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Abstract 

How do people detect whether someone else poses an infection risk? Over the course of 

evolutionary time, humans evolved sophisticated physical and psychological machinery for 

detecting and reducing fitness costs associated with infectious pathogens. Whereas the physical 

immune system evolved to detect invasive pathogens within the body and eliminate them, the 

“behavioral immune system” evolved to detect infection risks outside the body and engage 

cognitive, emotional, and behavioral mechanisms that serve to prevent infectious pathogens from 

entering the body in the first place. My dissertation research focuses on the psychological 

mechanisms that enable people to detect infection risks. Importantly, such mechanisms entail a 

sort of functional misperception of infection risks: given uncertainty in detecting infection and 

asymmetrical costs associated with false positive and false negative errors, the behavioral 

immune system perceives both objectively diagnostic infection cues as well as physically 

anomalous yet benign cues as indicators of infection risk. In other words, in order to avoid the 

high cost of ignoring a true infection risk, the behavioral immune system is biased to perceive 

infection risk in anomalous cues, even ones that are objectively benign. After I review this 

hypothesis and its empirical tests in Chapter 1, in Chapters 2 and 3 I report two series of 

studies—one series per chapter— designed to discover novel psychological mechanisms of the 

behavioral immune system. In Chapter 2, I employ the Implicit Association Test to explore 

whether people associate infection more strongly with one benign, anomalous cue (facial 

disfigurement) than with another (obesity). Across four studies, I find evidence that it does. 

Then, in Chapter 3, I employ trait-listing, drawing, and reverse correlation methods to estimate 
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how people mentally represent infected others. I find that people list traits and draw pictures of 

infected people with mostly infection cues. But when people complete a reverse correlation task, 

they generate infected people with a mixture of threat cues. I conclude my dissertation with 

future directions for behavioral immune system research. 

Keywords: behavioral immune system, threat management, evolutionary psychology, social 

perception, mental representations 
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Introduction 

Infectious disease has been a recurring source of mortality throughout our evolutionary 

history, and even to this day, it continues to threaten lives across the world, especially the lives 

of young children and older adults in poor countries. So, it is not surprising that humans have, 

over evolutionary time, developed sophisticated physical machinery—an immune system—for 

identifying invasive pathogens and eliminating them. Of course, the immune system costs 

valuable energy, so completely ignoring harmful pathogens until they enter the body wastes 

energy that could be used for other fitness-enhancing activities. To reduce such costs, humans 

have likely developed psychological and behavioral mechanisms—a behavioral immune 

system—for identifying and mitigating pathogen infection risks. 

In my dissertation, I focus on how such a behavioral immune system identifies infection 

risks posed by other people. In chapter one, I start by reviewing key assumptions of the 

behavioral immune system as well as empirical research on how it infers whether others pose an 

infection risk. In the following chapters, I elaborate on the social-cognitive mechanisms that aid 

in detecting infection risks posed by others, and I report studies designed to test some of those 

mechanisms. Specifically, in chapter two, I elaborate on the kinds of cues the behavioral immune 

system evolved to process—its proper domain of cues—and the kinds of cues it is able to 

process, even if it did not evolve to do so—its actual domain of cues. Then I report a series of 

studies designed to test whether people more strongly associate infection concepts with cues that 

resemble theoretically proper domain cues (e.g., rashes) than with cues that less closely resemble 

such proper domain cues (e.g., obesity). Finally, in chapter three, I elaborate on how people may 
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generate mental images of infected others that appear differently from a simple sum of 

theoretical infection cues (i.e., rashes + pustules + asymmetry + swelling + runny nose) or from 

an indiscriminately negative person. Then I report a series of studies designed to estimate how 

people mentally represent what an infectious person looks like. Finally, I conclude my 

dissertation with recommendations for future research that could address open questions in the 

pathogen avoidance psychology literature as well as the threat management literature more 

broadly. 
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Chapter I. The Behavioral Immune System  

The specter of disease caused by infectious pathogens has imposed an immense selection 

pressure on the evolution of life for billions of years. Human life is no exception. In fact, most 

human lives have ended at the hands of pathogenic infections, and new infections continue to 

cause many millions of deaths worldwide (Anderson & May, 1992; Dobson & Carper, 1996; 

Wolfe et al., 2007; World Health Organization, 2018). To combat this ominous threat posed by 

infectious pathogens, humans have evolved a physiological immune system designed to 

distinguish invading pathogens from the body’s own cells and mobilize physiological defenses to 

reduce infection. They also appear to have evolved a “behavioral immune system,” a suite of 

psychological and behavioral mechanisms designed to detect the presence of pathogens and 

engage appropriate cognitive, emotional, and behavioral responses to avoid them (Ackerman et 

al., 2018; Curtis et al., 2004; Oaten et al., 2009; Schaller, 2016; Tybur et al., 2013; Tybur & 

Lieberman, 2016). 

 The behavioral immune system cannot detect infectious pathogens directly. Instead, it 

infers their presence using cues that historically have correlated with pathogenic infection. These 

cues are often noticeable in appearance, as infection can cause rashes, lesions, discoloration, 

swelling, bleeding, and/or nasal discharge, among other physical changes. Of course, physical 

features also may resemble these cues without connoting the presence of infection. For example, 

rashes may occur due to skin irritation, or noses may run because of cold ambient temperatures. 

The similarity between true and false infection cues, in combination with the imperceptibility of 

pathogenic agents, produces a signal detection problem in which identification errors are 
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virtually certain. Further, the costs of different forms of error are unequal. Failure to identify a 

dangerous pathogen’s presence (e.g., mistaking swelling from deadly Diphtheria as benign) is far 

costlier to fitness than mistakenly inferring a parasitic threat that is not there (e.g., mistaking a 

birthmark as an infectious rash). To cut through the noise, selection appears to have favored a 

cognitive bias that reduces fitness costs by over-perceiving pathogen threat from imperfect cues 

(Haselton et al., 2015; Haselton & Buss, 2000; Haselton & Nettle, 2006; McKay & Efferson, 

2010; Nesse, 2005). 

 Researchers who study pathogen avoidance psychology have used this adaptive over-

perception to partly explain stigma directed toward people with anomalous yet benign facial 

features such as obesity, port-wine stain birthmarks, strabismus (i.e., crossed-eyes), old age, and 

physical disabilities (Ackerman et al., 2009; Kurzban & Leary, 2001; Lieberman et al., 2012; 

Miller & Maner, 2012; Park et al., 2003; Ryan et al., 2012; Schaller & Neuberg, 2012; van 

Leeuwen et al., 2015). To understand the behavioral immune system’s tendency to perceive 

infection in non-infectious features, researchers in this area assume that the behavioral immune 

system is a functional module of the mind—it comprises cognitive mechanisms with specialized 

functions with restricted inputs (Barrett, 2012; Barrett & Kurzban, 2006; Schaller, 2016; Sperber, 

1994; Sperber & Hirschfeld, 2004). In the context of pathogen threat, the function of the 

behavioral immune system is to process inputs reflecting true signs of infection (constituting the 

“proper” domain for this system). Yet, because of the signal detection problem described above, 

the design elements of this system also process cues that share perceptual properties with cues 

from the proper domain. The combined set of these cues constitute the actual domain of the 

behavioral immune system. So, theoretically, the behavioral immune system should react to true 
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infection cues as well as false infection cues if such false infection cues share perceptual 

properties of true infection cues. 

 Researchers have tested this over-perception hypothesis using a variety of methods. For 

example, in one analysis, Ackerman et al. (2009) found that people participating in a dot-probe 

task who were psychologically primed with pathogen threat looked longer at faces with benign 

birthmarks or crossed-eyes than at faces without those features. This suggests people were 

attending more to anomalous yet benign facial features when pathogen infection was salient as if 

those features indicated infection risk. In another study, people expressed more disgust in 

response to, and were less willing to touch, objects that had been touched by people with visible 

cues of influenza compared to the same objects that had been touched by visibly healthy targets 

(Ryan et al., 2012). People also expressed more disgust by and less willingness to touch those 

objects when the target people bore non-infectious facial blotches, suggesting participants 

perceived features that merely resembled infection cues as if they were true indicators; that 

perception made them avoid touching objects that had been “contaminated” through physical 

contact. As a third and final example, people for whom pathogen threat was salient recorded 

stronger automatic negative associations with obese targets than people in a control condition 

(Park et al., 2007) and people who reported higher concerns about or disgust from pathogenic 

objects (e.g., feces, bloody cuts, chewed pencils) tended to report stronger negative attitudes 

toward obese people (Lieberman et al., 2012; Park et al., 2007). All together, these results 

support the hypothesis that people misperceive infection risk in benign features that share 

perceptual properties with true infection indicators (e.g., rashes, swelling). 

 Researchers have extended this over-perception hypothesis to include cues that less 

plausibly resemble true infection indicators but nonetheless could be associated with harmful 
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pathogens. The most prominent example is foreign appearance perceived in ethnic outgroups. A 

sizeable body of evidence suggests people under pathogen threat—either people high in 

pathogen threat concern or people exposed to pathogenic materials in a laboratory—report 

stronger negative attitudes toward ethnic outgroups (i.e., anti-immigrant attitudes) (Aarøe et al., 

2017; Faulkner et al., 2004; Huang et al., 2011; Navarrete & Fessler, 2006; Schaller & Neuberg, 

2012). The standard explanation is that individuals from ethnic outgroups may harbor pathogens 

that individuals from the ingroup have not developed immunity against, so cues such as skin 

color and other physical features associated with such ethnic outgroups may elicit psychological 

responses and behaviors that at least indirectly limit exposure to individuals from these groups 

(e.g., negative attitudes, prejudice, hostility, avoidance). van Leeuwen and Petersen (2018) called 

this the “adaptation-for-outgroups” account because it holds that the behavioral immune system 

was designed to process foreign appearance as an infection cue (i.e., a proper domain cue) given 

the costs of foreign pathogens. Alternatively, the behavioral immune system may include design 

features for learning and transmitting information about avoiding pathogens, which could include 

stereotypes and experiences linking ethnic outgroups with infection (Fessler et al., 2015). In this 

way, the behavioral immune system could incorporate associations between ethnic outgroup cues 

and pathogens in order to mitigate infection risks (real or perceived), even if the behavioral 

immune system is not designed specifically to motivate avoidance of such groups (van Leeuwen 

& Petersen, 2018). 

 In sum, a diverse body of research has been motivated by the hypothesis that the 

behavioral immune system evolved to motivate the avoidance of people who display correlates 

of infectious disease. Importantly, given uncertainty inherent in detecting infection from 

imperfect cues and the asymmetric costs of mistakes, the behavioral immune system responds to 
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true infection indicators (proper domain cues) as well as cues that share perceptual properties of 

such indicators (actual domain cues). Such a sensitive system may help people effectively avoid 

infectious others, but it may also underlie unfounded prejudices toward people bearing 

anomalous yet objectively benign physical features (e.g., port-wine stain birthmarks, obesity, 

foreign appearance). That is, over-perception can be functional yet problematic. 

 My dissertation work expands on this over-perception hypothesis. The assumptions and 

empirical research reviewed in chapter one serve as a foundation for chapters two and three. In 

chapter two, I elaborate on why I should expect the behavioral immune system to treat some 

infection cues as stronger indicators of infection risk than others. If one cue better diagnoses 

infection risk or perhaps better diagnoses a more fitness-costly infection risk than another cue 

(e.g., a deadly or debilitating infection), then I should expect the behavioral immune system to 

react more strongly to that cue and any cue that shares many perceptual features with the 

strongly diagnostic cue. In three studies, I test this hypothesis by comparing the strength of 

association between infection concepts and obesity to the association between infection concepts 

and facial disfigurement. 

 In chapter three, I elaborate on why I should expect people to mentally represent infected 

others and I employ three mental representation methods to explore two hypotheses about how 

they might do that: the threat-specificity hypothesis and the threat-combination hypothesis. The 

threat-specificity hypothesis posits that people mentally represent infected others only with 

features that diagnose infection risk. Based on the behavioral immune system literature, these 

features include but are not limited to germiness, disfigurement, obesity, old-age, and 

foreignness. Importantly, based on the threat-specificity hypothesis, other threatening features 

like anger, dominance, violence, and muscularity should not appear in mental representations of 
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infected others. In contrast, the threat-combination hypothesis posits that people mentally 

represent infected others with a combination of threatening features, such as disfigurement as 

well as anger. Together, chapters two and three shed light on basic and unexplored mechanisms 

of the behavioral immune system. 
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Chapter II. Differences in Infection Cue Strength 

 

 As I discussed in more detail in chapter one, researchers who study pathogen avoidance 

psychology assume the behavioral immune system is a functional mental module: it comprises 

cognitive mechanisms with specialized functions and restricted inputs. This means that, for the 

behavioral immune system, pathogen threat-specific cues elicit psychological responses and 

behaviors whose functions serve to reduce pathogen threats. Pathogen threat-specific cues 

comprise true indicators of infection—the “proper” domain of the behavioral immune system—

as well as cues that share perceptual properties with those true indicators. The set of proper 

domain cues that the behavioral immune system was designed to process plus the cues the 

system is able to process as a by-product of its design make up the “actual” domain of the 

behavioral immune system. Theoretically, all cues that make up the actual domain of the 

behavioral immune system should elicit psychological responses and behaviors that function to 

reduce pathogen threats.  

 A growing body of evidence suggests that a variety of anomalous cues—whether or not 

they truly indicate infection—elicit psychological response and behaviors that serve to reduce 

pathogen threats. That is, cues like rashes, runny noses, facial discoloration, wrinkles, crossed-

eyes, swelling, obesity, and physical disability—among other anomalous cues—elicit visual 

attention, disgust, prejudice, and avoidance, psychologies and behaviors which can all play a role 

in reducing infection risk. Though these findings provide evidence for an effect of anomalous 

cues on behavioral immune responses, it is at least unclear from current theory whether the 
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behavioral immune system should treat these cues and other benign, anomalous cues as equally 

indicative of infection risk. One might expect this system to discriminate between anomalous, 

benign facial features (e.g., more looking, disgust, avoidance) if some benign features closely 

resemble highly diagnostic symptoms more than others. On the one hand, if some features are 

highly diagnostic—they strongly distinguish between infected and non-infected individuals—

then those features warrant uninhibited behavioral immune responses. For example, facial rashes 

are associated with a large variety of fitness reducing infections (e.g., Drage, 1999). On the other 

hand, if some features are poorly diagnostic, the behavioral immune system could mute its 

responses to them so people can explore fitness enhancing social interactions with people 

presenting with such features. For example, obesity has been linked to some infections and might 

weaken the efficacy of vaccines (Coetzee et al., 2009; Falagas & Kompoti, 2006; Mancuso, 

2013; Whigham et al., 2006), but many more people meet criteria for obesity but harbor no 

infection. Moreover, obesity is a relatively modern physical anomaly that may not be under 

strong selection pressure (Pontzer et al., 2012), making it susceptible to over perception from the 

behavioral immune system. Such a poorly diagnostic infection cue must be interpreted in the 

context of other cues that diagnose beneficial social opportunities. 

If rashes diagnose infection but obesity does not, then rashes fall within the proper 

domain of the behavioral immune system and obesity does not, and people might react with 

stronger behavioral immune responses to proper domain cues like rashes than to actual (but not 

proper) domain cues like obesity possibly because the behavioral immune system can more 

easily process inputs it was designed to process (Barrett, 2012; Barrett & Kurzban, 2006). 

Moreover, if benign facial disfigurements strongly resemble rashes, then, even though facial 

disfigurements do not fall within the proper domain of the behavioral immune system, people 
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may nonetheless react with stronger behavioral immune responses to benign facial 

disfigurements than to obesity. I test this hypothesis in four studies. 

Study 1 

My goal for Study 1 was to test whether people more strongly associate infectious 

concepts with facial disfigurement than with obesity. To measure associations, participants 

completed one of two versions of a custom Implicit Association Test—I call it an Anomaly-

Infection IAT—where they categorized infectious concepts (e.g., epidemic) or harmless concepts 

(e.g., typewriter) in combination with faces bearing or not bearing one of two anomalous facial 

features: disfigurement or obesity. This implicit approach mimics that used in prior behavioral 

immune literature (e.g., Park et al., 2007) and allows us to estimate the strength of various 

associations while minimizing participant response biases. 

Method 

Participants. Between September 27 and November 22, 2017, 283 undergraduate 

students from the University of Michigan psychology subject pool participated in my study. I 

report pertinent sample information for Study 1 and all other studies in Table 1. I excluded 

participants from my final sample if they did not complete the full set of measures, made errors 

on more than 50% of IAT trials, or completed more than 10% of IAT trials in less than 300 

milliseconds (Greenwald et al., 2003; Wolsiefer et al., 2017).
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Table 1. Participant and stimulus characteristics for Studies 1-4. 

Study Participants Age Women White 

1  283  18.90 (2.16)  167 (59%)  171 (60%) 

2 256 18.90 (1.11) 152 (59%) 165 (65%) 

3 & 4 134 18.84 (0.90) 87 (65%) 99 (74%) 

Note. The table displays study number, total number of participants, mean age (standard 

deviation in parentheses), number of (percentage) excluded participants, number of 

(percentage) women, number of (percentage) white participants, and total number of stimuli. 

 

 

Procedure. Following consent, participants were randomly assigned to read instructions 

for one of two versions of the Anomaly-Infection IAT: an Obesity-Infection IAT or a 

Disfigurement-Infection IAT. As with a standard Implicit Associations Test, participants 

categorized words and images according to pairs of category labels as quickly and accurately as 

possible. Specifically, participants pressed one of two computer keys to classify words as either 

Harmless or Infectious, and, depending on their version of the IAT, to classify faces as (1) 

Average or Obese or as (2) Average or Disfigured. Depending on the type of trial, the keys to 

categorize faces shared the keys to categorize words. For example, on some trials, participants 

used the same key to categorize Harmless words and Disfigured faces. To ensure understanding, 

participants read definitions of Harmless and Infectious word categories prior to beginning the 

test. 

Harmless Definition: Not harmful or injurious; not likely to irritate or offend; benign or 

innocuous. 

Infectious Definition: Causing or communicating infection; tending to spread (disease) 

from one to another; contagious. 
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The Anomaly-Infection IAT featured blocks of 28 single-category learning trials, 28 

paired-category practice trials, and 56 test trials; otherwise, my IAT procedure followed the 

standard design found in Greenwald et al. (2003) (see Table 2). For each participant, practice and 

test trials began with the category pairs of Harmless- Anomaly vs. Infectious- Average or pairs 

of Infectious-Anomaly vs. Harmless-Average. Following this, category pairs were swapped and 

participants completed additional blocks of practice and test trials. Because the standard IAT 

effect depends on the order in which category pairs are seen, this order was randomized between 

participants. Finally, participants completed measures of individual differences (see below), 

demographic questions, and open-ended questions about their experience in the study. 

Table 2. Sequence of Trial Blocks in our Anomaly-Infection IAT (Study 1). 

Block Trials Function Left Key Right Key 

1 28 Learning Harmless Words Infectious Words 

2 28 Learning Anomalous Faces Average Faces 

3 28 Practice 
Harmless Words + Anomalous 

Faces 

Infectious Words + Average 

Faces 

4 56 Test 
Harmless Words + Anomalous 

Faces 

Infectious Words + Average 

Faces 

5 28 Learning Average Faces Anomalous Faces 

6 28 Practice 
Harmless Words + Average 

Faces 

Infectious Words + Anomalous 

Faces 

7 56 Test 
Harmless Words + Average 

Faces 

Infectious Words + Anomalous 

Faces 

Notes. Function indicates the purpose of the trials in a given block. Left and Right Key 

columns indicate which response was paired with the left or right keyboard button. Anomalous 

faces were either Obese faces or Disfigured faces, depending on condition.  

 

Face Stimuli. I selected 8 white men’s faces from the Chicago Face Database (Ma et al., 

2015). I used men’s faces in order to reduce the number of factors in my analyses and thereby 

increase power to detect an effect. I recruited an artist from www.fiverr.com to digitally 

manipulate each face twice to appear obese or to possess a port-wine stain birthmark (16 total 

images). I refer to these facial cues as Anomalous cues. I recruited 200 participants from 
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Amazon Mechanical Turk to rate all 9 faces under all face-type conditions (Disfigured, Obese, 

and No Manipulation) on a list of subjective features: Disfigured, Germy, Fat, Heavy, 

Unpleasant, Upset, Happy, Clear, Realistic, and Photoshopped. As expected, the participants 

rated the Obese faces as significantly fatter and heavier (on average) than the Disfigured and 

Non-Manipulated faces, and they rated the Disfigured faces as significantly more disfigured (on 

average) than the Obese and Non-Manipulated faces (see Figure 1). Unexpectedly, participants 

rated the Obese faces as significantly happier, more unpleasant, and more photoshopped than the 

Disfigured faces. Throughout my paper, I report analyses that do not control for these potential 

confounding variables, and I note whether conclusions change when I do control. 

 

 

Figure 1. Pretest ratings by face type and rating variable. Bars represent average rating, collapsing over stimulus, and error 

bars represent bootstrapped 95% confidence intervals (1,000 resamples). 
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Word Stimuli. I used a variety of dictionaries and my own judgment to select 8 words 

that refer to Harmless objects or concepts and 8 words that refer to Infectious objects or 

concepts. The set of Harmless words served as a non-threatening comparison set. I conducted a 

post-hoc survey asking undergraduate participants to report whether they associate these words 

with the categories I assigned them to. Participants explicitly associated harmless words less with 

infection than with infection words. These words were used as stimuli in Studies 1-3. 

Harmless Words: Tape, Cardboard, Typewriter, Dryer, Bran, Teaspoon, Sod, and 

Ground 

Infectious Words: Epidemic, Germs, Plague, Contagion, Flu, Virus, Parasite, and 

Bacteria 

Individual Differences Measures. I had participants complete individual differences 

scales that I could use to evaluate exploratory moderation hypotheses (e.g., automatic 

associations depend on trait infection concern). To assess individual differences in trait infection 

concern, I had participants complete the Perceived Vulnerability to Disease Questionnaire 

(Duncan et al., 2009) and the Three Domains of Disgust Scale (Tybur et al., 2009). To assess 

individual differences in attitudes about obese people, I had participants complete the Anti-Fat 

Attitudes Questionnaire (Crandall, 1994) as well as Height and Weight (which I used to calculate 

the Body Mass Index). Finally, I also assessed Negative Emotionality from the Big Five 

Inventory-2 (Soto & John, 2017). 

Removed Trials. I removed 1280/46536 target trials (3%) (i.e., trials from Blocks 3, 4, 6, 

and 7) responded to in less than 400 milliseconds or responded to after 10,000 milliseconds 

(Greenwald et al., 2003; Martin, 2016). 
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Statistical Power. To compute statistical power, I used Power ANalysis for GEneral 

Anova (PANGEA) version 0.02 (Westfall, 2016), which provides analytical solutions (i.e., 

solved via equations rather than simulation) for user-specified contrasts. I specified a fixed factor 

for Condition (2 Levels: Obese or Disfigured), Congruent Category (2 Levels: Incongruent or 

Congruent), a fixed factor for Stimulus Category (4 Levels: Infectious Word (n = 8), Harmless 

Word (n = 8), Average Face (n = 8), Anomalous Face (n = 8), a random factor for Participant (n 

= 256), and a random factor for Stimulus (n = 8 per Stimulus Category). I further specified 

Stimulus as nested within Stimulus Category and Participant nested within Condition (Word or 

Face). I used the default values for variance estimates: var(error) + var(Participant * Stimulus * 

Condition) = 0.217, var(Stimulus * Congruent Category * Condition) = 0.043, and 

var(Participant * Congruent Category) = 0.087. Given my specifications, I had 80% power to 

detect Cohen’s d = 0.24. 

Analysis Plan. Implicit Association Tests assess differences in reaction times to classify 

stimuli during incongruent trials (here, the Anomaly category paired with the Harmless category) 

compared to congruent trials (the Anomaly category paired with the Infectious category). In 

order to account for variability in reaction time associated with participant, stimulus, and other 

IAT-specific factors, I fit linear mixed effects models that resemble those described by Wolsiefer 

et al. (2017), who extended the conventional scoring algorithm developed by Greenwald et al., 

2003 to a mixed models framework. Specifically, in all analyses, I used a model that included 

fixed effects terms for between-subjects experimental condition (Obese = -0.5, Disfigured = 0.5), 

whether the trial was congruent (Congruent = -0.5, Incongruent = 0.5), trial order (Incongruent 

Trials First = -0.5, Congruent Trials First = 0.50), stimulus type (Word = -0.5, Face = 0.5), word 

category (Harmless = -0.5, Infectious = 0.5, Face = 0), and face category (Average = -0.5, Obese 
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= 0.5, Disfigured = 0.5, Word = 0). In addition, to adjust for general processing speed, a potential 

confound, I averaged each participant’s reaction times across their learning trials (i.e., classifying 

only words or only faces) and included this participant-level average as a covariate. Unlike the 

D-score typically calculated for IATs, this approach adjusts the effect of interest without giving 

more weight to participants with less variable reaction times and without sacrificing the 

interpretation that longer average reaction times during incongruent vs. congruent trials reflect 

stronger automatic associations between infectious concepts and anomalous cues resembling 

historical infection indicators. 

My initial models also included random terms for participant and stimuli intercepts as 

well as for participant and stimuli congruent effect slopes. When models failed to converge or 

produced singular fits, I removed random terms following recommendations from Bates et al. 

(2015) (also see Barr et al., 2013). Ultimately, I built these models to estimate the congruency 

effect.  

Results 

I first tested associations between anomalous cues and infection concepts as a replication 

of prior research and then examined differences in association strength depending on the type of 

anomalous cue. 

Do people automatically associate anomalous cues with infectious concepts? On 

average, participants took 314 milliseconds longer, 95% CI [287, 343], Cohen’s d = 0.47 (for d 

computation, see Judd et al., 2017), to classify words and faces when the anomalous category—

either Obese or Disfigured—shared a response key with the Harmless category compared to the 

Infectious category (see Figure 2). This suggests that participants more strongly associated 

anomalous faces with the Infectious category than with Harmless category, and they more 



 

 18 

strongly associated Infectious words with the anomalous category than with the Average 

category. 

 
Figure 2. The bars in Panel A represent estimated reaction time means for incongruent (blue bars) and congruent trials (red 

bars) that have been adjusted for general processing speed, among other design factors. Bigger differences between bars (blue 

minus red) indicate stronger automatic associations for anomalous cues and infectious concepts. Error bars represent 95% 

confidence intervals based on the standard error of the Congruent x Anomalous Cue interaction (fit using the effects R package; 

(Fox & Hong, 2009; Fox & Weisberg, 2018). The mixture of violin and boxplots in Panel B represent the full range of raw 

reaction time within the different types of trials. The violin regions index the probability of observing reaction times in that 

region (i.e., wider regions mean scores are more probable there). Boxplots depict the median line, the interquartile range, and 

“whiskers” extending at most 1.5 times the interquartile range beyond the 25th and 75th percentiles (reaction times beyond that 

are considered extreme). 

 

Does the automatic association between anomalous cues and infectious concepts 

depend on the type of anomalous cue? The congruency effect size depended on the type of 

anomalous cue, MDifference = 262 milliseconds, 95% CI [205, 321]1, Cohen’s d = 0.39. On 

 

1 For main effects and interactions from the model, I report parametric bootstrapped 95% 

confidence intervals (1000 resamples; see confint.merMod from the lme4 R package (Bates et 
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average, participants took 445 milliseconds longer, 95% CI [405, 485], to classify words and 

faces when the Disfigured category shared a response key with the Harmless category compared 

to the Infectious category, whereas the corresponding difference in reaction time was 183 

milliseconds, 95% CI [144, 223], when the anomalous category was Obese (see Figure 2). Thus, 

though participants automatically associated both Obese and Disfigured categories with 

Infectious concepts (and Average categories with Harmless concepts), this association was 

stronger between Disfigured categories and Infectious concepts. 

Discussion 

 In Study 1, participants completed an Implicit Association Test in which they categorized 

Harmless and Infectious words and faces as either (1) Average or Obese or (2) Average or 

Disfigured. Obesity and Disfigurement served as anomalous cues that previous research suggests 

are associated with infection because these facial features deviate from human-typical 

morphology. Participants more strongly associated both types of anomalous cues with Infectious 

concepts than with Harmless concepts. But this difference in association strength also depended 

on the type of anomalous cue. This difference was larger for Disfigurement cues than for Obesity 

cues, supporting the hypothesis that people perceive facial disfigurement as a more diagnostic 

infection cue than obesity. However, Study 1 is limited because its design does not allow for an 

“uncontaminated” comparison between facial disfigurement to obesity. That is, due to the 

standard IAT design, the current findings could reflect stronger associations made between 

average faces and harmless concepts in the context of disfigured faces as compared to obese 

 

al., 2014) but for conditional main effects (i.e., simple slopes), I report simultaneous confidence 

intervals based on the normal approximation. 



 

 20 

faces. To disentangle this possibility, Study 2 used a modified IAT design in which participants 

could classify obesity and facial disfigurement cues within the same Implicit Association Test. 

Study 2 

 My goal for Study 2 was, like Study 1, to test whether people more strongly associate 

infectious concepts with facial disfigurement than with obesity. But I designed my Study 2 

Anomaly-Infection IAT to assess the association strength between both disfigurement and 

infection and obesity and infection in the same task. This allowed us to test my hypothesis 

within-subjects.  

Method 

Participants. Between February 2nd and March 29th, 2017, 256 undergraduate students 

from the University of Michigan psychology subject pool participated in my study. I report 

pertinent sample information for Study 2 and all other studies in Table 1. I used the same 

exclusions criteria from Study 1. 

Procedure. The procedure for Study 2 resembled the procedure for Study 1 except I did 

not randomly assign participants to an Anomalous Cue condition. Instead, participants 

categorized faces as either Obese or Disfigured in the same Implicit Association Test. Thus, no 

Average category was used here. 

Removed Trials. I removed 759/4308 target trials (18%) (i.e., trials from Blocks 3, 4, 6, 

and 7) responded to in less than 400 milliseconds or responded to after 10,000 milliseconds 

(Greenwald et al., 2003; Martin, 2016). 

Statistical Power. Using PANGEA version 0.02 (Westfall, 2016), I specified a fixed 

factor for Condition (2 Levels: Incongruent or Congruent), a fixed factor for Stimulus Category 
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(4 Levels: Infectious Word (n = 8), Harmless Word (n = 8), Obese Face (n = 8), Disfigured Face 

(n = 8), a random factor for Participant (n = 256), and a random factor for Stimulus (n = 8 per 

Stimulus Category). I further specified Stimulus as nested within Stimulus Category (Word or 

Face). I used the default values for variance estimates: var(Error) = 0.20, var(Participant * 

Stimulus * Condition) = 0.05, var(Stimulus * Condition) = 0.10, and var(Participant * Condition) 

= 0.10. Given my specifications, I had 80% power to detect Cohen’s d = 0.35. 

Analysis Plan. Out analysis plan was similar to Study 1, except the anomalous cue 

contrast (Disfigured vs. Obese) was embedded in the congruency effect (Incongruent vs. 

Congruent): In half the trials, the Obese category shared a response key with the Infectious 

category (so the Disfigured category shared a response key with the Harmless category), and in 

the other half of the trials, the Disfigured category shared a response key with the Infectious 

category (so the Obese category shared a response key with the Harmless category). I coded the 

congruency contrast so that larger, more positive values mean that participants took longer when 

the Disfigured category shared a response key with the Harmless category than with the 

Infectious Category (Obese/Congruent = -0.5, Disfigured/Incongruent = 0.5). 

Results 

Do people more strongly associate infectious concepts with disfigurement or 

obesity? On average, participants took 141 milliseconds longer, 95% CI [119, 163], d = 0.25, to 

classify words and faces when the Disfigured category shared a response key with the Harmless 

category compared to the Infectious category (and when the Obese Category shared a response 

key with the Infectious category compared to the Harmless category) (see Figure 3). Thus, 

participants associated Infectious concepts more strongly with Disfigured faces than with Obese 
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faces (or participants associated Harmless concepts more strongly with Obese faces than with 

Disfigured faces). 

 

 
Figure 3. The bars in Panel A represent estimated reaction time means for incongruent (blue bars) and congruent trials (red 

bars) that have been adjusted for general processing speed, among other design factors. The difference in the height of the bars 

(blue minus red) indexes the automatic association between an anomalous cue and infectious concepts. Error bars represent 95% 

confidence intervals based on the standard error of the Congruent x Anomalous Cue interaction (fit using the effects R package; 

Fox & Hong, 2009; Fox & Weisberg, 2018). The mixture of violin and boxplots in Panel B represent the full range of raw 

reaction time within the different types of trials. The violin regions index the probability of observing reaction times in that 

region (i.e., wider regions mean scores are more probable there). Boxplots depict the median line, the interquartile range, and 

“whiskers” extending at most 1.5 times the interquartile range beyond the 25th and 75th percentiles (reaction times beyond that 

are considered extreme). 

Discussion 

 As in Study 1, participants more strongly associated facial disfigurement with infectious 

concepts than they associated obesity with infectious concepts. Extending findings from Study 1, 

Study 2 showed this pattern when anomalous cue categories were directly compared. .  

Two limitations are present in Studies 1 and 2, however. People may more strongly associate 

negative concepts with facial disfigurement than with obesity, regardless of whether those 
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negative concepts are infection-related or not. Moreover, I assumed that participants in the 

previous studies were aware that facial disfigurement is not infectious. It is possible that 

participants instead viewed the disfigurement cues as representing truly infectious hazards. To 

address these issues, in Studies 3A and 3B, I (1) made clear to participants that the facial 

disfigurement cues were benign and (2) tested whether another negative concept—laziness—is 

more strongly associated with disfigurement than obesity. 

Studies 3A and 3B 

Both Studies 3A and 3B were designed to address potential alternative interpretations for 

the findings in Studies 1 and 2. Participants in Study 3 were told the facial disfigurement cues 

they were tasked with classifying were benign burn scars, thereby making it clear that no 

anomalous cues were actually infectious. Study 3B replaced the Infectious category with a Lazy 

category, thereby providing a test of whether people more strongly associate any negative 

concept with disfigured faces compared to obese faces. 

Method 

Participants. Between March 12th and April 4th, 2018, 134 undergraduate students from 

the University of Michigan psychology subject pool participated in my study. I report pertinent 

sample information for Study 3 and all other studies in Table 1. I used the same exclusions 

criteria from Studies 1 and 2. 

Procedure. Study procedures resembled the procedure in Study 2, except I randomly 

assigned participants to either categorize words as Harmless or Infectious and faces as Obese or 

Burn Scar (Study 3A), or categorize words as Harmless or Lazy and faces as Obese or 
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Disfigured (Study 3B). To assist categorizations in Study 3A, I defined Obese and Burn Scar for 

participants. 

Obesity Definition: Obesity means having too much or excessive body fat, more than 

what's considered healthy for one's height. Obesity happens over time when one eats more 

calories than one uses. 

Burn Scar Definition: Burns cause skin cells to die. Damaged skin produces a protein 

called collagen to repair itself. As the skin heals, thickened, discolored areas called scars form. 

Some scars are temporary and fade over time. Others are permanent. 

Word Stimuli. For Study 3B, I used a variety of dictionaries and my own judgment to 

select 8 words that refer to Lazy objects. I also defined this term for participants. 

Lazy Words: Procrastinating, Careless, Indifferent, Inactive, Sluggish, Neglectful, 

Passive, and Slacker 

Lazy Definition: Unwilling to work or use energy; averse or disinclined to work, 

activity, or exertion; indolent. 

Removed Trials. For Study 1A (Burn Scar vs. Obese), I removed 337/10416 target trials 

(3%) (i.e., trials from Blocks 3, 4, 6, and 7) responded to in less than 400 milliseconds or 

responded to after 10,000 milliseconds (Greenwald et al., 2003; Martin, 2016). For Study 1A 

(Lazy vs. Harmless), I removed 90/11760 target trials (1%) (i.e., trials from Blocks 3, 4, 6, and 

7) responded to in less than 400 milliseconds or responded to after 10,000 milliseconds 

Statistical power and analysis plan. I computed power and conducted analyses in Study 

3 the same way as I did in Study 2. Given approximately 67 participants per condition and my 

other specifications, I had 80% power to detect Cohen’s d = 39. 
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Results 

Study 3A. Do people more strongly associate infectious concepts with benign burn 

scars or obesity? On average, participants in Study 3A took 173 milliseconds longer, 95% CI 

[137, 213], d = 0.30, to classify words and faces when the Burn Scar category shared a response 

key with the Harmless category compared to the Infectious category (and when the Obese 

Category shared a response key with the Infectious category compared to the Harmless category) 

(see Figure 4). Thus, participants associated Infectious concepts more strongly with benign Burn 

Scar faces than with Obese faces (or participants associated Harmless concepts more strongly 

with Obese faces than with benign Burn Scar faces). 

 

Figure 4. The bars in Panel A represent estimated reaction time means for incongruent (blue bars) and congruent trials (red 

bars) that have been adjusted for general processing speed, among other design factors (Study 3A). The difference in the height 

of the bars (blue minus red) indexes the automatic association between an anomalous cue and infectious concepts. Error bars 

represent 95% confidence intervals based on the standard error of the Congruent main effect (fit using the effects R package; 

Fox & Hong, 2009; Fox & Weisberg, 2018). The mixture of violin and boxplots in Panel B represent the full range of raw 

reaction time within the different types of trials. The violin regions index the probability of observing reaction times in that 
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region (i.e., wider regions mean scores are more probable there). Boxplots depict the median line, the interquartile range, and 

“whiskers” extending at most 1.5 times the interquartile range beyond the 25th and 75th percentiles (reaction times beyond that 

are considered extreme). 

 

Study 3B. Do people more strongly associate lazy concepts with disfigured faces or 

obesity? On average, participants in Study 3B took 120 milliseconds longer, 95% CI [77, 163], d 

= 0.21, to classify words and faces when the Obese category shared a response key with the Lazy 

category compared to the Harmless category (and when the Disfigured Category shared a 

response key with the Harmless category compared to the Lazy category) (see Figure 5). Thus, 

participants associated Infectious concepts more strongly with benign Burn Scar faces than with 

Obese faces (or participants associated Harmless concepts more strongly with Obese faces than 

with benign Burn Scar faces). 

 

Figure 5. The bars in Panel A represent estimated reaction times means for incongruent (blue bars) and congruent trials (red 

bars) that have been adjusted for general processing speed, among other design factors (Study 3B). The difference in the height 

of the bars (blue minus red) indexes the automatic association between an anomalous cue and infectious concepts. Error bars 
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represent 95% confidence intervals based on the standard error of the Congruent main effect (fit using the effects R package; 

Fox & Hong, 2009; Fox & Weisberg, 2018). The mixture of violin and boxplots in Panel B represent the full range of raw 

reaction time within the different types of trials. The violin regions index the probability of observing reaction times in that 

region (i.e., wider regions mean scores are more probable there). Boxplots depict the median line, the interquartile range, and 

“whiskers” extending at most 1.5 times the interquartile range beyond the 25th and 75th percentiles (reaction times beyond that 

are considered extreme). 

Discussion 

Studies 3A and 3B helped to address alternative interpretations of my earlier findings. As 

in Studies 1 and 2, in Study 3A, participants more strongly associated infectious concepts with 

facial disfigurement than with obesity, even though participants were made aware that the facial 

disfigurements were caused by non-infectious burns. This result is inconsistent with the 

hypothesis that participants associate facial disfigurement with infectious concepts simply 

because they believe that the disfigurements were truly caused by infections. In addition, in 

Study 3B, participants more strongly associated lazy concepts with obesity than facial 

disfigurement. This result is inconsistent with the hypothesis that people more strongly associate 

any negative concepts with facial disfigurement than with obesity. 

General Discussion 

Across four studies, I investigated whether people more strongly associate infectious 

concepts with facial disfigurement than with obesity. Consistent with previous findings, I found 

that people associate infectious concepts with both facial disfigurement and obesity (Study 1). 

However, I found that this association is stronger for facial disfigurement compared to obesity 

(Studies 1-3). I found that the infection-disfigurement association was stronger than the 

infection-obesity association in a between-subjects experimental design (Study 1) as well as in a 

within-subjects design (Studies 2 and 3). In addition, I found the infection-disfigurement was 

stronger even when I told the participants the facial disfigurements represented benign (non-

infectious) burn scars (Study 3A). Last, when I tested whether people simply more strongly 
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associate negative concepts with facial disfigurement than with obesity, I found that people more 

strongly associated lazy concepts with obesity than with facial disfigurement (Study 3B). 

Together, these findings provide preliminary evidence that people perceive some benign 

anomalous facial features as more diagnostic of infection than others. 

Implications 

These findings lend additional support to the pathogen detection error management 

hypothesis that people over-perceive infectious disease in anomalous cues (i.e., false positive 

errors) when infection indicators are noisy and false negative errors (i.e., deadly infections) are 

more fitness costly than false positives (e.g., missed social opportunities) (Haselton & Nettle, 

2006; Nesse, 2005; Schaller, 2016). That is, the automatic associations I observed between 

infectious concepts and anomalous cues suggest my participants over-perceived infection in both 

obesity and facial disfigurement because infection is costly and at some level participants were 

uncertain whether these cues indicated the people presenting with them were infected. In 

addition, my finding that participants more strongly associated infection with disfigurement than 

with obesity is consistent with the uncertainty condition of the error management hypothesis. If 

participants were equally unsure whether disfigurement or obesity indicated infection, then I 

would predict equal behavioral immune system responses to these cues based on the error 

management hypothesis. But if one anomalous cue better diagnoses infection—or at least 

perceivers think it does—then I would predict that cue to elicit a stronger behavioral immune 

response because uncertainty has been reduced. So, my participants probably associated 

infection more strongly with facial disfigurement than with obesity because they were more 

certain facial disfigurement indicates infection (or that obesity does not indicate infection). 
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 My findings also speak to which cues might make up the “proper” domain of the 

behavioral immune system (Schaller, 2016; Sperber, 1994; Sperber & Hirschfeld, 

2004)(Schaller, 2016; Sperber, 1994; Sperber & Hirschfeld, 2004). If the behavioral immune 

system was designed to process cues truly indicative of infection (the proper domain of the 

functional module), then cues that more closely resemble those cues should be easier to process 

and thus should elicit a strong behavioral immune system response (e.g., staring, disgust, 

avoidance). Correspondingly, cues that share perceptual properties of proper domain cues but 

that nonetheless meaningfully deviate in appearance from truly diagnostic infection cues (the 

“actual” domain) should be harder to process and thus should elicit a weak behavioral immune 

response. This implies that a benign facial rash should elicit a practically identical behavioral 

immune response to a truly infectious facial rash if both rashes look the same. In contrast, if 

obesity only minimally resembles swelling caused by an infection or if obesity is not (and has 

not) strongly correlated with infection, then obesity might elicit a weaker behavioral immune 

response compared to more diagnostic cues. My finding that participants more strongly 

associated infection with facial disfigurement than with obesity is consistent with the hypothesis 

that facial disfigurement more closely resembles the behavioral immune system’s proper domain 

inputs than obesity. 

 The possibility that the behavioral immune system responds more strongly to proper 

domain cues has practical implications. When researchers select infection cue stimuli for their 

studies, they might consider how closely their stimuli hew to theoretically proper domain inputs. 

Stimuli that more closely resemble proper domain inputs could elicit stronger behavioral immune 

effects and thus require fewer participants to detect statistically with desired power. Relatedly, if 

researchers are interested in more generalizable effects of the behavioral immune system, they 
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might include stimuli that vary how closely the resemble theoretically proper domain cues 

(Michalak & Ackerman, 2020). Importantly, cues that less closely resemble proper domain cues 

might elicit stronger effects for people higher in trait-level pathogen threat concern (i.e., 

interaction effects), and cues that more strongly resemble proper domain cues may elicit less 

variable effects across levels of trait threat concern (i.e., main effects) (Ackerman et al., 2018; 

Tybur et al., 2014). Last (and more speculatively), researchers interested in applying behavioral 

immune system hypotheses to stigma intervention research might consider the extent to which 

pathogen concerns explain variability in stigma directed toward people who present with 

anomalous facial features. Recall from my findings that people associated infectious concepts 

with obesity, but they more strongly associated obesity with lazy concepts. If a stigmatized facial 

feature does not closely resemble an infection cue, then pathogen avoidance psychology may 

play a smaller role in the stigma and might only weakly inform an intervention study design. 

Limitations 

 My findings were limited in at least two important ways. First, my participant samples 

comprised only Michigan undergraduates (see Table 1), even my relatively large face stimuli 

sample comprised only young, white men, and I only investigated two anomalous facial features: 

obesity and disfigurement. Harmful pathogens and their symptoms present in the face are 

numerous and highly variable, and many benign features resemble these infection symptoms to 

variable degrees. Importantly, these facial features and how people perceive them vary across the 

world. My participant and stimuli samples by no means represent this rich global variation. 

Second, my dependent measures are limited to automatic associations between infectious 

concepts and anomalous facial features. Future research might investigate whether a variety of 

anomalous facial cues elicit similar patterns in other behavioral immune responses like attention, 
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disgust, and avoidance (e.g., Ackerman et al., 2009; Lieberman et al., 2012; Miller & Maner, 

2012; Ryan et al., 2012). That said, my findings are relatively strong (i.e., four studies with large 

test statistics, small p-values) and thus lend preliminary support to the error management 

hypotheses I described. 

Conclusion 

 Across four studies, I found evidence that people automatically associate infectious 

concepts with two anomalous facial features: facial disfigurement and obesity. However, people 

more strongly associated infectious concepts with facial disfigurement than with obesity. These 

findings lend initial support to the hypothesis that cues that more strongly resemble proper 

domain input to the behavioral immune system (i.e., highly diagnostic infection cues) elicit 

stronger behavioral immune response. 
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Chapter III. Mental Representations of Infected Others 

What does an infected person look like? In your mind, you might picture someone pale 

and weak, someone with a runny nose and watery eyes, or someone with facial rashes and sores. 

Whichever features appeared in your mind’s eye, where did they come from? If you are a health 

professional or researcher, you probably chose features that align with specific theories and 

hypotheses in your field. In contrast, if you are a layperson, you probably chose features based 

on intuition, experience, and stereotypes. Put differently, mental representations depend on 

expectations. These expectations constrain the breadth of the features we imagine, and, 

consequently, the features we study, as well as the methods and measurement tools we use to 

study them.  

 I propose that the choices researchers make based on their expectations, even when 

emerging from theory, can limit the ability of studies to wholly capture how people mentally 

represent aspects of others, such as threats. Moreover, even methods that enable participants to 

report how they mentally represent social categories (thereby minimizing the influence of 

researcher expectations) still reflect participant expectations. Thus, such methods may not match 

what those individuals spontaneously represent in their mind’s eye. Do methods that allow for 

strong influences from expectations produce similar or different representations than methods 

that restrict the influence of expectations? I examine this question in the domain of pathogen 

threat psychology, where perceivers represent the faces of infected others.  

I begin by reviewing how a functional perspective on threat management explains why 

perceivers orient to particular cues of threat (i.e., threat-specificity), and then I detail the 
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strengths and limitations of expectation-driven versus data-driven methods of threat assessment. 

To preview my empirical findings, when participants could easily apply stereotypic beliefs, their 

representations showed more threat-specificity than when such expectations were constrained by 

a data-driven reverse correlation task. These results suggest that our current understanding of 

threat management psychology may be limited by approaches that privilege expectations—of 

laypeople or of researchers—for choosing experimental stimuli and testing aspects of threat 

processing.  

Functional Threat Management 

People process and react to sick individuals differently than they do violent individuals. 

This is, in part, because effectively avoiding infection requires different behaviors than avoiding 

violence. For example, one washes their hands to avoid getting sick when interacting with 

someone who coughs and sneezes, whereas one raises their hands to avoid injury when 

interacting with someone who brandishes a weapon. Distinct threats entail distinct psychological 

and behavioral solutions. From what I refer to as the functional threat management perspective, 

natural selection has favored mental systems that enable people to perceive, feel, think, and 

behave in ways to reduce threats in particular rather than threats in general (Barrett, 2012; 

Cosmides & Tooby, 1994; Holbrook & Fessler, 2015; Neuberg et al., 2011; Tooby & Cosmides, 

1992). This perspective does not imply that specific threats always elicit specific responses (e.g., 

most threats elicit anxiety due to shared processing mechanisms), but a fully general response to 

all threats would be less efficient than responses targeting the unique affordances of each threat.  

Consistent with this perspective, a growing body of evidence suggests people exhibit 

functional responses to specific threat cues. For example, people expressed more disgust in 

response to, and were less willing to touch, objects that had been touched by people with visible 
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cues of influenza compared to the same objects that had been touched by visibly healthy targets 

(Ryan et al., 2012). People also expressed more disgust by and less willingness to touch those 

objects when the target people bore non-infectious facial blotches, suggesting participants 

perceived features that merely resembled infection cues as if they were true indicators; that 

perception made them avoid touching objects that had been “contaminated” through physical 

contact. Sensitivity to many such facial features, including disfigurement, discoloration, 

swelling, and wrinkles, has been connected to the experience of pathogen threat (Ackerman et 

al., 2018; Ryan et al., 2012). In studies examining threat from aggression, responses differ. For 

example, people estimated greater state and trait anger in men holding household items that 

could be used as weapons (e.g., garden sheers) compared with men holding objects that are less 

plausible as weapons (e.g., a watering can) (Holbrook et al., 2014). Thus, a threat-specific cue 

elicited a functional response: People perceived men holding plausible weapons as more prone to 

anger. Other research has linked aggression threat to formidable physical features such as size 

and weight (Fessler et al., 2012). Based on both theory and findings such as these, researchers 

have made the case that mental systems connected to disease avoidance and violence avoidance 

involve distinct emotional responses, cognitive associations, and neurobiology (Neuberg et al., 

2011; Oaten et al., 2009; Schaller et al., 2003).  

Limitations of Common Threat Management Methods 

Although perspectives on threat management such as the functional perspective have 

generated rich and productive literatures, they have also motivated the use of research designs 

that face two inferential challenges for answering how people mentally represent threats. The 

first challenge emerges from factors researchers omit from their study designs. Creating study 

methods, measures, and stimuli based on researcher-expectations may obscure evidence for 
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effects and processes not associated with those expectations. For instance, pathogen threat 

researchers have used some combination of theory and intuition to select cues to investigate, 

including rashes, swelling, and lesions as well as physical anomalies that resemble such cues, 

like port-wine stain birthmarks, crossed-eyes, obesity, and wrinkled skin (Ackerman et al., 2009; 

Duncan et al., 2009; Park et al., 2007; Ryan et al., 2012). In a typical study, researchers examine 

a threat-specific cue by manipulating its presence, manipulating the motivational state of the 

perceiver, or by measuring evaluations of the cue and the perceiver. Researchers then assess 

attention, explicit and implicit attitudes, emotional responses, or other types of reactions. Results 

of such studies inform whether people react to the chosen cues or manipulations, but those 

results may not generalize to other cues and manipulations. This may not seem like much of a 

problem—research has to start somewhere. But if such results do not generalize to unmeasured 

yet threat-relevant cues, then claims about threat-specificity—a key inference made from the 

functional perspective—would be unknowingly limited to the findings of reported study designs. 

In other words, conclusions would be biased (to a degree) by researcher design choices. 

Consider an example from a different literature. Over a decade of research found support for the 

hypothesis that people use perceptions of warmth and competence to understand social groups 

(Fiske et al., 2002). But this research was limited by the ratings scales (e.g., friendly, smart) and 

social groups (e.g., Blacks, women) researchers used in their studies. When researchers gave 

participants the opportunity to spontaneously generate social groups and evaluate them using 

their own psychological dimensions, they found that participants organized a wide variety of 

social groups using two novel dimensions: low-high socioeconomic status and conservative-

progressive beliefs (Koch et al., 2016). Relying primarily on researcher-driven design choices 

led to mistaken, or at least limited, conclusions. 
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A second inferential challenge emerges when equating perceiver reactions with perceiver 

representations. Perceivers may react to threatening features of stimuli chosen by researchers but 

not spontaneously include those features in their threat representations. For example, if presented 

with photos of faces varying in age, perceivers may rate the younger faces as looking more 

trustworthy (Zebrowitz & Franklin Jr, 2014). However, if asked to list visible features of a 

trustworthy person, perceivers may not spontaneously list youth as a feature of a trustworthy 

appearance. As findings from studies measuring reactions to specific cues chosen by researchers 

accumulate, researchers may begin to treat these cues as though they collectively embody how 

people represent threatening others in their minds. However, this conclusion suffers from the fact 

that people may react to features that are not present in their mental representations, and they 

may mentally represent threats with features that researchers have not examined in reaction-

based studies. To elaborate on the potential problems associated with this issue, I conceptualize 

mental representations next.  

Mental representations of threat 

Mental representations of threatening others characterize the internal prototype of a 

threat—how those threats are construed in the mind—and they include a set of key features. 

First, mental representations combine information across multiple processing levels, from lower-

level perception to conceptual knowledge and higher-level cognitive states (Freeman & Ambady, 

2011). Second, mental representations emerge dynamically in that people continuously construct 

their representations from these multiple information sources. Third, mental representations are 

complex combinations of information that can be “seen” in people’s minds (Farah, 1988; Haxby 

et al., 2000; Kanwisher et al., 1997; Mechelli et al., 2004). For example, visual cues (e.g., white 

skin, frown), information regarding social categories (e.g., adult white male), behaviors (e.g., he 
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coughed), traits (e.g., he is withdrawn), and affective evaluations (e.g., bad, yuck) meld together 

into a sort of “mental mush” (Carlston & Smith, 1996, p. 184) that forms a mental representation 

(Freeman & Ambady, 2011; Sherman, 1996; Wyer, 2007). In sum, mental representations are 

built continuously from multiple sources of information and can be visualized in the mind.  

Mental representations are infrequently studied in the threat literature relative to 

piecemeal processes such as perceiver reactions, evaluations, and associations. Presumably, they 

can be understood from a functional threat management perspective. To the extent that threats 

are processed in a threat-specific manner, representations should contain evidence of threat-

specific features. Operationally, this specificity requires some features to be both associated with 

threat and distinctive of particular threats. Whereas a mental image of an infected person may 

appear sick and blotchy, a mental image of a violent person may appear angry and intimidating. 

To the extent that threats are processed more generally, however, these threat representations 

should share features with each other. A better understanding of these representations would 

provide insight into how threats are processed holistically as compared to studies that target 

reactions to individual cues. Indeed, it may be critical to investigate mental representations in 

order to address important limitations of the threat literature described earlier. 

Current Research 

To address these limitations, I used multiple approaches to estimate mental 

representations of two threat categories: infected persons and violent persons. I evaluate results 

from each approach according to two hypotheses. Our first hypothesis—what I label the threat-

specificity hypothesis—follows from the functional threat management perspective and thus is 

consistent with the expectations of researchers using this perspective. The threat-specificity 

hypothesis predicts that threat representations will primarily include cues specific to and 
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diagnostic of that threat. The second hypothesis—what I label the threat-combination 

hypothesis—is the natural complement to the first. The threat-combination hypothesis predicts 

threat representations will include a combination of threat cues common across multiple types of 

threats. In sum, threat-specificity predicts representations will appear to pose one kind of threat 

(e.g., strong infection-related cues), whereas threat-combination predicts representations will 

appear to pose 2 or more kinds of threat (e.g., equally strong infection- and violence-related 

cues). 

To test these hypotheses, I use two types of empirical approaches. First, in studies 

following an expectation-driven approach, participants listed traits they “saw” when imagining 

what infected and violent persons look like (Study 1) and drew infected and violent persons’ 

faces (Study 2). These are common methods of assessing mental representations (Andersen & 

Klatzky, 1987; Stangor et al., 1992; Stangor & Lange, 1994). Qualitatively, these data gave us 

insight into which features come to mind when participants think of infected others in contrast to 

violent others. Much like researcher expectations can influence estimates of mental 

representations, participant expectations can, too. Participant-generated responses privilege the 

beliefs of perceivers in that perceivers are likely to deliberately edit their responses based on 

their own intuitions or stereotypes about what a given social category entails. To the extent that 

people expect threats to be distinct, substantial threat-specificity should characterize the resulting 

mental representations.  

The second approach attempts to constrain perceiver (and researcher) expectations. For 

multiple reasons (e.g., insufficient access to internal representations), perceivers may report 

content that fits normative expectations but is not representative of how a social category appears 

in their mind’s eye. To address this, I used a data-driven approach by leveraging reverse 
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correlation methods. Reverse correlation methods exploit the relationship between stimulus and 

response. Whereas more typical approaches estimate the correlation between fixed, researcher-

selected stimulus attributes, and participant responses, “reverse” correlation approaches estimate 

the correlation between random stimulus attributes and participant selections (Brinkman et al., 

2017; Dotsch & Todorov, 2012b; Mangini & Biederman, 2004; Todorov et al., 2011). For 

example, in the 2-image forced choice image classification task—a particular reverse correlation 

task—a base face is overlaid with random digital noise masks to represent many versions of that 

face with variable facial attributes. Perceivers choose from pairs of such faces the one that best 

represents the target category (e.g., Infected). Researchers then create a classification image by 

averaging the noise patterns from those perceiver choices and applying that average noise pattern 

to the original base image. This classification image serves as a visual proxy of the social 

category representation. Importantly, these images are participant-selected, visually compelling, 

and emerge from relatively more spontaneous mental processes. Classification images can then 

be rated along any number of dimensions to determine the features they possess. This approach 

has been used to estimate (visual) mental representations many unique categories, including 

racial and minimal out-groups (Dotsch et al., 2008; Ratner et al., 2014), welfare recipients 

(Brown-Iannuzzi et al., 2017), and atheists (Brown-Iannuzzi et al., 2018). Unlike more common 

approaches, the reverse correlation method has received comparatively less attention in the threat 

processing literature. I used this method in Studies 3-5 as a comparison to the expectation-driven 

approaches in earlier studies. Each of these studies includes two phases: In Phase 1, participants 

generated proxy mental images via the 2-image forced choice image classification task, and in 

Phase 2, independent participants rated features of those images generated in Phase 1. 
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Overall, I report five studies using a multi-method approach. I have ordered these to 

begin with studies utilizing methods that mimic researcher-driven expectations, where 

participants can freely apply their beliefs about social categories through deliberation, editing, 

extensive use of time, and so on. The second set of studies uses reverse correlation methods to 

constrain (though not entirely eliminate) these factors. For all but Phase 1 in Studies 2 and 3, I 

preregistered research questions, predictions, sampling plans, exclusion criteria, and analyses. I 

also report sensitivity analyses (i.e., compute the detectable effect size at 80% power given 

sample size and 𝛼) and provide empirical benchmarks for detectable effect sizes. For certain 

analyses, I deviated from our preregistered plans to reduce the number of reported tests and to 

synthesize measures in a conceptually meaningful way. In our supplemental repository 

(Michalak & Ackerman, 2017; https://osf.io/84vdp/), I also include a spreadsheet detailing 

original and revised plans (i.e., those reported in this article). I also make available 

preregistrations, materials, and de-identified data for all studies, including data sets not reported 

here. Finally, I include additional analyses in our repository (e.g., individual differences effects 

within each study). 

Study 1 

 Our first goal in Study 1 was to give participants the opportunity to report which visible 

features they see in their mind’s eye when they envision infected and violent others in order to 

test the threat-specific and threat-combination hypotheses. Here, participants simply listed visible 

traits they believed correspond with each of two threat categories. Our second goal was to 

evaluate whether the listed set of features supported the threat-specificity or threat-combination 

hypothesis. The threat-specificity hypothesis predicts participants would list only features 

https://osf.io/84vdp/
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specific to and diagnostic of that threat, whereas the threat-combination hypothesis predicts 

participants would list a combination of features common across multiple types of threats.  

Method 

Listing visible traits of Germy and Violent persons 

Participants. I recruited undergraduate psychology student participants between March 

25th, 2019 and September 25th, 2019 (see Table 3 for pertinent sample characteristics). 

 
Table 3. Reprinted from Michalak and Ackerman (2020). Characteristics of participant roles in Studies 1-5. 

Study Source Role N Excluded Age Women White 

1 Undergraduate Lister 117 0 (0%) 18.84 (0.81) 49 (42%) 64 (55%) 

2 Undergraduate Artist 147 0 (0%) 19.00 (0.90) 97 (66%) 90 (61%) 

2 MTurk Rater 129 14 (10%) 36.55 (11.74) 76 (59%) 99 (77%) 

3 Undergraduate Chooser 94 2 (2%) 19.13 (1.70) 45 (48%) 72 (77%) 

3 MTurk Rater 272 18 (6%) 35.68 (11.07) 139 (51%) 197 (72%) 

4 Undergraduate Chooser 205 0 (0%) 18.75 (0.92) 153 (75%) 180 (88%) 

4 MTurk Rater 464 50 (10%) 37.97 (12.27) 242 (52%) 301 (65%) 

5 MTurk Chooser 200 44 (18%) 36.94 (11.38) 92 (46%) 149 (75%) 

5 MTurk Rater 505 37 (7%) 35.46 (10.88) 272 (54%) 384 (76%) 

Note. See supplement for additional information. 

 

 

Statistical power. I are interested in whether some words are used more or less 

frequently to describe traits for Infected persons than for Violent persons (i.e., proportion 

differences). Power formulas for the difference between proportions require a non-intuitive 

arcsine transformation to obtain Cohen’s h, which I report and explain next. Participants used a 

total of 3335 trait words. This many words affords 80% power to detect Cohen’s h = 0.07 

(pwr.2p.test function in the pwr package in R; Champely, 2018). Importantly, the size of 

Cohen’s h depends on the difference in proportions and on the size of the proportions compared. 
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For example, a 2% difference from 50% corresponds to a larger Cohen’s h (h = 0.04) than a 2% 

difference from 5% (h = 0.08). 

Procedure. After consenting to participate, participants read: 

 “In this task, we'd like you to imagine two specific kinds of people. Specifically, what do 

these kinds of people look like? When you imagine either of these kinds of people, what 

traits can you see these people having?” 

 Next, participants listed in separate text boxes up to 10 visible traits for an Infected 

person and 10 visible traits for a Violent person, each on a separate page. At the top of each 

page, participants read, “What does an infected [violent] person look like?” above a definition of 

infected [violent]: 

infected: affected or contaminated (a person, organ, wound, etc.) with disease-producing 

germs or pathogens; capable of causing infection in other people 

violent: prone to commit acts of violence; uses physical force intended to hurt, damage, 

or kill someone or something 

Results 

 Analysis Plan. I used the tidytext and wordcloud R packages (Fellows, 2018; Queiroz et 

al., 2019) to extract and count the number of words from participants’ lists of traits (connecting 

i.e. stop words such as “in” and “with” were excluded). Next, research assistants categorized 

synonyms under single, common terms (e.g., angry and anger were both coded as angry). I then 

computed word frequencies by dividing the count of specific words within each threat category 

(e.g., weak, angry) by the count of all words used within that threat category. Finally, I tested 

differences in these proportions between threat categories using Fisher’s Exact Test. 



 

 43 

 Top traits listed within threat categories. Participants most frequently listed eye, pale, 

tired, weak, sick, red, nose, skin, coughing, and sweaty as visible traits for Infected others (see 

Figure 6). The words eye, red, skin, and nose require context to interpret. Each involved 

qualifiers associated with sickness states. For example, eye included “drowsy eyed” and “heavy 

eyebags,” red included “red cheeks” and “red nose,” skin included “greenish/yellowish tinted 

skin” and “pale grey skin,” and nose included “runny nose” and “blowing nose.” In contrast, 

participants most frequently listed angry, face, eye, looking, strong, aggressive, muscular, dark, 

mean, and big as visible traits for Violent others. The words face, eye, looking, and dark also 

involved relevant qualifiers. For example, face included “angry face” and “scowling face,” eye 

included “scary, dark eyes” and “angry eyebrows,” looking included “angry looking” and 

“mean-looking,” and dark included “dark, scary eyes” or was listed by itself. Note that eye was 

used in both Infected and Violent responses, but for different reasons. 
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Figure 6. Reprinted from Michalak and Ackerman (2020). Each panel displays as proportions (x-axis) the top 40 most frequently 

listed visible traits (y-axis) for the Infected target (left panel) or Violent target (right panel). Bar fill indicates whether the word 

was shared (dark grey) or not (white) across threat categories (e.g., the word “eye” is a shared word because it was used to 

describe traits of both threat categories). Error bars represent 95% profile confidence limits. I added a dotted line at 3% for 

reference comparing across panels. 

 

The most frequently used words in Infected trait responses were either not used in the 

Violent trait responses (pale and weak), used significantly less frequently in the Violent 

responses (tired and sick), or were used to describe different impressions than in the Violent 

responses (eye was used to describe “drowsy eyed” for an Infected trait but “scary, dark eyes” 

for a Violent trait) (see Table 4). Similarly, the most frequently used words in the Violent trait 

responses were either not used in the Infected trait responses (aggressive, mean), used 

significantly less frequently in the Infected responses (angry, strong, muscular), or were used to 

describe different impressions than in the Infected responses (face was used to describe 
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“scowling face” for a Violent trait but “pale face” for an Infected trait). Taken together, the trait 

listings suggest that people envision visible traits relatively specific to each threat category. 

Table 4. Reprinted from Michalak and Ackerman (2020). Between-threat category comparisons among top 10 most frequently 

used words within each threat category (Study 1). 

Word Infected Violent OR Lower Upper h 

Eye 4.46% 2.60% 1.75 1.18 2.62 0.10 

Pale 4.28% 0.00% ∞ 19.47 ∞ 0.42 

Tired 3.51% 0.06% 60.02 10.34 2384.35 0.33 

Red 2.50% 0.97% 2.62 1.44 5.01 0.12 

Weak 2.50% 0.00% ∞ 10.95 ∞ 0.32 

Sick 2.38% 0.12% 20.10 5.20 171.68 0.24 

Nose 2.14% 0.12% 18.05 4.63 154.80 0.22 

Skin 2.02% 0.18% 11.34 3.56 57.83 0.20 

Coughing 1.78% 0.00% ∞ 7.63 ∞ 0.27 

Sweaty 1.72% 0.42% 4.12 1.76 11.18 0.13 

Angry 0.18% 5.20% 0.03 0.01 0.10 -0.38 

Face 1.37% 2.96% 0.45 0.26 0.76 -0.11 

Looking 1.31% 2.12% 0.61 0.34 1.08 -0.06 

Strong 0.06% 1.81% 0.03 0.00 0.19 -0.22 

Aggressive 0.00% 1.63% ∞ ∞ 0.14 -0.26 

Muscular 0.12% 1.39% 0.08 0.01 0.34 -0.17 

Dark 0.36% 1.33% 0.27 0.09 0.68 -0.11 

Mean 0.00% 1.33% ∞ ∞ 0.18 -0.23 

Big 0.00% 1.27% ∞ ∞ 0.19 -0.23 

Notes. Words are ordered by frequency within each threat category. The word “eye” topped 

both lists, so we table 19 instead of 20 most frequent words. Grey highlights indicate Infected 

person words. OR represents the odds ratio; lower and upper together represent the 95% 

confidence interval limits for the OR; and h represents Cohen’s h (bolded h values are 

significantly different at 𝛼 = .05). Last, ∞ represents infinity or undefined because one of the 

proportions in the odds ratio was exactly 0. 

 

Discussion 

 Participants in Study 1 listed visible traits they expected infected and violent others to 

have. These form an expectation-driven representation of each category. Participants more often 

listed infection-related traits for infected others than for violent others, and they more often listed 
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violence-related traits for violent others than for infected others. Among the top words used to 

describe traits, words used in both threat categories were usually qualified in ways suggesting 

qualitatively different impressions. These results are most consistent with the threat-specificity 

hypothesis. Participants—like functional threat management researchers—expect infected others 

and violent others to possess visible traits that distinguish the kinds of threats those others pose. 

Study 2 

 Study 2 is conceptually similar to Study 1 in that both studies allow participants to 

deliberate on the features to include in their mental representations. However, Study 2 allows 

participants to visually depict such representations. I asked participants to draw Germy (not 

Infected) and Violent persons in Phase 1, and then, in Phase 2, I had independent participants 

rate subjective features present in the drawings. These subjective ratings allowed us to test 

whether participants expect some features to be more strongly associated with infected people’s 

appearance than other features (i.e., within-category comparisons), as well as whether some 

features better distinguish infected people’s appearance from violent people’s appearance (i.e., 

between-category comparisons). Finally, our last goal concerned the function of mental 

representations: I assessed whether people want to avoid the threatening people depicted in these 

mental images. 

Method 

Phase 1: Drawing faces of Germy and Violent persons 

Participants. I recruited undergraduate psychology student participants between March 

29th, 2017 and April 7th, 2017 (see Table 3 for pertinent sample characteristics). 
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Statistical power. I based power calculations in part on correlations between individual 

differences (see supplementary repository) and features to be judged later (in Phase 2). Casting 

these features as dependent measures, 147 artists afforded 80% power to detect Pearson’s r = .23 

(pwr.r.test function in the pwr package in R; Champely, 2018). 

Procedure. I initially recruited participants for a study focusing on separate research 

questions about infectious disease (see the materials supplement in our repository). At the end of 

that study, participants completed the Perceived Vulnerability to Disease Questionnaire (Duncan 

et al., 2009) and saw a short debriefing page. Then I gave participants a pencil and a piece of 

paper with task instructions and a large oval on both sides. The instructions asked people to draw 

either a Germy face or a Violent face (manipulated within-subjects): “What does a germy 

[violent] person look like? 

germy: full of germs; germ infested; appearing either sick or contaminated 

violent: prone to commit acts of violence; uses physical force intended to hurt, damage, 

or kill someone or something 

Please use the outline for a face below to draw a germy [violent] person.” 

 I chose the Germy label after consulting with our undergraduate research assistants who 

believed that “Germy” would be most interpretable to undergraduate participants (in temporal 

order, this study was run prior to Study 1). See Figure 7 for example drawings (I make all our 

participants' drawings available in our online supplement). Among the 147 participants, 139 

(94.56%) drew both a Germy and a Violent face. Our final stimuli sample comprised 139 pairs of 

drawings2. 

 

2 By accident, 11 raters evaluated 1 or more blank drawings. We report results excluding these ratings. Mean 

differences are similar, and statistical significance decisions are the same whether or not we include these ratings 

data. See analysis supplement in our repository. 
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Figure 7. Reprinted from Michalak and Ackerman (2020). Images depict examples of a Germy drawing rated extremely Germy 

and a Violent drawing rated extremely violent (Study 2). 

 

Phase 2: Measuring feature dimensions of drawn faces 

Participants. I planned to recruit 138 MTurkers (assuming 10% would fail to meet 

inclusion criteria) using TurkPrime (Litman et al., 2017), leaving us with approximately 125 

participants (see preregistration at https://osf.io/utyp6/). I sampled MTurkers until I had recruited 

approximately equal numbers of participants among 56 conditions and N ≥ 125. One hundred 

forty-six participants opened our survey and I paid $0.50 to all 143 (97.95% completion rate) 

participants who submitted their MTurk HIT assignments (see Table 3 for pertinent sample 

characteristics). 

Statistical power. Our final sample (N = 129) afforded us 80% power to detect Cohen’s 

d = 0.35 for the Germy vs. Violent condition effect in the R(NCC) design described in Judd et 

al., 2017: Raters were nested within condition (they only saw Germy or Violent drawings) and 

artists were crossed with drawing category condition (artists drew both Germy and Violent 

faces); these settings combined to make multiple, unique sets of raters and artists. To compute 

this sample size value, I entered into the Shiny Web application (Westfall, 2016, 
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http://jakewestfall.org/two_factor_power/) that accompanies (Judd et al., 2017) the following 

values: total number of participants = 125, Total number of targets = 140, Total number of 

replications = 28, Residual Variance Partition Coefficient (VPC) = 0.4, Participant intercept VPC 

= 0.3, Stimulus intercept VPC = 0.2, and Stimulus slope VPC = 0.1. 

Procedure. Research assistants digitally scanned drawings from Phase 1, cropped-out 

instructions, and adjusted image properties to increase visibility when needed. Because our 

stimuli set comprised 280 drawings, I divided this into 28 sets of five Germy drawings and 28 

sets of five Violent drawings (i.e., 56 sets). Raters were randomly assigned to evaluate one of 

these sets (either Germy or Violent); so, raters saw one drawing per artist. Following consent, 

participants used a 9-point scale to rate each drawing on clarity (i.e., “How clear is this image?”), 

from 0 (Not at all) to 8 (Extremely). This was meant to familiarize participants with the drawings 

(Dotsch et al., 2008, Study 1). Next, participants completed the subjective feature dimension 

rating portion of the study. Participants read definitions for 12 feature dimensions they would use 

to rate the drawings: germy, disfigured, old, heavy, foreign, fatigued, healthy, violent, angry, 

dominant, muscular, and masculine. Participants were asked to confirm in a textbox at the 

bottom of the survey page that they read and understood the definitions. To reduce the number of 

items per screen, participants rated each drawing by itself on groups of four or five features at a 

time using the same 9-point scale they used for clarity ratings. Participants then used this scale to 

report their intentions to interact with the person represented in each classification image: “If you 

were to meet in real life, how much would you want to avoid physical contact with this person?” 

and “If you were to meet in real life, how willing would you be to stand near this person?” 

Finally, participants answered demographic questions, reported what they thought was the 

purpose of the study, and saw a short debriefing. 
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Results 

Analysis plan. For our key analyses, I followed analyses for the R(NCC) design 

recommended by (Judd et al., 2017). For each rating, I fit a linear mixed effects model using the 

lmer function from the lme4 package in R (Bates et al., 2014); Satterthwaite degrees of freedom 

and p-values were calculated using the lmerTest package in R (Kuznetsova et al., 2017). 

Specifically, I regressed feature dimension rating (e.g., germy) onto Drawing Type (Violent = -

0.5, Germy = 0.5), and I specified random intercepts for Rater, random intercepts for Artist, and 

random Drawing Type slopes for Artist (i.e., each Artist has their own Drawing Type effect). 

Do Germy persons appear to have stronger infection-related features than less 

infection-related features? Comparing mean feature ratings within the Germy drawings, I 

found that the Germy drawings appeared to have stronger infection-related features than less 

infection-related features (top left plot of Figure 8; see supplement for pairwise tests). In 

particular, the Germy drawings received high average germy, fatigue, and unhealthy ratings (i.e., 

reverse-scored healthy). 
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Figure 8. Reprinted from Michalak and Ackerman (2020). Mean feature ratings for the expectation-driven Germy representation 

(Study 2) and data-driven Germy and Infected representations (Studies 3-5). I colored the mean bars to highlight features that 

past research has categorized as cues associated with infection (grey fill) or has not examined in this context (white fill). I also 

reverse-scored trustworthy (untrustworthy) and healthy (unhealthy). The dotted line marks the middle of the response scale. 

Error bars represent 95% confidence intervals for individual feature means. 

 

Do people draw Germy and Violent persons differently? Raters judged the Germy 

drawings to be significantly more germy (d = 0.32), less foreign (d = -0.27), less healthy (d = -

0.40), less violent (d =-0.49), less angry (d = -0.64), less dominant (d = -0.62), less masculine (d 

= -0.39), and less muscular (d = -0.26) than the Violent drawings (see Figure 9 for mean 

differences and bootstrapped 95% confidence intervals; Bates et al., 2014). Additionally, raters 

judged the Germy drawings to be marginally less old (d = -0.20) but marginally more fatigued (d 
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= 0.18) than the Violent drawings. I found no sufficient evidence that raters judged the Germy 

drawings as more disfigured (d = -0.02) or heavier (d = -0.04) than the Violent drawings. In sum, 

I found evidence that people imagine Germy and Violent persons with many threat-specific 

features: They draw Germy persons with infectious disease cues—poor health and germiness—

and they draw Violent persons with physical harm cues—foreignness, violence, anger, 

masculinity, and dominance. However, other features associated with pathogen avoidance 

responses (e.g., disfigured, heavy), did not significantly differ between the two sets of threat 

representations. 

 

Figure 9. Reprinted from Michalak and Ackerman (2020). Mean differences in trait ratings between Germy and Violent drawings 

in Study 2. Dark, vertical lines inside crossbars (shaded boxes) depict fixed effects estimates for trait drawing condition (Germy 

– Violent). The widths of the crossbars represent 95% confidence intervals (bootstrap method, 1,000 resamples). Smaller, faded 

points depict observed difference scores (artist Germy drawing ratings minus their Violent drawing ratings). I also reverse-

scored healthy (unhealthy). 
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Do people want to avoid Germy persons more than Violent persons? I found no sufficient 

evidence that raters wanted to avoid people in the Germy drawings more, MDifference 95% CI [-

0.88, 0.37], than the people in the Violent drawings. However, raters were significantly less 

willing to stand near the people in the Germy drawings (d = -0.23). 

Discussion 

In Study 2, participants drew Germy and Violent people, representing their beliefs about 

what people who pose these threats look like. Examining within-category effects, Germy 

drawings appeared to have some stronger infection-related features (e.g., germy, disfigured, 

fatigued, unhealthy) than infection-unrelated features (e.g., violent, angry, dominant). For 

between-category effects, the Germy drawings in Study 2 were rated more germy, more fatigued, 

and less healthy than the Violent drawings (which were rated more violent, angry, old, and 

dominant than Germy drawings). This was not the case for other infection-related features 

previously examined in the pathogen avoidance literature (e.g., Germy drawings were rated less 

foreign and old than Violent drawings), though work in this literature does not typically compare 

cues between threat categories as I have done. Overall, data in the current study are most 

consistent with the threat-specificity hypothesis. 

Taken together, results from the expectation-driven Studies 1 and 2 suggest participants 

represent Infected people with cues that are specific to and diagnostic of infection threat. In 

Study 1, participants listed visible traits for infected persons that are associated with infection 

and that distinguish an infected person from a violent person. In Study 2, participants drew 

infected persons with features that are associated with infection and that distinguish an infected 

person from a violent person. These findings are consistent with the threat-specificity hypothesis, 
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suggesting that representations derived from expectation-driven methods support hypotheses 

from the functional threat management perspective.  

Study 3 

 To complement the expectation-driven approach in Studies 1 and 2, our first goal for 

Study 3 was to estimate people’s mental images of an infected person while limiting the 

influence of participant (and researcher) expectations. Toward this goal, I recruited participants 

to complete a data-driven, 2-image forced choice reverse correlation task. In this task, 

participants selected hundreds of faces that they thought best represent a Germy person. I then 

averaged their selections to make a proxy Germy mental image. Unlike listing traits or drawing 

representations, the reverse correlation task does not allow participants to edit what their final 

representation looks like in order to bring it in line with their expectations. Thus, the influence of 

expectations is limited (though not entirely eliminated). 

Our next goal was, as in Studies 1 and 2, to assess whether this data-driven representation 

appears primarily with features associated with infection and whether these features distinguish it 

from a non-infected person. Last, I assessed whether people want to avoid the person in the 

Germy mental image. 

Method 

Phase 1: Estimating mental images of a Germy person 

Participants. I recruited undergraduate psychology student participants between 

February 26th, 2016 and March 31st, 2016 (see Table 3 for sample characteristics). I excluded 2 

participants: One of these participants fell asleep during the main task and did not complete the 

task nor any questionnaires, and the other participant was legally blind. 
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Statistical power. Following our analysis rationale from Phase 1 from Study 2, 94 chooser 

participants afforded 80% power to detect Pearson’s r = .28 (pwr.r.test function in the pwr 

package in R; Champely, 2018). 

Procedure. For the 2-image forced choice reverse correlation image classification task, I 

first generated 400 pairs of stimuli using the rcicr package in R (Dotsch, 2016). Using the 

software, I generated each stimulus pair by superimposing a random visual noise mask (on one 

of the pair) and its negative (on the second of the pair) on our base image, a grey scale average of 

all male faces in the Karolinska Face Database (Lundqvist et al., 1998) (see Figure 10). For each 

trial of the task, participants saw in random order a pair of these superimposed images and were 

asked to choose the face that looked more “Germy,” our target label representing an infected 

person. After completing the task, participants answered three questionnaires that assessed trait-

level threat concerns (see supplemental repository). 

 

Figure 10. Reprinted from Michalak and Ackerman (2020). From left to right, the images depict our base face, a random noise 

pattern, an example noise pattern superimposed on the base face, and the inverse of the example noise pattern superimposed on 

the base face (Study 3). 

 

Generating mental images: Classification images. Using rcicr (Dotsch, 2016), I created 

a classification image for this sample’s mental image of a Germy person by first averaging the 

noise patterns of each participant’s chosen faces, then averaging those averages across 

participants, and, finally, by superimposing that average onto our base face (see Figure 10). I did 

the same for the faces not selected—the anti-classification image, which represents this sample’s 
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mental image of a non-Germy person. This distinction mimics comparisons described in 

previous research reports (e.g., welfare vs. non-welfare recipients; Brown-Iannuzzi et al., 2018). 

See the non-Germy and Germy classification images in Figure 11. 

 

Figure 11. Reprinted from Michalak and Ackerman (2020). Images depict non-Germy and Germy classification images (Study 3). 

 

Phase 2: Measuring subjective feature dimensions of Germy mental images 

Participants. I planned to recruit at least 260 participants using TurkPrime (Litman et al., 

2017) (see preregistration at https://aspredicted.org/xp2ey.pdf). Between December 28th, 2016 

and December 29th, 2016, I sampled participants until I had recruited approximately equal 

numbers between conditions and N ≥ 260. Participants opened our survey 350 times, and I paid 

$0.50 to all 290 who submitted their MTurk HIT assignments (82.86% submission rate). See 

Table 3 for pertinent sample characteristics.  

Statistical power. Our final sample (N = 272) afforded us 80% power to detect Cohen’s 

d = 0.34 between two independent samples (power.t.test function in the stats package in R; R 

Core Team, 2019), an effect size near the estimated median in intergroup processes research 

(Lovakov & Agadullina, 2017). 

Procedure. I randomly assigned participants (the “raters”) to rate either the Germy 

classification image (n = 135) or the anti-Germy classification image (n = 137). Participants also 

rated additional classification images created to test individual difference effects (see 

supplemental repository). Following consent, participants used a 9-point scale to rate each face 
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on clarity (i.e., “How clear is this image?”), from 0 (Not at all) to 8 (Extremely). This was meant 

to familiarize participants with the images (Dotsch et al., 2008, Study 1). Next, participants 

completed the subjective feature dimension rating portion of the study. Participants read 

definitions for nine feature dimensions they would use to rate the classification images: germy, 

disfigured, heavy, old, foreign, violent, arrogant, incompetent, and trustworthy. Participants were 

asked to confirm in a textbox at the bottom of the survey page that they read and understood the 

definitions. To reduce the number of items per screen, participants rated each classification 

image by itself on groups of four or five features at a time. Participants rated feature dimensions 

using the same 9-point scale they used for clarity ratings. Participants then used the same scale to 

report their intentions to interact with the person represented in each classification image: “If you 

were to meet in real life, how much would you want to avoid physical contact with this person?” 

and “If you were to meet in real life, how willing would you be to stand near this person?” In this 

way, participants first rated feature dimensions of each image, and then they reported their 

intentions to interact with the represented people. Finally, participants answered demographic 

questions, reported what they thought was the purpose of the study, and saw a short debriefing. 

Results 

Analysis plan. To test whether the Germy representation appeared to have stronger 

infection-related features than infection-unrelated features, I compared all pairwise feature mean 

ratings of only the Germy representation, correcting for multiple tests using a Bonferroni p-value 

adjustment (Maxwell, 1980). 

To compare the non-Germy and Germy mental images on the variety of feature 

dimensions described above, I conducted a canonical discriminant analysis using the candisc 

function in the candisc package in R (Friendly & Fox, 2020), and I supplemented this analysis 
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with univariate analyses. Specifically, I used the discriminant procedure to compute a linear 

combination of weights that—when applied to our observed feature dimensions ratings—

maximally distinguishes the non-Germy and Germy mental images. Conceptually, this allows us 

to distinguish the non-Germy and Germy mental images via a multivariate combination of 

feature dimensions—essentially a profile of features—rather than via each feature dimension by 

itself (i.e., ignoring correlations between features). Importantly, this procedure closely 

corresponds to a readily interpretable multivariate effect size, Mahalanobis’s distance (D), which 

combines information from univariate effect sizes and correlations among the measures to index 

the standardized difference between two groups along the discriminant axis. Mahalanobis’s D 

enjoys the same substantive interpretation as the widely used Cohen’s d. Also, like Cohen’s d, 

Mahalanobis’s D can be converted to an overlap coefficient (e.g., d = 0.85 corresponds to 50% 

overlap between two univariate normal distributions). Researchers have used Mahalanobis’s D to 

supplement standard univariate effect size analyses when testing gender differences in Big Five 

personality factors and facets (Del Giudice et al., 2012) as well as in implicit personality traits 

(Vianello et al., 2013). To address interpretation issues due to heterogeneity, I used a 

heterogeneity coefficient—the equivalent proportion of variables coefficient (EPV)—to help 

estimate whether only one or a few feature dimensions (i.e., small EPV coefficients) 

disproportionally account for observed multivariate differences between groups (Del Giudice, 

2017). 

 Last, to test avoidance intentions (e.g., whether raters wanted to avoid the Germy 

representations more than the non-Germy representations), I conducted Welch’s t-tests on the 

“want to avoid” and “willing to stand-near” items. In sum, I used a combination of canonical 
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discriminant analysis, univariate, and multivariate effect sizes to uncover the differences between 

non-Germy and Germy mental images. 

Do Germy persons appear to have stronger infection-related features than less 

infection-related features? Comparing mean feature ratings within the Germy representation, I 

do not find sufficient evidence that the Germy representation appears to have stronger infection-

related features than less infection-related features (top right plot of Figure 8; see supplement for 

pairwise tests). 

Do people discriminate between non-Germy and Germy mental images? Using 

canonical discriminant analyses, I found that the nine feature dimensions combined well to 

maximally discriminate between the non-Germy and Germy mental images (cross-validated 

classification accuracy3: 78%, 95% CI [72%, 83%]), Canonical R2 = .28, F(9, 270) = 11.57, p < 

.001 (see Figure 12A). Along the single feature dimensions, raters judged the Germy mental 

image to be significantly more germy (d = 0.39), more disfigured (d = 0.82), heavier (d = 0.63), 

older (d = 0.80), more foreign (d = 0.70), more violent (d = 0.31), more incompetent (d = 0.34), 

and less trustworthy (d = -0.51) than the non-Germy mental image (see Figure 12B). Raters did 

not judge Germy representations to be significantly more arrogant than non-Germy 

representations (d = -0.01). When considering these feature dimension differences and their 

correlations together, I observed Mahalanobis’s D = 1.25, 95% CI [0.94, 1.42], which 

corresponds to 36.35% overlap (assuming multivariate normality). In other words, subjective 

 

3 We used a leave-one-out cross-validation procedure to fit a linear discriminant model (MASS R package, 

Venables & Ripley, 2002), and we used the posterior probabilities from that model (higher score = higher 

probability the participant rated a Germy representation) to calculate the area under the Receiver Operating 

Characteristic Curve (AUROC) (pROC R package, Robin et al., 2011), the “classification accuracy” value we report 

here and throughout this paper. Higher AUROC values indicate the model is better at distinguishing a Germy face 

from a non-Germy face. We computed confidence intervals around AUROC via a boostrapping procedure (2,000 

stratified resamples). 
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perceptions of the non-Germy and Germy representations do not overlap much (less than 50%), 

suggesting that people do form relatively distinct Germy representations. Importantly, I observed 

some heterogeneity: The equivalent proportion of variables coefficient (EPV) suggests 51% 

(about 5) of the feature dimension ratings contribute equally to the multivariate effect, D. 

Specifically, it seems that perceptions of disfigurement, heaviness, age, and foreignness—the 

dimensions associated with the largest partial correlations—contributed most strongly to 

configural differences in non-Germy and Germy mental images. 

 

Figure 12. Reprinted from Michalak and Ackerman (2020). Together, the panels depict the maximal, configural difference 

between the non-Germy and Germy classification images (Panel A) and the relative contribution of each rating to that difference 

(Panel B) (Study 3). The canonical scores represent participant ratings transformed to maximize the difference in the canonical 

variable between the non-Germy and Germy conditions. Higher scores indicate a more Germy blend, and lower scores indicate a 

more non-Germy blend. Panel A depicts a combination of boxplots and violin plots that visualize representation canonical 

scores. Panel B depicts the direction and magnitude of partial (i.e., condition-adjusted) correlations between the individual 

feature dimension ratings and the canonical scores. Higher scores index the contribution of each feature dimension to the non-

Germy/Germy differences. 
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Do people want to avoid Germy persons more than non-Germy persons? Raters 

reported wanting to avoid the person in the Germy mental image more, MDifference = 0.89, 95% CI 

[0.35, 1.44], t(276.53) = 3.21, p = .001, and they reported being willing to stand near the person 

in the Germy mental image less, MDifference = -0.51, 95% CI [-1.00, -0.02], t(278) = 2.07, p = .040, 

than the person in the non-Germy representation. 

Discussion 

In Study 3, participants generated mental images of Germy people through a reverse 

correlation image classification task. Importantly, the reverse correlation task is a data-driven 

method that limited participant’s ability to edit their mental images in line with what they expect 

a Germy person to look like. Given this constraint on participants, do their estimated 

representations still appear threat-specific like those representations generated via expectation-

driven methods used in Studies 1 and 2?  

An independent sample of participants rated classification images on a variety of feature 

dimensions. Examining only the Germy representation, I did not find sufficient evidence that the 

Germy representation appeared to have stronger infection-related features than less infection-

related features. However, when making multidimensional comparisons between face types, 

people did strongly distinguish between the Germy and non-Germy representations; 

disfigurement, heaviness, age, and foreignness ratings contributed most strongly to configural 

differences. The Germy representations also appeared more violent than the non-Germy 

representations, even though violent appearance is not a direct infection indicator. Last, the 

Germy representation appeared like someone people would want to avoid contact with, a 

motivation likely to reduce the threat posed by real infected people. Taken together, although the 

Germy representation appears to have threat-specific facial features that have been studied in the 
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pathogen avoidance literature, the Germy representation also appears to have a number of 

infection-unrelated negative features; thus, these ratings data are more consistent with the threat-

combination hypothesis—a pattern different from that uncovered through expectation-driven 

methods in Studies 1 and 2.  

Study 4 

 In Study 3, participants held a Germy mental image that—when compared to a non-

Germy image—appeared to have many features associated with infectious disease but that also 

appeared violent, a trait that, at best, is only indirectly linked to infectious disease. One 

possibility is that these feature differences could simply be an artifact of comparing classification 

images to anti-classification images, which are mathematically opposite images (i.e., dark pixels 

in one image are light pixels in the other). However, this artifact explanation need not be true: 

Previous research on this reverse correlation image task suggests anti-classification images can 

be psychologically meaningful (e.g., submissive representations appear similar to anti-dominant 

representations, (Dotsch & Todorov, 2012a). Another possibility is that the label used to 

represent infection threat during the reverse correlation image classification task (“Germy”) was 

imprecise, allowing participants to apply a variety of meanings during the image selection phase. 

 Given these possibilities, I made two key changes in Study 4. First, I replaced the Germy 

label with “Infected.” Though similar to Germy, Infected unambiguously represents our social 

category of interest. Second, participants were assigned to choose faces representing either an 

Infected category or a Healthy category. By comparing representations for Infected and Healthy, 

rather than Infected and a composite of unchosen images (i.e., non-Infected), I can evaluate 

whether the differences found in Study 3 were merely procedural artifacts. If meaningful 

differences emerge between these categories, their pattern can be used to contrast the threat-
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combination hypothesis and the threat-specific feature hypothesis. All other aspects of the study 

design followed those used in Study 3. 

Method 

Phase 1: Estimating mental images of Healthy and Infected persons 

Participants. I recruited undergraduate psychology student participants between January 

22nd, 2018 and March 12th, 2018 (see preregistration at https://osf.io/9t4pr). I tabled pertinent 

sample characteristics in Table 3. I randomly assigned these participants to either a Healthy (n = 

103) or an Infected condition (n = 102). 

Statistical power. The condition with the smallest sample size (n = 102) afforded 80% 

power to detect Pearson’s r = .27 (pwr.r.test function in the pwr package in R; Champely, 2018). 

Procedure. For the reverse correlation task, I first generated 400 new pairs of stimuli 

(i.e., new random noise patterns) using the rcicr package in R (Dotsch, 2016). I used the same 

base face and procedure I used in Study 3 with one design modification: Before starting the task, 

participants read instructions which included a definition of their randomly-assigned target 

category: (1) Healthy, “having or showing good health; not sick or injured; the condition of 

being well or free from infectious disease, ” or (2) Infected, “affected or contaminated (a person, 

organ, wound, etc.) with disease-producing germs or pathogens; capable of causing infection in 

other people.” Participants confirmed with a research assistant that they understood the 

definition. Then they completed a practice trial and confirmed again that they understood before 

starting the task. After completing the task, participants answered three trait-level threat concern 

questionnaires, answered demographic questions, and reported what they thought was the 

purpose of the study. 
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Generating classification images. Using rcicr as in Study 3, I created classification 

images and anti-classification images for participants’ mental images of Infected and Healthy 

(see Figure 13). In total, I created one Infected classification image and one Healthy 

classification image as well as one Infected anti-classification image and one Healthy anti-

classification image. 

 

Figure 13. Reprinted from Michalak and Ackerman (2020). Images depict the non-Infected, Infected, non-Healthy, and Healthy 

classification images (Study 4). 

 

Phase 2: Measuring features of Infected and Healthy mental images 

Participants. I planned to recruit 444 MTurkers using TurkPrime (Litman et al., 2017) so 

I might collect a final N = 400 if 10% of participants failed to meet inclusion criteria (see 

preregistration at https://osf.io/uy4dm). Between March 24th, 2018 and March 25th, 2018, I 

sampled participants until I had recruited approximately equal numbers of MTurkers among four 

conditions and N ≥ 400. Participants opened our survey 555 times and I paid $0.75 to all 464 

(83.60% completion rate) participants who submitted their MTurk HIT assignments (see Table 3 

for pertinent sample characteristics). I randomly assigned these participants to rate either the 

Healthy anti-classification image (n = 106), the Healthy classification image (n = 96), the 

Infected anti-classification image (n = 106), or the Infected classification image (n = 114). As in 

Study 3, participants also rated additional images assessing individual difference effects (see 

supplemental file). 
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Statistical power. Our power analyses reflect our preregistration in which I planned tests 

for all four conditions. Our final sample (N = 414) afforded us 80% power to detect Cohen’s d = 

0.27 for main effects (e.g., all Healthy conditions vs. all Infected conditions) and interactions and 

d = 0.39 for two-cell contrasts (power.t.test function in the stats package in R; R Core Team, 

2019), effect sizes near the estimated median in intergroup processes research (Lovakov & 

Agadullina, 2017). 

Procedure. Procedures mirrored Phase 2 in Study 3 except participants rated mental 

images using an expanded set of 12 subjective feature dimensions that included more infectious 

disease threat and non-infectious disease threat dimensions: germy, disfigured, old, heavy, 

foreign, fatigued, healthy, violent, angry, dominant, muscular, and masculine. 

Results 

Analysis plan. Our analysis plan mirrored our plan from Phase 2 of Study 3. 

Do Infected persons appear to have stronger infection-related features than less infection-related 

features? Similar to Study 3, comparing mean feature ratings within the Infected representation, I 

do not find sufficient evidence that the Infected representation appeared to have stronger 

infection-related features than less infection-related features (bottom left plot of Figure 8; see 

supplement for pairwise tests). 

Do people discriminate between Healthy and Infected mental images? Using 

canonical discriminant analyses, I found that the twelve feature dimensions combined well to 

maximally discriminate between the Healthy and Infected mental images (cross-validated 

classification accuracy: 85%, 95% CI [79%, 89%]), Canonical R2 = .43, F(12, 197) = 12.22, p < 

.001 (see Figure 14A). Specifically, raters judged the Infected mental image to be more germy (d 

= 0.81), more disfigured (d = 0.47), older (d = 0.85), heavier (d = 1.01), more foreign (d = 0.38), 
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more fatigued (d = 1.06), less healthy (d = -0.98), more violent (d = 0.68), and angrier (d = 0.84) 

than the Healthy mental image (see Figure 14B). Raters did not significantly distinguish the 

Infected representation from the Healthy representation on dominance (d = -0.06), muscularity (d 

= -0.06), or masculinity (d = -0.21). When considering these feature ratings differences and their 

correlations together, I observed Mahalanobis’s D = 1.74, 95% CI [1.30, 1.95], which 

corresponds to 23.85% overlap (assuming multivariate normality). Importantly, I observed some 

heterogeneity: The equivalent proportion of variables coefficient (EPV) suggests 45.48% (about 

5) of the feature dimensions contribute equally to the multivariate effect, D. Specifically, it 

seems that perceptions of germiness, heaviness, age, fatigue, health, violence, and anger 

contributed most strongly to configural differences in Healthy and Infected mental images. 

 

Figure 14. Reprinted from Michalak and Ackerman (2020). Together, the panels depict the maximal, configural difference 

between the Healthy and Infected classification images (Panel A) and the relative contribution of each rating to that difference 

(Panel B) (Study 4). The canonical scores represent participant ratings transformed to maximize the difference in the canonical 

variable between the Healthy and Infected conditions. Higher scores indicate a more Infected blend, and lower scores indicate a 
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more Healthy blend. Panel A depicts a combination of boxplots and violin plots that visualize representation canonical scores. 

Panel B depicts the direction and magnitude of partial (i.e., condition-adjusted) correlations between the individual feature 

dimension ratings and the canonical scores. Higher scores index the contribution of each feature dimension to the 

Healthy/Infected differences. 

 

Do people want to avoid Infected persons more than Healthy persons? Raters 

reported wanting to avoid the person in the Infected mental image more, MDifference = 0.91, 95% 

CI [0.24, 1.57], t(201.82) = 2.68, p = .008, and they reported being willing to stand near the 

person in the Infected mental image less, MDifference = -1.00, 95% CI [-1.60, -0.40], t(199.39) = 

3.27, p = .001, than the person in the Healthy representation. Thus, like Study 3, Study 4 raters 

wanted to avoid Infected people more than Healthy people. 

Discussion 

In Study 4, participants generated mental images of either Healthy or Infected people. An 

independent sample of participants rated these on a variety of features. Examining only the 

Infected representation, I did not find sufficient evidence that the Infected representation 

appeared to have stronger infection-related features than less infection-related features. However, 

when making multidimensional comparisons between face types, people did strongly distinguish 

between the Infected and Healthy representations; germiness, heaviness, age, fatigue, health, 

violence, and anger contributed most strongly to configural differences. Also, as in Study 3, the 

Infected representation appeared like someone people would want to avoid contact with. In sum, 

Infected representations had similar mean ratings across negative features, and Infected 

representations were judged to be more extreme than Healthy representations on both disease 

threat-specific features as well as on features not directly linked to infectious disease (violence 

and anger). Thus, as in Study 3, these ratings data are more consistent with the threat-

combination hypothesis. 
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Notably, findings from the Infected category in Study 4 were consistent with those from 

the Germy category in Study 3 in that participants distinguished these composites from their 

respective comparison categories (non-Germy and Healthy) on the same feature dimensions of 

germiness, disfigurement, foreignness, heaviness, age, and violence. These data suggest that 

Infected representations largely overlap with Germy representations (and Healthy with non-

Germy representations), and they are inconsistent with the interpretation that the Study 3 results 

were an artifact of comparing anti-classification images to classification images. This 

interpretation is further supported by objective correlations among the pixel luminance values in 

the images themselves: The Study 3 Germy composite strongly, positively correlated with the 

Study 1B Infected composite (r = .60) and strongly, negatively correlated with the Healthy 

composite (r = -.58), even though all 3 composites were generated in independent reverse 

correlation image classification tasks. 

Study 5 

 So far, data-driven mental images from Studies 3 and 4 indicate that mental images of 

infected people include features previously linked to infectious disease threat as well as some 

features not directly associated with this threat. These data-driven representations appear to more 

strongly support the threat-combination hypothesis over the threat-specific hypothesis, unlike 

images generated through expectation-driven methods. Though data-driven representations may 

include a combination of threatening features, it is also possible that threat-specificity emerges 

more clearly when contrasting representations linked to different types of threats. For example, it 

may be that representations of infected persons appear more germy but less aggressive than 

representations of violent persons. Such representations may possess unique patterns of cues 

indicating that these people pose qualitatively different threats. 
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To examine this possibility, in Study 5 participants chose faces best matching either 

Germy or Violent categories. “Germy” represents a person who poses an infectious disease threat 

(as in earlier Studies), and “Violent” represents a person who poses a physical harm threat. I then 

compared classification images between these two categories, as in Study 4. All other aspects of 

the study design followed those used in prior studies.  

Method 

Phase 1: Estimating mental images of Violent and Germy persons 

Participants. I planned to recruit 200 participants (n = 100 for each target category) 

using TurkPrime (Litman et al., 2017) (see preregistration at https://aspredicted.org/wa5mj.pdf). 

Between February 9th, 2017 and February 10th, 2017, I recruited participants until I had 

approximately equal numbers of participants between conditions and N ≥ 200. Participants 

opened our survey 398 times and I paid $2.00 to all 244 (61.46% completion rate) participants 

who submitted their MTurk HIT assignments (see pertinent sample characteristics in Table 3). I 

randomly assigned these participants to a Violent (n = 102) or Germy (n = 98) condition. 

Statistical power. The condition with the smallest sample size (n = 98) afforded 80% power to 

detect Pearson’s r = .27 (pwr.r.test function in the pwr package in R; Champely, 2018). 

Procedure. For the reverse correlation task, I used the same base face and noise patterns 

generated for Study 3. Like our procedure in Study 4, participants read instructions which 

included a definition of their randomly-assigned target category: (1) Violent, “prone to commit 

acts of violence; uses physical force intended to hurt, damage, or kill someone or something,” or 

(2) Germy, “full of germs; germ infested; appearing either sick or contaminated.” Next, they 

completed a practice trial. Before moving onto the task, participants saw their target definition 

again above a reminder describing which keys correspond to selecting the image on the left or 



 

 70 

right during each trial. After completing the reverse correlation image classification task, 

students completed three trait-level threat concern questionnaires, reported what they thought 

was the purpose of the study, and saw a short debriefing page. 

Generating classification images. Using rcicr, I created classification images and anti-

classification images for chooser participants’ mental images of Violent and Germy (see Figure 

15). In total, I created one Violent and one Germy classification image as well as one Violent 

anti-classification image and one Germy anti-classification image. As in Study 4, I only report 

analyses on classification images. 

 

Figure 15. Reprinted from Michalak and Ackerman (2020). Images depict non-Germy (top left), Germy (top right), non-Violent 

(bottom left), and Violent (bottom right) classification images (Study 5). 

 

Phase 2: Measuring feature dimensions of Violent and Germy mental images 

Participants. I planned to recruit 500 MTurkers using TurkPrime (Litman et al., 2017) 

(see preregistration at https://aspredicted.org/q6wv2.pdf). Between June 13th, 2017 and June 

20th, 2017, I sampled participants until I had recruited approximately equal numbers of 

MTurkers among four conditions and N ≥ 500. Participants opened our survey 726 times and I 

paid $0.75 to all 542 (74.66% completion rate) participants who submitted their MTurk HIT 

assignments; 505/542 (93.17%) met our inclusion criteria (see Table 3 for pertinent sample 

characteristics). I randomly assigned these participants to rate a Violent anti-classification image 

(n = 124), a Violent classification image (n = 127), a Germy anti-classification image (n = 129), 
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or a Germy classification image (n = 126). As in Studies 3 and 4, participants also rated 

additional images assessing individual difference effects (see supplement). 

Statistical power. Our final sample (N = 505) afforded us 80% power to detect Cohen’s d = 0.25 

for main effects and interactions and d = 0.35 for two-cell contrasts (power.t.test function in the 

stats package in R; (R Core Team, 2019), effect sizes near the estimated median in intergroup 

processes research (Lovakov & Agadullina, 2017). 

Procedure. Procedures mirrored those from Phase 2 in Study 4. 

Results 

Analysis plan. Our analysis plan mirrored our plans from Phase 2 of Studies 3 and 4. 

Do Germy persons appear to have stronger infection-related features than less 

infection-related features? As in earlier studies, comparing mean feature ratings within the 

Germy representation, I do not find sufficient evidence that the Germy representation appears to 

have stronger infection-related features than less infection-related features (bottom right plot of 

Figure 8; see supplement for pairwise tests). 

Do people discriminate between Violent and Germy mental images? Using canonical 

discriminant analyses, I found that the twelve subjective feature dimensions combined well to 

maximally discriminate between the Violent and Germy mental images (cross-validated 

classification accuracy: 72%, 95% CI [65%, 77%]), Canonical R2 = .22, F(12, 240) = 5.60, p < 

.001 (see Figure 16A). Specifically, raters judged the Germy mental image to be less old (d = -

0.28), less foreign (d = -0.72), less violent (d = -0.59), less angry (d = -0.68), less dominant (d = 

0.60), less muscular (d = -0.50), and less masculine (d = -0.34) than the Violent mental image 

(see Figure 16B). Raters did not judge the Germy representation as significantly more germy (d 

= -0.09), disfigured (d = -0.12), heavy (d = -0.23), fatigued (d = 0.21), or healthy (d = -0.14) than 
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the Violent representation. When considering these trait differences and their correlations 

together, I observed Mahalanobis’s D = 1.05, 95% CI [0.77, 1.20], which corresponds to 42.70% 

overlap (assuming multivariate normality). Importantly, I observed some heterogeneity: The 

equivalent proportion of variables coefficient (EPV) suggests 36.61% (about 4) of the feature 

dimensions contribute equally to the multivariate effect, D. Specifically, it seems that 

perceptions of foreignness, violence, anger, and dominance contributed most strongly to 

configural differences in Violent and Germy mental images. 

 

Figure 16. Reprinted from Michalak and Ackerman (2020). Together, the panels depict the maximal, configural difference 

between the Violent and Germy classification images (Panel A) and the relative contribution of each rating to that difference 

(Panel B) (Study 5). The canonical scores represent participant ratings transformed to maximize the difference in the canonical 

variable between the Violent and Germy conditions. Higher scores indicate a more Germy blend, and lower scores indicate a 

more Violent blend. Panel A depicts a combination of boxplots and violin plots that visualize representation canonical scores. 

Panel B depicts the direction and magnitude of partial (i.e., condition-adjusted) correlations between the individual feature 

dimension ratings and the canonical scores. Higher scores index the contribution of each feature dimension to the Violent/Germy 

differences. 
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Do people want to avoid Germy persons more than Violent persons? I found no 

sufficient evidence that raters wanted to avoid the person in the Germy mental image more, 95% 

CI [-1.10, 0.10], or stand near them less, 95% CI [-0.44, 0.67], than the person in the Violent 

mental image. Thus, the composites appear to be perceived as equally threatening, in general. 

Discussion 

As in Studies 3 and 4, I found no sufficient evidence that the Germy representation 

appeared to have stronger infection-related features than infection-unrelated features. However, 

unlike Studies 3 and 4 in which I compared mental images of people associated with infectious 

disease threat to representations of people who presumably pose no threat (i.e., non-Germy, 

Healthy), in Study 5, I compared a representation of infection threat to a representation of a 

violence threat. This comparison afforded us a complementary test of our hypotheses. 

Among the subjective feature dimensions measured, perceptions of foreignness, violence, 

anger, and dominance contributed most strongly to configural differences between Violent and 

Germy mental images. These contrasts suggest Germy mental images—when compared to 

Violent mental images—appear to share many of the same disease threat-specific feature 

dimensions studied in the pathogen avoidance literature (e.g., germy, healthy, disfigured). This is 

indexed in part by lower classification accuracy by the canonical discriminant analysis (compare 

78% and 85% accuracy when distinguishing infection threat from no-threat in Studies 3 and 4 to 

72% when distinguishing infection threat from violence threat in Study 5). From the threat-

specific perspective, this pattern is surprising. Though the Germy representations do possess 
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infectious disease features4, Violent representations also possess such features. In contrast, 

Germy representations appear to pose less of a physical harm threat relative to Violent 

representations (e.g., less violent, angry, dominant). Thus, Germy representations are marked by 

infectious disease threat-specific features, but these features do not appear to be more 

pronounced than the same features in the Violent representations. Also, even though the Violent 

representation appeared to pose a stronger physical harm threat, I found no sufficient evidence 

that raters wanted to avoid such a person more than the person represented in the Germy image.  

The partial overlap between features associated with both Germy and Violent 

representations is further supported by objective correlations between their pixel luminance 

values. The Violent image correlates less strongly with the Germy image from Study 5 (r = .45) 

and Study 3 (r = .32) than the Study 5 Germy image correlates with the Infected image from 

Study 4 (r = .65) and the Germy image from Study 3 (r = .60). 

Taken together, these data suggest people represent both Germy and Violent persons with 

features from multiple specific threats, but Violent representations possess more prominent, 

physical harm threat-specific features. I interpret these patterns as being most consistent with the 

threat-combination hypothesis. 

General Discussion 

I started this research with a simple question: How do people mentally represent distinct 

interpersonal threats? I proposed two hypotheses. The threat-specificity hypothesis predicts that 

people mentally represent distinct interpersonal threats with features specific to and diagnostic of 

 

4 Whether we compare Germy representations to non-Germy representations (Study 3) or Infected to Healthy 

representations (Study 4), the infectious disease threat representation is consistently rated more germy, more 

disfigured, more fatigued, and less healthy. 
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those threats. Alternatively, the threat-combination hypothesis predicts that people mentally 

represent distinct threat categories with a combination of threat features common across multiple 

types of threats. In tests of these hypotheses using different methodological approaches, I found 

that expectation-driven approaches—those privileging participant beliefs, stereotypes, and 

intuitions—revealed strong evidence of threat-specificity. In contrast, data-driven approaches—

those constraining top-down processes—revealed evidence more consistent with the threat-

combination hypothesis. For example, participants who listed traits or drew images of their 

representations associated infection threat with infection-specific features and violence threat 

with aggression-specific features. But when participants produced mental images through the 

reverse correlation task, both threat representations included infection- and violence-relevant 

features (though the magnitude of these features differed across categories). These patterns 

suggest two key takeaways: (1) consistent with a functional perspective, threat-specificity 

emerges in representations most strongly when perceivers can control the content of their 

responses through editing, stereotype application, and so on, and (2) method matters. 

Implications 

The patterns uncovered here have implications for our understanding of pathogen 

avoidance psychology as well as threat management more generally. Research on how people 

process and react to others in the context of pathogen threat has commonly focused on a small 

set of cues that elicit negative interpersonal responses, such as unfamiliarity (e.g., foreignness, 

outgroupness; (Aarøe et al., 2017; Faulkner et al., 2004) and aspects of physical appearance (e.g., 

obesity, age, unattractiveness; Duncan & Schaller, 2009; Park et al., 2007; Tybur & Gangestad, 

2011). The study of such cues is premised on functional perspectives that emphasize the specific 

costs and consequences of infection relative to other types of threat (Neuberg et al., 2011). 
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Additionally, many of these research findings stem from participant reactions to researcher-

selected threat cues. Yet, our findings suggest that mental images of infected persons generated 

through data-driven methods include features that are not specific to pathogen threat (e.g., 

anger). Such results suggest that approaches drawing on functional (and other) perspectives 

could benefit from use of more diverse methods. The fact that representations were more distinct 

when responses were unconstrained indicates participants expect threat-specificity much like 

functional threat management researchers often do. An implication is that research that focuses 

too narrowly on threat-specific cues may overlook the complex ways in which people represent 

and understand these hazards.  

This social cognitive and perceptual approach to infection threat also raises questions 

about the downstream consequences of holding mixed-threat mental representations. For 

instance, perceivers may draw negative inferences about others displaying cues associated with 

infection not only because perceivers anticipate the potential for infection but also because they 

infer the potential for other harms. Such inferences could influence the stereotypes perceivers 

apply (e.g., broadly negative), attributions they make (e.g., difficult, hostile), and behavioral 

responses (e.g., avoid) to these people. Outside the lab, these threat management processes could 

affect how sick people (and those merely resembling sick people) are treated. 

Last, our findings speak to how people measure and conceptualize mental representations 

of other social categories. Researchers study social categories using a variety of methods, 

including the methods used here. However, they do not always explicitly consider whether 

different methods can privilege different psychological processes, thereby affecting their 

conclusions about how people represent social categories. Given I found participants emphasize 

different features in their mental representations depending on their task, it is possible that 
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mental representations of other social categories (including ones not associated with threat) 

might “look” different depending on the methods researchers use to estimate them. Perhaps the 

best solution to this challenge is the use of multiple methods whose strengths compensate for the 

limitations of other methods, providing a more holistic view on representations.  

Limitations and future directions 

The methods I employed here have many strengths such as the fact participants 

themselves constructed interpersonal threat representations rather than merely responding to 

representations provided by researchers. And the use of both expectation-driven and data-driven 

methods allows us to evaluate the influence of top-down processes on the generation of mental 

representations. However, these methods are limited in certain ways.  

First, the reverse correlation image classification task entails trade-offs in process and 

final image generation. During this task, participants make all their selections first, and then 

researchers use software to average those selections. This average serves as a proxy mental 

image. Because participants do not see this mental image emerge as they make selections, they 

cannot adjust their representation as they see fit over the course of the task. Some may view this 

task feature as a limitation because mental representations emerge dynamically and draw from 

multiple sources of information in the mind, including salient stereotypes (Carlston & Smith, 

1996; Freeman & Ambady, 2011; Sherman, 1996; Wyer, 2007). In our case, I found it useful to 

compare representations with and without this constraint feature. 

Perhaps more importantly, reverse correlation classification images are created by 

averaging pixel patterns. Averaging is likely to obscure asymmetrical features that are 

hypothesized to reflect lower immunocompetence and, therefore, greater infection risk (Thornhill 

& Gangestad, 2006). Averaging pixel patterns may also blur random variations that represent 
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skin blotches, sores, or other skin anomalies associated with infectious disease. Does this issue 

invalidate the use of the reverse correlation task for estimating mental images of infected others? 

Not necessarily. Consider the responses given when participants used an expectation-driven 

procedure in Study 1. Participants listed features such as drowsy eyes, tired, weak, and sick, all 

of which can be perceived in principle (and qualitatively) in the composite images from Studies 

3-4. High-level features like these emerge from specific patterns of eye, mouth, and eyebrow 

configurations, and the reverse correlation task is well suited to recovering such features. Thus, 

although this task cannot generate representations with certain features, our finding that the 

images generated from this task differed from images generated by methods like active drawing 

need not imply a methodological problem. This difference simply highlights that expectation-

driven methods can limit our understanding of people’s representations. 

An additional concern about the reverse correlation task is that participants could simply 

select whichever images they perceived more negatively rather than selecting the images they 

perceived as more infected or violent per se. If so, the final classification images are averages of 

negative features rather than threat-specific features. I propose the data suggest otherwise. A 

negative feature choice rule should produce classification images with negative traits in roughly 

equal magnitude within and between threat representations. This was not the case. Within the 

germy/infected category, mental images included statistically distinguishable feature differences 

(not all negative traits were the same). The pattern of ratings and their correlations strongly 

distinguished the infected and violent representations, even though both categories appeared 

negative along many dimensions. In addition, certain feature ratings more strongly contributed to 

differences between categories (e.g., fatigue and healthy, Study 4), and the pixel luminance 

values of the germy and infected composites were more strongly correlated with each other than 
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with the violent images, across studies. Thus, rather than generate indiscriminately negative 

images, participants generated images with distinct patterns of negative features.   

Although the expectation-driven methods used in Studies 1 and 2 may appear less limited 

than the reverse correlation task, they too have certain limitations. I detailed a primary one 

earlier—expectation-driven methods allow participants to edit their representations, which may 

look very different compared to their spontaneous representation. In addition, expectation-driven 

methods are susceptible to social desirability bias. For example, participants may associate a 

specific group with infection or germs but craft an image that does not reveal this association to 

researchers. 

Future research might overcome the limitations of both the reverse correlation image 

classification task and the drawing method by using a task that provides on-the-fly representation 

updating by dynamically constructing a composite after each participant face choice and 

allowing participants to view this composite prior to the next face choice. In this way, a variety 

of hypothesized asymmetries (Thornhill & Gangestad, 2006) and skin anomalies could emerge in 

representations rather than blend together in a final average image. I are not aware of such a task, 

but I expect that this would be valuable to researchers interested in studying such cues. 

Other limitations of our methods stem from stimuli-specific design decisions. Following 

early research on the reverse correlation image classification task (e.g., Dotsch et al., 2008, I 

used a grayscale base image that averages over a variety of White men making neutral 

expressions (Lundqvist et al., 1998). Thus, participants in our studies could not generate mental 

images of germy, infected, or violent people who were non-white, female, or in color. Each of 

these choices produces limitations that could be addressed in future research. One might expect 

that associations between certain demographic categories and threats produce somewhat different 
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mental representations than those found here. For instance, do some perceivers represent infected 

people with male features more than female features (as many infectious diseases are more 

prevalent in men; van Lunzen & Altfeld, 2014)? Are perceivers more likely to include other 

types of threat features in their representations of infection when faces depict groups 

stereotypically associated with certain threats (e.g., Black men are often stereotyped as 

aggressive in the United States; (Devine, 1989; Hugenberg & Bodenhausen, 2003)? 

The use of color images in the reverse correlation task is a particularly interesting avenue 

for future work. Although greyscale base images are standard in the literature (Lundqvist et al., 

1998), mental representations of infected people may commonly include color cues. For 

example, infected person representations may contain red pox or yellow-tinged skin or eyes (i.e., 

jaundice). Future research could allow reverse correlation stimuli to vary along relevant color 

dimensions or test questions about how people mentally represent color in infected others. 

Toward this goal, Gill et al., (2015) are developing a task that incorporates color using a “Bubble 

Warp” approach, using random, colored image fragments rather than greyscale faces overlaid 

with random noise (Gosselin & Schyns, 2001). Including color in the face could make a 

meaningful difference in healthy and infected appearance, and such color deviations (e.g., pale 

skin, red skin patches) could even help distinguish an infected representation from another threat 

category. 

Conclusion 

Over the course of human history, a variety of interpersonal threats like communicable 

diseases and interpersonal violence have posed strong selection pressures that favored the 

development of psychological systems that help people identify and ultimately reduce these 

threats. In this research, I examined whether the same cues that prior research has shown people 
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associate with infection and violence threats emerge in their mental representations of those 

threats. I found evidence that threat-specific cues do characterize these representations, but this 

was primarily true when the mental representation task allowed participants to deliberate on and 

edit their representations, privileging their expectations. In contrast, when a data-driven reverse 

correlation task constrained the influence of such expectations, mental images appeared 

distinguishable but with combinations of cues common across multiple distinct threat categories. 

Thus, the methods we employ to measure types of mental representations may shape the 

conclusions we draw about those representations. A multi-method approach may be our best 

option for fully capturing how people represent threat in their mind’s eye. 
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Chapter IV. Discussion 

 Humans have been battling harmful pathogens for a long time, long enough to have 

developed sophisticated physical, psychological, and behavioral defenses against them. The 

physical immune system possesses remarkable machinery for identifying invading pathogens and 

eliminating them from the body, but its metabolic costs are too high to rely on it as the only 

defense mechanism. Humans have likely evolved another line of defense to reduce such costs: a 

behavioral immune system capable of identifying and avoiding pathogen infections in the first 

place. In chapter one, I laid out an evolutionary argument for the behavioral immune system as 

well as empirical evidence for one of its main hypotheses: the over-perception hypothesis. That 

is, given uncertainty inherent in identifying infection risks from imperfect cues and asymmetric 

costs in identification errors (i.e., false negatives are probably more costly), the behavioral 

immune system evolved a functional bias toward false positive errors: perceiving infection in 

objectively non-infectious cues. In chapters two and three, I investigated potential social 

perception mechanisms of the behavioral immune system that expand on this over-perception 

hypothesis. 

 In chapter two, I introduced the idea of proper and actual domains of the behavioral 

immune system. To review, researchers argue that functional mental modules like the behavioral 

immune system possess specialized functions with restricted inputs. Theoretically, the behavioral 

immune system evolved to process cues that correlate with infection—its proper domain of 

inputs (e.g., rashes, pustules, swelling). Given the design of its perceptual mechanisms, the 

behavioral immune system is capable of processing cues that share perceptual features with true 
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infection indicators (e.g., port-wine stain birthmarks, acne, obesity). The set comprising these 

cues and the proper domain cues constitute the actual domain. 

 In chapter two, I tested the hypothesis that people more strongly associate infection 

concepts with facial disfigurement than with obesity because facial disfigurement more closely 

resembles proper domain cues of the behavioral immune system than obesity does. I found 

support for this hypothesis across three studies that varied the nature of the comparison 

(between-subjects vs. within-subjects) and whether participants knew the facial disfigurement 

was benign. Importantly,in a fourth study,  I did not find support for an alternative hypothesis 

that people associate any negative concepts more strongly with facial disfigurement than with 

obesity (e.g., laziness). All together, these results are consistent with the hypothesis that facial 

disfigurement more closely resembles a proper domain cue of the behavioral immune system 

than obesity does. 

 In chapter three, I used a variety of methods to investigate how people mentally represent 

infected others. I proposed two hypotheses for how these mental representations may appear. 

First, I proposed the threat-specificity hypothesis: people represent infected others with features 

that diagnose infection. Second, I proposed the threat-combination hypothesis: people mentally 

represent infected others with a variety of threatening features, including features that correlate 

with infection. Support for these hypotheses depended on the method I used to measure mental 

representations. The trait-listing and drawing methods yielded representations that appeared 

more consistent with the threat-specificity hypotheses, whereas the reverse correlation 

classification images yielded representations that appeared more consistent with the threat-

combination hypothesis. All together, the results are consistent with the notion that methods that 

incorporate researcher or participant expectations (e.g., infected people should only look 
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infected) are more likely to yield results in line with those expectations. It turned out that 

participants in my studies expected infected people to have infection-specific features. But when 

they could not easily edit their representation in line with their expectations during the reverse 

correlation classification task, their aggregate choices appeared to have threatening features less 

diagnostic of infection (e.g., representations appeared angry and dominant). 

Limitations and Future Directions 

 The research I presented in my dissertation yields insights into psychological 

mechanisms of the behavioral immune system, but the research designs I used limited the 

conclusions I could draw from the results. In chapter two, I claimed that facial rashes are a 

proper domain cue of the behavioral immune system and obesity is not, so people should more 

strongly associate infection with facial rashes and cues that resemble facial rashes than with 

obesity. Proper domain cues for the behavioral immune system should have a relatively long 

history of diagnosing infection in people. This is probably the case for facial rashes and less the 

case for obesity or even facial swelling (Wolfe et al., 2007) (though this premise needs more 

empirical support). Thus, the observed stronger association between infection concepts and facial 

disfigurement than with obesity is consistent with the hypothesis that facial disfigurement 

resembles a proper domain cue and obesity is not, or perhaps both cues resemble proper domain 

cyes but facial disfigurement resembles are more diagnostic, less noisy proper domain cue. 

However, the results are also consistent with the hypothesis that people learn associations 

between infection concepts and a variety of cues over their lifetime (i.e., cultural learning). A 

stronger test of this hypothesis would specify when during the life course humans might develop 

pathogen detection mechanisms (e.g., when they’re able to avoid potentially infected people 

themselves). People should more strongly associate infection with proper domain cues during 
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and after this developmental stage. Similarly specified evolutionary hypotheses have been 

proposed for different psychological systems, such as the development of food neophobia, 

attachment and reproductive strategies, emotion, and danger learning ((Cashdan, 1998; Clark 

Barrett et al., 2016; Del Giudice, 2009; Frankenhuis, 2019; Wright, 1991). In general, aside from 

measuring disgust sensitivity in children, researchers have not tested behavioral immune system 

hypotheses in infants or children. It remains an open question how the behavioral immune 

system develops and operates over the life course. 

 In chapter three, I claimed to have measured people’s mental representations of infected 

and violent others. In my general discussion in that chapter, I described important sampling 

characteristics that limited my findings as well as many findings in the behavioral immune 

system literature (Henrich et al., 2010). Despite that limitation, chapter three serves as a rough 

template for how behavioral immune system researchers as well as threat management 

researchers more broadly might develop mental representations as constructs. Researchers in 

these subfields develop and test a variety hypotheses about traits and motivations associated with 

categories of people: infected people, violent people, romantic partners, leaders, coalition 

members, friends, cheaters, parents, children, and so on (Boyer et al., 2015; Delton et al., 2012; 

Karremans et al., 2011; Krems & Conroy-Beam, 2020; Kurzban et al., 2001; Li et al., 2019; 

Neuberg et al., 2011; Van Vugt et al., 2008). In many cases, researchers are not necessarily 

interested in how social categories are represented but in how people think or feel about them or 

behave toward them. However, obviously, social psychological processes and behaviors depend 

on how social categories are perceived and represented, so it is worthwhile to study the 

representations themselves. How? As my research in chapter 3 demonstrates, what one concludes 

about how people perceive a social category depends on how you measure it. There’s no single 
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method in the social sciences that captures how people represent or perceive a social category. 

People may self-report their social category representations differently than they draw them and 

differently than patterns extracted from categorization tasks they complete (e.g., classification 

images from reverse correlation tasks). Researchers would benefit from developing social 

category representations with the same theoretical and exploratory rigor that they use to develop 

other constructs (Campbell, 1960; Cronbach & Meehl, 1955). 



 

 87 

Conclusion 

 In my dissertation, I investigated two broad psychological phenomena of the behavioral 

immune system: the proper domain of the behavioral immune system and mental representations 

of infected others. First, I observed initial evidence that people associate infection concepts more 

strongly with some anomalous yet benign facial features than with others, theoretically because 

the former more closely resembles cues the behavioral immune system was designed to 

process—its proper domain. Second, I used a variety of methods to measure how people 

mentally represented infected others and found that people listed traits and drew infected people 

with predominantly infection-related features (e.g., unhealthy, disfigured) but their reverse 

correlation classification images appeared with both infection-related and infection unrelated 

features (e.g., angry, dominant). These results yield novel insights into the mental mechanisms of 

the behavioral immune system. 
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