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ABSTRACT

For most of decisions or system designs in practice, there exist chances of severe

hazards or system failures that can be catastrophic. The occurrence of such hazards

is usually uncertain, and hence it is important to measure and analyze the associ-

ated risks. As a powerful tool for estimating risks, rare-event simulation techniques

are used to improve the efficiency of the estimation when the risk occurs with an

extremely small probability. Furthermore, one can utilize the risk measurements

to achieve better decisions or designs. This can be achieved by modeling the task

into a chance constrained optimization problem, which optimizes an objective with

a controlled risk level. However, recent problems in practice have become more

data-driven and hence brought new challenges to the existing literature in these two

domains. In this dissertation, we will discuss challenges and remedies in data-driven

problems for rare-event simulation and chance constrained problems. We propose

a robust optimization based framework for approaching chance constrained opti-

mization problems under a data-driven setting. We also analyze the impact of tail

uncertainty in data-driven rare-event simulation tasks.

On the other hand, due to recent breakthroughs in machine learning techniques,

the development of intelligent physical systems, e.g. autonomous vehicles, have been

actively investigated. Since these systems can cause catastrophes to public safety,

the evaluation of their machine learning components and system performance is cru-

cial. This dissertation will cover problems arising in the evaluation of such systems.

xii



We propose an importance sampling scheme for estimating rare events defined by

machine learning predictors. Lastly, we discuss an application project in evaluating

the safety of autonomous vehicle driving algorithms.
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CHAPTER I

Introduction

For most of decisions or system designs in practice, there exist chances of severe

hazards or system failures that can be catastrophic. The occurrence of such hazards

is usually uncertain, and hence it is important to measure and analyze the associ-

ated risks. As a powerful tool for estimating risks, rare-event simulation techniques

are used to improve the efficiency of the estimation when the risk occurs with an

extremely small probability. Furthermore, one can utilize the risk measurements to

achieve better decisions or designs. This can be achieved by modeling the task into a

chance constrained optimization problem, which optimizes an objective with a con-

trolled risk level. For example, in financial management, we can use the probability

of large loss as a quantitative measure to assess the risk of the portfolio. In order

to pursue better profit under risks, we can design a portfolio that maximizes the

expected return while constrains the risk of large loss to be low.

Rare-event estimation and chance constrained programming have been exten-

sively studied and developed in the last few decades. However, recent problems in

practice have become more data-driven and hence brought new challenges to the ex-

isting literature in these two domains. In this dissertation, we will discuss challenges

and remedies in data-driven problems for rare-event simulation and chance con-

1
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strained problems. More specifically, in Chapter II we propose a robust optimization

based framework for approaching chance constrained optimization problems under

data-driven settings. In Chapter III we analyze the impact of tail uncertainty in

data-driven rare-event simulation tasks. Partial results of these studies have been

published in [86, 90].

On the other hand, due to recent breakthroughs in machine learning techniques,

the development of intelligent physical systems, e.g. autonomous vehicles, have been

actively investigated. Since these systems can cause catastrophes to public safety, the

evaluation of their machine learning components and system performance is crucial.

This dissertation will cover two problems arising in the evaluation of such systems.

In Chapter IV, we propose an importance sampling scheme to estimate rare events

defined by machine learning predictors. In Chapter V, we consider an application

case in evaluating the safety of autonomous vehicle driving algorithms. The detailed

overview of each chapter is given as follows. Partial results of these studies have been

published in [92, 91].

In Chapter II, we propose the robust optimization based framework under a data-

driven setting. Robust optimization is a common approach to tractably obtain safe-

guarding solutions for optimization problems with uncertain constraints. In this

chapter, we study a statistical framework to integrate data into robust optimization

(RO), based on learning a prediction set using (combinations of) geometric shapes

that are compatible with established RO tools, and a simple data-splitting validation

step that achieves finite-sample nonparametric statistical guarantees on feasibility.

We demonstrate how our required sample size to achieve feasibility at a given con-

fidence level is independent of the dimensions of both the decision space and the

probability space governing the stochasticity, and discuss some approaches to im-
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prove the objective performances while maintaining these dimension-free statistical

feasibility guarantees.

In Chapter III, we study the problem of designing good importance sampling (IS)

schemes to simulate the probability that a sophisticated predictor, built for instance

from an off-the-shelf machine learning toolbox, gives a prediction that exceeds a

large threshold. This problem is motivated as a step towards building good learning

algorithms that takes into account the extremal risks of the prediction. We provide

a framework to design IS for two common machine learning models, namely random

forest and a basic neural network. Our approach utilizes some available mathemati-

cal programming formulations to optimize over these models and a simple “cutting

plane” idea to look for dominating points under Gaussian input distributions.

In Chapter IV, we analyze the impact of tail uncertainty in data-driven rare-event

simulation. Rare-event probabilities and risk measures that quantify the likelihood

of catastrophic or failure events can be sensitive to the accuracy of the underlying

input models, especially regarding their tail behaviors. We investigate how the lack

of tail information of the input can affect the output extremal measures, in relation

to the level of data that are needed to inform the input tail. Using the basic setting of

estimating the probability of the overshoot of an aggregation of i.i.d. input variables,

we argue that heavy-tailed problems are much more vulnerable to input uncertainty

than light-tailed problems. We explain this phenomenon via their large deviations

behaviors, and substantiate with some numerical experiments.

In Chapter V, we discuss the safety evaluation of autonomous vehicle driving algo-

rithms. Currently, the process to certify highly Automated Vehicles has not yet been

defined by any country in the world. Companies are testing Automated Vehicles on

public roads, which is time-consuming and inefficient. We proposed the Accelerated
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Evaluation concept, which uses a modified statistics of the surrounding vehicles and

the Importance Sampling theory to reduce the evaluation time by several orders of

magnitude, while ensuring the evaluation results are statistically accurate. In this

chapter, we further improve the accelerated evaluation concept by using Piecewise

Mixture Distribution models, instead of Single Parametric Distribution models. We

developed and applied this idea to forward collision control system reacting to ve-

hicles making cut-in lane changes. The behavior of the cut-in vehicles was modeled

based on more than 403,581 lane changes collected by the University of Michigan

Safety Pilot Model Deployment Program. Simulation results confirm that the ac-

curacy and efficiency of the Piecewise Mixture Distribution method outperformed

single parametric distribution methods in accuracy and efficiency, and accelerated

the evaluation process by almost four orders of magnitude.



CHAPTER II

Learning-based Robust Optimization

2.1 Introduction

Many optimization problems in industrial applications contain uncertain parame-

ters in constraints where the enforcement of feasibility is of importance. This chapter

aims to build procedures to find good-quality solutions for these problems that are

tractable and statistically accurate for high-dimensional or limited data situations.

To locate our scope of study, we consider situations where the uncertainty in the

constraints is “stochastic”, and a risk-averse modeler wants the solution to be feasible

“most of the time” while not making the decision space overly conservative. One

common framework to define feasibility in this context is via a chance-constrained

program (CCP)

(2.1) minimize f(x) subject to P (g(x; ξ) ∈ A) ≥ 1− ε

where f(x) ∈ R is the objective function, x ∈ Rd is the decision vector, ξ ∈ Rm is

a random vector (i.e. the uncertainty) under a probability measure P , and g(x; ξ) :

Rd × Rm → Ω with A ⊂ Ω for some space Ω. Using existing terminology, we

sometimes call g(x; ξ) ∈ A the safety condition, and ε the tolerance level that controls

the violation probability of the safety condition. In this chapter we will consider

g(x; ξ) ∈ A as linear inequalities, which constitute the commonest class of CCPs.

5
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We will focus on settings where ξ is observed via a finite amount of data, driven

by the fact that in almost every application there is no exact knowledge about the

uncertainty, and that data is increasingly ubiquitous. Our problem target is to find

a solution feasible for (2.1) with a given statistical confidence (with respect to the

data, in a frequentist sense) that has an objective value as small as possible.

First proposed by [44], [43], [123] and [141], the CCP framework (2.1) has been

studied extensively in the stochastic programming literature (see [142] for a thorough

introduction), with applications spanning across reservoir system design ([144, 143]),

cash matching ([55]), wireless cooperative network ([156]), inventory ([107]) and pro-

duction management ([126]). Though not always proper (notably when the uncer-

tainty is deterministic or bounded; see e.g., [12] P.28–29), in many situations it is

natural to view uncertainty as “stochastic”, and (2.1) provides a rigorous definition

of feasibility under these situations. Moreover, (2.1) sets a framework to assimilate

data in a way that avoids over-conservativeness by focusing on the “majority” of the

data, as we will exploit in this chapter.

Our main contribution is a framework to integrate data into robust optimization

(RO) as a tool to obtain high-quality solutions feasible in the sense defined by (2.1).

Instead of directly solving (2.1), which is known to be challenging in general, RO

operates by representing the uncertainty via a (deterministic) set, often known as

the uncertainty set or the ambiguity set, and enforces the safety condition to hold

for any ξ within it. By suitably choosing the uncertainty set, RO is well-known

to be a tractable approximation to (2.1). We will revisit these ideas by studying

a procedural framework to construct an uncertainty set as a prediction set for the

data. This consists of approximating a high probability region via combinations of

tractable geometric shapes compatible with RO. As a key development, we propose a
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simple data-splitting scheme to determine the size of this region that ensures rigorous

statistical performance. This framework is nonparametric and applies under minimal

distributional requirements.

In terms of basic statistical property, our approach satisfies a finite-sample con-

fidence guarantee on the feasibility of the solution in which the minimum required

sample size in achieving a given confidence is provably independent of the dimensions

of both the decision space and the underlying probability space. While finite-sample

guarantees are also found in existing sampling-based methods, the dimension-free

property of our approach makes it a suitable resort for certain high-dimensional and

limited-data situations where previous methods break down.

The above property, which may appear very strong, needs nonetheless be comple-

mented with good approaches to curb over-conservativeness and maintain tractabil-

ity. In particular, to reduce conservativeness, a prediction set should accurately trace

the shape of data. On the other hand, to retain tractability, the set should be ex-

pressible in terms of basic geometric shapes compatible with RO techniques. We will

present some techniques to construct uncertainty sets that balance these two aspects,

while simultaneously achieve the basic statistical property. Nonetheless, we caution

that theses techniques tie conservativeness to the set volume, while often times the

former is more intricate and depends on the optimization setting at hand (see, e.g.,

[100]). Along this line, we also discuss a method to iterate the construction of un-

certainty sets that incorporate updated optimality beliefs to improve the objective

performance.

Our approach is related to several existing methods for approximating (2.1). Sce-

nario generation (SG), pioneered by [31, 33, 37, 38] and independently suggested in

the context of Markov decision processes by [50], replaces the chance constraint in
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(2.1) with a collection of sampled constraints. Related work include also the sample

average approximation (SAA) studied in [116, 117, 115], which restricts the pro-

portion of violated constraints and resembles the discarding approach in [38]. SG

provides explicit statistical guarantees on the feasibility of the obtained solution in

terms of the confidence level, the tolerance level and the sample size. It directly

approximates the chance-constrained optimization without the need of a set-based

representation of the uncertainty, and hence allows a high geometric flexibility in

the resulting set of violation and leads to less conservative solutions. However, in

general, the sample size needed to achieve a given confidence grows linearly with the

dimension of the decision space, which can be demanding for large-scale problems

(as pointed out by, e.g., [132], P.971). Recent work reduce dependence on the de-

cision dimension (and its interplay with the tolerance parameter) by, for instance,

regularization ([36]), tighter complexity results in terms of the support rank ([152]),

solution-dependent number of support constraints ([39]), one-off calibration schemes

([40]), sequential validation ([34, 42, 32]), and hybrid approaches between RO and

SG that translate scenario size requirements from decision to stochasticity space di-

mension ([121]). Among these, our proposed step to tune the set size is closest to

the calibration approaches. However, instead of calibrating a solution obtained from

a randomized program, we calibrate the coverage of an uncertainty set, and control

conservativeness and tractability of the resulting RO through proper learning of its

shape.

A classical approach to approximating (2.1) uses safe convex approximation (SCA),

by replacing the intractable chance constraint with an inner approximating convex

constraint (such that a solution feasible for the latter would also be feasible for the for-

mer) (e.g., [15, 131, 132]). This approach is intimately related to RO, as the approxi-
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mating constraints are often equivalent to the robust counterparts (RC) of RO prob-

lems with properly chosen uncertainty sets (e.g., [12], Chapters 2 and 4). The statis-

tical guarantees provided by these approximations come from probabilistic deviation

bounds, which often rely on the stochastic assumptions and the constraint structure

on a worst-case basis (e.g., [132], [12] Chapter 10, [13, 14, 63, 19, 20, 18, 46, 35]).

Thus, although the approach carries several advantages (e.g., in handling extraordi-

narily small tolerance levels), the utilized bounds can be restrictive to use in some

cases. Moreover, most of the results apply to a single chance constraint; when

the safety condition involves several constraints that need to be jointly maintained

(known as a joint chance constraint), one typically needs to reduce it to individual

constraints via the Bonferroni correction, which can add pessimism (there are ex-

ceptions, however; e.g., [45]). On the other hand, these classical results in SCA and

RO are capable of constructing uncertainty sets with well-chosen shapes, without

directly using prediction set properties.

We mention two other lines of work in approximating (2.1) that can blend with

data. Distributionally robust optimization (DRO), an approach dated back to [151]

and of growing interest in recent years (e.g., [51, 170, 74, 11, 112]), considers us-

ing a worst-case probability distribution for ξ within an ambiguity set that repre-

sents partial distributional information. The two major classes of sets consist of

distance-based constraints (statistical distance from a nominal distribution such as

the empirical distribution; e.g., [11, 169]) and moment-and-support-type constraints

(including moments, dispersion, covariance and/or support, e.g., [51, 170, 74, 81],

and shape and unimodality, e.g., [140, 80, 162, 108, 104]). To provide statistical fea-

sibility guarantee, these uncertainty sets need to be properly calibrated from data,

either via direct estimation or using the statistical implications from Bayesian ([78])
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or empirical likelihood ([105, 59, 23, 102]) methods. Another line of work takes

a Monte Carlo viewpoint and uses sequential convex approximation ([87, 89]) that

stochastically iterates the solution to a Karush-Kuhn-Tucker (KKT) point, which

guarantees local optimality of the convergent solution. This approach can be applied

to data-driven situations by viewing the data as Monte Carlo samples.

Finally, some recent RO-based approaches aim to utilize data more directly. For

example, [75] calibrate uncertainty sets using linear regression under Gaussian as-

sumptions. [17] study a tight value-at-risk bound on a single constraint and calibrate

uncertainty sets via imposing a confidence region on the distributions that govern

the bound. [160] study supervised prediction models to approximate uncertainty

sets and suggest using sampling or relaxation to reduce to tractable problems. Our

approach follows the general idea in these work in constructing uncertainty sets that

cover the “truth” with high confidence.

The rest of this chapter is organized as follows. Section 2.2 presents our procedural

framework and statistical implications. Section 2.3 discusses some approaches to

construct tight and tractable prediction sets. Section 2.4 reports numerical results

and comparisons with existing methods. Additional proofs, numerical results and

useful existing theorems are presented in the rest sections.

2.2 Basic Framework and Implications

This section lays out our basic procedural framework and implications. First,

consider an approximation of (2.1) via the RO:

(2.2) minimize f(x) subject to g(x; ξ) ∈ A ∀ ξ ∈ U

where U ∈ Ω is an uncertainty set. Obviously, for any x feasible for (2.2), ξ ∈ U

implies g(x; ξ) ∈ A. Therefore, by choosing U that covers a 1 − ε content of ξ (i.e.,
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U satisfies P (ξ ∈ U) ≥ 1− ε), any x feasible for (2.2) must satisfy P (g(x; ξ) ∈ A) ≥

P (ξ ∈ U) ≥ 1− ε, implying that x is also feasible for (2.1). In other words,

Lemma II.1. Any feasible solution of (2.2) using a (1− ε)-content set U is feasible

for (2.1).

Note that [12], P.33 discussion point B points out that it is not necessary for an

uncertainty set to contain most values of the stochasticity to induce probabilistic

guarantees. Nonetheless, Lemma II.1 provides a platform to utilize data structure

easily and formulate concrete procedures, as we will describe.

2.2.1 Learning Uncertainty Sets

Assume a given i.i.d. data set D = {ξ1, . . . , ξn}, where ξi ∈ Rm are sampled under

a continuous distribution P . In view of Lemma II.1, our basic strategy is to construct

U = U(D) that is a (1− ε)-content prediction set for P with a prescribed confidence

level 1− δ. In other words,

(2.3) PD (P (ξ ∈ U(D)) ≥ 1− ε) ≥ 1− δ

where we use the notation PD(·) to denote the probability taken with respect to the

data D. Using such a U , any feasible solution of (2.2) is feasible for (2.1) with the

same confidence level 1− δ, i.e.,

Lemma II.2. Any feasible solution of (2.2) using U that satisfies (2.3) is feasible

for (2.1) with confidence 1− δ.

(2.3) only focuses on the feasibility guarantee for (2.1), but does not speak much

about conservativeness. To alleviate the latter issue, we judiciously choose U accord-

ing to two criteria:
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1. We prefer U that has a smaller volume, which leads to a larger feasible region

in (2.2) and hence a less conservative inner approximation to (2.1). Note that,

with a fixed ε, a small U means a U that contains a high probability region

(HPR) of ξ.

2. We prefer U such that P (ξ ∈ U(D)) is close to, not just larger than, 1− ε with

confidence 1−δ. We also want the coverage probability PD(P (ξ ∈ U(D)) ≥ 1−ε)

to be close to, not just larger than, 1− δ.

Moreover, U needs to be chosen to be compatible with tractable tools in RO.

Though this tractability depends on the type of safety condition at hand and is

problem-specific, the general principle is to construct U as an HPR that is expressed

via a basic geometric set or a combination of them.

The above discussion motivates us to propose a two-phase strategy in construct-

ing U . We first split the data D into two groups, denoted D1 and D2, with sizes n1

and n2 respectively. Say D1 = {ξ1
1 , . . . , ξ

1
n1
} and D2 = {ξ2

1 , . . . , ξ
2
n2
}. These two data

groups are used as follows:

Phase 1: Shape learning. We use D1 to approximate the shape of an HPR. Two

common choices of tractable basic geometric shapes are:

1. Ellipsoid: Set the shape as S = {(ξ − µ)′Σ−1(ξ − µ) ≤ ρ} for some ρ > 0.

The parameters can be chosen by, for instance, setting µ as the sample mean

of D1 and Σ as some covariance matrix, e.g., the sample covariance matrix,

diagonalized covariance matrix, or identity matrix.

2. Polytope: Set the shape as S = {ξ : a′iξ ≤ bi, i = 1, . . . , k} where ai ∈ Rm

and bi ∈ R. For example, for low-dimensional data, this can be obtained from

a convex hull (or an approximated version) of D1, or alternately, of the data
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that leaves out bn1εc of D1 that are in the “periphery”, e.g., having the smallest

Tukey depth (e.g., [154, 79]). It can also take the shape of the objective function

when it is linear (a case of interest when using the self-improving strategy that

we will describe later).

We can also combine any of the above two types of geometric sets, such as:

1. Union of basic geometric sets: Given a collection of polytopes or ellipsoids Si,

take S =
⋃
i Si.

2. Intersection of basic geometric sets: Given a collection of polytopes or ellipsoids

Si, take S =
⋂
i Si.

The choices of ellipsoids and polytopes are motivated from the tractability in the

resulting RO, but they may not describe an HPR of ξ to sufficient accuracy. Unions

or intersection of these basic geometric sets provide more flexibility in tracking the

HPR of ξ. For example, in the case of multi-modal distribution, one can group the

data into several clusters ([83]), then form a union of ellipsoids over the clusters as S.

For non-standard distributions, one can discretize the space into boxes and take the

union of boxes that contain at least some data, inspired by the “histogram” method

in the literature of minimum volume set learning ([153]). The intersection of basic

sets is useful in handling segments of ξ where each segment appears in a separate

constraint in a joint CCP.

Phase 2: Size calibration. We use D2 to calibrate the size of the uncertainty set so

that it satisfies (2.3) and moreover P (ξ ∈ U(D)) ≈ 1− ε with coverage ≈ 1− δ. The

key idea is to use quantile estimation on a “dimension-collapsing” transformation of

the data. More concretely, first express our geometric shape obtained in Phase 1 in

the form {ξ : t(ξ) ≤ s}, where t(·) : Rm → R is a transformation map from the space
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of ξ to R, and s ∈ R. For the two geometric shapes we have considered above,

1. Ellipsoid: We set t(ξ) = (ξ − µ)′Σ−1(ξ − µ). Then the S described in Phase 1

is equivalent to {ξ : t(ξ) ≤ ρ}.

2. Polytope: Find a point, say µ, in S◦, the interior of S (e.g., the Chebyshev center

([28]) of S or the sample mean of D1 if it lies in S◦). Let t(ξ) = maxi=1,...,k(a
′
i(ξ−

µ))/(bi − a′iµ) which is well-defined since µ ∈ S◦. Then the S defined in Phase

1 is equivalent to {ξ : t(ξ) ≤ 1}.

For the combinations of sets, we suppose each individual geometric shape Si in

Phase 1 possesses a transformation map ti(·). Then,

1. Union of the basic geometric sets: We set t(ξ) = mini ti(ξ) as the transformation

map for
⋃
i Si. This is because

⋃
i{ξ : ti(ξ) ≤ s} = {ξ : mini ti(ξ) ≤ s}.

2. Intersection of the basic geometric sets: We set t(ξ) = maxi ti(ξ) as the transfor-

mation map for
⋂
i Si. This is because

⋂
i{ξ : ti(ξ) ≤ s} = {ξ : maxi ti(ξ) ≤ s}

We overwrite the value of s in the representation {ξ : t(ξ) ≤ s} as t(ξ2
(i∗)), where

t(ξ2
(1)) < t(ξ2

(2)) < · · · < t(ξ2
(n2)) are the ranked observations of {t(ξ2

i )}i=1,...,n2 , and

(2.4) i∗ = min

{
r :

r−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ, 1 ≤ r ≤ n2

}
This procedure is valid if such an i∗ can be found, or equivalently 1−(1−ε)n2 ≥ 1−δ.

2.2.2 Basic Statistical Guarantees

Phase 1 focuses on Criterion 1 in Section 2.2.1 by learning the shape of an HPR.

Phase 2 addresses our basic requirement (2.3) and Criterion 2. The choice of s

in Phase 2 can be explained by the elementary observation that, for any arbitrary

i.i.d. data set of size n2 drawn from a continuous distribution, the i∗-th ranked

observation as defined by (2.4) is a valid 1− δ confidence upper bound for the 1− ε

quantile of the distribution:
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Lemma II.3. Let Y1, . . . , Yn2 be i.i.d. data in R drawn from a continuous distribu-

tion. Let Y(1) < Y(2) < · · · < Y(n2) be the order statistics. A 1 − δ confidence upper

bound for the (1− ε)-quantile of the underlying distribution is Y(i∗), where

i∗ = min

{
r :

r−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ, 1 ≤ r ≤ n2

}

If
∑n2−1

k=0

(
n2

k

)
(1− ε)kεn2−k < 1− δ or equivalently 1− (1− ε)n2 < 1− δ, then none of

the Y(r)’s is a valid confidence upper bound.

Similarly, a 1− δ confidence lower bound for the (1− ε)-quantile of the underlying

distribution is Y(i∗), where

i∗ = max

{
r :

n2∑
k=r

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ, 1 ≤ r ≤ n2

}

If
∑n2

k=1

(
n2

k

)
(1 − ε)kεn2−k < 1 − δ or equivalently 1 − εn2 < 1 − δ, then none of the

Y(r)’s is a valid confidence lower bound.

Proof. Proof of Lemma II.3. Let q1−ε be the (1 − ε)-quantile, and F (·) and F̄ (·) be

the distribution function and tail distribution function of Yi. Consider

P (Y(r) ≥ q1−ε) = P (≤ r − 1 of the data {Y1, . . . , Yn} are < q1−ε)

=
r−1∑
k=0

(
n2

k

)
F (q1−ε)

kF̄ (q1−ε)
n2−k

=
r−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k

by the definition of q1−ε. Hence any r such that
∑r−1

k=0

(
n2

k

)
(1 − ε)kεn2−k ≥ 1 − δ is

a 1 − δ confidence upper bound for q1−ε, and we pick the smallest one. Note that

if
∑n2−1

k=0

(
n2

k

)
(1− ε)kεn2−k < 1− δ, then none of the Y(r) is a valid confidence upper

bound.
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Similarly, we have

P (Y(r) ≤ q1−ε) = P (≥ r of the data {Y1, . . . , Yn} are ≤ q1−ε)

=

n2∑
k=r

(
n2

k

)
F (q1−ε)

kF̄ (q1−ε)
n2−k

=

n2∑
k=r

(
n2

k

)
(1− ε)kεn2−k

by the definition of q1−ε. Hence any r such that
∑n2

k=r

(
n2

k

)
(1− ε)kεn2−k ≥ 1− δ will

be a 1 − δ confidence lower bound for q1−ε, and we pick the largest one. Note that

if
∑n2

k=1

(
n2

k

)
(1 − ε)kεn2−k < 1 − δ, then none of the Y(r) is a valid confidence lower

bound.

Similar results in the above simple order statistics calculation can be found in,

e.g., [155] Section 2.6.1. A key element of our procedure is that t(·) is constructed

using only Phase 1 data D1, which are independent of Phase 2. Lemma II.3 implies

that, conditional on D1, P (t(ξ) ≤ t(ξ2
(i∗))) ≥ 1 − ε with a (conditional) confidence

1−δ. From this, we can average over the realizations of D1 to obtain a valid coverage

for the resulting uncertainty set in the sense of satisfying (2.3). This is summarized

formally as:

Theorem II.4 (Basic statistical guarantee). Suppose D is an i.i.d. data set drawn

from a continuous distribution P on Rm, and we partition D into two sets D1 =

{ξ1
i }i=1,...,n1 and D2 = {ξ2

i }i=1,...,n2. Suppose n2 ≥ log δ/ log(1− ε). Consider the set

U = U(D) = {ξ : t(ξ) ≤ s}, where t : Rm → R is a map constructed from D1 such

that t(ξ), with ξ distributed according to P , is a continuous random variable, and

s = t(ξ2
(i∗)) is calibrated from D2 with i∗ defined in (2.4). Then U satisfies (2.3).

Consequently, an optimal solution obtained from (2.2) using this U is feasible for
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(2.1) with confidence 1− δ.

Proof. Proof of Theorem II.4. Since t(·) depends only on D1 but not D2, we have,

conditional on any realization of D1,

(2.5) PD2(P (ξ ∈ U(D)) ≥ 1− ε|D1) = PD2(q1−ε ≤ t(ξ2
(i∗))|D1) ≥ 1− δ

where q1−ε is the (1− ε)-quantile of t(ξ) (which depends on D1). The first equality in

(3.3) follows from the representation of U = {ξ : t(ξ) ≤ t(ξ2
(i∗))}, the second equality

uses the definition of a quantile, and the last inequality follows from Lemma II.3

using the condition 1− (1− ε)n2 ≥ 1− δ, or equivalently n2 ≥ log δ/ log(1− ε). Note

that (3.3) holds given any realization of D1. Thus, taking expectation with respect

to D1 on both sides in (3.3), we have

ED1 [PD2(P (ξ ∈ U(D)) ≥ 1− ε|D1)] ≥ 1− δ

where ED1 [·] denotes the expectation with respect to D1, which gives

PD(P (ξ ∈ U(D)) ≥ 1− ε) ≥ 1− δ

We therefore arrive at (2.3). Finally, Lemma II.2 guarantees that an optimal solution

obtained from (2.2) using the constructed U is feasible for (2.1) with confidence

1− δ.

Theorem II.4 implies the validity of the approach in giving a feasible solution for

CCP (2.1) with confidence 1−δ for any finite sample size, as long as it is large enough

such that n2 ≥ log δ/ log(1 − ε). The reasoning of the latter restriction can be seen

easily in the proof, or more apparently from the following argument: In order to get

an upper confidence bound for the quantile by choosing one of the ranked statistics,

we need the probability of at least one observation to upper bound the quantile to be
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at least 1−δ. In other words, we need P (at least one t(ξ2
i ) ≥ (1− ε)-quantile) ≥ 1−δ

or equivalently 1− (1− ε)n2 ≥ 1− δ.

We also mention the convenient fact that, conditional on D1,

(2.6) P (ξ ∈ U) = P (t(ξ) ≤ t(ξ2
(i∗))) = F (t(ξ2

(i∗)))
d
= U(i∗)

where F (·) is the distribution function of t(ξ) and U(i∗) is the i∗-th ranked variable

among n2 uniform variables on [0, 1], and “
d
=” denotes equality in distribution. In

other words, the theoretical tolerance level induced by our constructed uncertainty

set, P (ξ ∈ U), is distributed as the i∗-th order statistic of uniform random variables,

or equivalently Beta(i∗, n2−i∗+1), a Beta variable with parameters i∗ and n2−i∗+1.

Note that P (Beta(i∗, n2 − i∗ + 1) ≥ 1 − ε) = P (Bin(n2, 1 − ε) ≤ i∗ − 1) where

Bin(n2, 1 − ε) denotes a binomial variable with number of trials n2 and success

probability 1− ε. This informs an equivalent expression of (2.4) as

min {r : P (Beta(r, n2 − r + 1) ≥ 1− ε) ≥ 1− δ, 1 ≤ r ≤ n2}

= min {r : P (Bin(n2, 1− ε) ≤ r − 1) ≥ 1− δ, 1 ≤ r ≤ n2}

To address Criterion 2 in Section 2.2.1, we use the following asymptotic behavior

as n2 →∞:

Theorem II.5 (Asymptotic tightness of tolerance and confidence levels). Under the

same assumptions as in Theorem II.4, we have, conditional on D1:

1. P (ξ ∈ U)→ 1− ε in probability (with respect to D2) as n2 →∞.

2. PD2(P (ξ ∈ U) ≥ 1− ε|D1)→ 1− δ as n2 →∞.

Theorem II.5 confirms that U is tightly chosen in the sense that the tolerance

level and the confidence level are held asymptotically exact. This can be shown
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by using (2.6) together with an invocation of the Berry-Essen Theorem ([61]) ap-

plied on the normal approximation to binomial distribution. Section 2.5 shows

the proof details, which use techniques similar to [110] and [155] Section 2.6. In

fact, one could further obtain that our choice of i∗ satisfies
√
n2 (i∗/n2 − (1− ε))→√

(1− ε)εΦ−1(1−δ) as n2 →∞. As a result, the theoretical tolerance level P (ξ ∈ U)

given D1 concentrates at 1 − ε by being approximately (1 − ε) + Z/
√
n2 where

Z ∼ N
(√

ε(1− ε)Φ−1(1− δ), ε(1− ε)
)

. For further details, see Section 2.5.

Note that, because of the discrete nature of our quantile estimate, the theoretical

confidence level is not a monotone function of the sample size, and neither is there

a guarantee on an exact confidence level at 1 − δ using a finite sample (see Section

2.6). On the other hand, Theorem II.5 Part 2 guarantees that asymptotically our

construction can achieve an exact confidence level.

The idea of using a dimension-collapsing transformation map t(·) resembles the

notion of data depth in the literature of generalized quantile ([110, 154]). In particu-

lar, the data depth of an observation is a positive number that measures the position

of the observation from the “center” of the data set. The larger the data depth,

the closer the observation is to the center. For example, the half-space depth is the

minimum number of observations on one side of any line passing through the chosen

observation ([85, 159]), and the simplicial depth is the number of simplices formed

by different combinations of observations surrounding an observation ([114]). Other

common data depths include the ellipsoidally defined Mahalanobis depth ([119]) and

projection-based depths ([58, 175]). Instead of measuring the position of the data

relative to the center as in the data depth literature, our transformation map is con-

structed to create uncertainty sets with good geometric and tractability properties.
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2.2.3 Dimension-free Sample Size Requirement

Theorem II.4 and the associated discussion above states that we need at least

n2 ≥ log δ/ log(1 − ε) observations in Phase 2 to construct an uncertainty set that

guarantees a feasible solution for (2.1) with confidence 1 − δ. From a purely feasi-

bility viewpoint, this lower bound on n2 is the minimum total sample size we need:

Regardless of what shape we generate in Phase 1, as long as we can express it in

terms of the t(·) and have log δ/ log(1− ε) Phase 2 observations, the basic feasibility

guarantee (2.3) is attained. This number does not depend on the dimension of the

decision space or the probability space. It does, however, depend roughly linearly on

1/ε for small ε, a drawback that is also common among sampling-based approaches

including both SG and SAA and gives more edge to using safe convex approximation

when applicable.

We should caution, however, that if we take n1 = 0 or choose an arbitrary shape in

Phase 1, the resulting solution is likely extremely conservative in terms of objective

performance. To combat this issue, it is thus recommended to set aside some data

for Phase 1 with the help of established methods borrowed from statistical learning

(Section 2.3 and Appendices 2.8 and 2.9 discuss these).

2.2.4 Enhancing Optimality Performance via Self-improving Reconstruction

We propose a mechanism, under the framework in Section 2.2.2, to improve the

performance of an uncertainty set by incorporating updated optimality belief.

An Elementary Explanation

As indicated at the beginning of this section, the RO we construct is a conservative

approximation to the CCP. A question is whether there is an “optimal” uncertainty

set, in the sense that it is a (1 − ε)-level prediction set, and at the same time gives
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rise to the same solution between the RO and the CCP. As a first observation, the

uncertainty set U = {ξ : g(x∗; ξ) ∈ A}, where x∗ is an optimal solution to the CCP,

satisfies both properties: By the definition of x∗, this set contains (1− ε)-content of

P . Moreover, when we use this U in (2.2), x∗ is trivially a feasible solution. Since this

RO is an inner approximation to CCP, x∗ is optimal for both the RO and the CCP.

The catch, of course, is that in reality we do not know what is x∗. Our suggestion is

to replace x∗ with some approximate solution x̂, leading to a set {ξ : g(x̂, ξ) ∈ A}.

Alternately, the conservativeness of the RO can be reasoned from the fact that

ξ ∈ U , independent of what the obtained solution x̂ is in (2.2), implies that g(x̂; ξ) ∈

A. Thus our target tolerance probability P (g(x̂; ξ) ∈ A) satisfies P (g(x̂; ξ) ∈ A) ≥

P (ξ ∈ U), and, in the presence of data, makes the actual confidence level (namely

PD(P (g(x̂; ξ) ∈ A) ≥ 1− ε)) potentially over-conservative. However, this inequality

becomes an equality if U is exactly {ξ : g(x̂; ξ) ∈ A}. This suggests again that, on a

high level, an uncertainty set that resembles the form g(x̂; ξ) ∈ A is less conservative

and preferable.

Using the above intuition, a proposed strategy is as follows. Consider finding a

solution for (2.1). In Phase 1, find an approximate HPR of the data (using some

suggestions in Section 2.3) with a reasonably chosen size (e.g., just enough to cover

(1−ε) of the data points). Solve the RO problem using this HPR to obtain an initial

solution x̂0. Then reshape the uncertainty set as {ξ : g(x̂0; ξ) ∈ A}. Finally, conduct

Phase 2 by tuning the size of this reshaped set, say we get {ξ : g(x̂0; ξ) ∈ Ã} where

Ã is size-tuned. The final RO is:

(2.7) minimize f(x) subject to g(x, ξ) ∈ A ∀ ξ : g(x̂0; ξ) ∈ Ã

Evidently, if the tuning step can be done properly, i.e., the set {ξ : g(x̂0; ξ) ∈ A}

can be expressed in the form {ξ : t(ξ) ≤ s} and s is calibrated using the method in
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Section 2.2.1, then the procedure retains the overall statistical confidence guarantees

presented in Theorems II.4 and II.5. For convenience, we call the RO (2.7) created

from x̂0 and the discussed procedure a “reconstructed” RO.

More explicitly, consider the safety condition g(x; ξ) ∈ A in the form of linear

inequalities Ax ≤ b where A ∈ Rl×d is stochastic and b ∈ Rl is constant. After we

obtain an initial solution x̂0, we set the uncertainty set as U = {A : Ax̂0 ≤ b + sk}

where k = (ki)i=1,...,l ∈ Rl is some positive vector and s ∈ R. The value of s is

calibrated by letting t(A) = maxi=1,...,l{(a′ix̂0 − bi)/ki} where a′i is the i-th row of

A and bi is the i-th entry of b, and s is chosen as t(A2
(i∗)), the order statistic of

Phase 2 data as defined in Section 2.2.1. Using the uncertainty set U , the constraint

Ax ≤ b ∀ A ∈ U becomes maxa′ix̂0≤bi+ski a
′
ix ≤ bi, i = 1, . . . , l via constraint-wise

projection of the uncertainty set, which can be reformulated into linear constraints

by using standard RO machinery (see, e.g., Theorem II.13).

Properties of Self-improving Reconstruction

We formalize the discussion in Section 2.2.4 by showing some properties of the

optimization problem (2.7). We focus on the setting of inequalities-based safety

conditions

(2.8) minimize f(x) subject to P (g(x; ξ) ≤ b) ≥ 1− ε

where g(x; ξ) = (gj(x; ξ))j=1,...,l ∈ Rl and b = (bj)j=1,...,l ∈ Rl. Suppose x̂0 is a given

solution (not necessarily feasible). Suppose for now that there is a way to compute

quantiles exactly for functions of ξ, and consider the reconstructed RO

(2.9) minimize f(x) subject to g(x, ξ) ≤ b ∀ ξ : g(x̂0; ξ) ≤ b+ ρk

where k = (kj)j=1,...,l ∈ Rl is a positive vector, and ρ = ρ(x̂0) is the (1− ε)-quantile

of maxj=1,...,l{(gj(x̂0; ξ)− bj)/kj}. A useful observation is:
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Theorem II.6 (Feasibility guarantee for reconstruction). Given any solution x̂0, if

ρ is the (1− ε)-quantile of maxj=1,...,l{(gj(x̂0; ξ)− bj)/kj}, then any feasible solution

of (2.9) is also feasible for (2.8).

Proof. Proof of Theorem II.6. Since {ξ : g(x̂0; ξ) ≤ b+ρk} is by construction a (1−ε)-

content set for ξ under P , Lemma II.1 concludes the theorem immediately.

Note that Theorem II.6 holds regardless of whether x̂0 is feasible for (2.8). That

is, (2.9) is a way to output a feasible solution from the input of a possibly infeasible

x̂0. What is more, in the case that x̂0 is feasible, (2.9) is guaranteed to give a solution

at least as good:

Theorem II.7 (Monotonic objective improvement). Under the same assumption as

Theorem II.6, an optimal solution x̂ of (2.9) is feasible for (2.8). Moreover, if x̂0 is

feasible for (2.8), then x̂ satisfies f(x̂) ≤ f(x̂0).

Proof. Proof of Theorem II.7. Note that if x̂0 is feasible for (2.8), we must have ρ ≤ 0

(or else the chance constraint does not hold) and hence x̂0 must be feasible for (2.9).

By the optimality of x̂ for (2.9) we must have f(x̂) ≤ f(x̂0). The theorem concludes

by invoking Theorem II.6 that implies x̂ is feasible for (2.8).

Together, Theorems II.6 and II.7 give a mechanism to improve any input solution

in terms of either feasibility or optimality for (2.8): If x̂0 is infeasible, then (2.9)

corrects the infeasibility and gives a feasible solution; if x̂0 is feasible, then (2.9)

gives a feasible solution that has an objective value at least as good.

Similar statements hold if the quantile ρ is only calibrated under a given statistical

confidence. To link our discussion to the procedure in Section 2.2.1, suppose that a

solution x̂0 is obtained from an RO formulation (or in fact, any other procedures)

using only Phase 1 data. We have:
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Corollary II.8 (Feasibility guarantee for reconstruction under statistical confi-

dence). Given any solution x̂0 obtained using Phase 1 data, suppose ρ is the upper

bound of the (1 − ε)-quantile of maxj=1,...,l{(gj(x̂0; ξ) − bj)/kj} with confidence level

1 − δ generated under Phase 2 data. Any feasible solution of (2.9) is also feasible

for (2.8) with the same confidence.

Corollary II.9 (Improvement from reconstruction under statistical confidence). Un-

der the same assumptions as Corollary II.8, an optimal solution x̂ of (2.9) is feasible

for (2.8) with confidence 1− δ. Moreover, if ρ ≤ 0, then x̂ satisfies f(x̂) ≤ f(x̂0).

The proofs of Corollaries II.8 and II.9 are the same as those of Theorems II.6 and

II.7, except that Lemma II.2 is invoked instead of Lemma II.1. Note that ρ ≤ 0 in

Corollary II.9 implies that x̂0 is feasible for (2.8) with confidence 1 − δ. However,

the case ρ > 0 in Corollary II.9 does not directly translate to a conclusion that x̂0 is

infeasible under confidence 1−δ, since ρ is a confidence upper bound, instead of lower

bound, for the quantile. This implies a possibility that x̂0 is feasible and close to

the boundary of the feasible region. There is no guarantee of objective improvement

under the reconstructed RO in this case, but there is still guarantee that the output

x̂ is feasible with confidence 1− δ.

Our numerical experiments in Section 2.4 show that, when applicable, such recon-

structions frequently lead to notable improvements. Nonetheless, we caution that,

depending on the constraint structure, the reconstruction step does not always lead

to a significant or a strict improvement even if ρ ≤ 0, and in these cases some trans-

formation of the constraint is needed. For example, in the case of single linear chance

constraint in the form (2.8) with l = 1 and a bilinear g(x; ξ), the reconstructed un-

certainty set consists of one linear constraint. Consequently, the dualization of the
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RO (see Theorem II.13) consists of one dual variable, which optimally scales x̂0 by

a scalar factor. When b in (2.8) (with l = 1) is also a stochastic source, no scaling

adjustment is allowed because the “decision variable” associated with b (viewing b

as a random coefficient in the linear constraint) is constrained to be 1. Thus, the

proposed reconstruction will show no strict improvement. However, this behavior

could be avoided by suitably re-expressing the constraint. When b is say positively

distributed (or very likely so), one can divide both sides of the inequality by b to

obtain an equivalent inequality with right hand side fixed to be 1. This equivalent

constraint is now improvable by our reconstruction (and the new stochasticity now

comprises the ratios of the original variables, which can still be observed from the

data).

2.3 Constructing Uncertainty Sets

Our proposed strategy in Section 2.2 requires constructing an uncertainty set

that is tractable for RO, and recommends to trace the shape of an HPR as much as

possible. Regarding tractability, linear RO with the uncertainty set shapes mentioned

in Section 2.2.1 can be reformulated into standard optimization formulations. For

convenience we document some of these results in Section 2.7, along with some

explanation on how to identify t(·) for the size calibration in our procedure.

Since taking unions or intersections of basic sets gives more capability to trace

HPR, we highlight the following two immediate observations. First is that unions

of basic sets preserve the tractability of the robust counterpart associated with each

union component, with a linear growth of the number of constraints against the

number of components.
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Lemma II.10 (Reformulating unions of sets). The constraint

g(x; ξ) ∈ A ∀ ξ ∈ U

where U =
⋃k
i=1 U i is equivalent to the joint constraints

g(x; ξ) ∈ A ∀ ξ ∈ U i, i = 1, . . . , k

Second, in the special case of intersections of sets where each intersection compo-

nent is on the portion of the stochasticity associated with each of multiple constraints,

the projective separability property of uncertainty sets (e.g., [12]) gives the following:

Lemma II.11 (Reformulating intersections of sets). Let ξ ∈ Rm be a vector that can

be represented as ξ = (ξi)i=1,...,k, where ξi ∈ Rmi , i = 1, . . . , k are vectors such that∑k
i=1m

i = m. Suppose that U =
∏k

i=1 U i where each U i is a set on the domain of

ξi. The set of constraints

g(x; ξi) ∈ Ai, i = 1, . . . , k ∀ ξ ∈ U

is equivalent to

g(x; ξi) ∈ Ai ∀ ξi ∈ U i, i = 1, . . . , k

Note that in approximating a joint CCP, all the U i in Lemma II.11 need to

be jointly calibrated statistically to account for the simultaneous estimation error

(which can be conducted by introducing a max operation for the intersection of

sets). Intuitively, with weakly correlated data across the constraints, it fares better

to use a separate U i to represent the uncertainty of each constraint rather than using

a single U and projecting it. Section 2.8 provides a formal statement to support this
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intuition, by arguing a lower level of conservativeness in using individual ellipsoids

rather than a single aggregated block-diagonal ellipsoid.

In addition, we can borrow the following statistical tools to more tightly trace an

HPR, i.e., a smaller-volume prediction set:

1. When data appears in multi-modal form, we can use clustering. Label the data

into different clusters (using k-means, Gaussian mixture models, or any other

techniques), form a simple set Ui like a ball or an ellipsoid for each cluster, and

use the union
⋃
i Ui as the final shape.

2. If the high-dimensional data set has an intrinsic low-dimensional representation,

we can use dimension reduction tools like principal component analysis. Suppose

ξ̃ = Mξ+N , where M ∈ Rr×m and N ∈ Rr, is a low-dimensional representation

of a raw random vector ξ ∈ Rm. Then we can use uncertainty set in the form

(2.10) U = {(Mξ − µ)′Σ−1(Mξ − µ) ≤ s},

where µ is the sample mean of ξ̃ and Σ is a covariance estimate of ξ̃. Tractability

is preserved by a straightforward use of existing RO results (see Theorem II.15

in Section 2.7).

3. In situations of unstructured data where clustering or dimension reduction tech-

niques do not apply, one approach is to view each data point as a “cluster” by

taking the union of balls each surrounding one data point. Intriguingly, this

scheme coincides with the one studied in [68] to approximate ambiguous CCP

where the underlying distribution is within a neighborhood of some baseline

measure.

We provide further illustrations of these tools in Section 2.9.
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2.4 Numerical Examples

We present numerical examples to illustrate the performances of our RO approach.

In all our examples,

1. We set ε = 0.05 and δ = 0.05.

2. For each setting, we repeat the experimental run 1, 000 times, each time gener-

ating a new independent data set.

3. We define ε̂ to be the estimated expected violation probability of the obtained

solution. In other words, ε̂ = ÊD [Pviolation], where ÊD[·] refers to the empirical

expectation taken among the 1, 000 data sets, and Pviolation denotes the prob-

ability P (g(x̂(D); ξ) /∈ A). For single linear CCPs with Gaussian distributed

ξ, Pviolation can be computed analytically. In other cases, Pviolation is estimated

using 10, 000 new independent realizations of ξ. For approaches that do not

depend on data, e.g., SCA, we set ε̂ = Pviolation directly.

4. We define δ̂ = P̂D(Pviolation > ε), where P̂D(·) refers to the empirical probability

with respect to the 1, 000 data sets and Pviolation is similarly defined as for ε̂.

For approaches that do not depend on data, the chance constraint is always

satisfied and therefore we have δ̂ = 0.

5. We denote “Obj. Val.” as the average optimal objective value of the 1,000

solutions generated from the independent data sets.

6. When the reconstruction technique described in Section 2.2.4 is applied, the

initial guessed solution is obtained from an uncertainty set with size calibrated

to be just enough to cover (1− ε) of the Phase 1 data.

Recall that d is the decision space dimension, n is the total sample size, and n1

and n2 are the sample sizes for Phases 1 and 2. These numbers differ across the
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examples for illustration purpose.

Moreover, we compare our RO approaches with several methods:

1. Scenario approaches, including the classical SG ([37]) described in the introduc-

tion and its variant FAST ([40]). FAST was introduced to reduce the sample

size requirement of the classical SG. It consists of two steps, each step using n1

and n2 samples respectively (the notations are unified with our method for easy

comparisons). The first step of FAST is similar to SG, which solves a sampled

program with n1 constraints and obtains a tentative solution. The second step

is a detuning step to adjust the tentative solution with the help of a “robust

feasible solution”, i.e., a solution feasible for any possible ξ. The adjusted so-

lution is a convex combination of the tentative solution and the robust feasible

solution so that the final solution satisfies the other n2 sampled constraints. In

our comparison, we use the minimum required sample sizes in the detuning step

suggested in [40] so that the total required sample size is precisely the given

overall size. We compare with FAST here since the latter elicits a small sample

size requirement with the help of a validation-type scheme that is similar to our

approaches applied to the RO setting.

2. DRO with first and second moment information, where the moments lie in an

ellipsoidal joint confidence region. First, supposing we are given exact first and

second moments, we can reformulate a distributionally robust linear chance con-

straint into a quadratic constraint suggested in [62]. On the other hand, using

the delta method suggested in [120], we can construct ellipsoidal confidence re-

gions for the vectorized mean and covariance matrix. Combining the quadratic

constraint in [62] and the ellipsoidal set in [120], we can use Theorem 1 (II)

and Example 4 in [120] to reformulate the DRO with ellipsoidal moment set
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into a semidefinite program. We provide further details of this reformulation in

Section 2.10.

3. DRO with uncertainty set defined by a neighborhood surrounding a reference

distribution measured by a φ-divergence. We use the reformulation in [96] that

transforms such a distributionally robust chance constraint into an ordinary

chance constraint, under the reference distribution, with an adjusted tolerance

level ε∗, which then allows us to resort to SG or SAA using Monte Carlo samples

(as we will see momentarily, whichever method to resort to does not quite matter

in our experiments). We use the Kullback-Leibler (KL) divergence, and con-

struct the reference distribution using kernel density estimation (with Gaussian

kernel). We set the size of the KL-divergence ball by estimating the divergence

using the k-NN estimator, a provably consistent estimator proposed in [167, 139]

(other related estimators and theoretical results are in [125, 113, 135, 138]). We

use k = 1 in our experiments, as the experimental results indicate that the

bias increases significantly as k increases. Moreover, to estimate the divergence

properly, we split the data into two portions n1 and n2, first portion used to con-

struct the reference kernel density, second portion used for the k-NN divergence

estimation. The reason of this split is that, otherwise, the estimation of the

reference distribution and the divergence would depend on and interfere with

each others, leading to estimation accuracy so poor that the divergence estimate

becomes negative all the time. We provide further implementation details in

Section 2.11.3.

4. SCA. We will state the underlying a priori distributional assumptions in using

the considered SCA, which differ case-by-case.

When applying moment-based DRO and SCA to joint CCPs, we use the Bonfer-
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roni correction (more details in the relevant examples). We also make two additional

remarks. First, when comparing the objective values from different methods, since

one can always translate or scale the problem by adding/multiplying constants to

distort the apparent magnitudes, we mostly focus our comparisons on the direction

(bigger or smaller), which is invariant under the above distortions. Second, even

though we only report the point estimates of the mean objective values and ε, δ,

our conclusions in comparing the objective values and constraint violation proba-

bilities remain unchanged even if we consider the 95% confidence intervals of these

estimates (from the 1, 000 experimental repetitions), and we do not report the con-

fidence intervals for the sake of succinctness. Finally, our codes are available at

https://github.com/zhyhuang/Learningbased-RO.

2.4.1 Test Case 1: Multivariate Gaussian on a Single Chance Constraint

We consider a single linear CCP

(2.11) minimize c′x subject to P (ξ′x ≤ b) ≥ 1− ε

where x ∈ Rd is the decision vector, and c ∈ Rd, b ∈ R are arbitrarily chosen

constants. The random vector ξ ∈ Rd is drawn from a multivariate Gaussian dis-

tribution with an arbitrary mean (here we set it to −c) and an arbitrarily chosen

positive definite covariance matrix. Since (2.11) is exactly solvable when the Gaus-

sian distribution is known, we can verify that it has a bounded optimal solution.

We consider d = 11 and 100 as the dimension of the decision vector. Tables 2.1

and 2.2 show these two cases with a small sample size n = 120, whereas Tables 2.3

and 2.4 show these cases with a bigger sample size (336 and 2331 respectively) so

that the classical SG provides provable feasibility guarantees. In each table, we show

the results for our RO using ellipsoidal uncertainty set (“RO”), our reconstructed RO
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Table 2.1: Optimality and feasibility performances on a single d = 11 dimensional linear CCP with
Gaussian distribution for several methods, using sample size n = 120. The true optimal value is
-1196.7.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -1189.31 -1194.87 -1196.60 -1193.53 -1187.35 0 -1195.07
ε̂ 1.34× 10−5 0.0164 0.090 0.0164 2.55× 10−8 0 0.0072

δ̂ 0 0.048 0.957 0.043 0 0 0

Table 2.2: Optimality and feasibility performances on a single d = 100 dimensional linear CCP
with Gaussian distribution for several methods, using sample size n = 120. The true optimal value
is -1195.3. Results on moment-based DRO are based on 30 replications due to high computational
demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -832.12 -1112.11 unbounded unbounded -1193.21 0 -1193.0
ε̂ 0 0.0158 - - 0.195 0 0.0072

δ̂ 0 0.041 - - 1 0 0

(“Recon”), SG (“SG”), FAST (“FAST”), DRO with ellipsoidal moment set (“DRO

Mo”), DRO with KL-divergence set (“DRO KL”) and SCA (“SCA”). The last

approach does not need the data and instead assumes partial a priori distributional

information.

For our RO approaches, we use ellipsoidal uncertainty sets with estimated covari-

ance matrix for the case d = 11 (Tables 2.1 and 2.3), and diagonalized ellipsoidal

sets (i.e., only using variance estimates) for d = 100 (Tables 2.2 and 2.4) to stabilize

our estimates because n1 is smaller than d in the latter case. The tables show that

the solutions from our plain RO tend to be conservative, as δ̂ = 0. Nonetheless,

the reconstructed RO is less conservative across all settings, reflected by the better

average optimal values and δ̂ close to the target confidence level 0.05. In all cases,

both the plain RO and the reconstructed RO give valid (i.e., confidently feasible)

solutions.
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Table 2.3: Optimality and feasibility performances on a single d = 11 dimensional linear CCP with
Gaussian distribution for several methods, using sample size n = 336. The true optimal value is
-1196.7.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -1190.33 -1195.82 -1195.67 -1195.14 -1188.48 0 -1195.07
ε̂ 3.47× 10−6 0.0247 0.0331 0.0259 2.19× 10−8 0 0.0072

δ̂ 0 0.04 0.056 0.043 0 0 0

Table 2.4: Optimality and feasibility performances on a single d = 100 dimensional linear CCP with
Gaussian distribution for several methods, using sample size n = 2331. The true optimal value is
-1195.3. Results on moment-based DRO are based on 30 replications due to high computational
demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 2331 2331 2331 2331 2331 2331 -
n1 1318 1318 - 2326 - 1166 -
n2 1013 1013 - 5 - 1165 -
Obj. Val. -1168.35 -1194.76 -1194.13 -1193.85 -1175.48 0 -1193.0
ε̂ 0 0.0395 0.0428 0.0386 8.76× 10−14 0 0.0072

δ̂ 0 0.051 0.039 0.052 0 0 0

We compare our ROs with scenario approaches. When the sample size is small

(Tables 2.1 and 2.2), SG cannot obtain a valid solution. In the case d = 11, it gives

δ̂ much greater than 0.05. Furthermore, in the case d = 100, SG gives unbounded

solutions in all 1, 000 replications, as the number of sampled constraints is very close

to the decision dimension. For FAST, since b is chosen to be positive, we can use the

origin to be the robust feasible solution. Table 2.1 shows that, when d = 11, FAST

gives confidently feasible solutions. The average optimal value from reconstructed

RO (-1194.87) is (slightly) better than the value from FAST (-1193.53), while RO

using ellipsoidal sets is more conservative (-1189.31). However, when d = 100 (Table

2.2), the first-step problem of FAST is unbounded in all 1, 000 replications.

When the sample size is adequate (Tables 2.3 and 2.4), the values of δ̂ from SG

being less than or close to 0.05 confirms the validity of the solutions. Note that

in these cases FAST gives more conservative solutions than SG (This is a general
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consequence from the construction of FAST that is designed to have a smaller feasible

region than SG under the same dataset). RO with ellipsoidal sets obtains more

conservative solutions than SG, as shown by the zero δ̂’s and worse average objective

values. By using reconstruction, however, the δ̂’s become very close to the desired

confidence level δ = 0.05, and the average objective values are almost identical to

(and slightly better than) those obtained from SG.

The above reveal that, when the sample size is large enough, SG can perform

better than our RO using basic uncertainty sets. On the other hand, our RO can

provide feasibility guarantees in small-sample situations where SG may fail. FAST

is valid in small-sample situations, but is more likely to have unbounded solutions in

high-dimensional problems than our RO. Thus, generally, our RO appears most useful

for small sample sizes when compared with scenario approaches, a benefit postulated

in the previous sections. It also appears that using reconstruction can boost our

performance to a comparable level as SG (and hence also FAST) in situations where

the latter is applicable in the shown examples. Note that our reconstruction by

design can improve the objective performance compared to plain RO, whereas FAST

is primarily used to reduce the sample size requirement and is necessarily more

conservative than SG in terms of achieved objective value. Finally, we note that

unbounded solutions in SG can potentially be avoided by adding artificial constraints.

In this regard, we show in Section 2.11.1 the same example but with additional non-

negativity constraints to illustrate the comparisons further.

Next, we compare with moment-based DRO. In low-dimensional cases with d =

11, moment-based DRO gives solutions more conservative than RO using ellipsoidal

sets, as shown by the larger objective values, i.e. -1187.35 (DRO) versus -1189.31

(RO) in the small-sample case (Table 2.1) and -1184.48 (DRO) versus -1190.33 (RO)



35

in the large-sample case (Table 2.3). The conservativeness of moment-based DRO

is also revealed in the small ε̂ and δ̂ = 0 in both cases. For high-dimensional prob-

lems with d = 100, we present the performance of moment-based DRO with only 30

replications (instead of 1000) due to the large program size and consequently the de-

manding computational effort when solving the reformulated semidefinite programs

(although the replication size is smaller, conclusions can still be drawn rigorously,

i.e., the confidence intervals of the estimated ε̂ and δ̂ turn out to either lie completely

under or above 0.05). In the small-sample size case (Table 2.2), moment-based DRO

fails to provide feasible solutions (δ̂ = 1, i.e., obtained solutions violate the chance

constraint in all 30 replications). This can be attributed to a poor estimation of the

moment confidence region with small data and high dimension (Note that forming an

ellipsoidal first-and-second-moment set for moment-based DRO requires estimating a

covariance matrix of size (3d+d2)/2×(3d+d2)/2, as it uses the estimation variances

of the first and second moments that involve even higher-order moments, in contrast

to a size of d× d in our ellipsoidal RO). When the sample size is larger (Table 2.3),

moment-based DRO provides valid feasible solutions (δ̂ = 0). The average objective

(-1175.48) is less conservative than our plain RO (-1168.35), but is more conservative

than our reconstructed RO (-1194.76).

The above observations show that, when the moment information is well esti-

mated (i.e., the sample size is sufficient relative to the dimension), moment-based

DRO provides solutions with similar conservative level as our RO using ellipsoidal

sets. However, when the sample size is too small to get reasonable estimates for the

moments, moment-based DRO can fail to obtain feasible solutions. Reconstructed

RO appears to outperform moment-based DRO generally. The benefits of our RO ap-

proaches in small sample and the boosted performance of reconstructed RO compared
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to moment-based DRO are in line with our comparisons with scenario approaches.

DRO with estimated KL-divergence set suffers from general setbacks in the ex-

periments. In all cases we considered, the kernel density estimator cannot provide

a good enough reference distribution f0, so that the size of the divergence ball is

too big and subsequently results in conservative solutions. The construction of f0 is

poor due to the curse of dimensionality in kernel density estimation whose accuracy

deteriorates exponentially with the dimension, as we have a relatively high dimension

compared with the data size. On the other hand, the performance of DRO, which

relies on using the adjusted tolerance level ε∗, appears sensitive to the divergence ball

size and demands a high accuracy in estimating f0. Subsequently, the big divergence

ball size leads to a zero ε∗ in all replications, which in turn forces us to choose a

solution x that satisfies the safety condition ξ′x ≤ b for all ξ ∈ Rd. The origin is then

output as the only such feasible solution, and the objective is 0, which are shown

in Tables 2.1, 2.2, 2.3, and 2.4. This indicates that DRO with KL divergence, cali-

brated using density estimator and the divergence estimation technique suggested in

the literature, gives overly conservative solutions for our considered problems.

Lastly, we compare with SCA. Consider a perturbation model for ξ given by

ξ = a0 +
∑L

i=1 ζiai where ai ∈ Rd for all i = 0, 1, . . . , L and ζi ∈ R are independent

Gaussian variable with mean µi and variance s2
i , such that µi ∈ [µ−i , µ

+
i ] and s2

i ≤ σ2
i .

A safe approximation of (2.11) is in [12]:

min c′x s.t. (a′0x− b) +
L∑
i=1

max[a′ixµ
−
i , a

′
ixµ

+
i ] +

√
2 log(1/ε)

√√√√ L∑
i=1

σ2
i (a
′
ix)2 ≤ 0.

To apply this SCA to (2.11), we set ζi to be independent N(0, 1) variables, a0 = µ

and ai to be the i-th column of Σ1/2, and µ−i = µ+
i = 0 and σ2

i = 1 for i = 1, ..., d.

This in fact assumes knowledge on the mean and covariance of the Gaussian vector
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ξ, thus giving an upper hand to SCA.

Tables 2.1, 2.3, 2.2 and 2.4 all show that the optimal objective values obtained

from SCA (-1195.07 and -1193.0 respectively for d = 11, 100) are close to the true

optimal values (-1196.7 and -1195.3) compared to other methods. Our ROs using

ellipsoidal sets obtain more conservative solutions generally. The relative conserva-

tiveness also shows up in reconstructed RO with small sample sizes (Tables 2.1 and

2.2), but with more samples (Tables 2.3 and 2.4) our reconstructed RO outperforms

the considered SCA.

Note that in this example the normality, and the mean and covariance information

used in the SCA, makes the latter perform very well. Our RO using estimated

ellipsoidal sets does not achieve this level of preciseness. However, the reconstructed

RO can still outperform this SCA when the sample size is large enough. Note that

the performance of SCA depends on the true distribution (as it is related to the

tightness of the SCA constraint in approximating the chance constraint). In the

next example, we consider an alternate underlying distribution where SCA does not

perform as well.

2.4.2 Test Case 2: Beta Models on a Single Chance Constraint

We consider the single linear CCP in (2.11), where each component of ξ is now

bounded. We use a perturbation model for ξ given by ξ = a0 +
∑L

i=1 ζiai where

ai ∈ Rd for all i = 0, 1, . . . , L and ζi ∈ R are independent random variables each with

mean zero and bounded in [−1, 1], where d = 10, L = 10 and ai ∈ R10 being known

arbitrarily chosen vectors. This allows the use of an SCA stated below. In particular,

we set each ζi to be a Beta distribution with parameters α = 10 and β = 10 that is

multiplied by 2 and shifted by 1. Similar to Section 2.4.1, we set c to be the negative

of the mean of ξ and b ∈ R is an arbitrarily chosen positive constant.
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Regarding the comparison with SCA, this problem is supplementary to the Gaus-

sian cases in Section 2.4.1 in that it presents performances of SCA when we use less

information about ξ. Suppose that we have chosen a correct perturbation model in

the SCA (i.e., knowledge of d, L, ai and the boundedness on [−1, 1]). We use the

Hoeffding inequality to replace the chance constraint with η
√∑L

i=1(a′ix)2 ≤ b− a′0x,

where η ≥
√

2 log(1/ε). This SCA is equivalent to an RO imposing an uncertainty

set U = {ζ : ‖ζ‖2 ≤ η} where ζ = (ζi)
′
i=1,...,L is the vector of perturbation random

variables ([12] Section 2.3).

Table 2.5: Optimality and feasibility performances on a single d = 10 dimensional linear
CCP with the Beta-perturbation model for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -988.78 -1087.85 -1114.57 -1071.77 -968.30 0 -815.06
ε̂ 1.02× 10−5 0.0161 0.0643 0.0171 0 0 0

δ̂ 0 0.037 0.723 0.063 0 0 0

Table 2.5 shows the results from different approaches with sample size n = 120.

Our RO performs better than SCA in terms of achieved objective values (−988.78

against −815.06), the latter appearing more conservative than the example in Sec-

tion 2.4.1 as shown by ε̂ = 0. Also, as in the previous example, reconstruction boosts

further our RO performance (from −988.78 to −1087.85). Our RO here performs

better than SCA because the latter, derived on a worst-case basis, does not tightly

apply to the “truth” in this example, i.e., the Hoeffding bound does not lead to

tight performance guarantees on the scaled Beta distribution (putting aside the as-

sumed knowledge of d, L, ai and the boundedness on [−1, 1] when applying the SCA).

Note that, since SCA also has an RO interpretation, the above observations show

the superiority of our geometry or size selection of the uncertainty set. Our fully



39

nonparametric approach shows full-fledged advantage than SCA in this example.

We also report the outcomes of SG, which breaks down as shown by δ̂ being much

bigger than 0.05, as 120 observations is not enough to achieve the needed feasibility

confidence. FAST obtains valid solutions, and outperforms our RO with ellipsoidal

sets but underperforms our reconstructed RO in terms of achieved objective value.

Moment-based DRO also obtains valid solutions, but is conservative as shown by

δ̂ = 0 and ε̂ = 0. Its objective value underperforms our RO approaches. For

divergence-based DRO, the poor construction of a reference distribution again leads

to a large divergence ball size, which renders the adjusted tolerance level ε∗ to be 0

in all but one out of 1000 replications (for the one replication where ε∗ is non-zero,

it is ε∗ = 1.10 × 10−11) and essentially outputs the origin as the solution all the

time. In this example, our reconstructed RO performs the best among all considered

approaches.

2.4.3 Test Case 3: Multivariate Gaussian on Joint Chance Constraints

We consider a joint CCP with d = 11 variables and l = 15 constraints in the form

(2.12) minimize c′x subject to P (Ax ≤ b) ≥ 1− ε, x ≥ 0

where c ∈ R11 and b ∈ R15 are arbitrary constants, and b is positive in each element.

The random vector ξ = vec(A) is generated from a multivariate Gaussian distribution

with mean vec(Ā) and covariance matrix Σ, where Ā ∈ R15×11 is arbitrary and

Σ ∈ R165×165 is also an arbitrary positive definite matrix.

Tables 2.6 and 2.7 present the experimental results using two different sample

sizes on the same problem. We use diagonalized ellipsoids in our RO, and conduct

reconstruction with scaling parameters ki described in Section 2.8.3. To use DRO

and SCA, we apply the Bonferroni correction to decompose the joint CCP, by evenly
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Table 2.6: Optimality and feasibility performances on a joint linear CCP with Gaussian distribution
for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -6956.49 -7920.12 -9283.35 -8925.74 -3996.87 0 -8927.71
ε̂ 3.46× 10−5 0.0161 0.0581 0.0169 0 0 0.026

δ̂ 0 0.044 0.607 0.045 0 0 0

Table 2.7: Optimality and feasibility performances on a joint linear CCP with Gaussian distribution
for several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -7146.54 -8029.83 -9130.95 -9081.81 -4209.86 0 -8927.71
ε̂ 7.32× 10−5 0.0235 0.0223 0.0185 0 0 0.026

δ̂ 0 0.038 0.005 0.002 0 0 0

dividing the tolerance level into ε/m to create individual chance constraints. For

each individual chance constraint, we construct DRO and SCA constraint following

the scheme in Section 2.4.1.

Comparing with scenario approaches, we see that, much like the examples in

Sections 2.4.1 and 2.4.2, SG fails with small sample size (confirmed by δ̂ much larger

than 0.05 in Table 2.6), but obtains valid solutions as sample size grows (confirmed

by δ̂ < 0.05 in Table 2.7). While reconstruction improves the optimal values for

RO in both cases, SG (and so is FAST) gives better optimal value (−9130.95) than

reconstructed RO (−8029.83) under a big sample size. Moment-based DRO appears

very conservative for both small and large sample cases, as the obtained average

objective values (-3996.87 and -4209.86) are much greater than other approaches,

including our ROs, and the associated ε̂ and δ̂ are 0. Like the previous experiments,

divergence-based DRO outputs the origin as the solution and gives objective value

0 due to over-sized uncertainty sets. On the other hand, SCA obtains a better
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Table 2.8: Optimality and feasibility performances on a joint linear CCP with beta distribution for
several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -1241.05 -1796.74 -2105.77 -1732.73 -230.74 0 -361.079
ε̂ 6.96× 10−5 0.0138 0.0577 0.0170 0 0 0

δ̂ 0 0.022 0.576 0.045 0 0 0

Table 2.9: Optimality and feasibility performances on a joint linear CCP with beta distribution for
several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -1304.89 -1911.36 -1881.69 -1828.98 -251.69 0 -361.079
ε̂ 1.20× 10−4 0.0199 0.0229 0.0192 0 0 0

δ̂ 0 0.023 0.004 0.003 0 0 0

solution than our ROs, thanks to the tightness of the approximation for Gaussian

distributions.

2.4.4 Test Case 4: Beta Models on Joint Chance Constraints

We consider the joint CCP in (2.12) with a bounded random vector ξ. We use

the perturbation model described in Section 2.4.2, where d = 165, L = 165 and

ai ∈ R165, i = 1, ..., L are arbitrarily chosen vectors, and the same random variables

for ζi’s as in Section 2.4.2. Again, we apply the Bonferroni correction to invoke DRO

and SCA as in Section 2.4.3, and the corresponding schemes for each individualized

chance constraint as in Section 2.4.2.

Tables 2.8 and 2.9 show our experimental results. The major difference with Sec-

tion 2.4.3 is that now our reconstructed RO outperforms all other methods including

SG and SCA: It gives smaller objective values than FAST under both small and

big sample sizes. It also gives smaller objective values than SG under big sample

size, while SG does not give valid solutions under small sample size. SCA is very
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conservative in this case, and DROs (both moment- and divergence-based) continue

to be very conservative, all of whom our RO significantly outperforms.

2.4.5 Test Case 5: t- and Log-Normal Distributions

We consider problems with two heavier-tailed distributions, namely t- and log-

normal. We test both the single CCP (2.11) and the joint CCP (2.12) with different

dimensions and sample sizes. Since the considered SCA does not apply to these

distributions, we do not include it in our comparisons here.

Tables 2.10, 2.11 and 2.12 show the comparisons among different approaches for

the single CCP, and Tables 2.13 and 2.14 show the counterparts for joint CCP, when

ξ is generated from a multivariate t-distribution with degree of freedom 5 and an

arbitrary positive definite dispersion matrix. The comparisons are largely consistent

with the Gaussian and beta cases shown in the previous subsections. Compared with

SG, our ROs output feasible solutions in the small-sample case (n = 120), whereas

SG struggles to obtain feasible solutions (δ̂ much greater than 0.05 in Tables 2.10

and 2.13). In the large-sample case (n = 336), SG gains enough feasibility and out-

performs our plain RO in average objective value (-1175.04 versus -1126.66 in the

single CCP case in Table 2.11, and -7387.98 versus -5778.44 in the joint CCP case

in Table 2.14), but underperforms our reconstructed RO (-1175.64 and -7562.60 for

single and joint CCPs respectively). FAST remedies the infeasibility issue of SG

in the small-sample cases and outperforms our plain RO. On the other hand, our

reconstructed RO performs competitively against FAST. Among all four cases where

d = 11, reconstructed RO outperforms FAST in three cases but underperforms in

the case of small-sample joint CCP (average objective values -1166.52, -1175.64 and

-7562.60 versus -1158.27, -1170.35 and -7173.97 in Tables 2.10, 2.11 and 2.14 respec-

tively, and -6499.93 versus -7220.37 in Table 2.13). Note that, when the dimension
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Table 2.10: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with t-distribution for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -1112.75 -1166.52 -1182.20 -1158.27 -1134.38 0
ε̂ 0.000252 0.0161 0.0910 0.0172 0.000461 0

δ̂ 0 0.046 0.961 0.064 0 0

Table 2.11: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with t-distribution for several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -1126.66 -1175.64 -1175.04 -1170.35 -1137.19 0
ε̂ 0.00023 0.024 0.0334 0.0259 0.000407 0

δ̂ 0 0.055 0.069 0.04 0 0

is large (d = 100 in Table 2.12), SG and FAST output unbounded solutions in all

1000 experimental replications, whereas plain and reconstructed RO output feasible

bounded solutions.

Like in the previous subsections, our reconstructed RO outperforms moment-

based DRO in all cases. When the dimension is large (d = 100 in Table 2.12),

moment-based DRO fails to obtain feasible solutions in all 30 replications, attributed

to the difficulty in estimating valid moment confidence regions. Compared to our

plain RO, moment-based DRO outperforms in single CCP (-1134.38 and -1137.19

versus -1112.75 and -1126.66 in Tables 2.10 and 2.11 respectively), but underperforms

in joint CCP (-3888.63 and -3891.83 versus -4229.6 and -5778.44 in Tables 2.13 and

2.14 respectively). Lastly, divergence-based DRO is once again very conservative,

resulting in zero objective values all the time.

Next we consider ξ generated from log-normal distributions with arbitrarily cho-

sen means and covariance matrices. Tables 2.15, 2.16 and 2.17 show the results for
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Table 2.12: Optimality and feasibility performances on a single d = 100 dimensional linear CCP
with t-distribution for several methods, using sample size n = 120. Results on moment-based DRO
are based on 30 replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -1077.56 -1184.45 unbounded unbounded -1190.70 0
ε̂ 6.00× 10−7 0.0156 - - 0.22 0

δ̂ 0 0.045 - - 1 0

Table 2.13: Optimality and feasibility performances on a joint d = 11 dimensional linear CCP with
t-distribution for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -4229.6 -6499.93 -8313 -7220.37 -3888.63 0
ε̂ 0.00108 0.00847 0.0404 0.0152 4.17× 10−4 0

δ̂ 0 0.002 0.284 0.048 0 0

the single CCP, while Tables 2.18 and 2.19 show those for the joint CCP. The com-

parisons are quite similar to the t-distribution cases. SG in small sample outputs

invalid solutions (δ̂ much greater than 0.05), and in large sample outputs solutions

with average objective values (e.g. -683.60 in Table 2.16) better than our plain RO

(-354.10) but worse than our reconstructed RO (-685.01). FAST remedies the infea-

sibility issue of SG in the small-sample cases, but underperforms our reconstructed

RO in all cases. Moment-based DRO outperforms our plain RO but underperforms

our reconstructed RO in all cases, and it continues to struggle in obtaining feasible

solutions for high-dimensional problems (δ̂ = 1 in Table 2.17). Lastly, divergence-

based DRO continues to be conservative and outputs zero objective values. In all

considered settings, reconstructed RO appears the best among all compared methods

in terms of feasibility and optimality.
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Table 2.14: Optimality and feasibility performances on a joint d = 11 dimensional linear CCP with
t-distribution for several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -5778.44 -7562.60 -7387.98 -7173.97 -3891.83 0
ε̂ 0.00248 0.0133 0.0144 0.0126 3.97× 10−4 0

δ̂ 0 0 0 0 0 0

Table 2.15: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with log-normal distribution for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -294.00 -588.58 -784.27 -510.38 -418.30 0
ε̂ 1.45× 10−4 0.0164 0.0902 0.0159 5.11× 10−4 0

δ̂ 0 0.041 0.961 0.048 0 0

2.4.6 Summary on the Experiment Results

From the results in this section (and additional ones in Section 2.11), we highlight

the following situations where our method is the most recommended.

The competitiveness of our method compared with scenario approaches is most

seen in small-sample situations. Classical SG needs a much larger sample size than

ours to achieve feasibility. FAST is capable of obtaining feasible solutions in small-

sample cases, but appears more susceptible than RO in generating unbounded so-

lutions. With reconstruction, our approach tends to work as well as SG and FAST

for large sample (when they are all applicable). Moreover, our reconstruction has

the capability to improve the optimality over plain RO, whereas FAST is by design

always more conservative than SG in terms of optimality. Nonetheless, we should

mention that some constraint removal approaches like sampling-and-discarding ([38])

can improve SG performances in large-sample situations.

Compared to our ROs, moment-based DRO can generate infeasible solutions when
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Table 2.16: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with log-normal distribution for several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -354.10 -685.01 -683.60 -646.83 -429.75 0
ε̂ 8.07× 10−5 0.0243 0.0333 0.0261 3.33× 10−4 0

δ̂ 0 0.057 0.052 0.033 0 0

Table 2.17: Optimality and feasibility performances on a single d = 100 dimensional linear CCP
with log-normal distribution for several methods, using sample size n = 120. Results on moment-
based DRO are based on 30 replications due to high computational demand.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -309.93 -784.24 unbounded unbounded -1030.52 0
ε̂ 6.00× 10−6 0.0174 - - 0.2772 0

δ̂ 0 0.063 - - 1 0

the problem dimension is high compared to data size (e.g., d = 100 and n = 120),

attributed to the difficulty in constructing valid moment confidence regions. In cases

where moment-based DRO generates valid solutions, the solution performances seem

to be sometimes better, sometimes worse than our plain RO, but in all considered

instances they perform worse than our reconstructed RO. KL-divergence-based DRO

appears to perform poorly in the experiments due to the challenge in obtaining

a small enough divergence ball size (To get a further sense of this behavior, we

investigate a very low-dimensional problem (d = 3) with sufficient sample size in

Section 2.11.3, where divergence-based DRO provides nontrivial but still conservative

solutions).

Lastly, compared with SCA, our performance is best seen when the data is non-

normal. In this case the approximate constraint in SCA may not tightly approximate

the original chance constraint and tends to be significantly more conservative than

our approach. Moreover, SCA generally requires at least some partial distributional
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Table 2.18: Optimality and feasibility performances on a joint d = 11 dimensional linear CCP with
log-normal distribution for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL
n 120 120 120 120 120 120
n1 60 60 - 61 - 60
n2 60 60 - 59 - 60
Obj. Val. -0.1284 -1.1166 -4.5359 -1.0369 -0.8360 0
ε̂ 0.00228 0.0157 0.0598 0.0165 0.0131 0

δ̂ 0 0.043 0.646 0.044 0.006 0

Table 2.19: Optimality and feasibility performances on a joint d = 11 dimensional linear CCP with
log-normal distribution for several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL
n 336 336 336 336 336 336
n1 212 212 - 318 - 168
n2 124 124 - 18 - 168
Obj. Val. -0.0844 -1.9373 -1.7135 -1.4058 -1.2021 0
ε̂ 0.0074 0.0239 0.0238 0.0197 0.0131 0

δ̂ 0 0.05 0.011 0.007 0.026 0

knowledge (e.g., moments, support) in deriving the needed relaxing constraint, in

contrast to our approach that is fully data-driven and nonparametric.

2.5 Missing Proofs in Section 2.2

Proof. Proof of Theorem II.5. Proof of 1. Let Bin(n, p) be a binomial variable with

number of trials n and success probability p. Then (2.4) can be written as

(2.13) i∗ = min {r : P (Bin(n2, 1− ε) ≤ r − 1) ≥ 1− δ, 1 ≤ r ≤ n2}

Note that by the Berry-Essen Theorem,

P (Bin(n2, 1− ε) ≤ r − 1)− Φ

(
r − 1− n2(1− ε)√

n2(1− ε)ε

)

= P

(
Bin(n2, 1− ε)− n2(1− ε)√

n2(1− ε)ε
≤ r − 1− n2(1− ε)√

n2(1− ε)ε

)

−Φ

(
r − 1− n2(1− ε)√

n2(1− ε)ε

)

= O

(
1
√
n2

)
(2.14)
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uniformly over r ∈ N+, where Φ is the distribution function of standard normal.

Since i∗ in (2.13) is chosen such that P (Bin(n2, 1− ε) ≤ i∗ − 1) ≥ 1− δ (where we

define i∗ = n2 + 1 if no choice of r is valid), we have, for any γ > 0, i∗ satisfies

Φ

(
i∗ − 1− n2(1− ε)√

n2(1− ε)ε

)
+ γ ≥ 1− δ

for large enough n2, which gives

(2.15) i∗ ≥ 1 + n2(1− ε) +
√
n2(1− ε)εΦ−1(1− δ − γ)

for large enough n2.

On the other hand, we claim that i∗ also satisfies, for any γ > 0,

(2.16) Φ

(
i∗ − 1− n2(1− ε)√

n2(1− ε)ε

)
≤ 1− δ + γ

for large enough n2. If not, then there exists an γ > 0 such that

Φ

(
i∗ − 1− n2(1− ε)√

n2(1− ε)ε

)
> 1− δ + γ

infinitely often, which implies

P (Bin(n2, 1− ε) ≤ i∗ − 1) +O

(
1
√
n2

)
> 1− δ + γ

or

P (Bin(n2, 1− ε) ≤ i∗ − 1) > 1− δ + γ̃

infinitely often for some 0 < γ̃ < γ. By the choice of i∗, we conclude that there is no

r that satisfies

1− δ ≤ P (Bin(n2, 1− ε) ≤ r − 1) ≤ 1− δ + γ̃

infinitely often, which is impossible. Therefore, (2.16) holds for large enough n2, and

we have

(2.17) i∗ ≤ 1 + n2(1− ε) +
√
n2(1− ε)εΦ−1(1− δ + γ)
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Combining (2.15) and (2.17), and noting that γ is arbitrary, we have

(2.18)
√
n2

(
i∗

n2

− (1− ε)
)
→
√

(1− ε)εΦ−1(1− δ)

almost surely. The same argument also shows that i∗ is well-defined for large enough

n2 almost surely.

It suffices to show that

(2.19) PD2(1− ε− γ ≤ P (ξ ∈ U) ≤ 1− ε+ γ|D1)→ 1

for any small γ > 0. Note that, conditional on D1, we have P (ξ ∈ U) = P (t(ξ) ≤

t(ξ2
(i∗))) = F (t(ξ2

(i∗))) where F (·) is the distribution function of t(ξ). Since F (t(ξ)) ∼

U [0, 1] by the continuity of t(ξ), we have,

PD2(1− ε− γ ≤ P (ξ ∈ U) ≤ 1− ε+ γ|D1)(2.20)

= P (#{Ui < 1− ε− γ} ≤ i∗ − 1, #{Ui > 1− ε+ γ} ≤ n2 − i∗)

where {Ui} denotes n2 realizations of i.i.d. U [0, 1] variables,

#{Ui < 1− ε− γ} and #{Ui > 1− ε+ γ} count

the numbers of Ui’s that are < 1− ε− γ and

> 1− ε+ γ respectively

≥ 1− P (#{Ui < 1− ε− γ} > i∗ − 1)− P (#{Ui > 1− ε+ γ} > n2 − i∗)(2.21)
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Consider the second term in (2.21). We have

P (#{Ui < 1− ε− γ} > i∗ − 1)

= P (Bin(n2, 1− ε− γ) > i∗ − 1)

= Φ̄

(
i∗ − 1− n2(1− ε− γ)√
n2(1− ε− γ)(ε+ γ)

)
+O

(
1
√
n2

)
by the Berry-Essen Theorem, where Φ̄ is the tail distribution function

of standard normal

= Φ̄

(
i∗ − 1− n2(1− ε)√

n2(1− ε)ε

√
1− ε

1− ε− γ
ε

ε+ γ
+

√
n2γ√

(1− ε− γ)(ε+ γ)

)
+O

(
1
√
n2

)
→ 0 by (2.18)

Similarly, for the third term in (2.21), we have

P (#{Ui > 1− ε+ γ} > n2 − i∗)

= P (Bin(n2, ε− γ) > n2 − i∗)

= Φ̄

(
n2 − i∗ − n2(ε− γ)√
n2(ε− γ)(1− ε+ γ)

)
+O

(
1
√
n2

)
by the Berry-Essen Theorem

= Φ̄

(
−i
∗ − n2(1− ε)√
n2(1− ε)ε

√
ε

ε− γ
1− ε

1− ε+ γ
+

√
n2γ√

(ε− γ)(1− ε+ γ)

)
+O

(
1
√
n2

)
→ 0 by (2.18)

Hence (2.21) converges to 1.

Proof of 2. Using again the fact that, conditional on D1, F (t(ξ)) ∼ U [0, 1] and
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P (ξ ∈ U) = F (t(ξ2
(i∗))), we have

PD2(P (ξ ∈ U) ≥ 1− ε|D1)

= P (#{Ui < 1− ε} ≤ i∗ − 1)

= P (Bin(n2, 1− ε) ≤ i∗ − 1)

= Φ

(
i∗ − 1− n2(1− ε)√

n2(1− ε)ε

)
+O

(
1
√
n2

)
by using (2.14)

→ 1− δ by (2.18)

which concludes Part 2 of the theorem.

Note that (2.18) is mentioned in [155] Section 2.6.1, and implies that, given D1,

(2.22)

√
n2(P (ξ ∈ U)−(1−ε)) =

√
n2(F (t(ξ2

(i∗)))−(1−ε))⇒ N
(√

ε(1− ε)Φ−1(1− δ), ε(1− ε)
)

by using [155] Corollary 2.5.2, which can be used to prove Part 1 of the theorem as

well (as in [155] Section 2.6.3). From (2.22), we see that P (ξ ∈ U) concentrates at 1−

ε, as it is approximately (1−ε)+Z/√n2 where Z ∼ N
(√

ε(1− ε)Φ−1(1− δ), ε(1− ε)
)

.

2.6 Illustration of Attained Theoretical Confidence Levels

The argument in Lemma II.3 and the discussion after Theorem II.4 implies that

the theoretical confidence level for a given Phase 2 sample size n2 is

1− δtheoretical = PD(P (ξ ∈ U) ≥ 1− ε) =
i∗−1∑
k=0

(
n2

k

)
(1− ε)kεn2−k

This quantity is in general not a monotone function of the sample size, but it does

converge to 1−δ as n2 increases, as shown in Theorem II.5 Part 2. Figures 2.1 and 2.2

illustrate how δtheoretical changes with n2 for two pairs of ε and δ. The changes follow
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a zig-zag pattern, with a general increasing trend. In the case δ = 0.05 and ε = 0.05

for example, local maxima of δtheoretical occur at n2 = 59, 93, 124, 153, 181, . . .

Figure 2.1: δtheoretical against n2 when
δ = 0.05 and ε = 0.05

Figure 2.2: δtheoretical against n2 when
δ = 0.01 and ε = 0.01

2.7 Using RO Reformulations

Results from the following discussion are adapted from [16]. Further details can be

found therein and in, e.g., [12]. Along with reviewing these results, we also describe

how to cast them in our procedure in Section 2.2.1.

We focus on linear safety conditions in (2.1), i.e., g(x; ξ) ∈ A is in the form Ax ≤ b,

where A ∈ Rl×d is uncertain and b ∈ Rl is constant. Here A is identified with the

random vector ξ. The following discussion also holds if x is further constrained to

lie in some deterministic set, say B. For convenience, we denote each row of A as

a′i and each entry in b as bi, so that the safety condition can also be written as

a′ix ≤ bi, i = 1, . . . , l.

It is well-known that in solving the robust counterpart (RC), it suffices to consider

uncertainty sets in the form U =
∏l

i=1 Ui where Ui is the uncertainty set projected

onto the portion associated with the parameters in each constraint, and so typically

we consider the RC of each constraint separately.

We first consider ellipsoidal uncertainty:
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Theorem II.12 (c.f. [14]). The constraint

a′ix ≤ bi ∀ai ∈ Ui

where Ui = {ai = a0
i + ∆iu : ‖u‖2 ≤ ρi} for some fixed a0

i ∈ Rd, ∆i ∈ Rd×r, ρi ∈ R,

for u ∈ Rr, is equivalent to

a0
i
′
x+ ρi‖∆′ix‖2 ≤ bi

Note that Ui in Theorem II.12 is equivalent to {ai : ‖∆−1
i (ai − a0

i )‖2 ≤ ρi} if ∆i

is invertible. Thus, given an ellipsoidal set (for the uncertainty in constraint row i)

calibrated from data in the form {ai : (ai − µ)′Σ−1(ai − µ) ≤ s} where Σ is positive

definite and s > 0, we can take a0
i = µ, ∆i as the square-root matrix in the Cholesky

decomposition of Σ, and ρi =
√
s in using the depicted RC.

Next we have the following result on polyhedral uncertainty:

Theorem II.13 (c.f. [14] and [16]). The constraint

a′ix ≤ bi ∀ai ∈ Ui

where Ui = {ai : Diai ≤ ei} for fixed Di ∈ Rr×d, ei ∈ Rr is equivalent to

p′iei ≤ bi

p′iDi = x′

pi ≥ 0

where pi ∈ Rr are newly introduced decision variables.

The following result applies to the collection of constraints Ax ≤ b with the

uncertainty on A ∈ Rl×d represented via a general norm on its vectorization.
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Theorem II.14 (c.f. [18]). The constraint

Ax ≤ b ∀A ∈ U

where

(2.23) U = {A : ‖Q(vec(A)− vec(Ā))‖ ≤ ρ},

for fixed Ā ∈ Rl×d, Q ∈ Rld×ld invertible, ρ ∈ R, vec(A) as the concatenation of all

the rows of A, ‖ · ‖ any norm, is equivalent to

ā′ix+ ρ‖(Q′)−1xi‖∗ ≤ bi, i = 1, ..., l

where ā′i ∈ Rd is the i-th row of Ā, xi ∈ R(ld)×1 contains x ∈ Rd in entries (i−1)d+1

through i d and 0 elsewhere, and ‖ · ‖∗ is the dual norm of ‖ · ‖.

When ‖ · ‖ denotes the L2-norm, Theorem II.14 can be applied in much the same

way as Theorem II.12, with vec(Ā) denoting the center, Q taken as the square root

of the Cholesky decomposition of Σ−1 where Σ is the covariance matrix, and ρ =
√
s

where s is the squared radius in an ellipsoidal set constructed for the data of vec(A).

Next we have the following theorem to handle (2.10), which can be proved similarly

as for Theorem II.12 or by standard conic duality.

Theorem II.15. The constraint

ξ′x ≤ b ∀ξ ∈ U

where U is defined in (2.10), and Σ has full rank, is equivalent to

µ′Σ−1/2u+
√
sλ ≤ b

M ′Σ−1/2u = x

‖u‖2 ≤ λ,

where λ ∈ R, u ∈ Rr are additional decision variables.
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2.8 Further Discussion on Choices of Uncertainty Sets

This section extends the discussions in Section 2.3 on choosing suitable uncertainty

sets.

2.8.1 Comparing Individualized Ellipsoids and a Single Ellipsoids for Joint Chance
Constraints

We state the following result that compares, in the case of joint chance constraints,

between the use of individual ellipsoids for the stochasticities on different constraints

and a single ellipsoid for all.

Proposition 1. Let ξ ∈ Rm be a vector that can be represented as ξ = (ξi)i=1,...,k

with ξi ∈ Rri and
∑k

i=1 r
i = m. Let Ujoint = {ξ : ‖M(ξ − µ)‖2

2 ≤ ρjoint} where M is

a block diagonal matrix

(2.24) M =



M1

M2

...

Mk


,

and each M i ∈ Rri×ri. Let Uindividual =
∏k

i=1 U i where U i = {ξi : ‖M i(ξi − µi)‖2
2 ≤

ρindividual} and (µi)i=1,...,k is defined such that µ = (µi)i=1,...,k analogously as in

(ξi)i=1,...,k for ξ. Suppose that Ujoint and Uindividual are calibrated using the same

Phase 2 data, with the transformation maps defined as tjoint(ξ) = ‖M(ξ − µ)‖2
2 and

tindividual(ξ) = maxi=1,...,k ‖M i(ξi − µi)‖2
2 respectively.

Consider the RO

(2.25) minimize f(x) subject to gi(x; ξi) ∈ Ai, i = 1, . . . , l, ∀ξ ∈ U

Let xjoint be an optimal solution obtained by setting U = Ujoint, and xindividual
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be an optimal solution obtained by setting U = Uindividual. We have f(xjoint) ≥

f(xindividual). In other words, using Ujoint is more conservative than using Uindividual.

Proof. Proof of Proposition 1. The ρjoint calibrated using Phase 2 data is set as

tjoint(ξ
2
(i∗joint)

) = ‖M(ξ2
(i∗joint)

− µ)‖2
2 where i∗joint is defined similarly as (2.4). On

the other hand, the ρindividual in the set Uindividual (equal among all U i), is set as

tindividual(ξ
2
(i∗individual)

) = maxi=1,...,k ‖M i(ξi,2(i∗individual)
−µi)‖2

2 where (ξi,2(i∗individual)
)i=1,...,k is

the corresponding partition of ξ2
(i∗individual)

. Using ‖M(ξ−µ)‖2
2 =

∑k
i=1 ‖M i(ξi−µi)‖2

2

and the fact that
∑k

i=1 yi ≥ maxi=1,...,k yi for any yi ≥ 0, we must have ‖M(ξ−µ)‖2
2 ≥

maxi=1,...,k ‖M i(ξi − µi)‖2
2, and so ρjoint ≥ ρindividual. Note that, when projecting to

each constraint, the considered RO is written as

minimize f(x) subject to gi(x; ξi) ∈ Ai, ∀ξi ∈ U i, i = 1, . . . , l

where U i = {ξ : ‖M i(ξi − µi)‖2
2 ≤ ρjoint} and {ξ : ‖M i(ξi − µi)‖2

2 ≤ ρindividual} for

the two cases respectively. Since ρjoint ≥ ρindividual, we conclude that f(xjoint) ≥

f(xindividual).

Proposition 1 is evident in that the relation tjoint(ξ) ≥ tindividual(ξ) leads to a

larger Ujoint and hence a smaller resulting feasible region for (2.25) compared with

Uindividual. It hints that, if the data across the constraints are uncorrelated, it is

always better to use constraint-wise individual ellipsoids that are calibrated jointly.

The same holds if we choose to use diagonalized ellipsoids in our representation, as

these satisfy the block-diagonal structural assumption in the proposition. On the

other hand, if the data across individual constraints are dependent and we want to

capture their correlations in our ellipsoidal construction, the comparison between the

two approaches is less clear.
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2.8.2 Complexity of Uncertainty Sets

Another consideration in choosing uncertainty set in our framework is the set

complexity. For example, we can use an ellipsoidal set with a full covariance matrix,

a diagonalized matrix and an identity matrix, the latest leading to a ball. The

numbers of parameters in these sets are in decreasing order, making the sets less

and less “complex”. Generally, more data supports the use of higher complexity

representation, because they are less susceptible to over-fitting. In terms of the

average optimal value obtained by the resulting RO, we observe the following general

phenomena:

1. Ellipsoidal sets with full covariance matrices are generally better than diagonal-

ized elliposids and balls when the Phase 1 data size is larger than the dimension

of the stochasticity. However, if the data size is close to or less than the di-

mension, the estimated full covariance matrix may become singular, causing

numerical instabilities.

2. In the case where ellipsoidal sets are problematic (due to the issue above),

diagonalized ellipsoids are preferable to balls unless the data size is much smaller

than the stochasticity dimension.

Note that the above observations are consistent with theoretical results in covari-

ance matrix estimation. In particular, it is known that the data size required to

accurately estimate the covariance matrix of an m-dimensional random vector is of

order (arbitrarily higher than) m if the vector is sub-Gaussian (Theorem 4.7.1 in

[165]) and m logm for more and very general vectors (Theorem 5.6.1 in [165]). This

suggests that using fully estimated covariance matrix is desirable over diagonalized

matrix when data size is slightly above the dimension.
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Table 2.20: Comparing the optimality and feasibility performances between single diagonalized
ellipsoid and individually constructed diagonalized ellipsoids, under sample size n = 120, and we
use n1 = 60 and n2 = 60.

RO(Single Diagonalized Ellipsoid) RO(Individual Diagonalized Ellipsoids)
Obj. Val. -4529.51 -6957.26
ε̂ 0 3.55× 10−5

δ̂ 0 0

Table 2.21: Comparing the optimality and feasibility performances between two scaling strategies
for reconstructing the uncertainty set.

Reconstructed RO (Scale 1) Reconstructed RO (Scale 2)
Obj. Val. -7880.06 -7541.29
ε̂ 0.0127 0.0017

δ̂ 0.029 0

2.8.3 Missing Details for Section 2.4.3

The example in Section 2.4.3 utilizes the observations discussed in Appendices

2.8.1 and 2.8.2, which we detail below. Since the sample size is less than the stochas-

ticity dimension, we use diagonalized ellipsoids in our constructions. Next, we com-

pare using individualized ellipsoids each for the stochasticity in each constraint versus

a single ellipsoid, as depicted in Proposition 1. Table 2.20 column 2 shows the results

using a single ellipsoid over vectorized A, and column 3 shows the counterparts for

individually constructed ellipsoids. We observe that the latter has a smaller average

optimal value (-6957.26 versus -4529.51), which is consistent with the implication

from Proposition 1.

We further investigate the use of reconstruction for joint CCP. We use

max
j=1,...,l

{(a′jx̂0 − bj)/kj}

to determine the quantile for calibrating the size of the uncertainty set, where kj

is a scale parameter assigned to constraint j. Table 2.21 compares two natural

choices of kj for the same problem as above but with a different Σ. Column 2 uses

kj = bj − µ′jx̂0, where µ′j is the sample mean of the Phase 1 data of a′j. Column



59

Table 2.22: Optimality and feasibility performances on a single linear CCP with mixture Gaussian
distributions for several methods, under sample size 300, and we use n1 = 240 and n2 = 60.

RO(Unclustered) RO(Clustered) Reconstructed RO(Unclustered) Reconstructed RO(Clustered)
Obj. Val. -940.502 -961.434 -1074.63 -1087.66
ε̂ 2.18× 10−7 3.01× 10−6 0.0162 0.0163

δ̂ 0 0 0.05 0.049

3 uses kj = std(a′jx̂0), the standard deviation of the Phase 1 data of a′jx̂0. While

the performances using these two scale parameters can be problem dependent, we

observe that the former works better in this example (with a better average optimal

value) and hence adopt it for our experiment.

2.9 Integrating with Machine Learning Tools

We provide some numerical results to support the use of the machine learning

tools described in Section 2.3. Throughout this section we use the single CCP (2.11)

as an example.

2.9.1 Cluster Analysis

To illustrate the use of clustering, suppose ξ follows a mixture of N(µ1,Σ1) and

N(µ2,Σ2) with probabilities π1 = π2 = 0.5. Table 2.22 column 2 shows the perfor-

mance of our RO using a single ellipsoidal set. Column 3 shows the result when we

first apply 2-mean clustering to Phase 1 data and construct a union of ellipsoids.

The average objective value (-961.434) is demonstrably improved compared to using

a single ellipsoid (-940.502). Similarly, the reconstructed RO from using cluster-

ing performs better than RO using a single ellipsoid, and both are better than the

non-reconstructed counterparts.

2.9.2 Dimension Reduction

To illustrate the use of dimension reduction, we specify ξ as follows. We first

generate ξ̃ ∈ R11 under N(µ,Σ), where µ and Σ are arbitrary vector and positive
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Table 2.23: Optimality and feasibility performances on a d = 1100 dimensional single linear CCP
using PCA, under sample size n = 120, and we use n1 = 60 and n2 = 60.

RO(Diagonalized Ellipsoid) RO(PCA with 11 Components)
Obj. Val. -1039 -1189.32
ε̂ 4.54× 10−16 1.43× 10−5

δ̂ 0 0

definite matrix. We create a higher dimensional ξ ∈ R1100 by ξ = P ξ̃+ω, where ω is

a “perturbation” vector with each element distributed uniformly on [-0.0005,0.0005]

and P ∈ R1100×11.

Table 2.23 column 2 shows the results using RO with a diagonalized ellipsoid on

the data of ξ. Diagonalized ellipsoid is used here because the dimension d = 1100,

which is much larger than the Phase 1 data size n1 = 60, causes singularity issue when

constructing a full ellipsoid. Column 3 shows the results when we apply principal

component analysis (PCA) to reduce the data to the 11 components having the

largest variances and use the linearly transformed ellipsoid (2.10). The number of

components 11 is chosen from the cutoff of leaving out 0.01% of the total variance,

which we declare as negligible. The PCA approach outperforms the use of a basic

diagonalized ellipsoid in terms of average optimal value (-1189.32 versus -1039).

As can be seen in this example, the dimension reduction brought by PCA allows

to use a full ellipsoid that captures the shape of the data better on the relevant

directions than using the original data, whose high dimension forces one to adopt a

simpler geometric set such as diagonalized ellipsoid. Our recommendation in selecting

the number of components in PCA is to be conservative, in the sense of choosing one

as large as possible so long as it is small enough to support the use of a full ellipsoid

(roughly speaking, this means it is smaller than the Phase 1 data size).
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Table 2.24: Optimality and feasibility performances on a single linear CCP for basis learning and
other methods, under sample size n = 80, and we use n1 = 21 and n2 = 59.

RO(Ellipsoid) RO(Diagonalized Ellipsoid) RO(Basis)
Obj. Val. -1186.86 -946.33 -1016.95
ε̂ 0.0002 3.03× 10−4 1.22× 10−8

δ̂ 0 0 0

2.9.3 “Basis” Learning

We consider the last approach described in Section 2.3 that surrounds each ob-

servation with a ball. For convenience, we call this approach “basis” learning (as

we view each of these created balls as a “basis”). We set ξ ∼ N (µ,Σ) for some

arbitrarily chosen µ and Σ and d = 11. Table 2.24 shows that the basis learning

approach (column 4) outperforms the use of a diagonalized ellipsoid (column 3), but

underperforms the use of a full ellipsoid (column 2), in terms of average optimal value

(-1016.95, -946.33 and -1186.86 respectively). All three approaches are conservative

however (δ̂ ≈ 0). This roughly indicates that basis learning is capable of capturing

some covariance information.

Next we generate ξ from a mixture of Gaussian distribution with 5 components

and d = 11. Table 2.25 shows that basis learning (column 4) outperforms ellipsoid

(column 2) in terms of average optimal value (-1033.84 versus -845.973). However, it

does not perform as well compared to using the union of 5 ellipsoids from clustering

(column 3, with an average optimal value -1090.57). This supports the guidance that,

when applying to convoluted data, basis learning is better than using over-simplified

shape, but may not work as well compared to other established machine learning

tools.
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Table 2.25: Optimality and feasibility performances on a single linear CCP for basis learning and
other methods, using sample size n = 300. For learning-based RO, we use n1 = 240 and n2 = 60.

SG RO(Ellipsoid) RO(Clustered) RO(Basis)
Obj. Val. -1191.82 -845.973 -1090.57 -1033.84
ε̂ 0.037 2.20× 10−5 8.73× 10−12 0

δ̂ 0.125 0 0 0

2.10 Tractable Reformulation of DRO under Ellipsoidal Moment-Based
Uncertainty Set

We review the tractable reformulation of moment-based DRO. In particular, we

focus on the extension of the DRO reformulation under first and second moment

information in [62] using the ellipsoidal uncertainty set suggested in [120].

For single linear CCP with constraint P (ξ′x ≤ b) ≥ 1 − ε, [62] shows that the

worst-case constraint, among all distributions generating ξ that have exactly known

mean µ and covariance matrix Σ, can be reformulated as

(2.26)

√
1− ε
ε
‖Σ

1
2x‖2 − µ′x− b ≤ 0.

In the situation where µ and Σ are unknown but i.i.d. data are available, we can

construct an ellipsoidal moment set V such that P ((µ,Σ) ∈ V) ≥ 1 − δ, using the

delta method in Section 5 of [120]. We then consider the worst-case chance constraint

over distributions with mean and covariance matrix inside V , i.e.,

(2.27) inf
Q:(EQ[ξ],EQ[(ξ−EQ[ξ])(ξ−EQ[ξ])′])∈V

Q(ξ′x ≤ b) ≥ 1− ε

where Q is a distribution generating ξ ∈ Rd, EQ[ξ] is the mean and EQ[(ξ−EQ[ξ])(ξ−

EQ[ξ])′]) the covariance matrix under Q. Given (2.26), the following theorem that

extends the result in [120] can be used to provide a tractable reformulation for this

worst-case chance constraint.

Theorem II.16. Let u ∈ R, Γ̂ ∈ Rd×d, ŵ ∈ Rd, B ∈ R d2+3d
2
× d

2+3d
2 , ρ ∈ R be given.
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We set svec(Γ) = [Γ11,
√

2Γ12, ...,
√

2Γ1n,Γ22, ...,
√

2Γ(n−1)n,Γnn]′. The constraint

(2.28)
√
x′Γx+ w′x+ u ≤ 0,∀

 w

svec(Γ)

 ∈ U
with decision variable x ∈ Rd, where U = U1 ∩ U2 and

U1 =


 w

svec(Γ)

 = Bν +

 ŵ

svec(Γ̂)

 : ‖ν‖2 ≤ ρ, ν ∈ R
d2+3d

2

 ,

U2 =


 w

svec(Γ)

 : w ∈ Rd, Γ ∈ S+
d

 ,

is equivalent to

(2.29)

ŵ′x+ trace(Γ̂W ) + ρ

∥∥∥∥∥∥∥B′
 x

svec(W )


∥∥∥∥∥∥∥

2

+ u+
η

4
≤ 0,

 W x

x′ η

 � 0(d+1)×(d+1)

where W ∈ Rd×d and η ∈ R are additional (dummy) variables, and 0(d+1)×(d+1) is a

zero matrix of size (d+ 1)× (d+ 1).

Theorem II.16 is an application of Theorem 1 (II) in [120] on ellipsoidal uncer-

tainty sets in the form of U . Note that U consists of two intersecting sets, the

ellipsoidal set U1 constructed from the delta method discussed in [120] that is de-

signed to contain the true moments of ξ with confidence 1 − δ, and the set U2 that

constrains the covariance matrix to be positive semidefinite. We reformulate the

worst-case chance constraint (2.27) into a semidefinite constraint by rewriting the

former in the form (2.28) using (2.26) and applying Theorem II.16.

When ξ has dimension d, the total number of the first and second moments is

(3d+d2)/2. To form an ellipsoidal set for all these moments using the delta method,

one would need to use the estimated covariance matrix for all these moments, which
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requires estimating higher-order moments and has size (3d + d2)/2 × (3d + d2)/2

(for more details, see Section 5 of [120]). The resulting optimization problem is a

semidefinite program with (5d+ 3d2)/2 + 1 decision variables.

2.11 Additional Numerical Results

This section shows three additional sets of numerical results. The first is the

same example as Section 2.4.1 but with additional non-negativity constraints. These

constraints are added to make sure that SG and FAST do not generate unbounded

solutions. The second set of results contain a random right hand side quantity in

a linear chance constraint. It illustrates how one can use our reconstruction to

enhance performance by transforming the safety condition, in the case that a direct

use seems un-usable at first. Lastly, we present some further numerical investigation

of divergence-based DRO.

2.11.1 Multivariate Gaussian on a Single Chance Constraint with Non-negativity
Conditions

We consider a modification of the example in Section 2.4.1

(2.30) minimize c′x subject to P (ξ′x ≤ b) ≥ 1− ε, x ≥ 0

where we add a non-negativity constraint and keep all other parts unchanged. We

again consider d = 11 and 100. The main purpose of the modification is to eliminate

the unbounded solutions that occurred in the d = 100 case of (2.11) when we apply

SG and FAST. The comparisons among different approaches on this problem, shown

in Tables 2.26, 2.27, 2.28 and 2.29, are largely similar to those in Section 2.4.1, but

also bear some notable differences that we highlight here.

In the d = 100 case, when sample size is small (n = 120), SG and FAST can now

obtain bounded solutions. However, SG fails to obtain feasible solutions as shown
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Table 2.26: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with non-negativity constraints for several methods, using sample size n = 120. The true optimal
value is -1106.23.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -924.05 -1070.75 -1068.17 -1060.04 -893.84 0 -1065.59
ε̂ 4.99× 10−7 0.0158 0.0155 0.0119 8.46× 10−10 0 0.0072

δ̂ 0 0.032 0.019 0.008 0 0 0

Table 2.27: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with non-negativity constraints for several methods, using sample size n = 336. The true optimal
value is -1106.23.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 336 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -956.63 -1086.28 -1050.52 -1049.82 -921.232 0 -1065.59
ε̂ 1.34× 10−6 0.0244 0.00534 0.00523 6.15× 10−9 0 0.0072

δ̂ 0 0.045 0 0 0 0 0

Table 2.28: Optimality and feasibility performances on a single d = 100 dimensional linear CCP with
non-negativity constraints for several methods, using sample size n = 120. The true optimal value
is -1195.3. Results on moment-based DRO are based on 30 replications due to high computational
demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -832.142 -1111.04 -1195.26 -980.64 -1120.37 0 -1152.35
ε̂ 0 0.0159 0.458 0.0170 0.0095 0 0.0072

δ̂ 0 0.046 1 0.064 0 0 0

Table 2.29: Optimality and feasibility performances on a single d = 100 dimensional linear CCP with
non-negativity constraints for several methods, using sample size n = 2331. The true optimal value
is -1195.3. Results on moment-based DRO are based on 30 replications due to high computational
demand.

RO Recon SG FAST DRO Mo DRO KL SCA
n 2331 2331 2331 2331 2331 2331 -
n1 1318 1318 - 2326 - 1166 -
n2 1013 1013 - 5 - 1165 -
Obj. Val. -1005.62 -1164.47 -1156.76 -1155.51 -1033.58 0 -1152.35
ε̂ 0 0.0397 0.0293 0.0272 5.18× 10−11 0 0.0072

δ̂ 0 0.058 0 0 0 0 0
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by δ̂ = 1 in Table 2.28, because the sample size is far smaller than the minimum

requirement (2331). FAST obtains confidently feasible solutions that perform better

in objective value than our plain RO (-980.64 versus -832.142), but worse than our

reconstructed RO (-1111.04), the latter plausibly attributed to the initial solutions

of FAST that are not in good quality.

In the d = 11 case, SG now achieves feasibility with n = 120 samples, and when

the minimum required sample size n = 336 is used, the solution appears more con-

servative compared to the counterpart in Section 2.4.1, as shown by δ̂ = 0 in Table

2.27 versus δ̂ = 0.056 in Table 2.3. This can be explained by the obtained solutions

in the current problem being non-fully-supported (i.e., the number of support con-

straints is less than d, which gives the problem a lower “intrinsic” dimension). Note

that when the sample size increases from 120 to 336, the solutions of SG necessarily

become more conservative (regardless of the dimension in consideration), which is

a consequence of the nature of constraint addition in SG. On the other hand, the

solutions in our RO improve as sample size increases, plausibly attributed to a bet-

ter estimation of HPR. Reconstructed RO provides better solutions than SG and

FAST in all four sets of experiments. Nonetheless, we should mention that some

constraint removal approaches like sampling-and-discarding in [38] are available to

enhance the performances of SG. Finally, since the performances of DROs and SCA

follow similarly as in Section 2.4.1, we do not restate the comparisons with them

here.

2.11.2 Multivariate Gaussian on a Single Chance Constraint with Random Right
Hand Side

We continue to consider the single linear CCP in (2.11), but with the right hand

side quantity b being random. Specifically, we set b to be generated from a Gaussian
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distribution with mean 1200 and variance 100 (in this case, b is almost positive for

sure). The rest of the problem follows from Section 2.4.1. Note that, by the discussion

at the end of Section 2.2.4, a direct use of reconstruction would not improve the

solution in this example. However, we can divide b on both sides of the inequality

in the safety condition, which now gives a right hand side value 1 and transformed

stochastiticities as the ratios of ξ and b.

Tables 2.30 and 2.31 present the experiments on a d = 11 dimensional problem

with n = 120 and n = 336 sample sizes respectively. The performances of the

presented approaches are consistent with the experiments in Sections 2.4.1 and 2.4.2.

Specifically, when the sample size is small (n = 120), our RO is preferable to SG, as

it obtains feasible solutions while SG fails. Reconstruction applied on the described

transformed problem continues to work and perform competitively against FAST

and SCA. In particular, when n = 120, it outperforms FAST in terms of achieved

objective value, but slightly falls short of SCA. When n = 336, reconstructed RO,

SG, FAST and SCA all perform very similarly. Note that SCA have assumed moment

information and hence are given an upper hand in this example.

DROs contine to be conservative in this experiment. Moment-based DRO is

outperformed by both plain and reconstructed ROs in both the n = 120 and n = 336

cases. Similar to the example in Section 2.4.1, KL-divergence-based DRO obtains

an adjusted tolerance level ε∗ = 0, which forces the decision x to satisfy the safety

condition ξ′x ≤ b for all ξ ∈ Rd, b ∈ R, and in this case leads to an infeasible problem.

2.11.3 Additional Numerical Investigation on DRO with KL Divergence

We provide more details on constructing KL-divergence balls in DRO, which has

been used in our numerical comparisons. In the case of continuous distributions for

generating ξ, constructing KL balls requires estimating a reference distribution f0
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Table 2.30: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with random right hand side for several methods, using sample size n = 120.

RO Recon SG FAST DRO Mo DRO KL SCA
n 120 120 120 120 120 120 -
n1 60 60 - 61 - 60 -
n2 60 60 - 59 - 60 -
Obj. Val. -1143.45 -1173.62 -1182.90 -1167.61 -1138.49 infeasible -1175.05
ε̂ 7.60× 10−6 - 0.0170 0.0910 1.00× 10−7 - 0.0074

δ̂ 0 0.045 0.958 0.053 0 - 0

Table 2.31: Optimality and feasibility performances on a single d = 11 dimensional linear CCP
with random right hand side for several methods, using sample size n = 336.

RO Recon SG FAST DRO Mo DRO KL SCA
n 336 336 336 336 - 336 -
n1 212 212 - 318 - 168 -
n2 124 124 - 18 - 168 -
Obj. Val. -1149.31 -1175.70 -1178.00 -1178.01 -1143.70 infeasible -1175.05
ε̂ 1.60× 10−6 0.0253 0.051 0.0238 1.00× 10−7 - 0.0074

δ̂ 0 0.035 0.051 0.052 0 - 0

(center of the ball) using kernel density estimation, and then a k-NN or other similar

methods to estimate the set size. This selection of the reference distribution aims to

approximate the true distribution as much as possible, and the set size is chosen such

that the divergence ball contains the true distribution with high confidence. Below

we detail these procedures, followed by a very low-dimensional example where these

procedures work in calibrating DRO and allow illustrative comparisons with other

approaches.

Bandwidth Selection for Kernel Density Estimation

Following [96], we use kernel density estimation to estimate the reference distri-

bution f0. This estimation procedure requires the proper selection of a bandwidth

parameter, whose theoretical optimal choice is of order N−
1

m+4 , where N is the sam-

ple size and m is the dimension of the randomness. In the following, we consider

bandwidth in the form of BN−
1

m+4 for some B ∈ R.

We investigate how the divergence between the reference and the true distributions
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Figure 2.3: Divergence with different
bandwidth parameter B and sample
size N = 120, 60. The randomness
is Gaussian distributed with dimension
m = 11.

Figure 2.4: Divergence with different
bandwidth parameter B and sample
size N = 336, 168. The randomness
is Gaussian distributed with dimension
m = 11.

varies with the bandwidth parameter used to estimate the reference. We consider

a Gaussian distribution with dimension m = 11, and sample sizes N = 120 and

N = 336 (which are considered in Section 2.4.1). Figures 2.3 and 2.4 show the

KL divergence (estimated from 100,000 Monte Carlo samples drawn from the true

distribution) against the bandwidth choice. In the figures we also show results with

half of the samples sizes to give a sense of the sensitivity (and also motivated from

the necessity of data splitting to be discussed momentarily). Among all the choices,

B = 3 appears the best as it gives the smallest divergence in three out of four

different sample sizes. Figures 2.5 and 2.6 further show the divergences between

reference and true distributions when the truth follows other distributions, namely

a Gaussian distribution with dimension m = 100 and a log-normal distribution with

dimension m = 11 respectively. We see that the graphs behave very differently from

each other and the optimal bandwidth choices now deviate from 3, thus showing that

the optimal bandwidth can depend heavily on the underlying distribution.

We note that the constructed f0’s using kernel density estimation seem to be quite

far from the true distribution. For example, in the problem considered in Section

2.4.1, the KL divergence needs to be smaller than 1.25 in order to achieve a non-
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Figure 2.5: Divergence with different
bandwidth parameter B. The random-
ness is Gaussian distributed with di-
mension m = 100.

Figure 2.6: Divergence with different
bandwidth parameter B. The random-
ness is log-normal distributed with di-
mension m = 11.

trivial solution. This is substantially smaller than 5.5, the lowest observed divergence

value among all of Figures 2.3–2.6. In other words, kernel density estimation is not

efficient enough to obtain a good enough reference distribution for implementing

DRO in this case.

Construction of Divergence-Based Uncertainty Sets

Once we obtain a reference distribution, the next task is to calibrate the size of the

uncertainty set. More precisely, we need to determine γ for the set {f : D(f‖f0) ≤

γ}, where D denotes the KL divergence, to cover the true distribution (with high

confidence). This calls for the literature of divergence estimation. Here, we discuss

the k-NN estimator studied by [167, 139]. But before we proceed, we note that since

f0 itself is estimated from data, we need to be careful in controlling the statistical

error in simultaneously estimating f0 and γ. We consider two approaches. One is to

use all the data to construct f0 and reuse the same data to estimate γ. Another is

to split the data into two groups, one for estimating f0 and another for γ. In our

experiments, the first approach turns out to consistently give a negative γ, indicating

a poor estimation error (which is expected as the combined statistical error from f0

and γ is hard to control). Therefore, we adopt the second approach that splits the
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data.

We investigate the quality of k-NN estimation with different choices of k, using

an example of Gaussian distribution with m = 11 and sample size 336. Here we split

the data into two equal halves, and use the first half to estimate f0 with bandwidth

B = 3 and the second half to estimate the divergence to calibrate γ. Figure 2.7 shows

the average point estimate of the divergence using k-NN among 1000 experimental

replications, against k. We see that k = 1 gives the closest estimate to the true

divergence (5.5, using B = 3 in Figure 2.4). This observation is consistent with the

known result in the literature that k = 1 gives the smallest bias. However, even

in this case the bias is still substantial, likely due to insufficient sample size. The

performance is worse as k increases.

Figure 2.8 further shows the histogram of divergence estimates from 1000 exper-

imental replications with k = 1. The distribution of the estimates appears very

spread out. Moreover, the biggest realized estimate (less than 3.5) is still far away

from the true divergence (5.5 in Figure 2.4). As noted in [167], estimating divergence

for high-dimensional distributions with small sample typically incurs large variances

and is challenging, in line with our observations here. For problems with even higher

dimension (e.g., the setting in Figure 2.5), we expect it to be even more difficult to

obtain a reasonable divergence estimate.
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Figure 2.7: Estimated divergence with
different k-NN parameter k using 336
samples.

Figure 2.8: Histogram of the divergence
estimates for γ with k = 1 and 336 sam-
ples.



CHAPTER III

Tail Uncertainty in Rare-event Simulation

3.1 Introduction

Assessing rare-event probabilities and extremal measures for the likelihood of

catastrophic events is ubiquitous in risk analysis and management. Examples in-

clude the prediction of large asset losses in finance, imbalance of cash flows and

ruin in insurance, and system overloads in service operations. In many cases, these

extremal quantities are outputs that rely on underlying, granular stochastic compo-

nents. For example, a financial portfolio may consist of a weighted combination of

assets each having its own (correlated) return pattern, and an insurance portfolio

consists of the cash flows of many different policyholders. Estimating these extremal

quantities hinges on the provision of accurate probabilistic descriptions of these input

components, with any deviations away from the reality leading to potential errors or

even meaningless estimates.

The latter issue has been studied and has gathered growing literature in recent

years, generally known as the problem of model uncertainty or input uncertainty.

Its main focus is to develop methodologies that can quantify the impact of model

misspecifications or errors that propagate to output estimation or decision-making.

See, e.g., [8, 84, 47, 9, 157, 101] in the stochastic simulation literature, and [137, 82,

73
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73, 111] in finance, economics, control and operations management applications. In

the extremal estimation setting, this problem is intimately related to extreme value

theory, in which one attempts to extrapolate the tail beyond the scope of data in a

statistically justified fashion, along with uncertainty quantification [65, 64]. Recently,

the framework of so-called distributionally robust optimization [51, 170, 11, 62] has

been studied to construct bounds on extremal measures with additional robustness

properties beyond statistical asymptotics. This approach utilizes postulations such

as the acknowledgement of the true distribution within a neighborhood of a baseline

model measured by a suitable statistical distance [6, 26], marginal information and

extremal coefficients [66, 146, 166, 56, 145, 67, 171], moments and shape assumptions

on the tail such as monotonicity or convexity [104, 163, 109]. In simulation-based

rare-event analysis, [128, 129] studied methods to efficiently compute sensitivities

of rare-event probabilities with respect to model parameters, and [130] proposed an

averaging of distributions to fit input models to enhance tail performances.

In contrast to most past literature that focused on the technique in quantifying

model uncertainty impacts, here we address several validity questions that arise

when, given input data, a modeler chooses to use “standard” approaches to obtain

estimates and quantify uncertainty, namely:

1. By simply using the empirical distribution as my input model fit, would the

rare-event estimate be reasonably close to the truth? (assuming computational

or Monte Carlo noise is negligible)

2. Following the point estimate in Question 1, would it work if one runs a bootstrap

to obtain a confidence interval that accounts for the input data noise?

3. If the bootstrap does not work, would incorporating extreme value theory in

fitting the input tail helps with more reliable uncertainty quantification?
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Our viewpoint is that the main source of uncertainty in determining the accuracy

of rare-event estimation comes from the lack of knowledge of the tail of the input

models. The main body (i.e., non-tail) part of the input distribution can be fit by

both parametric and nonparametric techniques, where there are typically adequate

data to perform such fit (and in Question 1 above, we simply use the empirical

distribution as the fit). However, it is the portion beyond the scope of data that

determines the distributional tail and in turn the rare-event behaviors. Thus, before

we go to the above questions, we first focus on:

0. How does truncating the tail of the input model affect the rare-event estimate?

Our main contention is that heavy-tailed problems could be much more challeng-

ing than light-tailed counterparts regarding estimation and uncertainty quantification

using the standard approaches in Questions 1-3. This challenge roots from Question

0 in that truncating the input tail in a heavy-tailed system exerts a huge effect on the

rare-event estimate, when the truncation level represents the typical level of knowl-

edge that the data informs (e.g., the top 1% or 0.1% of the data). As a consequence,

using empirical distribution, or bootstrap on the empirical distribution, which sig-

nificantly ignores the tail content, would fail to estimate the rare-event quantity and

vastly under-estimate the uncertainty. Using extreme value theory in Question 3

to extrapolate tail (such as the peak-over-threshold method, e.g. [106]) helps to an

extent, but could introduce extra bias, at least using our fitting methods (though we

should point out that better techniques are available). On the other hand, the effect

of missing tails on light-tailed estimation is relatively milder.

The larger effect from truncating the input tail on heavy-tailed problems can be

explained from their large deviations behaviors that pertain to the one or several “big

jumps” [65, 54, 147], i.e., to invoke a rare event, one or several input components
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exhibit huge values. On the other hand, light-tailed systems invoke rare events by

having each component contributing a small shift and adding these contributions.

Thus, to accurately estimate a heavy-tail rare event, one needs to accurately estimate

the far tail of each input component, whereas this is not necessary in light-tailed

systems. In fact, ignoring the tail of heavy-tail inputs would lead to estimates as if

the system is light-tail, and the ultimate effect could be that the estimation error is

as large as the rare-event probability of interest, deeming the estimation meaningless.

We point out that, regarding Question 0, our study is related to [60, 22, 103] and

especially [134] and [95]. [60] investigated the sensitivities on the large deviations

rate when the input model deviates within a Rényi divergence ball. [22] showed in a

similar context that imposing a single ball over all inputs, thus allowing the distortion

of dependency structure among the inputs, can lead to a substantially heavier tail

than the original model when the Kullback-Leibler divergence is used. [103] studied

robust rare-event simulation when the input tail is unknown but subject to geometric

assumptions. [134] studied the impacts on the waiting times when the tail of service

times is misspecified or truncated. Relating to [95], they investigated the truncation

threshold needed to retain the heavy-tail characteristic of a system. They also con-

trasted it with the light-tail case and observed that the required threshold is higher

for heavy tail. Our observation in this regard is thus similar to [134], but with a

different setting (aggregation of i.i.d. variables) and focus on the statistical implica-

tions asked in Questions 1-3. Moreover, we investigate extensively on the numerical

evidence and identify situations where the theoretical findings hold or deviate.

In the remainder of this chapter, we will focus on a basic setup on the overshoot

of an aggregation of i.i.d. variables. Section 3.2 describes the estimation target and

explains the impacts of tail truncation in light- versus heavy-tailed cases. Section
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3.3 shows the numerical results and comparisons in input tail truncation, and the

use of empirical distributions and bootstrapping. We leave the full derivations and

generalizations to the journal version of this work.

3.2 Setting and Theory

We consider estimating the overshoot of an aggregation of n i.i.d. variables,

i.e., consider p = P (Sn > γ) where Sn = X1 + · · · + Xn and Xi ∈ R are i.i.d.

variables drawn from the distribution F . We denote X as a generic copy of Xi for

convenience. We assume the density of X exists and denote as f . Correspondingly,

we let F̄ (x) = 1 − F (x) be the tail distribution function. We let µ = E[X] < ∞.

Suppose γ = γ(n) is a high level that grows to ∞ as n → ∞. Throughout this

chapter, for any sequences an, bn ∈ R we write an = o(bn) if an/bn → 0 as n → ∞,

an = ω(bn) if an/bn → ∞ as n → ∞, and an = Θ(bn) if there exists an integer n0

such that M ≤ |an/bn| ≤M for n ≥ n0 and 0 < M ≤M <∞.

It is well known that, if γ = bn for some constant b > µ and X possesses exponen-

tial moments, then under mild additional assumptions p decays exponentially in n

[52]. On the other hand, if X is Pareto-tailed, then, as γ = ω(
√
n), p approximately

equals P (maxiXi > γ − nµ) or nF̄ (γ − nµ), which corresponds to the one-big-jump

behavior.

Our investigation pertaining to Question 0 is the following. Suppose we truncate

the distribution F (x) at the point u so that the density becomes 0 for x > u, i.e.,

consider the truncated distribution function given by

F̃u(x) =

 F (x)/F (u) for x ≤ u

1 for x > u

and correspondingly the truncated density f̃u(x) = (f(x)/F (u))I(x ≤ u), where
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I(·) denotes the indicator function. For convenience, denote p(G) as the probability

PG(Sn > γ) where Xi’s are governed by an arbitrary distribution G, and we simply

denote P (Sn > γ) if Xi’s are governed by F . We consider the approximation error

p(F̃u)− p(F ).

Note that, roughly speaking, this situation captures the case where we use the

empirical distribution to plug into our input model, so that the probability mass

is zero for regions outside the scope of data or close to zero at the very tail of the

data. The proportional constant F (u) is introduced to ensure a proper truncated

distribution and has little effect on the mass below u when u is reasonably big.

By definition, the approximation error is

(3.1) p(F̃u)− p(F ) =
P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n)

F (u)n
− P (Sn > γ).

3.2.1 Heavy-Tail Case

We first consider the Pareto-tail case. Suppose that F̄ has a regularly varying tail

in the form

(3.2) F̄ (x) = L(x)x−α(1 + o(1))

for some slowly varying function L(·) and α > 2, and E|Xi|2+δ <∞.

Suppose n → ∞ and γ = Θ(n) (or more generally γ = ω(
√
n log n)). In this

case, it is known that P (Sn > γ) is approximately P (at least one Xi > γ − nµ), or

probabilistically, that the rare event Sn > γ happens most likely due to a big jump

from one of the Xi’s (e.g. [65]). Thus, if the truncation level u is too small compared

to γ − nµ, then the big jump that contributes to the dominating mass of the rare

event is barred, making P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n) substantially smaller than

P (Sn > γ). In this situation, p(F̃u) becomes negligible compared to P (Sn > γ),
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and the approximation error (3.1) is effectively −P (Sn > γ). In other words, using a

truncated input distribution leads to a substantial under-estimate with a bias almost

equal to the magnitude of the rare-event probability itself.

Alternately, we can write the approximation error (3.1) as

(3.3)
−P (Sn > γ, at least one Xi > u) + P (Sn > γ)(1− F (u)n)

F (u)n
.

Again, when u is relatively small compared to γ−nµ, then the event {at least one Xi >

u} inside the probability P (Sn > γ, at least one Xi > u) is redundant, making this

probability asymptotically equivalent to P (Sn > γ) and that (3.3) is asymptotically

equivalent to −P (Sn > γ).

We summarize the above as:

Theorem III.1. Suppose Xi’s are i.i.d. random variables with regularly varying tail

distribution F̄ in the form (3.2) with α > 2 and E|X|2+δ < ∞. Let n → ∞ and

γ = nµ + ω(
√
n log n). Assume u ≤ (γ − nµ)/

√
log n. The discrepancy between

using a truncated distribution F̃u and the original distribution F in evaluating the

probability p(F ) = P (Sn > γ) as n→∞ is given by

p(F̃u)− p(F ) = −p(F )(1 + o(1)).

Proof. Using equation (1.45) in [127], when (γ − nµ)/
√
n log n → ∞ and u ≤ (γ −

nµ)/
√

log n, we have P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n) = o(nF̄ (γ − nµ)). Moreover,

by Theorem 1.9 in [127] (or equation (1.25b) therein), we have P (Sn > γ) = nF̄ (γ−

nµ)(1 + o(1)) under the given conditions. Thus P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n) =

o(P (Sn > γ)).



80

Moreover, note that if u = (γ − nµ)/
√

log n, we have F (u)n → 1. Thus

P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n)

F (u)n
= o(P (Sn > γ))

if u = (γ − nµ)/
√

log n. However, since the truncated distribution F̃u stochastically

dominates F̃u′ , i.e., ¯̃Fu(·) ≥ ¯̃Fu′(·), for any u, u′ such that u > u′, we must have, for

given γ, P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n)/F (u)n non-decreasing in u. Therefore we

have

P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n)

F (u)n
= o(P (Sn > γ))

for any u ≤ (γ − nµ)/
√

log n. This concludes the theorem.

Consider the case γ = bn for some b > µ. Theorem III.1 states that when

u is below (b − µ)n/
√

log n, the rare-event estimation is essentially void, at least

asymptotically. Note that this threshold is approximately linear in n. When the

number of input components n is large, it could be difficult to sustain an accuracy

level given a finite set of input data.

3.2.2 Light-Tail Case

We now consider X that possesses finite exponential moment, i.e., the logarithmic

moment generating function ψ(θ) = logE[eθX ] < ∞ for θ in a neighborhood of 0.

Consider γ = bn for some constant b > µ. Suppose that there exists a unique solution

θ∗ to the equation b = ψ′(θ). Then p(F ) = P (Sn > γ) exhibits exponential decay as

n→∞, i.e., −(1/n) log p(F )→ I where I is the rate function given by the Legendre

transform or the convex conjugate of ψ(θ)

I = sup
θ
{bθ − ψ(θ)} .
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In fact, if X is further assumed non-lattice, we have the following more accurate

asymptotic [30]

P (Sn > γ) =
1

θ∗
√

2πψ′′(θ∗)n
e−nI(1 + o(1)).

We have:

Theorem III.2. Consider γ = bn for some constant b > µ. Suppose that F is non-

lattice, satisfies ψ(θ) < ∞ for θ in a neighborhood of 0, and there exists a unique

solution θ∗ to the equation b = ψ′(θ). Then, as long as the truncation level u is chosen

such that neθ
∗uF̄ (u)→ 0, the discrepancy between using a truncated distribution F̃u

and the original distribution F in evaluating the probability p(F ) = P (Sn > γ) is

asymptotically negligible, i.e.,

p(F̃u)− p(F ) = −o(p(F )).

Sketch of Proof. We consider the rate function corresponding to p(F̃u), given by

Iu = sup
θ
{bθ − ψu(θ)}

where ψu(θ) denotes the logarithmic moment generating function of F̃u, namely

log(E[eθX ;X ≤ u]/F (u)). Now, consider a change of variable r = F (u), and abuse

notation slightly to write ψr(θ) = log(E[eθX ;X ≤ F−1(r)]/r) and the corresponding

rate function as Ir. By Taylor series expansion we have, as u→∞ or r → 1,

(3.4) Iu ≈ I − d

dr
ψr(θ

∗)(F (u)− 1)

where − d
dr
ψr(θ

∗) is the derivative of Ir by the generalized Danskin’s Theorem [48].
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Note that

d

dr
ψr(θ

∗) =
eθ
∗F−1(r)f(F−1(r))

f(F−1(r))E[eθ∗X ;X ≤ F−1(r)]
− 1

r

=
eθ
∗u

E[eθ∗X ;X ≤ u]
− 1

F (u)
.

Hence from (3.4) we have

Iu ≈ I +

(
eθ
∗u

E[eθ∗X ;X ≤ u]
− 1

F (u)

)
F̄ (u).

Now, one can show that, as u → ∞, we have θ∗ + δ with δ → 0. Thus the

approximation error p(F̃u)− p(F ) is given by

P (Sn > γ,Xi ≤ u ∀i = 1, . . . , n)

F (u)n
− P (Sn > γ)

≈ 1

(θ∗ + δ)
√

2πψ′′(θ∗ + δ, u)n
e
−nI−n

(
eθ
∗u

E[eθ
∗X ;X≤u]

− 1
F (u)

)
F̄ (u)

(3.5)

− 1

θ∗
√

2πψ′′(θ∗)n
e−nI .(3.6)

Thus, when

(3.7) n

(
eθ
∗u

E[eθ∗X ;X ≤ u]
− 1

F (u)

)
F̄ (u)→ 0

we have (3.6) being asymptotically negligible compared to (1/(θ∗
√

2πψ′′(θ∗)n))e−nI ,

which would conclude our claim. Finally, we only need to observe that (3.7) is

equivalent to neθ
∗uF̄ (u)→ 0.

Theorem III.2 postulates that as long as the truncation level u is chosen high

enough relative to n such that neθ
∗uF̄ (u) → 0, then the model error in using the

truncated input is negligible. In contrast to the heavy-tail case, this condition on u

dictates typically a logarithmic requirement on n. For instance, if F is an exponential

distribution, say with rate λ, then we have ne−(λ−θ∗)u → 0 which holds as long as

n = ω(log n). If F is a Gaussian distribution, say with mean µ and variance σ2, then

we have neθ
∗u−(u−µ)2/(2σ2)/

√
2πu→ 0 which holds as long as u = ω(

√
log n).
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3.3 Numerical Experiments

We consider estimating the probability p = P (
∑n

i=1Xi > γ), with different num-

ber of variables n, rarity levels γ and distributions of Xi. In each of our experiments,

we implement variance reduction techniques (including importance sampling and

conditional Monte Carlo; for further details, see [5]) to achieve better computation

efficiency and use sufficient samples to ensure negligible simulation noise. We inves-

tigate the effect of input tail truncation (Question 0) in Section 3.3.1, using empirical

distribution (Question 1) in Section 3.3.2, bootstrap (Question 2) in Section 3.3.3,

and using peak-over-threshold (Question 3) in Section 3.3.4.

3.3.1 Truncating Input Tail

We test with truncation points on the input distribution corresponding to 0.05,

0.01 and 0.001 tail probability masses respectively, i.e., t such that P (X > t) = α

where α = 0.05, 0.01, 0.001 (We shall refer to as the α tail quantile). When we

truncate the distribution at t, we only use f(x|x < t) to generate Xi’s. The estimate

with untruncated distribution is set as a baseline for comparison.

We generate Xi’s using the generalized Pareto distribution, varying the shape

parameter ξ and the scale parameter σ and fixing the threshold parameter to be

0. Note that when ξ = 0, the distribution is light-tailed (equivalent to exponential

distribution); when ξ > 0 the distribution is heavy-tailed and larger ξ gives heavier

tail. We vary ξ from 0 to 0.2 to observe what would change if the tail part grows

heavier. When ξ varies, we keep the mean of the distribution to be 1 by letting

σ = 1 − ξ. Our experiments also include different settings of γ and n. Figures 3.1

and 3.2 show the experiment results.

Before comparing light and heavy tails, we note that the tail part of the dis-
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(a) (b)

Figure 3.1: The probability estimation with untruncated and truncated distributions. “Trunc
0.001” denotes the probability estimate using distribution turncated at 0.001 tail quantile. (a)
γ = 60, n = 30. (b) γ = 100, n = 30.

(a) (b)

Figure 3.2: The probability estimation with untruncated and truncated distributions. “Trunc
0.001” denotes the probability estimate using distribution turncated at 0.001 tail quantile. (a)
γ = 40, n = 20. (b) γ = 60, n = 20.

tribution is generally quite important to the probability estimation. This claim is

supported by the gaps between the probability estimates using true distribution and

truncated distributions in Figures 3.1 and 3.2. For instance, suppose we truncate at

the 0.01 tail quantile. The gap between the estimate with the truth (between the

blue solid line and the yellow dash) is roughly greater than one order of magnitude

in almost all cases, which means we are not able to estimate a correct scale of the

probability without the 0.01 tail information. Moreover, for fixed γ and n, we see

a smooth trend of the estimates (in Figures 3.1 and 3.2) when the shape parameter
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increases from 0.

Next we compare the impacts between light and heavy tails. Although the trends

in the figures seem to suggest smaller gaps as ξ increases (heavier tail), a more proper

comparison should fix the target probability level and the truncation level. In this

case, the impact of the heavier tail appears larger. In particular, we compare the

gaps between the estimate with true distribution (blue solid line) and truncated

distribution (orange dash-dot line) at the 0.001 tail quantile in Figure 3.1a at shape

parameter value around 0 and in Figure 3.1b at value around 0.2. In these two cases,

the objective probabilities have similar values and the truncated tail quantile are the

same, and in the heavy-tail case, a larger gap can be seen. More specifically, the gap

is smaller than one order of magnitude in light tail (Figure 3.1a at 0) and larger than

one order of magnitude in heavy tail (Figure 3.1b at 0.2).

3.3.2 Data-driven Rare-Event Simulation

We consider the data-driven situation (i.e. when distribution of X is unknown but

data is available) and use empirical distributions to drive the simulation of p. Here we

set Xi as Gaussian distribution and generalized Pareto distribution with ξ = 0.2. We

independently generate data sets of Xi’s for 100 replications to construct empirical

distributions to drive the simulation. Figures 3.3 and 3.4 show the true probability,

the averaged estimates from all replications, and also the maximum and minimum

estimates among the replications to provide a measure of variability.

In the light-tail cases, Figures 3.3 and 3.4a show similar trends in that the esti-

mation variability reduces as the number of samples increases (the maximum and

minimum values approach to the true probability as sample increases). The vari-

ability is higher when the rarity level grows, which can be observed from the slower

convergence of the maximum and minimum estimates (Figure 3.4a versus Figure
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(a) (b)

Figure 3.3: The estimation performance with different number of samples based on 100 replications.
(a) Gaussian distribution, γ = 70. (b) Gaussian distribution, γ = 90.

(a) (b)

Figure 3.4: The estimation performance with different number of samples based on 100 replications.
(a) Gaussian distribution, γ = 100. (b) Generalized Pareto distribution, γ = 100.

3.3a).

On the other hand, the performance in the heavy-tail cases (Figure 3.4b) is more

“abnormal”. When the sample size is small, e.g. 104, the maximum estimate from

the 100 replications is smaller than the true probability. Even with more samples

(105 and 106), in most (92 and 75 out of the 100 respectively) replications, we obtain

overly small estimates compared to the true probability (a difference of more than

5 orders of magnitude). These suggest a severe underestimation in the heavy-tail

problem with limited data.
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Table 3.1: The coverage and the width of plain bootstrap confidence interval. The results are
computed from 30 replications. The rare event problem is defined by the sum of standard Gaussian
variables.

γ = 70, p = 2.6561× 10−5 γ = 100, p = 3.882× 10−9 γ = 115, p = 1.5734× 10−11

Samples Coverage CI Width Coverage CI Width Coverage CI Width
100 0.9 0.4019 0.9 0.07700 0.9 0.024
500 0.93 0.0203 0.93 2.75× 10−4 0.93 1.20× 10−5

1000 0.97 0.0051 0.97 1.89× 10−5 0.97 4.25× 10−7

5000 0.97 2.33× 10−4 0.97 1.155× 10−7 0.97 9.36× 10−10

3.3.3 Using Nonparametric Bootstrap

Next we investigate the use of bootstrapping to assess input uncertainty. Such

a technique has been studied in the simulation literature (e.g., [10]). In our exper-

iment, we construct bootstrapped empirical distributions by repeatedly resampling

with replacement and with full size from the data and using them to drive enough

simulation runs per resample. The bootstrap size is B = 100. We use the empir-

ical quantiles of the bootstrap estimates to construct a confidence interval for the

estimate. We repeat our experiments 100 times. Here we again consider Xi with

Gaussian distribution and generalized Pareto distribution with ξ = 0.2. We examine

whether the confidence intervals constructed from the bootstrap scheme provide the

target coverage (95% in our experiment).

Tables 3.1 and 3.2 suggest that the bootstrap works well in light-tailed problems,

but fails in heavy-tail problems. This ties to our explanation in Section 3.2 that

the impact from tail uncertainty is more profound in the heavy-tail case, which

cannot be captured through the standard bootstrap. Table 3.1 shows that, for light-

tail problems., the coverages of the confidence intervals are above 90% in all the

considered cases (different numbers of samples and rarity levels). Note that when

the number of samples is small (e.g. 100) the confidence interval width is relatively

big compared to the estimated probability (0.4 to 0.024 when p = 2.66 × 10−5 to

1.57 × 10−11). Though this could be pessimistic, these wide intervals successfully
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Table 3.2: The coverage and the width of bootstrap confidence interval. The results are computed
from 100 replications. The problem is defined by the sum of generalized Pareto variables. The true
probability is 1.9195× 10−7. “# of 0 Width” presents the number of replications with 0 confidence
interval width.

Sample Size Coverage CI Width (exclude 0) # of 0 Width
104 0.02 1.15× 10−5 97
106 0.02 2.40× 10−6 80
107 0.04 2.00× 10−7 3

detect the unreliable probability estimate (see experiments in Section 3.3.2).

On the other hand, Table 3.2 shows that the coverage from the standard bootstrap

are close to 0 in all considered cases, including the case of using 107 samples to

simulate a rare-event probability of order 10−7. Also, the last column shows that

when the sample size is smaller than 106, most of the constructed confidence intervals

have a 0 width. This suggests that in heavy-tail problems, the lack of tail information

not only causes problems in estimating the probability itself, but can also deem the

assessment of input uncertainty very challenging.

3.3.4 Bootstrap using Generalized Paerto Distribution

Lastly, we attempt to overcome the challenges in Section 3.3.3 by fitting a gener-

alized Pareto distribution to the tail of the data. We then run the bootstrap similar

to before taking into the fitted tail from each resample. We again consider different

truncation points with 0.05, 0.01 and 0.005 tail quantile in our experiment. Here

we use Xi with a t-distribution with degree of freedom ν = 4. The considered num-

bers of samples (from 104 to 106) are not enough for standard bootstrap to work

(see Table 3.2). Similar to the experiments in Section 3.3.3, each confidence in-

terval is calculated from 100 bootstrap size, and the reported results are based on

30 experiments. To fit the generalized Pareto, we implement the maximum likeli-

hood estimation (MLE), the method-of-moments (MOM) and probability-weighted

moments (PWM) [41, 88].
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(a) (b)

Figure 3.5: The confidence interval coverage and width of the generalized Pareto tail bootstrap
scheme (fitted using MLE) on the problem with p = 5.7095× 10−8. (a) Coverage. (b) Average CI
Width.

Table 3.3: The coverage and the width of confidence interval from bootstrap using generalized
Pareto distribution. “# Spl” represents the number of samples and “Tail Qtl” represents the tail
quantile of the truncation points. The problem has a rare event probability p = 5.7095× 10−8.

# Spl 104 105 106

Tail Qtl Method Coverage CI Width Coverage CI Width Coverage CI Width

0.05
MLE 0.9 2.10× 10−6 0.27 4.17× 10−8 0 6.89× 10−9

MOM 0.67 1.23× 10−6 0.53 4.89× 10−7 0.30 3.19× 10−7

PWM 0.87 1.81× 10−6 0.30 4.57× 10−8 0 7.04× 10−9

0.01
MLE 0.90 3.36× 10−5 0.77 8.46× 10−7 0.80 7.56× 10−8

MOM 0.60 1.26× 10−6 0.70 8.10× 10−7 0.77 5.61× 10−7

PWM 0.90 1.09× 10−5 0.77 8.13× 10−7 0.77 8.84× 10−8

0.005
MLE 0.87 5.81× 10−5 0.90 1.46× 10−6 0.97 1.42× 10−7

MOM 0.63 1.17× 10−6 0.67 8.43× 10−7 0.87 6.10× 10−7

PWM 0.87 1.25× 10−5 0.83 1.58× 10−6 0.97 1.70× 10−7

The experiment results show that although the overall performance of this Pareto

tail bootstrap scheme is better than the standard bootstrap, the obtained confidence

interval can still be misleading. The latter is caused by the model biasedness from the

generalized Pareto in finite sample that the bootstrap cannot overcome. As shown

in Figure 3.5, the coverage could drop to 0 as we increase the number of samples.

This is because when the interval width shrinks as the number of samples increases,

the model biasedness starts to surface.

Among the three approaches for fitting generalized Pareto distribution, MLE and

PWM turn out to be more reliable than MOM (see Table 3.3, where the coverage
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of MOM is less than the other two approaches in most cases). The performance

matches the documented fact that MOM is unreliable when the shape parameter

ξ > 0.2. When the sample size is smaller (with 104 samples), PWM gives a smaller

average confidence interval width than MLE, while providing similar coverage (e.g.

with 0.01 tail quantile the widths are 3.36 × 10−5 for MLE and 1.09 × 10−5 for

PWM). It therefore suggests that PWM is more suitable for smaller samples. When

the sample size is large (106), MLE has an upper hand in terms of confidence interval

width (e.g. with 0.005 tail quantile the widths are 1.42×10−7 for MLE and 1.70×10−7

for PWM).



CHAPTER IV

Importance Samplers for Rare Events in Prediction Models

4.1 Introduction

We consider the problem of estimating P (g(X) > γ) via simulation, where X ∈ Rd

is a random input and γ ∈ R is a high threshold, so that the probability is small and

leads to a rare-event simulation problem. We are interested particularly in g(·) that

is the response of a sophisticated predictor, built for instance from an off-the-shelf

machine learning toolbox. This problem is motivated as a step towards building

good learning methods that take into account the extremal risks of machine learning

prediction.

To be more concrete, suppose we are interested in training the parameter θ of

a predictor, say Yθ(X), by minimizing a risk criterion E[L(Yθ(X), Y (X))], where

Y (·) is the true response function. Suppose that this loss function L exerts a big

value in some “hidden region” where the occurrence of X is rare. The data in this

case may not reveal satisfactorily this hidden risk. An approach to learn a good

risk-conscious predictor in this situation is to fit the data using some probability

distribution, and use it to train the predictor. A judicious choice of the distribution

allows one to generate Monte Carlo samples, and to use importance sampling (IS)

to populate more samples in the rare-event set. Of course, this approach requires

91
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various aspects of considerations, both statistically and practically. However, one

step towards handling such type of problems involves how to speed up simulation for

a machine learning model, which is precisely what we address in this chapter.

As a motivating example, autonomous vehicle (AV) design often uses predic-

tions of the movements of surrounding cars to decide its own behavior (e.g. [94]).

Predictions that seriously deviate from the reality can post substantial danger and

catastrophic failure. However, unusual surrounding driving movements that lead to

serious deviations of the predictions are rare. In this case, one can represent the

driving environment as a stochastic model (the X), which provides inputs for the

prediction model (the Yθ(X)) (e.g. [168, 91]), and a risk-sensitive predictive training

could involve rare-event simulation on functionals associated with Yθ(X).

4.2 Problem Setting

We state more precisely our problem setting. Suppose we are given a prediction

model g(·), with the input X ∈ Rd and the output g(X) ∈ R. Suppose that the input

follows a standard Gaussian distribution, i.e, X ∼ N(0, Id), where Id is the d × d

identity matrix. We want to estimate the probability p = P (g(X) ≥ γ), where γ ∈ R

is a threshold that triggers a rare event. We note that the Gaussian assumption can

be relaxed without much difficulty in our framework to, for instance, mixtures of

Gaussians, which can expand our scope of applicability. For simplicity, however, we

will concentrate on the standard Gaussian distribution in this chapter.

When p is small, estimation using crude Monte Carlo is challenging due to large

variance. A common approach to speed up simulation in such contexts is to use IS

(see, e.g. the surveys [30, 5, 149, 72, 97, 24], among others). Suppose X has a density
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f . The basic idea of IS is to change the sampling distribution to say f̃ , and output

(4.1) Z = I(g(X) ≥ γ)
f(X)

f̃(X)
,

where X is now sampled from f̃ . This output is unbiased if f is absolutely continuous

with respect to f̃ over the rare-event set {x : g(x) ≥ γ}. Moreover, by choosing f̃

appropriately, one can substantially reduce the simulation variance.

In the case of Gaussian input distributions, finding a good f̃ is particularly handy

and one approach to devise good IS distributions uses the notion of so-called dominat-

ing point. Starting from a standard Gaussian distribution, a well-known IS scheme

is as follows (see, e.g., [150]; [57]; [25]; [2]):

1. If there exists a dominating point a, i.e., a point a such that a = arg minx{‖x‖2 :

g(x) ≥ γ} and {x : g(x) ≥ γ} ⊆ {x : a′(x − a) ≥ 0}, then we use a Gaussian

distribution with mean at a as the IS distribution f̃ .

2. If we can split {x : g(x) ≥ γ} into R1, ...,Rr, and for each Ri, i = 1, ..., r

there exists a dominating point ai such that ai = arg minx{‖x‖2 : x ∈ Ri} and

Ri ⊆ {x : a′i(x− ai) ≥ 0}, then we use a Gaussian mixture distribution with r

components as the IS distribution f̃ , where the ith component has mean ai.

Note that the quantity arg minx{‖x‖2 : g(x) ≥ γ} is equivalent to arg maxx{φ(x) :

g(x) ≥ γ}, where φ is the standard Gaussian density. The condition 2a′(x−a) ≥ 0 is

the first order condition of optimality for the optimization minx ‖x‖2 over a convex

set for x, and so the first situation above occurs if {x : g(x) ≥ γ} is a convex

set (though it can be more general). The proposals above guarantee the so-called

asymptotic efficiency or logarithmic efficiency (e.g., [5]) of the IS, meaning that the

relative error, measured by the ratio of standard deviation of a single IS output

over the probability of interest, grows at most polynomially in the location of the
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rare-event set.

Given the proposal above, one can follow Algorithm 1 to obtain the dominating

points a1, ..., ar to build an efficient IS distribution in our prediction model context.

The procedure uses a sequential “cutting plane” approach to exhaustively look for

all dominating points, by reducing the search space at each iteration via taking away

the regions covered by the existing dominating points. The set A in the procedure

serves to store the dominating points we have found throughout the procedure. At

the end of the procedure, one obtain a set A that contains all the dominating points

a1, ..., ar.

Algorithm 1: Procedure to find all dominating points for the set {x : g(x) ≥ γ}.
Input: Prediction model g(x), threshold γ.
Output: Dominating-points set A.

1 Start with A = ∅;
2 While {x : g(x) ≥ γ, a′i(x− ai) < 0, ∀ai ∈ A} 6= ∅ do
3 Find a dominating point a by solving the optimization problem

a = arg min
x
‖x‖2(4.2)

s.t. g(x) ≥ γ
a′i(x− ai) < 0, for ∀ai ∈ A

and update A← A ∪ {a};
4 End

To apply Algorithm 1 to find all dominating points, the key is to be able to solve

the optimization problems (4.2). We will investigate this for two popular prediction

models, random forest and neural network (NN). Section 4.3 studies the tractable

formulations using some recent work on optimization over these models, while Section

4.4 applies them to design IS schemes and demonstrate some numerical results.

4.3 Tractable Formulation For Prediction Models

We discuss how to formulate the optimization problems in Algorithm 1 as a mixed

integer program (MIP) with quadratic objective function and linear constraints. Sec-
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tions 4.3.1 and 4.3.2 focus on a basic NN and random forest respectively. Section

4.3.3 then further discusses solving larger-scale problems using a simple bisection

method that leverages existing techniques in Benders decompositions in the random

forest case.

4.3.1 Tractable Formulation for Neural Network

We consider a NN with L layers and for each layer, the number of neurons is

n1, ..., nL. (As we focus on output g(x) ∈ R, we have nL = 1.) We use rectified

linear unit (ReLU) for each neuron, i.e., the activation function for each neuron is

max{0, x}. The input of the jth neuron in layer i is weighted from the output of

the previous layer by a vector wji ∈ Rni−1 and is added by a bias bji ∈ R. We use

si ∈ Rni , i = 1, ..., L to represent the output of the ith layer. At the ith layer, given

the output from the (i− 1)th layer si−1, we have si ∈ Rni , where the jth element of

si is given by sji = max{wji
T
si−1 + bji , 0}. For further details on such type of NNs,

see, e.g., [76].

Here we reformulate (4.2) by replacing g(x) ≥ γ with constraints that represent

the structure of the NN:

sL ≥ γ

sji = max{wji
T
si−1 + bji , 0}, i = 1, ..., L, j = 1, ..., ni

s0 = x.

[158] discussed one approach to express ReLU as a mixed integer model, by in-

troducing auxiliary binary variables z. For y = max(x, 0), if we have l ≤ x ≤ u,

where l ≤ 0 and u ≥ 0 are the smallest and largest possible values of x, then we

set z = I(x ≥ 0). We can reformulate y = max(x, 0) as a set of linear constraints:

y ≤ x− l(1− z); y ≥ x; y ≤ uz; y ≥ 0; z ∈ {0, 1}.
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Using this approach, we rewrite problem (4.2) with A = ∅ as

min
x,s0,...,sL,z1...,zL

‖x‖2(4.3)

s.t. sL ≥ γ

si ≤ Wi
T si−1 + bi − l(1− zi), i = 1, ..., L

si ≥ Wi
T si−1 + bi, i = 1, ..., L

si ≤ uzi, i = 1, ..., L

si ≥ 0, i = 1, ..., L

zi ∈ {0, 1}ni , i = 1, ..., L

s0 = x,

where Wi = [w1
i , ..., w

ni
i ] ∈ Rni−1×ni , bi = [b1

i , ..., b
ni
i ]T ∈ Rni , and si = [s1

i , ..., s
ni
i ]T ∈

Rni .

Note that this optimization has a quadratic objective and linear constraints. Sim-

ilarly, we can formulate (4.2) by adding linear constraints a′i(x− ai) < 0, ∀ai ∈ A to

(4.3), which arrives at the same optimization class. Medium-size instances of these

problems can be handled by standard solvers.

4.3.2 Tractable Formulation for Random Forest

To look for dominating points in a random forest or tree ensemble, we follow the

route in [124] that studies optimization over these models. We consider a random

forest as follows. The input x has d dimensions. Suppose the model consists of T

trees f1, ..., fT . In each tree ft, we use ai,j to denote the jth unique split point for

the ith dimension of the input x, such that ai,1 < ai,2 < ... < ai,Ki , where Ki is the

number of unique split points for the ith dimension of x.

Following the notations of [124], let leaves(t) be the set of leaves (terminal nodes)
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of tree t and splits(t) be the set of splits (non-terminal nodes) of tree t. In each

split s, we let left(t) be the set of leaves that are accessible from the left branch (the

query at s is true), and right(t) be the set of leaves that are accessible from the right

branch (the query at s is false). For each node s, we use V(s) ∈ {1, ..., d} to denote

the dimension that participate in the node and C(s) ∈ {1, ..., KV(s)} to denote the

set of values of dimension i that participate in the split query of s (C(s) = {j} and

V(s) = {i} indicates the query xi ≤ ai,j).

We use λt to denote the weight of tree t (
∑T

t=1 λt = 1). For each l ∈ leaves(t),

pt,l denotes the output for the lth leaf in tree t.

To formulate the random forest optimization as an MIP, we introduce binary

decision variables zi,j and yt,l. Firstly, we have

(4.4) zi,j = I(xi ≤ ai,j), i = 1, ..., d, j = 1, ..., Ki.

We then use yt,l = 1 to denote that tree t outputs the prediction value pt,l on

leaf l, and yt,l = 0 otherwise. We use z,y to represent the vectors of zi,j and yt,l

respectively. For the input x, we assume that x ∈ [−B,B]d and |ai,j| ≤ B. Then

(4.4) is represented by the following constraints

xi ≤ ai,j + 2(1− zi,j)B

xi > ai,j − 2zi,jB.
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Now we formulate (4.2) with A = ∅ as the following MIP

min
x,y,z

‖x‖2(4.5)

s.t.
T∑
t=1

∑
l∈leaves(t)

λtpt,lyt,l ≥ γ

∑
l∈leaves(t)

yt,l = 1

∑
l∈left(t)

yt,l ≤
∑
j∈C(s)

zV(s),j, ∀t ∈ {1, ..., T}, s ∈ splits(t)

∑
l∈right(t)

yt,l ≤ 1−
∑
j∈C(s)

zV(s),j, ∀t ∈ {1, ..., T}, s ∈ splits(t)

zi,j ≤ zi,j+1, ∀i ∈ {1, ..., d}, j ∈ {1, ..., Ki − 1}

zi,j ∈ {0, 1}, ∀i ∈ {1, ..., d}, j ∈ {1, ..., Ki}

yt,l ≥ 0, ∀t ∈ {1, ..., T}, l ∈ leaves(t)

xi ≤ ai,j + 2(1− zi,j)B

xi > ai,j − 2zi,jB.

This formulation again has a quadratic objective function and linear constraints.

Similarly, we can formulate (4.2) with A 6= ∅ by adding linear constraints a′i(x−ai) <

0, ∀ai ∈ A to (4.5).

4.3.3 Bisection Algorithm and the Benders Decomposition for Solving Larger-scale
Problems

The MIPs (4.5) are already tractable for small- and medium-size problems. Nonethe-

less, because of the special structure of (4.5), we can obtain, for larger-scale problems,

an efficient algorithm based on a bisection on a “dual” form of the problem. The

latter is a linear MIP and can be solved by the Benders decomposition considered in

[124].
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We consider the “dual” form problem of (4.2) with A = ∅:

h(η) = max
x

g(x)(4.6)

s.t. ‖x‖2 ≤ η.

Note that (4.6) is non-decreasing in η. Moreover, we know that if η is above the

optimal objective value for (4.2) with A = ∅, then (4.6) will output an objective

value at least γ. On the other hand, if η is below that, then (4.6) will output a value

less than γ. This motivates us to propose a bisection method that does a line search

on the smallest value of η that gives g(x) ≥ γ. This is summarized in Algorithm 2.

Algorithm 2: Bisection algorithm for solving (4.2) with A = ∅.
Input: Prediction model g(x), threshold γ, tolerance parameters ε.
Output: Optimal solution a.

1 Set η1 = 0 and η2 = M , where M is large enough (e.g. M = dB2);
2 Solve

γ1 = h(η1)(4.7)

and

γ2 = h(η2);(4.8)

3 While η2 − η1 ≥ ε do

4 Update ηm = η1+η2
2 ;

5 Solve

γm = h(ηm);(4.9)

6 If γm ≥ γ do
7 Update η2 ← ηm;
8 Else do
9 Update η1 ← ηm;

10 End;
11 End;
12 Update a using the optimal solution x from (4.8) ;

Note that Algorithm 2 converges to the solution of (4.5) as ε goes to 0. Also,

the number of iterations we need is given by Niter < log M
ε
/ log 2. Therefore, as long

as we can solve (4.6) efficiently, the same is true for the dominating point problem.

But, because the quadratic constraint in (4.6) only results in eliminating some of



100

the dummy binary variables in the MIP formulation, we recover the formulation

suggested in [124], but with less variables, to represent (4.6). This means that (4.6)

is equivalent to

max
x,y,z

T∑
t=1

∑
l∈leaves(t)

λtpt,lyt,l(4.10)

s.t.
∑

l∈leaves(t)

yt,l = 1

∑
l∈left(t)

yt,l ≤
∑
j∈C(s)

zV(s),j, ∀t ∈ {1, ..., T}, s ∈ splits(t)

∑
l∈right(t)

yt,l ≤ 1−
∑
j∈C(s)

zV(s),j, ∀t ∈ {1, ..., T}, s ∈ splits(t)

‖x‖2 ≤ η(4.11)

zi,j ≤ zi,j+1, ∀i ∈ {1, ..., d}, j ∈ {1, ..., Ki − 1}(4.12)

zi,j ∈ {0, 1}, ∀i ∈ {1, ..., d}, j ∈ {1, ..., Ki}(4.13)

xi ≤ ai,j + 2(1− zi,j)B(4.14)

xi > ai,j − 2zi,jB(4.15)

yt,l ≥ 0, ∀t ∈ {1, ..., T}, l ∈ leaves(t).

In (4.10), let us consider x, z as one set of variables and y as the other set of variables,

where y can be further partitioned as y = (y1, ...,yT ) and yT consists of yt,l’s. We

observe that for any two trees t 6= t′, yt and yt′ does not appear together in any

constraints and are only linked through z. This observation allows us to use the

Benders decomposition as [124] suggests.

We rewrite problem (4.10) as follows:

max
x,z

T∑
t=1

λtGt(z)(4.16)

s.t. constraints (4.11)-(4.15),
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where Gt(z) is the optimal value of the following subproblem:

Gt(z) = max
y,z

∑
l∈leaves(t)

λtpt,lyt,l

(4.17)

s.t.
∑

l∈leaves(t)

yt,l = 1

∑
l∈left(t)

yt,l ≤
∑
j∈C(s)

zV(s),j, ∀t ∈ {1, ..., T}, s ∈ splits(t)

∑
l∈right(t)

yt,l ≤ 1−
∑
j∈C(s)

zV(s),j, ∀t ∈ {1, ..., T}, s ∈ splits(t)

yt,l ≥ 0, ∀t ∈ {1, ..., T}, l ∈ leaves(t).

The dual of the linear problem (4.17) is

min
αt,βt,ζt

∑
s∈splits

αt,s

 ∑
j∈C(s)

zV(s),j

+
∑

s∈splits

βt,s

1−
∑
j∈C(s)

zV(s),j

+ ζt(4.18)

s.t.
∑

s:l∈left(t)

αt,s +
∑

s:l∈right(t)

βt,s + ζt ≥ pt,l, ∀l ∈ leaves(t)

αt,s, βt,s ≥ 0, s ∈ splits.

We use Dt to denote the set of feasible (αt, βt, ζt) for subproblem (4.18) of tree t. We

write (4.16) in terms of the dual variables (αt, βt, ζt):

max
x,z,θ

T∑
t=1

λtθt(4.19)

s.t.
∑

s∈splits

αt,s

 ∑
j∈C(s)

zV(s),j

+
∑

s∈splits

βt,s

1−
∑
j∈C(s)

zV(s),j

+ ζt

≥ θt, ∀(αt, βt, ζt) ∈ Dt, t ∈ {1, ..., T}(4.20)

constraints (4.11)-(4.15).

With problem (4.19), we can use a constraint generating scheme. We start with

solving problem (4.19) using a subset of D̄t ⊆ Dt in the constraint (4.20). We then
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solve (4.18) for each tree t to check if there exists a solution (αt, βt, ζt) for which the

constraint (4.20) is violated. If so, we add the constraint to (4.19) and solve it again;

otherwise, we obtain the optimal solution. For a quick method to solve problem

(4.18), please refer to Proposition 5 in [124].

The decomposition of (4.2) with non-empty A follows the same route as above and

the resulting formulation is very similar. The dual of the subproblem is exactly the

same as (4.18), while the main problem is (4.19) with a set of additional constraints

a′i(x− ai) < 0, ∀ai ∈ A.

4.4 Applications to Importance Sampling and Numerical Experiments

In this section, we use several sets of simple experiments to illustrate the IS

scheme using dominating points generated from Algorithm 1, for the described NN

and random forest. In the first set of problems, we consider an example where there

is only one dominating point. In the second set of problems, we solve a problem with

multiple dominating points.

To illustrate the efficiency of the proposed IS scheme, we compare with a naive

use of a uniform IS estimator as follows. Consider a problem where X follows a

distribution f(x), and the set {x : g(x) ≥ γ} is known to lie inside [l, u]d where d is

the dimension of the input variable X. The uniform IS estimator is given by:

Zuniform = I(g(X) ≥ γ)f(X)(u− l)d,

where X is generated from a uniform distribution on [l, u]d. This estimator has a

polynomially growing relative efficiency as the magnitude of the dominating points

grow, but the efficiency also depends significantly on the size of the bounded set, i.e.,

l, u, d.
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Figure 4.1: Response surface of the neu-
ral network.

Figure 4.2: Rare-event set {x : g(x) ≥
γ} of the neural network.

4.4.1 Neural Network Example: IS with A Single Dominating Point

We recall the problem setting that the input X follows a standard Gaussian

distribution, and we are interested in estimating the probability P (g(X) ≥ γ). Here

g(x) represents the output of a NN prediction at x and γ is a real-valued threshold.

The NN has 3 layers with 100 neurons in each of the 2 hidden layers, and all neurons

are ReLU. We consider only X in the region [0, 5]2, so that g(x) can be thought of

as being set to 0 outside this box.

The NN is trained as follows. We generate 2,601 samples using a uniform grid over

the space [0, 5]2 with a mesh of 0.1 on each coordinate. For the input x = [x1, x2],

we use the function

(4.21) y(x) = (x1 − 5)3 + (x2 − 4.5)3 + (x1 − 1)2 + x2
2 + 500

to generate output value as the “truth” . We obtain the dataset D = {(Xn, Yn)}

and use it to train the NN with gradient descent. We present the response surface of

g(x) in Figure 4.1. We use γ = 500 in this example and the shape of the rare-event

set {x : g(x) ≥ γ} in this case is presented in Figure 4.2. We observe that the set

is roughly convex and should have a single dominating point. By solving (4.3), we

obtain the dominating point for the set at (3.3676, 2.6051).
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Figure 4.3: Probability estimation with
different numbers of samples.

Figure 4.4: 95% confidence interval
half-width with different numbers of
samples.

We use the obtained dominating point to construct the IS estimator described in

(4.1). In Figures 4.3 and 4.4, we compare the performance of the proposed IS scheme

with that of the uniform IS estimator. Figure 4.3 shows the estimated probabilities

of the two estimators as the number of samples increases in a single sample path.

We observe that the uniform IS (black dash line) has more fluctuations than the

proposed IS (red solid line), which indicates that the proposed IS gives more stable

estimates. This observation is confirmed in Figure 4.4 that shows the half-width of

the 95% confidence intervals of the two estimators as the number of samples varies.

Our IS appears to have shorter confidence intervals and it only takes about 12,000

samples for our IS to reach the accuracy that the uniform IS reaches with 50,000

samples.

4.4.2 Neural Network Example: IS with Multiple Dominating Points

We now consider true output values generated according to the function

(4.22) y(x) = 10× e−(x1−5
3 )

2
−(x2−5

4 )
2

+ 10× e−x1
2−(x2−4.5)2

.

We use a uniform grid over [0, 5]2 with a mesh of 0.1 on each coordinate to train a

neural network with 2 hidden layers, 100 neurons in the first hidden layer and 50

neurons in the second hidden layer. All neurons in the neural network are ReLU.
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Figure 4.5: Response surface of the neu-
ral network.

Figure 4.6: Rare-event set {x : g(x) ≥
γ} of the neural network.

Figure 4.7: Probability estimation with
different numbers of samples.

Figure 4.8: 95% confidence interval
half-width with different numbers of
samples.

The response surface of the trained model g(x) is shown in Figure 4.5. We set γ = 8.

The shape of the rare-event set is shown in Figure 4.6. We observe that the set now

consists of two separate regions and therefore we expect to obtain multiple domi-

nating points. Using Algorithm 1 with the formulation in Section 4.3.1, we obtain

two dominating points, (0.113, 4.162) and (4.187, 3.587). We use these dominating

points to construct a mixture distribution, as discussed in Section 4.2, as the IS

distribution.

The comparison between the proposed IS scheme and the uniform IS is shown in

Figures 4.7 and 4.8. In Figure 4.7, the probability estimates of the proposed IS (red

solid line) appear more stable than that of the uniform IS (black dash line). Figure

4.8 further shows that the confidence intervals of the proposed IS are shorter. The
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Figure 4.9: Response surface of the ran-
dom forest.

Figure 4.10: Rare-event set {x : g(x) ≥
γ} of the random forest.

efficiency of the proposed IS is roughly 4 times better than the uniform IS, considering

that the confidence interval half-width of the proposed IS at 50,000 samples is similar

to the uniform IS at 200,000 samples.

Thus, comparing with uniform IS, the estimation accuracy of the proposed IS is

better in both experiments, demonstrating the efficiency of the IS scheme obtained

in the formulation in Section 4.3.1.

4.4.3 Random Forest Example: IS with A Single Dominating Point

Consider now that g(x) represents a random forest. The random forest is trained

from samples generated uniformly over the space [0, 5]2 with a mesh 0.25 on each

coordinate, with output values from (4.21). The trained random forest model consists

of 3 trees with 563, 535, 565 nodes respectively. The response surface of the model

g(x) is shown in Figure 4.9. Here we use γ = 500 and the shape of the rare-

event set {x : g(x) ≥ γ} in presented in Figure 4.10. We use Algorithm 2 to

obtain the dominating point of the rare-event set. In the algorithm, we choose the

tolerance parameters to be ε = 0.01. This gives us the dominating point for the set

at (3.00001, 2.62501).

We use the proposed IS and the uniform IS to estimate the probability P (g(x) ≥

γ). In Figure 4.11, we observe that the estimates from the uniform IS (black dash
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Figure 4.11: Probability estimation
with different numbers of samples.

Figure 4.12: 95% confidence interval
half-width with different numbers of
samples.

line) are relatively unstable, compared to those from the proposed IS (red solid line).

In Figure 4.12, the confidence intervals of the uniform IS (black dash line) appear

wider than the proposed IS. These comparisons are similar to the neural network

case.

4.4.4 Random Forest Example: IS with Multiple Dominating Points

We now generate input samples uniformly over [0, 5]2 with a mesh 0.2 on each

coordinate, with the output values drawn from (4.22). The random forest has 2 trees

in this example. The trained model using the generated dataset has 865 nodes in the

first tree and 835 nodes in the second tree. Figure 4.13 shows the response surface of

the random forest. We consider γ = 8 and the shape of the rare-event set is shown

in Figure 4.14, which shows that the rare event set consists of two separate regions.

We find dominating points by implementing Algorithm 1 combined with Algo-

rithm 2. Again, we use ε = 0.01 and δ = 0.01 for the tolerance level. Note that the

tolerance level we choose could generate an error on the dominating point we obtain.

For ε = 0.01, the error is given by ‖a‖2−‖â‖2 ≤ 0.02, where a is the true dominating

point and â is the dominating point we obtain from the bisection. This error might

bring an issue to Algorithm 1. That is, the constraint â(x− â) < 0 we add may not
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Figure 4.13: Response surface of the
random forest.

Figure 4.14: Rare-event set {x : g(x) ≥
γ} of the random forest.

Figure 4.15: Probability estimation
with different numbers of samples.

Figure 4.16: 95% confidence interval
half-width with different numbers of
samples.

cut off the corresponding half-space. This can possibly lead to an infinite loop for

Algorithm 1. Here we resolve this issue by modifying the additional constraint as

â(x− â) < −δ, where δ > 0 is approximately in the scale of
√
ε. In this case, we use

δ = 0.1. We obtain two dominating points, (0.1, 3.9) and (4.1, 3.3).

The obtained dominating points allow us to implement the proposed IS. Compared

to the uniform IS, Figures 4.15 and 4.16 show that the proposed approach is more

efficient as in the previous experiments. The estimates of the proposed approach are

more stable (red solid line in Figure 4.15) and the confidence intervals are shorter (red

solid line in Figure 4.16). The uniform IS (black dash line in Figure 4.16) requires

roughly 3 times more samples to achieve the same level of accuracy as the proposed

IS.



CHAPTER V

Accelerating Autonomous Vehicle Tests using Importance
Sampling and Piecewise Mixture Models

5.1 Introduction

It is critical to thoroughly and rigorously test and evaluate an Automated Vehi-

cle (AV) before its release. Recent crashes involving a Google self-driving car [77]

and a Tesla Autopilot vehicle [1] attracted the public’s attention to AV testing and

evaluation. While these AVs are generally considered as industrial leaders, because

they use public roads for testing, statistically they have not yet accumulated enough

miles. The Tesla Autopilot, in particular, was criticized for being released too early

in the hands of the general public [69].

Currently, there are no standards or protocols to test AVs at automation level 2

or higher. Many companies adopt the Naturalistic Field Operational Tests (N-FOT)

approach [71]. However, this method is inefficient because safety critical scenarios

rarely happen in daily driving. The Google Self-driving cars accumulated 1.9 million

driving. This distance, although sounds a lot, provides limited exposure to critical

events, given that U.S. drivers encounter a police reported crash every five hundred

thousand miles on average and fatal crash every one hundred million miles [133]. In

the meantime, both Google and Tesla update their software throughout the process,

which may have improved safety, but the newest version of the AV has not accu-

109
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mulated that many miles as they have claimed. In summary, today’s best practice

adopted by the industry is time-consuming and inefficient. A better approach is

needed.

Besides the N-FOT, the test matrix approach [136, 7] and the worst-case scenarios

approach [98, 161, 118] are two alternative methods for vehicle evaluation. These

alternative methods also face some challenges for AV evaluation. The test matrix

approach uses fixed and predefined test scenarios, which allows AVs to be tuned to

perform well in these tests [136]. Moreover, it is not clear how to correlate the test

results with real-world conditions [7]. The worst-case evaluation can identify the

weakness of a vehicle control system, but it does not provide sufficient information

about the risk of the vehicle system.

Our approach follows the Accelerated Evaluation concept we proposed [173] to

provide a brand-new alternative that can handle these challenges. The basic concept

is that as high-level AVs just began to penetrate the market, they mainly interact

with human-controlled vehicles (HVs). Therefore we focus on modeling the interac-

tion between the AV and the HV around it. The evaluation procedure involves four

steps:

• Model the behaviors of the “primary other vehicles” (POVs) represented by

f(x) (original distribution) as the major disturbance to the AV using large-

scale naturalistic driving data.

• Skew the disturbance statistics from f(x) to modified statistics f ∗(x) (acceler-

ated distribution) to generate more frequent and intense interactions between

AVs and POVs.

• Conduct “accelerated tests” with f ∗(x).

• Use the Importance Sampling (IS) theory to “skew back” the results to under-
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Figure 5.1: Acceleration evaluation based on single parametric distribution and Piecewise Mixture
Distribution.

stand real-world behavior and safety benefits.

This approach has been successfully applied to evaluate AVs in the frontal crash

with a cut-in vehicle [173] and also frontal crash with a lead vehicle [174, 172]. This

approach was confirmed to significantly reduce the evaluation time while accurately

preserving the statistical behavior of the AV-HV interaction. In the previous studies,

the evaluation time was reduced by two to five orders of magnitudes - the accelerated

rate depends on the test scenarios, where rarer events achieve higher accelerated

rate. The non-accelerated models and the accelerated models were built based on

signal component distributions. While this method does benefit from its simple

mathematical form, it has a few drawbacks as illustrated in Fig. 5.1 a). i) Lack of

accuracy, i.e. the fitting of the rare events (usually the tail part of the statistical

distributions) would be dominated by the fitting of the normal driving behaviors

(the majority part of the distributions), which may induce large errors. ii) Lack of

efficiency, i.e. the full potential in higher accelerated rate is not achieved due to the

lack of flexibility of the modified accelerated models.

In this chapter, we proposed a more general framework for the Accelerated Evalua-

tion method to overcome the aforementioned limitations based on Piecewise Mixture

Distribution Models as illustrated in Fig. 5.1 b). The piecewise model is a more

flexible structure that can better captures the tail part of the data (more accurate)
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and provides better efficiency for accelerating the evaluation. In this chapter, we

implemented the Accelerated Evaluation method on the lane change scenario to il-

lustrate the benefits of using the proposed framework. In this chapter, we thoroughly

discuss the model fitting and Cross Entropy method with proposed framework and

present practical tips to overcome numerical issues and reduce computational efforts.

We demonstrate this method by evaluating the longitudinal control system reacting

to vehicles making cut-in lane changes. Some preliminary work are present in a

conference version [93].

Section 5.2 will introduce the lane change model based on single parametric dis-

tributions. In Section 5.3, we present the new lane change model with Piecewise

Mixture Distributions. We establish the Accelerated Evaluation in Section 5.4 and

discuss the Cross Entropy method with Piecewise Mixture Distribution models in

Section 5.5. Simulation results are discussed in Section 5.6. Section 5.7 concludes

this chapter.

5.2 Accelerated Evaluation with Single Parametric Distributions

The lane change events were extracted from the Safety Pilot Model Deployment

(SPMD) database [21]. With over 2 million miles of vehicle driving data collected

from 98 cars over 3 years, we identify 403,581 lane change events. As shown in Fig.

5.2, the lane change events are detected by the SPMD vehicles and parameters in the

lane changes are collected. Previously [173], we used 173,692 events with a negative

range rate to build a statistical model focusing on three key variables that captured

the effects of gap acceptance of the lane changing vehicle: velocity of the lead vehicle

(v), range to the lead vehicle (R) and time to collision (TTC). TTC was defined as:

(5.1) TTC = −R
Ṙ
,
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Figure 5.2: Lane change data collected by SPMD vehicle.

where Ṙ is the relative speed.

The modeling of these three variables was hard to handle because of dependency,

so we simplified it based on a crucial observation. Although TTC is dependent on v

generally, we split the data into 3 segments: v at 5 to 15 m/s, 15 to 25 m/s and 25

to 35 m/s. Within each segment, R is independent with v and TTC. This allowed

us to model TTC and R independently with regard to the value of v. By comparing

among 17 types of commonly used distribution templates [173], we selected the Pareto

distribution to modelR−1 and used the exponential distribution for TTC−1 segments.

Using the empirical distribution of v and parametric distributions of R and TTC,

we drew values from these distributions as inputs to simulate the AV-HV interaction.

We used an AV model designed from existing vehicle system [173] in the simulation.

The simulation outputs whether a type of critical event (for example, crash or injury)

happens. We use an event indicator function Iε(x) that returns {1, 0} to represent

the simulation procedure with input x, where ε stands for the set of the critical event

of interest. Given the stochastic distribution of the variables and the event indicator

function, we obtained the optimal exponential distribution for Importance Sampling

by implementing the Cross Entropy method [148]. As we have shown in Fig. 5.1 a),

we used only single parametric distributions. In the next section, we introduce our

new approach using Piecewise Mixture Distributions.
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5.3 Lane Change Model with Piecewise Mixture Distributions

Although many commonly used parametric distributions have concise and elegant

forms, they do not always describe the data distribution well. Instead, a better fitting

can be achieved by dividing the dataset into several subsets. We estimate the model

parameters using the Maximum Likelihood Estimation (MLE) [3] in each subset.

The general process of MLE is as follow.

Assume we have a family of distribution with Cumulative Distribution Function

(CDF) F (x|θ), where θ is the parameter vector of F . The corresponding Probability

Density Function (PDF) of F is f(x|θ). Assuming that data D = {X1, X2, ..., XN}

is independently and identically distributed and the distribution is in the family of

F (x|θ), we want to find the most “likely” parameter θ̂.

We define the likelihood function [49] as

(5.2) L(θ|D) = P (D|θ) = ΠN
n=1f(Xn|θ).

We call the estimation of θ̂ that maximizes the likelihood function the mostly likely

estimation MLE.

For computation convenience, we introduce the log-likelihood function

(5.3) L(θ|D) = lnL(θ|D) =
N∑
n=1

ln f(Xn|θ).

Since the logarithm is monotone, the log-likelihood function preserves the optimizer

of the original function. [27] The optimizer of log-likelihood function, θ̂, is the MLE

of distribution family F . We have the MLE as

(5.4) θ̂ = arg max
θ
L(θ|D).

In the following, we describe the Piecewise Mixture Distribution fitting concept

based on MLE and we present the bounded distribution fitting results. All optimiza-
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tion problems presented in this section are tractable and can be solved by fminunc

in MATLAB.

5.3.1 General Framework of the Piecewise Mixture Distribution Lane Change Model

We define Piecewise Mixture Distribution to be distribution with PDF in the form

of

(5.5) f(x) =
k∑
i=1

πifθi(x|γi−1 ≤ x < γi).

where k is the number of truncation,
∑k

i=1 πi = 1, and fi(x|γi−1 ≤ x < γi) is the

conditional density distribution function, meaning that fi(x|γi−1 ≤ x < γi) = 0 for

any x /∈ {x|γi−1 ≤ x < γi}. θi denotes the parameter(s) for fi. We can consider that

πi = P (γi−1 ≤ x < γi) and when x ≥ 0, we have γ0 = 0 and γk =∞.

In our case, θ = {π1, ..., πk, θ1, ..., θk}. Splitting D into pieces regarding the trun-

cation points {γ1, ..., γk−1}, gives data index sets Si = {j|γi−1 ≤ Xj < γi} for

i = 1, ..., k. We can write the log-likelihood function as

(5.6) L(θ|D) =
∑k

i=1

∑
n∈Si lnπi +

∑k
i=1

∑
n∈Si ln fθi(Xn|γi−1 ≤ x < γi).

We obtain the MLE of θ can be obtained by maximizing L(θ|D) over θ. Since L

is concave over πi, we take

(5.7)
∂L
∂πi

= 0

and get

(5.8) π̂i = |Si|/N.

Note that for parameters θi in Fi, it is known (5.6) to be the same as computing

the MLE of θi with corresponding dataset Di = {X|γi−1 ≤ X < γi and X ∈ D}.
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Since we use bounded distribution for each Fi, below we explain the estimation of

parameters for the three distributions we applied in later sections.

To sample from a Piecewise Mixture Distribution, we could use the inverse func-

tion approach.

5.3.2 Bounded Distribution

We develop three bounded distributions and use them in the lane change model.

One can use criterion for goodness of fitting, e.g. Bayesian information criterion

(BIC) [70], to select the distribution for fitting.

MLE for bounded exponential distribution

The bounded exponential distribution with rate θ has the form

(5.9) f(x|γ1 ≤ x < γ2) =
θe−θx

e−θγ1 − e−θγ2

for γ1 ≤ x < γ2.

For dataset D = {X1, ..., XN}, the log-likelihood function is

(5.10) L(D|θ) =
N∑
n=1

ln θ − θXn − ln(e−θγ1 − e−θγ2),

where L is concave over θ. Although we cannot solve the maximization analytically,

it is solvable through numerical methods.

Therefore, the MLE of θ is given by the optimization

(5.11) max
θ

N ln θ −N ln(e−θγ1 − e−θγ2)−
N∑
n=1

θXn.

MLE for bounded normal distribution

Consider a bounded normal distribution with mean 0 and variance θ2 conditional

on 0 ≤ γ1 ≤ x < γ2. The PDF is

(5.12) f(x|γ1 ≤ x < γ2) =
1
θ
φ(x

θ
)

Φ(γ2

θ
)− Φ(γ1

θ
)
.
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The MLE of the bounded normal distribution is given by

(5.13) max
θ
−
∑N

n=1X
2
n

2θ2
−N ln θ −N ln(Φ(

γ2

θ
)− Φ(

γ1

θ
)).

Fitting algorithm for bounded mixture distribution

Compared to single parametric distributions, mixture distribution combines sev-

eral classes of distribution and thus is more flexible. We consider the fitting problem

of mixture bounded normal distribution.

The PDF of mixture of m bounded normal distribution can be written as

(5.14) f(x|γ1 ≤ x < γ2) =
m∑
j=1

pjfj(x|γ1 ≤ x < γ2)

where fj is bounded Gaussian distribution with mean 0 and variance σ2
j . The pa-

rameters here are θ = {p1, ..., pm, σ
2
1, ..., σ

2
m}. We want to find MLE of pj and σ2

j for

j = 1, ...,m.

The log-likelihood function for data D = {Xn}Nn=1 is

(5.15) L(θ|D) =
N∑
n=1

ln
m∑
j=1

pjfj(Xn|γ1 ≤ x < γ2).

We note that this is hard to solve directly, because there is a sum within the log

function. Therefore, we apply the Expectation-Maximization (EM) [53] algorithm

to find the optimizer, i.e. MLE, for the parameters.

We define Zj
n to denote whether or not the random numberXn comes from mixture

distribution j, j = 1, ...,m, and Zj
n = {0, 1}. We also introduce the expectation

(5.16) E[Zj
n|Xn] := τ jn.

The EM algorithm starts with initial parameters {pj, σj}, j = 1, ...,m. For data

D = {Xn}Nn=1, we set complete data as Dc = {Xn, Zn}Nn=1. The EM algorithm
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optimizes E[L(θ|Dc)|D] in every step. The E step updates E[L(θ|Dc)|D], and the M

step optimizes this function. The algorithm iterates E step and M step until reaching

the convergence criterion.

In our case,

(5.17) E[L(θ|Dc)|D] =
∑N

n=1

∑m
j=1 τ

j
n (ln pj + ln fj(Xn)) .

Since objective E[lc(θ|Dc)|D] in the M step is concave over pj and σj, we could

maximize the objective function through an analytic approach for pj:

(5.18) pj =

∑N
n=1 τ

j
n

N
.

For σj, we can solve the following maximization problem through numerical approach.

(5.19) σj = arg min
σj
−τ jn lnσj + τ jn lnφ

(
Xn

σj

)
− τ jn ln

(
Φ(
γ2

σj
)− Φ(

γ1

σj
)

)
.

5.3.3 Selection of Truncation Points

The framework we show in this section is based on the truncation points γ0, ..., γk

are given. Here we discuss the selection of the truncation number k and the value

these points.

The motivation of using Piecewise Mixture Distribution is to improve the fitting on

the tail of the variables, because the tail fitting is crucial to the probability estimation

of the event of interest. A basic criterion is that the tail truncation should not exceed

the value that is “likely” to lead to an event of interest. Such value of each variable

is roughly known in the AV testing scenarios. This allows us to assign the value

of the tail truncation point. In the cases where such information is not available,

one can use the mean excess plot to determine the tail truncation point and the tail

distribution [122].
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The body part of the variable is not as important, so we select the truncation

points from data observation. Note that if we use the same distribution family for

each piece of the distribution, adding a truncation point would always leads to a

better fitting in the sense of likelihood. Here, we suggest to use as less truncation as

possible to avoid over-fitting problem. One can use criterion for goodness of fitting

to determine the number of selection.

5.4 Accelerated Evaluation with Importance Sampling

Importance Sampling (IS) is thus used to accelerate the evaluation process, be-

cause crude Monte Carlo simulations for rare events can be time-consuming. Here

we describe the IS theory, which guarantees the unbiasedness of the probability esti-

mation after the skewing-and-skewing-back procedure in the accelerated evaluation

and provides the baseline for searching an efficient accelerated distribution.

5.4.1 Important Sampling and Optimal IS distribution

Let x be a random variable generated from distribution F , and ε ⊂ Ω where ε is

the rare event of interest and Ω is the sample space. Our objective is to estimate

(5.20) P (X ∈ ε) = E[Iε(X)] =

∫
Iε(x)dF

where

(5.21) Iε(x) =


1 x ∈ ε,

0 otherwise.

We can write the evaluation of rare events as the sample mean of Iε(x)

(5.22) P̂ (X ∈ ε) =
1

N

N∑
n=1

Iε(Xn),

where Xi’s are drawn from distribution F .
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Since we have

(5.23) E[Iε(X)] =

∫
Iε(x)dF =

∫
Iε(x)

dF

dF ∗
dF ∗,

we can compute the sample mean of Iε(X) dF
dF ∗

over the distribution F ∗, which has

the same support with F , to obtain an unbiased estimation of P (X ∈ ε). By appro-

priately selecting F ∗, the evaluation procedure obtains an estimation with smaller

variance. This is known as Importance Sampling [29] and F ∗ is the IS distribution.

For estimating P (X ∈ ε),we note that an optimal IS distribution

(5.24) F ∗∗(x) = F (x|ε) =
P (X ≤ x, ε)

P (x ∈ ε)

could reduce the variance of IS estimation to 0, but the optimal requires the knowl-

edge of P (X ∈ ε). However, it guides the selection of the IS distribution.

5.4.2 Exponential Change of Measure

Exponential change of measure is commonly used to construct F ∗. Although the

exponential change of measure cannot guarantee convergence to optimal distribution,

it is easy to implement and the new distribution generally stays within the same class

of distribution.

Exponential change of measure distribution takes the form of

(5.25) fθ(x) = exp(θx− κ(θ))f(x),

where θ is the change of measure parameter and κ(θ) is the log-moment generating

function of original distribution f . When θ = 0, we have fθ(x) = f(x).

For a bounded exponential distribution, the exponential change of measure dis-

tribution is

(5.26) fθ(x|γ1 ≤ x < γ2) =
(λ− θ)e−(λ−θ)x

e−(λ−θ)γ1 − e−(λ−θ)γ2
,
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where λ is the parameter for exponential distribution. We note that fθ is still a

bounded exponential distribution with parameter λ− θ.

For a bounded normal distribution, the exponential change of measure distribution

is

(5.27) fθ(x|γ1 ≤ x < γ2) =
1
σ
φ(x−σ

2θ
σ

)

Φ(γ2−θσ2

σ
)− Φ(γ1−θσ2

σ
)
,

where the original distribution truncated from a normal distribution with parameters

mean 0 and variance σ2. We note that the change of measure distribution is still a

bounded normal distribution with mean θσ2 and variance σ2.

5.5 Cross Entropy Method and Implementation

Section 5.4 discussed optimal IS distribution F ∗∗ providing 0 variance estimation

to the value of interest, whereas this section describes the Cross Entropy method used

to estimate the “optimal” parameters θ, which minimizes the “distance” between a

parametric distribution Fθ and F ∗∗ without knowing F ∗∗. The description below is

based on the Piecewise Mixture Distribution structure.

5.5.1 Introduction

The Cross Entropy, which is also known as Kullback-Leibler distance [164], mea-

sures the similarity between distributions. We define the Cross Entropy between

function g and h as

(5.28) D(g, h) = Eg[ln
g(X)

f(X)
] =

∫
g(x) ln g(x)dx−

∫
g(x) ln f(x)dx.

From (5.24), we know that the PDF of the optimal IS distribution F ∗∗ is

(5.29) f ∗∗(x) =
Iε(x)f(x)

P (x ∈ ε)
.
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Since P (x ∈ ε) is generally unavailable, we use a parametric distribution Fθ

to approach the optimal IS distribution. We want to find the parameter θ∗ that

minimizes the Cross Entropy [99] between f ∗∗ and fθ. We denote θ∗ as the optimal

parameter for the parametric distribution. Then the minimization problem

(5.30) min
θ
D(fθ, f

∗∗)

is equivalent to

(5.31) max
θ

Eθs [Iε(X)
f(X)

fθs(X)
ln fθ(X)],

where fθs denotes the sampling distribution with parameters θs. We note that this

is a generalized setting, since we can use any sampling distribution fθs as long as it

has the same support with f . This is the baseline for iterations in the Cross Entropy

method. We use the same form as fθ because in the following sections, we use a

sampling distribution which is in the same family as the parametric distribution.

We estimate θ∗ by solving the stochastic counterpart of (5.31)

(5.32) max
θ

1

N

N∑
n=1

Iε(Xn)
f(Xn)

fθs(Xi)
ln fθ(Xn),

where samples {X1, ..., XN} are drawn from the sampling distribution fθs .

We note that if Iε(Xn) = 0 for all n = 1, .., N in (5.32), the objective equals

to 0 constantly. To avoid this situation, we select a sampling distribution which

emphasizes the rarer events.

Fig. 5.3 shows the iteration procedure of the Cross Entropy method. The core

part of the Cross Entropy method is to use the optimizer of the objective function

(5.32) in the ith iteration, θ∗i , as the parameters for the sampling distribution in the

next iteration. The underlying idea is that the IS distribution in distribution family

fθ should better approach the optimal IS distribution. Therefore, as we iterate, we
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obtain more “critical” rare events and have a better estimation of the optimizer

which leads to even more “critical” rare events in the next iteration. We define the

stopping criterion regarding the parameter or the objective value. In practice, we

want to start with an appropriate sampling distribution to get a good solution with

less iteration. See section 5.5.3 for a discussion of initializing a sampling distribution.

We note that if we have two independent variables where f(x, y) = f(x)f(y), we

can take a parametric distribution for each variable and have fΘ(x, y) = fθ1(x)fθ2(y),

where Θ = {θ1, θ2}. The objective function corresponding to (5.32) is

(5.33) max
θ

1

N

N∑
n=1

Iε(Xn, Yn)
f(Xn, Yn)

fΘs(Xn, Yn)
(ln fθ1(Xn) + ln fθ2(Yn)),

which can be decoupled into two optimization problem over θ1 and θ2 respectively

and Iε(Xn, Yn) f(Xn,Yn)
fΘs (Xn,Yn)

is a known constant given {Xn, Yn}.

We implement the Cross Entropy on the Piecewise Mixture Distribution with one

variable. We note that we can apply the results to the lane change model, since the

Cross Entropy objective function of independent variables can be implemented in

(5.33).

Figure 5.3: Iterations of Cross Entropy.
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5.5.2 Optimization Function for Piecewise Mixture Distributions

We propose a parametric family of IS distribution for Piecewise Mixture Distri-

bution

(5.34) fθ(x) =
k∑
i=1

π̃i exp(θix− κ(θi))fi(x|γi−1 ≤ x < γi),

where we use exponential change of measure for each piece of distribution and adjust

the proportion parameter to π̃i. The parameter is θ = {θ1, ..., θk, π̃1, ..., π̃k}.

In (5.32), cn = Iε(Xn) f(Xn)
fθs (Xn)

is a known constant given the data, so we simplify

the function as

(5.35) max
θ

1

N

N∑
n=1

cn ln fθ(Xn).

We split the samples into index sets Si = {j|γi−1 ≤ Xj < γi} for i = 1, ..., k for each

bounded segment. Since fi(Xn|γi−1 ≤ x < γi) 6= 0 only if n ∈ Si, for each θi and π̃i,

the optimization function is equivalent to

(5.36) max
θi,π̃i

1

N

∑
n∈Si

cn ln(π̃i exp(θiXn − κ(θi))fi(Xn|x < γi−1 ≤ x < γi)).

We can further rewrite the optimization function regarding θi and π̃i respectively.

For π̃i, we have

(5.37) max
π̃i

1

N

∑
n∈Si

cn ln π̃i,

which obtains an analytical form for the optimizer

(5.38) π̃i =

∑
n∈Si cn1{n ∈ Si}∑

n∈Si cn
.

For θi, we have

(5.39) max
θi

1

N

∑
n∈Si

cn ln exp(θiXn − κ(θi))fi(Xn|γi−1 ≤ x < γi),
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which is an exponential change of measure with Di only. We note that we can

simplify this optimization function by rewriting the log term as

(5.40) max
θi

1

N

∑
n∈Si

cn(ln exp(θiXn − κ(θi)) + ln fi(Xn|γi−1 ≤ x < γi)),

which is equivalent to

(5.41) max
θi

1

N

∑
n∈Si

cn(θiXn − κ(θi)),

since the latter term does not depend on θi.

For a bounded exponential distribution with parameter λ, the Cross Entropy

iteration solves

(5.42) max
θi

1

N

∑
n∈Si

cn(θiXn − ln
e−(λ−θi)γi−1 − e−(λ−θi)γi

λ− θi
).

For a bounded normal distribution with parameters µ = 0 and σ, the optimization

function for the Cross Entropy iteration is

(5.43) max
θi

∑
n∈Si

cnXnθi − (
∑
n∈Si

cn)(
σ2θ2

i

2
+ ln

Φ(γi−θiσ
2

σ
)− Φ(γi−1−θiσ2

σ
)

Φ(γi
σ

)− Φ(γi−1

σ
)

).

5.5.3 Discussion on Numerical Implementation

We have presented the optimization functions for Cross Entropy iterations, but

we cannot reliably apply these equations in practice without considering some of the

problematical numerical details. In this section, we discuss methods to overcome

these numerical issues.

Initializing Cross Entropy Iterations for Rare Events

Since rare events occur with small probability, using the original distribution as

sampling distribution to start the Cross Entropy iterations it becomes computation-

ally burdensome to sample a single rare event. One possible approach is to initialize
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with guess of sampling distribution. When we have some rough knowledge about the

optimal IS distribution, we can use the knowledge to construct a proper sampling

distribution.

For cases where we have little knowledge about the optimal IS distribution, we

construct adaptive events that gradually reduce the rarity. For rare events denoted

by ε, we define the sequence of events to be ε1 ⊃ ε2 ⊃ ... ⊃ εn ⊃ ε, where ε1 is not

rare for our initializing sampling density. For each iteration t, we gradually reduce

the rare event set εt and use εt to replace ε in the objective function. Since εt is a

subset of εt−1, the IS distribution for εt−1 also provides more chances for samples from

εt. We use the optimal solution in (t− 1)th iteration θ∗t−1 as the sampling parameter

θt for the next iteration and choose εt to have a relatively larger probability to occur

under fθt . Since εt gradually approaches ε as we iterate, eventually we obtain the

optimal parameters for ε.

Adjusting sample size N

The choice of sample size N should not only depend on the total number of rare

events obtained in each iteration. For each parameter of interest, we need sufficient

non-zero cn’s to guarantee the qualification of the estimation. We note that the

parameters estimation depend only on the rare event in the corresponding piece, so

we adjust sample size N to ensure that each piece with large portion π̃i contains

enough rare event samples.

Setting a lower bound for π̃i

When we update π̃i in (5.38), if cn = 0 for all n ∈ Si, meaning that there is no

rare event sample in the piece, we have π̃i = 0. When we have π̃i = 0, the support of

the IS distribution will differ from the original distribution. We note that it might
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cause bias in our simulation analysis. On the other hand, once π̃i hits 0, it will be 0

in the following iterations. Therefore, we need to keep π̃i > 0. Setting a low bound

for π̃i, for example, 0.01, when there is no rare event for piece i, gives an efficient IS

distribution while avoiding the problems.

Updating parameter θi

The absence of rare event samples also leads to failures in updating θi. In this

case, we use either the value of θi in the last iteration, or we set it to 0, i.e. reset the

distribution as the real distribution. We note that we can tolerant some inaccurate

estimation if π̃i is small, since a small π̃i indicates that this piece might not be

important to the rare events.

Changing truncation γi

The truncations of the Piecewise Mixture Distribution are fixed throughout the

Cross Entropy method. Thus, if there is a bad selection of truncation in our original

distribution model, the Cross Entropy cannot give an efficient IS distribution. The

changing of truncation points is hard to implement by optimization, so we use a

heuristic approach for adjusting the truncation points to emphasize the tail part of

the Piecewise IS distribution.

In any iteration, if the number of rare events is not enough to properly update

the parameters, we check π̃i of the current sampling distribution. If the π̃k of the tail

piece is the largest possible value, we increase the value of the all truncation points

except γ0 with a certain value. Shifting the truncation gives more weight to the tail

part. Then by sampling from the adjusted distribution, we check if the number of

events of interest is sufficient. We repeat these actions until we obtain enough rare

events in the iteration.



128

We propose this heuristic approach, since the flexibility of the Piecewise Mixture

Distribution is not fully exploited if we cannot change the truncation points. We

note that finding a more systematic procedure to locate the knots remains an open

question.

5.6 Simulation Analysis

5.6.1 Automated Vehicle Model

First, we present our Piecewise Mixture Models for R−1 and TTC−1 and then

compare the results with the single parametric distribution model used in [173]. For

both approaches, we divide the data of TTC−1 into three segments regarding the

range of v. Since the three segments are similar in distribution, we only show the

results of the segment for v in the range of 5 to 15 m/s. We use BIC as the criterion

for the goodness of fitting.

Piecewise mixture models for R−1 and TTC−1

In Fig. 5.4, we truncated the data into two parts. For the tail part, we use the

exponential distribution. For the body part, the mixture of two normal distributions

gives a better fit (BIC is −2.6931×105, BIC for exponential and normal is −2.6905×

105 and −2.6865×105 respectively). The Piecewise Mixture Models enable us to use

different distributions for the body part and the tail part.

Comparison with single parametric distribution models

Fig.5.5 compare the new model and the previous model for R−1. The Piecewise

Mixture Distribution with two truncation points (BIC is −1.0428× 106) provides a

better fitting than the single parametric distribution (BIC is −1.0426 × 106). We

have the same observation for the fitting of TTC−1 in Fig.5.6. The piecewise model

provides BIC with −2.6931×105, where the single parametric distribution gives BIC
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with −2.6686 × 105. The result indicates that Piecewise Mixture Models provide

more flexibility in data fitting.

5.6.2 Cross Entropy Results

Here, we use the lane change model to exemplify the Cross Entropy method. For

the three variables R, TTC, v, the distribution is f(R, TTC, v) = f(v)f(R)f(TTC|v)

where f(v) is the empirical distribution. Since we have three conditional distributions

of TTC regarding the value of v, we find the IS distributions independently for each

case. We present the results for v from 5 to 15 m/s.

We assume that we have less information about the relation between the dis-

tribution of variables and the rare events. Our objective is to construct adaptive

rare events to help us approach the IS distribution. We recall that our original lane

change model determines whether a crash happens by checking to see if the value of

R, the range between two vehicles, reaches 0. Meanwhile, the TTC also goes to 0

when a crash happens. To construct events less rare than a crash as mentioned in

Section 5.5.3, we relax the criterion for crash to be either R hits tR > 0 or TTC hits

tTTC > 0. By changing these two thresholds, tR and tTTC as shown in Fig. 5.7, we

construct the adaptive rare events sequence for the Cross Entropy iterations. The

value of threshold is picked by taking the smaller number between the 0.95 quantile

Figure 5.4: Piecewise Mixture Distribution fitting for TTC−1 given v between 5 and 15 m/s.
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Figure 5.5: Comparison of fitting for R−1.

Figure 5.6: Comparison of fitting for TTC−1 given v between 5 and 15 m/s.
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Figure 5.7: Cross Entropy iterations with sequence of events with thresholds for crash. We leave
iteration 1 blank to keep the x-axis consistent with Fig. 5.8 and 5.9.

of the generated data and the current threshold. We set the thresholds to be 0 for

both variable, when the value of the current thresholds are close to zero (less than

0.5 in this case). We use sample size N = 1000 for each iteration.

Fig. 5.8 and 5.9 show the parameters present in each of the iterations. We observe

that the parameters stabilize gradually. Fig. 5.10 shows how the distribution changes

gradually from the original distribution to the IS distribution. We note that the

density moves toward the tail part as we iterate. This observation shows that the

algorithm gradually learns the “importance” of the tail part.

5.6.3 Simulation Results

In our simulation experiments, we set the convergence criterion as the relative

half-width of 100(1 − α)% confidence interval drops below β. In this case, we use

α = 0.2 and β = 0.2 to study the number of samples needed for convergence. Our

goal is to compare the efficiency of the Piecewise Mixture Distribution and single

exponential distribution models in estimating the probability of crashes in the lane

change scenario for the testing AV system.

Fig. 5.11 shows that both models give a similar estimation as the number of ex-

periments grows large, and that the Piecewise Mixture Distribution model converges
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Table 5.1: Number of samples (N) needed to converge.

Piecewise Single Crude
N 7840 12320 5.5× 107

Ratio to Piecewise 1 1.57 7× 103

slightly faster than the single parametric model. The circles show that the relative

half-width of the Piecewise Mixture Distribution model reaches the target confidence

value after 7800 samples, whereas the single parametric model needs about 13800

samples. Using the Piecewise Mixture Distribution model reduced the sample size

by 44%.

To reduce stochastic uncertainty, we repeat the tests 10 times and calculate the

average. It takes 7840 samples on average to obtain a converged estimation using the

Piecewise Mixture Distribution model, whereas it takes 12320 samples on average

using the single accelerated distribution model to converge. Table 5.1 compares the

two models with the crude Monte Carlo method [4]. We estimate the number needed

for convergence of crude Monte Carlo by using the fact that the number of events

of interest occurring is Binomial distributed. We compute the standard deviation of

the crude Monte Carlo estimation P̂ (x ∈ ε) by

(5.44) std(P̂ (x ∈ ε)) =

√
P̂ (x ∈ ε)(1− P̂ (x ∈ ε))

n
,

which allows us to estimate

(5.45) N̂ =
z2
α/2(1− P̂ (x ∈ ε))
β2P̂ (x ∈ ε)

,

where zα/2 is the (1−α/2) quantile of normal distribution. We calculate the required

sample size N of crude Monte Carlo in Table 5.1 from an estimation P̂ (x ∈ ε) =

7.4× 10−7 with 80% confidence interval (7.0× 10−7, 7.8× 10−7).

Finally, we apply the heuristic approach in Section 5.5.3 to the data segment

with v from 5 to 15 m/s. We run simulations with this segment and compare the
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results with the standard approach for the Piecewise Mixture Distribution and single

parametric distribution models. Fig. 5.12 shows the convergence of confidence half-

width. We determine convergence as the relative confidence half-width smaller than

β (the dash line). We note that the relative half-width of the heuristic, which is

smaller than the standard approach for the Piecewise Mixture Distribution model,

indicates that the latter model’s performance can be further improved.

5.7 Conclusions

This chapter proposed a new model for accelerated evaluation of AVs. The Piece-

wise Mixture Distribution Models provide more accurate fitting to the surrounding

human-controlled vehicle behaviors than the single parametric model used in the lit-

erature. The proposed model was more efficient and reduced the evaluation time by

almost half than single parametric model. The Cross Entropy procedure described

in this chapter effectively worked in this scenario analysis. We provided practical

solutions to deal with the numerical issues which occurred while calculating the op-

timal parameters. The heuristic approach exploited the flexibility of the Piecewise

Mixture Distribution structure. Testing the proposed model on a large dataset of

cut-in crashes caused by improper lane changes, the Piecewise Mixture Distribution

model reduced the simulation cases by about 33% compared with the single paramet-

ric model under the same convergence requirement. Moreover, the proposed model

was 7000 times faster than the Crude Monte Carlo method.

Table 5.2 summarizes the comparison of the computation efforts between the

models. We note that using the Piecewise Mixture Distribution model increases

the number of parameters estimated, where the estimation of parameters is almost

instant. In the Cross Entropy stage, the number of simulations required for the
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Table 5.2: Comparison of the computation time between single parametric model and piecewise
model.

Stages Crude Single Piecewise

Fitting -
4 parameters to
estimate

18 parameters to
estimate

Cross Entropy -
30,000 simulations
4 parameters

24,000 simulations
18 parameters

Simulation
5.5× 107

simulations
12,320
simulations

7840
simulations

Piecewise model is not significantly less than the single parametric model, because

we assume no knowledge about the optimal IS distribution for the Piecewise model.

Overall, the Piecewise model needs fewer simulations to reach the same confidence

level compared to single parametric models.
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Figure 5.8: Cross Entropy iterations with sequence of events of R−1 for v from 5 to 15 m/s.

Figure 5.9: Cross Entropy iterations with sequence of events of TTC−1 for v from 5 to 15 m/s.

Figure 5.10: Distribution change through Cross Entropy iterations with sequence of events of
TTC−1 for v from 5 to 15 m/s.
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Figure 5.11: Estimation of crash probability for one lane change using piecewise and single accel-
erated distributions. The x-axis is truncated for illustrating the major change of the distributions.

Figure 5.12: Relative half-width of crash probability estimation for one lane change with leading
vehicle’s speed in range of 5 to 15 m/s, comparing single, piecewise and heuristic accelerated
distributions.
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[141] Andras Prékopa. On probabilistic constrained programming. In Proceedings of the Prince-
ton Symposium on Mathematical Programming, pages 113–138. Princeton University Press
Princeton, NJ, 1970.
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