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The use of carbon dioxide as a feedstock for a broad range of products can help mitigate the 

effects of climate change through long-term removal of carbon or as part of a circular carbon 
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economy. Research on capture and conversion technologies has intensified in recent years and 

the interest in deploying these technologies is growing fast. However, a sound understanding 

of the environmental and economic impact of these technologies is required to drive fast 

deployment and avoid unintended consequences. Life cycle assessments and techno-economic 

assessments are useful tools to quantify environmental and economic metrics; however, these 

tools can be very flexible in how they are applied, with the potential to produce significantly 

different results depending on how the boundaries and assumptions are defined. Built on ISO 

standards for generic life cycle assessments, several guidance documents have emerged 

recently from the Global CO2 Initiative, the National Energy Technology Laboratory, and the 

National Renewable Energy Laboratory that further define assessment specifications for 

carbon capture and utilization. Overall agreement in the approaches is noted with differences 

largely based on the intended use cases. However, further guidance is needed for assessments 

of early stage technologies, reporting details, and guidance for policymakers and non-

technical decision makers. 

  

1. Introduction 

 

Atmospheric carbon dioxide levels continue to increase and contribute substantially to climate 

change. The Paris Agreement and subsequent Intergovernmental Panel on Climate Change 

(IPCC) reports clearly lay out the urgent need to not only curb and reduce further CO2 

emissions but also call for removal of CO2 from the atmosphere. The capacity of the 

atmosphere to store CO2 before catastrophic consequences would result is finite [1] and action 

is needed now. Along with other approaches to furthering the critically needed reduction of 

atmospheric CO2 levels, such as de-fossilization of energy systems, underground CO2 storage, 

and reforestation, new strategies for treating waste CO2 are increasingly needed. Among the 

most promising of these are carbon capture and utilization (CCU) technologies, which 
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incorporate processes to transform waste carbon dioxide into useful products available for 

purchase by global commercial entities and private citizens [2], [3], [4], [5]. There is also a 

complementary effort to inform and increase the practice of agriculture that sequesters CO2 in 

soils. While sequestration of carbon in geologic reservoirs contributes to CO2 removal efforts, 

economic value can only be achieved for Enhanced Oil Recovery (EOR).  Thus, the need to 

develop technologies that are both carbon reducing – providing a CO2 reduction benefit over 

existing technologies that make the same or similar products – and dollar positive – creating 

an economic incentive for development, scale-up, deployment, and prosperous operation – is 

intensifying.  

Because this economic incentive encourages industry adoption of environmentally beneficial 

operations through targeted build-up of sustainable economic opportunities, CCU 

technologies are an important complement to energy efficiency improvements, transitions to 

renewable energy such as wind and solar, and other emissions reduction efforts [2], [6]. Like 

these, CCU technologies address the urgent need for action to counter negative effects of 

climate change. In response to the challenges and opportunities presented by this need, new 

technologies and systems for CO2 capture, conversion, and utilization for sustainable 

products, which enable a circular carbon economy, are being explored in an increasing 

number of research and production projects around the world [7], [8], [9], [10], [11], [12]. 

In this context, assessment of new CCU technologies is essential for accurate evaluation and 

prediction of their environmental and economic benefits and risks. Life cycle assessment 

(LCA) and techno-economic assessment (TEA) are tools that can provide this information and 

guide R&D efforts as well as policy development and decisions about which technologies 

merit commercializing into the marketplace [13]. 

However, such assessments are complex, depend on boundary conditions, are impacted by 

local regulations and laws, and often suffer from incomplete information, especially when 

conducted for technologies at an early stage of their development, i.e. with a low level of 
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technology readiness, including Technology Readiness Levels (TRLs) 1 through 3 [14], [15], 

[16]. Consequently, it is hardly surprising that problems associated with their use arise. For 

example, comparisons of assessment results can lead to incorrect interpretations if these 

results were obtained by different assessors, assumed different regional locations, were 

performed with varying methods, or employed methods that are either too generic or were 

defined for other product categories [17], [18]. 

 

CO2 utilization is a new actor on the global stage, and those who are leading its development 

must ensure that a common language, guidelines, and set of technology evaluation tools be 

available for use by companies, researchers, and policymakers working in this emerging 

space. Life cycle assessment procedures are actually described and defined in two generic 

ISO standards (ISO 14040 and 14044). However, the application to CCU is rather new and a 

variety of approaches has been developed and is in use. Emerging from this variety is a need 

for harmonization of procedures for LCA and TEA for CCU and for consistent interpretation 

and reporting of the results. In this context, guidelines have been published recently that 

bridge between generic standards and program-specific guidance [15]. Additional detailed 

guidance was provided for specialized CCU cases [19], [20], [21]. It must be noted that other 

organizations as well as companies are working on assessment guidelines. An example is the 

work done by the Joint Research Centre (JRC) for the European Commission. Academy, 

industry, policy, and civil society experts working in the carbon dioxide capture and 

utilization space need to jointly explore and develop CO2 metrics, best practices, validation, 

and the need for further action. Ideally, a harmonized global toolkit will be available for 

measuring and reporting on carbon dioxide utilization or removal technologies for project 

investment, product marketing, and policy needs. This toolkit may include a number of 

guidelines that are adapted to local policy requirements while at the same time remaining 

compatible in their approaches and reporting to allow transparent evaluation across the entire 
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field. A common ground is important as for example illustrated in another global effort by the 

work of the Task Force on Climate-related Financial Disclosures, seeking to “develop 

recommendations for voluntary climate-related financial disclosures that are consistent, 

comparable, reliable, clear, and efficient, and provide decision-useful information to lenders, 

insurers, and investors”  (https://www.fsb-tcfd.org/). The payoff for these efforts is clear: 

comprehensive, consistent, and transparent LCAs/TEAs and reporting of their results will 

facilitate funding decisions and promote sustainability-driven technology development. In 

fact, this is of course the case not only for CCU technologies but any new technologies. 

 

2. Status of guideline harmonization 

 

The Global CO2 Initiative and the National Energy Technology Laboratory (NETL) have 

completed initial versions of guidance documents intended to advise on the execution of 

TEAs and LCAs for CCU projects [15], [22]. The Global CO2 Initiative provides general TEA 

and LCA guidance for CCU projects to the global community, and NETL provides LCA 

guidance specific to United States (U.S.) funding recipients that are required to report to the 

U.S. Department of Energy (DOE). Both NETL and the National Renewable Energy 

Laboratory (NREL) have developed best practices for TEA of CCU technologies but have not 

yet formalized these recommendations in a specific guidance document [22], [23]. 

 

2.1 LCA Guidance Documents 
 

LCA guidance documents by the Global CO2 Initiative and NETL do not differ substantially. 

Both follow ISO 14040:2006 (Environmental management – Life cycle assessment – 

Principles and framework) and ISO 14044:2006 (Environmental management – Life cycle 

assessment – Requirements and guidelines) and provide additional guidance specific to CCU 
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projects. The NETL document goes a step further and provides more specific guidance related 

to the program goals of the U.S. DOE Carbon Utilization Program, i.e., the specification of 

coal-fired power plants as the source of CO2. In addition to following International 

Organization for Standardization (ISO) standards, both documents (1) favor system expansion 

as a co-product management method, (2) require that the source of the CO2 be included in the 

system boundary, (3) acknowledge that the primary research question will likely involve the 

comparison of a CCU system and a reference system, (4) use similar classifications for 

technology readiness levels (TRLs), and (5) assign a multi-product functional unit based on 

technical equivalency. This shows that increasing specialization in terms of application, use 

case, or end user need leads to guidelines that are applicable only when respective conditions 

are met but are otherwise in full compliance with overarching standards or guidelines as 

depicted in Figure 1. 

 

Figure 1: Illustration of how guidance for LCAs can be subsets of each other, fully in 

compliance, yet more specialized the more the use case is specified. The overarching ISO 
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standard for life cycle assessment provides the framework for the guidelines for LCA of 

general CO2 utilization published by the Global CO2 Initiative (GCI). The guidelines by 

NETL further specialize by specifying the source of CO2. 

 

The documents differ primarily in their suggested data sources for impact assessment and 

inventory. The Global CO2 Initiative suggests the tools from the Institute of Environmental 

Sciences (CML) at the University of Leiden for global applications and Tool for the 

Reduction and Assessment of Chemical and other environmental Impacts (TRACI) v2.0 for 

U.S. applications [24]. The Global CO2 Initiative also includes standardized scenarios for CML 

results: status-quo, low decarbonization, high decarbonization, and full decarbonization. 

NETL guidance is exclusively U.S.-based and requires TRACI v2.1 [25]. For inventory data, 

NETL requires funding recipients to use NETL data for some of the processes in their main 

scenario. The Global CO2 Initiative does not require particular inventory data but does 

provide thinkstep data – through impact assessment – for some inputs, e.g., electricity, 

hydrogen, and natural gas. 

 

2.2 TEA Guidance Documents 
 

While TEA is a widely-used tool, guidelines for completing a TEA can vary according to 

application, technology development, and stakeholder needs. Through a recent workshop, 

TEA practitioners from the Global CO2 Initiative, NREL, and NETL discussed and compared 

their respective TEA methodologies for CCU technologies and determined that they are 

generally consistent with each other. 

The Global CO2 Initiative’s guidance document on TEA gives generic advice for a global 

audience, leaving room for the use of specific scenarios and methods if desired. NREL’s 

methods are often designed to, but not limited to, work closely with funded technology 
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developers within DOE-funded programs to conceptualize the performance and costs of their 

process in relation to DOE goals. NETL’s approach is similar to NREL’s approach in practice 

by informing technology developers throughout the development process from early research 

to commercialization. Several sources for cost of electricity, cost of capture, and metrics to 

assess CCU technologies are publicly available from NETL [22]; these can be incorporated into 

TEA for CO2 utilization. 

Both NREL and NETL provide TEA guidance for early-stage development technologies 

within DOE-funded programs to provide screening-level information, while the Global CO2 

Initiative guidelines document is used to inform the detailed analysis of a technology on the 

basis of audience needs. Both the Global CO2 Initiative and NREL use performance and cost-

curves to project a potential future state for the given technology. NETL is seeking to 

standardize the application of learning curves, among other TEA metrics, for low-TRL 

technologies via a guidance document that is currently in development and is on track to be 

released in 2020. 

The standard TEA methodology used by NREL employs five classes of analysis strategies [26] 

that are differentiated according to the purpose of the analysis, especially for different TRLs, 

the accuracy, the exact methodology, and the time or budget requirement. The performance of 

TEA over a range of TRLs requires the application of different analysis strategies in an 

iterative effort between the analysis team, the R&D team, and the key stakeholders. The level 

of rigor required for a TEA is dependent on both the stage (class) of the TEA effort and the 

number of iterations with collaborating teams. 

TEA of low-TRL technologies to validate an initial idea focuses on determining primary and 

auxiliary equipment costs using factored design estimates. These estimates utilize a range of 

heuristics and cost curves to calculate costs from data available in the public domain, e.g., 

reference books and software. In contrast to that, TEA of high-TRL technologies uses more 

rigorous process designs and economic evaluations. In these cases, it is imperative that the 
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TEA team works with trusted vendors to develop detailed process designs and estimate 

equipment manufacturing capital cost, including detailed cost estimates for all core 

conversion equipment as well as all auxiliary equipment, control systems, and safety 

components. Collaboration with engineering and construction firms to enhance credibility and 

quality as well as iteration with researchers, experimentalists, and key stakeholders are 

essential to perform accurate TEAs. 

 

3. The Need for Streamlined LCAs and TEAs for Low-TRL Projects 

 

Research funders, investors, corporations, and policymakers are interested in evaluating the 

merit and potential of new technologies as early as possible. However, the assessment and 

evaluation of low-TRL CCU projects pose particular difficulties. Conventional LCA and TEA 

methods require large amounts of data and substantial time and effort. Such data are typically 

not available at high accuracy for technologies in the early- to mid-stages of development 

(TRL 1 to TRL 6). The application of conventional LCA and TEA methods is thus 

challenging. Nonetheless, crucial decisions regarding the viability and suitability for 

commercialization must be made. There is a need for “streamlined” assessments that would 

enable reasonably certain assessment results with less effort in general and for technologies at 

an early stage in their technological maturity [27]. Such streamlined assessments could guide 

R&D activities intended to bolster economic and environmental benefits and support the 

making of sound funding decisions by governmental entities, corporate R&D departments, 

and early-stage investors [28]. 

At present, such methods, though nominally available, are of unsatisfactory quality for 

providing reliable decision support. In current best practice, researchers are discussing various 

approaches to the streamlining of early stage technology assessment, including 

thermodynamic shortcuts, approximated process design, and artificial neural networks [29]. 
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The application of these quicker or reduced-effort approaches will result in a trade-off 

between effort and data requirements on the one hand and certainty of the results on the other 

hand. Furthermore, the same category of data might have varying levels of certainty for 

different technologies. Uncertainties can also vary substantially across product life cycle 

phases and comparative reference processes for both environmental impact categories and 

economic metrics [30]. Ways of describing and dealing with these uncertainties must be 

addressed in detail in the creation of a suitable methodology and set of useful assessment 

indicators for low-TRL project assessments. 

 

 

 

 

4. The Need for Guidelines for Successful Interpretation of LCA and TEA Results 

 

In most cases, the results of LCA and TEA conducted for the assessment of promising CCU 

projects are expected to have multiple recipients. This audience, generally referred to as 

stakeholders, could include policymakers and associated staff, investors, both internal and 

external to an organization, R&D program managers, researchers, corporate managers, and 

consumers, especially from the perspective of product labeling. The stakeholders constituting 

each of these groups have different needs depending on their role in general and within their 

organizations. Practical use of the reported results, however, poses a significant barrier to 

many in their intended audience. Practitioners agree that LCA and TEA are complex and that 

their results require significant effort to properly interpret. Thus, a need exists to provide 

guidance on structuring results for those on the receiving ends of TEA and LCA reports and 

analyses. 
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Because the LCA/TEA guidelines developed by the Global CO2 Initiative and the LCA 

guidelines developed by NETL are written primarily with an audience of engineers and 

analysts in mind, non- and less-technical stakeholders need to be made aware of factors that 

affect interpretation of the results, including the key methodological decisions made to ensure 

that the study results are valid for the intended application and directly comparable to other 

reports. Guidelines for conducting LCA and TEA are designed to prevent the manipulation of 

the analysis to yield biased results; however, potential pitfalls remain for stakeholders in the 

interpretation of these analysis results. 

 

When evaluating LCA results, stakeholders should be cognizant that (1) the system 

boundaries are complete and include the source of CO2 for the utilization project and (2) 

multifunctionality is an inherent characteristic of CCU systems, which requires thoughtful 

development of comparison/benchmark systems to assess potential benefits. 

 

It is noted that TEA analysts are speaking a similar language – albeit many different 

approaches, concepts, and indicators have been reported in TEAs for CCU – and are aware of 

many of the other major analysis groups working in the CO2 utilization space. Thus, guidance 

for the interpretation of TEA would benefit the community by heading off common pitfalls 

and miscommunications. It is critical to the development of guidelines for successful 

interpretation of TEA results that (1) generally accepted approaches, i.e., frameworks or 

methodologies for TEA are defined, (2) TEA is differentiated from business cases as the two 

have different intended uses, (3) the class/stage of the TEA analysis is defined and provided, 

e.g., hot-spot analysis for low- TRL technologies versus in-depth process design and cost 

determination for high-TRL technologies. The classification of a TEA into one of the five 

classes would guide its interpretation/use. The uncertainty of the assessment is bounded not 

only by TEA classification, but also by input data, model structure and contents. Further, it is 
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necessary to (4) harmonize the nomenclature across various TEA guidelines, existing and 

emerging, (5) ensure that guidelines for interpretation take international perspectives and 

needs into consideration, such as differences in taxation laws, (6) define broadly-applicable 

approaches and methods for linking TEA and LCA through common metrics, especially for 

highlighting direct and indirect relationships such as trade-offs, (7) provide scenario and 

sensitivity analyses to avoid the pitfall of focusing too much on  singular cost values, i.e., the 

inherent value of TEA lies not in the exact cost output, but in the insight provided into the key 

cost drivers, and (8) analyze and report uncertainty in cost estimates, especially for low-TRL 

technologies and unit operations that have not yet been commercialized. 

 

Furthermore, since emerging CCU technologies must be evaluated on environmental and 

economic performance, an integrating approach for LCA and TEA is needed.  This could 

follow a preliminary methodological basis that can be leveraged and extended to CCU 

technologies [31]. Integrating LCA and TEA offers multiple advantages over separate TEA and 

LCA evaluations. (1) A combined LCA and TEA based approach will help determine 

emerging CCU technologies that are both economically and environmentally promising. This 

approach can help deprioritize CCU technology alternatives, which are only promising in a 

single dimension, economic or environmental. For example, while TEA studies show that 

CCU methanol may be economically viable [32], corresponding LCA studies demonstrate that 

CCU methanol is environmentally sub-optimal [33], [34]. (2) The opportunity to leverage 

material and energy inventory data requirements, which forms the basis for both an economic 

and environmental assessment, makes an integrated LCA and TEA approach better suited to 

resolve challenges that are unique to either LCA or TEA. For example, the issue of data 

confidentiality is widely prevalent in TEA as costing information may not be not publicly 

available and propriety to commercial entities or industry members developing the CCU 

technology. In such a scenario, an integrated approach can develop reasonable estimates of 
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costs based on the life cycle inventory data, which was used for the LCA. (3) An integrated 

LCA and TEA approach can prospectively identify critical CCU technology parameters and 

hotspots, which can produce the most significant environmental and economic benefits upon 

improvement through future R&D.  (4) An integrated approach helps monetize and 

incorporate the costs of externalities and environmental burdens, that are by quantified by the 

LCA, as a part of the overall life cycle economic cost of a CCU technology [31]. (5) The 

characterization of uncertainty for both environmental and economic performance across 

technology readiness levels (TRLs) can draw on the same uncertainty estimates for input 

parameters that are in common to both analyses.  

 

 

 

 

5. Communicating LCA and TEA Results Clearly 

 

Clear communication of results is vital to maximize the usefulness of any LCA or TEA study. 

The method of communication should be designed to suit the target group and the specific 

needs of its members. In many cases, a non-practitioner will be involved in the eventual 

decision-making process, and thus the outcomes of the study must be easy to understand by 

diverse audiences with varying levels of technical expertise. The underlying scenarios, basic 

assumptions, and limitations of the study must be explained clearly and concisely, as these 

have a large impact on the interpretation of the results.  

Furthermore, guidance is needed to help commissioners of studies and decision-makers 

determine necessary aspects for the scope of the study to ensure that outcomes are relevant, 

interpret the study, and make qualified statements from quantified outputs. This guidance is 
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vital, because often practitioners who conduct the LCAs and TEAs are not the decision-

makers who use the outcomes and results as the basis for their decision-making. 

The vocabulary relevant to discussion of CCUs requires standardization. Clear definitions of 

terms such as carbon neutral and carbon negative are needed to ensure consistent and 

effective communication of results. We recommend the creation of a standardized, globally 

applicable vocabulary/nomenclature for carbon utilization studies. 

 

6. Putting Results in Context for “Go/No-Go” Decisions 

 

The goal, scope, system boundary, energy and material inventories, and technological 

parameters provide the context in which an LCA or TEA is conducted for CCU technologies. 

Clear reporting of the context of TEAs and LCAs ensures that all stakeholders, even those 

without a background as practitioners, can correctly interpret the results of a given study and 

provide an assessment on whether or not a technology offers development or deployment 

potential and under which circumstances, e.g., if carbon negative deployment is contingent 

upon the supply of energy from renewable sources. 

Assumptions made about key components of carbon utilization projects, such as the carbon 

capture technology used, the allied processes that enable CO2 utilization such as hydrogen 

production, the electricity grid mix, and the product for which the CO2 is utilized ultimately 

have significant impact on the reported environmental and economic viability. Thus, they 

need to be clearly reported. Furthermore, LCAs and TEAs of CCU that involve the use of 

renewable energy to produce hydrogen (“power to X technologies”) should account for the 

economic or environmental opportunity cost of that renewable energy being used for CCU 

versus being supplied to the grid or used in competing technologies to offset CO2 emissions 

from fossil electricity. 
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In situations in which “go/no-go” decisions are being considered for low-TRL processes, a 

means of accounting for the impact of uncertainties is also necessary. Uncertainties in the 

material and energy inventories and technological parameters are especially typical in the so-

called “valley of death” (TRLs 4 to 6). To increase confidence in the recommendation of the 

LCA or TEA, sensitivity analysis can be incorporated to explore and rigorously evaluate the 

impact of uncertainties, not only those indicated previously but also other values in the 

inventory data, such as CCU technology parameters, grid mix electricity, and allied 

technology systems, e.g., hydrogen production, on the viability of the overall technology. 

Practitioners can also apply scenario analysis to LCAs and TEAs in order to reflect the known 

or expected realities of the time period and geographical location considered within the study. 

In general, in cases in which a technology is assessed in a scenario in which it is enabled by 

unrealistic, unlikely, or highly contingent developments, a “go/no-go’” decision should not be 

made. However, a distinction could be made among scenarios involving presently unrealistic 

developments; scenarios in which it is a reasonable assumption that the problems can be 

solved might be allowed. Ensuring that key components are both clearly reported and 

assessed with a clearly defined level of uncertainty permits other stakeholders to ascertain 

how reliable a “go/no go” decision may be and thus whether or not such a decision is feasible. 

In a case in which a technology is assessed as viable in a scenario that remains unrealistic 

from a technological, economical, or environmental perspective, a “go/no-go” decision is 

infeasible.  

 

Economic and environmental hotspots for the CCU technology can be identified for different 

scenarios. These hotspots are critical parameter uncertainties that impact the “go/no-go” 

decision. Approaches to include the impact of uncertainty can improve confidence in the 

economic and environmental performance of the CCU technology. Sensitivity analysis and, in 

particular, scenario assessment also provide opportunities to conduct environmental and 
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economic breakeven analyses under different technology improvement pathways, identify 

strategies to shorten breakeven periods, and construct economically and environmentally 

sustainable pathways for commercialization of the CCU technology [35], [36]. Ideally, these 

opportunities will provide stakeholders with the information necessary to compare the 

viability of different CCU technologies given different societal developments. 

 

Well-contextualized outputs from LCA and TEA studies should ease the burden on 

stakeholders who make decisions, such as technology managers and policymakers. These 

outputs should communicate the impacts of variability and sensitivity on the technology 

clearly while providing guidance on the feasibility of making a “go/no-go” decision. 

 

7. Conclusions 

The use of carbon dioxide as a feedstock for a broad range of products can help mitigate the 

effects of climate change by reducing atmospheric CO2 levels through long-term removal of 

carbon or as part of a circular carbon economy. Research on capture and conversion 

technologies has intensified in recent years and the interest in deploying these technologies is 

growing fast. However, a sound understanding of the environmental and economic impact of 

these technologies is required to drive fast deployment and avoid unintended consequences. 

Life cycle assessments and techno-economic assessments are useful tools to quantify 

environmental and economic metrics; however, these tools can be very flexible in how they 

are applied, with the potential to produce significantly different results depending on how the 

boundaries and assumptions are defined. Built on ISO standards for generic life cycle 

assessments, several guidance documents have emerged recently from the Global CO2 

Initiative, the National Energy Technology Laboratory, and the National Renewable Energy 

Laboratory that further define assessment specifications for carbon capture and utilization. 

Overall agreement in the approaches is noted with differences largely based on the intended 
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use cases. Key requirements and needs for further guidance are identified, especially for 

assessments of early stage technologies, reporting details, and guidance for policymakers and 

non-technical decision makers. 

 

Carbon capture and utilization technologies represent a global opportunity albeit with some 

local differences. Thus, researchers who are developing methods for LCA and TEA must take 

further international perspectives into account to incorporate a wider global perspective in 

order to have the highest impact possible. Further efforts to harmonize across what has 

already been attempted and achieved will be valuable for the evolution of the methods. To 

have the greatest possible impact, methods will need to be globally relevant so that all regions 

can use them in developing these technologies. Worldwide applicability will also permit 

streamlined comparisons of carbon capture technologies from around the world. The payoff 

for these efforts would be comprehensive, consistent, and transparent LCAs/TEAs and 

reporting of their results will facilitate funding decisions and promote sustainability-driven 

technology development. Beyond carbon capture and utilization the same effort for 

harmonized assessment methods could benefit the development and deployment of any new 

technology. 
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