
Inclusion of Geometrically Nonlinear Aeroelastic
Effects into Gradient-Based Aircraft Optimization

by

Christopher A. Lupp

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Aerospace Engineering)

in the University of Michigan
2020

Doctoral Committee:
Professor Carlos E.S. Cesnik, Chair
Professor Peretz P. Friedmann
Professor Kevin J. Maki
Professor Joaquim R.R.A. Martins

muss sein!Essein!Es musses sein?Muss

—Ludwig van Beethoven, String Quartet No. 16 (Op. 135)

Christopher A. Lupp

clupp@umich.edu

ORCID iD: 0000-0003-3436-549X

© Christopher A. Lupp 2020

ACKNOWLEDGMENTS

I would like to thank my advisor Prof. Carlos Cesnik for the opportunity he gave me
to complete this work, as well as for the support and advice over the years. I would
also like to extend my gratitude to my committee members, Prof. Martins, Prof.
Friedmann, and Prof. Maki.

I would also like to thank Cristina Riso, Divya Sanghi, Joshua Deaton (AFRL), Phil
Beran (AFRL), Ziyang Pang, Jessica Jones, and Ryan Kitson for their help in the
course of this work.

This work was supported in part by the NASA Advanced Air Transport Technology
(AATT) High Aspect Ratio Wing (HARW) NRA Award (Karen Taminger and Carol
Wieseman).

This work was supported by the U.S. Air Force Research Laboratory (AFRL) under
the Michigan-AFRL Collaborative Center in Aerospace Vehicle Design (CCAVD),
with Dr. Philip Beran as the task Technical Monitor. Opinions, interpretations,
conclusions, and recommendations are those of the authors and are not necessarily
endorsed by the United States Government.

ii

TABLE OF CONTENTS

Acknowledgments . ii

List of Figures . vii

List of Tables . x

List of Appendices . xi

List of Abbreviations . xii

List of Symbols . xiv

Abstract . xix

Chapter

1 Introduction . 1
1.1 Previous Work . 5

1.1.1 Flutter Constraints . 5
1.1.2 Multi-Fidelity Problems . 8

1.2 Scope of this Work . 9

Part I Methods . 11

2 Determining Gradients . 12
2.1 Finite Difference Method . 12

2.1.1 Derivation . 13
2.1.2 Implementation and Accuracy 13

2.2 Complex Step Method . 14
2.2.1 Derivation . 15
2.2.2 Implementation and Accuracy 15

2.3 Semi-Analytical Methods . 17
2.3.1 Derivation . 18
2.3.2 Implementation and Accuracy 20

2.4 Algorithmic Differentiation . 21
2.4.1 Principle . 21
2.4.2 Implementation and Accuracy 24

iii

3 UM/NAST Theoretical Formulation 26
3.1 Nonlinear Coupled Equations of Motion 27

3.1.1 Strain-Based Beam Formulation 27
3.1.2 Aerodynamics . 31
3.1.3 Full Equations of Motion 33

3.2 Linearized Equations of Motion . 35
3.2.1 Finite Difference Method 36
3.2.2 Complex Step Method . 37
3.2.3 Algorithmic Differentiation 39
3.2.4 Semi-Analytical . 40

4 Flutter Analysis and Interpretation 44
4.1 Generalized Interpretation of Flutter Problems 44

4.1.1 Interpretation of Linear Flutter Analyses 46
4.1.2 Interpretation and Visualization of Nonlinear Flutter Problems 48

4.2 Flutter Search Including Geometrical Nonlinearities 52
4.3 Determining a Flutter Point . 53

4.3.1 Choosing the Search Variable 54
4.3.2 Mode Tracking . 55
4.3.3 Root-Finding Algorithm . 56
4.3.4 Flutter Point Algorithm . 59

4.4 Determining the Flutter Boundary 60
4.4.1 Non-Adaptive Search . 61
4.4.2 Additional Remarks . 62

5 Geometrically Nonlinear Flutter Constraint 64
5.1 Constraining Damping vs. Dynamic Pressure 65
5.2 Aggregation Methods . 65

5.2.1 p-Norm Aggregation . 67
5.2.2 Kreisselmeier-Steinhauser Functions 67

5.3 Flutter Constraint Formulation . 69
6 Flight Envelope Sampling . 72

6.1 Hypercube Sampling . 72
6.2 Problems with Hypercube Sampling 73
6.3 Constrained Sampling . 73

7 Determining Equivalent Beam Properties 79
7.1 Mass Condensation . 79

7.1.1 Function Values . 79
7.1.2 Gradients . 82

7.2 Stiffness Condensation . 84
7.2.1 Function Values . 84
7.2.2 Gradients . 91

iv

Part II Tools . 93

8 Algorithmic Differentiation . 94
8.1 Adept . 94
8.2 CoDiPack . 95
8.3 Selecting the Algorithmic Differentiation Tool 95

8.3.1 Performance Benchmarks 96
8.3.2 Tool Selection . 97

8.4 Implementational Aspects . 98
9 MDO Framework . 100

9.1 OpenMDAO . 100
9.2 mphys . 101
9.3 FEMtoBeam . 102

10 UM/NAST Version 4.2 . 104
10.1 Historical Background and Motivation 104
10.2 Code Design . 108

10.2.1 Model and Solvers . 108
10.2.2 Design Usage Patterns . 110
10.2.3 Extensions . 112
10.2.4 Templated Code . 113
10.2.5 Impact of Code Design on Performance 113

11 MDO–NAST . 116
11.1 Common Concepts . 116
11.2 Static Gradient Helpers . 119
11.3 Modal Gradient Helpers . 119
11.4 Dynamic Gradient Helpers . 120
11.5 Search Point Gradient Helpers . 120
11.6 OpenMDAO Components . 121

Part III Numerical Studies . 123

12 Aeroelastic Models . 124
12.1 Blended Wing Body . 124
12.2 Undeflected Common Research Model 125

13 Flutter Prediction . 128
13.1 Flutter Point Prediction . 128
13.2 Flutter Boundary Prediction . 133

14 Verification of Nonlinear Aeroelastic Gradients 135
14.1 Static Aeroelastic Gradient Verification 135
14.2 Modal Gradient Verification . 137

v

14.3 Flutter Gradient Verification . 138
14.4 Gradient Evaluation Performance 139

15 Beam-Based Optimization Studies . 141
15.1 Cross Section Properties . 141
15.2 Flight Envelope . 142
15.3 Drag Prediction . 144
15.4 Fuel Burn Prediction . 145
15.5 Optimization Including Static Constraint 146
15.6 Optimization Including Flutter Constraints 149

16 Multi-Fidelity Studies . 153
16.1 Mass Condensation Verification . 154
16.2 Stiffness Condensation Verification 156
16.3 uCRM Studies . 157

16.3.1 Aerostructural Convergence Studies 158
16.3.2 Aerostructural Optimization 158
16.3.3 Multi-Fidelity Problem . 161

16.4 Future Work . 163

Part IV Conclusions . 165

17 Concluding Remarks and Contributions 166

18 Potential Future Work . 170
18.1 UM/NAST . 170
18.2 Flutter Constraint . 171
18.3 Multi-Fidelity Problem . 173
18.4 Aircraft Design Studies . 174

Appendices . 175

Bibliography . 185

vi

LIST OF FIGURES

1.1 High performance aircraft increasingly feature very flexible wings. Aeroe-
lastic instabilities must be properly identified and mitigated during vehicle
design. 2

1.2 The cost associated with design change increases substantially in later
design phases. One approach to avoid costly design changes late in the
process is to account for more analyses and phenomena earlier. 4

2.1 Comparison the gradient accuracy for the forward difference (gray), cen-
tral difference (orange), and complex step (blue) methods for the function
f (x) = x3. 16

3.1 Coordinate system definitions within University of Michigan’s Nonlinear
Aeroelastic Simulation Toolbox (UM/NAST). 27

3.2 Aerodynamics within UM/NAST is accounted for using strip theory with
a lifting section to every beam node. 32

4.1 Time component of the stability solution depending on the sign of the
respective eigenvalue parts. 46

4.2 Examples of V-g and root locus diagrams (showing two modes) typically
used during linear flutter analyses. 47

4.3 A qualitative extended V-g diagram (angle of attack vs. dynamic pres-
sure) for the first mode damping values with different flutter search paths.
The contours denote the damping values of the mode closest to zero.
Dashed contour lines indicate negative damping values. 50

4.4 Different flutter search types in a modeled atmosphere. 54
4.5 Flow chart of the implemented mode tracking algorithm. 57
4.6 Algorithm utilizing mode-tracking and kriging surrogates for accurate pre-

diction of the flutter point including geometrical nonlinearities. 60

5.1 Design changes from a configuration A to a configuration B may lead to
discontinuities in a flutter constraint due to mode-switching (5.1a, 5.1b)
or a hump mode (5.1c, 5.1d). 66

5.2 Example of KS aggregation over two constraints with varying parameter
ρ̄. 68

5.3 Qualitative example of the sequential application of KS aggregation to
obtain a scalar, geometrically nonlinear flutter constraint. 71

vii

6.1 Comparison of different hypercube sampling methods. 74
6.2 Underfitting (left) and overfitting (right) of the flight envelope using a

hypercube. If the evelope is underfit critical damping values may not
be considered for the flutter constraint, while overfitting may not yield a
solution for points outside the flight envelope. 75

6.3 Initial pseudo random sampling of the domain using hypercube and final
sampling process using a cMm method. Sample points outside of the
constrained area are discarded during the initial sampling. The final
sampling process using a cMm approach yields a low discrepancy sample. 76

6.4 Comparison of the constrained Maximin sampling using different Eu-
clidean distance weights. 78

7.1 Relationship between a mass element and the beam reference node. . . 80
7.2 Block diagram of the complete stiffness condensation process including

high-fidelity FEM solutions and the ensuing determination of equivalent
beam stiffnesses. 86

7.3 Diagram of the coordinate frames and global and local load conventions
(shown here for an applied tip moment) of the stiffness condensation
process. 87

8.1 Contour plot of the two-dimensional (n = 2) Rosenbrock function (left).
Comparison of the slowdown of the gradient for the n-dimensional Rosen-
brock function determined analytically, using Adept, and using CoDiPack
in reverse mode compared to the time of a function evaluation (right). . 97

9.1 extended design structure matrix (XDSM) diagram of the coupled FSI
solution between OpenAeroStruct’s VLM solver and TACS. 102

10.1 Inheritance structure of the solvers provided in UM/NAST. 109
10.2 Linked relationship between the model and solver classes. 110
10.3 Usage patterns considered during the design of UM/NAST 4. 111
10.4 Compilation of the templated code using explicit instantiation to obtain

a binary library. 114

11.1 Common solution structure for the gradient helpers exemplified by an
Algorithmic Differentiation (AD) gradient helper. 118

11.2 Efficient hybrid methodology for determining gradients of the geometri-
cally nonlinear static solution. 119

11.3 Efficient hybrid methodology for determining gradients of the geometri-
cally nonlinear stability/flutter solution. 121

12.1 BWB configuration planform. 125
12.2 Top and front views of the uCRM 13.5 optimized configuration by Brooks

and coworkers. 126
12.3 Slices and twist distribution obtained from the CFD meshes for the uCRM

13.5. 127

viii

12.4 Top and isometric view of the wing structural mesh with the beam struc-
tural nodes. 127

13.1 Study of the flutter prediction method accuracy. 130
13.2 Comparison of the V-g diagram for the trimmed BWB for 20 search iter-

ations (left) and 30 search iterations (right). 131
13.3 Comparison of the execution wall time for the new and existing flutter

algorithms run on Computer B [32 threads] and Computer C [128 threads].132
13.4 Extended V-g diagram, depicting the dynamic pressure vs. angle of at-

tack, for the BWB. 134

14.1 Comparison of the wall time required for a flutter search evaluation with
different solution approaches (primal, AD, and hybrid-AD). The bench-
mark was run on Computer Configuration A (Appendix C). 139

14.2 Comparison of the computational efficiency of the finited difference, com-
plex step, and AD gradient evaluations as a function of the number of
design variables. 140

15.1 Surrogate wing box cross section. 142
15.2 Notional flight envelope of the BWB. 143
15.3 Iteration history of the optimization including the strength constraint. . 148
15.4 Iteration history of the optimization including the strength constraint. . 150
15.5 Planform comparison of baseline BWB including the strength and flutter

constraints. The orange shading indicates the wing box geometry, while
the blue dashed line represents the beam reference line. 152

16.1 Plate example for testing the mass condensation process and verification
of mass condensation gradients. 155

16.2 Plate example for testing the mass condensation process and verification
of mass condensation gradients. 157

16.3 FSI convergence study for the uCRM 13.5 wing. 158
16.4 Thickness distribution and displacements of the uCRM 13.5 wing opti-

mized with a von Mises stress constraint. 159
16.5 XDSM diagram of the fluid-structure interaction (FSI) problem. 160
16.6 XDSM diagram of the multi-fidelity optimization problem. 162
16.7 Equivalent beam stiffness properties for the optimized uCRM 13.5 con-

figuration obtained from the stiffness condensation process. The diagonal
terms (torsion [blue], in-plane bending [orange], and out-of-plane bending
[gray]) are shown on the left. On the right, the off-diagonal stiffness terms
are shown (torsion-out-of-plane bending [blue], torsion-in-plane bending
[gray], and out-of-plane-in-plane bending [orange]) 163

16.8 uCRM 13.5 flight envelope showing the Kreisselmeier-Steinhauser (KS)
aggregated damping values. The orange points denote unstable, while the
blue show stable search points. 164

ix

LIST OF TABLES

3.1 Partials required for the (semi-)analytical linearization. Values for which
analytical representations exist are marked by ◦, while values determined
using AD are marked by •. 43

14.1 Comparison of gradient values predicted by the forward difference method,
the complex step method, algorithmic differentiation in reverse mode for
the static deflection at the Yehudi break. Agreeing digits are marked in
bold. 136

14.2 Comparison of gradient values predicted by the forward difference method,
the complex step method, algorithmic differentiation in reverse mode for
the static deflection at the wing tip. Agreeing digits are marked in bold. 136

14.3 Comparison of gradient values predicted by the forward difference method
and algorithmic differentiation in forward and reverse mode for the first
modal frequency. Agreeing digits are marked in bold. 137

14.4 Comparison of gradient values predicted by the forward difference method
and algorithmic differentiation in forward and reverse mode for the second
modal frequency. Agreeing digits are marked in bold. 138

14.5 Comparison of gradient values predicted by the forward difference method
and algorithmic differentiation in forward and reverse mode for the most
critical flutter damping value. Agreeing digits are marked in bold. 138

15.1 Optimal configurations for the BWB under strength and/or geometrically
nonlinear flutter constraints. 151

16.1 Plate properties of the verification test case as well as component and
analytical reference results for the mass condensation. 155

16.2 Comparison of the mass condensation component gradients with respect
to mass element thickness with reference results using the complex step
method. 156

A.1 Dependency table for UM/NAST quantities. 175

x

LIST OF APPENDICES

A . Dependencies of UM/NAST Quantities 175

B . Sequential Aggregation using Kreisselmeiser-Steinhauser Func-
tions . 176

C . Computer Configurations . 178

D . AD Gradients from Linearization-Based Solvers 179

xi

LIST OF ABBREVIATIONS

HALE High Altitude Long Endurance

ISR Intelligence, Surveillance, and Reconnaissance

FEM Finite Element Method

UM/NAST University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox

AD Algorithmic Differentiation

A2SRL Active Aeroelasticity and Structures Research Laboratory

ISA International Standard Atmosphere

UVLM Unsteady Vortex Lattice Method

ODE Ordinary Differential Equations

KS Kreisselmeier-Steinhauser

MDO Multi-disciplinary Design Optimization

EVP eigenvalue problem

CFD Computational Fluid Dynamics

DOE Design of Experiments

LHS Latin Hypercube Sampling

I/O input/output

API Application Programming Interface

DOF degrees of freedom

ESP Engineering Sketch Pad

FSI fluid-structure interaction

BWB Blended Wing Body

xii

LCO limit cycle oscillations

uCRM undeformed Common Research Model

VLM vortex lattice method

XDSM extended design structure matrix

HPC high performance computing

GVT ground vibration testing

MAC modal assurance criterion

IVT Intermediate Value Theorem

MPI Message Passing Interface

RBEs Rigid Body Elements

xiii

LIST OF SYMBOLS

M Mach number

AR aspect ratio

a∞ speed of sound, m/s

ac speed of sound at cruise, m/s

b wing span, m

bmax max. permissible wing span, m

bwing span of the wing section, m

CD aircraft drag coefficient

CL aircraft lift coefficient

Cf friction coefficient

CDf friction drag coefficient

CDi induced drag coefficient

CL,max max. lift coefficient

cmin min. permiss. wing section chord, m

cwing wing section chord, m

fa forces on the aerodynamic mesh

fs forces on the structural mesh

g gravitational acceleration, m/s2

g (x) constraint function

h geodetic altitude, m

xiv

hbox wing box height

L lift, N

Mc cruise Mach number

Mmax max. Mach number

m aircraft mass, kg

mf fuel mass, kg

mbody body structural mass, kg

mstruc structural mass, kg

Nx number of variables or function inputs

q dynamic pressure, Pa

qF flutter dynamic pressure

R aircraft range, m

Re Reynolds number

ρ atmospheric density

S wing surface area, m2

Swet wing wetted area, m2

sfc specific fuel consumption

tbody wing skin thickness, m

twing wing skin thickness, m

ua displacements of the aerodynamic mesh

us displacements on the structural mesh

Vbox wing box volume, m3

Vfuel fuel volume, m3

vc cruise speed, m/s

vstall stall speed, m/s

W aircraft weight, N

Wf fuel weight, N

xv

Ws structural weight, N

wδ
i Euclidean weight

wbox wing box width

x function variable

xbox x-location of the wing box center

y, y (x) problem state variable

α angle of attack

αroot wing box skin thickness, m

δ flap deflection

δ(a, b) distance metric between two points

ηCS control surface deflections

ηbox wing box width relative to wing chord

κy bending strain/curvature

κmax max. permissible bending strain

µwing wing mass distribution, kg/m

ω frequency values of the flutter solution

φ(x) linearized mode shape

ρ̄ KS function constant

ρ∞ atmospheric density, kg/m3

ζ damping values of the flutter solution

RN N -dimensional real space

UM/NAST Variables

C̄FF , C̄FB, C̄BF , C̄BB components of the damping matrix of the linearized system

cd drag coefficient

CFF , CFB, CBF , CBB Components of the generalized damping matrix

clα lift slope

cl lift coefficient

xvi

cmδ moment slope due to flap deflection

cm moment coefficient

F aero, Maero aerodynamic loads in the body frame

F1, F2, F3 inflow influence matrices

h vector containing all nodal positions and rotations

hw vector containing the nodal positions and rotations

Jθε Jacobian relating nodal rotations to strain

Jθb Jacobian relating nodal rotations to the body frame

Jhε Jacobian relating nodal positions and rotations to strains

Jhb Jacobian relating the nodal positions and rotations to the
body frame

Jpε Jacobian relating nodal positions to strains

Jpb Jacobian relating nodal positions to the body frame

K̄FF components of the stiffness matrix of the linearized system

K stiffness matrix

KFF components of the generalized stiffness matrix

clδ lift slope due to flap deflection

lac, dac, mac nodal aerodynamic loads (lift, drag, moment) evaluated at
the aerodynamic center

M̄FF , M̄FB, M̄BF , M̄BB components of the damping matrix of the linearized system

MFF , MFB, MBF , MBB Components of the generalized mass matrix

Ninflow number of inflow states

PB body frame offset vector

Pw local beam frame offset vector

Q1, Q2, A, B matrices of the state space equations

RF , RB components of the generalized loads vector

s beam coordinate

u control input (in the state space equations)

xvii

vB translational body velocity

ẏ state derivative

ỹ perturbed state vector

˜̇y perturbed state derivative

αeff effective angle of attack

β body velocities

εel element strain vector

εx extensional strain

κx twist curvature

κy bending curvature about wy

κz bending curvature about wz

λ inflow states

λ0 inflow velocities

ωB rotational body velocity

θB orientation of the body frame

UM/NAST Reference Frames and Rotation Matrices

G UM/NAST global frame

B UM/NAST body frame

w UM/NAST local beam node frame

CBG rotation matrix from the body to the global frame

CBw rotation matrix from the body to the local beam node frame

wx, wy, wz UM/NAST local beam frame coordinate system vectors

xB, yB, zB UM/NAST body frame coordinate system vectors

xG, yG, zG UM/NAST global frame coordinate system vectors

xviii

ABSTRACT

While aircraft have largely featured flexible wings for decades, more recently, aircraft

structures have rapidly become more flexible. The pursuit of longer ranges and higher

efficiency through higher aspect ratio wings, as well as the introduction of modern,

light-weight materials has yielded moderately and very flexible aircraft configurations.

Past accidents, such as the loss of the Helios High Altitude Long Endurance (HALE)

aircraft have highlighted the limitations of linear analysis methods and demonstrated

the peril of neglecting nonlinear effects when designing such aircraft. In particular, ac-

counting for geometrical nonlinearities in flutter analyses become necessary in aircraft

optimization, including transport aircraft, or future aircraft may require costly mod-

ifications late in the design process to fulfill certification requirements. As a result,

there is a need to account for geometrical nonlinearities earlier in the design process

and integrate these analyses directly into the multi-disciplinary design optimization

(MDO) problems.

This thesis investigates geometrically nonlinear flutter problems and how these

should be integrated into aircraft MDO problems. First, flutter problems with and

without geometrical nonlinearities are discussed and a unifying interpretation is pre-

sented. Furthermore, methods for interpreting nonlinear flutter problems are pro-

posed and differences between linear and nonlinear flutter problem interpretation are

discussed. Next, a flutter constraint formulation which accounts for geometrically

nonlinear effects using beam-based analyses is presented. The resulting constraint

uses a Kreisselmeiser-Steinhauser aggregation function to yield a scalar constraint

from flight envelope flutter damping values. While the constraint enforces feasibility

xix

over the entire flight envelope, how the flight envelope is sampled largely determines

the flutter constraint’s accuracy. To this end, a constrained Maximin approach, which

is applicable for non-hypercube spaces, is used to sample the flight envelope and ob-

tain a low-discrepancy sample set. The flutter constraint is then implemented using

a beam-based geometrically nonlinear aeroelastic simulation code, UM/NAST.

As gradient-based optimization methods are used in MDO due to the large num-

ber of design variables in aircraft design problems, the flutter constraint requires the

recovery of flutter damping sensitivities. These are obtained by applying algorith-

mic differentiation (AD) to the UM/NAST code base. This enables the recovery of

gradients for any solution type (static, modal, dynamic, and flutter/stability) with

respect to any local design variable available within UM/NAST. The performance of

the gradient prediction is studied and a hybrid primal-AD scheme is developed to

obtain the coupled nonlinear aeroelastic sensitivities. After verifying the accuracy

and performance of the gradient evaluation, the flutter constraint was implemented

in a sample optimization problem.

Finally, a roadmap for including the beam-based flutter constraint within an air-

craft design problem is presented using analyses of varying fidelity. To this end,

analyses of appropriate fidelity are used depending on the output of interest. While

a shell-based FEM model can recover stress distributions, and is therefore well-suited

for strength constraints, they are ill-suited for geometrically nonlinear flutter con-

straints due to their computational cost. Analyses are presented for a high aspect

ratio transport aircraft configuration to illustrate the proposed approach and high-

light the necessity for the inclusion of a geometrically nonlinear flutter constraint.

xx

CHAPTER 1

Introduction

Aircraft have become progressively more flexible as wing aspect ratios increase and

structural weights decrease in pursuit of higher performance. High Altitude Long

Endurance (HALE) aircraft (e.g., AeroVironment’s Helios, Figure 1.1a) present one

class of vehicle that often exhibits very flexible wings. This results from high aspect

ratio wings and long wing spans due to their mission profiles, such as Intelligence,

Surveillance, and Reconnaissance (ISR) missions, and require long loiter times. HALE

aircraft have long been the prototypical examples for very flexible vehicles. However,

more recently, transport as well as other categories of aircraft have become more

flexible as their wing span increases. Furthermore, configurations studied by NASA

[1, 2] for next-generation transport aircraft feature high aspect ratios accompanied

by substantial wing flexibility. Clearly, aircraft flexibility will increasingly need to be

considered when designing new vehicles.

To those unfamiliar with aeroelasticity, the question may arise what advantages

very flexible wings may entail. The answer may not be as simple as “none,” but

increasingly flexible structures certainly pose challenges to the design and certifica-

tion processes. Moreover, this is true from both an aircraft performance and safety

perspective, where changes in the wing deformation may yield vastly different perfor-

mance than predicted, as well as concerns due to potential aeroelastic instabilities.

Because of this, an increase in flexibility necessitates geometrically-nonlinear aeroe-

1

(a) Helios [7] (b) Disintegration of the Helios aircraft [7]

Figure 1.1: High performance aircraft increasingly feature very flexible wings. Aeroe-
lastic instabilities must be properly identified and mitigated during vehicle design.

lastic analyses to ensure vehicle stability and performance.

A lack of or insufficient analyses may yield catastrophic results. The Helios HALE)

aircraft referenced earlier was lost (Figure 1.1b) due to gusts deforming the wing into

a high dihedral configuration and an ensuing unstable pitch oscillation that ultimately

led to an overspeed condition and vehicle disintegration [3]. Following the incident, an

investigation [3] identified the “Lack of adequate analysis methods led to an inaccurate

risk assessment of the effects of configuration changes leading to an inappropriate

decision to fly an aircraft configuration highly sensitive to disturbances” as partialy

responsible for the loss of the aircraft. The conclusions led to work in numerical

aeroelastic analyses including geometrical nonlinearities and the inclusion of rigid

body degrees of freedom [4, 5] as well as experimental studies, such as the University

of Michigan’s X-HALE [6].

Beyond requiring appropriate analysis tools and analyses, instabilities such as

flutter must be identified early in the design process. The cost of design changes

increases substantially over time (Figure 1.2a). A design change during flight testing

may cost multiples of one during the preliminary or conceptual design phases. This

cost may be monetary, but may also be paid in terms of a performance penalty

2

and long-term operating costs. Depending on the severity of the penalty, this may

ultimately render the design ineffective or cause the vehicle to be expensive to operate.

Compounding the cost issue, the modeled detail of the vehicle behaves inversely

proportional to the cost (Figure 1.2b). That is, relatively few analyses are performed

during the conceptual design phases (due to a lack of information on mass, stiffness,

and aerodynamics of the model) [8]. A high level of certainty in terms of analyses

only is achieved during the late detailed design or even testing phase.

To enable higher-performance designs, it is necessary to shift the “s-curve” shown

in Figure 1.2b to the left. While the additional detail in the earlier design phases may

result in a cost reduction of the entire project, it also enables higher-performance de-

signs. For example, by including a flutter constraint early in the design process

together with aerodynamic and structural sizing in a Multi-disciplinary Design Op-

timization (MDO) problem [9, 10], the effect on the vehicle’s performance may be

assessed earlier with a smaller performance impact than if a costly modification is

needed later. Conversely, MDO problems without the consideration of a flutter con-

straint may yield light-weight, yet infeasible, designs [11, 12].

One solution to shifting the s-curve is including additional analyses during concep-

tual design. As geometrically-nonlinear analyses may be computationally-prohibitive

when conducted in high-fidelity, it may be advantageous to use a multi-fidelity ap-

proach. A multi-fidelity analysis utilizes varying levels of fidelity to account for dif-

ferent outputs of interest. For example, a vehicle may be modeled using shell Finite

Element Method (FEM) elements for stress analyses, while beam-based methods ac-

count for flutter analyses. This mixed-fidelity approach may shift the s-curve by

providing more detailed information (i.e., flutter analyses) into the design process.

However, before discussing multi-fidelity problems, an understanding of the term

fidelity must be established. Indeed, the denotation and connotation of the word

within the engineering community differ significantly. While the denotation (i.e., the

3

Time

Co
st

of
de

sig
n

ch
an

ge
s

(a) Cost of design changes over time

Time

D
et

ai
lo

fd
es

ig
n

100%

Improved

Current

(b) Level of design detail over time

Figure 1.2: The cost associated with design change increases substantially in later
design phases. One approach to avoid costly design changes late in the process is to
account for more analyses and phenomena earlier.

definition) means “accuracy in details” [13], the connotation within the community

often entails “accuracy of the solution.” This, in fact, may not be the case. Increasing

the level of fidelity (e.g., from a beam to a shell element) may yield additional infor-

mation, such as additional degrees of freedom, but the accuracy of the solution may

not increase. In fact, the accuracy of the solution depends greatly on the quantity of

interest. If a strength analysis is required, a shell-based analysis will likely be more

applicable than a beam-based one. On the other hand, in the case of a modal fre-

quency analysis, a beam-based analysis may yield equally accurate results as the shell

model (unless local cross section effects become dominant). Choosing the appropriate

fidelity for the problem, therefore, is key.

A multi-fidelity analysis or optimization problem utilizes varying levels of analysis

and model fidelity and combines them to a single problem. The promise of this ap-

proach is to enable the evaluation of objectives and constraints with the appropriate

level of fidelity required. For example, a fuel burn objective may require higher-

fidelity CFD simulations, while a flutter constraint may be accurate when analyzed

4

using beam-based models. Choosing the appropriate fidelity ensures that the de-

sired quantity (objective, constraint) is accurately modeled, while the computational

expense can be limited.

1.1 Previous Work

This section reviews existing literature relevant to the work presented in this disser-

tation. Jonsson and coworkers1 [14] compiled a comprehensive review of flutter and

post-flutter constraints in aircraft optimization problems. This section constitutes a

more concise review of flutter prediction and constraints as they pertain to this work.

1.1.1 Flutter Constraints

Due to the large computational cost associated with predicting flutter in time-domain,

flutter prediction is typically performed in the frequency-domain. Eigenvalue-analysis

methods, such as the k-, p-, pk- and g-methods [15, 16, 17, 18, 19], are widely used and

applicable to linear aeroelastic systems as well as nonlinear systems which have lin-

earized about a state of equilibrium. While gradient-free optimization methods (e.g.,

Particle Swarm [20] and Genetic Algorithms [21]) require only the function evaluation

of the flutter prediction, gradient-based optimization algorithms additionally require

the aeroelastic sensitivities. Due to the large number of design variables in MDO prob-

lems, gradient-free methods may prove computationally expensive. Gradient-based

methods provide a feasible solution to these high-dimensional optimization problems

[22, 23].

While flutter constraints have been applied since the 1970’s such as by Haftka

[9, 24], Hajela [25], Bhatia and Rudisill [26, 27] or Gwin and Taylor [28], as well as in

the early 1990’s by Livne, Schmit and Friedmann [29, 30], MDO problems still do not
1I am a coauthor of this work

5

regularly account for flutter. More recently, researchers have again investigated the

effect on the optimized configuration by including flutter constraints, mostly focused

on geometrically linear flutter problems.

Early flutter constraints attempted to constrain the flutter speed. Bhatia and Ru-

disill [26] conducted a wing mass minimization subject to an unchanged flutter speed.

Rudisill and Bhatia [27] later improved their method by determining second-order

derivatives of the flutter speed and eigenvalues with respect to the design variables.

Similarly, Gwin and Taylor [28] constrained a minimum flutter speed while conduct-

ing a mass minimization problem. While these studies used simplified structural and

aerodynamic models due to limited computational resources, their constraint of the

flutter speed may lead to discontinuities (a detailed explanation of this is provided in

Chapter 5).

A continuous flutter (and divergence) constraint was formulated by Ringertz [31].

Ringertz constrained the damping values of the flutter problem and applied the con-

straint to both a mass minimization of both a rectangular wing as well as a swept and

tapered wing. However, Ringertz approach resulted in a large number of damping

constraints.

Stanford and coworkers [32] investigated new aeroelastic tailoring schemes for

aircraft mass minimization. Similar to Rigertz’ approach [31], they constrained the

system damping values to lie beneath a prescribed stability boundary. They ap-

plied six different aeroelastic tailoring methods to the undeformed Common Research

Model (uCRM) configuration [33] to study the difference of effectiveness between

metallic thickness variations, functionally graded materials, balanced or unbalanced

composite laminates, curvilinear tow steering, and distributed trailing edge control

surfaces. Stanford and coworkers utilized the nonlinear higher-fidelity ZEUS code to

account for steady aerodynamics, while transonic small disturbance theory was used

to account for unsteady aerodynamics. This permitted them to model the aerody-

6

namic nonlinearities associated with the transonic flight regime.

Jonsson and coworkers [34] developed a flutter constraint which could account

for wing planform changes. They used a KS aggregate [35] the damping values to

prevent constraint discontinuities. The gradients of the aggregated constraint values

were determined using both analytical and Algorithmic Differentation (AD)-based

derivatives. They studied a rectangular (flat plate) wing with respect to thickness

and wing planform variables and were able to obtain a flutter-free, higher aspect ratio

design.

While the previously discussed work developed geometrically linear flutter con-

straints (in some cases, such as Stanford et al.[32], aerodynamic nonlinearities were

considered), geometrically nonlinear flutter constraints, with few exceptions, have not

been rigorously studied. Xie and coworkers [36] studied the design optimization of

a wind tunnel model and constraining the flutter speed of the wing. However, their

approach used a gradient-free optimizer. As noted earlier, gradient-free methods may

become computationally infeasible for large scale MDO problems.

Variyar and coworkers [12] investigated optimization of unconventional aircraft

configurations including a flutter constraint. They coupled the aircraft design toolbox

SUAVE [37] with ASWING [38] to account for a geometrically nonlinear flutter con-

straint. However, as was the case in earlier flutter constraint studies, they constrained

the flutter speed to lie beneath a predefined boundary. As previously mentioned, this

approach may lead to constraint discontinuities (see Chapter 5). Furthermore, the

constraint derivatives were determined using finite differences.

Finally, Bhatia and Beran [39] conducted an optimization of a thermally stressed

structure subject to a transonic flutter constraint. They modeled the plate structure

using a nonlinear von Kármán strain Timoshenko beam and accounted for transonic

aerodynamics using an Euler solution.

While linear flutter constraints constitute a large body of work, comparitively

7

little research has been conducted into geometrically nonlinear flutter constraints

and their effect on the optimized configuration. As future vehicles reach new degrees

of structural flexibility, it will become necessary to account for coupling between

geometrically nonlinear aeroelasticity and flight dynamics [4, 40].

1.1.2 Multi-Fidelity Problems

While linear flutter constraints have been implemented using higher-fidelity (e.g.,

shell-based structural models) methods, geometrically nonlinear flutter constraints

have generally been limited to beam-based analyses due to computational expense.

However, as has been noted, flutter constraints which account for geometrical nonlin-

earities will play an increased role. As such, including the beam-based analyses into

the higher-fidelity MDO frameworks is one possible solution.

Multi-fidelity problems combine analyses of varying fidelity to form a single opti-

mization problem. For example, Bryson and Rumpfkeil [41] investigated the multi-

fidelity design of a chevron-shaped vehicle. They utilized both Euler Computational

Fluid Dynamics (CFD) solutions as well as panel-based aerodynamic solutions tightly

coupled with a linear FEM solution. The multi-fidelity approach resulted in a lower

computational cost per iteration.

Furthermore, multi-fidelity approaches have been used to include flutter con-

straints into higher-fidelity optimization problems. Opgenoord and coworkers [42, 43]

combined a linear flutter constraint with a lattice-based topology optimization prob-

lem. The properties for the beam-based flutter constraint were evaluated using a

condensation process. This process determined equivalent beam properties from the

truss-based lattice structure.

Finally, Stodieck and coworkers [44] presented a beam condensation process in-

tended to connect lower-fidelity, nonlinear aeroelastic solutions to higher-fidelity struc-

tural models. The structural condensation process utilizes the stiffness condensation

8

presented by Malcolm and coworkers [45] and extends it with derivatives making it

suitable for gradient-based optimizaton frameworks.

1.2 Scope of this Work

This dissertation attempts to address the uncertainty of early design iterations and

future, very flexible aircraft by proposing a methodology for including a geometrically

nonlinear flutter constraint into aircraft optimization problems. The dissertation is

divided into four parts, starting with a description of the methods used, a summary

of the numerical tools used and developed within this work, numerical studies, and

finally concluding statements.

Part I describes a variety of methods for determining gradients of numerical prob-

lems with their respective advantages and disadvantages. Next, I describe the the-

oretical formulation of the UM/NAST framework along with a new flutter analysis

method introduced in this work. In Chapter 5, I formulate a flutter constraint includ-

ing geometrical nonlinearities based on an existing approach proposed by Jonsson and

coworkers [34], which uses a constrained flight envelope sampling (described in Chap-

ter 6). Finally, I describe the beam condensation method used to couple the higher

fidelity structural model with the beam-based (and low-fidelity aerodynamics-based)

UM/NAST analyses and how gradients for this method are obtained.

Part II describes the numerical tools used in the dissertation. It begins with a

description of available AD tools and details the selection process for the tool used.

Chapter 9 describes the individual components of the MDO framework utilized for

the numerical studies in Chapter 16. Finally, Chapter 10 describes the UM/NAST

version used and details improvements provided to the framework, while Chapter 11

describes a tool designed for using UM/NAST in MDO problems.

Part III details the numerical studies conducted within this work. Chapter 13

9

investigates the accuracy of the new flutter algorithm presented in Chapter 4. Next, I

verify the accuracy of the sensitivities obtained within UM/NAST (Chapter 14) and

apply the geometrically nonlinear flutter constraint to a beam-based optimization

problem in Chapter 15. Chapter 16 presents studies of the assembled multi-fidelity

problem, representing a roadmap to the inclusion of the flutter constraint into higher-

fidelity optimization problems.

Finally, Part IV describes conclusions, contributions of this dissertation and out-

lines potential areas of future work.

10

Part I

Methods

11

CHAPTER 2

Determining Gradients

Many MDO problems use gradient-based optimization due to a large number of design

variables and the associated advantages of gradient-based optimization for such prob-

lems. As such, gradients and how to determine them accurately and efficiently play

a key role during the development of tools intended for design applications. While

many methods to determine gradients for numerical tools exist, three prevalent meth-

ods and their applicability to the problems addressed in this thesis are discussed here.

And despite the obvious focus on gradient-based optimization, the methods discussed

in this chapter can be used for other applications, as presented in Chapter 3.

Choosing a method for determining gradients requires evaluating the strenghts

and weaknesses of each method. Some methods require little or no implementation,

yet suffer from low accuracy, while others may yield the computationally fast and

accurate results at the expense of implementation time and effort. The appropriate

method therefore usually represents a compromise between accuracy and computa-

tional performance, while being constrained by the implementation time that may be

permitted by project deadlines and times allocated for development.

2.1 Finite Difference Method

Finite difference methods are a popular perturbation-based family of methods used

to numerically approximate the gradient of a function. While their popularity may

12

be based on the relatively small amount of effort required to implement them, they

suffer from accuracy and performance issues [46].

2.1.1 Derivation

While there are many finite difference methods, derived from Taylor series approxima-

tions, the term finite difference method is often used to describe the forward difference

method, due to its wide-spread use. As with other finite difference methods, the for-

ward difference method formula can be derived from the Taylor series, with a known

perturbation h:

f (x+ h) = f (x) + hf ′ (x) + h.o.t. (2.1)

The forward difference formula is then determined by rearranging Equation 2.1:

f ′ (x) =
f (x+ h)− f (x)

h
+O (h) (2.2)

The higher order terms can be neglected to obtain the approximation:

f ′ (x) ≈ f (x+ h)− f (x)

h
(2.3)

2.1.2 Implementation and Accuracy

Finite difference methods and the forward difference method, in particular, may enjoy

wide-spread popularity due to their ease of implementation. It does not require access

to or modification of the source code to be differentiated. To determine gradients

a perturbation is added to an element of the function inputs and the function is

evaluated. This must be conducted for every function input (a total of Nx times), each

evaluation yielding a column of the Jacobian. As a result, determining the gradients

13

for a function with a large number of inputs becomes computationally expensive.

Additionally, the finite difference method suffers from accuracy and reliability

issues. While the forward difference method is O (h) and this would indicate that a

smaller perturbation would result in more accurate results, this is not the case. As

the perturbation becomes smaller, the subtraction of numbers of similar magnitude

yields cancellation errors that can become substantial (Figure 2.1). This remains

true for the central difference method, despite its O (h2) convergence rate. Because

a coarse perturbation yields inaccurate results and an excessively small one yields

cancellation errors, the application of the finite difference method ideally requires a

convergence study for every change in the input variables.

2.2 Complex Step Method

The complex step method is a relatively new method to determine derivatives of real

functions by complex perturbations. Martins [46] describes that the method was first

developed by Lyness and Moler [47] as well as Lyness [48] and later rediscovered by

Squire and Trapp [49]. Furthermore, Martins and coworkers [50] presented an alter-

nate derivation, drew a connection to AD, and demonstrated the applicability of the

method to any algorithm, forming the basis of the method used in this work. Unlike

the finite difference method, the complex step method does not experience cancella-

tion errors due to subtraction and can achieve high accuracy results. Due to the use

of complex numbers, this method generally requires access and some modifications to

the function’s source code.

14

2.2.1 Derivation

Like the finite difference method, the complex step formula can be derived from a

Taylor series expansion, in this case for a complex function:

f (x+ ih) = f (x) + ihf ′ (x)− h2f
′′ (x)

2
− . . . (2.4)

Rearranging for the first derivative, and taking the imaginary part yields:

f ′ (x) =
Im (f (x+ ih))

h
+O

(
h2
)

(2.5)

Neglecting the higher order terms results in the approximation:

f ′ (x) ≈ Im (f (x+ ih))

h
(2.6)

2.2.2 Implementation and Accuracy

Unlike the finite difference implementation, the complex step method requires access

to the function source code and modifications to enable a complex evaluation of the

function. While this inevitably results in a more difficult process to prepare for

gradient evaluation, the modifications to source code may be minimal. Martins et al.

[50] provided tools and guides for easily converting source code for the complex step

method1. With these helpers and type definitions, the effort of applying the complex

step method has been greatly reduced, and in the case of templated code (e.g., in

C++) may be as simple as calling the code with the predefined (cplx) type. Like

the finite difference method, the input variables must be perturbed one at a time

for a total of Nx function evaluations, with each evaluation yielding a column of the
1This work uses a modified version of the complexify.h header file [51]. I added function defini-

tions and overloads to the cplx type, as the missing implementations led to compilation errors and
warnings, particularly when paired with the Eigen linear algebra library.

15

100 10−4 10−8 10−12 10−16

log(Perturbation)

10−18

10−16

10−12

10−8

10−4

100

lo
g(

Re
la

tiv
e

er
ro

r)

Forward difference

Central difference

Complex step

Figure 2.1: Comparison the gradient accuracy for the forward difference (gray), cen-
tral difference (orange), and complex step (blue) methods for the function f (x) = x3.

Jacobian. However, because of the function evaluations are conducted using complex

numbers instead of real floating precision types, the memory overhead doubles (at

least) and the computational performance may be reduced by a factor of two to four.

The accuracy of the complex step method, however, rewards the implementation

effort compared to the finite difference method. When comparing the forward differ-

ence, central difference, and complex step methods (Figure 2.1), the advantages of

the latter become clear. While the central difference and complex step methods are

both O (h2), the complex step method does not experience cancellation errors due to

subtraction. As a result, if the step size is chosen properly, the complex step method

can predict gradients to the computer’s working precision.

To obtain derivative at machine precision, the size of the perturbation must be

chosen appropriately. Assuming finite-precision arithmetic with a relative working

precision of ε, the truncation errors of the function (from Equation 2.4) can be elim-

16

inated by choosing a perturbation such that [46]:

h2

∣∣∣∣f ′′ (x)

2

∣∣∣∣ < ε |f (x)| (2.7)

To eliminate the truncation error of the derivative, a similar condition can be derived

from Equation 2.5:

h3

∣∣∣∣f ′′′ (x)

6

∣∣∣∣ < ε |f ′ (x)| (2.8)

However, Martins [46] notes that fulfilling both of these conditions may not always

be possible. Nonetheless, the complex step method offers a high-accuracy method for

determining gradients, despite its increased computational cost.

2.3 Semi-Analytical Methods

Semi-analytical methods require more intrusive changes to the source code than the

methods presented. Moreover, they necessitate a detailed theoretical understanding of

the computational problem, which the finite difference and complex step methods do

not. The methods are named “semi-analytical” because the developer uses analytical

derivations to reduce the gradient evaluation to a smaller problem. This smaller

problem may then be evaluated using an arbitrary gradient method (e.g., complex

step) to obtain the gradients of interest. The large implementation effort, if properly

executed, may result in a much more efficient gradient evaluation than any of the

methods presented so far in this chapter.

To apply a semi-analytical method, the function of interest, the design variables,

and the problem state variables must first be identified. The function typically de-

17

pends on both the design as well as the state variables:

f = F (x, y (x)) (2.9)

where x is the variable the function depends on, and y is a state variable that depends

on x. The computational problem is governed by the residual, which also depends on

the design and state variables:

r = R (x, y (x)) = 0 (2.10)

An example of a residual for a structural finite element problem with applied forces

f , stiffness matrix K and displacements d is:

R (x, d (x)) = Kd− f = 0 (2.11)

In this case the state variables are the displacements d, while the design variables

may be the element thicknesses (which would influence the stiffness matrix K).

2.3.1 Derivation

In this section, two semi-analytical methods will be derived and presented: the direct

and adjoint methods. The derivation presented here follows the typical derivation

that may be found in literature [46].

The total derivative of the function with respect to the design variables may be

rewritten using the chain rule:

df

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
(2.12)

18

Similarly, the residual equations can be rewritten:

dr

dx
=

∂R

∂x
+

∂R

∂y

dy

dx
= 0 (2.13)

Note, that the total derivatives of the residual equations with respect to the design

variables must also be zero, as the governing equations must always be fulfilled.

Additionally, while the partial derivative notation ∂(·) represent the variation of a

quantity for a fixed state y, the total derivative d(·) accounts for changes in the state

variable so that the governing equations remain fulfilled. The residual equations

(2.13) can be rewritten to obtain the total derivatives dy/dx:

∂R

∂y

dy

dx
= −∂R

∂x
(2.14)

Substituting Equation 2.14 into 2.12 yields:

df

dx
=

∂F

∂x
− ︸ ︷︷ ︸

df
dr

∂F

∂y

− dy
dx︷ ︸︸ ︷[

∂R

∂y

]−1
∂R

∂x
(2.15)

There are two solution approaches to Equation 2.15: the direct (or forward) and

the adjoint (or reverse) solutions. It should be noted that the inverse of ∂R/∂y is

not calculated, but rather, the solution involves the solution of a linear system of

equations.

The direct method is preferable when the number of functions is greater than the

number of design variables. To solve for the total derivatives of the functions with

respect to the design variables, Equation 2.16 is solved for dy/dx and then substituted

19

into 2.17:

−∂R

∂y

dy

dx
=

∂R

∂x
(2.16)

df

dx
=

∂F

∂x
+

∂F

∂y

dy

dx
(2.17)

Similarly, the adjoint solution is obtained by first determining df/dr in Equation 2.18

and substituting into 2.19:

−
[
∂R

∂y

]T [
dy

dx

]T
=

[
∂F

∂y

]T
(2.18)

df

dx
=

∂F

∂x
+

df

dr

dR

dx
(2.19)

2.3.2 Implementation and Accuracy

The semi-analytical methods are the most computationally efficient and accurate

methods presented here. They reduce the size of the problem that needs to be dif-

ferentiated numerically (e.g., using complex step), thereby increasing computational

performance. However, implementation of the methods requires additional effort.

Furthermore, they require access to source code, which may not be available. Finally,

the implementation process is prone to error. As a result, the derivatives must be

verified using alternate methods. Because of the accuracy deficiencies of the finite

difference method, the complex step method or AD may be required during the veri-

fication of the semi-analytical derivatives. As those methods require implementation

changes of their own, verification may require a substantial development effort in

addition to the implementation of the semi-analytical method itself.

20

2.4 Algorithmic Differentiation

AD is a method of determining gradients from an existing source code. It determines

the derivatives of all operations conducted within the software and obtains total

derivatives using the chain rule. Similar to the complex step method, it requires

access to the source code and may require substantial implementation changes.

2.4.1 Principle

AD decomposes the software into a series of operations (e.g., lines of code) Vi, to

which the derivatives are known. Additionally, local variables are stored in an array

vi. In that sense, every line of code is differentiated and the total derivatives of the

functions with respect to the design variables of interest are determined using the

chain rule. This can be achieved by several different techniques, which are discussed

in Section 2.4.2.

As in the semi-analytical methods, there are two methods for determining the

total derivatives using AD. The forward mode is given by [46]:

(I −DV)Dv = I (2.20)

or the reverse mode is given by [46]:

(I −DV)
T DT

v = I (2.21)

21

The matrices in Equations 2.20 and 2.21 are:

DV =



0 0 0 0 0

∂V2

∂v1
0 0 · · · 0

∂V3

∂v1

∂V3

∂v2

.

... 0 0

∂Vn

∂v1
∂Vn

∂v2
· · · ∂Vn

∂vn−1
0


(2.22)

Dv =



0 0 0 0 0

dv2
dv1

0 0 · · · 0

dv3
dv1

dv3
dv2

.

... 0 0

dvn
dv1

dvn
dv2

· · · dvn
dvn−1

0


(2.23)

The forward mode solution is akin to solving for one column of DV from Equation

2.20 using forward substitution. These operations are executed together with the

original code. The reverse mode solves the derivatives using back substitution. This

requires storing the individual operations and variables in what is typically called a

tape. As with the analytical methods, the forward and reverse modes are applicable

for different problems. The forward mode is typically more efficient when the number

of functions is greater than the number of variables of interest, while the reverse mode

is faster when the number of design variables is larger than the number of functions.

To illustrate the application of AD, consider the following program, adapted to

C++ from Martins [46]:
vector<double> x(2);

2 double det;

vector<double> y(2);

4 vector<double> f(2);

22

6 det = 2 + x[0] * pow(x[1], 2);

y(1) = pow(x[1],2) * sin(x[0]) / det;

8 y(2) = sin(x[0]) / det;

f(1) = y[0];

10 f(2) = y[1] * sin(x[0]);

Here the array of variables is:

v =



x[0]

x[1]

det

y[0]

y[1]

f [0]

f [1]



(2.24)

The corresponding reverse mode representation can be solved over two back-

substitutions given by [46]:

23



1 0 −v22 −v22 cos v1
v3

− cos v1
v3

0 −v5 cos v1

0 1 −2v1v2 −2v2 sin v1
v3

0 0 0

0 0 1 −v22 sin v1
v23

− sin v1
v3

0 0

0 0 0 1 0 −1 0

0 0 0 0 1 0 − sin v1

0 0 0 0 0 1 0

0 0 0 0 0 0 1





dv6
dv1

dv7
∂v1

dv6
dv2

dv7
∂v2

dv6
dv3

dv7
∂v3

dv6
dv4

dv7
∂v4

dv6
dv5

dv7
∂v5

1 dv7
∂v6

0 1



=



0 0

0 0

0 0

0 0

0 0

1 0

0 1



(2.25)

2.4.2 Implementation and Accuracy

Beside the semi-analytical methods, AD may require the largest effort during imple-

mentation. However, it should return gradients at the algorithm’s relative working

precision, and importantly requires less function evaluations than the finite difference

and complex step methods. Therefore, it is possible to obtain derivatives computa-

tionally more efficiently than the perturbation-based methods.

While term AD is used as an overarching term, it describes multiple methods:

manual transformation, automatic source code transformation, and operator over-

loading [46]. Typically, manual source code transformation is impractical and error

prone and should generally be avoided. Source code transformation tools exist for a

variety of languages. However, tools for several higher-level languages may not exist

or be freely available. In general terms, the more complex the programming language

(e.g., the higher-level), the more difficult the creation of a source code transformation

tool will be. As such, tools such as Tapenade [52] exist for Fortran and C, but not

for C++. Additionally, the workflow for applying a source code transformation tool

may not be trivial. While the tool returns transformed code, manual intervention

24

may be required to obtain a compilable program. Finally, operator overloading offers

a relatively simple tool to apply AD to higher level languages. In this method, a

separate AD datatype is defined and used within the software. The AD type consists

of a tuple. For every source code operation the AD type conducts a function evalu-

ation and the corresponding gradient evaluation (of that operation only). The total

derivatives are determined using the chain rule either via forward or back substitu-

tion. While operator overloading may result in performance penalties compared to

source transformation, it is comparatively simple to apply. This is particularly true

if the source code has been templated, as the AD type can be applied directly in this

scenario with minimal source code modification.

25

CHAPTER 3

UM/NAST Theoretical Formulation

The University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST)

is a software package used at the Active Aeroelasticity and Structures Research Lab-

oratory (A2SRL) to model very flexible aircraft and constitutes the primary numer-

ical tool used in this thesis. This chapter describes the theoretical formulation of

UM/NAST and the new linearization schemes added to the framework within the

scope of this work.

UM/NAST couples a geometrically nonlinear, strain-based beam formulation with

fully coupled nonlinear flight dynamics to a variety of aerodynamic model ranging

from strip theory with Peters’ finite state aerodynamics [53] accounting for unsteady

effects to an Unsteady Vortex Lattice Method (UVLM) implementation [54, 55]. The

formulation of the equations of motion presented here has been developed over sev-

eral generations of graduate students at A2SRL advised by Prof. Cesnik (Brown [56],

Shearer [57], Su [58], Dillsaver [59], Jones [60], Pang [61], Kitson [62], and Teixeira

[63]). These developments have been previously summarized by Pang [61] and are

recounted here to provide background information and context to the new develop-

ments in this thesis. As such, Section 3.1 presents the past work of Brown, Shearer,

Su, and Cesnik, while Section 3.2 describes the finite difference linearization presented

by Pang [61] as well as new, high-accuracy linearization methods I developed for this

thesis. While the linearization processes are demonstrated using the A matrix, I

26

zG

xGyG yB

zB xB

pB

pw

wy

wz
wx

Beam

Node

G
B

Figure 3.1: Coordinate system definitions within UM/NAST.

developed the linearization methods for both the A and B matrices1.

3.1 Nonlinear Coupled Equations of Motion

3.1.1 Strain-Based Beam Formulation

UM/NAST uses four main coordinate systems types to obtain a geometrically non-

linear solution (Figure 3.1)[56]: the global frame (G), the body frame (B), the frame

local to each beam node (w), and a local aerodynamic frame (a). The global frame

serves as an inertial reference system, while the body frame serves as the vehicle

reference frame and moves through space at the vehicle’s velocity.

The body frame is offset from the global frame by the vector PB and its orientation
1The implementations for the B matrix were tested and debugged by Mateus Pereira. The

original linearizations of the B and Bw matrices were originally developed by Dillsaver [59]

27

with respect to the global frame is defined by the quaternion vector ζ:

PB =


xB

yB

zB


, (3.1)

ζ =



q0

q1

q2

q3


. (3.2)

The body frame rigid body motion is captured by three linear and three angular

velocities, resulting in a total of 13 rigid body states:

b =

pB
θB

 , ḃ = β =

vB
ωB

 . (3.3)

The vehicle structure is subdivided into subassemblies, called members. Each

member contains beam elements. The geometrically nonlinear beam element used

in UM/NAST is a three-noded, constant strain element. The strain states for every

beam element are: extensional, twist, and two bending curvatures (in-plane and out-

28

of-plane):

εel =



εx

κx

κy

κz


. (3.4)

The w frame, located at every node, describes the beam nodes’ location and

orientation in relation to origin of the body frame (Figure 3.1). Similar to PB for the

body frame, the vector Pw describes the offset of the w frame from the body frame. A

column vector h can be defined that contains a point’s spatial position and orientation

information. The vector Pw and the coordinate system unit vectors (described in the

body frame) wx, wy, and wz, which are stacked to obtain the vector hw:

hw (s) =



Pw(s)

wx(s)

wy(s)

wz(s)


. (3.5)

For the spatial information of the same point in the global frame, the h vector is

29

defined:

h (s) =



Pb + Pw(s)

wx(s)

wy(s)

wz(s)


. (3.6)

The direction cosine matrix that transforms from the local beam frame w to the

body frame can be expressed in terms of the unit vectors of the local beam frame:

CBw =


| | |

wx wy wx

| | |


. (3.7)

The transformation from the body to the global frame can be expressed via the

quaternion vector:

CBG =


q20 + q21 − q22 − q23 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q20 − q21 + q22 − q23 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q20 − q21 − q22 + q23


. (3.8)

Finally, the kinematic relation between the strain and the boundary node hBC,w,

and the position of a point on the beam is given by:

hw(s) = eK(s−s0)hBC,w (3.9)

30

= eG(s)hBC,w, (3.10)

with

K =



0 1 + εx 0 0

0 0 κz −κy

0 −κz 0 κx

0 κy −κx 0


12×12

. (3.11)

3.1.2 Aerodynamics

While UM/NAST has a software interface to enable coupling with external aerody-

namic solvers (see Section 10.2.3 for a description of the interface and its develop-

ment), by default aerodynamic forces are modeled using strip theory aerodynamics.

The vehicles lifting surfaces are subdivided into strips, coinciding with the beam

nodes (Figure 3.2). Unsteady wake effects are accounted for using Peters’ finite state

aerodynamics [53] on every lifting element:

λ̇ = F1ÿ + F2ẏ + F3λ (3.12)

= F1

 ε̈
β̇

+ F2

 ε̇
β

+ F3λ (3.13)

with:

31

Lifting section
Beam node

Figure 3.2: Aerodynamics within UM/NAST is accounted for using strip theory with
a lifting section to every beam node.

λ =



λ1

λ2

...

λn


, (3.14)

where 4 ≤ n ≤ 8 usually results in a convergence of the unsteady loads values [4].

The effective angle attack of every aerodynamic section used for the calculation

of aerodynamic loads includes contributions from pitching and plunging motion:

αeff =
ż

ẏ
+

(
1

2
bc − d

)
α̇

ẏ
− λ0

ẏ
, (3.15)

32

with

λ0 =
1

2

Ninflow∑
i=1

biλi. (3.16)

Finally, the unsteady lift, drag, and pitching moment about the aerodynamic

center are, respectively:

lac = πρb2c (−z̈ + ẏα̇− dα̈) + ρbcẏ
2 (cl (αeff) + clδδ) (3.17)

dac = −ρbcẏ
2 (cd (αeff) + cdδδ) (3.18)

mac = πρb3c

[
1

2
z̈ − ẏα̇−

(
1

8
bc −

1

2
d

)
α̈

]
+ 2ρb2c ẏ

2 (cm (αeff) + cmδδ) . (3.19)

These unsteady aerodynamic loads include apparent mass effects as well as local

lift, drag, and moment due to the effective angle of attack and control surface deflec-

tions. The effective angle of attack includes effects of pitching and plunging motions

as well as unsteady wake effects.

3.1.3 Full Equations of Motion

The entire coupled aeroelastic system used in UM/NAST is [57, 58]:

MFF MFB

MBF MBB


 ε̈
β̇

+

CFF CFB

CBF CBB


 ε̇
β

+

KFF 0

0 0


ε
b

 =

RF

RB

 (3.20)

−1

2
Ωζζ = ζ̇ (3.21)CGB

0

 β = ṖB (3.22)

33

F1

 ε̈
β̇

+ F2

 ε̇
β

 β + F3λ = λ̇ (3.23)

Brown [56] reformulated the governing equations (Equations 3.20–3.23) to obtain

a set of first order Ordinary Differential Equations (ODE):

Q1ẏ = Q2y +R (y, ẏ, u, vg) (3.24)

In this system of equations, the system states y, control states u, and the nodal

gust velocities vg are:

y =



ε

ε̇

β

ζ

PB

λ



(3.25)

u =



u1

u2

...

un


(3.26)

34

vg =



vg1

vg2

...

vg,m


(3.27)

For time-domain solutions, a simple trapezoidal time integration scheme was for-

mulated by Brown [56]. Shearer and Cesnik [57] developed a generalized-α scheme to

increase numerical accuracy, while trading off computational expense.

3.2 Linearized Equations of Motion

The linearized ODE in Equation 3.24 can be rearrange to obtain:

ẏ = Q−1
1 Q2y +Q−1

1

∂R

∂u
u+Q−1

1

∂R

∂vg
vg (3.28)

This may be rewritten in simplified matrix-form as:

ẏ = Ay +Bu+Bwvg (3.29)

These state-space equations can be used for a wide ranging set of tasks, varying

from controller design to flutter analyses. For the numerical studies in this work,

the matrices B and Bw are neglected, while the A matrix is used for flutter stability

analyses.

There are a variety of methods to obtain the linearized matrices. The linearization

method used to obtain the state space equations about the geometrical nonlinear

deflected condition directly influences the accuracy and efficiency of a flutter analysis

or constraint. In past work, Su [4] presented an analytical approach. Later, Pang [61]

35

formulated a finite difference approach to obtain the A matrix, while Dillsaver [59]

obtained the B and Bw matrices using finite differences.

The following sections present the existing linearization methods in UM/NAST.

In addition to Pang’s and Dillsaver’s finite difference approach, I developed a complex

step and an AD approach for determining the A and B matrices with high accuracy.

3.2.1 Finite Difference Method

In past work, Pang [61] proposed a forward difference approach to obtain Equation

3.29. A perturbation is applied to the state vector y:

ỹi =



y1

y2

...

yi + h

...

yn



. (3.30)

Using the perturbed state vector, the perturbed state derivative ˜̇yi is evaluated.

The state space equations can then be determined one column at a time, i.e.,

ai =
1

ỹi



˜̇y1
i

˜̇y2
i

...

˜̇yn
i


(3.31)

36

=
1

ỹi
˜̇yi (3.32)

with:

A =


| | |

a1 a2 · · · an

| | |


. (3.33)

The forward difference approach, however, is subject to truncation and cancella-

tion errors depending on the perturbation step size chosen. In practice this would

require a study of the linearized equations with respect to the step size to determine

the accuracy of the linearization. Furthermore, individual columns of the matrix A

may be more accurate than others, as different columns may require different step

sizes to yield accurate results. Both choosing varying step sizes for different columns

of A as well as convergence studies are impractical for optimization problems due to

the required user intervention.

3.2.2 Complex Step Method

For this work, I developed a high-accuracy, perturbation-based linearization method

using the complex step method (see Section 2.2). Previously, Kitson and Cesnik

[64] had applied the complex step method to obtain the linearized Q1, Q2, and Q3

matrices for individual studies. Similar to the finited-difference-based linearization

method developed by Pang [61], the state vector is perturbed before evaluating the

state derivatives. In this case, the perturbation is imaginary:

37

ỹi =



y1

y2

...

yi + ih

...

yn



. (3.34)

Using the perturbed state vector, the perturbed state derivative ˜̇yi is evaluated.

The state space equations can then be determined one column at a time, i.e.,

ai =
1

h
Im



˜̇y1
i

˜̇y2
i

...

˜̇yn
i


(3.35)

=
Im(˜̇yi)

h
. (3.36)

38

Similarly, the B matrix can be determined by first perturbing the control states,

ũi =



u1

u2

...

ui + ih

...

un



, (3.37)

then determining the state gradients. From this the B matrix is obtained similar to

the A matrix:

bi =
1

h
Im



˜̇y1
i

˜̇y2
i

...

˜̇yn
i


(3.38)

=
Im(˜̇yi)

h
. (3.39)

As this is a direct application of the complex step method, it shares its properties

outlined in Chapter 2, including its high level of accuracy for small perturbations.

3.2.3 Algorithmic Differentiation

Leveraging the AD implementation within UM/ NAST, I developed an AD-based

linearization method. The general solution to the state space matrices A and B can

39

be written as:

A =
∂ẏ

∂y
(3.40)

B =
∂ẏ

∂u
(3.41)

This reduces the problem to determining the Jacobian matrix of the state rate

function with respect to the states. Given the AD application within UM/NAST,

this is easily obtained to machine precision, thereby eliminating the truncation and

rounding errors. And because the state rate function only needs to be called once,

compared to once for every column for the forward difference and complex step ap-

proaches, improvements in computational efficiency are achieved. Finally, for cases

in which both the A and B matrices are needed, the computation experience further

performance gains, as the state velocities function is called once for both matrices

instead of for every matrix column when using the perturbation-based methods.

3.2.4 Semi-Analytical

Finally, the AD approach to the linearization problem can be combined with an

analytical approach to obtain a semi-analytical solution. An analytical solution to

the linearized matrices was proposed by Su [58]. As shown previously in Equation

3.28, the linearized equations of motion are:

q̇ = Q−1
1 Q2q +Q−1

1

∂R

∂u
u+Q−1

1

∂R

∂vg
vg, (3.42)

with:

40

A = Q−1
1 Q2. (3.43)

The matrices Q1 and Q2 are:

Q1 =



I 0 0 0 0 0

0 M̄FF M̄FB 0 0 0

0 M̄BF M̄BB 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 −F1F −F1B 0 0 I



(3.44)

Q2 =



0 I 0 0 0 0

−K̄FF −C̄FF −C̄FB Rgrav
F/ζ0

0 Raero
F/ζ0

0 −C̄BF −C̄BB Rgrav
B/ζ0

0 Raero
B/ζ0

0 0 −1
2
Ωζ/β0ζ0 −1

2
Ωζ 0 0

0 0 [CGB 0] [CGB
/ζ0

0]β0 0 0

0 F2F F2B 0 0 F3



(3.45)

The sub-matrices used within Q1 and Q2 are:

K̄FF =KFF − JT
pεBF

∂F aero

∂ε
− JT

θεBM
∂Maero

∂ε
(3.46)

41

M̄FF =MFF − JT
pεBF

∂F aero

∂ε̈
− JT

θεBM
∂Maero

∂ε̈
(3.47)

M̄FB =MFB − JT
pεBF

∂F aero

∂β̇
− JT

θεBM
∂Maero

∂β̇
(3.48)

M̄BF =MBF − JT
pbBF

∂F aero

∂ε̈
− JT

θbBM
∂Maero

∂ε̈
(3.49)

M̄BB =MBB − JT
pbBF

∂F aero

∂β̇
− JT

θbBM
∂Maero

∂β̇
(3.50)

and

C̄FF =CFF − ∂CFF

∂ε̇
ε̇0 −

∂CFB

∂ε̇
β0 − JT

pεBF
∂F aero

∂ε̇
− JθεBM

∂Maero

∂ε̇
(3.51)

C̄FB =CFB − ∂CFF

∂β
ε̇0 −

∂CFB

∂β
β0 − JT

pεBF
∂F aero

∂β
− JθβBM

∂Maero

∂ε̇
(3.52)

C̄BF =CBF − ∂CBF

∂ε̇
ε̇0 −

∂CBB

∂ε̇
β0 − JT

pbBF
∂F aero

∂ε̇
− JθbBM

∂Maero

∂ε̇
(3.53)

C̄BB =CBB − ∂CBF

∂β
ε̇0 −

∂CBB

∂β
β0 − JT

pbBF
∂F aero

∂β
− JθbBM

∂Maero

∂β
(3.54)

Of these sub-matrices, most quantities are analytical, with the exception of the

aerodynamic derivatives. In past work, Su [58] derived analytical representations for

the aerodynamic derivatives, provided that derivatives of the aerodynamic coefficients

were known. This required the user to provide such derivatives, which eliminated some

aerodynamic methods (such as the method of segments or UVLM) from being lin-

earized with the analytical formulation. The semi-analytical formulation I developed

here replaces the aerodynamic derivatives provided by the user with ones determined

at code run time using AD. The derivatives determined in this manner are listed in

Table 3.1.

Once the aerodynamic derivatives have been obtained using AD, the linearized A

matrix can be determined. The advantage of this approach over the purely analytical

42

Table 3.1: Partials required for the (semi-)analytical linearization. Values for which
analytical representations exist are marked by ◦, while values determined using AD
are marked by •.

∂ε ∂ε̇ ∂ε̈ ∂β ∂β̇

∂F aero • • • • •
∂Maero • • • • •
∂CFF ◦ ◦
∂CFB ◦ ◦
∂CBF ◦ ◦
∂CBB ◦ ◦

method lies in the ability to linearize systems with aerodynamic models lacking deriva-

tives. Compared to the perturbation-based methods, the semi-analytical approach

may produce significantly better computational performance at high accuracy. The

pure-AD linearization already outperforms these methods. The semi-analytical ap-

proach requires less code to be differentiated and evaluations of the chain rule, thereby

providing further performance improvements compared to the pure-AD method. At

the time of this writing, the semi-analytical approach has been partially implemented

and remains to be completed. Code for the analytical terms exists from previous

UM/NAST versions and was ported to the reorganized framework. The methods for

determining the partials of the aerodynamic loads has been started, but not com-

pleted.

43

CHAPTER 4

Flutter Analysis and Interpretation

Flutter analyses constitute a vital part of any aircraft design process and are required

for certification and operational safety. Traditionally, geometrically linear flutter al-

gorithms have been used during vehicle design and certification. For advanced aircraft

configurations, geometrically nonlinear flutter analyses are increasingly necessary as

vehicles become more flexible. Geometrically nonlinear flutter problems, however,

have been applied and interpreted akin to linear flutter analyses, trading one “black

box” for another, while adding additional problem variables. As such, important con-

sequences of nonlinear flutter analysis on the instability search process, interpretation,

and visualization remain unanswered.

This chapter presents a generalized interpretation of flutter problems, unifying

linear and nonlinear flutter problems (Section 4.1). In this context, the section de-

scribes visualization techniques for both linear and nonlinear analyses, discusses the

limitations of those methods, and adds additional tools to analyze nonlinear flutter.

Finally, Sections 4.3 and 4.4 present methods for the efficient determination of the

flutter boundary for geometrically nonlinear structures.

4.1 Generalized Interpretation of Flutter Problems

Before discussing the interpretation of linear and nonlinear flutter problems, I should

note that the logical progression within this section may seem counterintuitive. Linear

44

flutter analyses are specialized forms of nonlinear flutter problems. However, histor-

ically, linear flutter methods were developed before their nonlinear counterparts. As

a result, the interpretation of linear problems was well established when nonlinear

flutter problems became necessary. Moreover, these nonlinear problems were then

interpreted similarly to linear problems using root loci, etc. This led to the neglect of

some ramifications of the nonlinear problems. As such, a progression from the general

problem to its specialization is not practical here. Rather, I will present prevalent

methods of interpreting linear problems before discussing the changes and caveats

required by nonlinear problems.

For both types of problems, the dynamics of the entire system can be written as:

y (x, t) =
N∑
i=1

φi (x) fi (t) , (4.1)

where φi (x) is a linearized mode shape about the equilibrium that only depends on

the spatial coordinate x, and fi (t) is the time-dependent component of the i-th mode.

It is worth noting that Equation 4.1 holds true for continuous systems (in which case

N = ∞), as well as computational models, which tend to be finite by truncating

higher modes. Moreover, for stability solutions a general solution of the form exists:

f (t) = e(ζ+iω)t (4.2)

= eat (4.3)

The stability of the system is determined by the real part of a (Figure 4.1). If

ζ is negative, the system is stable. A positive value indicates an instability, while

ζ = 0 constitutes the stability boundary, or the onset of the instability. Whether the

instability is oscillatory or not is determined by the imaginary part of a. A non-zero

45

t

y ζ < 0, ω = 0

(a) Non-oscillatory, stable

t

y

ζ > 0, ω = 0

(b) Non-oscillatory, unstable (divergence)

t

y ζ < 0, ω > 0

(c) Oscillatory, stable

t

y

ζ > 0, ω > 0

(d) Oscillatory, unstable (flutter)

Figure 4.1: Time component of the stability solution depending on the sign of the
respective eigenvalue parts.

value for ω will result in an oscillatory instability such as flutter, while a zero value

will result in non-oscillatory instabilities such as divergence.

4.1.1 Interpretation of Linear Flutter Analyses

Flutter analyses generally seek to find the flutter boundary. This can be achieved by

evaluating the stability problem along a line which is defined by the flutter search

variable. This variable may be the flight speed or the dynamic pressure of the vehicle

(a more detailed explanation of the search variable is presented in Section 4.3 and in

46

Speed
Re

al
pa

rt

(a) V-g diagrams.

Real part

Im
ag

in
ar

y
pa

rt

(b) Root locus diagram

Figure 4.2: Examples of V-g and root locus diagrams (showing two modes) typically
used during linear flutter analyses.

Figure 4.4). While different solution strategies exist, linear flutter solutions funda-

mentally constitute a mapping of R → RN ; from the search variable to the resulting

set of modes (where N is the number of modes retained for the analysis).

Traditional V-g (Figure 4.2a) diagrams are a two-dimensional representation of

this univariate search and lend themselves naturally to the interpretation of the linear

flutter problem. The V-f diagram presents the frequency (or the imaginary part of

the flutter analysis) progression of the N modes as a function of the flutter search

variable. Similarly, the V-g diagram provides the progression of the modes’ damping

progression. From it one can determine the flutter point (classically called the flutter

boundary) as well as deduce the severity of the flutter onset. The flutter point is the

crossing of a mode with the V -axis. For linear flutter problems, the severity of the

flutter onset is often quantified by the slope of the mode curve at the flutter point. A

steeper slope indicates a more violent onset while a more moderate slope translates

to a more gradual one.

Root-locus diagrams (Figure 4.2b) also find wide-spread use when interpreting

linear flutter problems. They combine the real (x-axis) and imaginary (y-axis) parts

47

of the N retained modes into one diagram. Instabilities are determined by crossings

of the y-axis (real part is zero). Each point in a root locus diagram corresponds to

an eigenvalue at an individual linearization evaluation point. The mode progressions

still correspond to a sequence along the search variable, although the values of the

search variable may be more difficult to discern than in the V-g diagram. Similar to

the V-g representation, the severity of the flutter onset may be determined by the

angle at the flutter point (or the rate of damping change due to a change in the search

parameter). In some representations, the search variable value is indicated using a

color map on the mode lines. Because it contains a more explicit representation of

information, the V-g/V-f diagrams will be used for interpretative purposes within this

chapter. However, the statements made regarding these diagrams remains applicable

to the root locus representation as well as the flutter problem as a whole.

4.1.2 Interpretation and Visualization of Nonlinear Flutter

Problems

V-g and root-locus diagrams constitute a useful tool during linear flutter analyses to

determine the flutter point and interpret results. While the use of flutter analyses

including geometrical nonlinearities has increased over time, the questions of how

to visualize and interpret the results has remained unanswered. Consequently, the

solutions to these nonlinear problems have been interpreted using traditional root-

locus or V-g diagrams. However, flutter problems including geometrical nonlinearities,

differ significantly from their linear counterparts and require a different interpretive

approach.

When including geometrical nonlinearities, the flutter search is no longer univari-

ate as the angle of attack, control surface deflections, thrust level, etc. may change

the static equilibrium and result in different structural modes and linearized flutter

modes. The number of search variables now depends on the vehicle conditions en-

48

countered as well as the aircraft configuration itself, expressed as the mapping of

RM → RN (where M is the number of variables affecting the flutter stability).

The dimension of the flutter search space may be very large and prohibitive for

visualization. While the problem illustrated in Equation 4.4 constitutes a multidimen-

sional root-finding problem, solving this with a multidimensional Newton’s method

would yield different results for different starting conditions, as illustrated in Figure

4.3. Fortunately, the flutter search can still be performed in a pseudo-univariate man-

ner, akin to a line search along a one-dimensional curve through a higher dimensional

space (Figure 4.3). That is, for example, the dynamic pressure is chosen as the search

variable, while the other variables (angle of attack, control surface deflections, etc.)

are determined by the dynamic pressure, e.g., because of trim requirements:

Re (ζi (q, α, ηCS, . . .)) = 0 (4.4)

with:

α = f (q) (4.5)

ηCS = g (q) (4.6)
... (4.7)

The results of this pseudo-univariate search, similar to a linear flutter problem, can

be visualized using a root-locus or V-g diagram. Differing from the linear analysis,

the resulting V-g diagram is the result of a series of cuts through a much higher

dimensional flutter search space, thereby only representing information along the

search line.

Data from flutter search locations in two dimensions can also be combined, yielding

an extended V-g diagram (Figure 4.3). The axes constitute the input variables/flight

49

Unstable

Stable

Flutter Boundary

Trimmed Search Path

Fixed Condition Search Path (1)

Fixed Condition Search Path (2)

Flutter Point (1)

Flutter Point (2)

Figure 4.3: A qualitative extended V-g diagram (angle of attack vs. dynamic pressure)
for the first mode damping values with different flutter search paths. The contours
denote the damping values of the mode closest to zero. Dashed contour lines indicate
negative damping values.

50

conditions for the flutter analysis. For legibility the damping values from only one

mode are displayed as contour lines; multiple modes may be visualized using a multi-

tude of diagrams. The extended V-g diagram contains all information of a traditional

V-g diagram but extended by another axis (here: angle of attack). While the classical

V-g or root-locus diagram contains information regarding the flutter point and some

indication of hardness of the crossing (along the search direction), the insights gleaned

from the diagram may remain incomplete. The extended diagram, by contrast, per-

mits additional correlations regarding the sensitivity to changes in flight conditions.

For two flutter variables (e.g., dynamic pressure and angle of attack), the diagram

represents the entire search space. However, if there are more than two search vari-

ables, the extended V-g diagram also only captures a snapshot of the search space

and additional extended diagrams (with other variables) may be needed to decipher

trends.

Finally, the extended V-g diagram illustrates the effects of the path choice of the

flutter search process. As previously discussed and depicted in Figure 4.3, two fun-

damental search processes exist: trimmed conditions and pre-determined conditions

for a given dynamic pressure. In Figure 4.3, the trimmed search path shares the

same flutter point with the first fixed condition search path. Despite sharing the flut-

ter point along their respective search paths, the traditional V-g diagrams for each

search path differ substantially. Strikingly, the gradient along the search direction,

often used to indicate severity of the flutter onset, is different for the two searches.

As a result, the information obtained from a traditional V-g diagram along the search

direction (except for the flutter point itself) must be weighed judiciously and if ap-

propriate, be supplemented with extended V-g diagrams and gradient information.

Finally, in the case of pre-determined vehicle conditions, the choice of search path

may have a significant effect on the predicted flutter point (Figure 4.3). As such,

trim points, if available, are preferable as a flutter search path and vehicle conditions

51

must be chosen carefully for aircraft configurations without trim data and may result

in accelerated conditions.

As previously stated, linear analyses are a special case of nonlinear flutter search

problems. Inspecting the extended V-g diagram in Figure 4.3, a line coincident with

the dynamic pressure axis constitutes a linear flutter search. In this case, the angle

of attack does not influence the flutter damping values or the location of the flutter

point. The choice of a linear vs. a nonlinear flutter analysis, therefore must be decided

by the expected dimensionality of the flutter problem.

4.2 Flutter Search Including Geometrical Nonlin-

earities

The flutter algorithm developed in this work consists of two parts: the search process

and the postprocessing of the search data (Figure 4.6). The search process follows

the methodology outlined in Su and Cesnik [4] and was implemented in UM/NAST

(see Chapters 3 and 10). A search point evaluation begins with the evaluations of the

steady state solution for given boundary conditions (Mach number, dynamic pressure,

angle of attack, angle of sideslip, etc.). A linearization is then performed about this

nonlinear state of equilibrium to obtain the system matrix A, such that:

ẏ = Ay (4.8)

The stability check is performed by an eigenvalue analysis of the system matrix,

resulting in eigenvalues of the form:

ai = ζi + iωi, (4.9)

from which the stability of a mode can be determined from the real part of the

52

eigenvalue. The spatially dependent mode shape φi (Equation 4.1 can be determined

from the eigenvectors of the A matrix.

The advantage of Su and Cesnik’s approach is that several different modes of

stability analysis can be conducted such as flutter of a vehicle with constrained rigid

body motion, flutter of free flying vehicles, and the vehicle flight dynamic stability.

While the proposed algorithm uses the same fundamental formulation, it differs from

Su and Cesnik’s methodology by not iterating the search variable according to the

result of the eigenvalue analysis; Su and Cesnik’s algorithm performs a check after

every eigenvalue analysis and only increases the velocity until an instability occurs.

The proposed algorithm requires a set of search points to be determined a priori.

This results in the complete set of iterations being completed irrespective of the other

search iterations. This data independence makes the algorithm highly parallelizable

and large improvements in runtime can be achieved by using parallel programming

paradigms such as MPIMessage Passing Interface (MPI). The independence of the

individual search points can also be used to sample the flutter space and create an

extended V-g diagram or determine the flutter boundary (see Section 4.4).

4.3 Determining a Flutter Point

This section details the flutter point algorithm developed for this work. Using the

search data described in Section 4.2, the flutter point is determined via postprocessing.

To this end, a mode tracking algorithm is applied and an interpolation surrogate

created. Finally, a hybrid root-finding algorithm is applied to the surrogate to find

the location of the stability boundary.

53

0.0 0.2 0.4 0.6 0.8 1.0
Mach number

0

20

40

60

D
yn

am
ic

pr
es

su
re

,k
Pa

Se
a lev

el

No solution (undefined)

u-base
d

q-based

Figure 4.4: Different flutter search types in a modeled atmosphere.

4.3.1 Choosing the Search Variable

Two fundamental search types exist to determine the flutter point: a speed-based

(u-based, with fixed altitude) or dynamic pressure-based (q-based, with fixed Mach

number) search. While, at first glance, these methods may appear equivalent, the

choice in search method entails practical consequences depending on the application.

Consider the search lines shown in the Mach-dynamic pressure plane in Figure

4.4. The atmospheric model, with the International Standard Atmosphere (ISA)

shown here, naturally imposes bounds on the choice of search variable: the lower

altitude is limited by sea level, and the edge of space imposes an upper limit. In

numerical models, this upper bound may be lower than the edge of space due the

altitude restrictions on standard atmospheres. As a result, the blue area in Figure

4.4 represents the space in which all physically feasible searches can be conducted.

The two different search types are displayed: a u-based search for a fixed altitude, as

54

well as two different q-based searches for fixed Mach numbers.

The Mach-dynamic pressure plane is a significant representation for flutter anal-

yses for a variety of reasons. Often, flutter boundaries are displayed as the flutter

dynamic pressure as a function of the Mach number. Additionally, the aerodynamic

data used for flutter analyses is often provided as a function of the Mach number. As

such, the relationship of the flutter search variable to the M -q space is relevant to

obtain accurate results.

The u-based search, while fixing an altitude, varies in Mach number. As a result,

if the aerodynamic data is given only until a particular Mach number (e.g., 0.8),

extrapolation of the aerodynamic coefficients may occur without the knowledge of the

user. The errors incurred by the extrapolation process may be significant and render

the resulting flutter analysis useless. The q-based search, by constrast features a fixed

Mach number, so that extrapolation cannot be encountered unless the user explicitly

requests it. Moreover, the dynamic pressure-based search permits the evaluation at

the seed points of the aerodynamic data, thus reducing the error of the aerodynamic

coefficient interpolation (i.e., via kriging surrogates in the method of segments [65]).

Finally, the speed-based search is not bounded beyond the requirement that u ≥ 0.

The speed can be increased infinitely. The dynamic pressure search is bounded by

the limits of the atmospheric model used. As a result, the search space at low Mach

numbers is very small and may yield very high accuracy results with few search points,

while higher Mach numbers entail a much larger search range.

4.3.2 Mode Tracking

The mode tracking algorithm developed for this work functions based on a modal

assurance criterion (MAC)-based approach [66, 67]. The MAC is typically used in

ground vibration testing (ground vibration testing (GVT)) to compare the similarity

of mode shapes from two different sources (i.e., experiment vs. numerical simulation).

55

In its general form theMAC compares two vectors φi and φj which may be real and

complex, and is given by:

MAC =

∣∣φH
i φj

∣∣2
φH
i φiφH

j φj

(4.10)

The superscript H indicates the Hermitian or the conjugate transpose vector,

which simplifies to the transpose for real vectors. The implemented mode tracking

algorithm is described in Figure 4.5. The algorithm conducts a discrete optimization

to find the modes which match best according to the MAC. As the algorithm is

inherently serial, matched modes are eliminated from the pool of comparison modes

for computational efficiency.

4.3.3 Root-Finding Algorithm

Several root-finding algorithms exist varying from bracketing techniques (bisection,

false position, etc.) to fixed-point iterations (such as Newton’s method). Each method

offers benefits and drawbacks regarding solution speed, accuracy, and robustness. As

such, a hybrid root-finding method was used for this work combining the advantages

of the bisection method and Newton’s method.

Newton’s method is defined by [68]:

xi+1 = xi −
f (x)

f ′ (x)
(4.11)

or written as the fixed-point iteration:

g (x) = x− f (x)

f ′ (x)
(4.12)

As a fixed-point iteration, it fulfills:

g (p) = p (4.13)

56

start

MACbest = 0,
i = 0, j = 1

start mode comparison

MAC (ϕi, ϕj)

MACcurrent > MACbest

j < Nmodes

i < Nmodes

save MACbest

j = j + 1

i = i + 1, j = 1

stop

yes

no

no

yes

yes

no

Figure 4.5: Flow chart of the implemented mode tracking algorithm.

57

where p is the root of the function f . Fixed-point iterations must converge to the

fixed point/root if the following criteria are met (for a detailed proof, see Bradie [69]):

1. g is continuous on the closed interval [a, b].

2. g is differentiable over the open interval (a, b).

3. g′ is continuous on the open interval (a, b).

4. |g′ (x)| 6 k < 1 for a positive constant k.

If these conditions are not met, convergence of Newton’s method is not guaranteed.

If, on the other hand, these conditions are fulfilled, Newton’s method converges with

O (n2).

On the other hand, following from the Intermediate Value Theorem (IVT) [69],

the bisection method converges to a root within a closed interval (at approx. O (n))

if:

1. The function f is continuous over the closed interval [a, b].

2. f(a) and f(b) have opposite signs.

Clearly, the uncertainty regarding Newton’s method convergence and the risk of

divergence from the root disqualify it from being used without modification to find

the root (flutter point), while the convergence characteristics of the bisection method

entails a performance penalty. Therefore, the root-finding algorithm used in this work

combines the bisection method and Newton’s method to ensure converge to a root,

should it exist (follows from the IVT), while enabling the same convergence speed (or

close) of Newton’s method. The hybrid algorithm conducts the following steps:

1. Conduct an initial bisection iteration on the interval to obtain x1 (xi for i = 1).

2. Conduct a Newton iteration using xi to obtain xi+1

58

3. If xi+1 lies within the interval

(a) keep xi+1.

4. Else

(a) Conduct a bisection step to obtain xi+1 and adjust the interval bounds

appropriately.

5. Increase i and repeat from 3. until convergence tolerance is achieved.

4.3.4 Flutter Point Algorithm

The second part of the newly developed algorithm is the postprocessing of the data

obtained during the search process to find potential instabilities. This part contains

the largest deviation from existing methodologies and is agnostic to the type of aeroe-

lastic model (beam-based or full FEM).

Mode tracking is applied to solutions of the EVP to obtain the eigenvalues and

eigenvectors as a function of dynamic pressure. Next, the first unstable mode is de-

termined. A surrogate of this unstable mode is created from the resulting eigenvalues

(separating real and complex parts) and the surrogate roots determined.

The solution to this root finding problem is solved using the hybrid fixed-point/

bisection method described previously, yielding the flutter point (flutter dynamic

pressure). A final flutter search iteration is conducted using the flight conditions at

the flutter point (dynamic pressure, control surface deflections, angle of attack, etc.)

to obtain the flutter frequency and flutter mode shape.

To improve computational efficiency the number of retained modes is reduced for

the first search iteration using filters (to remove inflow dominated modes, rigid-body

modes, etc.) prior to applying the mode tracking algorithm. By removing these modes

from the initial set, the filtering propagates across all search iterations while reducing

the number of mode comparisons and thereby improving computational efficiency.

59

Mode Tracking

Re(λ)=0?

Steady State
Solu�on

Lineariza�on

Eigenvalue
Analysis

Create Kriging
surrogate

State Space
Equa�on

Start

 Flu�er with constrained
R.B. mo�on
Flu�er in Free Flight

 Flight Dynamic Stability

End

Instabilityyes

no

Figure 4.6: Algorithm utilizing mode-tracking and kriging surrogates for accurate
prediction of the flutter point including geometrical nonlinearities.

4.4 Determining the Flutter Boundary

The typical method for determining a flutter boundary involves running a prede-

fined number of flutter analyses to determine their respective flutter points. While

this is simple and computationally feasible for linear analyses, this approach may be

computationally less than optimal for nonlinear flutter analyses. As such, a more

efficient approach to determining flutter boundaries was developed for this work. Al-

though nonlinear flutter problems constitute the focus of this work, the underlying

methodology remains applicable to linear problems as well.

First, the concept of a flutter boundary, as it is discussed here, is clarified. The

stability problem can be expressed as a linear map between the variables affecting

the flutter problem and the critical damping value:

RN → R (4.14)

60

or

RN → max (ζi) (4.15)

Therefore, in general terms, the flutter boundary is the map of the flutter variables

to the neutrally stable point:

RN → 0 (4.16)

However, flutter boundaries are usually visualized for interpretation and visual-

izations beyond three dimensions are inpractical. Therefore, this section will limit

the determination of the flutter boundary to within the extended V-g diagram or or

a projection from two flutter variables to the critical damping value:

R2 → max (ζi) (4.17)

4.4.1 Non-Adaptive Search

As previously discussed, evaluating several flutter point analyses in series to determine

the flutter boundary is computationally inefficient. Such analyses are analogous to

sampling a domain using a rectilinear grid. While this may work, it typically is an

ineffective method of sampling. Instead of determining individual flutter points, this

method uses non-structured sampling (see Chapter 6) combined with a surrogate to

determine the flutter boundary.

To create an extended V-g diagram, one must first sample the flutter problem. If

61

a flutter boundary over one variable is sought, the sampling may be conducted in two

dimensions instead of sampling all flutter variables. The flutter boundary constitutes

the roots of the diagram. Differing from the flutter point analysis, however, the

flutter boundary is a line in the diagram instead of a point. Therefore, a root finding

process must be run several times, using multiple starting points xk to (hopefully)

obtain unique roots. Once the samples have been created, a interpolation surrogate

is created which is used instead of the search point evaluation during the root finding

process. The flutter boundary algorithm uses the extended V-g sample points as

starting points for a two-dimensional Newton method. Because the flutter boundary

search is conducted solely using the surrogate, substantial performance gains are

obtained compared to a search using the flutter search point analyses directly.

Predicting the flutter boundary in this manner also yields more information than

the typical evaluation. As with the flutter point search, due to the use of a surrogate,

the accuracy of the flutter boundary prediction can be quantified using the prediction

variances. This permits the designer or researcher to quantify the confidence of their

prediction and refine the search if necessary. Additionally, the extended V-g can be

visualized on top of the flutter boundary, providing a designer more information as

to the nature of the instability.

4.4.2 Additional Remarks

As previously discussed, the methods presented here function on the three-dimensional

projection from two flutter variables to the critical damping value (Equation 4.17).

Practical nonlinear flutter problems, however, may depend on many additional vari-

ables and evaluating the flutter boundary with respect to several variables may be

required. It should be noted that this scenario does not require a re-sampling of the

flutter problem, which would be computationally expensive. Instead, the initial sam-

pling needs to be conducted such that it sufficiently samples the multi-dimensional

62

space of the flutter problem. This will likely be significantly more expensive than

sampling in two dimensions, due to the so-called “curse of dimensionality.” How-

ever, once the sampling has been conducted, the multi-dimensional data set must be

reduced to two dimensions, so that the extended V-g diagram can be created:

RN → R2 → max (ζi) (4.18)

Such a reduction must be conducted for every flutter boundary that will be cre-

ated. This reduction in dimensions is cheap, as it only entails excluding dimensions

before transferring data to the flutter boundary search algorithm. Therefore, the de-

termination of the flutter boundary remains the same, while the flutter search point

sampling is expanded.

63

CHAPTER 5

Geometrically Nonlinear Flutter

Constraint

As vehicles become more flexible and optimization finds wide-spread use, flutter con-

straints including geometrically nonlinear effects are required. These constraints en-

sure that flutter can be considered early in the design process, reducing or eliminating

costly modifications during the final detailed design or certification.

While linear flutter analyses and constraints account for much of the existing

literature, Henshaw et al. [70] noted that the use of linear flutter constraints may

yield a conservative design. In contrast to linear flutter analyses, nonlinear flutter

problems depend on initial conditions (see Section 4.1 for a detailed explanation).

Formulating a flutter constraint including geometric nonlinearities therefore requires

a much larger analysis space than a linear flutter constraint. Therefore, an excessive

number of constraints may be obtained unless constraint aggregation is used.

This chapter discusses the geometrically nonlinear flutter constraint I formulated

for this work. Section 5.1 discusses the considerations of constraining either the flut-

ter dynamic pressure or the flutter search damping values. As constraint aggregation

is required to ensure an efficient optimization problem, Section 5.2 reviews constraint

aggregation methods and details the properties of the individual methods as well as

their applicability to the current problem. Finally, Section 5.3 presents the formula-

tion of the geometrically nonlinear flutter constraint used in this work, based on a

64

similar methodology developed by Jonsson et al. [71, 34].

5.1 Constraining Damping vs. Dynamic Pressure

Multiple approaches exist to creating a flutter constraint for optimization. One ap-

proach is to constrain the flutter dynamic pressure such that it remains above a

defined threshold:

qlimit − qF < 0, (5.1)

for all i.

This formulation, however is not practical, as hump modes or mode switching

may yield discontinuities in the constraint and constraint gradient (Figure 5.1). As

such, the flutter constraint is formulated as a constraint of the real part (damping)

of the eigenvalues from the flutter search such that:

Re (ζi) < 0 (5.2)

for all i.

5.2 Aggregation Methods

Large number of constraints can increase the cost of an optimization problem and

cause its solution to become untenable. Constraint aggregation combines multiple

constraints into one scalar value, attempting to find a conservative approximation for

the largest constraint value gmax = max (gj). Ideally, the aggregation method used

avoids excessively conservative approximations, as this can yield an entirely infeasible

65

Speed

D
am

pi
ng

Mode A
Mode B

(a) Mode-switching, configuration A

Speed

D
am

pi
ng

Mode A
Mode B

(b) Mode-switching, configuration B

Speed

D
am

pi
ng

Mode A

Mode B

(c) Hump mode, configuration A

Speed

D
am

pi
ng

Mode A

Mode B

(d) Hump mode, configuration B

Figure 5.1: Design changes from a configuration A to a configuration B may lead to
discontinuities in a flutter constraint due to mode-switching (5.1a, 5.1b) or a hump
mode (5.1c, 5.1d).

66

optimization problem.

This section compares two frequently used constraint aggregation functions, the p-

norm [72] and Kreisselmeier-Steinhauser [35] functions, and discusses their properties

relevant for application in a flutter constraint. Specifically, the applicability of these

properties to the constraint formulation at hand are discussed.

5.2.1 p-Norm Aggregation

The p-norm function is a popular method of constraint aggregation. The aggregation

function is given by [72]:

‖g‖p =

(
N∑
i=1

|gi|p
) 1

p

(5.3)

It has been used as an aggregation function for stress constraints. However, as ev-

ident from Equation 5.3, the p-norm function is only applicable to positive constraint

values. Constraining the damping value of the flutter eigenvalue problem would result

in constraint violations. As the negative damping values indicate a stable solution,

the absolute value imposed by the p-norm would result in all aggregated values being

positive, and thus, infeasible. As such, the p-norm was not considered for the flutter

constraint.

5.2.2 Kreisselmeier-Steinhauser Functions

KS functions [35] are a constraint aggregation methodology for m constraints gj (x)

originally given by:

KS (g (x)) =
1

ρ̄
ln

(
m∑
j=1

eρ̄gj(x)

)
(5.4)

67

x

y

g1(x)

g2(x)

KS aggregate

Increasing ρ̄

Figure 5.2: Example of KS aggregation over two constraints with varying parameter
ρ̄.

An alternate formulation was proposed [35], which avoids numerical instabilities

due to overflow [71]:

KS (g (x)) = gmax (x) +
1

ρ̄
ln

(
m∑
j=1

eρ̄(gj(x)−gmax(x))

)
(5.5)

The KS function derivatives are [71]:

∂KS (g (x))

∂x
=

m∑
j=1

eρ̄(gj(x)−gmax(x)) ∂gj(x)
∂x

m∑
j=1

eρ̄(gj(x)−gmax(x))

(5.6)

68

As Jonsson and coworkers summarized [34] et al.[73] noted that KS functions:

• are convex if (and only if) the constraint functions are convex;

• are larger than the maximum constraint for all ρ̄ > 0;

• converge to the maximum constraint for ρ̄ → ∞;

• approach the maximum constraint monotonically in ρ̄.

An example of a KS aggregation for multiple values of the factor ρ̄ is shown in

Figure 5.2. Clearly, a larger ρ̄ results in a less conservative aggregate. However, the

example also illustrates, that if the factor is not chosen to be sufficiently large, the

aggregation may artificially limit the optimization as feasible parts of the design space

become infeasible. Finally, it should be noted that too many constraints aggregated,

as well as too large factor ρ̄ will lead to inaccurate aggregations that may not yield

any feasible designs [34]. Because the KS functions yields a smooth approximation of

the critical constraint value, this type of constraint aggregation was chosen for this

work.

5.3 Flutter Constraint Formulation

To reduce the number of constraints required to include flutter in the optimization

problem, Jonsson and coworkers [71] proposed using KS functions to aggregate the

flutter constraints for a linear flutter solution. This results in a continuous constraint

and reduces the number of constraints in the optimization problem, i.e.,

KS (Re (ζi)) < 0 (5.7)

Jonsson et al. [34], proposed a flutter constraint using a sequential KS functions.

This work utilizes the concept of two KS aggregations in series and applies it to

69

geometrically nonlinear flutter problems. The first KS aggregation is applied to every

search iteration to obtain the most critical damping value for that iteration, yielding

a set of critical damping values. The second KS aggregation yields the most critical

value of the previous set. Thus, the nonlinear flutter constraint can be formulated in

terms of the real part of the flutter solution eigenvalues and KS functions:

KS (KS (Re (ζi))) < 0 (5.8)

The sequential application of KS aggregations are, in fact, equivalent to a sin-

gle KS aggregation over all constraint values (see Appendix B for the derivation).

Nonetheless, using this two-tiered approach has organizational advantages. It per-

mits an aggregation within the flutter solver to obtain the most critical damping

value at a given search point, while the final aggregation is conducted within the

MDO framework. Chapter 11 discusses how this distribution of tasks can lead to a

reduction in the number of user-provided gradients.

The formulation in Equation 5.8 yields a scalar constraint over the entire flight

envelope (Figure 5.3). As no connectivity information is required, the method permits

a variety of approaches to sampling (a more detailed discussion of the flight envelope

sampling process, along with pitfalls, is presented in Chapter 6). However, it should

be noted that the quality of the sample set, and thereby the sampling process, play a

crucial role in obtaining an accurate flutter constraint. Finally, to limit the number of

constraints that need to be aggregated, and to avoid numerical instability in the KS

aggregation, the number of modes used for the constraint is limited to a user defined

quantity (substantially less than full set of eigenvalues obtained from the eigenvalue

problem (EVP)).

70

Aggregated Value

Stable

Unstable

Figure 5.3: Qualitative example of the sequential application of KS aggregation to
obtain a scalar, geometrically nonlinear flutter constraint.

71

CHAPTER 6

Flight Envelope Sampling

Many aircraft design problems require sampling the vehicle flight envelope for design

exploration or constraint applications. For example, vehicle performance may differ

significantly at different operating points, so the designer needs to be able to sample

the operational space to determine the effects on a predetermined mission. Simi-

larly, the flutter constraint formulated in Chapter 5 requires adequate flight envelope

sampling to ensure feasibility across all operating conditions. As such, the sampling

method becomes indispensable for design and optimization problems and may have

a significant impact on the resulting configurations.

However, sampling a flight envelope is fraught with difficulties. Few flight en-

velopes or design spaces are hypercubes, and therefore, using conventional sampling

methods may miss critical points. This chapter discusses typical sampling methods

(Section 6.1), presents issues encountered when using these conventional methods

(Section 6.2), and proposes sampling methods intended for aircraft design and opti-

mization problems. Section 6.3 presents a constrained sampling algorithm adapted

from Golchi and Loepky [74].

6.1 Hypercube Sampling

Traditional sampling methods used during Design of Experiments (DOE) function

within an N -dimensional hypercube. Popular methods for sampling a hypercube

72

are random (Figure 6.1a), Latin Hypercube Sampling (LHS) (Figure 6.1b), Halton

(Figure 6.1c) and Hammersley sampling (Figure 6.1d).

As seen in Figure 6.1, the different hypercube sampling methods result in vastly

different sampling points. To be able to choose an appropriate method, a metric must

be chosen that defines a “good” method. For this thesis, space filling DOE are sought.

Therefore, the discrepancy of the resulting samples should be as low as possible. The

discrepancy of the samples is a measure of how evenly spaced a distribution of samples

is. Inspecting Figure 6.1, one can observe that the random sampling and LHS yield

samples that are more clustered than the other methods. Halton and Hammersley

samples, by contrast, both show good space filling designs. Because of this, this work

uses Hammersley sampling any time hypercube samples are required.

6.2 Problems with Hypercube Sampling

The sampling process is complicated by the fact that the flight envelope is not (gen-

erally) a hypercube. If the flight envelope is sampled using a hypercube (Figure 6.2),

either the sample will only represent a subspace of the entire flight envelope or ex-

tend past its bounds. In the case of under-sampling (Figure 6.2a) critical parts of the

flight envelope may not be sampled, potentially missing constraint violations within

the envelope. On the other hand, points sampled outside the flight envelope are of no

interest and may even fail to yield an aeroelastic solution, making the oversampling

approach (Figure 6.2b) wasteful for an optimization constraint.

6.3 Constrained Sampling

As such, an algorithm capable of sampling a non-hypercube, non-convex flight enve-

lope is needed. This is achieved by a two-step process: an initial fine sampling of a

hypercube surrounding the entire flight envelope (Figure 6.3a) followed by an ensuing

73

0 2 4 6 8

x

0

2

4

6

8

y

(a) Random sampling

0 2 4 6 8

x

0

2

4

6

8

y

(b) Latin Hypercube sampling

0 2 4 6 8

x

0

2

4

6

8

y

(c) Halton sampling

0 2 4 6 8

x

0

2

4

6

8

y

(d) Hammersley sampling

Figure 6.1: Comparison of different hypercube sampling methods.

74

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

No
t s

am
pl

ed Feasible samples

(a) Underfitting

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

Feasible samples

Infeasible

(b) Overfitting

Figure 6.2: Underfitting (left) and overfitting (right) of the flight envelope using a
hypercube. If the evelope is underfit critical damping values may not be considered
for the flutter constraint, while overfitting may not yield a solution for points outside
the flight envelope.

constrained Maximin (cMm) approach [74] (Figure 6.3b).

The initial sampling of the flight envelope is conducted using Hammersley pseudo

random hypercube sampling [75] encompassing the entire flight envelope. As this

initial sampling serves as the seed for the second sampling process, a very fine sampling

is required. During this initial step a filter is applied such that only points within

the constrained region are kept. The final cMm sampling step uses the samples

obtained in this manner and applies a Maximin algorithm to obtain a low discrepancy

constrained sample of a size specified by the user.

The cMm sampling algorithm maximizes the minimum distance between sample

points using a defined distance metric. The cMm method in this work uses a weighted

Euclidean distance metric between two points a and b:

δ (a, b) =

√√√√ N∑
i=1

wδ
i (ai − bi)

2 (6.1)

75

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km
Rejected

Valid Samples

(a) Initial sampling

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

(b) Constrained Maximin sampling

Figure 6.3: Initial pseudo random sampling of the domain using hypercube and final
sampling process using a cMm method. Sample points outside of the constrained area
are discarded during the initial sampling. The final sampling process using a cMm
approach yields a low discrepancy sample.

It should be noted that using a simple Euclidean distance (wδ
i = 1) will yield

poor results when sampling the flight envelope (Figure 6.4a). Typically, the aircraft

altitude range and the speed range will differ by an order of magnitude. As a result,

an unweighted cMm sampling will yield a biased sampling, as in Figure 6.4a, where

the boundaries are sampled more extensively than the rest of the flight envelope.

If applied in a flutter constraint, this would mean that a large portion of the flight

envelope in which the aircraft regularly operates will remain unsampled. As a result,

critical flutter damping values may not be accounted for during the optimization,

yielding an inaccurate flutter constraint and an infeasible design. While modifying

the Euclidean weights (Figure 6.4b–6.4d) results in a better sampling of the envelope,

the lowest discrepancy sample is achieved only for the correct weighting factor (Fig-

ure 6.4d). Generally, this weight is determined such that the weighted components of

the sample vector are of the same order of magnitude. While flutter is more likely to

76

occur towards the high-speed boundary of the flight envelope, this sampling approach

accounts for hump modes in the flight envelope. Finally, the flutter constraint ap-

proach using this sampling methodology can be easily modified to account for other

aeroelastic and rigid-body instabilities (such as phugoid modes, etc.).

77

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

(a) wδ
2 = 1.0

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

(b) wδ
2 = 10−1

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

(c) wδ
2 = 10−2

100 150 200 250 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

(d) wδ
2 = 10−3

Figure 6.4: Comparison of the constrained Maximin sampling using different Eu-
clidean distance weights.

78

CHAPTER 7

Determining Equivalent Beam Properties

An equivalent beam condensation is required to integrate the nonlinear beam-based

simulations with higher-fidelity analyses. Additionally, gradients of the beam prop-

erties are determined with respect to higher-fidelity design variables. This chapter

describes the methods used to determine both the equivalent beam properties and

their gradients. These properties are verified in Appendix ?? and applied to a multi-

fidelity optimization problem in Chapter 16.

The beam condensation consists of two separate processes: a mass condensation

and a stiffness condensation. The mass condensation simplifies every element as a

point mass and determines the equivalent beam mass properties from these. The

equivalent beam stiffness properties are determined from FEM runs for linearly inde-

pendent load cases. Gradients for the mass condensation are determined analytically,

while the stiffness sensitivities are determined using AD.

7.1 Mass Condensation

7.1.1 Function Values

The mass condensation uses the high-fidelity FEM model and reduces it to point

masses—one for every element (Figure 7.1). For an entire model, the high fidelity

model must be subdivided such that every beam node is associated with its neigh-

79

xG

yG

zG Beam Node

ri

mi

t

m, Ijk, xcg, ycg, zcg

x1

x2

x3

x4

Figure 7.1: Relationship between a mass element and the beam reference node.

boring high fidelity elements. This can be achieved, for example, using a nearest

neighbor approach. The mass of every element is determined from the element area

and density, assuming a constant element thickness:

mj = ρAt (7.1)

The element area is determined from the element corner points using Heron’s

formula [76] (using two triangles for quadrilateral elements).The equivalent beam

mass is then obtained from the sum of the element masses associated with the beam

section.

me =

Nelem∑
j=1

mj (7.2)

The center of gravity of the beam section (determined from the individual element

80

masses) is:

xcg =

Nelem∑
j=1

mjrxj

N∑
j=1

mj

(7.3)

ycg =

Nelem∑
j=1

mjryj

N∑
j=1

mj

(7.4)

zcg =

Nelem∑
j=1

mjrzj

N∑
j=1

mj

(7.5)

The location of the quadrilateral centroids is determined by obtaining the weighted

average of the vertex locations, (x1
i , y

1
i , z

1
i), (x2

i , y
2
i , z

2
i), (x3

i , y
3
i , z

3
i), and (x4

i , y
4
i , z

4
i):

rxi =
x1
i + x2

i + x3
i + x4

i

4
(7.6)

ryi =
y1i + y2i + y3i + y4i

4
(7.7)

rzi =
z1i + z2i + z3i + z4i

4
(7.8)

Finally, the inertia of the equivalent beam section (determined from the individual

element masses) is:

Ixx =

Nelem∑
j=1

mj

(
r2yj + r2zj

)
(7.9)

Ixy =

Nelem∑
j=1

mjrxjryj (7.10)

Ixz =

Nelem∑
j=1

mjrxjrzj (7.11)

81

Iyy =

Nelem∑
j=1

mj

(
r2xj + r2zj

)
(7.12)

Iyz =

Nelem∑
j=1

mjryjrzj (7.13)

Izz =

Nelem∑
j=1

mj

(
r2xj + r2yj

)
(7.14)

7.1.2 Gradients

Because the beam condensation is applied to a gradient-based optimization problem,

efficiently and accurately determining the gradients is paramount. As mentioned

previously, the determination of the gradients is subdivided on the component level

of the optimization problem. As such, the gradients of the mass properties with

respect to the component design variables (element thicknesses and densities) are

required. The formulae for the mass condensation process are comparatively simple,

so the gradients were obtained analytically. The derivatives of the beam section mass

with respect to element thickness and density are:

∂m

∂ti
=

N∑
j=1

∂mj

∂ti
=

∂mi

∂ti
(7.15)

∂m

∂ρi
=

N∑
j=1

∂mj

∂ρi
=

∂mi

∂ρi
(7.16)

for i ∈ [1, N], otherwise ∂m
∂ti

= 0 and ∂m
∂ρi

= 0.

Note, that the gradients simplify to the derivative of the mass element with respect

to its inputs, with all other entries of the gradient vector equaling zero. This simplifies

the derivatives of the other mass properties and also results in a sparse Jacobian,

which improves computational efficiency.

82

The derivatives of the center of gravity are determined using the quotient rule:

∂xcg

∂ti
=

∂mi

∂ti
rxi

N∑
j=1

mj − ∂mi

∂ti

N∑
j=1

mjrxj(
N∑
j=1

mj

)2 (7.17)

For the element mass the equation for the center of gravity is rearranged to obtain:

N∑
j=1

mjrxj = xcg

N∑
j=1

mj (7.18)

Using Equation 7.18, the center of gravity gradients with respect to element thick-

ness and density are:

∂xcg

∂ti
=

∂mi

∂ti
(rxi − xcg)

me

(7.19)

∂ycg
∂ti

=
∂mi

∂ti
(ryi − ycg)

me

(7.20)

∂zcg
∂ti

=
∂mi

∂ti
(rzi − zcg)

me

(7.21)

∂xcg

∂ρi
=

∂mi

∂ρi
(rxi − xcg)

me

(7.22)

∂ycg
∂ρi

=

∂mi

∂ρi
(ryi − ycg)

me

(7.23)

∂zcg
∂ρi

=

∂mi

∂ρi
(rzi − zcg)

me

(7.24)

Finally, the derivatives of the inertia of the beam section with respect to the

element thickness and density are:

∂Ixx
∂ti

=
∂mi

∂ti

(
r2yj + r2zj

)
(7.25)

83

∂Ixy
∂ti

=
∂mi

∂ti
rxjryj (7.26)

∂Ixz
∂ti

=
∂mi

∂ti
rxjrzj (7.27)

∂Iyy
∂ti

=
∂mi

∂ti

(
r2xj + r2zj

)
(7.28)

∂Iyz
∂ti

=
∂mi

∂ti
ryjrzj (7.29)

∂Izz
∂ti

=
∂mi

∂ti

(
r2xj + r2yj

)
(7.30)

∂Ixx
∂ρi

=
∂mi

∂ρi

(
r2yj + r2zj

)
(7.31)

∂Ixy
∂ρi

=
∂mi

∂ρi
rxjrzj (7.32)

∂Ixz
∂ρi

=
∂mi

∂ρi
rxjrzj (7.33)

∂Iyy
∂ρi

=
∂mi

∂ρi

(
r2xj + r2zj

)
(7.34)

∂Iyz
∂ρi

=
∂mi

∂ρi
ryj + rzj (7.35)

∂Izz
∂ρi

=
∂mi

∂ρi

(
r2xj + r2yj

)
(7.36)

7.2 Stiffness Condensation

7.2.1 Function Values

The equivalent beam stiffness condensation used in this work was first proposed by

Malcolm and Laird [45] to accurately deduce beam properties of wind turbine blades

for subsequent aeroelastic analyses. The process has since been applied to aircraft

structures[77, 44]. Furthermore, Stodieck et al. [44] extended Malcolm’s process

to obtain gradients of the stiffness properties for equivalent beam condensations in

optimization problems.

The stiffness condensation component within this work consists of two distinct pro-

84

cesses (Figure 7.2): high-fidelity FEM runs to obtain equivalent beam displacements

and rotiations and the determination of the stiffness properties (from the equivalent

beam displacements and rotations previously determined).

The high-fidelity FEM simulations are conducted for six linearly independent

load cases to obtains six sets of beam displacements. In this work, these load cases

are evaluated and the equivalent beam displacements recovered using Rigid Body

Elements (RBEs). A set of six linearly independent load cases are:

(
F t
)
1
=

[
Fx 0 0 0 0 0

]T
(7.37)

(
F t
)
2
=

[
0 Fy 0 0 0 0

]T
(7.38)

(
F t
)
3
=

[
0 0 Fz 0 0 0

]T
(7.39)

(
F t
)
4
=

[
0 0 0 Mx 0 0

]T
(7.40)

(
F t
)
5
=

[
0 0 0 0 My 0

]T
(7.41)

(
F t
)
6
=

[
0 0 0 0 0 Mz

]T
(7.42)

The element stiffness matrix is evaluated from the internal forces f i, which results

85

Steady HiFi FEM
Solutions

Equivalent Beam
Stiffness

To Beam Model

Stiffness Gradients

OpenMDAO

High Fidelity FEM Model

Equiv. Beam Displacement Gradients Equiv. Beam Displacements

Stiffness Properties

Panel Thicknesses

Figure 7.2: Block diagram of the complete stiffness condensation process including
high-fidelity FEM solutions and the ensuing determination of equivalent beam stiff-
nesses.

from the applied tip loads (Figure 7.3), and the element strains:

f i =



f i
x

f i
y

f i
z

mi
x

mi
y

mi
z



= kε (7.43)

The element strains are defined in Equation 7.44 and can be rewritten in terms

86

x

y
Global Frame

l

A

B

x

y
Local Element

Global Beam

mx
B

my
B

my
t

mx
t

M y
t

Figure 7.3: Diagram of the coordinate frames and global and local load conventions
(shown here for an applied tip moment) of the stiffness condensation process.

of displacements:

ε =



εx

γy

γz

κx

κy

κz



(7.44)

(7.45)

87

Assuming a geometrically linear relation, this can be expanded to:

ε =



∂ux

∂x

∂uy

∂x

∂uz

∂x

∂θx
∂x

∂θy
∂x

∂θz
∂x



+



0

−θz

θy

0

0

0



(7.46)

=



∂ux

∂x

∂uy

∂x

∂uz

∂x

∂θx
∂x

∂θy
∂x

∂θz
∂x



+

∫ x

0



0

−κz

κy

0

0

0



dx (7.47)

The element local displacement and local internal force vectors u and f are ob-

tained by transforming the global displacements U and F in to the local coordinate

88

system:

u =



ux

uy

uz

θx

θy

θz



= TU (7.48)

f t = TF t (7.49)

The element stiffness properties are determined by initially solving for the stiffness

matrix in the local frame. The local element stiffness matrix is obtained from:

f i = K∆u (7.50)

with

∆u =



uB
x − uA

x

uB
y − uA

y − lθAz

uB
z − uA

z + lθAy

θBx − θAx

θBy − θAy

θBz − θAz



= kε (7.51)

89

Malcolm[45] derived the relationship between the local stiffness matrix K and the

stiffness matrix k in Lyapunov form, which can be solved for k−1 using Lyapunov’s

method:

K−1Q−1 = k−1HQ−1 + Ek−1 (7.52)

with

E =



0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



(7.53)

H =



l 0 0 0 0 0

0 l 0 0 0 0

0 0 l 0 0 0

0 0 0 l 0 0

0 0 − l2

2
0 l 0

0 l2

2
0 0 0 l



(7.54)

90

Q =



l2

2
0 0 0 0 0

0 l2

2
0 0 0 0

0 0 l2

2
0 0 0

0 0 0 l2

2
0 0

0 0 − l3

3
0 l2

2
0

0 l3

3
0 0 0 l2

2



(7.55)

7.2.2 Gradients

As with the equivalent beam mass condensation, the gradients of the stiffness conden-

sation with respect to its input variables are required for the optimization problem

(Figure 7.2). While the mass condensation gradients were determined analytically,

the gradients of the stiffness condensation component were determined using AD,

while the gradients of the FEM solutions needed for the condensation are obtained

from the FEM solution itself. Based on previous studies of AD libraries (Chapter 8),

the C++ library CoDiPack [78] was chosen. The application of AD to this problem

mirrors the implementation for UM/NAST detailed in Chapter 10.

The stiffness condensation in this work was implemented using templates, permit-

ting the function evaluation using standard C++ floating precision types without the

overhead of operator overloading AD. The evaluation of the gradient with respect to

the equivalent beam displacements is then evaluated using the CoDiPack types sim-

ilar to the work conducted in UM/NAST (see Chapter 10). The templated function

is evaluated using AD only when the gradients are desired. Otherwise, the function

evaluation of the equivalent beam stiffnesses is determined using the standard double

implementation. It should be noted, that the stiffness matrix of a given element only

depends on the displacements of that element’s corner nodes and is independent of

91

any other nodes’ displacements. As a result, the Jacobian of the stiffness properties

is very sparse, yielding a computationally efficient solution.

92

Part II

Tools

93

CHAPTER 8

Algorithmic Differentiation

The conceptual background for determining gradients numerically were presented in

Chapter 2. As a summary, AD is a method of determining derivatives by applying

the chain rule to source code. AD methods include source code transformation and

operator overloading. Because of the lack of available source transformation tools for

the C++ language, operator overloading is the only practical solution. This chapter

discusses AD tools available for this work and explains the tool selection criteria and

process. Two AD libraries, Adept [79] and CoDiPack [78], were evaluated with respect

to feature set and performance. Finally, the practical ramifications of applying AD to

existing code, and how I addressed these for the software in this work, are detailed.

8.1 Adept

Adept is operator-overloading C++ library that implements forward and reverse mode

AD and is freely available under the Apache 2 license. It was developed at the

University of Reading by Robin Hogan [79]. While two major versions of the library

exist (versions 1.1 and 2.0), they are differentiated solely by the addition of array

manipulation in version 2.0. Specifically, versions 1.1 and 2.0 are compatible with

each other regarding their AD operations. For this work, Adept version 2.0 was used,

as it is the newest version, updated in 2018.

94

The authors describe Adept as an efficient library for determining gradients and

claim significant speed-ups compared to other C++ AD tools (cppAD and ADOLC),

while being only approximately 10% slower than a hand-coded adjoint implementation

[79]. To apply the library to an existing code, the floating point variables of the

algorithm must be swapped with the adouble type. The library also contains a number

of options that are intended to simplify the creation of non-AD objects, to avoid the

performance penalties associated with AD.

8.2 CoDiPack

The Code Differentiation Package (CoDiPack) is an operator-overloading AD library

developed at the TU Kaiserslautern and licensed under the GPL3 license. As it

is newer than cppAD, ADOLC, and Adept, it was not compared against Adept by

Hogan [79]. It is, however, used for the discrete adjoint approach implemented in

SU2 [80]. CoDiPack, like Adept, uses expression templates for the fast evaluation of

derivatives in forward or reverse mode. It was developed in parallel to the Message

Differentiation Package (Medipack) [81], a library that enables AD applications with

MPI. As such, CoDiPack was designed specifically with high performance computing

(HPC) applications (such as SU2) in mind. Additionally, CoDiPack, due to its use

in SU2, enjoys support within the aerospace community, while other tools (in C++)

remain relatively unknown. Finally, Sagebaum et al. [78] detailed the methods they

applied to efficiently determine gradients within SU2, providing a blueprint for future

applications.

8.3 Selecting the Algorithmic Differentiation Tool

While choosing an AD tool may be driven primarily by performance, there are a

plethora of criteria that need to be considered. Compatibility with the target software

95

is key and often not a given, thereby requiring code modifications. Additionally,

developers must anticipate the features they will need from the tool, as functionality

varies greatly between AD libraries. This section provides a performance benchmark

that investigates the scalability of the Adept and CoDiPack libraries. This together

with package functionality provides the basis on which I chose the AD library for this

work.

8.3.1 Performance Benchmarks

Benchmarking software performance can be difficult, as different packages may have

varying strengths and weaknesses. For the choice of AD library in this work, however,

it is key that the tool performs its evaluation quickly and scales well with the number

of design variables. To this end, the Rosenbrock function [82] (Figure 8.1) was chosen

to benchmark Adept and CoDiPack and compare them to the analytical gradient

evaluation. The Rosenbrock function is a typical benchmark function to test the

functionality and robustness of optimizers due to its steep walls and shallow valley.

Moreover, it was chosen for this benchmark due to its multi-dimensionality. This

permits an evaluation of the scalability of both the Adept and CoDiPack libraries

with respect to the problem dimension. The n-dimensional function is defined as:

f (x) =
n−1∑
i=1

[
100
(
xi+1 − x2

i

)2
+ (1− xi)

2
]

(8.1)

The dimensionality of the function was varied in powers of two, while the gradient

evaluation time was averaged from 1000 sequential runs. The benchmarks were run on

computer configuration A (see Appendix C). Figure 8.1b shows the slowdown of the

respective AD libraries as well as the analytical gradient compared to a Rosenbrock

function evaluation.

The analytical gradient shows a slowdown compared to the function evaluation

96

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0

−0.5

0.0

0.5

1.0

x
2 Increasing

(a) Rosenbrock function

0 250 500 750 1000
Number of variables

0

50

100

150

Sl
ow

do
w

n
(v

s.
fu

nc
tio

n
ev

al
ua

tio
n)

Analytical

CoDiPack

Adept

(b) AD tool comparison

Figure 8.1: Contour plot of the two-dimensional (n = 2) Rosenbrock function (left).
Comparison of the slowdown of the gradient for the n-dimensional Rosenbrock func-
tion determined analytically, using Adept, and using CoDiPack in reverse mode com-
pared to the time of a function evaluation (right).

as the function is scalar, while the gradient is a vector and therefore requires more

operations to compute, even in the analytical case. CoDiPack performs well com-

pared to the analytical gradient with a slowdown of approximately 2-3 relative to the

analytical gradient and a factor of approximately 50 relative to the function evalua-

tion. Furthermore, CoDiPack outperforms Adept which shows a slowdown factor of

approximately 150 compared to the function evaluation.

8.3.2 Tool Selection

The performance benchmarks in Section 8.3.1 show that CoDiPack evaluates the gra-

dients more efficiently and scales better with the number of design variables than

Adept. Additionally, CoDiPack features a larger set of functionality, including the

evaluation of n-th-order derivatives, which Adept does not. This is particularly impor-

tant, as when applying the AD linearization of the equations of motion in UM/NAST

(see Chapter 3 for the theoretical formulation and Chapter 10 for an implementa-

tion description) to an optimization problem, the second-order derivative of the state

97

space matrix A is required:

∂A

∂(·)
=

∂ẏ

∂y∂(·)
(8.2)

As such, CoDiPack was chosen for this work when numerical differentiation (in-

stead of analytical derivatives) are required.

8.4 Implementational Aspects

Many pieces of software in research work solely use simple floating point types, usually

in double precision. This is possible if the software must only determine the function

value or the gradient is determined using either finite differences or an analytical

method. The application of complex step and AD in this work, however, required

a different approach. Without special considerations, each type would require an

independent class definition, doubling or tripling the number of structures contained

within the framework. Such redefinitions would result in substantial difficulties during

code maintenance and would undermine the reuse of code. Instead all classes and

methods can be templated using ISO C++17 to allow implementation flexibility.

Templated classes and functions enable the programmer to create one definition

which can be reused for a large number of types. Consider the following example:

template <typename Type>

2 Type Add(Type input1, Type input2)

{

4 Type output = input1 + input2;

6 return output;

};

The function Add takes two input arguments returns their sum. The function

shown here was templated to allow additional flexibility when using the function.

98

This is illustrated applying the same function to two different datatypes.

// evaluate the function using integers

2 int a1 = 1;

int b1 = 2;

4 int c1 = Add(a1, b1);

6 // evaluate the function using double precision floating point numbers

double a2 = 1.5;

8 double b2 = 2.5;

double c2 = Add(a2, b2);

Therefore, templating permits the programmer to write code once and apply it

flexibly according to the types they require. Applying the same principle to UM/-

NAST resulted in one set of class and function definitions, which could then be applied

to several different numerical types. In this way, a complex step type and AD types

were added to the UM/NAST framework for gradient recovery in addition to the

existing function evaluation using the double type.

99

CHAPTER 9

MDO Framework

The studies presented in Part III encompass a multitude of disciplines and levels

of fidelity. Because coupling these disciplines manually with an optimizer would be

tedious and error prone, a MDO framework was required. The purpose of the MDO

framework is to couple disciplines, preferably at a high level, thus, alleviating work for

the researcher. This chapter presents the MDO framework and the high-fidelity tools

used in this thesis. While a plethora of frameworks exist, OpenMDAO was chosen

because of the ease of problem implementation. The individual disciplines (nonlinear

aeroelastic, finite element, and aerodynamic analyses, etc.) have been integrated

using OpenMDAO.

9.1 OpenMDAO

OpenMDAO [83] is an open source software framework designed to enable Multidisci-

plinary Design Analysis and Optimization (MDAO), using gradient-based optimiza-

tion. The framework was written in Python and allows the integration of external

software, e.g., C++ programs using Cython. Within this work, I employ OpenM-

DAO as the coupling agent between the individual disciplines, taking advantage of

the behind-the-scenes assembly of the global sensitivities.

An OpenMDAO problem consists of Components that are assembled together to

define the global problem. This modular approach simplifies evaluating the prob-

100

lem to defining the gradient at the Component level, providing derivatives for the

Component outputs with respect to its inputs. OpenMDAO uses the partials defined

in this manner to assemble the global Jacobians while utilizing problem sparsity for

computational efficiency.

9.2 mphys

mphys is a python package developed at NASA and the University of Michigan’s MDO

Lab [84] that offers a toolset for creating a high-fidelity FSI optimization problem.

For this work I used an older version of mphys, before it was reorganized. In the

version utilized for this work, mphys offers the user so-called assemblers, which are

responsible for creating and connecting structural and aerodynamic components in

an OpenMDAO problem to form an FSI problem. Components provided within the

mphys framework are include the TACS [85] structural solver as well as ADflow [86]

load and displacement transfer components defined using FUNtoFEM [87].

The high-fidelity objective function of the multi-fidelity problem is defined and

solved using the TACS FEM code [85]. TACS uses MPI for parallel solution eval-

uations and has the ability to provide an adjoint-based gradient for gradient-based

optimization. It has been used for shell-based optimization problems and topology

optimization using solid elements. As such, TACS is well suited for the proposed

multi-fidelity problem.

For the “high” fidelity portion of the multi-fidelity problem presented in this work,

I coupled the VLM solver from OpenAeroStruct [88] with the TACS shell-based FEM

solver. The force and displacement transfer is achieved using FUNtoFEM, while the

general problem setup was facilitated using the mphys toolbox.

The FSI solution cycle (Figure 9.1) begins with the evaluation of the VLM solver.

FUNtoFEM then transfers the aerodynamic loads to the structural mesh used for the

101

FUNtoFEM

DisplacementTransfer
ua

V LM Solver fa fa, ...

FUNtoFEM

LoadTransfer
fs

us TACS us

StructuralFunctions

PerformanceCalculations

Figure 9.1: XDSM diagram of the coupled FSI solution between OpenAeroStruct’s
VLM solver and TACS.

TACS analysis. The resulting displacements are transfered back to the aerodynamic

solver using FUNtoFEM. This iterative process is solved using a Nonlinear Block

Gauss-Seidel solver.

9.3 FEMtoBeam

FEMtoBeam is a Python library that implements the mass and stiffness condensation

process presented in Chapter 7. The mass condensation was written in pure Python

and the gradients are programmed and obtained analytically. The stiffness conden-

sation required a different approach, as it consists of a two-step process: obtaining

the equivalent beam displacements from a higher-fidelity FEM solver (e.g., TACS

or Nastran) and the process of determining the equivalent beam stiffnesses from the

equivalent beam displacements. FEMtoBeam is responsible for the second part of the

process, while an external solver must provide the equivalent beam properties. The

derivatives of the equivalent beam stiffness properties are not provided analytically,

but rather determined using AD via CoDiPack. Therefore, the stiffness condensation

code was templated in a similar manner to UM/NAST, permitting both the evalua-

102

tion of gradient using AD as well as their verification using complex step (Chapter

??).

103

CHAPTER 10

UM/NAST Version 4.2

The University of Michigan’s Nonlinear Aeroelastic Simulation Toolbox (UM/NAST)

is a beam-based geometrically nonlinear aeroelastic framework that has been devel-

oped over several generations of graduate students at the Active Aeroelasticity and

Structures Laboratory (A2SRL) at the University of Michigan. This thesis both

utilizes and presents enhancements to the UM/NAST framework.

10.1 Historical Background and Motivation

The foundation of the UM/NAST framework was developed by Brown and Cesnik

[56]. Brown wrote the initial Matlab strain-based beam code used in UM/NAST. The

Matlab-based code was further developed by Shearer [57], Su [58], Dillsaver [59] among

other Ph.D. students to contribute. In 2014, Pang [61] out to rewrite the Matlab-

based UM/NAST into C++. During this time the file input/output mechanisms

were changed, as were the fundamental code structure. Though written in C++,

the code retained a function-based paradigm, as had been the case with the Matlab-

based code. The initial version of the C++ became version 2.0 of the framework and

improvements to various solvers and functionality were added in version 2.1 through

2.3. Despite additions, the fundamental structure of the code remained largely the

same.

104

While an increase in the major version number implies fundamental structural

changes, version 3.0 added few features, but rather focused on the modification of the

source code to adhere to the Google C++ Style Guide [89]. The style cleanup was

conducted by Ziyang Pang, this author, and Jessica Jones, with contributions from

Patricia Teixeira. Similarly, version 3.1 was an effort by this author to reorganize the

code directory structure and build system to ease the learning process for the large

incoming class of graduate students in mid 2017. Versions 3.2 and 3.3 followed with

the final thesis contributions by Jessica Jones [60] and Ziyang Pang [61], as well as

an enhanced flutter module written by this author.

During the development of UM/NAST 3.1 it became apparent that the existing

code structure was not conducive to design and optimization problems. At that

time, such problems required the user to write an interface in a scripting language

(e.g., Python or Matlab) which would write or modify an xml input file. Next,

the user executed a system call of the UM/NAST executable to run the input file

and obtain an output file. Finally, the user parsed the output either manually or via

another interface for further post-processing. Security concerns regarding system calls

notwithstanding, this workflow, and more generally the code structure, presented a

number of obstacles for practical design and optimization applications.

A file-based workflow presents challenges to the efficient execution of batch or

optimization problems. An obvious limitation imposed by this system is the per-

formance bottleneck created by input/output (I/O) operations. I/O operations, in

general terms, are serial, so writing large amounts of data could yield a significant

performance penalty. A less obvious consequence of reading and writing input and

output files is that these files prevent parallelism. Many design problems either re-

quire or benefit from parallel execution to make the problem computationally feasible

or to enable more studies in the same amount of time. Reading and writing files

makes such a parallel problem more difficult and in some cases impossible to realize.

105

Existing files with the same filename either block parallel execution or may result

in files being overwritten unintentionally, yielding wrong simulation data. Even if

separate filenames are used for the individual threads, housekeeping would be signif-

icantly more difficult because of the use of file I/O. Finally, writing and parsing files

presents an additional step that the simulation must conduct before utilizing data.

An Application Programming Interface (API), by contrast, can skip this step and

grant direct access to data that has been stored in system memory.

Equally, the general code structure of UM/NAST 3 complicated the setup of

design and optimization problems. The work presented in this thesis, in particu-

lar, foreshadowed the need for large numbers of concurrent analyses, as well as the

recovery of gradients. UM/NAST versions prior to version 4.0 used a functional pro-

gramming paradigm, meaning that the code was written as a series of functions to

which input data was passed and from which output data was retrieved. While a

functional paradigm does not necessarily exclude an optimization workflow, it posed

a challenge when considering the changes to the code needed to recover aeroelas-

tic sensitivities. Furthermore, an object-oriented programming paradigm appeared

to be more suitable to conducting large numbers of simulations in parallel, due to

more contained data management. Finally, many modern optimization problems re-

quire Python bindings. Python has become a common denominator in optimization

and interoperability with it, more often than not, may be required, especially when

collaborating with other research groups. However, Python is an object-oriented lan-

guage and functional programming is not considered “pythonic1.” Creating a Python

wrapper for the previous functional UM/NAST implementation would therefore have

been particularly difficult yielding complex workflows for setting up more than simple

analysis problems.

A further hurdle to design and optimization problems was the absence of a com-
1The term pythonic is often used by Python programmers to denote code that adheres to Python

design principles or philosophy.

106

plete API within UM/NAST prior to version 4.0. As UM/NAST was initially designed

to read an input file, no API was conceived to allow users to assign or modify input

data or solver options. The absence of an API thereby complicated the removal of

the input/output file workflow and ultimately required a more extensive rework of

the UM/NAST code.

UM/NAST 4.0 was designed and implemented as an attempt to address the pre-

viously discussed issues as well as improve code extensibility with external tools such

as external aerodynamic solvers, feedback controllers, gust models, etc. The redesign

was conducted and implemented by this author, with help towards the end of the

development cycle by Cristina Riso to complete the high-level API, reorganize the

trim solver, regression testing, and documentation. In contrast to UM/NAST 3, an

object-oriented paradigm was adopted for version 4.0. An extensive API was written

to replace the previous input file. While writing an input file interface is currently

possible, it is not the primary means of inputting data. A Python API, which closely

resembles the underlying C++ API, was written as the main user interface. It can be

run passively via Python scripts and functions or interactively via IPython, etc. The

Python interface also enables batch analyses (both serial and parallel) that were pre-

viously not possible. Finally, gradient capabilities, as well as enhanced linearization

and stability/flutter solvers were added to the software in version 4.0.

UM/NAST 4.2, which was used to generate the results in this thesis, is a compar-

atively minor iteration of the software. The general code structure remains the same

as version 4.0. New features were added to support other research projects, as well

as to improve the API for design and optimization work2.
2Versions 4.1 and 4.2 were jointly authored between this author, C. Riso, D. Sanghi, M. Pereira,

and L. Lustosa.

107

10.2 Code Design

Version 4.0 introduced an object-oriented design to UM/NAST. This resulted in a

utilitarian subdivision of the software into two main types of structure: A model and

a solver or analysis. While UM/NAST contained a model class and a simulation class

prior to version 4.0, they predominantly served as data storage that could be passed

as an argument to functions. The new software design expands on both classes and

transforms them into sovereign entities. Each class contains member data and a set

of member functions that manipulate the member data. In that sense, every class can

be viewed as an object with a set of properties and methods to modify its properties.

10.2.1 Model and Solvers

The model class contains the geometrical and property information required to con-

duct aeroelastic analyses. Or when viewed from another perspective, it defines the

aircraft that will be analyzed by the solver. The model class contains a series of

high-level API functions for user input, as well as functions that process the input

into data the various solvers require.

The different solver classes contain member data and methods, which together

with model data enable geometrical nonlinear aeroelastic solutions. Inheritance is

used widely across all solvers (Figure 10.1) and not all solver classes defined within

UM/NAST 4.0+ are designed for direct user interaction. Base classes define basic

functions and data available to all solvers which inherit from them. While inherited

solvers such as the static solver (StaticSolver) are intended for user interaction, the

base classes StructuralSolver and CoupledSolver from which StaticSolver inherits are

not. The inheritance from these solvers enables the extensive reuse of code through-

out the UM/NAST framework, while making individual member data and functions

available to a large set of solver classes. Moreover, multiple inheritance is used by

108

Structural Solver

Coupled Solver

Static Solver

Trim Solver Modal Solver Dynamic Solver

Linearization Solver

Search Point

Stability Solver

Figure 10.1: Inheritance structure of the solvers provided in UM/NAST.

several solvers to enable both their own analyses as well as those of their respec-

tive parents. The dynamic solver (DynamicSolver), for example, inherits from the

static solver, therefore enabling both static (e.g., for initial conditions) and dynamics

solutions.

The model and the solver, however, offer little utility on their own. While the

model can be created and updated without the existence of a solver, the reverse is

not true. While solver options can be assigned without a defined model, an attempt

109

Model Solver
Pointer

Access to model data

Figure 10.2: Linked relationship between the model and solver classes.

to run a solution without a model will fail due to unaccessible memory, as model

information is required for all aeroelastic solutions. To ensure the accessibility of the

necessary model data, each solver creates a link to an associated model (Figure 10.2)

via a C++ pointer. The access via pointer ensures that copies are made, thereby

reducing memory footprint and improving performance.

While the model and solver classes coexist to enable aeroelastic analyses, their

relationship, by design, is unequal. A solver may only link to one model at a time,

while a model can be linked to a practically infinite amount of solvers. This relation-

ship enables a variety of solvers to be executed concurrently working off of a single

model’s data. Such a workflow may be used in a design problem, where the aircraft

parameters are modified and updated centrally, yet the resulting data is available to

all solvers (e.g., different load cases).

10.2.2 Design Usage Patterns

During the design of UM/NAST 4, a number of usage patterns were considered to

be required for design and optimization problems utilizing nonlinear aeroelasticity

(Figure 10.3). As is the case in any programming problem, there are many different

approaches to solving problems. As such, many more viable usage patterns may

exist than are listed here. The purpose of the listed usage patterns was not to be

110

Model Solver
pointer

(a) Standard/legacy pattern

Model Solver 2
pointer

Solver 1
data

pointer

(b) Serial pattern

Model

pointer

Solver 2

Solver 1

pointer

(c) Parallel pattern

Model

pointer

Solver 4

Solver 2

Solver 3

Solver 1

data

data

pointer

pointer

(d) Parallel-serial pattern

Figure 10.3: Usage patterns considered during the design of UM/NAST 4.

comprehensive, but rather to address scenarios that users needed to, but could not

resolve using previous iterations of the software.

The first usage pattern (Figure 10.3a) could be described as the standard or legacy

pattern as it constitutes the legacy workflow of UM/NAST. A single solver links to

a single model to produce a single set of output data. This pattern accounts for a

large number of expected user-required scenarios.

The serial pattern (Figure 10.3b) extends the legacy pattern by further solvers.

In its most basic form, two solvers are linked to the model. After the first solver

completes, data is transferred to the second solver as an input to the second solution.

The second analysis is run and the data from both solver can be used for post-

processing. A common example of this pattern is a trim analysis followed by a

111

flutter/stability analysis.

Another required workflow is the parallel pattern (Figure 10.3c). Parallel problems

are particularly important in design, where several analyses (e.g., independent load

cases) must be evaluated that have no dependencies on each other. The ability to run

these cases concurrently can make the difference between a practical and inpractical

design problem. Many parametric/batch studies are examples of this workflow, as

each analysis is independent of the others.

Finally, the parallel-serial pattern (Figure 10.3d) is a hybrid of the last two systems

and its feasibility follows from them. This workflow is of particular importance to this

work, as the flutter constraint utilizes this principle. For example, a flutter constraint

including rigid body degrees of freedom requires the evaluation of a trim condition

before determining the system stability.

10.2.3 Extensions

UM/NAST is one of the main tools used at A2SRL. As such, requirements on

its use are both wide-ranging and specific to project foci. For example, while one

project may require the inclusion of a feedback controller, which in turn requires

state data from (simulated) sensors, another project may not require any of this

functionality. In fact, the inclusion of said functionality into the core UM/NAST

code would bloat the codebase and result in an unmanageable toolset. Thus, the

descriptions of “UM/NAST” provided so far refer to the core functionality of the

toolbox, referred to as the UM/NAST Kernel.

To avoid code bloat, the UM/NAST framework functionality was divided into

functional components, which are maintained in separate repositories. I developed a

plugin system within the UM/NAST Kernel which allows particular building blocks to

be swapped at run time, whithout recompilation using polymorphism. This permits

users/developers to customize:

112

• aerodynamic solvers

• feedback controllers

• simulated sensors

• atmospheric models

and tailor them to project needs while minimizing the impact on other projects.

These plugins are defined using baseclasses that determine the basic functionality

of aerodynamic solvers, etc. for the Kernel. In this manner, the Kernel has no

dependencies on the various plugins, thus, reducing the maintenance overhead of

unrelated plugins.

10.2.4 Templated Code

Templates, by default, are not compiled unless they are called. This creates practical

concerns when developing code or the installing extensions, as every object must be

compiled. This would result in unacceptable compilation times and their associated

loss of productivity. As such, UM/NAST utilizes explicit instantiation, in which a

handful of known types are provided for compilation of the objects. The compiler

takes these types and compiles objects for the double, complex step, and reverse-mode

AD types and combines them together to a binary library (Figure 10.4). Then, when

a user builds a UM/NAST extension, the library can be linked, reducing the total

compilation time.

10.2.5 Impact of Code Design on Performance

Execution performance constitutes an important metric that can determine the feasi-

bility of design or optimization problems. Large performance gains were achieved by

the rewrite of UM/NAST from Matlab into C++ (version 2.0) due to the inherent

113

Explicit Instantiation (primal)

template SolverClass<double>;

Explicit Instantiation (AD)

template SolverClass<RealReverse>;

template <typename T>
class SolverClass
{
// ...
}

Templated Code

Solver Library

Both AD and primal
implementations

Figure 10.4: Compilation of the templated code using explicit instantiation to obtain
a binary library.

performance benefits of a compiled language compared to Matlab. While single-

threaded performance was not the primary concern during the redesign in version

4.0, performance remains paramount to conducting practical and scientifically inter-

esting design problems. A comparison of individual code sections to past versions is

not feasible due to the significant change in code structure. However, it is possible to

quantify overall performance.

Overall, version 4 does experience a performance increase compared to previous

versions. Particularly the removal of the file-based I/O weighs heavy in the perfor-

mance gains. For every static simulation run in UM/NAST version 3, approx. ten

solutions can be run in version 4. These improvements do not necessarily originate

from faster code execution—version 2 and 3 are very memory efficient and passed

variables via reference with little computational overhead—but rather by eliminat-

ing unnecessary program sections. This performance gain becomes more pronounced

when running batch analyses, especially in parallel. Any batch job in version 4 does

114

not require model updates (processing of user inputs to solver information) unless the

model is changed (i.e., model property modification). Version 3 requires a reload of

the input data and a model update for every analysis resulting in substantially more

operations than version 4. Further improvements are achieved by running version 4

batch studies in parallel. Previous versions did not offer this capability3.

3Version 3.0 offered a parallel execution for flutter searches only.

115

CHAPTER 11

MDO–NAST

Chapter 10 describes the structure of the UM/NAST Kernel and how AD was im-

plemented to obtain coupled nonlinear aeroelastic sensitivities. However, the process

of setting up a gradient analysis in UM/NAST with CoDiPack is fairly involved and

would require a custom C++ implementation and subsequent Python wrapping for

every gradient analysis. Additionally, this would also entail a recompilation every

time the problem is changed. As such, I developed a set of helpers into a separate

library, MDO–NAST [?], for this thesis. MDO–NAST offers gradient helpers for the

static, modal, dynamic, and stability/flutter solvers. These helpers substantially ease

the process of setting up and executing a gradient analysis using UM/NAST.

11.1 Common Concepts

The common idea behind all tools within MDO–NAST is that the user has a function

of interest (or multiple) fi and has defined the design variables xj of the problem.

MDO–NAST then provides utilities to determine both the functions and the deriva-

tives ∂fi
∂xj

for all i and j.

Differing from other analysis tools, the functions and variables of interest can

be set to any UM/NAST quantity, as long as proper read/write permissions have

been granted to external objects. This is achieved by a dynamic module system

which permits the user to define the design variable assignments and functions of

116

interest as templated C++ modules (see Figure 11.1). These classes can be loaded

into MDO–NAST dynamically and used by the gradient helpers independent of the

datatype required for the respective gradient analysis. The user-defined variable

assignment (gray) derives from a variable assignment base class. This permits the user

to write a dynamic library containing a custom variable assignment and dynamically

load it into MDO-NAST. At runtime, MDO-NAST then executes the user code for

assigning the design variables to the model or solver object. The same process is

applicable for the function of interest (function evaluation, gray), which also builds

on a common base class and executes a user-defined function at runtime.

The purpose of the individual gradient helpers is to enable the easy evaluation

of derivatives without the user requiring a deep understanding of finite difference,

complex step, or AD processes (see Chapter 2). Despite the multitude of gradient

helpers, the AD solution is intended to be the main workflow with the other helpers

primarily serving as reference solutions for validations (see Chapter 14). Each solver

type (static, modal, etc.) has three gradient helpers available, one for each derivative

type. Common to each gradient helper is the function evaluation, which is conducted

using the double implementation of the respective solver for reasons of computational

efficiency.

To reduce overhead and simplify the setup of every analysis, MDO-NAST classes

link to existing UM/NAST models and solvers in a similar fashion to the method

described in Chapter 10. This results in compatibility between a UM/NAST and

MDO-NAST workflows, constituting a natural extension of the established capabili-

ties and practices of UM/NAST 4.0 and avoids a redefinition of options, loads, etc.

117

User module
(double)

Variable
assignment
(double)

Model
(double)

Solver
(double)

Function
evaluation

Function
value

Model (AD) Solver (AD) Function
evaluation

Gradient
values

Variable
assignment

(AD)

User module
(AD)

User module
(double)

User module
(AD)

Figure 11.1: Common solution structure for the gradient helpers exemplified by an
AD gradient helper.

118

Static Solver (primal) Static Solver (AD)Data Transfer

Full convergence Single iteration

Gradients

Figure 11.2: Efficient hybrid methodology for determining gradients of the geomet-
rically nonlinear static solution.

11.2 Static Gradient Helpers

The static gradient helpers form one of the simpler MDO-NAST utilities, while serv-

ing as the basis of all subsequent ones. Differing from UM/NAST’s implementation,

the more complex gradient helpers are not derived from the static solver utilities, but

rather from one central gradient helper class for each derivative method (Gradien-

tHelper, GradientHelperComplex, GradientHelperAD).

For the AD solution, the entire convergence cycle is run in AD by default. As

exemplified by the studies in Chapter 14, this results in a substantial performance

penalty compared to the simple function evaluation. To counteract this I developed a

hybrid-AD solution, similar to other fixed-point AD approaches [90], in which conver-

gence of the geometrically nonlinear static problem is first achieved using the function

evaluation, before transfering data to an AD solver (Figure 11.2) and conducting an

AD iteration to obtain gradients. A more detailed study of the effects on the compu-

tational time can be found in Chapter 14.

11.3 Modal Gradient Helpers

By default, the UM/NAST modal solver constitutes a simpler solution than the static

solver with the option to use any nonlinearly deformed state as the reference condition

for a modal analysis. MDO-NAST offers a helper to obtain gradients from modal

119

analyses about either the undeformed condition or a nonlinearly deformed state. The

modal helpers simply run a modal or deformed modal solution in AD (or complex step)

without using the hybrid AD solution. This is due to a different solution structure

for the modal solver, which would require a more involved solution to the hybrid

approach. While it certainly is not impossible to implement, this may be considered

an area for future improvements.

11.4 Dynamic Gradient Helpers

The dynamic and the static solvers follow a similar solution process, as the static

solution is obtained by stepping in pseudo-time. At first glance, it may appear that

the hybrid AD method should be applicable to the dynamic gradients. However, this

has not been tested for the dynamic solver and it remains doubtful that the coupled

gradients would be accurate without a convergence process. As such, the dynamic

gradient helper was not written to include the hybrid AD solution, similar to the

modal helpers. While I implemented the dynamic gradient helpers within MDO-

NAST, no benchmarks or problems have been run with them as this lies outside the

scope of the current work.

11.5 Search Point Gradient Helpers

The solution process for the search point gradients builds on the static gradient

helpers. This is possible because the search point runs a static analysis followed

by a linearization and a stability solution (Figure 11.3). As such, the most efficient

way to determine the stability gradients is to run a primal static analysis, transfer

the data to an AD solver, solve a single static iteration, followed by a linearization

and the stability solution. The results of this approach are discussed in Chapter 14.

120

Static Solver (primal) Static Solver (AD)

Linearization (AD)Linearization (primal)

Eigenvalues Eigenvalues,
Gradients

Eigenvalue Solution Eigenvalue Solution

Computationally Efficient Path

Data Transfer

Figure 11.3: Efficient hybrid methodology for determining gradients of the geomet-
rically nonlinear stability/flutter solution.

11.6 OpenMDAO Components

While MDO-NAST is a Python library, by default, it serves as a helping interface

to determine gradients using the UM/NAST framework using serialized inputs and

outputs. This means that although a variety of functions or variables of interest may

be used, they are stacked to obtain input and output vectors of the form:

x =



x1

x2

...

xm


, (11.1)

121

f =



f1

f2

...

fn


. (11.2)

In most practical scenarios, the individual entries xi (or fi) may actually contain

subvectors instead of scalars. While the simplest solution to using MDO-NAST within

OpenMDAO would have been a simple Component wrapper around the MDO-NAST

gradient helpers, the actual OpenMDAO problem would become more complex. To

assign the individual inputs from seperate OpenMDAO components or variables a

so-called mux component would be necessary for every corresponding MDO-NAST

component. A mux component takes inputs from several separate sources and com-

bines them together to a single output. This would entail additional work for the

user during the problem setup phase.

To avoid this, the MDO-NAST components use individual inputs instead of the

serialized data required by the gradient helpers themselves. The individual inputs,

which can vary from scalars to vectors, are then assembled into a serialized vector

for further use by the gradient helper. By default, the MDO-NAST components use

the AD gradient helpers, although the complex step helpers are available as well.

The name and lengths of the individual component inputs and outputs are user-

defined within the variable assignment and function modules. This permits a simpler

assembly of problems using descriptive variable names, rather than requiring the

manual stacking of variables and index arithmetic.

122

Part III

Numerical Studies

123

CHAPTER 12

Aeroelastic Models

The numerical studies in this work share a common set of numerical aeroelastic mod-

els. Simpler beam-based studies rely on a Blended Wing Body (BWB) configuration,

while the multi-fidelity studies utilize the more complex uCRM transport aircraft

configurations. This chapter describes the individual models used for the numerical

studies in this thesis.

12.1 Blended Wing Body

A published BWB reference configuration [4] based on the High Lift over Drag Active

(HiLDA) Wing [91] is widely used throughout this work. While it is a relatively simple

configuration, Su and Cesnik [4] showed that it exhibits interesting flutter and post-

flutter behavior, including body-freedom-flutter and limit cycle oscillations (LCO).

As such, the vehicle provides a desired characteristics for several of the benchmark

and test cases within this work. The vehicle consists of a trapezoidal body and swept

uniform-chord wings (Figure 12.1). The wing contains three control surfaces that

are used for trimming the aircraft and maneuvers. The wing stiffness, mass, and

aerodynamic properties were taken from Su and Cesnik [4].

The BWB structure is modeled using the strain-based nonlinear beam elements

within UM/NAST. Aerodynamics are modeled using strip theory with Prandtl-

124

1.39 m

30°

3.25 m

0.89 m

0.55 m

Figure 12.1: BWB configuration planform.

Glauert corrections and Peters’ finite state inflow to account for unsteady aerody-

namics [53].

12.2 Undeflected Common Research Model

The uCRM, designed by the MDO Lab at the University of Michigan [33], was used

within this for the multi-fidelity problems. Brooks and coworkers designed the two

configurations (aspect ratios 9 and 13.5) using high-fidelity aerostructural (TACS and

ADflow) optimization without a flutter constraint. As the aircraft experiences large

deformations (Figure 12.2), it offers a compelling case study for applying the geo-

metrically nonlinear flutter constraint within a multi-fidelity optimization problem.

Furthermore, the existence of two uCRM models with differing aspect ratios and wing

spans permits a study of how the flutter constraint may drive the design for a high

aspect ratio wing compared to a more conventional aspect ratio.

Because these models are used in a multi-fidelity context, several different nu-

merical models were used and/or created for these studies. The aerodynamics of

the higher-fidelity problem are modeled using the OpenAeroStruct vortex lattice

method (VLM) solver. To create meshes for this solver, the aerodynamic CFD mesh

provided by Brooks and coworkers was sliced and the chord, twist, and leading edge

125

Figure 12.2: Top and front views of the uCRM 13.5 optimized configuration by Brooks
and coworkers.

positions were obtained (Figure 12.3), and the VLM meshes were generated from this

information.

The shell-based structural mesh was taken from the open-sourced data provided by

Brooks and coworkers [33] (Figure 12.4). For the lower-fidelity beam model, reference

beam locations were set at 50% chord location.1 The aerodynamics of the beam-based

model are provide, as before with the BWB, via strip theory and Peters’ finite state

aerodynamics [53].

1The RBE3 nodes shown here were created by Joshua Deaton (AFRL) based on reference beam
locations I provided.

126

Tw
is

t,
de

g

Non-Dimensional Span

Figure 12.3: Slices and twist distribution obtained from the CFD meshes for the
uCRM 13.5.

Figure 12.4: Top and isometric view of the wing structural mesh with the beam
structural nodes.

127

CHAPTER 13

Flutter Prediction

A new algorithm for predicting flutter was presented in Chapter 4. In this chapter,

I study the accuracy and efficiency of the proposed method. The studies utilize the

BWB (Chapter 12). Despite its simplicity, the BWB exhibits body-freedom flutter

as well as nonlinear behavior (LCO), making it a suitable test case.

13.1 Flutter Point Prediction

Flutter simulations for the BWB were conducted using the existing methodology [4], a

mode-tracked solution without flutter, and the proposed flutter prediction algorithm.

These simulations were conducted for a varying discretization of the pseudo-univariate

search space without the inclusion of rigid body degrees of freedom (DOF), while

maintaining consistency in search range and discretization between the respective

algorithms.

Comparing the prediction error (Figure 13.1a) of the different algorithms shows

significant advantages for the new flutter method. The surrogate-based approach

converges for very few search iterations. By contrast, the existing (linear interpola-

tion) method requires significantly more search iterations to achieve the same level

of accuracy. For example, the proposed method achieves a relative error at 30 search

iterations that the previous method requires approximately 200 search iterations to

achieve. This increases computational efficiency by nearly an order of magnitude.

128

While the existing method converges to an accurate flutter prediction, it is unable to

achieve the same accuracy as the proposed, surrogate-based algorithm.

Furthermore, the existing method is accompanied by significant amounts of un-

certainty, while the proposed method converges near monotonically with the number

of search iterations. Limitations of the new algorithm are illustrated by Figure 13.1b.

At 5 search iterations the surrogate predicts multiple inflection points within the un-

stable mode, thus reducing the accuracy of the flutter prediction. Noticeably, for 10

search iterations the severity of the inflection points decreases, while the search using

20 iterations shows a better resolution of the damping values. Despite the inflection

point in the analysis using only five points, the discrepancies between the solutions

are small. This is particularly remarkable, given that a five-point discretization of the

search space is exceedingly coarse. Furthermore, looking at the comparison of V-g

diagrams for 20 and 30 search iterations (Figure 13.2) shows little difference in the

surrogate used for flutter prediction. The exact number of search iterations needed to

achieve an accurate flutter prediction depends on the size of the interval as well the

discretization pattern (uniform, Chebychev, etc.) and therefore is problem specific.

Comparing the accuracy of the mode-tracked, surrogate-based algorithm to the

mode-tracked algorithm with linear interpolation shows a similar trend to previous

comparison. The error used for this work is the absolute relative error, defined as:

ε =

∣∣∣∣vexact − vpredicted
vexact

∣∣∣∣ (13.1)

The surrogate-based prediction method significantly outperforms the mode-tracked

algorithm with linear interpolation. This is not surprising, as the mode tracking only

prevents interpolation errors due to mode crossings. While the mode tracking may

reduce the error in the case of a mode crossing, it does not inherently reduce the

interpolation error if mode crossings do not exist on the interpolation interval. The

129

0 50 100 150 200
Number of search points

10−6

10−5

10−4

10−3

10−2

10−1

A
bs

ol
ut

e
Re

la
tiv

e
Er

ro
r

(lo
g)

,s linear

surrogate

(a) Comparison of the prediction error of the proposed compared to the existing method.

50 75 100 125 150
Speed, m/s

−10

−8

−6

−4

−2

0

2

4

6

D
am

pi
ng

Ra
tio

5 search points
10 search points
20 search points

(b) Comparison of the V-g diagram of the unstable mode surrogate prediction for different
search space discretizations.

Figure 13.1: Study of the flutter prediction method accuracy.

130

Figure 13.2: Comparison of the V-g diagram for the trimmed BWB for 20 search
iterations (left) and 30 search iterations (right).

present example of the BWB does not exhibit mode crossings near the instability and

the linear interpolation is thereby not affected. However, the linear mode-tracked so-

lution regularly crashes for sparse search sampling due to failed LU decompositions,

caused by insufficient interpolation of the flutter point conditions.

It is noteworthy, however, that the kriging surrogate does require a mode tracking

algorithm to reliably predict the flutter point. While the linear interpolation only

is affected by mode crossings near the instability, the surrogate is created from all

damping values of a mode. If the “mode” is chosen as the damping values closest to

zero, mode crossing may occur away from the flutter point, cause inflections (as seen

before in Figure 13.1b) and affect the flutter prediction.

Finally, comparing the execution wall time over the number of search iterations

of the proposed method (Figure 13.4) to the existing method illustrates the efficiency

of the new flutter algorithm. Three seperate computers were used for this study:

Computers B, and C (see Appendix C). Computer A features two Intel Xeon 2650

CPUs with 8 physical cores (16 threads) each and 64 GB of RAM. Computer C offers

four Intel Xeon 2699v4 CPUs with 16 physical cores (32 threads) per processor and

256 GB RAM. While the RAM is listed here, UM/NAST requires on the order of

Megabytes of memory to execute the presented solutions, meaning that the system

131

0 10 20 30 40 50
Number of search points

0

10

20

30

40

50

To
ta

lw
al

lt
im

e,
s

linear

surrogate, 32 threads

surrogate, 128 threads

Figure 13.3: Comparison of the execution wall time for the new and existing flutter
algorithms run on Computer B [32 threads] and Computer C [128 threads].

memory is not the bottle neck in this scenario. It should be noted, that while the

original reference was written in Matlab, the benchmark here was written in C++

to maintain parity between the two methods. Due to the data-dependence of the

previous algorithm, and increase in search iterations directly results in an increased

execution wall time. The new algorithm, due to data-independence, scales well w.r.t.

an increase in flutter search iterations. Comparing the results between the two com-

puter configurations illustrates that the mode-tracked, surrogate-based algorithm is

primarily limited by the number of available processor threads. The slight slope of the

surrogate-based algorithms is caused by the scaling of the mode tracking algorithm,

which requires more time as more search points, and thereby more mode comparisons,

are added.

132

13.2 Flutter Boundary Prediction

In addition to the trimmed BWB, flutter studies were conducted for the BWB with

the body subject to a clamped condition. This configuration constitutes the fixed

search path strategy outlined in Chapter 4 and requires the definition of boundary

conditions a priori, as they are not constrained by trimmed flight. Multiple flutter

searches were run for varying angles of attack, the resulting data collated and an

extended V-g diagram created (Figure 13.4).

The nonlinearity of the flutter problem is clearly visible in the extended V-g

diagram, as a change in body angle of attack clearly changes the resulting flutter

dynamic pressure. Furthermore, the high sensitivity of the flutter boundary w.r.t.

the angle of attack (∂qF
∂α

) should be noted. As such, if a fixed path flutter search is

conducted with a constant angle of attack setting, the choice of that setting is vital as

even small deviations result in large changes in the predicted flutter dynamic pressure.

Finally, this behavior is exhibited by the BWB despite moderate wing deflections,

indicating that geometrically nonlinear effects may contribute to the flutter analysis

far earlier than the 10–15 percent relative tip deflection typically assumed from static

analyses.

133

Stable

Unstable

Figure 13.4: Extended V-g diagram, depicting the dynamic pressure vs. angle of
attack, for the BWB.

134

CHAPTER 14

Verification of Nonlinear Aeroelastic

Gradients

The efficient and accurate determination of gradients is imperative for the flutter

constraint. Both the accuracy and computational efficiency of the static tip deflection

and flutter damping gradients were determined and benchmarked against reference

results. The gradient of the most critical flutter value was evaluated with respect to

the out-of-plane bending stiffness of the BWB wing.

14.1 Static Aeroelastic Gradient Verification

To verify the accuracy of the static solver derivatives, I compared the gradients of

the static deflection with respect to the out-of-plane bending stiffness determined

by UM/NAST against finite difference and complex step results. The numerical

inaccuracy of the finite difference results (see Chapter 2) required a convergence

study with variable step sizes to be conducted. From the convergence study a reference

result accurate to five digits was obtained. Next, the gradients were determined using

the complex step method and AD in reverse mode and compared to the reference finite

difference value. This was conducted for two seperate span locations, at the Yehudi

break (the junction between the inner and outer wing, Table 14.1), as well at the

wing tip (Table 14.2).

135

Table 14.1: Comparison of gradient values predicted by the forward difference method,
the complex step method, algorithmic differentiation in reverse mode for the static
deflection at the Yehudi break. Agreeing digits are marked in bold.

Method Gradient Value)
Forward Difference 7.85916172635695× 10−9

Complex Step 7.71243918218272× 10−9

AD, Reverse Mode 7.71243918218276× 10−9

Table 14.2: Comparison of gradient values predicted by the forward difference method,
the complex step method, algorithmic differentiation in reverse mode for the static
deflection at the wing tip. Agreeing digits are marked in bold.

Method Gradient Value)
Forward Difference −8.0489481746326419× 10−6

Complex Step −8.04944943212285× 10−6

AD, Reverse Mode −8.04944943212283× 10−6

For all span locations, the AD results replicate the complex step results to fourteen

significant digits. While this is a very close agreement and indicates that the gradients

obtained from UM/NAST can be used with confidence, the results do no agree to

machine precision. The reason for this may be due to the complex step results. As

discussed in Chapter 2, the ability of the complex step method to achieve machine

precision is dictated by two conditions for the step size h. As Martins [46] notes, it

may not be possible to fulfill both conditions, in which case the complex step method

would yield a result below machine precision.

The finite difference results, as expected based on the discussion in Chapter 2, are

not able to correlate as many significant digits. However, the results in Tables 14.1

and 14.2 do offer an insight into another problem facing the finite difference method.

Both tables were generated by a single MDO-NAST run, so they share the same

136

step size, as would be the case in an optimization problem. Interestingly, the finite

difference results for the Yehudi break are only able to reproduce a single significant

digit, while the results for the wing tip can reproduce four digits. This discrepancy

highlights that even if the finite difference method were to yield acceptable results for

a single value at a given step size, other functions of interest may be poorly captured.

14.2 Modal Gradient Verification

To verify the modal gradient capabilities within the toolbox, I examined the first

two structural mode frequencies and their gradients with respect to the out-of-plane

bending stiffness of the BWB wing member. Following the same methodology as in

Section 14.1, I first conducted a convergence study to obtain a representative value

for the gradients obtained with finite differences. Next, I compared this value to the

data obtained from the complex step and AD analyses (Tables 14.3 and 14.3).

Table 14.3: Comparison of gradient values predicted by the forward difference method
and algorithmic differentiation in forward and reverse mode for the first modal fre-
quency. Agreeing digits are marked in bold.

Method Gradient Value
Forward Difference −9.1455316479915894× 10−5

Complex Step −9.1455548715790915× 10−5

AD, Reverse Mode −9.1455548717515379× 10−5

As with in Section 14.1, the finite difference approach is able to correlate few

(here, 5) significant digits. The comparison between the complex step and AD results

are close enough to verify the AD gradient recovery, but the number of correlating

digits has been reduced to eight. Again, this likely stems from an inability to fulfill

both criteria for the complex step method to achieve machine precision.

137

Table 14.4: Comparison of gradient values predicted by the forward difference method
and algorithmic differentiation in forward and reverse mode for the second modal
frequency. Agreeing digits are marked in bold.

Method Gradient Value)
Forward Difference −2.81116129396963× 10−5

Complex Step −2.81116314352830× 10−5

AD, Reverse Mode −2.81116314532585× 10−5

14.3 Flutter Gradient Verification

To verify the flutter gradient capabilities, I examined the KS aggregate damping value

(the most critical damping value) and it’s gradients with respect to the out-of-plane

bending stiffnesses of the BWB wing member. Again, a convergence study of the

finite difference results was required before a comparison to the AD data could be

made (Table 14.5)

Table 14.5: Comparison of gradient values predicted by the forward difference method
and algorithmic differentiation in forward and reverse mode for the most critical
flutter damping value. Agreeing digits are marked in bold.

Method Gradient Value (10−7)
Forward Difference −1.926xxxxxxxxxxxxx
AD, Forward Mode −1.9263576598010323
AD, Reverse Mode −1.9263576598010342

While no comparison between the complex step method and AD was conducted,

the flutter gradients were verified against AD results in forward mode. The finite

difference results again provide four digits of correlation, while the comparison against

the forward mode results near machine precision correlation. As a result, the gradients

obtained from UM/NAST can be used in an optimization setting with confidence.

138

AD

Primal
Hybrid

(a) Run time

AD

Hybrid

(b) Relative slow down

Figure 14.1: Comparison of the wall time required for a flutter search evaluation with
different solution approaches (primal, AD, and hybrid-AD). The benchmark was run
on Computer Configuration A (Appendix C).

14.4 Gradient Evaluation Performance

Large gradient-based optimization problems, in particular, require fast gradient evalu-

ations. As such, I ran a series of benchmarks to assess the computational performance

of the MDO-NAST-based gradient evaluations. The gradients were evaluated using

the AD solver as well as the primal-AD hybrid method and the run times compared

to that of the primal solution (Figure 14.1). The run times were averaged from 100

simulations. Figure 14.1a shows the absolute average run time of the individual solu-

tions and Figure 14.1b the slow down factor compared to the primal solution. Clearly,

the AD solution is more computationally costly than the primal solution, requiring

between 12 and 16 times longer to obtain the solution including gradients. However,

when applying the primal-AD hybrid method, the computational efficiency is greatly

improved. While the hybrid method is still slower than the primal evaluation, it is

less than two times slower, which is a very efficient result (slowdown factors of 3–4

are typically expected when determining gradients).

Furthermore, the scalability of the gradient evaluation with respect to the number

139

0 25 50 75 100
Number of Design Variables

0

50

100

150

200

250

Sl
ow

do
w

n
vs

.
Fu

nc
tio

n
Ev

al
ua

tio
n

Finite Difference

Complex Step

AD

Figure 14.2: Comparison of the computational efficiency of the finited difference,
complex step, and AD gradient evaluations as a function of the number of design
variables.

of design variables is important for the application to large optimization problems

encountered in MDO. To show the computational efficiency of the AD-based method,

I benchmarked the computational expense of the gradient evaluation for a 100 element

beam model using the finite difference, complex step and AD gradient evaluations

(Figure 14.2). While the complex step and finite difference methods scale linearly with

the number of design variables, the AD method in reverse mode remains constant,

independent of the number of variables. The AD method outperforms the complex

step results for any problem size larger than five variables and the finite difference

results as of 10 variables. Practical optimization problems feature large number of

design variables, therefore the AD-based method evaluates the gradients faster than

the competing methods while maintaining high accuracy.

140

CHAPTER 15

Beam-Based Optimization Studies

Having verified the accuracy of the gradient solution within UM/NAST (Chapter 14),

I conducted a series of beam-based optimization studies utilizing the flutter constraint

formulated in Chapter 5. Based on the BWB, these studies aim to investigate the

effect of a geometrically nonlinear flutter constraint on an aircraft design optimization

problem.

A fuel burn minimization was formulated for the BWB using the simplified mass,

drag, and fuel burn models. Two aeroelastic constraints were implemented using

UM/NAST: a bending curvature (static aeroelastic) constraint and the proposed

geometrically nonlinear flutter (dynamic aeroelastic) constraint. The components

for the multidisciplinary optimization problem were implemented in OpenMDAO

[92, 93, 94] and optimized using the SciPy optimize package [95] with the SLSQP

optimizer. To better understand the effect of the aeroelastic constraints, an opti-

mization was conducted with the bending constraint only and another including the

proposed geometrically nonlinear flutter along with the strength constraint.

15.1 Cross Section Properties

As the existing BWB model consists of a beam representation, the cross section

properties of the baseline configuration cannot easily be translated to a parametric

model. Because of this, the wing cross section is treated as a simple, rectangular wing

141

t

wbox

hbox

Figure 15.1: Surrogate wing box cross section.

box. The cross section properties of the wing box are determined analytically as a

function of the wing box width, height and thickness.

The wing box width is coupled to the planform shape by the relative wing box

size ηbox, such that:

wbox = ηbox cwing (15.1)

The total structural mass of the aircraft is obtained from:

mstruc = bwing µwing +mbody (15.2)

15.2 Flight Envelope

An illustrative flight envelope was defined for the BWB in terms of altitude over speed

and angle of attack. Three bounds are defined for the BWB: the stall boundary, the

service ceiling, and the maximum permissible Mach number (Figure 15.2).

Typically, the service ceiling is defined by the ability of the aircraft to climb at a

determined rate. For this work the service ceiling was set without analysis and serves

purely to generate a representative flight envelope shape. The stall boundary is found

142

80 100 120 140 160 180
Speed, m/s

0

1

2

3

4

5

6

A
lti

tu
de

, k
m

Figure 15.2: Notional flight envelope of the BWB.

from level flying conditions at maximum lift coefficient:

vstall =

√
2mg

ρ∞CL,maxS
(15.3)

To determine the maximum Mach number boundary in terms of speed, the Mach

number is multiplied by the speed of sound (function of altitude):

vmax = Mmaxa∞ (h) (15.4)

The flutter search process is conducted using spee and altitude information (in

addition to the angle of attack). The flight envelope was linked to the trim angle of

attack at cruise. Trim is controlled solely by the root angle of attack, with no control

surfaces modeled in this case.

143

15.3 Drag Prediction

Drag of the entire aircraft is determined from the induced and friction drag compo-

nents. The induced drag is calculated from the aspect ratio such that [96]:

CDi =
1

0.95ARπ
C2

L (15.5)

where AR is the wing aspect ratio. The friction drag is accounted for by [96]:

CDf = Cf
Swet

S
(15.6)

where:

Cf =
0.074

Re0.2
(15.7)

The resulting total drag coefficient is the sum of the friction and induced drag

coefficients:

CD = CDi + CDf (15.8)

144

15.4 Fuel Burn Prediction

The fuel burn is determined from the aircraft range. The Breguet range equation1

can be written as [98, 99, 100]:

R =
vcCL

CD sfc
ln
(
W1

W2

)
(15.9)

=
Mc ac CL

CD sfc
ln
(
W1

W2

)
(15.10)

The initial weight, W1, is the combined weight of the structure and fuel, while

the weight at the end of the trip, W2, is just the structural weight (no fuel reserves

considered), i.e.,

W1 = Ws +Wf (15.11)

W2 = Ws (15.12)

The fuel weight and fuel mass are thereby determined by rearranging the range

equation:

Wf = Ws

(
e
R

CD sfc

CL vc − 1

)
(15.13)

mf =
Wf

g
(15.14)

It should be noted, that the drag coefficient is taken from the drag prediction and

the structural mass from the parametric mass model.
1While the equation derives its name from Louis Breguet, as Cavcar notes [97], the origin of the

equation can be traced to multiple sources.

145

15.5 Optimization Including Static Constraint

First, a fuel burn minimization was formulated including a bending constraint mim-

icking a strength constraint (Eq. 15.15). This is achieved by aggregating the largest

bending curvature (from UM/NAST) along the wing using KS constraint aggrega-

tion. The constraint is evaluated across all samples of the flight envelope, such that

a second KS aggregation (similar to the proposed flutter constraint) is needed to ob-

tain a scalar bending constraint. A span limitation was imposed to mimic a ground

handling or gate constraint and a minimum chord constraint was imposed to avoid

excessively slender wing configurations. A fuel volume constraint was included to

ensure that the predicted fuel required for the mission can be stored within the wing

box. Finally, a trim constraint is imposed. The design variables for this problem are

the wing aspect ratio AR, wing surface area, body root angle of attack αroot, the size

of the wing box relative to the wing chord ηbox, the location of the wing box center

xbox, and the thickness of the body and wing box skins tbody and twing.

146

minimize: mf

with respect to: x = [AR,S, αroot, ηbox, xbox, tbody, twing]
T

subject to: Vfuel

Vbox

≤ 1

ηbox ≤ 0.9

xfront spar ≥ 0

xfront spar ≤ 1

xrear spar ≥ 0

xrear spar ≤ 1

KS (KS (κy)) ≤ κmax

L = W

(15.15)

Figures 15.3 and 15.5 and Table 15.1 show the results of this optimization problem.

For this optimization the strength and fuel volume constraints are active. Figure 15.3

shows the iteration history of optimization problem.

147

0 5 10 15

Iterations

40

60

80

100
F

u
el

B
u
rn

,
k
g

0 5 10 15

Iterations

10

20

30

40

50

A
sp

ec
t

R
a
ti

o

0 5 10 15

Iterations

0

2

4

6

α
,

d
eg

0 5 10 15

Iterations

0.0

0.5

1.0

1.5

t b
o
d
y
,
cm

0 5 10 15

Iterations

0.0

0.5

1.0

1.5

t w
in
g
,
cm

0 5 10 15

Iterations

0.0

0.1

0.2

0.3

0.4

0.5

K
S

(K
S

(κ
y
))

Figure 15.3: Iteration history of the optimization including the strength constraint.

148

15.6 Optimization Including Flutter Constraints

Next, a flutter constraint was added to the optimization problem (Eq. 15.16) yielding:

minimize: mf

with respect to: x = [AR,S, αroot, ηbox, xbox, tbody, twing]
T

subject to: Vfuel

Vbox

≤ 1

ηbox ≤ 0.9

xfront spar ≥ 0

xfront spar ≤ 1

xrear spar ≥ 0

xrear spar ≤ 1

KS (KS (κx)) ≤ κmax

KS (KS (Re (ζ))) < −0.2

L = W

(15.16)

The results to this optimization problem are presented in Table 15.1 and in Figures

15.4 and 15.5.

In this optimization the flutter constraint is active, while the strength constraint

is inactive. While both configurations look similar at first glance, the inclusion of

the flutter constraint has a profound impact on the optimal configuration. Noteably,

while the addition of the geometrically nonlinear flutter constraint result in increased

fuel burn, it is only a modest increase of 0.8% . However, despite the similar values in

fuel burn, the aspect ratio is reduced by 13%, while the thickness distribution of the

wing and body skins is substantially different between the two configurations. The

149

0 100 200

Iterations

40

60

80

100
F

u
el

B
u
rn

,
k
g

0 100 200

Iterations

10

20

30

40

50

A
sp

ec
t

R
a
ti

o

0 100 200

Iterations

0

2

4

6

α
,

d
eg

0 100 200

Iterations

0.0

0.5

1.0

1.5

t b
o
d
y
,
cm

0 100 200

Iterations

0.0

0.5

1.0

1.5

t w
in
g
,
cm

0 100 200

Iterations

−4

−2

0

K
S

(K
S

(ζ
))

Figure 15.4: Iteration history of the optimization including the strength constraint.

150

Table 15.1: Optimal configurations for the BWB under strength and/or geometrically
nonlinear flutter constraints.

Description Strength Flutter
mf (kg) 50.62 51.04

Aspect Ratio 34.77 30.83
Wing Area (m2) 3.058 3.015

αroot (deg) 5.32 5.35
ηbox 0.899 0.9
xbox 0.549 0.549

tbody (cm) 0.16 0.21
twing (cm) 0.35 0.27

configuration without the flutter constraint has a larger wing skin than the body skin

thickness. The inclusion of the flutter constraint, meanwhile, reduces the wing skin

and increases the body skin thickness.

The high aspect ratio designs obtained here may not be attainable for other air-

craft design problems. These high aspect ratio designs are likely a result of a low cruise

speed (M = 0.4) and the minimization of fuel burn, which will favor higher aspect

ratios, as well as the absence of a buckling constraint. However, this example high-

lights that including a geometrically nonlinear flutter constraint may yield a different

design, while its exclusion may result in an infeasible configuration. Furthermore,

the difference in the design may stem from a change in stiffness properties, while the

overall planform may be similar. Finally, it is noteworthy, that while the configura-

tion subject to only the strength constraint has a better fuel burn, the configuration

including the flutter constraint results in a lower structural mass.

151

-4 42-2 0

strength

flutter

Figure 15.5: Planform comparison of baseline BWB including the strength and flutter
constraints. The orange shading indicates the wing box geometry, while the blue
dashed line represents the beam reference line.

152

CHAPTER 16

Multi-Fidelity Studies

Chapter 15 illustrates the need to include a geometrically-nonlinear flutter constraint

by using a beam-based optimization problem. In general, however, aircraft MDO

problems use higher-fidelity analyses which are incompatible with beam-based meth-

ods without intermediate steps. These intermediate steps, the mass and stiffness

condensation processes and their respective gradients, were presented in Chapter 7.

These condensation processes permit the use of a shell-based FEM model and CFD

(although VLM will be used in this work) for the objective function and strength

constraints, while utilizing the beam-based solution for the geometrically-nonlinear

flutter constraint.

In this manner, the analyses are chosen based on their computational expense and

their ability to resolve a given quantity of interest. While beam models cannot resolve

local stresses, a higher-fidelity analysis (such as large shell models) may not be able

to account for geometrical nonlinearities fast enough for optimizations and yield no

additional accuracy. As a result, a multi-fidelity problem constitutes a “best of both

worlds” approach. This chapter presents an application of a multi-fidelity problem

that evaluates the objective function using higher-fidelity analyses and determines

the feasibility of the flutter constraint using a geometrically nonlinear beam model.

153

16.1 Mass Condensation Verification

The mass condensation component is verified using a simple plate configuration (Fig-

ure 16.1). The plate properties are listed in Table 16.1. The component results are

compared to analytical values for mass, inertia, and center of gravity position (Table

16.1). The values obtained from the mass condensation match the analytical values

to machine precision.

Next, the accuracy of the gradient values obtained by the mass condensation

component are quantified. To this end, a single mass element of the plate is perturbed

using an imaginary disturbance ih. The reference gradient is then determined using

the complex step method (Chapter 2):

g (x) ≈ Im (f [x+ ih)]

h
(16.1)

The derivative obtained using the complex step method is accurate to machine

precision. The gradient results from the mass component and the corresponding

reference results are listed in Table 16.2. The gradient obtained from the mass con-

densation component matches the complex step results to machine precision. As a

result, the mass property gradients are accurate to machine precision.

154

beam node

mass element

Figure 16.1: Plate example for testing the mass condensation process and verification
of mass condensation gradients.

Table 16.1: Plate properties of the verification test case as well as component and
analytical reference results for the mass condensation.

Value Reference Value

Plate Length, m 1.0 –

Plate Width, m 0.2 –

Plate Thickness, m 0.01 –

Plate Density, kg/m3 2700.0 –

Verification Results

Mass, kg 5.39999999999999 5.4

xcg, m 0.10000000000000006 0.1

ycg, m 0.5000000000000003 0.5

zcg, m 0.0 0.0

155

Table 16.2: Comparison of the mass condensation component gradients with respect
to mass element thickness with reference results using the complex step method.

Component Complex Step

∂m
∂t

7.105263157894723 7.105263157894723

∂Ixx
∂t

3.07533897069543 3.07533897069543

∂Iyy
∂t

0.039967105263157825 0.039967105263157825

∂Izz
∂t

3.1153060759585878 3.1153060759585878

∂xcg

∂t
-0.03289473684210529 -0.03289473684210529

∂ycg
∂t

0.20775623268697985 0.20775623268697985

∂zcg
∂t

0.0 0.0

16.2 Stiffness Condensation Verification

Next, the stiffness condensation process was verified. To determine the accuracy

of the function evaluation, the equivalent beam stiffness properties of a 30-element

straight beam with constant properties are determined using FEMtoBeam and com-

pared against reference data [77]. The reference solution for the first element is:

kNAST
1 =



1.2615 × 109 1.8566 × 10−5 −0.0866 3.1114

1.8566 × 10−5 9.6953 × 106 −0.4323 0.0194

−0.0866 −0.4323 7.5533 × 106 1.6162 × 10−3

3.1114 0.0194 1.6162 × 10−3 121.7089 × 106


(16.2)

156

Over all elements and stiffness matrix components, the largest relative error com-

pared against the reference data is less than 0.1%. It is worth noting, that the

reference data for this comparison originates from an equivalent beam condensation

process which uses the same theoretical formulation [45] as in this work, leading to a

close match.

The accuracy of the stiffness condensation gradients was evaluated by comparing

against complex step result. To this end, the 30-element beam was perturbed by an

imaginary step for every element and every degree of freedom (Figure 16.2). The

largest deviation between the predicted gradient and the complex step reference is

smaller than 10−10. While this is larger than the floating point working precision,

it nonetheless constitutes a high-accuracy result for the gradients suitable for use in

optimization problems.

Figure 16.2: Plate example for testing the mass condensation process and verification
of mass condensation gradients.

16.3 uCRM Studies

I apply the multi-fidelity problem formulation to a high aspect ratio transport aircraft

model (see Chapter 12) representative of potential future aircraft configurations. The

multi-fidelity problem illustrates a roadmap for including a beam-based, geometrically

nonlinear flutter constraint into a higher-fidelity optimization problem.

157

20.0 22.5 25.0 27.5 30.0 32.5 35.0
Number of spanwise panels

2.50

2.55

2.60

2.65

2.70

2.75

2.80

M
ax

.
w

in
g

di
sp

la
ce

m
en

t,
m

Figure 16.3: FSI convergence study for the uCRM 13.5 wing.

16.3.1 Aerostructural Convergence Studies

Before conducting the aerostructural optimization, I conducted a convergence study

of the TACS/VLM FSI solution. The purpose of this study is to ensure that the mesh

refinement of the VLM solver is sufficiently fine to yield a converged result.

For the convergence study I refined the spanwise number of VLM panels and

observed the maximum tip displacement of the FSI solution. Figure 16.3 shows the

convergence study of the uCRM 13.5 configuration. For the remaining studies, 31

spanwise panels are used as the difference between the maximum displacements is

lower than 1%.

16.3.2 Aerostructural Optimization

Next, I conducted an aerostructural optimization of the uCRM 13.5 wing to serve

as the baseline of the multi-fidelity studies. The optimization is formulated as a fuel

158

Figure 16.4: Thickness distribution and displacements of the uCRM 13.5 wing opti-
mized with a von Mises stress constraint.

burn minimization problem subject to a von Mises yield constraint:

minimize: mf

with respect to: x = ti

subject to: KS (σMises) ≤ σyield

(16.3)

The design variables for this problem are the skin thicknesses of every wing rib

and rib bay patch. Figure 16.5 shows the XDSM diagram of the FSI optimization

problem. More than serving as the baseline solution, this optimization problem can

be extended later by the flutter constraint.

The SLSQP optimizer from the SciPy optimize toolbox [95] was used and a uni-

form starting thickness of ti = 0.02m was chosen. Figure 16.4 shows the optimized

result of the uCRM 13.5 wingbox subject to a von Mises stress constraint (and no

flutter constraint).

159

O
pt
im

iz
er

t i
t i

F
U
N
to
F
E
M

D
is
pl
a
ce
m
en

t
T
ra
n
sf

er
u
a

V
L
M

S
ol
v
er

f a
f a
,.
..

F
U
N
to
F
E
M

L
oa
d
T
ra
n
sf

er
f s

u
s

T
A
C
S

u
s

σ
m
a
x

S
tr
u
ct
u
ra
lF

u
n
ct
io
n
s

m
w
in

g

m
F

P
er
f
or
m
a
n
ce

C
a
lc
u
la
ti
on

s

Fi
gu

re
16

.5
:

X
D

SM
di

ag
ra

m
of

th
e

FS
Ip

ro
bl

em
.

160

16.3.3 Multi-Fidelity Problem

Next, the multi-fidelity problem is assembled (16.6). The higher-fidelity FSI problem

is retained while the flutter constraint is added. As described in Chapter 7, equivalent

beam properties are obtained from the higher-fidelity structural mesh and transferred

to UM/NAST for the flutter analyses. While UM/NAST is capable for accounting

for planform changes as well, in the absence of an aerodynamic condensation process,

this work focuses on the structural design variables. The flutter constraint is then

evaluated using the KS-aggregated approach presented in Chapter 5. As such, a

multi-fidelity optimization including the flutter constraint is represented as:

minimize: mf

with respect to: x = ti

subject to: KS (σMises) ≤ σyield

KS (KS (ζi)) ≤ 0

(16.4)

In this work, the multi-fidelity problem is not evaluated as an optimization prob-

lem due to robustness issues in the VLM-FEM FSI solution resulting in failures to

complete or converge the optimization. To illustrate the applicability of the flutter

constraint within the multi-fidelity problem, the process in Figure 16.6 is run with

the optimized uCRM 13.5 configuration. The panel thicknesses of the optimized con-

figuration are introduced into the beam condensation to obtain the equivalent beam

stiffness distribution (Figure 16.7).

The flutter constraint values before the second KS aggregation are depicted in

Figure 16.8. The configuration optimized with the von Mises stress constraint (Section

16.3.2) is infeasible with respect to the flutter constraint. Moreover, a large percentage

161

O
pt
im

iz
er

t i
t i

t i

F
U
N
to
F
E
M

D
is
pl
a
ce
m
en

t
T
ra
n
sf

er
u
a

V
L
M

S
ol
v
er

f a
f a
,.
..

F
U
N
to
F
E
M

L
oa
d
T
ra
n
sf

er
f s

u
s

T
A
C
S

u
s

σ
m
a
x

S
tr
u
ct
u
ra
lF

u
n
ct
io
n
s

m
w
in

g

m
F

P
er
f
or
m
a
n
ce

C
a
lc
u
la
ti
on

s

B
ea
m

C
on

d
en

sa
ti
on

m
i,
I i

j
,K

ij

K
S
(λ

i)
F
lu
tt
er

C
a
lc
u
la
ti
on

Fi
gu

re
16

.6
:

X
D

SM
di

ag
ra

m
of

th
e

m
ul

ti-
fid

el
ity

op
tim

iz
at

io
n

pr
ob

le
m

.

162

0.00 0.25 0.50 0.75 1.00

Relative Span Location

0

1

2

3

4
S

ti
ff

n
es

s,
1
0

1
0
N
m

2

0.0 0.5 1.0

Relative Span Location

−0.4

−0.2

0.0

0.2

0.4

S
ti

ff
n

es
s,

1
0

1
0
N
m

2

Figure 16.7: Equivalent beam stiffness properties for the optimized uCRM 13.5 config-
uration obtained from the stiffness condensation process. The diagonal terms (torsion
[blue], in-plane bending [orange], and out-of-plane bending [gray]) are shown on the
left. On the right, the off-diagonal stiffness terms are shown (torsion-out-of-plane
bending [blue], torsion-in-plane bending [gray], and out-of-plane-in-plane bending
[orange])

of the flight envelope encounters flutter, reinforcing the necessity of including the

geometrically nonlinear flutter constraint for flexible vehicles such as the uCRM 13.5.

16.4 Future Work

While the optimized configuration in Section 16.3.2 has been shown to encounter

flutter within the flight envelope, the proposed multi-fidelity problem offers a poten-

tial avenue to address flutter including geometrically nonlinear effects in large-scale

MDO problems. The tools developed within this work enable both the function and

gradient evaluation of the beam condensation process, and thereby are suitable for

gradient-based optimization. However, the higher-fidelity methods (VLM-FEM solu-

tion) proved too unstable for the studies conducted within this thesis. As such, future

work is required to obtain a more robust FSI solution.

163

100 200 300
Speed, m/s

0

2

4

6

8

10

Al
tit

ud
e,

km

Figure 16.8: uCRM 13.5 flight envelope showing the KS aggregated damping values.
The orange points denote unstable, while the blue show stable search points.

164

Part IV

Conclusions

165

CHAPTER 17

Concluding Remarks and Contributions

This thesis endeavored to include geometrically nonlinear effects into aircraft de-

sign optimization problems. To achieve this, contributions were accomplished in the

UM/NAST framework, the efficient determination of nonlinear aeroelastic sensitiv-

ities, the interpretation and solution of nonlinear flutter problems, the application

of a geometrically nonlinear flutter constraint, as well as including the beam-based

constraint into a higher-fidelity MDO problem. The contributions presented within

this work are:

1. Extended the interpretation for flutter problems including geometrical nonlin-

earities.

2. Developed high-accuracy methods for numerically linearizing the nonlinear equa-

tions of motion within the UM/NAST framework.

3. Created a computationally efficient algorithm for accurately predicting flutter

including geometrical nonlinearities.

4. Extended a flutter constraint and applied it to geometrically nonlinear prob-

lems.

5. Extended UM/NAST into a design and optimization tool for geometrically non-

linear problems.

166

6. Developed an efficient method for recovering nonlinear aeroelastic sensitivities

using AD.

7. Showed that geometrical nonlinear flutter constraints may drive the optimal

configuration’s design.

8. Proposed a roadmap for including beam-based, nonlinear analyses into higher-

fidelity MDO problems.

The foundation of this work was created in the UM/NAST framework. Previously,

this toolbox was designed for nonlinear aeroelastic analyses and simulations and was

ill-suited for design problems. In this work, I conducted a large-scale rewrite of the

UM/NAST framework, which transformed it from an analysis tool to one suitable

for design problems. As a result, UM/NAST solutions are more computationally

efficient than even the previous C++ implementations (version 2–3). This is true for

serial applications, but the addition of parallelism to batch jobs enables even larger

performance gains (dependent on the computer available). To facilitate gradient-

based optimization problems, I added the ability to determine gradients within the

framework. Finally, I created a modular system of enhancing UM/NAST capabilities

including interfaces for external aerodynamic solvers, feedback controllers, simulated

sensors, customized atmospheric models, etc. While not used for the research in this

work, these interfaces find wide-spread use at A2SRL and enable a wide range of

research initiatives.

Furthermore, in applying AD to the UM/NAST code, I enabled the determination

of sensitivities within the UM/NAST framework. These changes were conducted to

facilitate gradient-based optimization problems. Because these require fast gradient

evaluations, I investigated methods for improving the computational efficiency of

AD gradient evaluations within UM/NAST. The hybrid-AD solution I proposed

enables the computationally efficient determination of sensitivities without sacrificing

167

accuracy.

Next, I investigated the interpretation of nonlinear flutter problems. Previous

work relied on linear flutter interpretation methodologies to analyze and interpret

nonlinear flutter problems. In this work, I presented problems by applying the linear

flutter problem methodologies to nonlinear problems and proposed alternate methods

of interpreting the nonlinear solutions. Based on this interpretative approach I unified

the interpretation of linear and nonlinear flutter analyses and discussed the limitations

of linear flutter interpretations for nonlinear problems, the difference in requirements

for the flutter search process, and the applicability of the V-g diagram to nonlinear

problems. I proposed extended V-g diagrams as an interpretative tool for nonlinear

problems.

Based on the work on flutter interpretations, I formulated an enhanced flutter algo-

rithm and implemented it within UM/NAST. The enhanced flutter algorithm enables

parallelism during the flutter search process and uses a mode-tracked, surrogate-

based approach to determining the flutter point. Using the AD improvements to

the UM/NAST framework, I formulated new, higher accuracy linearization methods.

Beyond its accuracy, the AD linearization shows significant speed improvements com-

pared to the past method (based on the forward difference method). I showed that

the proposed algorithm results in substantial accuracy improvements compared to

the legacy flutter algorithm.

Furthermore, I formulated a flutter constraint, based on an existing methodology,

to include geometrically nonlinear flutter analyses into aircraft design problems. The

approach utilizes a sequential KS aggregation to obtain a conservative estimate of the

most critical damping value. However, the nonlinear nature of the flutter problem

results in different requirement to the flutter constraint. As a result, the aircraft flight

envelope must be sampled. As such, I modified and applied an existing approach

to constrained sampling to (non-hypercube) aircraft flight envelopes. The resulting

168

flutter constraint therefore enforces feasibility for the entire flight envelope.

Next, I applied the geometrically nonlinear flutter constraint to a sample (beam-

based) optimization problem. To investigate the effect of the flutter constraint, I

applied a strength and a flutter constraint with geometrical nonlinearities in different

optimization studies. The resulting configurations showed the most conservative wing

planform to result from the nonlinear flutter constraint, while the application of only

the strength constraint resulted in the least conservative configuration. This shows

that the geometrically nonlinear flutter constraint may become necessary during op-

timization problems as aircraft become more flexible.

Finally, I developed and verified beam condensation tools based on existing method-

ologies to integrate the beam-based flutter constraint into a higher-fidelity MDO

problem. Furthermore, I coupled an existing VLM tool with the shell-based FEM

solver TACS to obtain a “high-fidelity” aerostructural solution. I integrated the

beam condensation tools to present a roadmap for including the flutter constraint

into a higher-fidelity optimization problem. As such, while the final result of this

thesis is not a full-fledged MDO problem, it does offer an argument for the inclusion

of geometrically nonlinear effects as well as a roadmap of how to include them as

future aircraft become more flexible.

169

CHAPTER 18

Potential Future Work

This thesis developed methods and provides recommendations for working with ge-

ometrically nonlinear effects within aircraft MDO problems. A number of aspects

remain to be investigated and pose possible avenues of future research. This chap-

ter discusses some of the possible areas of investigation, focusing on potential de-

velopments to the UM/NAST framework, investigations regarding the geometrically

nonlinear flutter constraint, and the multi-fidelity problem including the flutter con-

straint.

18.1 UM/NAST

Much of the work presented in this thesis centers around the UM/NAST framework.

Methods for obtaining gradients were introduced and verified. This section discusses

possible future developments within UM/NAST. The framework has constituted one

of the backbones at A2SRL and therefore fulfills many different needs, ranging from

feedback controller design to optimization problems. Because the total required or

possible future developments are vast, I will focus solely on the topics related to this

work.

While I mounted a concerted effort to improve the performance of the gradient

methods, a number of changes to the application of AD can yield further improve-

ments. Currently, AD is applied across all subroutines via templating. While this al-

170

lows for implementational flexibility, the current method will result in a large number

of entries to the AD tape. CoDiPack allows the developer to locally define functions

and their respective jacobians to reduce this overhead. While I was aware of this

during the development of this work, the implementation proved too time consum-

ing to be reasonably completed for this thesis. This means that every linear algebra

function call is differentiated down to every local function variable, which may result

in a substantial increase in tape size. To alleviate this, future work could apply the

reverse mode derivatives for common linear algebra routines derived by Giles [101]

together with CoDiPack’s external function helpers. The resulting reduced AD tape

size would benefit both the time needed for gradient evaluations as well as the memory

footprint, both of which come at a premium during MDO problems.

Another area of investigation may be the inclusion of control laws during the

linearization and stability analyses. UM/NAST currently permits the inclusion of

rigid body degrees of freedom as well as unsteady aerodynamics using Peters’ finite

state aerodynamics, however, it does not allow for a linearization including a feed-

back controller. While open loop linearization and stability studies certainly yield

interesting and useful results, most modern and future aircraft feature feedback con-

trollers and their contribution to or inhibition of flutter is valuable to the certification

process and should be studied. Such studies would require a theoretical development

of how to linearize the feedback controller within UM/NAST along with the obvious

implementational aspects.

18.2 Flutter Constraint

The application of the geometrically nonlinear flutter constraint also offers possibili-

ties for further studies. As I discussed in Chapter 5, the serial aggregation using KS

functions is equivalent to a single KS aggregation over all constraints. The double KS

171

approach used in this work primarily originates from organizational needs. However,

a constant KS parameter is not necessary and using two KS aggregations with varying

weigths should be investigated further. Furthermore, an adaptive KS approach could

be considered in further work if larger number of search points are required.

Further studies could also be conducted into the effect of rigid body DOF as well

as the inclusion of feedback controllers on the optimization problem and optimized

configuration. As noted by Su and Cesnik [4] and referenced in Chapter 1, the inclu-

sion of rigid body DOF in flutter analyses can dramatically alter the predicted flutter

onset and mode. Including these effects could therefore yield a different optimized

configuration. Similarly, the inclusion of a feedback controller during the linearization

process (as discussed in the previous section) should be studied along with its effect

on the optimum. Due to the coupled nature of the flutter problem, the controller

may inhibit or exacerbate flutter onset. Including the controller into the constraint

should therefore be studied for both a predefined feedback controller as well as setting

controller parameters as design variables.

The flutter studies presented in this work utilized a very simple aerodynamic

model based on strip theory with unsteady effects accounted by using Peters’ fi-

nite state aerodynamics. This aerodynamic model sufficed for studying the required

methodology. However, most transport aircraft travel at transonic speeds, at which

these aerodynamic models are invalid. CFD may fulfill the requirements in terms

of physical effects modeled, but would be far too computationally expensive to in-

clude into a flutter constraint. A reduced order model approach to unsteady analyses

has been investigated by Wang, Fidkowski, and Cesnik [102]. The promise of their

approach is to quickly model unsteady transonic flow problems using an artificial

neural network. However, questions remain about how this approach can be utilized

for a large scale optimization problem. At present, further investigation is necessary

whether such a reduced order or other aerodynamic model should be used to account

172

for unsteady transonic flow when applying the flutter constraint.

18.3 Multi-Fidelity Problem

The multi-fidelity problem including the geometrically nonlinear flutter constraint of-

fers many avenues for further exploration. The studies presented in this work focused

on method development. Further work is needed to robustly include the beam-based

flutter constraint into a higher-fidelity optimization problem. Future studies should

also increase the scale of the problem and include additional constraints, such as

buckling. For example, this work did not include geometrical design variables. Ad-

ditional design variables that control the wing planform and twist are a natural next

development step. The inclusion of a true trim constraint is another. Other nonlin-

ear aeroelastic constraints, such as limit cycle oscillations or control effectiveness are

natural future avenues of investigation.

However, further development is needed on a key component that ties together

the varying levels of fidelity: the geometrical manipulation. A tool for manipulating

the vehicle geometry was not needed in the presented studies because the design

variables were limited to skin thicknesses. For further studies a tool for modifying the

structural and aerodynamic meshes would be required. More than manipulate only

one geometry, however, the tool would need to be able to account for the geometrical

coupling of the varying fidelities. For example, a change in the aerodynamic shape

alters not only the shell-based structural model, but also the reference beam location

for the beam-based flutter model. A particularly interesting tool in this context is the

Engineering Sketch Pad (ESP). ESP can model both the higher-fidelity components

and lower-fidelity representations (such as VLM or beam meshes) by an intent driven

design system. further work is required to couple ESP with mphys and UM/NAST.

The resulting design system, however, would be intriguing as it may permit the use of

173

higher level CAD-based design variables and constraints and bridge the gap between

a numerical optimization model and later production CAD models.

18.4 Aircraft Design Studies

In addition to methodological studies that naturally grow out of this work, so too

do further aircraft design optimization studies. The uCRM models used in this work

constitute current and next generation aircraft configurations. Further studies could

be conducted into the performance of composite and tow-steered wing structures

compared to the baseline Aluminum configurations. Additionally, nonconventional

configurations may benefit from the multifidelity approach. Aircraft such as joined

(Prandt) wing configurations [103] encounter nonlinear effects. The proposed multi-

fidelity approach promises the ability to explore unconventional configurations with

added confidence in the design due to the inclusion of a flutter constraint.

Finally, the advent of electric propulsion in aviation has presented new challenges

and solutions. Distributed propulsion systems endeavor to solve some of the challenges

and create higher aspect ratio designs. However, flutter analyses for conventional

wings do not take the additional dynamic pressure of the propulsion or the gyroscopic

effects into account. Further research is needed to account for these effects and to

accurately predict flutter for these forthcoming designs.

174

APPENDIX A

Dependencies of UM/NAST Quantities

Table A.1: Dependency table for UM/NAST quantities.

ε ε̇ ε̈ β β̇ λ ζ u

MFF •
MFB •
MBF •
MBB •
CFF • • •
CFB • • •
CBF • • •
CBB • • •
KFF •
RF • • • • • • • •
RB • • • • • • • •
CGB •
Ωζ •
F1 • • •
F2 • • •

175

APPENDIX B

Sequential Aggregation using

Kreisselmeiser-Steinhauser Functions

The Kreisselmeier-Steinhauser (KS) function is defined as:

KS (g (x)) =
1

ρ̄
ln

(
m∑
j=1

eρ̄gj(x)

)
(B.1)

Assuming that the parameter ρ̄ is the same across both aggregations, the sequen-

tial application of the KS functions results in:

KS (KS (g (x))) =
1

ρ̄
ln

(
m∑
j=1

e
ρ̄ 1
ρ̄

ln
(

n∑
k=1

eρ̄gj(x)
))

(B.2)

=
1

ρ̄
ln

(
m∑
j=1

n∑
k=1

eρ̄gk(x)

)
(B.3)

This can be rewritten as:

KS (KS (g (x))) =
1

ρ̄
ln

(
N∑
i=1

eρ̄gi(x)

)
(B.4)

= KS (g (x)) (B.5)

176

As such, the aggregation using KS functions in series is equivalent to a single KS

aggregation over all constraints. Despite this, there are scenarios in which a sequential

aggregation may make sense. For example, in the case of a flutter constraint, the

initial aggregation may find the most critical damping value at a search point, with the

second aggregation giving the scalar constraint. The sequential aggregation therefore

permits a parallel evaluation of the search points.

177

APPENDIX C

Computer Configurations

C.1 Configuration A

2 × Intel Xeon E5-2650 (2.0 GHz)

64 GB RAM

Ubuntu 18.04

C.2 Configuration B

4 × Intel Xeon E7 (2.1 GHz)

256 GB RAM

Ubuntu 18.04

C.3 Configuration C

Intel Core i5-8259U (2.3 GHz base clock, 3.8 GHz Turbo Boost)

8 GB RAM

Intel Iris Plus Graphics 655 1536 MB

macOS 10.15 “Catalina”

178

APPENDIX D

AD Gradients from Linearization-Based

Solvers

One of the linearization schemes in UM/NAST uses AD to obtain the linearized A

matrix such that:

ẏ = Ay (D.1)

using the relation:

A =
∂ẏ

∂y
(D.2)

As such, obtaining gradients from a linearization-based solver therefore requires

second-order derivatives (∂A
∂y∂x

) to avoid the chain rule being broken during the AD

evaluation. This requires special implementation for the linearization solver. To

illustrate this, this chapter presents a simplified problem and the AD implementation

used to obtain the design sensitivities. The state velocity ẏ is modeled as a quadratic

function of the state variable y:

ẏ = y2 (D.3)

179

The function of interest, for this problem, is defined as:

f =
∂ẏ

∂y
x3 + ẏ (D.4)

= 2x3y + y2 (D.5)

with the design variable x. The analytical gradients are given by:

A =
∂ẏ

∂y
= 2y (D.6)

∂f

∂x
= 6x2y (D.7)

The object-oriented implementation of the example linearization problem and

gradient recovery, evaluated at x = 4.0 and y = 3.0, is listed below:
// standard C++ headers

2 #include <cmath>

#include <iostream>

4

// CoDiPack headers

6 #include "codi.hpp"

8 // use specific functions without the namespace within this execution unit

using std::cout;

10 using std::endl;

using std::pow;

12 using codi::RealReverseGen;

using codi::RealReverse;

14

// create a second-order reverse type definition

16 typedef RealReverseGen<RealReverse> O2Reverse;

18

20 /*

A stand-in class for the linearization solver.

22 */

template<typename Type>

24 class Linearization

{

26 public:

// Constructor

28 Linearization() {};

30 // Destructor

~Linearization() {};

32

180

// set the state variable

34 void SetState(double y) { y_ = y; };

36 // get the state velocity

Type GetYdot() { return ydot_.value(); };

38

// get the linearized value

40 Type GetLinearized() { return a_; };

42 // Solve linearization

void SolveLinearization()

44 {

// get the RealReverseGen<Type> tape

46 RealReverseGen<RealReverse >::TapeType &tape = RealReverseGen<RealReverse >::getGlobalTape();

48 RealReverseGen<RealReverse> y = y_;

50 // set the state variable gradient to 1.0 (as input of interest)

y.gradient() = 1.0;

52

// activate the tape used to determine df/dy and register the inputs (in

54 // this case the state variable)

tape.setActive();

56 tape.registerInput(y);

58 // evaluate the function and register it as an output to the tape (2)

ydot_ = pow(y, 2);

60 tape.registerOutput(ydot_);

ydot_.gradient() = 1.0;

62

cout << "ydot(y) (double): " << pow(y_, 2) << endl;

64 cout << "ydot(y) (AD): " << ydot_ << endl << endl;

66 // set the tape (2) to passive

tape.setPassive();

68 tape.evaluate();

70 // evaluate the gradient and reset the tape

a_ = y.gradient();

72 tape.reset();

74 cout << "dydot/dy (double): " << 2 * y << endl;

cout << "dydot/dy (AD): " << a_ << endl << endl;

76 };

78 protected:

// state variable

80 double y_;

82 // state velocity variable

RealReverseGen<Type> ydot_;

84

// linearized variable

86 Type a_;

88 private:

181

};

90

92 /*

A stand-in class for a solver that uses the linearization.

94 */

class Solver

96 {

public:

98 // Constructor

Solver() {};

100

// Destructor

102 ~Solver() {};

104 // set design variable

void SetDesignVar(double x) { x_ = x; };

106

// set state variable

108 void SetState(double y) { y_ = y; };

110 // Function of interest

template<typename Type>

112 Type SolveFunction(Type x)

{

114 // create a linearization solver

Linearization<Type> lin;

116

// set the state variable

118 lin.SetState(y_);

120 // solve the linearization

lin.SolveLinearization();

122

// get the state velocity

124 Type ydot = lin.GetYdot();

126 // get the linearized value

Type a = lin.GetLinearized();

128

return a * pow(x, 3) + ydot;

130 };

132

// Gradient of the function of interest

134 double SolveGradient()

{

136 // get the RealReverse tape

RealReverse::TapeType& tape = RealReverse::getGlobalTape();

138

// assign the previously defined value of x double, to the gradient variable

140 // and set the gradient of x to 1.0 (as input of interest to tape 1)

RealReverse x = x_;

142 x.gradient() = 1.0;

144 // activate the tape and register inputs

182

tape.setActive();

146 tape.registerInput(x);

148 // evaluate the function of interest and register it to the tape

RealReverse f = SolveFunction(x);

150 tape.registerOutput(f);

f.gradient() = 1.0;

152

// set the tape to passive

154 tape.setPassive();

tape.evaluate();

156

cout << "f(x,y) (double): " << 2 * y_ * pow(x_, 3) + pow(y_, 2) << endl;

158 cout << "f(x,y) (AD): " << f << endl << endl;

160 // determine and return the gradient of the function of interest w.r.t.

// the design variables

162 return x.getGradient();

};

164

166 protected:

// design variable

168 double x_;

170 // state variable

double y_;

172

private:

174 };

176

/*

178 Program main function.

*/

180 int main()

{

182 // set the values for x and y (as doubles first)

double x = 4.0;

184 double y = 3.0;

186 // create the solver object

Solver solver;

188

// set the design and state variables

190 solver.SetDesignVar(x);

solver.SetState(y);

192

// solve for the gradient

194 double dfdx = solver.SolveGradient();

196 cout << "df/dx (double): " << 6 * y * pow(x, 2) << endl;

cout << "df/dx (AD): " << dfdx << endl << endl;

198

return 0;

200 }

183

Because the linearization process involves an AD gradient evaluation, as does

the gradient evaluation w.r.t. the design variables, a nested AD implementation is

required:
RealReverseGen<RealReverse> ...

This also requires two separate tape evaluations. Inside the Linearization class, the

SolveLinearization function contains the linearization calculations using the nested

CoDiPack type. Notice that the tape reference inside this function is of the nested

type as well. The resulting linearization variable a therefore is of the type RealRe-

verse. By ensuring this, the chain rule evaluation remains uninterrupted during the

determination of the design gradients. Finally, the outer tape evaluation determines

the gradients of the function of interest with respect to the design variables.

For the example problem the listed code yields the following results:

Analytical AD
ẏ 9.0 9.0
A 6.0 6.0
f(x, y) 393.0 393.0
∂f
∂x

288.0 288.0

184

Bibliography

[1] Bradley, M. K. and Droney, C. K., “Subsonic Ultra Green Aircraft Research:
Phase I Final Report,” Tech. Rep. CR-2011-216847, NASA, April 2011.

[2] Bradley, M. K. and Droney, C. K., “Subsonic Ultra Green Aircraft Research:
Phase II: N+4 Advanced Concept Development,” Tech. Rep. CR-2012-217556,
NASA, May 2012.

[3] Knoll, T. E., Brown, J. M., Perez-Davis, M. E., Ishmael, S. D., Tiffany, G. C.,
and Gaier, M., “Investigation of the Helios Prototype Aircraft Mishap,” Tech.
rep., NASA, January 2004.

[4] Su, W. and Cesnik, C. E. S., “Nonlinear Aeroelasticity of a Very Flexi-
ble Blended-Wing-Body Aircraft,” Journal of Aircraft, Vol. 47, No. 5, 2010,
pp. 1539–1553.

[5] Su, W. and Cesnik, C. E. S., “Strain-Based Analysis for Geometrically Non-
linear Beams: A Modal Approach,” Journal of Aircraft, Vol. 51, No. 3, 2012,
pp. 890–903.

[6] Cesnik, C. E. S., Senatore, P., Su, W., Atkins, E. M., and Shearer, C. M.,
“XHALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests,” AIAA Jour-
nal, Vol. 50, 2012, pp. 2820–2833.

[7] NASA, “Helios Mishap Photo Previews,” Images obtained from:
https://www.nasa.gov/centers/dryden/news/ResearchUpdate/Helios/
Previews/index.html, accessed May 9, 2020.

[8] Garrigues, E., “A Review of Industrial Aeroelasticity Practices at Dassault
Aviation for Military Aircraft and Business Jets,” Journal Aerospace Lab, ,
No. 14, 2018, pp. 1–34.

[9] Haftka, R. T., “Automated procedure for design of wing structures to satisfy
strength and flutter requirements,” Tech. Rep. TN D-7264, NASA, July 1973.

[10] Sobieszczanski-Sobieski, J. and Haftka, R. T., “Multidisciplinary Aerospace De-
sign Optimization: Survey of Recent Developments,” Structural Optimization,
Vol. 14, No. 1, 1997, pp. 1–23.

185

https://www.nasa.gov/centers/dryden/news/ResearchUpdate/Helios/Previews/index.html
https://www.nasa.gov/centers/dryden/news/ResearchUpdate/Helios/Previews/index.html

[11] Kenway, G. K. W. and Martins, J. R. R. A., “Multipoint High-Fidelity
Aerostructural Optimization of a Transport Aircraft Configuration,” Journal
of Aircraft, Vol. 51, No. 1, 2014, pp. 144–160.

[12] Variyar, A., Economon, T. D., and Alonso, J. J., “Design and Optimization
of Unconventional Aircraft Configurations with Aeroelastic Constraints,” 55th
AIAA Aerospace Sciences Meeting, 2017, pp. 1–10.

[13] Webster, M., “fidelity,” https://www.merriam-webster.com/dictionary/
fidelity, accessed May 9, 2020.

[14] Jonsson, E., Riso, C., Lupp, C. A., Cesnik, C. E. S., Martins, J. R., and Epure-
anu, B. I., “Flutter and post-flutter constraints in aircraft design optimization,”
Progress in Aerospace Sciences, Vol. 109, 2019, pp. 100537.

[15] Hassig, H. J., “An approximate true damping solution of the flutter equation by
determinant iteration,” Journal of Aircraft, Vol. 8, No. 11, 1971, pp. 885–889.

[16] Wright, J. R. and Jonathan, E. C., Introduction to Aircraft Aeroelasticity and
Loads, Wiley, 2nd ed., 2007.

[17] Hodges, D. H. and Pierce, G. A., Introduction to Structural Dynamics and
Aeroelasticity, Vol. 15, Cambridge University Press, 2nd ed., 2011.

[18] Rodden, W. P., Theoretical and computational aeroelasticity, Crest Publishers,
Burbank, CA, 2011.

[19] Chen, P. C., “Damping Perturbation Method for Flutter Solution: the g-
Method,” AIAA Journal, Vol. 38, No. 9, 2000, pp. 1519–1524.

[20] Eberhart, R. and Kennedy, J., “A new optimizer using particle swarm theory,”
Systemic Control Design by Optimizing a Vector Performance Index, 6th In-
ternational Symposium on Micro Machine and Human Science, Nagoya, Japan,
1995.

[21] Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley Longman Publishing, Boston, MA, 1989.

[22] Lyu, Z., Xu, Z., and Martins, J. R. R. A., “Benchmarking Optimization Algo-
rithms for Wing Aerodynamic Design Optimization,” Proceedings of the 8th In-
ternational Conference on Computational Fluid Dynamics, Chengdu, Sichuan,
China, July 2014.

[23] Yu, Y., Lyu, Z., Xu, Z., and Martins, J. R. R. A., “On the Influence of Op-
timization Algorithm and Starting Design on Wing Aerodynamic Shape Opti-
mization,” Aerospace Science and Technology, Vol. 75, April 2018, pp. 183–199.

[24] Haftka, R. T., “Parametric Constraints with Application to Optimization for
Flutter Using a Continuous Flutter Constraint,” AIAA Journal, Vol. 13, No. 4,
1975, pp. 471–475.

186

https://www.merriam-webster.com/dictionary/fidelity
https://www.merriam-webster.com/dictionary/fidelity

[25] Hajela, P., “A Root Locus-Based Flutter Synthesis Procedure,” Journal of Air-
craft, Vol. 20, No. 12, 1983, pp. 1021–1027.

[26] Bhatia, K. G. and Rudisill, C. S., “Optimization of Complex Structures to Sat-
isfy Flutter Requirements,” AIAA Journal, Vol. 9, No. 8, 1971, pp. 1487–1491.

[27] Rudisill, C. S. and Bhatia, K. G., “Second Derivatives of the Flutter Velocity
and the Optimization of Aircraft Structures,” AIAA Journal, Vol. 10, No. 12,
1972, pp. 1569–1572.

[28] Gwin, L. and Taylor, R., “A general method for flutter optimization,” 14th
Structures, Structural Dynamics, and Materials Conference, Williamsburg, Vir-
ginia, 1973, pp. 1–6.

[29] Livne, E., Schmit, L., and Friedmann, P., “An integrated approach to the opti-
mum design of actively controlled composite wings,” 30th Structures, Structural
Dynamics and Materials Conference, Mobile, AL, 1990.

[30] Livne, E., Schmit, L. A., and Friedmann, P. P., “Integrated structure/con-
trol/aerodynamic synthesis of actively controlled composite wings,” Journal of
Aircraft, Vol. 30, No. 3, 1993, pp. 387–394.

[31] Ringertz, U. T., “On Structural Optimization with Aeroelasticity Constraints,”
Structural Optimization, Vol. 8, No. 1, 1994, pp. 16–23.

[32] Stanford, B. K., Wieseman, C. D., and Jutte, C. V., “Aeroelastic Tailoring
of Transport Wings Including Transonic Flutter Constraints,” 56th AIAA/AS-
ME/ASCE/AHS/SC Structures, Structural Dynamics, and Material Confer-
ence, Kissimmee, FL, 2015, pp. 1–22.

[33] Brooks, T. R., Kenway, G. K. W., and Martins, J. R. R. A., “Benchmark
Aerostructural Models for the Study of Transonic Aircraft Wings,” AIAA Jour-
nal, Vol. 56, July 2018, pp. 2840–2855.

[34] Jonsson, E., Mader, C. A., Kennedy, G. J., and Martins, J. R. R. A., “Compu-
tational Modeling of Flutter Constraint for High-Fidelity Aerostructural Opti-
mization,” 2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, San Diego, CA, January 2019.

[35] Kreisselmeier, G. and Steinhauser, R., “Systemic Control Design by Optimiz-
ing a Vector Performance Index,” Computer Aided Design of Control Systems:
Proceedings of the IFAC Symposium, Zürich, Switzerland, 29-31 August 1979,
No. 1, IFAC, Zurich, Switzerland, 1979, pp. 1–10.

[36] Xie, C., Meng, Y., Wang, F., and Wan, Z., “Aeroelastic Optimization Design
for High-Aspect-Ratio Wings with Large Deformation,” Schock and Vibration,
Vol. 2017, 2017, pp. 16.

187

[37] Lukaczyk, T., Wendor, A., Boteroz, E., Macdonaldz, T., Momosez, T., Vari-
yarz, A., Veghz, J., Colonnox, M., Economon, T., Alonsok, J., Orra, T., and
Da Silvayy, C., “SUAVE: An Open-Source Environment for Multi-Fidelity Con-
ceptual Vehicle Design,” 16th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, Dallas, TX, June 22–26 2015.

[38] Drela, M., “Integrated Simulation Model for Preliminary Aerodynamic, Struc-
tural, and Control-Law Design of Aircraft,” 40th AIAA/ASME/ASCE/AH-
S/ASC Structures, Structural Dynamics and Materials Conference, St. Louis,
MO, 1999.

[39] Bhatia, M. and Beran, P., “Design of Thermally Stressed Panels Subject to
Transonic Flutter Constraints,” Journal of Aircraft, Vol. 54, No. 6, 2017,
pp. 2340–2349.

[40] Cesnik, C. E. S., Palacios, R., and Reichenbach, E. Y., “Reexamined Structural
Design Procedures for Very Flexible Aircraft,” Journal of Aircraft, Vol. 51,
No. 5, 2014, pp. 1580–1591.

[41] Bryson, D. E. and Rumpfkeil, M. P., “Aerostructural design optimization using
a multifidelity quasi-Newton method,” Journal of Aircraft, Vol. 56, No. 5, 2019,
pp. 2019–2031.

[42] Opgenoord, M. M. J., Drela, M., and Willcox, K. E., “Physics-Based Low-Order
Model for Transonic Flutter Prediction,” AIAA Journal, Vol. 56, No. 4, 2018,
pp. 1519–1531.

[43] Opgenoord, M. M. and Willcox, K. E., “Aeroelastic Tailoring using Additively
Manufactured Lattice Structures,” 2018 Multidisciplinary Analysis and Opti-
mization Conference, Atlanta, GA, 2018.

[44] Stodieck, O., Cooper, J. E., Neild, S. A., Lowenberg, M. H., and Iorga, L.,
“Slender-Wing Beam Reduction Method for Gradient-Based Aeroelastic Design
Optimization AIAA JOURNAL,” 2018, pp. 1–17.

[45] Malcolm, D. J. and Laird, D. L., “Extraction of Equivalent Beam Properties
from Blade Models,” Wind Energy, Vol. 10, 2007, pp. 135–157.

[46] Martins, J. R. R. A., Multidisciplinary Design Optimization, University of
Michigan, Ann Arbor, MI, 2017.

[47] Lyness, J. N. and Moler, C. B., “Numerical differentiation of analytic functions,”
SIAM Journal on Numerical Analysis, Vol. 4, No. 2, 1967, pp. 202–210.

[48] Lyness, J. N., “Numerical algorithms based on the theory of complex variable,”
ACM National Meeting, Thompson Book Co., Washington, D.C., pp. 125–133.

[49] Squire, W. and Trapp, G., “Using complex variables to estimate derivatives of
real functions,” SIAM Review, Vol. 40, No. 1, 1998, pp. 110–112.

188

[50] Martins, J. R. R. A., Sturdza, P., and Alonso, J. J., “The complex-step deriva-
tive approximation,” ACM Transactions on Mathematical Software, Vol. 29,
No. 3, 2003, pp. 245–262.

[51] Martins, J. R. R. A., “Complexify: A Header File for Using the Complex Step
Method in C++,” .

[52] Hascoet, L. and Pascual, V., Tapenade 2.1 user’s guide, 2004.

[53] Peters, D. A., Karunamoorthy, S., and Cao, W., “Finite State Induced Flow
Models. I - Two-Dimensional Thin Airfoil,” Journal of Aircraft, Vol. 32, No. 2,
01 1995, pp. 313–322.

[54] Teixeira, P. C. and Cesnik, C. E. S., “Inclusion of Propeller Effects on Aeroelas-
tic Behavior of Very Flexible Aircraft,” International Forum on Aeroelasticity
and Structural Dynamics, Como, Italy, 2017, pp. 1–18.

[55] Teixeira, P. C. and Cesnik, C. E. S., “Propeller Effects on the Dynamic Response
of HALE Aircraft,” AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dy-
namics, and Materials Conference, Kissimee, FL, 2018.

[56] Brown, E., Integrated Strain Actuation In Aircraft With Highly Flexible Com-
posite Wings, Ph.D. thesis, University of Michigan, Ann Arbor, Michigan, 2003.

[57] Shearer, C. M., Coupled Nonlinear Flight Dynamics, Aeroelasticity, and Control
of Very Flexible Aircraft, Ph.D. thesis, University of Michigan, Ann Arbor,
Michigan, 2006.

[58] Su, W., Coupled Nonlinear Aeroelasticity and Flight Dynamics of Fully Flexible
Aircraft, Ph.D. thesis, University of Michigan, Ann Arbor, Michigan, 2008.

[59] Dillsaver, M., Gust Response and Control of Very Flexible Aircraft, Ph.D. thesis,
University of Michigan, Ann Arbor, Michigan, 2013.

[60] Jones, J., Development of a Very Flexible Testbed Aircraft for the Validation of
Nonlinear Aeroelastic Codes, Ph.D. thesis, University of Michigan, Ann Arbor,
Michigan, 2017.

[61] Pang, Z., Modeling, Simulation and Control of Very Flexible Unmanned Aerial
Vehicle, Ph.D. thesis, University of Michigan, Ann Arbor, Michigan, 2018.

[62] Kitson, R. C., Fluid-Structure-Jet Interaction Effects on High-Speed Vehicles,
Ph.D. thesis, University of Michigan, Ann Arbor, Michigan, 2018.

[63] Teixeira, P. C., Propeller Effects on Very Flexible Aircraft, Ph.D. thesis, Uni-
versity of Michigan, Ann Arbor, Michigan, 2019.

[64] Kitson, R. C. and Cesnik, C. E. S., “Modelling of High Aspect Ratio Active
Flexible Wings for Roll Control,” International Forum on Aeroelasticity and
Structural Dynamics, Saint Petersburg, Rusia, 2015.

189

[65] Skujins, T. and Cesnik, C. E. S., “Reduced-Order Modeling of Unsteady Aero-
dynamics Across Multiple Mach Regimes,” Journal of Aircraft, Vol. 51, No. 6,
2014, pp. 1681–1704.

[66] Allemang, R. J., Investigation of Some Multiple Input/Output Frequency Re-
sponse Function Experimental Modal Analysis Techniques, Ph.D. thesis, Uni-
versity of Cincinnati, Cincinnati, 1980.

[67] Allemang, R. J. and Brown, D. L., “A Correlation Coefficient for Modal Vector
Analysis,” International Modal Analysis Con- ference, 1982, pp. 110–116.

[68] Wallis, J., A Treatise of Algebra, both Historical and Practical. Shewing the
Original, Progress, and Advancement thereof, from time to time, and by what
Steps it hath attained to the Heighth at which it now is, Oxford: Richard Davis,
1685.

[69] Bradie, B., A friendly introduction to numerical analysis, Pearson Prentice Hall,
Upper Saddle River, New Jersey, 2006.

[70] Henshaw, M. J. d. C., Badcock, K. J., Vio, G. A., Allen, C. B., Chamberlain,
J., Kaynes, I., Dimitriadis, G., Cooper, J. E., Woodgate, M. A., Rampurawala,
A. M., Jones, D., Fenwick, C., Gaitonde, A. L., Taylor, N. V., Amor, D. S.,
Eccles, T. A., and Denley, C. J., “Non-linear Aeroelastic Prediction for Air-
craft Applications,” Progress in Aerospace Sciences, Vol. 43, No. 4-6, 2007,
pp. 65–137.

[71] Jonsson, E., Kenway, G., and Martins, J. R. R. A., “Development of Flutter
Constraints for High-fidelity Aerostructural Optimization,” 35th AIAA Applied
Aerodynamics Conference, AIAA, Denver, CO, 2017, p. 26.

[72] Lambe, A. B., Martins, J. R. R. A., and Kennedy, G. J., “An evaluation of
constraint aggregation strategies for wing box mass minimization,” Structural
and Multidisciplinary Optimization, Vol. 55, No. 1, 2017, pp. 257–277.

[73] Raspanti, C., Bandoni, J., and Biegler, L., “New Strategies for Flexibility
Analysis and Design Under Uncertainty,” Computers & Chemical Engineering,
Vol. 24, No. 9-10, 2000, pp. 2193–2209.

[74] Golchi, S. and Loeppky, J. L., “Monte Carlo based Designs for Constrained
Domains,” ArXiv e-prints, Vol. 7, 2015, pp. 1–28.

[75] Feinberg, J. and Langtangen, H. P., “Chaospy: An Open Source Tool for De-
signing Methods of Uncertainty Quantification,” Journal of Computational Sci-
ence, Vol. 11, November 2015, pp. 46–57.

[76] Heath, T. L., A History of Greek Mathematics, Vol. 2, Oxford University Press,
1921, pp. 321–323.

190

[77] Sanghi, D. and Cesnik, C. E. S., “Enhanced Fem2Stick Formulation,” University
of Michigan CASE VFA Tech. rep., 2018.

[78] Sagebaum, M., Albring, T., and Gauger, N. R., “High-Performance Derivative
Computations using CoDiPack,” arXiv preprint arXiv:1709.07229, 2017.

[79] Hogan, R. J., “Adept C ++ Software Library: User Guide,” 2016.

[80] Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk, T. W., and Alonso,
J. J., “SU2: An Open-Source Suite for Multiphysics Simulation and Design,”
AIAA Journal, Vol. 54, No. 3, 2016, pp. 828–846.

[81] Sagebaum, M. and Gauger, N., “MeDiPack Documentation,” 2016, https:
//www.scicomp.uni-kl.de/medi/.

[82] Rosenbrock, H., “An Automatic Method for finding the Greatest of Least Value
of a Function,” The Computer Journal, Vol. 3, No. 3, 1960, pp. 175–184.

[83] Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A.,
“OpenMDAO : An open-source framework for multidisciplinary design, analy-
sis, and optimization,” Structural and Multidisciplinary Optimization, Vol. 59,
No. 4, 2019, pp. 1–39.

[84] Yildirim, A., Mader, C., Martins, J. R. R. A., Kennedy, G., Gray, J., Stanford,
B., and Jacobson, K., “Modular Aerostructural Analysis and Optimization with
the OpenMDAO Framework,” AIAA Aviation Forum, American Institute of
Aeronautics and Astronautics, Reno, NV (presentation only), 2020.

[85] Kennedy, G. J. and Martins, J. R. R. A., “A parallel finite-element framework
for large-scale gradient-based design optimization of high-performance struc-
tures,” Finite Elements in Analysis and Design, 2014.

[86] Mader, C. A., Kenway, G. K. W., Yildirim, A., and Martins, J. R. R. A.,
“ADflow: An Open-Source Computational Fluid Dynamics Solver for Aerody-
namic and Multidisciplinary Optimization,” Journal of Aerospace Information
Systems, Vol. 0, No. 0, 0, pp. 1–20.

[87] Jacobson, K., Kiviaho, J. F., Smith, M. J., and Kennedy, G., “An Aeroelas-
tic Coupling Framework for Time-accurate Analysis and Optimization,” 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Con-
ference, Kissimmee, FL.

[88] Jasa, J. P., Hwang, J. T., and Martins, J. R. R. A., “Open-source coupled
aerostructural optimization using Python,” Structural and Multidisciplinary
Optimization, Vol. 57, No. 4, April 2018, pp. 1815–1827.

[89] “Google C++ Style Guide,” 2020, https://google.github.io/styleguide/
cppguide.html.

191

https://www.scicomp.uni-kl.de/medi/
https://www.scicomp.uni-kl.de/medi/
https://google.github.io/styleguide/cppguide.html
https://google.github.io/styleguide/cppguide.html

[90] Albring, T. A., Sagebaum, M., and Gauger, N. R., Efficient Aerodynamic Design
using the Discrete Adjoint Method in SU2.

[91] Lockyer, A. J., Drake, A., Bartley-Cho, J., Vartio, E., Solomon, D., and Shimko,
T., “High Lift Over Drag Active (HiLDA) Wing,” Tech. Rep. AFRL-VA-WP-
TR-2005-3066, 2005.

[92] Gray, J. S., Hearn, T. A., Moore, K. T., Hwang, J., Martins, J., and Ning, A.,
“Automatic Evaluation of Multidisciplinary Derivatives Using a Graph-Based
Problem Formulation in OpenMDAO,” 15th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, American Institute of Aeronautics and
Astronautics, Atlanta, Georgia, 2014.

[93] Hwang, J. T., A Modular Approach to Large-Scale Design Optimization of
Aerospace Systems, Ph.D. thesis, University of Michigan, 2015.

[94] Martins, J. R. R. A. and Poon, N. M. K., “On Structural Optimization Using
Constraint Aggregation,” Proceedings of the 6th World Congress on Structural
and Multidisciplinary Optimization, Rio de Janeiro, Brazil, May 2005.

[95] Jones, E., Oliphant, T., Peterson, P., et al., “SciPy: Open Source Scientific
Tools for Python,” 2001, http://www.scipy.org/.

[96] Anderson, J., Introduction to Flight, McGraw-Hill, New York, NY, 8th ed.,
2011.

[97] Cavcar, M., “Bréguet Range Equation?” Journal of Aircraft, Vol. 43, No. 5,
2006, pp. 1542–1544.

[98] Devillers, R., La Dynamique de l’Avion, University of Michigan Library, Ann
Arbor, MI, 1920.

[99] Coffin, J. G., “A Study of Airplane Range and Useful Loads,” Tech. Rep.
NACA-TR-69, 1920.

[100] Breguet, L., “Calcul du Poids de Combustible Consummé par un Avion en Vol
Ascendant,” Comptes Rendus Hebdomadaires des Séances de l’Académie des
Sciences, Vol. 177, 1923, pp. 870–872.

[101] Giles, M. B., “Collected matrix derivative results for forward and reverse mode
algorithmic differentiation,” Lecture Notes in Computational Science and En-
gineering, Vol. 64 LNCSE, No. 08, 2008, pp. 35–44.

[102] Wang, Q. Z., Cesnik, C. E. S., and Fidkowski, K., “Multivariate Recurrent
Neural Network Models for Scalar and Distribution Predictions in Unsteady
Aerodynamics,” AIAA Scitech 2020 Forum, AIAA, 2018.

[103] Wolkovitch, J., “The joined wing – An overview,” Journal of Aircraft, Vol. 23,
No. 3, 1986, pp. 161–178.

192

http://www.scipy.org/

	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	List of Symbols
	Abstract
	Introduction
	Previous Work
	Scope of this Work

	I Methods
	Determining Gradients
	Finite Difference Method
	Complex Step Method
	Semi-Analytical Methods
	Algorithmic Differentiation

	UM/NAST Theoretical Formulation
	Nonlinear Coupled Equations of Motion
	Linearized Equations of Motion

	Flutter Analysis and Interpretation
	Generalized Interpretation of Flutter Problems
	Flutter Search Including Geometrical Nonlinearities
	Determining a Flutter Point
	Determining the Flutter Boundary

	Geometrically Nonlinear Flutter Constraint
	Constraining Damping vs. Dynamic Pressure
	Aggregation Methods
	Flutter Constraint Formulation

	Flight Envelope Sampling
	Hypercube Sampling
	Problems with Hypercube Sampling
	Constrained Sampling

	Determining Equivalent Beam Properties
	Mass Condensation
	Stiffness Condensation

	II Tools
	Algorithmic Differentiation
	Adept
	CoDiPack
	Selecting the Algorithmic Differentiation Tool
	Implementational Aspects

	MDO Framework
	OpenMDAO
	mphys
	FEMtoBeam

	UM/NAST Version 4.2
	Historical Background and Motivation
	Code Design

	MDO–NAST
	Common Concepts
	Static Gradient Helpers
	Modal Gradient Helpers
	Dynamic Gradient Helpers
	Search Point Gradient Helpers
	OpenMDAO Components

	III Numerical Studies
	Aeroelastic Models
	Blended Wing Body
	Undeflected Common Research Model

	Flutter Prediction
	Flutter Point Prediction
	Flutter Boundary Prediction

	Verification of Nonlinear Aeroelastic Gradients
	Static Aeroelastic Gradient Verification
	Modal Gradient Verification
	Flutter Gradient Verification
	Gradient Evaluation Performance

	Beam-Based Optimization Studies
	Cross Section Properties
	Flight Envelope
	Drag Prediction
	Fuel Burn Prediction
	Optimization Including Static Constraint
	Optimization Including Flutter Constraints

	Multi-Fidelity Studies
	Mass Condensation Verification
	Stiffness Condensation Verification
	uCRM Studies
	Future Work

	IV Conclusions
	Concluding Remarks and Contributions
	Potential Future Work
	UM/NAST
	Flutter Constraint
	Multi-Fidelity Problem
	Aircraft Design Studies

	Appendices
	Dependencies of UM/NAST Quantities
	Sequential Aggregation using Kreisselmeiser-Steinhauser Functions
	Computer Configurations
	Configuration A
	Configuration B
	Configuration C

	AD Gradients from Linearization-Based Solvers
	Bibliography

