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The four-parameter logisticmodel (4PLM) has recently attractedmuch interest in various

applications. Motivated by recent studies that re-express the four-parameter model as a

mixture model with two levels of latent variables, this paper develops a new expectation-

maximization (EM) algorithm for marginalized maximum a posteriori estimation of the

4PLM parameters. The mixture modelling framework of the 4PLM not only makes the

proposed EM algorithm easier to implement in practice, but also provides a natural

connection with popular cognitive diagnosis models. Simulation studies were conducted

to show the good performance of the proposed estimationmethod and to investigate the

impact of the additional upper asymptote parameter on the estimation of other

parameters. Moreover, a real data set was analysed using the 4PLM to show its improved

performance over the three-parameter logistic model.

1. Introduction

The four-parameter logistic model (4PLM) was proposed by Barton and Lord (1981), who

introduced anupper asymptote parameter,d, that is slightly < 1, tomodel the uncertainty

of a high-ability examinee missing an easy item. The limitation of Barton and Lord’s

modelling approach is that all items in a test share a common upper asymptote parameter,

andBarton and Lord did not estimate the fourth parameter but rather fitted themodelwith

some fixed values for d. Recent studies (Linacre, 2004; Rouse, Finger, & Butcher, 1999;

Rupp, 2003; Tavares, de Andrade, & Pereira, 2004; Waller & Reise, 2010) have
demonstrated that, in most cases, the upper asymptote varies across items in a test. The

following formulation of the 4PLM, which allows the upper asymptote parameter to be

item-specific, is therefore considered more appropriate:

pj hið Þ ¼ P Uij ¼ 1 hi; nj
��� � ¼ cj þ dj � cj

� � eaj hi�bjð Þ
1þ eaj hi�bjð Þ ; ð1Þ

where Uij denotes the observed dichotomous response of examinee i (i = 1, . . ., N) to
item j (j = 1 = 1, . . .,M), withUij = 1 denoting a correct response andUij = 0 otherwise;
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hi 2 (�1, +1) is the ability parameter; and nj ¼ faj; bj; cj;djg is the item parameter set

for the jth item, with aj 2 0;þ1ð Þ; bj 2 �1;þ1ð Þ; cj 2 0; 1½ �; and dj 2 cj; 1
� �

being the

discrimination, difficulty, guessing, and upper asymptote parameters, respectively. The

parameter dj is the maximum probability of endorsing item j, and so 1–dj can be
considered as the slipping probability of a student who can answer correctly but missing

the item. Here,N andM are used to denote the number of the examinees (sample size) and

the number of the items (test length).

Difficulties in parameter estimation and a lack of evidence supporting the need for

it are the probable reasons why the 4PLM was not widely applied for a long time

(Loken & Rulison, 2010). In recent years, however, researchers have shown renewed

interest in the 4PLM. For instance, Liao, Ho, Yen, and Cheng (2012) and Rulison and

Loken (2009) argued that the 4PLM can improve the accuracy of ability estimation by
taking into account examinees’ early careless errors in computerized adaptive testing.

Reise and Waller (2003) and Waller and Reise (2010) demonstrated that the item

response model with an upper asymptote parameter may be more appropriate for

measuring psychopathology traits than the logistic model with three (3PLM) or two

parameters (2PLM), since the situation of a high-trait subject who is reluctant to self-

report attitudes is very common in psychopathology measurement. Ogasawara (2012)

gave the asymptotic distribution of the ability estimate under the 4PLM, and Magis

(2013) derived the maximum value of the information function. Furthermore, several
methods for the estimation of the parameters in the four-parameter model have been

proposed. For instance, Loken and Rulison (2010) employed a Bayesian approach

with the Markov chain Monte Carlo (MCMC) sampler to estimate the 4PLM

parameters. Feuerstahler and Waller (2014) employed the marginal maximum

likelihood (MML) method to recover the 4PLM using the R package mirt. In

comparison to the Bayesian estimation method calculated with the MCMC sampler

algorithm, the MML method requires less computation time, but it may not be stable

and may produce deviant values in many cases (Baker & Kim, 2004). To overcome
this disadvantage of MML estimation, Mislevy (1986) proposed Bayes modal (BM)

estimation for the 3PLM. This can be considered as a form of marginalized maximum a

posteriori (MMAP) estimation; it employs an augmented optimization objective that

includes the likelihood and some prior beliefs on the item parameters, and these

priors were used to prevent deviant parameter estimates from occurring. In fact, BM

estimation can be seen as a regulation of MML estimation, while MML estimation is a

special case of BM estimation that assumes uniform prior distributions of parameters.

Waller and Feuerstahler (2017) recently applied BM estimation as implemented in
mirt for the 4PLM.

In addition to the above research on estimating the 4PLM, mixture modelling

approaches have been developedby introducing latent variables to dealwith the response

process. For instance, B�eguin and Glas (2001), San Martin, del Pino, and DeBoeck (2006),

and von Davier (2009) interpreted the 3PLM from the perspective of a two-response

(guessing and non-guessing) strategy, by revising the 3PLM as a mixture model. Recently,

Culpepper (2016, 2017) further developed a mixture modelling approach to reformulate

the four-parameter normal ogive model (4PNOM) and multidimensional 4PNOM. To
estimate themodel parameters, the existingworksmostly focused on Bayesian estimation

with an MCMC sampling procedure and may be computationally time-consuming,

especially for large data sets. Motivated by the mixture modelling specification in these

researches, this paper proposes a computationally efficient expectation–maximization

(EM) algorithm to compute the MMAP estimates of the 4PLM parameters.

52 Xiangbin Meng et al.



The rest of the paper is organized as follows. Section 2 reviews the mixture modelling

reformulation of the 4PLManddiscusses the relationship between the 4PLMand cognitive

diagnosis model. Section 3 presents the derivation of the EM algorithm for MMAP

estimation of the 4PLM under the mixture modelling framework. Section 4 reports three
simulation studies conducted to evaluate the performance of the proposed method.

Section 5 presents an application of the 4PLM to an empirical dataset. Finally, Section 6

provides further discussion on future research directions.

2. An alternative expression of the 4PLM from the two response

processes: Guessing versus slipping

From equation (1), the probability of a correct response in the 4PLM is equivalent to

PðUij ¼ 1jhi; njÞ ¼ cj 1� p�j ðhiÞ
� �

þ djp
�
j ðhiÞ; ð2Þ

where

p�j ðhiÞ ¼
exp ajðhi � bjÞ

� �
1þ exp ajðhi � bjÞ

� � ð3Þ

is the 2PLM.

Following the mixture framework for conceptualizing the process of ability-based

responding and guessing behaviors for the 3PLM in vonDavier (2009) and the study of the

4PNOM in Culpepper (2016), we present an alternative expression for the 4PLM using a
mixture model. Specifically, we introduce an unobserved latent variable Wij 2 {0,1} to

characterize the two random response status of an examinee: W = 1 indicates that the

examinee is ‘capable’ of answer the item based on his/her ability and W = 0 otherwise.

Following the 4PLM representation in (2) and (3), we let Wij follow a Bernoulli

distribution,

Wijjhi; nj �Bernoulliðp�j ðhiÞÞ; ð4Þ

wherep�j ðhiÞ is specified in (3), indicating that a higher ability hi leads to a higher chance of
havingWij = 1. WhenWij = 1, the conditional probability of the responseUij is specified

as

UijjWij ¼ 1; nj �BernoulliðdjÞ; ð5Þ

where 1–dj corresponds to the slipping probability of making a mistake even though the

examinee is ‘capable’ of answering item j. On the other hand, whenWij = 0 (i.e., the ith

examinee does not know the correct answer to the jth item), the conditional distribution

of Uij is

UijjWij ¼ 0; nj �BernoulliðcjÞ; ð6Þ

where cj is the probability of guessing a correct response.

We next show that the mixture model specification in (4–6) is equivalent to the 4PLM
given in (2). Based on the above distributions in (4–6), the joint probability distribution of

Uij and Wij (conditionally on hi and nj) can be given as
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pðUij ;WijÞðuij;wijjhi; njÞ ¼ pUij jWij ;hi ;njðuijjwijÞpWij jhi ;njðwijjhi; njÞ

¼ d
wijuij

j ð1� djÞwijð1�uijÞcð1�wijÞuij

j ð1� cjÞð1�wijÞð1�uijÞ

�p�j ðhiÞwij 1� p�j ðhiÞ
h i1�wij

:

ð7Þ

Hence, the marginal probability distribution of Uij over Wij can be given by

pUij
ðuijjhi; njÞ ¼

P
wij¼1;0

pðUij ;WijÞðuij;wijjhi; njÞ

¼ d
uij

j ð1� djÞð1�uijÞp�j ðhiÞ þ c
uij

j ð1� cjÞð1�uijÞð1� p�j ðhiÞÞ;
ð8Þ

which is a two-class mixture Bernoulli distribution. From equation (8), we have the

marginal probability of Uij = 1,

pUij
ðuij ¼ 1jhi; njÞ ¼ p�j ðhiÞdj þ ð1� p�j ðhiÞÞcj; ð9Þ

which is the same as the 4PLM given in (2).

The above derivations demonstrate that the 4PLM can be considered as a two-strategy

mixture model. What is more, the mixture model framework offers new insight into the

4PLM and naturally connects it with the cognitive diagnosis models (CDMs) as shown in
Remark (1).

Remark 1. (Connection to CDMs). From the CDM literature, Wij can also be

interpreted as the ideal response variable, where Wij = 1 indicates that the ith

examinee is capable of answering item j and Wij = 0 otherwise. Then the distribution

of Uij specified in (5) and (6) is the same as the deterministic input, noisy AND gate

(DINA) model specification, where cj corresponds to the guessing parameter and 1–dj
corresponds to the slipping parameter.

Moreover, we show that the 4PLM can also be viewed as a generalization of the higher-

order DINA model (de la Torre & Douglas, 2004) with only one latent attribute. In

particular, consider a cognitive diagnosis testwith only one latent attributeA2 {0,1}. Then

theQ-matrix is J 9 1 andwe setQ ¼ 1; . . .; 1ð Þ0J�1, that is, all items require the attributeA.

Note that in this special case, the ideal responses of an examinee to all items are the same.

Let Ai be the ith examinee’s latent attribute and the common ideal responses to all items
are I(Ai = 1) = Ai. The higher-order DINAmodel assumes that the probability of Ai = 1 is

from a 2PLM given by

PðAi ¼ 1jhi; kÞ ¼
exp k0ðhi � k1Þ½ �

1þ exp k0ðhi � k1Þ½ � ; ð10Þ

where hi denotes a latent variable representing general ability in the studied domain and

the k are regression parameters. Furthermore, given IðAi ¼ 1Þ ¼ Ai, the ith examinee’s

responseUij to the jth item follows the samemodels in (5) and (6) under the higher-order
DINA model. Therefore, the only difference between the 4PLM and the one-attribute
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higher-order DINA model lies in how they model the ideal responses (Wij and Ai,

respectively). Comparing the model set-up of the ideal responses between the higher-

order DINAmodel in (10) and the 4PLM in (2), we can see that (10) can be considered as a

special case of (2) with all the aj replaced by a common parameter k0, the bj replaced by
k1, andWij replaced by a common variable Ai not depending on j. From this perspective,

the the one-attribute higher-order DINA model can be viewed as a special case of the

4PLM. More generally, we may consider the multi-attribute higher-order DINA model as a

sub-model of the multidimensional 4PLM.

3. MMAP estimation for the 4PLM with an EM algorithm

Under the mixture model framework, we develop an EM algorithm for MMAP estimation

of the item parameters in the 4PLM. In the following, we first specify the prior

distributions on the 4PLM parameters and then derive the EM algorithm formula to

calculate the MMAP estimators of the 4PLM item parameters.

We first introduce some notation. Let ui� ¼ ui1; . . .;uiMð Þ denote the observed

response vector of examinee i, u�j ¼ u1j; . . .;un

� �0
denote the observed response

vector of item j, and u ¼ u�1; . . .;u�Mð Þ denote the realized response matrix. Let
h ¼ h1; . . .; hNð Þ be the ability parameter vector of all N examinees, nj ¼ ðaj; bj; cj;djÞ
be the item parameter vector of item j, and n ¼ n1; . . .; nMð Þ be all the item parameters

of all M items.

The prior distribution for the ability variable hi, is specified to be normal,

hi �N lh;r
2
h

� �
. This is the standard choice in calculating the MML or MMAP estimates

of the parameters in IRT models. For the discrimination parameter aj, we first

transform aj ¼ eaj , then assign a normal prior for aj; aj �Nðla;r2
aÞ. The prior for bj is

a normal distribution, bj �N lb; r
2
b

� �
. The prior for cj is a beta prior, cj �Beta sc; tcð Þ.

These prior distributions are commonly used in applications of the IRT models.

Finally, we assign a truncated Beta prior for dj;djjcj �Beta sd; tdð ÞIðcj\ djÞ, since

dj > cj. Such a truncated prior is used in Culpepper (2016) to enforce the

monotonicity condition. Here X :¼ fla; r2a; lb; r2b; sc; tc; sd; tdgare hyperparameters to

be prespecified in practice.

According to Bayes’ theorem, the joint posterior density of h and n is

p n; h u;X; sjð Þ / L u n; hjð Þ f h sjð Þ f n Xjð Þ; where

Lðujh; nÞ ¼
YN
i¼1

YM
j¼1

pj hið Þuij 1� pjðhiÞ
� �1�uij ;

is the likelihood of the observed response data u, and

f h sjð Þ ¼
YN
i¼1

f ðhijsÞ; f n Xjð Þ ¼
YN
j¼1

f ðnjjXÞ;

are the prior distributions of h and n, respectively.
As known in the literature (Baker & Kim, 2004; Neyman & Scott, 1948), direct

joint estimation of person ability parameters hi and item parameters often leads to

inconsistent estimators, therefore it is generally necessary to integrate over the hi in
order to estimate the item parameters. Then we have the corresponding marginal

distribution,
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p n u;X; sjð Þ ¼
Z

p n; h u;X; sjð Þdh; ð11Þ

and the modes of the marginal posterior p n u;X; sjð Þ,

n̂ ¼ argmax
n2Hn

p n u;X; sjð Þ; ð12Þ

are defined as the MMAP estimates of n.
From equation (7), if the latent variables W ¼ fWij; i ¼ 1; . . .;N ; j ¼ 1; . . .;Mg were

observed, the 4PLM could be divided into two Bernoulli models, and the calculation of the

estimators of n would be straightforward. Specifically, let z ¼ ðu;W; hÞ be the complete

data. The likelihood of z is

LðzjnÞ ¼ QN
i¼1

QM
j¼1

d
Wijuij

j ð1� djÞWijð1�uijÞcð1�WijÞuij

j ð1� cjÞð1�WijÞð1�uijÞ

�p�j ðhiÞWijð1� p�j ðhiÞÞ1�Wij f hi sjð Þ:
ð13Þ

The marginal posterior distribution p n u;X; sjð Þ in (11) can be calculated by

p n u;X; sjð Þ ¼
Z Z

p n; z u;X; sjð ÞdWdh;

where

p n; z u;X; sjð Þ / L z njð Þf n Xjð Þ: ð14Þ

With theW unobserved in practice, we propose an EM interaction procedure under the

complete data (z) for calculating the MMAP estimators of n in equation (12). Let n tð Þ be the
current values forn at the tth iteration.TheEMalgorithmconsists of the following two steps:

E-step. Given nðtÞ andu, calculate the conditional distribution of the latent variablesW
and h, denoted by pðW; hju; nðtÞÞ, and then use pðW; hju; nðtÞÞ to calculate the

corresponding expectation of ln p n; z u;X; sjð Þ, that is,

Q n; n tð Þ
� �

¼ EW;h u;n tð Þj ln p z; n u;X; sjð Þf g: ð15Þ

M-step. Update the parameter estimate nðtþ1Þ by maximizing Qðn; nðtÞÞ, that is,

nðtþ1Þ ¼ argmaxQ n; n tð Þ
� �

:

Wenext describe thedetails in theE- andM-steps. Fromequations (13) and (14),

ln pðn; zju;X; sjÞ ¼ ln LðzjnÞ þPM
j¼1

ln f ðnjjXÞ

¼ L1ðc;dÞ þ L2ða; bÞ þ
PN
i¼1

ln f ðhijsÞ þ
PM
j¼1

ln f ðnjjXÞ;
ð16Þ

where
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L1ðc;dÞ ¼
PN
i¼1

PM
j¼1

fWijuij lndj þWijð1� uijÞ ln ð1� djÞ þ ð1�WijÞuij ln cj

þð1�WijÞð1� uijÞ lnð1� cjÞg;
L2ða; bÞ ¼

PN
i¼1

PM
j¼1

Wij ln p
�
j ðhiÞ þ ð1�WijÞ ln ð1� p�j ðhiÞÞ:

From equation (16), we note that the estimators of (cj, dj) and ðaj; bjÞ can be calculated
separately with respect to L1ðc;dÞ and L2ða; bÞ in the E- and M-steps. Since L1ðc;dÞ is a
linear function ofWij, the E-step is done by simply replacingWijwith EW;h u;n tð Þj ðWijÞ. In the
M-step, the estimators of cj and dj can then be calculated as

c
ðtþ1Þ
j ¼

PN

i¼1
1�E

W;hju;n tð Þ ðWijÞ
� �

uijþsc�1

PN

i¼1
1�E

W;h u;n tð Þj ðWijÞ
	 


þscþtc�2

;

d
ðtþ1Þ
j ¼ d�

j Iðd�
j [ c

ðtþ1Þ
j Þ þ ðcj þ dÞ 1� Iðd�

j [ c
ðtþ1Þ
j ÞÞ

h i
;

ð17Þ

where

d�
j ¼

PN
i¼1 EW;h u;n tð Þj ðWijÞ
� �

uij þ sd � 1PN
i¼1 EW;h u;n tð Þj ðWijÞ
� �

þ sd þ td � 2
; ð18Þ

and Iðd�
j [ c

ðtþ1Þ
j Þ is the indicative function of d�

j [ c
ðtþ1Þ
j . Note that to impose the

restriction that dj [ cj;d
ðtþ1Þ
j is assigned to be c

ðtþ1Þ
j þ d for a small d[ 0whend�

j � c
ðtþ1Þ
j .

Based on equations (7) and (8), we have

EW;hju;nt Wij

� � ¼ Z djp
�
j ðhiÞ

pjðhiÞ
� �uij ð1� djÞp�j ðhiÞ

1� pjðhiÞ
� �1�uij

p hi ui; n
tð Þ

���� �
dhi;

where p�j ð�Þ is defined in (3). A quadrature approximation method is used to compute the
integrals in the E-step. In particular, define a grid of K equally spaced points, xk
k ¼ 1; . . .;Kð Þ, specified for h, and the associated weights A xkð Þ are assigned by

f xk sjð Þ � xkþ1 � xkð Þ. The posterior probability of xk can be given by

p xk ui; n
tð Þ

���� �
ffi

QM
j¼1 p

tð Þ
j xkð Þuijq

tð Þ
j xkð Þ1�uijA xkð ÞPK

k¼1

QM
j¼1 p

tð Þ
j xkð Þuijq

tð Þ
j xkð Þ1�uijA xkð Þ

; ð19Þ

where

p
ðtÞ
j ðxkÞ ¼ c

ðtÞ
j � ðdðtÞ

j � c
ðtÞ
j Þ expðeaðtÞj ðxk � b

ðkÞ
j ÞÞ

1þ expðeaðtÞj ðxk � b
ðkÞ
j ÞÞ

and q
ðtÞ
j ðxkÞ ¼ 1� p

ðtÞ
j ðxkÞ. Then EW;hju;nt Wij

� �
can be approximately calculated by
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EW;hju;nt Wij

� � ffiXK
k¼1

d
ðtÞ
j p�

ðtÞ
j ðxkÞ

p
ðtÞ
j ðxkÞ

" #uij ð1� d
ðtÞ
j Þp�ðtÞj ðxkÞ

1� p
ðtÞ
j ðxkÞ

" #1�uij

pðxkjui; n
ðtÞ
j Þ;

where i = 1, . . ., N, j = 1, . . .,M. Finally, plugging these into the equations (17) and (18),

the revised estimators, c
ðtþ1Þ
j and d

ðtþ1Þ
j , can be approximately calculated.

In the M-step, the estimation equations for aj and bj can be approximated by

@EW;hju;nt ln p n; z u;X; sjð Þð Þ
@aj

ffi
XK
k¼1

ðxk � bjÞðN̂ðxkÞ � R̂ðxkÞp�j ðxkÞÞ �
aj � la
ra

¼ 0; ð20Þ

@EW;hju;nt ln p n; z u;X; sjð Þð Þ
@bj

ffi �ee
aj
XK
k¼1

ðN̂ðxkÞ � R̂ðxkÞp�j ðxkÞÞ �
bj � lb
rb

¼ 0; ð21Þ

where

N̂ðxkÞ ¼
PN
i¼1

d
ðtÞ
j
p�

ðtÞ
j ðxkÞ

p
ðtÞ
j
ðxkÞ

� �uij ð1�d
ðtÞ
j
Þp�ðtÞj ðxkÞ

1�p
ðtÞ
j
ðxkÞ

� �1�uij

pðxkjui; n
ðtÞ
j Þ;

R̂ðxkÞ ¼
PN
i¼1

p xk ui; n
tð Þ

���� �
;

and pðxkjui; n
tð ÞÞ is calculated as in (19). ANewton–Raphson algorithm is used to solve the

nonlinear equations (20) and (21); the detailed calculation procedure and the

corresponding MATLAB code are presented in the Appendices A and B.

4. Monte Carlo simulation

This section reports three simulation studies in order to show the performance of the

proposedMMAP estimation procedure. Specifically, the aim of the first simulation study is

to investigate the influences of the prior distributions on the performance of the MMAP

estimation. The second simulationwas conducted to study the relationship between the d

parameter and the properties of the MMAP estimation. The third simulation was

performed to compare the performances of the proposed MMAP\EM method with the

existing BM estimation procedure implemented in the R package mirt (Waller &

Feuerstahler, 2017).

4.1. Simulation study 1

In this simulation, the test length was M = 20 and the true values of aj, bj and cj
j ¼ 1; . . .;Mð Þwere randomly drawn froma large-scale achievement test thatwas analysed

in Wang, Chang, and Douglas (2013). Following a similar set-up to that of Loken and

Rulison (2010), the parameters dj j ¼ 1; . . .;Mð Þ were randomly generated from a

truncated beta distribution, dj �Beta 8; 2ð Þ, with the constraint dj [ cj. The true values of
these item parameters are shown in the leftmost four columns of Table 2. The examinees’

ability variables, hi i ¼ 1; . . .;Nð Þ, were randomly drawn from the standard normal

distribution, hi �N 0; 1ð Þ. As the sample size is an important data characteristic
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determining the properties of the item parameter estimation, we generated response data

with three sample sizes of N = 1,000, 5,000, 10,000.

To investigate the influence of the prior distributions of the parameters a, b, c, and d,

the MMAP estimation was implemented under three groups of priors (see Table 1).
Specifically, among the three groups of priors, those in the first row (denoted by MMAP1)

provide the strongest prior information. The distributions shown in the third row

(denoted by MMAP3) are the weakest informative priors, where Beta(1,1) is the uniform

distribution on [0, 1], and N(0, 102) is a close to non-informative prior. That is, the MMAP

estimators calculated under this group of priors can be considered as an approximation of

the MML estimators. The prior distributions shown in the middle row (denoted by

MMAP2) are weaker than MMAP1 but stronger than MMAP3.

To reduce the Monte Carlo error, 500 replications of the response data sets were
randomly generated, and the MMAP estimates were calculated for each of the 500 data

sets. The number of quadrature points in theMMAP estimationwas set to 20, and both the

convergence criteria for the EM algorithm and the Newton--Raphson iterations were

specified to be 0.001. Finally, the root mean squared error (RMSE) and mean error (ME)

were calculated across the 500 replications to evaluate the accuracy and bias of theMMAP

estimators. The RMSE is defined as

RMSE dj
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G�1

XG
g¼1

d̂gj � dj
� �2vuut ; ð22Þ

and the ME is defined as

ME dj
� � ¼ G�1

XG
g¼1

d̂gj � dj
� �

; ð23Þ

where dj is the itemparameter (any one of aj; bj; cj;dj) of interest, d̂gj denotes the estimate

of dj in the gth repetition, and G is the number of replications (G = 500 in this study).

In this simulation, there were no deviant parameter estimates or unsuccessful
iterations, even in the case of theweakly informative priors given inMMAP3.We consider

that theproposed estimationmethod based on themixturemodel interpretation is helpful

for improving the convergence rate of the EM algorithm. Furthermore, the implemen-

tation of the EM procedure was generally fast. For instance, the average calculation time

(on a PCwith an Intel Core i5-8200 1.6 GHz processor and 8 GBRAM) did not exceed 0.8,

2.5 and 10.0 s under the three sample sizes N = 1,000, 5,000, 100,000, respectively.

Tables 2–4 show the RMSE values obtained for the MMAP estimators with the three prior

specifications (MMAP1, MMAP2 and MMAP3) across the three sample sizes. Based on
these results, the following trends can be observed.

Table 1. Prior distributions of item parameters in the 4PLM

Prior (a) Prior (b) Prior (c) Prior (d)

MMAP 1 (la = 0, r2
a = 12) (lb = 0, r2

b = 12) (sc = 5, tc = 17) (sd = 17, td = 5)

MMAP 2 (la = 0, r2
a = 52) (lb = 0, r2

b = 52) (sc = 3, tc = 9) (sd = 9, td = 3)

MMAP 3 (la = 0, r2
a = 102) (lb = 0, r2

b = 102) (sc = 1, tc = 1) (sd = 1, td = 1)
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For a sample size of N = 1,000, there are slight differences in the RMSE values of the

MMAP estimators under the three groups of priors (MMAP1, MMAP2, MMAP3). Overall,

the MMAP3 estimators displayed larger RMSE values than the MMAP1 and MMAP2

estimators. However, as the sample size increased, the differences in the RMSEs of the
three estimators becomemuch smaller. For instance, under sample sizes ofN = 5,000 and

10,000, the differences in RMSEs of the three MMAP estimators were negligible for most

item parameters. The same phenomenon was observed for the ME values (not reported

here due to space limitations). This suggests that when the number of examinees is large,

the MMAP estimators are mainly determined by the response data and the specification of

the prior distributions is not less crucial. On the other hand,when the sample size is small,

the prior information will have a larger impact on the performance of the MMAP

estimation, so in order to avoid the subjective error from the misspecification of prior
distributions, weakly informative or non-informative priors may be recommended in

practice. Additionally, we calculated the BM estimates of the 4PLM using the mirt

package. The results showed that BM estimatorswith informative priors perform similarly

to ourmethod, while BM estimators with non-informative priors not only displayed lower

accuracy but also suffered frequently from unsuccessful convergence. It can be

considered that the mixture strategies framework of the 4PLM is helpful for the

convergence of the EM algorithm. The BM estimation results are not reported here as they

are not the main focus of this simulation study, and more comparisons between our
method and BM estimation are provided in simulation study 3.

It can be observed that the RMSE(d) values of items j = {4, 7, 8, 12, 19} aremuch larger

than those of the other items. The common characteristics of these items are that their a

parameters were much lower than those of the other items, and their b and d parameters

were relatively larger. This phenomenonwas also observed inCulpepper (2016). Inspired

by the research of Lord (1975) andMislevy (1986),which verified under the 3PLM that the

estimation accuracy of cj and bj � 2/aj are positively correlated, we may explain this

phenomenon by a negative correlation between the estimation accuracy of dj and the
value of bj + 2/aj under the 4PLM. Heuristically, a larger value of bj + 2/aj implies fewer

examinees satisfying ajðhi � bjÞ[ 2, and therefore less information on dj is provided by

the responses, which then reduces the estimation accuracy of dj. Scatter plots with

Pearson correlation coefficients were created to display the influence of bj + 2/aj on the

estimation errors and biases of theMMAP estimators of d (see Figure 1). It can be seen that

across the three sample sizes, both the RMSE(d) and absolute ME(d) were positively

correlated with bj + 2/aj, and these correlations increase with the sample size. These

results demonstrated that the higher the difficulty and the lower the discrimination, the
poorer the estimation accuracy for the d parameter in terms of both root mean squared

error and bias.

4.2. Simulation study 2

Themain purpose of this simulation is to investigate the impact of the d parameter on the

performance of the MMAP estimation. An artificial test with four levels of d, d 2 {.65, .75,

.85, .95}, was conducted, where each level of d included five items and the test lengthwas
M = 20. To produce a controlled experiment, the values of a, b and cwere identical for all

items, with a = 1, b = 0, and c = .2. Following simulation study 1, the sample sizes were

set toN = {1,000, 5,000, 10,000}, and the examinees’ ability parameters hwere randomly

drawn from N(0,1). Additionally, 500 response data sets were randomly generated, and

theMMAPestimateswere calculatedwith the three groups of priors in Table 1. Finally, the
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RMSE andME of theMMAP estimates were calculated to display the properties (efficiency

and bias) of the estimator. Because the trends on the MMAP estimators with the three

groups of priors were consistent, we only report the results under the priors of MMAP1

here.
Figures 2 and 3 show the RMSE and ME values for the MMAP estimators of a, b, c and d

at the four different levels of d. For the a and b parameters, it can be seen that the values of

RMSE(a) and RMSE(b) at d ={.75, .85} were smaller than at d = {.65, .95}. Similarly, the

values of ME(a) were closer to 0 (smaller biases) for d = {.75, .85} than for d = {.65, .95}.
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Figure 1. Scatter plots of (left) the RMSE and (right) the absoluteME of theMMAP estimators for the

d parameter against b + 2/a for sample sizes N = {1,000, 5,000, 10,000}.
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This indicates that a and b are more difficult to estimate when d takes more extreme

values.

For the cparameters. it can be seen that the relationships betweend and RMSE(c)were

the weakest among the four types of item parameters, and the highest values were not

larger than .05. The values of ME(c) were very close to 0. These results demonstrate that

the d parameter has the smallest impact on the MMAP estimator of c.

For the d parameters, RMSE(d) displays substantial differences under the four levels of
d: for the twomiddle levels ofd,d = {.75, .85}, RMSE(d)was smaller than ford = {.65, .95}

and had smaller biases. This suggests that the estimators of the middle d values are more

accurate than those of the extreme d values.
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Figure 2. RMSE values of the MMAP estimators for the 4PLM item parameters for d = {.65; .75; .85;

.95} and sample sizes N = {1,000; 5,000; 10,000}.
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4.3. Simulation study 3

Many researchers have studied the application of the 4PLM to psychopathology testing

(Culpepper, 2016; Reise & Waller, 2003; Waller & Reise, 2010), where subjects with

higher levels of psychopathology may be reluctant to self-report attitudes, behaviours,

and/or experiences. Therefore, in this simulation, we compared the performance of the

proposed MMAP estimation with that of BM estimation in estimating the 4PLM with a set
of psychopathology items. Following Culpepper (2016) and Waller and Feuerstahler

(2017), this study generated responses based on the 4PLM with the M = 23

psychopathology item parameters from Waller and Reise (2010) as the true values (see

Table 5). As in simulation studies 1 and 2, the examinees’ abilities (h) were randomly

drawn from N(0,1), and three sample sizes N = {1,000, 5,000, 10,000} were considered.
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Figure 3. ME values of the MMAP estimators for the 4PLM item parameters for d = {.65; .75; .85;

.95} and sample sizes N = {1,000; 5,000; 10,000}.
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The MMAP estimates were calculated with the informative prior distributions that

were given for MMAP1 in Table 1. In themirt R library, the logistic model was design by a

slope-threshold parameterizations, that is, 1.7ai and 1.7aibi were estimated instead of

directly estimating ai and bi. According to Waller and Feuerstahler (2017), the priors for
1.7a and 1.7ab were set to 1.7a ~ LN(1,12) and 1.7ab ~ N(0,22). In addition, the prior

distributions for c and d were set to logistic (c) ~ N(�1.2, 0.52) and logistic(d) ~ N(1.2,

0.52), which are approximately equal toBeta(5,17) and Beta(17,5) (see Figure 4). To sum

up, the prior distributions for the two estimationmethodswere very close. TheMMAPand

BM estimations of the 4PLM were calculated across 500 replications, and the RMSE were

calculated to evaluate the properties of the estimators (see Figures 5–7).

From these plots, it can be observed that, for most of the 23 items, the MMAP

estimators of the item parameters (a, b, c, d) provided lower RMSE values than did the BM
estimators across the three sample sizes. It is ecident that the accuracy of the MMAP

estimators was superior to that of the BM estimators. It is obvious that the RMSEs of the

MMAPandBMestimators both display decreasing trends as the sample size increases. That

is, increasing the sample size can improve the estimation accuracy, which is expected.

Finally, there are still differences between the RMSEs of the MMAP and BM estimators

under a sample size of N = 10,000, but the superiority of the MMAP estimator is weaker,

especially for the b and c parameters, and the two estimators were extremely close.

5. Empirical study

This section demonstrates an application of the 4PLM with an empirical example. The

data set is froma state reading assessment test thatwas previously analysed in Tao, Shi, and

Chang (2012). The data set includes 50 dichotomous items and the sample size is = 2,000.

In our study, the 4PLM was fitted to the response data of the 50 dichotomous items. The
item parameters were estimated using the MMAP method, and the examinees’ abilities

were estimated usingWarm’sweightedmaximum likelihood estimation (WMLE).Warm’s

WMLE has been proved to be superior to the ML and expected a posteriori estimates by

many studies (Meng, Tao, & Chen, 2016; Peneld & Bergeron, 2005; Wang &Wang, 2001;

Table 5. Item parameter values for the psychopathology item in Waller and Reise (2010)

Item

Item parameters

Item

Item parameters

a b c d a b c d

1 1.91 �0.28 0.04 0.52 14 0.84 0.72 0.04 0.75

2 1.95 �0.16 0.02 0.48 15 1.13 0.15 0.03 0.61

3 1.50 0.05 0.02 0.60 16 0.79 1.19 0.04 0.73

4 1.12 0.06 0.02 0.63 17 1.27 0.48 0.01 0.84

5 0.89 0.45 0.04 0.82 18 0.94 1.37 0.09 0.94

6 1.08 �0.50 0.06 0.83 19 0.84 1.44 0.02 0.82

7 1.16 �0.47 0.07 0.71 20 1.14 1.52 0.00 0.82

8 1.10 0.01 0.04 0.73 21 1.10 0.25 0.02 0.93

9 0.78 0.45 0.05 0.57 22 0.72 0.53 0.24 0.95

10 1.23 0.19 0.01 0.90 23 0.88 1.56 0.06 0.91

11 1.34 0.41 0.02 0.85

12 1.54 �0.48 0.06 0.59

13 1.16 0.18 0.02 0.40

Estimating the 4PLM with an EM algorithm 67



0 0.2 0.4 0.6 0.8 1
c

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
P

ro
ba

bi
lit

y 
de

ns
ity

 fu
nc

tio
n 

Beta(5,17)
Logistic-Normal(–1.2,0.5)

0 0.2 0.4 0.6 0.8 1
d

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n 

Beta(17,5)
Logistic-Normal(1.2,0.5)

Figure4. Probability density function curves for theBeta(5, 17),LN(�1.2, 0.52), Beta(17, 5), andLN

(1.2, 0.52) distributions.
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Figure 5. RMSE values for the MMAP and BM estimators of the 4PLM item parameters for sample

size N = 1,000.
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Warm, 1989). In what follows, the item parameter estimation results and model fitting

evaluation are reported.

5.1. Item parameter estimation results

The item parameter estimates from the 3PLM and 4PLM are presented in Table 6. It can be

observed that the estimates of the parameters (a, b, c) in the twomodels (3PLM and 4PLM)
are close for most items, while for the items with lower values of d, the differences

between the estimates are more substantial. For instance, for items j = 5, 9, 18, 50, the a

parameters estimated from the 3PLM are extremely small, while the estimates from the

4PLM are much larger. This may be because a large proportion of examinees slipped in

their responses to these items, resulting in the 3PLMunderestimating their discrimination

(see also the model fitting evaluation results given in Table 6 to be discussed in the next

subsection).

The Pearson correlation coefficients between the parameter estimates of the 3PLM
and 4PLM are ra 3PLð Þ;a 4PLð Þ = .68, rb 3PLð Þ;b 4PLð Þ = .94, and rc 3PLð Þ;c 4PLð Þ = .88, and the corre-

sponding scatter plots are shown in the left-hand column of Figure 8. We also

illustrate the differences of the distributions of a, b, and c between the 3PLM and

4PLM by estimating their kernel density curves across the test (see the right-hand
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Figure 6. RMSE values for the MMAP and BM estimators of the 4PLM item parameters for sample

size N = 5,000.

Estimating the 4PLM with an EM algorithm 69



column in Figure 8). The estimates of a, b and c in the 4PLM are highly correlated

with those in the 3PLM. Furthermore, it can be observed that the a parameter of the

4PLM was consistently higher than that of the 3PLM for each item, but the b

parameter presented the opposite trend. This phenomenon has also been found in

Loken and Rulison (2010). The reason for this may be that an upper asymptote < 1

results in the response function not having to flatten out to accommodate the poorly

fitting responses (Loken & Rulison, 2010).
Finally, we compare the performances of the 4PLM and the 3PLM in estimating the

examinees’ abilities h. The scatter plot between the estimates of h from the 3PLM and

4PLM and their kernel probability density function curves are presented in Figure 9. It can

be seen that the estimates of h from the two models are highly correlated with their

Pearson correlation, rh 3PLð Þ;h 4PLð Þ = .98. However, when h > 1.0, the estimates of h from the

4PLM are a little larger than those from the 3PLM. This indicates that the 3PLM is likely to

underestimate the high-ability examinees. Furthermore, from the kernel density curves, it

can be observed that the h curvesmostly overlap, except for the right tail,where the 3PLM
may fail to capture the behaviours of the high-ability students. It would be interesting to

further investigate whether the result obtained in the empirical study still holds in general

and how it would impact test-taking strategies if 4PLM were known to be the scoring

model beforehand. We leave this interesting topic for future study.
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Figure 7. RMSE values for the MMAP and BM estimators of the 4PLM item parameters for sample

size N = 10,000.
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5.2. Assessing model data fit

Assessingmodel fit is a routine and important procedure in the item response theory (IRT)

domain. IRT models can be implemented effectively for analysing educational and

psychological test data only when the model fit is reasonably good. In this study, the fit of
the model to data was evaluated at the test and item levels.

At the test level, the chi-square statistic, minus twice the log-likelihood (�2logL) and

Akaike’s information criterion (AIC; Akaike, 1973) were calculated. The test chi-square

statistic is defined as
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Figure 8. (Left) scatter plots of 3PL item parameter estimates (a, b, c) against 4PL estimates. (Right)

kernel probability density function curves of a, b, c under the 4PLM and 3PLM.
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v2test ¼
XH
h¼1

foh � fehð Þ2
feh

;

where foh and feh is the observed and expected frequency of score h (h = 0, 1, , . . . , 50).
The results obtained are displayed inTable 7. It can be seen that the three testmodel fitting

indexes consistently show that the 4PLM fits the data better than the 3PLM.

Moreover, to display the difference between the observed and the model predicted

number-correct score distributions, the test fitting plot (Hambleton & Traub, 1973;

Swaminathan, Hambleton, & Rogers, 2006) is reported in Figure 10. It can be observed
that the differences of the lines between the twomodels are very small for test takers with

test scores up to 40, but when the test scores exceed 40 the fitting frequency curve of the

4PLM is much closer to the observed score distribution than that of the 3PLM. That is, the

4PLMcan better describe the data of the high scores bymodelling the slipping behaviours.

Following one reviewer’s suggestion, we also fitted the 4PLMwith several fixed upper

asymptotes <1. We calculated the fitting indexes of the 4PLM under fixed parameters

d = .98, .95, .90. The results of the model--data fitting assessment are given in the bottom

panel of Table 7. All the model indexes consistently show that the fitting of the 4PLM
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Figure 9. (Left) scatter plot of 4PL estimates of h against 3PLM estimates. (Right) kernel density

function curves of h estimates in the 4PLM and 3PLM.

Table 7. Test model fit indices for the 4PLM, 3PLM, and 4PLM with three constrained upper

asymptotes (d = .98, .95, .90)

v2item �2LogL AIC

4PLM 99.87 104,631 105,031

3PLM 112.25 104,896 105,196

4PLM �.98 101.20 104,944 105,244

4PLM �.95 103.20 105,124 105,424

4PLM �.90 301.57 105,850 106,150
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(without specifying d) is the best among all the models considered. This suggests that the
4PLM is a better choice in practice than the 4PLM with a fixed upper asymptote.

At the item level, the Pearson chi-square fit statistic (Hambleton & Han, 2005;

Hambleton, Swaminathan, & Rogers, 1991; Rogers & Hattie, 1987),

v2item ¼
XT
t¼1

Nt

Ot � Etð Þ2
Et 1� Etð Þ ;

and the likelihood ratio statistic (McKinley &Mills, 1985; Mislevy & Bock, 1990) provided

in BILOG-MG,

G2 ¼ 2
XT
t¼1

Nt Ot ln
Ot

Et

þ 1� Otð Þ ln 1� Ot

1� Et

	 

;

were calculated in order to assess the model fit. HereOt denotes the observed proportion

correct in trait interval t, Et denotes the expected proportion correct in the interval under

the givenmodel,Nt is the number of persons in the interval, and T is the number of the trait

intervals. In this study, T = 15 equal size intervals between�2.5 and 2.5were chosen and

the mean of the probabilities of a correct response was calculated to give the expected
values. The results are shown in Table 8. It can be seen that the v2item andG2 values for the

4PLM are smaller than those for the 3PLM for most items, and there are fewer significant

v2item and G2 statistics for the 4PLM, indicating that the 4PLM fits the data better than the

3PLM.

To further illustrate, we use a graphical display to examine the discrepancy between

observed and expected proportions (Swaminathan et al., 2006). For illustration purposes,

the fitting plot of item 5 is displayed in Figure 11. It shows that the upper asymptote of the

probability of correct response gets close to .85 rather than approaching 1, as the ability
level increases. Hence, the fitting of the 3PLM for this item shows serious deviation, while

the 4PLM better captures the response behaviour on this item.
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Figure 10. Observed and expected test score distributions based on the 4PLM and 3PLM.

74 Xiangbin Meng et al.



6. Discussion

In this paper, we utilize a mixture model representation of the 4PLM and propose an

MMAP approach for estimating the 4PLM with an EM algorithm. The mixture modelling

revision of the 4PLM not only made the EM algorithm easier to implement but also

provided a natural connection with the popular cognitive diagnosis models. Three

simulation studies were conducted to investigate the properties of the MMAP/EM
estimation under various conditions. The first simulation study was designed to

investigate the impacts of prior distributions on the accuracy of the MMAP estimation.

The simulation results demonstrated that the accuracy of the MMAP estimators under

different prior specifications was almost equivalent when the sample size is as large as

N = 5,000 and 10,000. For a smaller sample size, N = 1,000, the prior information has a

larger impact on the MMAP estimation. Thus uninformative priors are recommended

when the sample size is small and accurate prior information can not be obtained

beforehand. The aim of the second simulation was to study the influences of the upper
asymptote parameter d on the MMAP estimation. The results of this simulation

demonstrated that the parameter d displayed substantial impacts on the MMAP estimates

of a, b, and c, where extreme values of d led to a decrease in the accuracy of MMAP

estimators, but the influences of d on cwere weaker. The goal of the third simulation was

Table 8. Item model fit indices for the 4PLM and 3PLM

Item

v2item G
2

Item

v2item G
2

4PL 3PL 4PL 3PL 4PL 3PL 4PL 3PL

1 21.56 23.34a 19.51 25.79a 26 14.81 6.98 20.17a 8.34

2 5.58 11.27 7.97 12.70 27 20.12a 16.00 19.96a 16.13

3 4.24 6.85 4.39 5.24 28 13.14 10.96 12.38 12.52

4 18.15 28.04a 22.11a 27.72a 29 14.34 13.91 17.99 15.78

5 5.14 48.02a 7.81 45.26a 30 17.79 9.26 21.07a 10.06

6 6.94 6.78 10.19 7.61 31 9.93 13.11 9.25 15.76

7 10.61 15.19 14.44 15.85 32 24.91a 13.46 22.22a 12.85

8 14.79 10.66 16.65 11.76 33 19.39 18.74 22.06a 22.13a

9 16.51 21.47a 15.69 19.12 34 15.58 13.68 15.06 15.71

10 24.07a 24.49a 27.83a 23.28a 35 11.48 25.55a 12.43 21.88a

11 6.57 7.66 8.98 7.58 36 14.52 28.88a 17.21 25.99a

12 11.74 9.07 12.20 10.05 37 11.13 14.85 14.14 13.36

13 11.03 14.39 14.03 13.81 38 9.37 16.36 9.80 17.22

14 7.81 15.75 7.54 18.61 39 32.99a 17.97 31.28a 16.69

15 5.40 9.42 13.17 12.03 40 16.32 14.27 18.04 15.49

16 7.10 12.50 8.01 14.12 41 9.30 17.08 12.78 20.84

17 9.28 9.28 10.38 9.75 42 12.50 22.64a 11.42 19.81a

18 21.59a 31.20a 23.35a 31.74a 43 18.41 7.75 20.29a 8.72

19 11.13 11.88 12.09 11.15 44 8.84 8.59 12.59 7.98

20 13.60 12.98 14.62 14.31 45 9.54 15.06 11.00 13.97

21 19.02 24.35a 19.01 29.91a 46 13.82 29.57a 15.33 19.78a

22 6.01 8.72 6.88 9.62 47 16.58 8.97 18.56 10.68

23 19.56 19.98 18.25 17.60 48 9.06 9.81 11.30 13.85

24 13.55 60.45a 20.77a 51.16a 49 4.32 10.38 5.87 10.39

25 8.73 6.26 9.77 8.17 50 8.97 21.56a 8.78 24.45a

aValue of v2item or G2 greater than the critical value at the 5% significance level.
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to compare the performance of the MMAP estimation with the BM estimation in Waller

and Feuerstahler (2017). The results suggested that our MMAP estimators are more

accurate than the BM estimators across different sample sizes. Finally, a real data from a

state reading assessment test was analysed using the 4PLM. The results suggested that the

upper asymptote parameterwas needed, and in comparisonwith the 3PLM, the 4PLM can

better fit this data set. Additionally, the relationships of the commonparameter estimators
of the two models (3PLM and 4PLM) were investigated in this empirical study, which

further illustrates that the 4PLM outperforms the 3PLM.

There are several issues to be pursued in the future. First, it would be interesting to

study MMAP estimation based on a hierarchical prior distribution that jointly models all

the item parameters. The more flexible priors would allow the subjective error to be

reduced when specifying the prior distributions. On the other hand, this is also likely to

increase the computational complexity which may result in a decrease in the accuracy of

the parameter estimation. Second, the results of the empirical study demonstrated that
scaling the high-ability examinees based on the 4PLM is more accurate than based on the

3PLM. Further study of the estimation performance under different simulation conditions

is needed. Furthermore, it would be interesting to study how it would impact test takers’

strategies to answer items if the scoring model (such as 4PLM or 3PLM) is known

beforehand. This is an important issue in practice and will be studied in the future. Third,

the distribution of the ability parameter h is specified as standard normal in this study, as is

common in IRT. However, this assumption is likely to fail in practice, as suggested by the

kernel density curves in Figure 9. It would be interesting to apply the joint likelihood
estimation approach to estimate item parameters and h simultaneously, relaxing the

normality assumption for h. On the other hand, it is known in the literature that joint

estimation may be dogged by inconsistency issues when the number of items is not large

enough. We leave this interesting topic for future study.
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Appendix A:

The Newton–Raphson interaction for solving equations (20) and (21)

Let aðrÞj and b
ðrÞ
j be the current estimates. Then the next estimates are given by

aðrþ1Þ
j

b
ðrþ1Þ
j

 !
¼ aðrÞj

b
ðrÞ
j

 !
� LajajðaðrÞj ; b

ðrÞ
j Þ LajbjðaðrÞj ; b

ðrÞ
j Þ

LajbjðaðrÞj ; b
ðrÞ
j Þ LbjbjðaðrÞj ; b

ðrÞ
j Þ

 !�1
LajðaðrÞj ; b

ðrÞ
j Þ

LbjðaðrÞj ; b
ðrÞ
j Þ

 !
; ðA1Þ

where

Lajðaj; bjÞ ¼
@EW;hju;nt ðln pðn; zju;X; sÞÞ

@aj
;

Lbjðaj; bjÞ ¼
@EW;hju;nt ðln pðn; zju;X; sÞÞ

@bj
;

are given in equations (20) and (21), and

Lajajðaj; bjÞ ¼
@Lajðaj; bjÞ

@aj
¼ �e2aj

XK
i¼k

R̂ðxkÞðxk � bjÞ2p�j ðxkÞð1� p�j ðxkÞÞ
h i

� 1

ra
; ðA2Þ

Lbjbjðaj; bjÞ ¼
@Lbjðaj; bjÞ

@bj
¼ �e2aj

XK
i¼k

R̂ðxkÞp�j ðxkÞð1� p�j ðxkÞÞ
h i

� 1
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; ðA3Þ

Lbjajðaj; bjÞ ¼ Lajbjðaj; bjÞ
¼ @Laj ðaj ;bjÞ

@bj
¼ e2aj

PK
i¼k

R̂ðxkÞðxk � bjÞp�j ðxkÞð1� p�j ðxkÞÞ
h i

;
ðA4Þ

where p�j ð�Þ is defined in (3).
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Appendix B:

Matlab code for MMAP\EM for 4PLM

function [Ra, Rb, Rc, Rd]=MAEM(u, n, priora, priorb, priorc, priord)
%   u: is the response matrix
%   priora: is the prior of a
%   priorb: is the prior of b
%   priorc: is prior of c
%   priord: is prior of d
%   M: is the number of test takers
%   N: is the number of items
%   ntime: is number of the Fisher-Scoring iteration
%   NTIME: is number of the EM algorithm
%   a0: is initial value of a parameter
%   b0: is initial value of b parameter
%   c0: is initial value of c parameter
%   d0: is initial value of d parameter
%   Note: The initial values should are specified by yourself
%   n: is the number of the quadrature points
%   x: is quadrature points
indice=1;
INDICE=1;
ntime=0;
NTIME=0;
[M,N]=size(u);
x=linspace(-4,4,n);
x1=x';
d=x1(2)-x1(1);
Ak=normpdf(x1,0,1)*d;
% intial value a b c d
r0=identify(u);
a0=r0./sqrt(1-r0.^2);
a0=log(a0);
b0=sum(u)./M;
b0=-norminv(b0,0,1)./r0;
c0=0*a0+0.25;
d0=0*a0+0.75;
delta=0.1;
%Note:The intial values can be given by yourself. 
P=@(a,b,c,d,x)c+(d-c)./(1+exp(-a.*(x-b)));
% -------------------------------------------
MK=ones(M,1);
a1=MK*a0;
b1=MK*b0;
c1=MK*c0;
d1=MK*d0;
amu=priora(1);
asigma2=priora(2);
bmu=priora(1);
bsigma2=priora(2);
Niteration=100;
for k=1:n
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nn=ones(1,n);
while INDICE==1 && NTIME<Niteration

LL1=LL0*nn;
h=LL./LL1;
f=sum(h);
for i=1:N

U=(u(:,i))*NK;
p=MK*P(exp(a0(i)),b0(i),c0(i),d0(i),x);
ppp=(p-c0(i))/(d0(i)-c0(i));
pz=(d0(i)*ppp./p).*U+((1-d0(i))*ppp./(1-p)).*(1-U);
PZ=pz.*h;
r=sum(PZ);
c0(i)=(sum(u(:,i).*(1-sum(PZ,2)))+priorc(1)-1)/(sum(1-sum(PZ,2))+
sum(priorc)-2);
S=(sum(sum(PZ,2).*u(:,i))+priord(1)-1)/(sum(sum(PZ,2))+sum(priord
)-2);
if S>c0(i)

d0(i)=S;
else

d0(i)=c0(i)+delta;
end
at=a0(i);
bt=b0(i);
while indice==1 && ntime<50

Pi=P(exp(at),bt,0,1,x);
w=Pi.*(1-Pi);
la1=exp(at)*sum((x-bt).*(r-f.*Pi))-(at-amu)/asigma2;
lb1=-exp(at)*sum(r-f.*Pi)-(bt-bmu)/bsigma2;
laa=-exp(2*at)*sum((f.*(x-bt).^2.*w))-1/asigma2;
lbb=-exp(2*at)*sum((f.*w))-1/bsigma2;
lab=exp(2*at)*sum((x-bt).*f.*w) ;
res=[at;bt]-[laa,lab;lab,lbb]^(-1)*[la1;lb1];
at1=res(1);
bt1=res(2);
if norm([at1-at;bt1-bt],2)<10^(-3)

indice=0;
else

at=at1;
bt=bt1;
ntime=ntime+1;

end
end

p=P(exp(a1),b1,c1,d1,x(k));
L=p.^u.*((1-p).^(1-u));
LL(:,k)=prod(L,2)*Ak(k);

end
LL0=sum(LL,2);
LH=sum(log(LL0));
% E-step and M-step
NK=ones(1,n);

Estimating the 4PLM with an EM algorithm 81



LH1=sum(log(LL0));
if abs(LH-LH1)<10^(-3)

INDICE=0;
else

NTIME=NTIME+1;
LH=LH1;

end
RL(NTIME)=LH1;

end
% --------Final Results--------
Ra=exp(a0);
% If considering scaling constant D=1.7, Ra=Ra/D.
Rb=b0;
Rc=c0;
Rd=d0;

ntime=1;
indice=1;
a0(i)=at1;
b0(i)=bt1;

end
a1=MK*a0;
b1=MK*b0;
c1=MK*c0;
d1=MK*d0;
for k=1:n

p=P(exp(a1),b1,c1,d1,x(k));
L=p.^u.*((1-p).^(1-u));
LL(:,k)=prod(L,2)*Ak(k);

end
LL0=sum(LL,2);
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