42 0.0103 0.0115 0.000703 0.000160 0 0.000720
8.75 0.00790 0.0137 0.00124 0.000188 0 0.00125
11.76 0.0168 0.0219 0.00425 0.000370 0 0.00426

Table 4.2: The final midrapidity η meson TSSA summary table with statistical and
systematic errors.
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Figure 4.3: Comparison of the new π0 and η midrapidity TSSA results measured in
p↑ + p collisions with

√
s = 200 GeV

total systematic uncertainty is calculated by adding the three separate systematic

uncertainties listed in the table in quadrature. This new result is consistent with zero

over the entire pT range and even consistent with zero to within 10−4 at low pT . This

analysis’s final midrapidity η TSSA result is plotted in Figure 4.2, which illustrates

how much more statistically precise this result is when compared to the previously

published asymmetry and shows that this new asymmetry also extends to higher pT .

This result is also consistent with zero across its entire pT range, where Table 4.2

explicitly lists the final AηN values along with the statistical and systematic errors.

Figure 4.3 shows these two results plotted together, which shows that in addition to

both being consistent with zero, the midrapidity π0 and η TSSA are consistent with

each other.

Figure 4.4 shows this π0 TSSA result plotted with theoretical predictions for this

asymmetry. The qgq curve shows the predicted contribution to the π0 asymmetry

from the Qiu-Sterman function and collinear twist-3 fragmentation functions. This

curve was calculated with fits to forward pion asymmetries which were published
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Figure 4.4: The new π0 midrapidity TSSA with theoretical predictions in both the
TMD and collinear twist-3 frameworks.

in Ref. [71] and have been reevaluated with the |η| < 0.35 pseudorapidity range

of this measurement. [99] Because midrapidity π0 production also includes a large

fractional contribution from gluon scattering in the proton, a complete collinear twist-

3 description of the midrapidity π0 TSSA would also need to include the contribution

from the trigluon correlation function, which can be seen in Figure 11 of Ref. [67]. The

midrapidity π0 asymmetry is sensitive to gluon dynamics at leading order and the qgq

correlation function’s contribution to this asymmetry is predicted to be small, thus

this measurement will constrain future extractions of the ggg correlation function.

The rest of the theory curves in Figure 4.4 show predictions for the midrapid-

ity π0 TSSA generated by the Sivers TMD PDF. These curves include contributions

from both the quark and gluon Sivers functions and use the generalized parton model

(GPM). This framework takes the kT moment of these Sivers functions and does not

include NLO interactions with the proton fragments. The “GPM” curve in Figure 4.4

uses the parameters stated in Equation 32 of Ref. [75]. The color gauge invariant

generalized parton model (CGI-GPM) expands on the GPM by including initial- and
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Direct Sys. unc. Sys. unc. Sys. unc.
pT Photon Statistical (rel lumi (from bg (from bg Sys unc.

(GeV/c) Asymmetry Uncertainty vs. sqrt) fraction) asymm.) (total)
5.39 -0.000492 0.00299 0.000131 1.27e-05 0.00341 0.00341
6.69 0.00247 0.00404 0.000112 2.69e-05 0.00252 0.00252
8.77 0.00777 0.00814 5.49e-05 0.000160 0.00159 0.00159
11.88 0.00278 0.0105 0.000715 4.39e-05 0.000775 0.00106

Table 4.3: The final midrapidity isolated direct photon TSSA summary table with
statistical and systematic errors.

final-state interactions through the one-gluon exchange approximation. The CGI-

GPM curves plotted in Figure 4.4 show two different scenarios for this model, which

can be found in Equation 34 of Ref. [75]. The values that are used for the Scenario

1 curve are chosen to maximize the open heavy flavor TSSA generated by the gluon

Sivers function while still keeping this asymmetry within the statistical error bars of

the published result in Ref. [56] and simultaneously describing the previously pub-

lished midrapidity π0 TSSA from Ref. [60]. The values used in the Scenario 2 curve

do the same, except that they minimize the open heavy flavor TSSA within the range

of the published statistical error bars. All three of these curves have been evaluated

for xF = 0. [100] These TMD calculations do not include the Collins effects because

it has been calculated [45, 46] and also measured [21] to be small when compared to

the Sivers effect. As shown in the zoomed in top panel of Figure 4.4, this π0 TSSA

result has the statistical precision at low pT to distinguish between the GPM and

CGI-GPM models, preferring CGI-GPM Scenario 2.

The direct photon TSSA was measured for the first time at RHIC. It was found

to be consistent with zero to within about 2% as shown in Figure 4.5 and listed in

detail in Table 4.3. Direct photons do not undergo any hadronization and so are

only sensitive to initial-state effects. Midrapidity direct photon production is also

dominated at leading order by g + q → γ + q scattering and so provides a uniquely

clean way of studying gluon dynamics in the proton.
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Figure 4.6 shows this same isolated AγN result plotted with predictions from

collinear twist-3 correlation functions. The green curve plots the contribution of

qgq correlation functions to the direct photon asymmetry which is calculated using

functions that were published in Ref. [80] that are integrated over the |η| < 0.35 pseu-

dorapidity range of this analysis. [101] This calculation includes contributions from

both the polarized and unpolarized proton. At forward rapidity, AγN is dominated

by the Qiu-Sterman function (the SGP term of the qgq function of the polarized

proton), while contributions from the SFP of the polarized proton and the SGP of

the unpolarized proton are comparatively small and the contribution from the SFP of

the unpolarized proton is exactly zero. [80] All of this carries over to the midrapidity

direct photon asymmetry, except that term from the SFP of the polarized proton is

the same size as the contribution from the Qiu-Sterman function. For this calculation,

the Qiu-Sterman function is calculated as the kT moment of the Sivers function that

is extracted from the global fit in Ref. [71]. It is assumed that the SFP of the polar-

ized proton could also be expressed as a kT moment of this Sivers function because

very little is known about these SFP functions. [101] Because the contributions from

the Qiu-Sterman function and the SFP of the polarized proton are of the same order

and have the opposite sign, the total contribution of qgq correlation functions to the

midrapidity asymmetry is predicted to be small.

This means that the midrapidity direct photon TSSA is can be used to extract the

trigluon correlation function. The predicted range of this function’s contribution to

this asymmetry measurement is also plotted in Figure 4.6. This theoretical calculation

uses results that were published in Ref. [82] and were reevaluated as a function of

photon pT for η = 0. [102] As this plot clearly shows, this AγN measurement has the

statistical precision at low pT to constrain this trigluon correlation function.

89



The fact that all three of these asymmetry results are all consistent with zero agrees

with previous measurements that were sensitive to transverse gluon spin-momentum

correlations. The previously published midrapidity π0 and η TSSA PHENIX results

were also consistent with zero. [60] Heavy flavor production at RHIC energies is dom-

inated by gluon-gluon fusion and PHENIX forward heavy flavor asymmetry measure-

ments were found to be consistent with zero both for the open heavy flavor [56] and

J/ψ TSSA. [57]. Midrapidity jets that are produced in p+ p collisions at RHIC also

have a large contribution from gluon scattering (similar to the direct photon). The

STAR inclusive jet TSSA measurements have also been found to be consistent with

zero at both
√
s = 200 GeV [103] and

√
s = 500 GeV. [44] RHIC TSSA measurements

that are sensitive at leading order to gluon kinematics have consistently determined

that transverse gluon spin-momentum correlations in a transversely polarized protons

are small. And these new results do so with the highest level of precision of any other

TSSA measured at RHIC.
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CHAPTER V

Conclusion

5.1 Future Measurements

Measurements at RHIC have played a vital role in increasing our knowledge of how

spin behaves in QCD, but there remains much to learn. The sPHENIX experiment is

currently being built and is scheduled to start taking data in 2023. It will be housed

in what was the PHENIX experimental hall. sPHENIX was designed to be able to

probe the quark-gluon plasma (QGP) at different length and temperature scales by

measuring jets, jet correlations, and bottomonium states in p+ p, p + Au, and Au +

Au collisions. [104] sPHENIX will be the first dedicated high-rate jet detector at RHIC

and so it will include precision tracking along with high rate and large acceptance

hadronic and electromagnetic calorimetry. It will incorporate the magnetic solenoid

that was originally used in the BaBar experiment at SLAC [105] and so the central

barrel was designed to fit around this magnet. The EMCal layer will fit around the

central tracking system and it will be surrounded by other detector layers which in

the direction radially away from the beam will be: the inner hadronic calorimeter,

the BaBar solenoid, and the outer hadronic calorimeter layer, which also serves as a

magnetic flux return. This calorimetry system will have a pseudorapidity range of

|η| < 1 where at larger rapidities the towers will be tilted towards the interaction

point to increase the detector’s angular acceptance. A segment of sPHENIX’s future
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EMCal which will be centered at pseudorapidity η ∼ 1 was tested in 2018 at the

T-1044 experiment located in the Fermilab Test Beam Facility, with participation by

the University of Michigan. It was found to have an energy resolution well beyond

what will be needed to measure jets. [106]

sPHENIX will be able to measure particle-in-jet asymmetries which are sensitive

to a nonperturbative transverse momentum scale and can be used to extract TMD

FFs. These measurements will be similar to the Collins asymmetry measurements

from STAR [21, 44] except with smaller systematic uncertainties because the jets

will include input from hadronic calorimetry data. sPHENIX’s excellent secondary

vertex tagging will mean that the open heavy flavor TSSA can be measured with

smaller systematic errors. sPHENIX will also be capable of measuring direct photons

at midrapidity and so will be able to follow up the direct photon TSSA measure-

ment with higher statistical precision. Both of these asymmetries are sensitive to the

trigluon correlation function. sPHENIX will furthermore be able to measure angular

correlations between direct photons and jets which are sensitive to nonperturbative

transverse momentum scales and are an ideal probe of factorization breaking. [107]

A high rate EMCal with large acceptance and high energy and spatial resolution

is essential to accomplishing these photon and jet measurements. The readouts of all

of the calorimeters will use silicon photomultipliers (SiPMs) which have the ability

to provide high gain even in a large magnetic field all while requiring minimal space.

sPHENIX will be using S12572-015P SiPMs which are made by Hamamatsu and

have an active area of 3 × 3 mm2 that contains 40,000 pixels which are about 15

µm in length. The SiPM circuit boards will be attached to light guides that are

placed behind the calorimeter towers. [106] SiPMs are powered by what is referred

to as a bias voltage or operating voltage, which is around 70 V for these devices.

Adjusting the bias voltage within a range of about ±5 V will cause the gain to

change linearly. The gain also depends on the temperature of the SiPM as well as
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material characteristics that vary device to device. To conserve the space needed for

the cables and circuit boards, the sPHENIX calorimeter electronics were designed to

power multiple SiPMs with the same bias voltage. Thus sPHENIX got Hamamatsu

to agree to sort these SiPMs such that for an operating voltage within a specified 40

mV range, each SiPM in that group would have a gain of about 2.4 × 105 when the

SiPM is at 25◦C. The University of Michigan group was responsible for operating a

tester designed by the University of Debrecen in Hungary to verify that the sorting

matched these specifications.

The forward rapidity direct photon TSSA has been shown to be a clean method

for extracting the Qiu-Sterman function. [80] The backward rapidity direct photon

TSSA has been shown to be sensitive to the magnitude of the trigluon correlation

function. [82] STAR is currently working on a measurement of both the forward

and backward direct photon asymmetries for both
√
s = 200 GeV and

√
s = 500

GeV. [108] The STAR forward upgrade, which is scheduled to start taking data

around 2021, will include both tracking and a hadronic calorimeter, in addition to

a high resolution EMCal. This means it will be able to measure forward isolated

direct photon asymmetries and so include a smaller contribution from fragmentation

photons. The STAR forward upgrade will also be able to measure forward rapidity

particle-in-jet asymmetries. [109]

The E1039 experiment or SpinQuest is an upcoming polarized fixed target ex-

periment at Fermilab. It will use µ+µ− pairs to measure the Sivers asymmetry in

Drell-Yan and verify the Sivers sign change. Due to the detector acceptance and

collision kinematics, SpinQuest will be particularly sensitive to antiquark distribu-

tions in the polarized target. It will be able to measure the antiup and antidown

Sivers functions for the first time by comparing asymmetries measured using the

transversely polarized hydrogen and deuterium targets. Additionally, SpinQuest will

be able to measure the J/ψ TSSA which is sensitive to the trigluon correlation func-
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tion. [110] There is also a proposal for a transversely polarized target at the LHCb

which would start taking data around 2027. It would be able to measure backward

rapidity TSSAs using the high trigger rates and particle identification capabilities of

the LHCb experiment. [111]

The Electron-Ion Collider (EIC) is the next planned high energy nuclear physics

facility in the US and will offer an unprecedented way of studying TMD physics. [112]

The EIC will be built at BNL and is scheduled to start taking data in 2030 and will

collide polarized beams of electrons and ions. Through SIDIS, collisions at the EIC

will be able to measure TMD functions for a wide range of collision energies and so

will be able to constrain TMD evolution. Due to its high luminosity, the EIC will

also be able to measure exclusive processes in electron-proton collisions such as deeply

virtual Compton scattering (DVCS), where the scattered electron is measured along

with the intact proton and an additional radiated photon. DVCS is sensitive to the

spatial distribution of partons within the proton. Longitudinally polarized collisions

will allow the EIC to measure the spin structure of the proton. Excellent forward

detection combined with high luminosity will allow the EIC to probe the polarized

proton at lower x than has ever been measured, constraining gluon distributions in the

polarized proton. Additionally the EIC will be the first ever eA collider, giving clean

access to gluon saturation effects. [8] The EIC will able to access parton distributions

within the neutron through electron-deuterium collisions. Furthermore, polarized eA

collisions will help constrain TMD functions for light nuclei beyond the proton.

5.2 Summary

The parton model was first proposed in 1969 as a method of analyzing high energy

hadronic collisions, [113] but it was always known to be an approximation. Collinear

functions in the context of the parton model assume that the partons only move lon-

gitudinally within the proton and completely integrate over their internal dynamics.
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Leading twist calculations only allow for a single parton within the proton to partic-

ipate in a scattering event. The assumption of universality tells us that when this

parton is exiting the proton, it will behave exactly the same regardless of the types

of color fields that are produced by different types of scattering processes. Closely

coupled, the assumption of factorization states that initial- and final-state effects

can be expressed in separate functions. pQCD calculations that incorporate all of

these assumptions have been able to successfully interpret and predict spin-averaged

hadronic cross sections at high momentum transfer.

However, when it came to interpreting spin-momentum correlations like the spon-

taneous polarization of baryons or TSSAs, these assumptions started to break down.

Collinear twist-3 and TMD formalisms are two different methods of relaxing the as-

sumptions of the parton model and allowing quarks and gluons to interact with their

surrounding color fields. Collinear twist-3 functions describe the quantum mechani-

cal interference between interacting with one parton versus interacting with two and

TMD functions depend explicitly on the parton’s nonperturbative transverse momen-

tum. Both have been shown to be able to generate the large TSSAs that have been

measured in proton-proton collisions at forward rapidity. Nonzero PT-odd TMD func-

tions lead to the prediction of color entanglement effects from soft gluon exchanges

with proton remnants both before and after the partonic scattering event. Some the-

ories have even expanded to include observable effects from quantum entanglement

within the proton. When undergoing a high energy collision, the proton can be split

into probed and unprobed regions which remain quantum mechanically entangled

throughout the whole collision process. [114] QCD research is beginning to reach the

stage where it is ready to consider color-dynamics within strong force bound states.

This dissertation presented the TSSAs of midrapidity direct photons, neutral pi-

ons, and eta mesons at PHENIX. The π0 and η TSSAs were found to be consistent

with zero and a factor of three increase in precision when compared with previous
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results. These asymmetries are sensitive to both initial- and final state-effects for a

mix of parton flavors. The direct photon TSSA was measured for the first time at

RHIC and was also found to be consistent with zero. Direct photons do not undergo

hadronization and so can be used as a clean probe of proton structure. These asym-

metry results will help constrain the trigluon correlation function in the transversely

polarized proton as well as the gluons Sivers function, both of which are steps towards

creating a more complete, three dimensional picture of proton structure.
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APPENDIX A

π0 and η Asymmetry Cross Checks

This section shows various asymmetry cross checks for both the π0 and η TSSA

results. All of the asymmetries plotted in this section have been corrected for combi-

natorial background using the method explained in Section 3.4. The π0 background

fraction can be found in Table 3.1 and the η background fraction can be found in

Table 3.2. The relative luminosity formula is described in detail in Section 3.3.1 and

the square root formula is explained in Section 3.3.2. The T values comparing the left

versus the right relative luminosity formula results are calculated with Equation 3.9.

The T values comparing the blue and yellow beam results are calculated using Equa-

tion 3.10. And T values that are comparing the differences in the relative luminosity

and square root formula results are calculated with Equation 3.12.
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Figure A.1: The background corrected π0 asymmetry calculated using the relative
luminosity formula.
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Figure A.2: Relative luminosity yellow and blue beam asymmetries for background
corrected π0 asymmetry.
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Figure A.3: Comparing the results of the relative luminosity and square root formulas
for the background corrected π0 asymmetry.
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Figure A.4: The background corrected η asymmetry calculated using the relative
luminosity formula.
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Figure A.5: Relative luminosity yellow and blue beam asymmetries for background
corrected η asymmetry.
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Figure A.6: Comparing the results of the relative luminosity and square root formulas
for the background corrected η asymmetry.
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APPENDIX B

π0 and η Asymmetry Bunch Shuffling Results

Bunch shuffling is a method used in asymmetry analyses to investigate the fluc-

tuations present in data and test whether or not those fluctuations are consistent

with statistical variations. This method of bunch shuffling is described in detail in

Section 3.5.1, but essentially it involves randomizing the assigned polarization direc-

tions of the beam and recalculating the asymmetry. This is done 10000 times and

each asymmetry is divided by its statistical error and added to a histogram. To test

whether or not the variations in the asymmetry are consistent with statistical fluctu-

ations, these histograms are fit with a Gaussian to verify that the mean is consistent

with zero and the width is consistent with 1. This is true for all bunch shuffling results

for the direct photon (Figure 3.16), π0 and η asymmetries except for the lowest pT

bin of both the π0 and η TSSAs. This can be seen in the plots of this section where

the width of the Gaussian fit for the lowest π0 asymmetry pT bin is 1.068 and 1.056

for the lowest pT bin of η asymmetry. This indicates that there is some systematic

error that was not eliminated by data cuts and so these numbers are used to assign

an additional systematic uncertainty to the lowest pT bin of both the π0 and η TSSA

results, which can been seen in Tables 4.1 and 4.2.
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