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Abstract Global ionospheric total electron content (TEC) maps are widely utilized in 
research regarding ionospheric physics and the associated space weather impacts, so 
there is a great interest in the community in short-term ionosphere TEC forecasting. In 
this study, the long short-term memory (LSTM) neural network (NN) is applied to 
forecast the 256 spherical harmonic (SH) coefficients that are traditionally used to 
construct global ionospheric maps (GIM). Multiple input data, including historical 
time series of the SH coefficients, solar extreme ultraviolet (EUV) flux, disturbance 
storm time (Dst) index, and hour of the day, are used in the developed LSTM NN 
model. Different combinations of the above parameters have been used in 
constructing the LSTM NN model, and it is found that the model using all four 
parameters performs the best. Then the best performing LSTM model is used to 
forecast the SH coefficients, and the global hourly TEC maps are reproduced using 
the 256 predicted SH coefficients. A comprehensive evaluation is carried out with 
respect to the CODE GIM TEC. Results show that the 1st/2nd hour TEC root mean 
square error (RMSE) is 1.27/2.20 TECU during storm time, and 0.86/1.51 TECU 
during quiet time, so the developed model performs well during both quiet and storm 
times. Moreover, typical ionospheric structures, such as equatorial ionization anomaly 
(EIA) and storm-enhanced density (SED), are well reproduced in the predicted TEC 
maps during storm time. The developed model also shows competitive performance in 
predicting global TEC when compared to the persistence model and two empirical 
models (IRI-2016 and NeQuick-2). 
 
Key points: 
 The LSTM neural network is adopted to predict the global ionosphere TEC.   
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 The use of the external solar EUV flux and Dst index is able to improve the 
prediction performance of the spherical harmonic (SH) coefficients. 

 The developed LSTM model performs well during both quiet and storm 
conditions. 

1 Introduction 

The ionosphere is the ionized part of the earth’s upper atmosphere where sufficient 
plasma exists to affect the propagation of radio waves. It is arguably the most 
important region in terms of space weather impacts of modern technologic society, 
because irregularities in the ionosphere frequently degrade and disrupt satellite 
navigation and communication. The total electron content (TEC) refers to the total 
number of electrons integrated along a tube of one square meter cross section (unit: 

TECU, 16 21 10 /TECU electrons m= ). TEC is a significant ionospheric parameter, 

which is widely applied to the satellite ionospheric delay correction and scientific 
research area about space weather impacts on the ionosphere and thermosphere (Liu 
et al., 2020). As a consequence, there is a great interest in the community in the TEC 
forecasting.  
The ionospheric TEC along the ray path between the satellite and receiver can be 
derived by using dual frequency global navigation satellite system (GNSS) 
measurements, because of the dispersive characteristics of the ionosphere. For 
instance, the International GNSS Service (IGS) ionospheric working group, consist of 
seven Ionospheric Associate Analysis Centers (IAACs), has started generating reliable 
global TEC maps based on worldwide GNSS data since 1998, which are widely used 
in the ionosphere monitoring (Schaer, 1999; Hernández-Pajares at al., 2009; Li at al., 
2015; Yao at al., 2018).  
In terms of the short-term GNSS-based TEC forecasting, many approaches have been 
developed in recent decades, such as least-square collocation, discrete cosine 
transform (DCT), linear regression, adaptive autoregressive model, and neural 
networks, etc. Based on the least-square collocation method, Schaer (1999) predicted 
the global TEC parameters in the next two days by extrapolating the spherical 
harmonic (SH) coefficients used to fit the TEC map in the previous 30 days. Tulunay 
et al. (2006) presented a neural network technique to forecast the TEC maps over 
Europe, which is trained based on the Levenberg-Marquardt algorithm, and results 
show that the developed model learned the shape of the inherent nonlinearities during 
space weather events. García-Rigo et al. (2011) developed a global TEC prediction 
model by applying the Discrete Cosine Transform (DCT) to the TEC maps, and then 
used a linear regression module to forecast the time evolution of the DCT coefficients, 
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but physical information, including the solar and geomagnetic activity, was not 
included in the prediction model. Habarulema et al. (2011) developed an ionospheric 
TEC prediction model in South Africa using artificial neural network and evaluated its 
capability by using independent ionosonde data and observed TEC values. They 
found that the developed model performed well during quiet periods while the 
accuracy decreased under storm conditions. Wang et al. (2018) proposed an adaptive 
autoregressive model to predict the SH coefficients used in TEC map fitting, and then 
the global TEC maps can be generated based on the predicted SH coefficients. Results 
show that the predicted TEC has better performance during the low solar activity 
periods than the mid-to-high solar activity periods. 
Nowadays, deep learning techniques, such as the convolutional neural network (CNN) 
and recurrent neural network (RNN), are very promising and have been increasingly 
applied to the short-term ionosphere forecasting. For instance, Sun et al. (2017) 
developed a single-station TEC forecasting model at Beijing station in China based on 
the long short-term memory (LSTM) neural network using five-day’s sequence of 
TEC, AP and F10.7 as inputs. Results showed that their model outperformed the 
conventional multilayer perceptron network, though the prediction performance under 
disturbed conditions still needs further improvement. Similarly, Srivan et al. (2019) 
also developed a LSTM forecasting model over the Bengaluru station in India using 
similar inputs as Sun et al. (2017), but for different network configuration parameters 
(i.e., the input time span is 24 hours). They found the model is able to capture the 
TEC variations even during the active solar and geomagnetic activities. Boulch et al. 
(2018) presented three convolutional RNN architectures for global ionospheric TEC 
prediction, and their results showed that the prediction performance was comparable 
with state-of-the-art methods, such as the auto regressive (AR), auto regressive 
moving average (ARMA) model, and the radial basis function (RBF) neural network.  
However, most of the above-mentioned deep learning approaches for the TEC 
forecast are either for a single-station forecasting model or have not considered the 
physical parameters representing the solar and geomagnetic disturbances. In this paper, 
we aim at developing a novel deep learning model to forecast the SH coefficients used 
in constructing the global TEC map by using time series of the SH coefficients and 
multiple physical parameters representing solar and geomagnetic activity levels. The 
model performance is then evaluated by comparing the prediction with independent 
TEC data under both geomagnetic quiet and storm conditions. 

2 Data and methodology 

2.1 Global ionosphere maps reconstruction 
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Based on deferential delay measurements from globally distributed GNSS tracking 
sites, the Centre for Orbit Determination in Europe (CODE) develops hourly global 
ionosphere maps (GIM) in the solar-geomagnetic reference frame using spherical 
harmonic (SH) expansion (Schaer 1999), 

max

0 0
( , ) (sin ) ( cos( ) sin( ))

n n

nm nm nm
n m

TEC s P A ms B msβ β
= =

= ⋅ +∑∑          (1) 

where β  and s  are the geomagnetic latitude and sun-fixed longitude of the 

ionospheric pierce point (IPP), respectively. The IPP is the intersection point between 
the satellite-receiver ray path and the single-layer height. The sun-fixed longitude is 

defined as 15( -12)+s t λ= , where λ is the geographic longitude of the IPP, and t  

is the universal time. ( , )TEC sβ  is the vertical TEC (VTEC, hereafter referred as 

TEC for simplification) at the location of the IPP. nmP  denotes the normalized 

associated Legendre function with degree n  and order m . nmA  and nmB  are the 

hourly SH coefficients to be determined, which are then used for constructing the 

global TEC map. maxn  is the maximum degree of the SH expansion ( max 15n = ), 

which means there are 256 ( 2
max( 1) 256n + = ) SH coefficients for one-hour interval. 

In general, we are not interested in the individual SH coefficients but rather in the 
TEC value, which is represented as a function of geographic coordinates ( , )β λ and 
time t , namely ( , , )TEC tβ λ . For global TEC map reconstruction, once obtaining the 

256 SH coefficients ( nmA  and nmB ) at time t , we are able to generate GIM using 

formula (1) with a spatial resolution of 2.5°in latitude and 5°in longitude. These 
resolutions are chosen to be consistent with the TEC maps developed at CODE for 
model validation and performance evaluation purpose. These 256 SH coefficients are 
estimated routinely with one-hour interval and are available from the CODE analysis 
center (http://ftp.aiub.unibe.ch/CODE/) on a daily basis since Oct, 2014. We predict 
the time series of these SH coefficients in the next two hours using the CODE SH 
coefficients in the past and then construct the GIM. 

2.2 SH coefficients forecast using the LSTM neural network 
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One challenge of this study is to design an appropriate neural network (NN) 
architecture to extract temporal trend and features from previous states, and to predict 
the SH coefficients from historical sequences and related external drivers, such as 
solar and geomagnetic activities. 

2.2.1 Data preparation 

In this study, the most important dataset are the time series of the SH coefficients, 
which is freely available from the CODE analysis center. Moreover, considering that 
the solar and geomagnetic activities play significant roles in changing the ionospheric 
TEC, realistic solar irradiance and geomagnetic activity index are also needed. Here, 
the solar extreme ultraviolet (EUV) flux from Flare Irradiance Spectral Model (FISM), 
and the Disturbance Storm Time (Dst) index representing the ring current strength and 
storm phases are used in this study. One of the reasons for choosing Dst instead of 
other geomagnetic indices, such as the 3-hour Kp index, is because the time resolution 
of Dst index is one hour, which is consistent with the SH coefficients provided by the 
CODE center. All of the above datasets are collected from October 19, 2014 to 
December 31, 2016 (see Figure S1). It should be noted that FISM estimates the solar 
irradiance at wavelengths from 0.1 to 190 nm at 1 nm resolution every minute, 
meaning that there are 190 wave bands for the solar EUV flux. Figure 1 (a) shows the 
Pearson correlation between the 190 FISM solar EUV fluxes. We recognize that these 
190 features are highly correlated with each other, and not all of these parameters are 
needed as the input data of the network, because too many redundant features might 
result in over-fitting problems in the machine learning algorithm. The principal 
component analysis (PCA) is a very powerful procedure to transform many correlated 
parameters into a smaller number of uncorrelated parameters via dimension reduction, 
so here we extracted several principal components from the 190 FISM EUV fluxes 
using the PCA method. Figure 1(b) shows the first three principal components from 
the 190 original features. We found that the first principal component could account 
for more than 99.6% of the variability of the 190 features, so in this study only the 
first principal component extracted from 190 FISM features is used to represent the 
solar EUV flux.  
 
In addition, it is well known that ionosphere has a diurnal variation, so we introduce 
time (hour of day, HD) as an input to enable the network learn the diurnal variations 
of the SH coefficient sequences. To allow continuity across the midnight boundary, 
the HD is defined as two quadrature components (Poole and McKinnell, 2000), 
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where sHD  and cHD  are the sine and cosine components of the HD, respectively. 

2.2.2 Neural network architecture 

The LSTM neural network (NN), a special type of the recurrent neural network 
(RNN), is capable of learning time dependence in sequential prediction through the 
forget gate weights, and is developed to avoid gradient exploding and vanishing 
problems existing in conventional RNN (Hochreiter and Schmidhuber, 1997; Gers et 
al., 1999; Chen et al., 2019). In this study, we try to forecast the SH coefficients 
separately two hours ahead by using LSTM NN first, and then use the predicted SH 
coefficients to construct the GIM by using the SH expansion function.  
The overall architecture for a single SH coefficient prediction is shown Figure 2, 
which includes the input data in the input layer, two LSTM layers and one dense layer 
in the hidden layer, as well as the predicted SH coefficients in the output layer.  
 
In the input layer, the input time span is set to be 24 hours, as the autocorrelation for 
each SH coefficient at 24 hours is the highest due to the ionospheric diurnal variation. 
The final input candidates after the data preparation procedure are the SH coefficients, 
HDc, HDs, the first component of the FISM solar irradiance and the Dst index of the 
previous 24 hours. 
In the hidden layer, two stacked LSTM layers are used to extract representative 
features from historical input data, and then are connected to the fully connected (FC) 
hidden layer. The neuron node number in each hidden layer is chosen to be 48 (n=48) 
throughout the paper, which is determined by training the NN from node 1 to 60 (see 
details in in sector 3.1 and Figure 3).  
In the output layer, the output parameters are the individual SH coefficients for the 
next two hours, which could be extended further in the future. 
The entire dataset is split into two groups, namely, group 1 (Training set: Jan 1, 2015 
to May 26, 2016) and group 2 (Testing set: Oct 19-Dec 31, 2014, and May 27-Dec 31, 
2016) (see Figure S1 in the supporting information). To find the optimum NN 
parameters, 5-fold cross-validation strategy is utilized in the Training set of group 1. 
More specifically, group 1 is divided into five folds, where four folds are used for 
training the NN, and the remaining one fold is used for validation. This process is 
repeated for five times and the final performance is the averaged results of these five 
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times. Finally, the NN parameters showing best performance for both the four fold 
training and one fold validation will be used as the final NN parameters. Once the 
optimum NN parameters are determined by the 5-fold cross-validation, we test their 
performance in TEC prediction using group 2 (Testing set), which is not involved in 
training the NN model. 

2.2.3 Evaluation metrics for the deep learning-based model 

One of the core tasks in building deep learning model is to evaluate its effectiveness 
and reliability. In this paper, several important evaluation metrics, such as Mean 
Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error 
(RMSE), as well as Mean Error (ME), are used to qualify how well the proposed deep 
learning algorithm in predicting the SH coefficients and the resulting TEC results. 
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where jy  and ˆ jy  are observations and predictions, respectively. 1,2,3,...,j N= , and 

N  is the total number of data samples. Considering the various ranges of the input 
and output features, each feature in this study is normalized to [0,1] before training 
the NN model, which is a commonly used method in machine learning. The outputs or 
predictions can be recovered to the actual dynamic range using an inverse 
normalization process. In our study, if the skill scores are calculated based on the 
normalized observations or predictions, we will call them as normalized skill scores. 

2.3 Construction of global ionosphere maps using the predicted SH coefficients 

As mentioned in sector 2.1, global ionospheric TEC maps can be represented as a 
function of geomagnetic coordinates and time when the 256 SH coefficients are 
plugged into formula (1). Thus, the hourly GIM can be produced when the 256 SH 
coefficients are predicted successfully from the proposed NN model in sector 2.2. The 
spatial resolution of the resulting GIM is 2.5°in latitude and 5°in longitude, which 
is consistent with the global TEC products released by the CODE ionosphere analysis 
center. 

This article is protected by copyright. All rights reserved.



 8 / 25 
 

3 Results and evaluation 

3.1 Determination of the NN parameters 

Neural nodes and inputs are two types of key parameters in the NN architecture, so in 
this part we will try to determine them appropriately. 
Here, we take the 1st SH coefficient prediction results as an example to identify the 
neural nodes, and similar procedures are performed for the rest of the 255 SH 
coefficients. We train the proposed NN by changing the node number from 1 to 60 in 
the step of 1, and evaluate the Training/Testing performance in terms of MAE and 
MSE. Figure 3 (a-d) shows the MAE/RMSE error distributions for various neural 
node numbers on Train/Test data sets, and Figure 3 (e) shows the learning curve 
variations with different training epochs. It can be seen that the SH prediction 
achieved the smallest error when the neural node number is 48, except in Figure 3(d) 
where that optimal number is 49. Moreover, the learning curves in Figure 3(e) show 
overall very good fitting, because the normalized MAE errors of both Train and Test 
sets decrease gradually with the training epochs, and are overlapped with each other. 
Therefore, the ideal neural node number in hidden layer is set to 48 throughout this 
paper. 
 
Another important task is to determine the most appropriate input parameters for the 
input layer. As mentioned in sector 2.2, the candidates in the input layer are the SH 
coefficient, HDc, HDs, the 1st principal component of the FISM solar irradiance, and 
the Dst index. In this study, we try different input combinations and evaluate the 
corresponding prediction performance in terms of the normalized MAE/RMSE by 
using 5-fold cross-validation strategy. Table 1 presents the normalized MAE/RMSE 
for different input parameter combinations, including Ⅰ (SH coefficient + 1st 
component of FISM solar irradiance + Dst + HDc + HDs), Ⅱ (SH coefficient +1st 
component of FISM solar irradiance+ HDc + HDs), Ⅲ (SH coefficient + Dst+ HDc + 
HDs), and Ⅳ (SH coefficient + HDc + HDs). It is found that the MAE/RMSE 
obtained from both the training and validation sets of group 1 reaches minimum when 
the input combination Ⅰ is used in the input layer. This suggests that the combination 
of the solar and geomagnetic activity information is able to improve the SH 
coefficient prediction results to some degree. Moreover, similar prediction 
performances are achieved when the input combination Ⅰ is applied to next four SH 
coefficients (see Tables S1-S4 in the supporting information), which are also 
important ones for TEC determination (see Figure S2 in the supporting information). 
Therefore, the input combination Ⅰ is used in the input layer of the proposed NN 
architecture, although the improvement in predicting the SH coefficient is not 
significant compared to the other input combinations. 
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3.2 The predicted SH coefficient performance 

Figure 4(a-f) shows examples of the 1st SH coefficient prediction results from our 
proposed NN, and there are also similar prediction performances for the rest 255 SH 
coefficients. Figure 4(a-d) is the scatter plot of the 1st SH coefficient predictions 
versus corresponding observations for the Train and Test dataset. The Pearson 
correlation values are generally higher than 0.99, meaning that there is awesome 
linear correlation between the observed SH coefficient and predicted ones. In terms of 
RMSE/MAE/ME, the prediction errors with respect to both Train and Test sets are 
really small when compared to the actual SH coefficient magnitude, so our proposed 
NN architecture is proper for predicting the SH coefficients for next two hours. 
Moreover, the predicted SH coefficient performance for the 1st and 2nd hour are 
somewhat different, and it appears that the first hour predictions have smaller errors 
and higher correlations with observed values as compared to the second hour results. 
The RMSE/MAE/ME on Train increases from 0.151/0.112/0.028 to 
0.388/0.285/0.071, while from 0.182/0.132/0.043 to 0.296/0.226/0.059 on Test. 
Therefore, our trained NN model has slightly better performance in predicting the SH 
coefficient for the first hour than the second hour. Figure 4(e, f) gives the histogram 
statistics of predicted errors evaluated by both Train and Test set. Blue/orange refers 
to the difference between the SH coefficient prediction and the Train/Test 
observations. It is clear that the predicted residual distributions for both Train and Test 
sets are concentrated around zero with almost no dispersion values, which are well 
consistent with the evaluation results shown in Figure 4(a-d).  
 

3.3 The performance of the predicted global TEC maps 

After predicting the 256 SH coefficients separately, we are able to produce global 
TEC maps according to formula (1). To test the accuracy of the proposed algorithm, 
the resulting TEC maps obtained from the predicted SH coefficients are evaluated by 
comparing with the CODE GIM products. It should be noted that the 256 SH 
coefficients used for generating the CODE GIM are the Test data mentioned in sector 
2, and they are not involved in training the LSTM NN. Figure 5 shows the resulting 
predicted TEC maps and the corresponding CODE GIM for the first hour, along with 
their difference, for randomly selected geomagnetic quiet and storm days. Compared 
to the CODE TEC maps, the typical equatorial ionization anomaly (EIA) crest regions 
can also be clearly observed from the predicted TEC maps, and the global residuals 
between them are very small, mostly within 1 TECU. These indicate that the resulting 
TEC prediction is satisfactory. Residuals may reach to 5 TECU near the EIA region. 
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Moreover, the storm time TEC maps also agree well with CODE TEC products, since 
complicated ionosphere features with large TEC magnitudes, i.e., storm-enhanced 
density (SED) structure (e.g., Foster 1993; Foster et al., 2005; Zou et al., 2013, 2014), 
are well reproduced in the predicted TEC map (see Figure 5(b)). This result suggests 
that the developed deep learning approach is also reliable even for the storm-time 
TEC forecasting. 
 
Figure 6 shows the forecasted TEC residual histogram during both quiet (blue) and 
storm (red) days for the Testing set. It is clear that the 1st/2nd hour TEC residual 
distributions for both quiet and storm time are concentrated around zero with very 
small RMSE errors, though the 1st/2nd hour RMSE for the storm time (1.27/2.20 
TECU) is slightly larger compared to those during quiet time (0.86/1.51 TECU). 
Therefore, the comparison demonstrates that the proposed deep learning algorithm 
performs well in predicting the global TEC for both storm and quiet times. It is also 
evident that the TEC residual distribution for the first hour is more concentrated 
around zero than that for the second hour, and the averaged RMSE increases slightly 
from 1.27/0.86 to 2.20/1.51 TECU. This suggests that our proposed deep learning 
approach performs better in predicting the first hour TEC than the second hour, but 
the degradation with time is minor. 
 
We also compared the proposed method's performance with respect to the persistence 
model. The persistence implies that the predicted values remain unchanged between 
current time t  and future time t tδ+  (Kleissl, 2013), namely, 

 ( ) ( )TEC t t TEC tδ+ =   (4) 

where =1,2 t hourδ . ( )TEC t  represents the TEC observation at current time t, and 

the ( )TEC t tδ+  is the predicted TEC of the 1st/2nd hour based on ( )TEC t . 

Table 2 shows the comparison of the proposed NN and the persistence model in terms 
of RMSE for the entire Testing set (October 19 to December 31, 2014, and May 27 to 
Dec 31, 2016), and percentages listed in in Table 2 refer to the RMSE improvement 

relative to the persistence model ( 100%NN Persistence

Persistence

RMSE RMSE
RMSE

−
× ). It is found that 

the TEC forecasting errors of both the 1st and 2nd hours from the proposed NN model 
are much smaller than that from the persistence model, and the proposed NN model 
shows consistent improvements of above 60% when compared to the persistence 
model. This suggests that the proposed NN model significantly outperforms the 
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persistence model. 
 
To better demonstrate the merit of the proposed NN model, NeQuick-2 and IRI-2016 
models are also involved in comparison. The NeQuick-2 is the latest version of the 
NeQuick ionosphere electron density model, and its outputs (e.g., electron density, 
TEC) depend on solar activity (monthly-mean sunspot number R12 or 10.7 cm solar 
radio flux F10.7), location and time (Nava et al., 2008). The IRI-2016 model, as the 
most widely used empirical climatological model of the ionosphere, can also provide 
electron density and TEC parameters in the ionospheric altitude range for a given 
location, time and date, and it is driven by solar (F10.7, R12), ionospheric and 
magnetic indices (Bilitza et al., 2017; Liu et al., 2019). In our study, the daily F10.7 
indices are used for driving both IRI-2016 and NeQuick-2 models, while other 
optional input parameters are set to default ones. Also, the storm mode of the 
IRI-2016 model is turned on in this study. 
Figure 7 shows the hourly TEC RMSE from the NN, IRI-2016 and NeQuick-2 models 
with respect to the CODE GIM over the entire Testing set. The first period, i.e., 
October 19 to December 31, 2014, is shown on the left, and the second period i.e., 
May 27 to Dec 31, 2016, is shown on the right. The 1st and 2nd hour RMSE errors 
are shown in the top and bottom rows, respectively, and the hourly Dst index, which 
represents the condition of geomagnetic activities, is also shown in the top panel. It 
can be seen that both the 1st /2nd hour TEC RMSE errors from the proposed NN is 
smaller than those from the IRI-2016 and NeQuick-2 models. The NN prediction 
errors over the entire Testing set are very low and stable with averaged RMSE within 
1.06/1.84 TECU for the 1st /2nd hour, while the RMSE errors from the IRI-2016 and 
NeQuick-2 models are around 9.21/5.5 TECU, respectively. Therefore, the proposed 
NN approach is competitive in predicting the global TEC when compared to the 
traditional IRI-2016 and NeQuick-2 models. One can also see that the time series of 
the NN RMSE errors remain small during storm periods despite relative increase 
comparing with quiet times. 
 

4 Conclusion 

In this paper, the LSTM NN is successfully applied to forecast the 256 SH 
coefficients based on historical time series of the SH coefficients data, solar EUV flux 
and the Dst index, and then the forecasted SH coefficients are used to reproduce the 
hourly global TEC maps two hours ahead. The above datasets from Jan 1, 2015-May 
26, 2016 are used to train the LSTM model, and those from Oct 19-Dec 31, 2014, and 
May 27-Dec 31, 2016 are selected as the Test set to verify the prediction performance. 
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Comparing to those models with no external solar or geomagnetic activity drivers 
concatenated into the LSTM layer, our developed LSTM NN model is able to 
improve the forecast of the SH coefficients by including the solar and magnetic 
indices. Therefore, the optimal input data used in the input layer of the LSTM NN 
architecture are time series of the SH coefficients, solar EUV flux and the Dst index, 
and time of day. The advantage of this input combination can also be confirmed by 
the good SH prediction performance in Figure 4, because the Pearson correlation 
values between the predicted SH coefficients and observations from the Train/Test are 
generally higher than 0.99, and the predicted errors are also extremely small. We 
found that the SH predicted error for the 1st hour is slightly smaller than those for the 
second hour, suggesting the model has better performance in predicting the SH 
coefficients for the first hour than the second hour. 
After using the developed LSTM model to forecast all SH coefficients, the global 
TEC maps are generated and used for evaluation. The global residuals between the 
predicted TEC and the CODE GIM TEC for both geomagnetic quiet and storm days 
are very small, mostly within 1 TECU and rarely reaching 5 TECU. Prominent 
structures in the ionosphere, such as EIA and SED during storm time, have been 
reproduced. A comprehensive evaluation of the predicted TEC has been carried out 
with respect to the independent CODE GIM products, and results show that the 
1st/2nd hour TEC residual distributions for both quiet and storm times are 
concentrated around zero with very small RMSE errors: the 1st/2nd hour TEC RMSE 
are 0.86/1.51 and 1.27/2.20 TECU during the quiet and storm times, respectively. 
These indicate that the developed LSTM model performs well during both quiet and 
storm times. Moreover, the proposed approach also shows competitive TEC forecast 
performance in terms of RMSE when compared to the persistence model, and the 
traditional IRI-2016 and NeQuick-2 models. Both the IRI-2016 and NeQuick-2 
models are valuable and widely used community models. The conclusion regarding 
the comparison to both the IRI-2016 and NeQuick-2 models are based on the current 
version of the model trained and validated using relatively limited datasets. In the 
future, we will incorporate more data, in particular larger geomagnetic storms, for 
training and validation and perform a more thorough evaluation.  
Currently, the proposed deep learning approach has shown satisfactory short-term 
TEC prediction performance based on experimental results obtained, and we will 
extend its prediction horizon to longer term (beyond 2 hours) in further study. At this 
point, real-time SH coefficients from the CODE center are not available and there is 
usually a several days’ delay for the SH coefficients to become available. In the future, 
if the SH coefficients become available in real time or near real time, the developed 
deep learning model can be readily used in forecasting the coefficients and TEC 
maps. 
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Figure 1 (a) Pearson correlation between the 190 FISM solar EUV fluxes. (b) 
First three principal components from the 190 FISM wave bands after using the 
principal component analysis (PCA). 
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Figure 2 The architecture of the LSTM neural network for the SH coefficient 
prediction. 
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Figure 3 (a-d) MAE and RMSE errors for the 1st SH coefficient prediction 
results. (e)Normalized MAE from the learning curves. Blue and yellow curves 
represent corresponding errors from the Train and Test sets, respectively. The 
input data of the input layer are the 1st SH coefficient, HDc, HDs, the 1st 
component of the FISM solar irradiance and the Dst index for the previous 24 
hours. 
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Figure 4 1st SH coefficient prediction results versus Train/Test set for next two 
hours. 1st hour prediction versus Train (a) and Test set (b). 2nd hour prediction 
versus Train (c) and Test set (d). The 1st residual distribution for next two hours 
with respect to Train (e) and Test (f) set. Evaluation metrics, like RMSE, MAE, 
ME and correlation (R), are also included. 
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Figure 5 Global TEC maps with six-hour interval under both quiet (October 11, 
Figure 5a) and storm (October 13, Figure 5b) days in 2016. The predicted TEC 
maps from our proposed NN and corresponding ones from CODE GIM, along 
with their differences, are respectively given in the left, middle and right panel of 
each figure. Full sets of global TEC maps with one-hour interval for both 1st and 
2nd hour are available in Movies S1-S12 of the supporting information. 
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Figure 6 Statistical evaluation of global predicted TEC with respect to the CODE 
GIM products during both quiet (blue curves) and storm days (red curves) for 
the Testing set. Left and right panels represent the TEC prediction results for the 
1st and 2nd hour, respectively. 
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Figure 7 Hourly TEC RMSE errors from the NN (red points), IRI-2016 (green 
points) and NeQuick-2 (blue points) models with respect to the CODE GIM 
products over the Testing set (October 19 to December 31, 2014, and May 27 to 
Dec 31, 2016). The 1st and 2nd hour predicted errors are presented in the top 
and bottom panel, respectively. Variation of hourly Dst index (purple points) is 
shown in the right axis of the top panel for reference. 
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Table 1 Prediction performance in terms of normalized MAE/RMSE for 

different input parameter combinations 
Normalized error MAE (10-3) RMSE (10-3) 

Data split train validation train validation 

Ⅰ 5.869 6.256 8.605 9.031 

Ⅱ 5.919 6.735 9.042 9.853 

Ⅲ 6.103 6.568 9.061 9.486 

Ⅳ 5.908 6.255 8.974 9.328 
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Table 2 Global TEC forecasting performance from the proposed NN and 
persistence model. 

Forecast model 
Prediction RMSE (TECU) 

t + 1 (1st hour) t + 2 (2nd hour) 
Persistence 2.69 5.05 

NN 1.06 (60.4%) 1.85 (63.3%) 
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