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ABSTRACT

At high stress, the viscosity of a metallic glass is non-Newtonian, and therefore the rate of anelastic stress relaxation is not linear in the
applied stress. In this regime, one can obtain information on the details of the activation volume that are not accessible in the linear
regime. While bending in the nonlinear regime introduces a complicated stress state, it offers great stability for noninstrumented mea-
surements over many orders of magnitude of time. We have developed a method of controlled sample bending to a strain of up to
∼0.0155 for Al86.8Ni3.7Y9.5 metallic glass. Significant nonlinearity of the anelastic strain in the stress was observed, which is mainly asso-
ciated with the largest and slowest shear transformation zones involved not reaching mechanical equilibrium at the end of the con-
straining period. Combining nonlinear kinetics under constraint and zero bending moment after constraint removal, the volume of the
largest shear transformation zones and the transformation shear strain were obtained independently for the inherent state—their most
likely values are 4.8 × 10−28 m3 and 0.18, respectively.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5122973

I. INTRODUCTION

Metallic glasses (MGs) have drawn considerable attention
due to their high strength and elastic limit.1 However, they expe-
rience flow localization resulting in little macroscopic plasticity,2

which limits their structural application. Understanding the
deformation mechanism of MGs is necessary to identify ways to
improve their plasticity. Unlike for crystalline alloys, knowledge
of the microscopic origin of plastic deformation of MGs is
incomplete due to their disordered structure. Physical analogs3,4

have shown that macroscopic deformation is accommodated by
cooperative shearing of atomic clusters, termed shear transfor-
mation zones (STZs).5–8

Plastic deformation of metallic glasses involves a large
volume fraction of STZs in an activated flow state, for which STZ
interactions are complex. In contrast, at small strain, the STZ
volume fraction is small, in the dilute limit, so they are isolated.
They can be reversed upon removal of external stress due to back
stress in the elastic matrix, which leads to anelastic behavior.9 In
crystalline metals, several mechanisms of anelastic relaxation
have been studied. We consider the STZ mechanism to dominate
anelasticity in metallic glasses, based on the following points:

(a) The Snoek effect of small interstitial solutes10 is unlikely in a
metallic glass in the absence of, e.g., hydrogen or carbon atoms.
(b) Chemical order-disorder effects,11 if any, are weak in amorphous
metals. (c) Any local jumps of constituent atoms are likely to be
STZ mediated. (d) The present experiments involve a single phase
and isothermal conditions.11

Anelastic deformation in the small-strain regime offers an
opportunity to understand plasticity. Ju et al.12 performed quasi-
static anelastic relaxation measurements of Al86.8Ni3.7Y9.5 (at. %)
over a time range spanning seven orders of magnitude. The corre-
sponding relaxation-time spectra were computed, which exhibited
distinct peaks, representing an atomically quantized hierarchy of
STZs, consisting of 14–21 atoms for the kinetic window observed.
The measurements involved small anelastic strain and correspond-
ingly small STZ volume fraction, 1%–2%.12,13 Linear dependence
of the equilibrated anelastic strain under constraint on the applied
stress was observed, which also implied a linear anelastic strain
profile across the sample thickness. Consequently, there was no
residual stress upon constraint removal.

In the present work, anelastic relaxation is studied at higher
strain than in our prior work, such that the viscosity under
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constraint is non-Newtonian, but STZ volume fractions are still
small, ≤7.2%. Unlike in the linear regime, this approach allows for
an independent determination of the STZ volume and transforma-
tion strain for the largest activated STZs.

II. BACKGROUND

Ju et al.12 obtained time-constant spectra for anelastic relaxa-
tion for amorphous Al86.8Ni3.7Y9.5, which exhibited a set of distinct
peaks. They modeled the behavior with a standard linear solid
model (Fig. 1)—a spring in series with several Voigt units, each of
which represents one peak and STZ size, and contributes additively
to the total strain. Analysis of the data, assuming a transformation
shear strain of 0.2,3,4 revealed that each peak corresponded to an
STZ size that comprises a discrete number of Al atoms. A size
increment of one atom corresponds to about an order of magnitude
larger time constants. Under constraint for 2 × 106 s at a fixed
strain, all but the largest and slowest STZs, those comprising n = 21
atoms, essentially reach mechanical equilibrium with each other
and the elastic matrix and then track the slow evolution of the
n = 21 STZs. (For longer constraining time, n = 22 STZs were also
activated.13) After constraint removal, each STZ size evolves inde-
pendently in this model.

In Ref. 12, the shear strain rate due to STZs indexed with the
integer m under an applied shear stress, σ, was expressed as3

_γm ¼ 2cmγ
c
oνGexp �ΔFm

kT

� �
sinh

σγToΩm

2kT

� �
, (1)

where m = 1,…,8. cm is the volume fraction occupied by potential
m-type STZs, where a potential STZ is an atomic cluster that
is capable of shear transformation. γTo is the transformation
shear strain, and γco ¼ [2(4� 5ν)=(15(1� ν))]� γTo is its value
under constraint by the surrounding matrix, with ν being
Poisson’s ratio. νG is the attempt frequency. Ωm is the volume
of m-type STZs. The product γTo � Ωm is the activation volume
for a shear transformation, i.e., the conjugate of the stress. k and
T have the usual meaning. For small σ values, the hyperbolic
sine term can be linearized so that the strain rate is proportional
to σ. ΔFm is the activation free energy for shear transformation

of m-type STZs,14

ΔFm ¼ 7� 5ν
30(1� ν)

þ 2(1þ ν)
9(1� ν)

�β
2

� �
� γTo þ 1

2
� σSTZ

μ

� �
μγToΩm: (2)

�β
2
is the dilatancy factor and approximately equal to 1, μ is the

shear modulus and expressed as E0=[2(1þ ν)], and E0 is Young’s
modulus. σSTZ is the shear resistance of an STZ if it were not
embedded in the matrix. The three terms in Eq. (2) correspond,
respectively, to the (a) shear strain energy, (b) dilatation strain
energy, and (c) shear energy of the STZ if it were not embedded in
the matrix.15 The parameters in Eqs. (1) and (2), their values, and
sources are summarized in Table I and the Nomenclature.

In the linear, i.e., Newtonian regime, the product (γT0 )
2 �Ωm

can be determined, but not each factor independently. An esti-
mated value of γT0 ¼ 0:2, based on physical analogs,3,4 was used to
obtain Ωm, m = 1,…,8 in Refs. 12 and 13. These values were spaced
by a single atomic volume. Each Ωm value is associated with an
integer multiple of the atomic value of Al: Ωn ¼ n� ΩAl, where
n ¼ 13þm. The range of n values, 14≤ n≤ 21, is determined by
the range of experimental time scales. In order to determine γT0
and Ωn¼21 independently, it is necessary to perform measurements
at higher stress, in the non-Newtonian regime, where Eq. (1) is not
linear in σ. Such an approach was reported for large tensile strains,
up to 0.08, using strain-rate jumps and assuming a single STZ
size.14 The present work involves anelasticity measurements in the
non-Newtonian regime, but in contrast to Ref. 14, we employ a
maximum bending strain of 0.0155, with maximum anelastic shear
strain of 0.0060, such that the volume fraction occupied by STZs is
still small, ≤7.2%. Therefore, STZ properties are obtained for an
inherent state, i.e., a local minimum of the energy landscape. While
uniaxial geometry offers zero residual stress and far simpler analy-
sis, experiments in bending geometry, not being instrumented,
allow for high precision in a wide dynamic range of time,
∼102–3.0 × 107 s for the present work. Using the constitutive law
[Eq. (1)] for n = 21 STZs and zero-bending-moment condition
after constraint removal and complete reversal of STZs with n < 21,
strain data for Al86.8Ni3.7Y9.5 are analyzed, accounting for residual
stresses. The volume of the largest and slowest STZ size, for a con-
straining period of 2 × 106 s, Ωn¼21, and the transformation shear
strain are obtained independently.

III. EXPERIMENTAL DETAILS

Amorphous Al86.8Ni3.7Y9.5 (at. %) ribbons, 22 μm thick and
1 mm wide, were produced by single-wheel melt-spinning using a
Cr-coated Cu wheel at a tangential velocity of 40 m/s in vacuum. In
previous bend relaxation measurements,12 samples were con-
strained by wrapping around mandrels with radii ranging from
0.35 to 0.49 cm, corresponding to equilibrium elastic bending-strain
values from 0.00158 to 0.00303 at the surface. To obtain higher
bending strain, up to 0.0155, a constraining method was developed
for smaller radii, as illustrated in Fig. 2(a): a sample is placed
between a mandrel (radius 0.09 or 0.11 cm) and neoprene block. A
machined device is used to press the mandrel until the two ends of
the sample just touch each other, so that a well-characterized

FIG. 1. Schematic illustration of the standard linear solid model employed—a
spring with Young’s modulus E0 in series with Voigt units, each of which repre-
sents one STZ size. E0

m and η0m are the effective Young’s modulus and effective
viscosity, respectively, of m-type STZs, where m = 1–8 for the range of time
values in the experiment.12 Reproduced with permission from Ju et al., J. Appl.
Phys. 109, 053522 (2011). Copyright 2011 AIP Publishing LLC.
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geometry is obtained. A peephole on the side surface of the
machined device is used to observe the two touching ends of the
sample during constraining [Fig. 2(b)]. Because of the low modulus
of the neoprene, the pressure on the sample is negligible compared
to the bending stress. A lubricant was applied between the sample
and neoprene to minimize friction. In contrast to the constraining
configuration in Ref. 12, in which the entire sample was under con-
straint, in the present work, only a small section is under con-
straint, with the two free ends allowing for a reliable determination
of the radius of curvature. The detailed constraining geometry is
shown in Fig. 3(a). 1 cm long samples were used, and all measure-
ments were performed at room temperature.

As in Ref. 12, samples were constrained for ttotalc ¼ 2� 106 s
and then relaxed unconstrained for up to 3 × 107 s. The evolution

in the angle between the two ends during unconstrained relaxation
[Fig. 3(b)] was recorded with a digital camera and used to deter-
mine the curvature of the previously bent section. A stage micro-
meter was used for calibration, and the optical axis of the camera
was aligned perpendicular to the sample stage.

The total constraining strain at a distance y from the sample
midplane is

εconstr(y) ¼ y � (1=R� 1=r0), (3)

where R is the mandrel radius and r0 is the initial radius of curva-
ture for the sample before constraining. At the end of the con-
straining period, lasting ttotalc , εconstr(y) includes both an elastic and

TABLE I. Parameter definitions in the expression of shear strain rate [Eq. (1)] and activation free energy [Eq. (2)].

Symbol Physical meaning Value/Expression

cm Volume fraction occupied by potential m-type STZs Area of corresponding spectrum peak from experiments
(Refs. 12 and 13)

m Index of spectrum peaks 1,…,8
*Note: n = 13 +m = number of atoms in STZ is used as

a subscript in Eq. (9) and below it
γco Transformation shear strain under constraint by

surrounding matrix
γco ¼ [2(4� 5ν)=(15(1� ν))]� γTo

νG Attempt frequency 1013 s−1 (Ref. 16)
T Temperature 295.15 K
ΔFm Activation barrier associated with m-type STZs Eq. (2)
σ Applied shear stress Expressed in Eqs. (8) and (16)
Ωm Volume of m-type STZs To be determined
�β
2

Dilatancy factor ∼1 (Ref. 14)
σSTZ Peak interatomic shear stress between atoms in a regular lattice σSTZ=μ ¼ 0:025 (Ref. 17)
ν Poisson’s ratio 0.35 (Ref. 18)
E0 Young’s modulus of the matrix 48.2 GPa (Ref. 19)
μ Shear modulus of the matrix E0/[2(1 + ν)]
γTo Transformation shear strain in the absence of constraint by the

surrounding matrix
To be determined

FIG. 2. (a) Schematic illustration of the constraining method—the sample is
placed between a mandrel and neoprene block, and a machined device is used
to press the mandrel until the two free ends of the sample just touch each other.
(b) Photograph showing the two touching ends of a sample under constraint.

FIG. 3. Sample geometry (a) under constraint and (b) during unconstrained
relaxation (not to scale). α(t) is used to determine the evolution of the curva-
ture of the previously bent section during unconstrained relaxation. The length
of the constrained section (red) is equal to (π þ w)� (R þ d=2), where R
is the mandrel radius and d is the sample thickness. Dashed lines are fits
to the unconstrained ends. The small curvature of the free ends is neglected
in these plots.
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an anelastic component. We can determine apparent strain values,
based on linear variation with y. The apparent elastic strain is

εappel,constr(y, ttotalc ) ¼ y � [1=R� 1=r(0)], (4)

where r(t) is the radius of curvature of the previously constrained
section at time t after constraint removal. The apparent anelastic
strain is

εappan,constr(y, t
total
c ) ¼ y � [1=r(0)� 1=r0]: (5)

Note that unlike the elastic strain, the apparent anelastic strain
at the end of the constraining period is equal to its value at t = 0
after constraint removal, εappan (y, t ¼ 0).

Substitution of r(t) for r(0) in Eq. (5) provides the apparent
anelastic strain at time t after constraint removal. In the case of
Newtonian behavior, when the strain profile across the sample
thickness is linear, the expressions for the apparent strains are
equal to the actual values. However, in the nonlinear regime, the
anelastic strain is superlinear close to the surface. As a result,
there is residual stress near each surface in the unconstrained
state, with signs opposite of those under constraint. εappan (d=2, t), d
being the sample thickness, is then lower than the actual anelastic
strain at the surface.

While it would be challenging to directly measure the radius
of curvature of the small constrained section during uncon-
strained relaxation, the well-characterized geometry (Fig. 3)
allows for a reliable determination of r(t) from the angle between
two fit lines to the free ends [dashed lines in Fig. 3(b)]. For
different mandrel radii used, the maximum constraining strain
ranges from 0.0079 to 0.0155, below the yield point (∼0.02).20

This was verified by the observation that constraining for a short
duration did not lead to permanent deformation. The estimated
volume fraction occupied by STZs, based on the anelastic strain,
is between 3% and 7.2%, still in the dilute limit.

It was shown in Ref. 12 that the time constant for anelastic
recovery of the largest active STZs (consisting of 21 Al atoms) is
τ21 = 1.25 × 107 s, significantly longer than the total constraining
time (ttotalc ¼ 2� 106 s). All other τi, i ≤ 20, are smaller than
106 s.12 It follows that all but the n = 21 STZs nearly equilibrate
by the end of the constraining period. Since nonlinearity affects
the kinetics but not the mechanical equilibrium state, it there-
fore only affects the contribution of n = 21 STZs, as these do not
equilibrate during the constraining time. In order to isolate this con-
tribution, the apparent anelastic strain after t = 4 × 106 s uncon-
strained relaxation is shown in Fig. 4 as a function of the apparent
elastic strain at the end of the constraining period, both computed
for the sample surface. The contribution of STZs with n≤ 20 atoms
to the anelastic strain is negligible at this point (t = 4 × 106 s), since
these have essentially been fully reversed. The five small-strain data
points in Fig. 4, which lie on a straight line, are taken from Ref. 12.
Significant deviation from linearity is observed at high strain and
stress. The decrease of the anelastic strain due to n = 21 STZs from
its value at the end of the constraining period, about 27% during
unconstrained relaxation for 4 × 106 s, is accounted for in the
analysis.

IV. OVERVIEW OF THE DATA ANALYSIS

“Apparent” strain values below are those determined from
curvature by using linear variation across the sample. The term
“actual” is used to distinguish strain and stress values from their
apparent values. The Nomenclature contains a summary of the
notation used below.

1. Applying the condition of zero total bending moment after
constraint removal, a relationship between the apparent anelastic
strain at the sample surface at t ¼ 4� 106 s after constraint
removal, εappan (d=2, t ¼ 4� 106 s), and the position-dependent
anelastic strain due to n ¼ 21 STZs at the end of the constraining
period, ε21,constr(y, ttotalc ), is obtained.

2. εappan (d=2, t ¼ 4� 106 s) is directly determined from curva-
ture measurements [Eq. (5)]. An expression for ε21,constr(y, ttotalc ), in
terms of the apparent elastic strain at the sample surface at the end
of the constraining period, εappel,constr(d=2, t

total
c ), is obtained from

time integration of the position- and time-dependent macroscopic
shear strain rate due to n = 21 STZs under constraint, _γ21,constr(y, tc).
Approximations used in this step are detailed below.

3. Substituting the expression for ε21,constr(y, ttotalc ) into the
relationship between εappan (d= 2, t ¼ 4� 106 s) and ε21,constr(y, ttotalc ),
obtained in step 1 above, yields a fitting equation for
εappan (d=2, t ¼ 4� 106 s) vs εappel,constr(d=2, ttotalc ). This equation con-
tains two fitting parameters: the transformation shear strain, γT0 , and
the volume of n = 21 STZs, Ω21.

4. A simultaneous two-parameter fit is performed on all
data. The linear portion, which has smaller error, is not fitted
as well as with a separate linear fit. A revised two-step fit is
performed as follows: first, the linear regime is fitted, which
yields the value of (γT0 )

2 � Ω21 with small random error. This

FIG. 4. Apparent anelastic strain after unconstrained relaxation for t = 4 × 106 s
as a function of the apparent elastic strain at the end of the constraining period
for varying constraining radii. Both are computed for the sample surface. Each
symbol represents one sample. Deviation from linearity occurs at high strain.
The dashed line is a fit to the linear portion.
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value is then used as a constraint for the entire data set to
obtain Ω21 and γT0 .

V. ANALYSIS DETAILS

We first note that for the presently used bending-strain values
≤0.0155, nonlinear elastic behavior21 is likely to be minimal, espe-
cially since the long-range elastic field of an STZ dominates ΔF in
Eq. (2). Since nonlinearity is observed in Fig. 4, nonlinear kinetics
[Eq. (1)] now will be used. After constraint removal, the total
bending moment is zero,

M(t ¼ 0) ¼
ðd

2

�d
2

[σconstr(y, t
total
c ) � σu(y, t ¼ 0)]� ydy ¼ 0, (6)

where σconstr(y, ttotalc ) is the applied stress at a distance y from the
sample midplane at the end of the constraining period.
σu(y, t ¼ 0) is the unloading stress immediately upon constraint
removal, which varies linearly across the sample thickness,

σu(y, t ¼ 0) ¼ y � 1
R
� 1
r(0)

� �
� E0
2(1� ν2)

: (7)

The position-dependent applied stress at the end of the con-
straining period is

σconstr(y, t
total
c ) ¼ [εconstr(y)� εan,constr(y, t

total
c )]� E0

2(1� ν2)
, (8)

where εconstr(y) is the position-dependent total constraining strain,
y � [1=R� 1=r0]. εan,constr(y, ttotalc ) is the sum of the position-
dependent anelastic strain due to all active STZ sizes at the end of
the constraining period. It consists of contributions: (a) due to STZs
comprising n atoms, ε0n,constr(y, t

total
c ), n = 14–20, which reached

mechanical equilibrium during constraining, and (b) due to n = 21
STZs, ε21,constr(y, ttotalc )—these did not reach mechanical equilibrium.
Therefore, εan,constr(y, ttotalc ) is expressed as

εan,constr(y, t
total
c ) ¼

X20
n¼14

ε0n,constr(y, t
total
c )þ ε21,constr(y, t

total
c )

¼
X20

n¼14
cn � εel,constr(y, t

total
c )þ ε21,constr(y, t

total
c ):

(9)

ε0n,constr(y, t
total
c ) equals cn � εel,constr(y, ttotalc ),12 where cn is the

volume fraction occupied by potential STZs comprising n atoms,
and εel,constr(y, ttotalc ) is the position-dependent elastic strain at the
end of the constraining period. The values of cn were obtained in
Refs. 12 and 13.

Substituting Eqs. (7)–(9) into Eq. (6), and since σconstr(y, ttotalc )
and σu(y, t ¼ 0) are antisymmetric, Eq. (6) immediately after con-
straint removal becomes

ðd
2

0
y � 1

r(0)
� 1
r0

� �
� ydy ¼

ðd
2

0

X20

n¼14
cn � εel,constr(y, t

total
c )� ydy

þ
ðd

2

0
ε21,constr(y, t

total
c )� ydy: (10)

After t = 4 × 106 s of unconstrained relaxation, the contribution
of STZs with 14≤ n≤ 20 vanishes, and with τ21 = 1.25 × 107 s,12 the
anelastic strain due to n = 21 decreases by a factor of 0.73.
Consequently, at t = 4 × 106 s, the zero-moment condition becomes

εappan (d=2, t ¼ 4� 106 s) ¼ 0:73� 12
d2

�
ðd

2

0
ε21,constr(y, t

total
c )� ydy: (11)

The position-dependent anelastic bending strain due to n = 21
STZs at the end of the constraining period is

ε21,constr(y, t
total
c ) ¼ (1� ν)�

ðttotalc

0
_γ21,constr(y, tc)dtc, (12)

where (1� ν) is the ratio of bending to shear strain. _γ21,constr(y, tc)
is the actual position-dependent macroscopic shear strain rate due
to n = 21 STZs after time tc under constraint. Similar to the total
anelastic strain, ε21,constr(y, ttotalc ) is also equal to the anelastic strain
due to n = 21 STZs immediately following constraint removal,
ε21(y, t ¼ 0). Using Eq. (1) with n = 21 corresponding to m = 8, the
actual position-dependent macroscopic shear strain rate due to
n = 21 STZs as function of time under constraint is

_γ21,constr(y, tc) ¼ 2c21γ
c
0νGexp �ΔF21

kT

� �
sinh

σconstr(y, tc)γT0Ω21

2kT

� �
: (13)

The last term in Eq. (2), the shear resistance of an STZ iso-
lated from the matrix, can be neglected,14 yielding

ΔF21 ¼ (7� 5ν)
30(1� ν)

þ 2(1þ ν)
9(1� ν)

� �β
2

� �
μ(γT0 )

2
Ω21: (14)

Substituting Eq. (14) into Eq. (13), the position-dependent
strain rate due to n = 21 STZs under constraint lasting tc,
0 � tc � ttotalc , becomes

_γ21,constr(y, tc) ¼ 2c21γ
c
0νG � exp � (7� 5ν)

30(1� ν)
þ 2(1þ ν)
9(1� ν)

� �β
2

� �
� μ(γT0 )

2
Ω21

kT

" #
� sinh

σconstr(y, tc)γT0Ω21

2kT

� �
: (15)
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In Eq. (15), the only parameter expected to change significantly
with time is the applied stress σconstr(y, tc), since the constraint
imposes a fixed total strain. However, since the apparent elastic strain
at the sample surface at the end of the constraining period remains
within ∼25% of its value at the beginning, σconstr(y, tc) will be approxi-
mated by the latter value, σconstr(y, tc) � σconstr(y, ttotalc ). Consequently,
_γ21,constr(y, tc) is approximated as its value at tc

total. This is one of the
two approximations used to estimate Eq. (15). The second approxi-
mation is based on the apparent elastic strain, as detailed below.

The position-dependent applied stress at the end of the
constraining period, σconstr(y, ttotalc ), is proportional to the actual
position-dependent elastic strain at that point, εel,constr(y, ttotalc )
¼ εconstr(y)� εan,constr(y, ttotalc ). It will be approximated by its
apparent value, Eq. (4), since εappel,constr(d=2, t

total
c ) is within ∼25% of

εconstr(d=2). Therefore,

σconstr(y, t
total
c ) � εappel,constr(y, t

total
c )� E0

2(1� ν2)
: (16)

Substituting the values of all known parameters, listed above,
and Eq. (16) into Eq. (15) yields the approximate position-
dependent macroscopic shear strain rate due to n = 21 STZs at the
end of the constraining period,

_γappr21,constr(y, ttotalc ) ¼ 1:2� 1012 � γT0 � exp[�3:20� 1030 � (γT0 )
2 � Ω21]� sinh[3:37� 1030 � εappel,constr(y, t

total
c )� γT0 � Ω21], (17)

with Ω21 in m3 here and below. Substituting Eq. (17) as an approximation of _γ21,constr(y, tc) into Eq. (12) yields

ε21,constr(y, t
total
c ) ¼ 2� 106 � 0:65� 1:2� 1012 � γT0 � exp[�3:20� 1030 � (γT0 )

2 �Ω21]� sinh[3:37� 1030 � εappel,constr(y, t
total
c )� γT0 � Ω21]:

(18)

Substituting Eq. (18) into Eq. (11) results in

εappan (d=2, t¼ 4�106 s)¼ 3:42�1018� γT0 � exp[�3:20�1030� (γT0 )
2�Ω21]�

ð1
0
sinh[3:37�1030�εappel,constr(d=2, t

total
c )� z� γT0 �Ω21]zdz,

(19)

where z = 2y/d. Equation (19) is the fitting equation for measured
values of εappan (d=2, t ¼ 4� 106 s) as a function of εappel,constr(d=2, t

total
c )

(Fig. 4), with γT0 and Ω21 being the fitting parameters. A Taylor
series up to the 11th order (six terms) is used as a good approxima-
tion of the hyperbolic sine function.

A two-parameter fit is performed on the entire range of data
simultaneously, with equal weight to all points. It is shown in Fig. 5,
which displays the data of Fig. 4 on logarithmic scales. The fit yields
γT0 ¼ 0:17 and Ω21 ¼ 5:2� 10�28 m3 with a R-squared value of
0.982. The fit sensitivity to each γT0 and Ω21 is determined by fixing
one at different values and using the other as a single fitting parameter.
This yields estimated random errors in γT0 and Ω21 of ±3% and ±6%,

respectively. The main approximation has been to express the
applied stress that drives anelastic deformation as linearly varying
in y and constant in time. An attempt at fit improvement was
made by using the resulting strain distribution to update the
applied stress and iterate to obtain a revised fit. The iteration
yields a very small change in γT0 and Ω21. Moreover, it leads to a
slightly worse fit of the (low-scatter) linear portion and is not
considered useful. We conclude that the scatter of the data limits
any further improvement in the two-parameter fit.

In Fig. 5, it is apparent that the two-parameter fit deviates
from the linear portion of the data. Since this portion is more reli-
able, a revised two-step fit is now employed. For the linear regime,

FIG. 5. Data of Fig. 4 on a log-log scale. Comparison between the two-
parameter fit (dotted line) and two-step fit (dashed line). The latter yields a
better fit for the small-strain data than the former.
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the hyperbolic sine term in Eq. (19) is linearized,

εappan (d=2, t ¼ 4� 106 s) ¼ 3:84� 1048 � (γT0 )
2 � Ω21

� exp[�3:20� 1030 � (γT0 )
2 �Ω21]

� εappel,constr(d=2, t
total
c ):

(20)

Fitting Eq. (20) to the small-strain data yields a slope of
0.0482, which, when substituted into Eq. (20), yields

(γT0 )
2 � Ω21 ¼ 1:517� 10�29 m3, (21)

with a random error of only a small fraction of a percent because
this term appears in the exponent in Eq. (19). Substituting Eq. (21)
into Eq. (19) and fitting the entire range of data yields γT0 ¼ 0:18
and Ω21 ¼ 4:8� 10�28 m3 with random errors of 1.5% and 3%,
respectively. Since the error in (γT0 )

2 �Ω21 is much smaller, these
two errors are strongly correlated. The R-squared value of the fit is
0.982, which equals that for the two-parameter fit.

The implication of these new results, γT0 ¼ 0:18 and
Ω21 ¼ 4:8� 10�28 m3 (∼29 Al atoms), for Ref. 12 are now dis-
cussed. If one assumes γT0 ¼ 0:18 to be independent of STZ size,
it can be used to recalculate the results of Ref. 12. While the pre-
vious quantized hierarchy still stands, the present numerical
values result in a volume increment of 2.08 × 10−29 m3, in con-
trast to Ref. 12, in which it was fortuitously close to the volume
of an Al atom (VAl = 1.66 × 10−29 m3). This possibly highlights the
limitation of the model of Fig. 1 and constitutive law of Refs. 12
and 14 [Eq. (1)]. The present results provide a confirmation of the
magnitude of γT0 , for which an approximate value of 0.2, obtained
from physical analogs,3,4 was used in our prior work.

Interestingly, despite the lower strain and corresponding
STZ volume fraction in the present work, the activation volume
we obtain, γT0 �Ω21 ¼ 8:6� 10�29 m3, is similar to values obtained
from creep in Pd80Si20,

14 10.5 × 10−29 m3, and from viscosity mea-
surements in undercooled melts, 8 × 10−29–1.9 × 10−28 m3.22

Because of the different assumptions in Ref. 22, its STZ volume
values are about a factor of 5 greater than that of the largest STZ in
the present work. Reference 22 follows Ref. 23 in equating the trans-
formation strain to the universal macroscopic yield strain observed,
0.036. We suggest that the former is greater than the latter for the
following reasons: (a) Physical analogs (Refs. 3 and 4 indicate larger
transformation strains, >0.1). (b) This may be explained by the
expectation that macroscopic yield involves autocatalytic STZ ava-
lanches, which likely begin at weak spots and for which local strains
are higher than the macroscopic strain.12 This point is further sup-
ported by observations of higher yield stress and strain for smaller
dimensions.24 When comparing results, one should note that our
data were obtained at room temperature, and larger STZs are
expected to become active with increasing temperature.

We further reiterate the distinction between data obtained at
low strain, when STZs are isolated, and at higher strain, when back
stress is lost and STZ interactions with each other are significant.
Following Ref. 14, the latter activated flow state is reached for a
total volume fraction of ∼40% occupied by STZs, corresponding to

macroscopic permanent or anelastic shear strains >0.033 for our
value of γTo . While the present study expands our work into the
nonlinear regime, the macroscopic anelastic shear strain is below
0.0060, with corresponding STZ volume fractions that are still
small, ≤7.2%. Reported processes such as stress overshoot25,26 and
loss of neighbors27 occur at far higher strains.

In conclusion, a method of constraining samples in bending
geometry with bending strains up to 0.0155 was developed. The
anelastic strain rate was nonlinear in the applied stress due to the
high value of the latter. Combining the constitutive law and
zero-bending-moment condition, the nonlinear regime allows us
to determine the transformation shear strain and atomic volume
of the largest active STZs independently, which are 0.18 and
4.8 × 10−28 m3, respectively. The respective random errors, 1.5%
and 3%, are small because these parameters appear in the expo-
nent in the constitutive law.
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NOMENCLATURE

“Apparent” strain values below are those determined from
curvature by assuming linear variation across the sample. The term
“actual” is used to distinguish strain and stress values from their
apparent values.

cn volume fraction of potential STZs comprising n
atoms

d sample thickness
E0 Young’s modulus (=48.2 GPa19)
M(t ¼ 0) total bending moment immediately after constraint

removal [Eq. (6)]
m = 1,…,8 index denoting spectrum peaks
n = 13 +m number of atoms an m-type STZ comprises. Used as

a subscript in Eq. (9) and below
R mandrel radius
r0 initial radius of curvature of the sample before

constraint
r(t) radius of curvature of the previously constrained

section at time t
T temperature (=295.15 K)
t time during unconstrained relaxation after constraint

removal
tc time under constraint
ttotalc total constraining time, equal to 2 × 106 s
y distance from sample midplane
z normalized distance from sample midplane, 2y/d

Greek
�β
2

dilatancy factor (≈114)
ΔFm activation barrier associated with m-type STZs
ΔF21 activation free energy for shear transformation of

n = 21 STZs
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εappan (y, t) apparent position-dependent anelastic strain
at time t after constraint removal, obtained
from curvature by assuming a linear depen-
dence of the anelastic strain on y [Eq. (19)]

εappan,constr(y, t
total
c ) apparent position-dependent anelastic strain

at the end of the constraining period, obtained
from curvature by assuming a linear depen-
dence of the anelastic strain on y [Eq. (5)].
Actual value is defined below

εconstr(y) position-dependent constraining strain [Eq. (3)]
εan,constr(y, ttotalc ) total position-dependent anelastic strain due

to all active STZ sizes at the end of the con-
straining period [Eq. (9)]

εel,constr(y, ttotalc ) actual position-dependent elastic strain at the
end of the constraining period

εappel,constr(y, ttotalc ) apparent position-dependent elastic strain at
the end of the constraining period, obtained
from curvature by assuming a linear depen-
dence of the elastic strain on y [Eq. (4)].
Actual value is defined below

ε0n,constr(y, t
total
c ) equilibrium position-dependent anelastic

strain due to STZs comprising n atoms
(n = 14–20) at the end of the constraining
period

ε21,constr(y, ttotalc ) position-dependent anelastic strain due to
n = 21 STZs, which did not reach mechanical
equilibrium, at the end of the constraining
period [Eqs. (12) and (18)]

γc0 constrained transformation shear strain, equal
to [2(4� 5ν)=(15(1� ν))]� γT0

γT0 unconstrained transformation shear strain
_γ21,constr(y, tc) actual position-dependent macroscopic shear

strain rate due to n = 21 STZs as a function of
time under constraint [Eqs. (13) and (15)]

_γappr21,constr(y, ttotalc ) position-dependent macroscopic shear strain
rate due to n = 21 STZs at the end of the con-
straining period approximated as constant in
time [Eq. (17)]

k Boltzmann constant
μ shear modulus, equal to E0=[2(1þ ν)]
ν Poisson’s ratio (=0.3518)
νG attempt frequency (=1013 s−116)
Ωm volume of m-type STZs

Ω21 volume of STZs comprising n = 21 atoms
σconstr(y, ttotalc ) position-dependent applied stress at the end

of the constraining period [Eq. (8)]
σu(y, t ¼ 0) position-dependent unloading stress immedi-

ately after constraint removal [Eq. (7)]
σSTZ shear resistance of STZs
σSTZ=μ ¼ 0:02517

τn, n = 14,…,21 time constant for unconstrained anelastic relax-
ation associated with STZs comprising n atoms
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