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Neutron-Antineutron Oscillations
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Abstract: The quantum mechanics of neutron-antineutron oscillations is presented, with em-
phasis on oscillations occurring for freely propagating neutrons with and without an ambient
magnetic field. If such oscillations were to be seen it would signal that baryon number is not a
conserved quantum number in nature. The basic elements of an experimental program aimed
at finding evidence for these oscillations are also presented.

Audience: Supplementary material for upper-level undergraduate or beginning-level graduate
quantum mechanics course.

1 Neutron transitioning to its antiparticle

The neutron was discovered by James Chadwick in 1932. Since its discovery we have learned
much about it. We know its mass mn = 939.6 MeV [1] (in natural units [2]); we know it has
no electric charge; we know that it is a spin-1/2 fermion; we know that its magnetic dipole
moment is µn = −6.02× 10−14 MeV/Tesla; and, we know that it decays to a proton, electron
and antineutrino with mean lifetime of 880.2±1.0 seconds [1]. We also know that the neutron
is not a fundamental particle, being a bound state of two down quarks of charge −1/3 and
one up quark of charge +2/3.

One thing we still do not know is if the neutron can transition to its own antiparticle,
n → n̄. This is an active field of physics research with intense theoretical and experimental
interest [4], including recent discussions to look for n−n̄ oscillations at the European Spallation
Source (ESS) in Lund, Sweden [5, 6]. Both n and n̄ are electrically neutral, and there is no
fundamental principle that bars it from making this transition. However, nature could forbid
the transition from taking place by charging the neutron under a conserved global quantum
number called baryon number B. The proton and neutron are charge B = +1 under this
new symmetry, while the electron and neutrino have zero baryon charge. Conserving baryon
number in a transition still allows neutron decays n → pe−ν̄ since the initial state (n) has
B = +1 and the final state (pe−ν̄) also has B = +1 (Bp + Be− + Bν̄ = 1 + 0 + 0 = 1).
However, conservation of baryon number does not allow the n→ n̄ transition since the initial
state is B = +1 and the final state (n̄) is baryon number B = −1. This is because of the
general rule in quantum mechanics that the quantum numbers of an antiparticle (n̄) are equal
in magnitude but opposite in sign to those of its corresponding particle (n).

Promoting baryon number to a conserved quantum number is a speculation that must be
tested. In fact, there are good reasons to believe that baryon number is not rigorously held
by nature, but is rather an approximate symmetry, meaning violations of it are small and
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require precision tests to see their effects. One such precision test is the search for protons
(B = +1) decaying into final states that have no baryon number, such as π0e+ν (B = 0). This
is a so-called ∆B = 1 transition. So far there is no experimental evidence for this, although
experiments continue their searches. Another precision test, which is the subject of this note,
is n→ n̄. Since the initial state has B = +1 and final state has B = −1, neutron-antineutron
oscillations like this are called ∆B = 2 transitions. The rates of ∆B = 1 and ∆B = 2
transitions are not necessarily correlated, which means it is important to search for evidences
of both independently.

2 Neutron-antineutron oscillations

The transition from n → n̄ is more accurately called oscillations, since once an n turns into
an n̄ it is able to transition back to n again. The oscillations are governed by solutions to the
time-dependent Schrödinger equation subject to an effective Hamiltonion1 Heff :

Heff |ψ〉 = i
∂

∂t
|ψ〉. (1)

If the neutron and antineutron mix then energy eigenstates (or, “mass eigenstates”) of
Heff are mixtures of n and n̄ which we denote as n1 and n2:(

|n1〉
|n2〉

)
=

(
cos θ sin θ
− sin θ cos θ

)(
|n〉
|n̄〉

)
(2)

We will come shortly to how the angle θ is determined for this mixing, but let us first describe
the full solution of the Schrödinger equation in terms of the energy eigenstates |ni〉 (where
i = 1, 2). First, by definition of |ni〉 the time-independent Schrödinger equation acting on the
eigenstates |ni〉 (where i = 1, 2) is

Heff |ni〉 = Ei|ni〉. (3)

Thus, the general solution to the time-dependent Schrödinger equation is

|ψ〉(t) = c1|n1〉e−iE1t + c2|n2〉e−iE2t. (4)

In order to determine c1 and c2 we need a boundary condition on |ψ〉. Here we consider
the neutrons that arise by way of weak-force decays of radioactive nuclei. Thus, they are born
as pure neutrons. Therefore, at t = 0 we want |ψ〉(0) = |n〉. Since, from eq. 2

|n〉 = cos θ|n1〉 − sin θ|n2〉 (5)

this sets c1 = cos θ and c2 = − sin θ in Eq. 4. Then, expanding |n1〉 and |n2〉 in terms of n
and n̄ one finds

|ψ〉(t) =
(
cos2 θe−iE1t + sin2 θe−iE2t

)
|n〉+ cos θ sin θ

(
e−iE1t − e−iE2t

)
|n̄〉. (6)

1We call it “effective Hamiltonian” to signify we are restricting consideration only to terms that act on
neutrons and antineutron wave functions.
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We compute the probability that |ψ〉(t) is measured to be a n̄ by the standard probability
computation in quantum mechanics,

P [n̄(t)] = |〈n̄|ψ〉(t)|2 = e−Γt sin2(2θ) sin2

(
∆E t

2

)
, where, (7)

Γ = Im(E1 + E2), and ∆E = E1 − E2. (8)

The first term, e−Γt, is associated with the lifetime of the neutron. For t > 1/Γ the neutron
has a high probability of already having decayed, and thus it cannot be an antineutron or
neutron leading to P [n(t)] and P [n̄(t)]→ 0. The second term, sin2(2θ), is associated with its
ability to transition from n to n̄. If the theory has perfectly conserved baryon number then
there is no mixing between n and n̄, and θ = 0 and the transition probability is zero for all
time. We will come to a description of this angle θ later. The final term, sin2(∆Et/2), shows
the time dependence of the oscillation.

Let us now discuss in somewhat more detail the origins of the angle θ and the decay width
Γ. In the discussion above we introduced the angle θ as the mixing angle of n and n̄ that
rotates them to energy eigenstates. This comes about due to |n〉 and |n̄〉 not being eigenstates
of Heff . We can characterize this as

Heff |n〉 =

(
mn − i

Γ

2
+ En

)
|n〉+ δ|n̄〉 (9)

Heff |n̄〉 =

(
mn − i

Γ

2
+ En̄

)
|n̄〉+ δ|n〉 (10)

where mn is mass of the neutron, Γ is the decay width (i.e., neutron lifetime is τn = 1/Γ),
δ is contribution from Heff that enables n ↔ n̄ transitions, and En and En̄ are any other
additional contributions to the energy of the n and n̄ states respectively. If the neutrons were
propagating completely freely in space with no other matter around and no magnetic field,
etc., En,n̄ = 0. But since that is never the case in experimental configurations, we must keep
this term.

The imaginary part −iΓ/2 of the operator equations above will look mysterious to readers
who are not familiar with decaying states in quantum mechanics. A complete justification
of that will not be pursued here. We merely note that the final answer for the probability
of a neutron state remaining a neutron must incorporate an exponential decay over time
according to the well-known poisson-distributed radioactivity law of e−Γt, where 1/Γ is the
average lifetime of the neutron (i.e., 1/Γ ' 880 s). As we will see shortly, these imaginary
contributions inserted in the equations above provide exactly this factor, which should be
viewed here as post facto justification for their inclusion.

The matrix 〈Heff〉 in the {n, n̄} basis is

〈Heff〉 =

(
mn − iΓ

2
+ En δ

δ mn − iΓ
2

+ En̄

)
. (11)
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The eigenvalues are

E1,2 = mn − i
Γ

2
+
En + En̄

2
± 1

2

√
(En − En̄)2 + 4δ2 (12)

For mn � |En − En̄| � δ, which will be justified later in the nuclear reactor experimental
context, one can make the approximations

E1 ' mn + En − i
Γ

2
, E2 ' mn + En̄ − i

Γ

2
, (13)

∆E = E1 − E2 = En − En̄, and sin 2θ =
2δ

En − En̄
. (14)

Under these assumptions we can now rewrite the transition probability as

P [n̄(t)] = e−Γt

(
2δ

En − En̄

)2

sin2

(
(En − En̄)t

2

)
. (15)

As we have emphasized, En,n̄ are calculable from the experimental environment (see below),
leaving δ as the only unknown matrix element parameter. The value of δ can be computed
from a more fundamental theory of ∆B = 2 baryon number violation. Such calculations
are beyond the scope of this discussion. We only state that its value needs to very small,
δ < 10−29 MeV in order not to be in conflict with experiment2. How we measure such a small
non-zero δ, if it indeed exists, is the subject of the next section.

3 Measuring neutron oscillations at reactors

One method to measure δ, and therefore obtain evidence for neutrons transition to antineu-
trons, is to produce many neutrons in a nuclear reactor, guide them to a target some distance
away where any neutrons that transitioned to antineutrons would annihilate in a spectacu-
lar signal announcing their existence3. This is what the ILL reactor experiment in Grenoble
did [3].

We will write the equations in somewhat general form, but will give numbers applicable
to the ILL experiment [3] in order to gain understanding of typical sizes of various important

2The value of δ < 10−29 MeV may appear to be the result of very low-energy phenomena, since δ � mn.
However, δ more accurately should be thought of as a ratio of the nucleon scale (e.g., mn ∼ 103 MeV) to
a very high suppression scale where baryon number violation is induced (e.g., ΛB ' 1010 MeV). Raised to
appropriate powers one obtains very low values for δ, such as δ = m6

n/Λ
5
B ' 10−32 MeV.

3Another method is to look for transitions of bound-state neutrons in nuclei transitioning to n̄, which
subsequently annihilates with another neutron in the nucleus. Bounds from this are comparable, and presently
even better than the ILL experimental bound [7]. However, it is expected that future experiments involving
free neutrons at ESS could do even better [5, 6].
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quantities. The key things we need to know to estimate sensitivity to δ are

F = Flux of neutrons ' 1.25× 1011 neutrons/s (16)

vavg = average neutron velocity ' 600 m/s (17)

L = distance to annihilation target ' 60 m (18)

B = ambient magnetic field ' 10−8 T (19)

From the average velocity data, the average time for the neutron to make it to the annihilation
target is tavg = L/vavg ' 0.1 s. This is where the state |ψ〉(t) is measured and its wave function
collapses to n or n̄, at time = tavg when it interacts with the annihilation target.

We are now also in position to compute En,n̄ due to the ambient magnetic field. The
magnetic moment of the neutron and antineutron is

µn = −µn̄ = −6.02× 10−14 MeV T−1 (20)

which gives shifts in the energy for the neutron and antineutron of

En = −En̄ = −µn ·B ' 6× 10−22 MeV (21)

where the collimated neutrons and antineutrons moments are aligned with the magnetic field.
This gives the result that

En − En̄
2

= 6× 10−22 MeV

(
=

1

0.66 s

)
. (22)

where the expression in parentheses is the conversion to units of inverse seconds [2]. Since
0.66 s is much larger than tavg = 0.1 s, we are justified considering the argument of sin2

function in eq. 15 to be small, and thus can approximate the antineutron probability at the
annihilation target to be

P [n̄(tavg)] ' δ2t2avg = 10−18

(
108 s

τnn̄

)2(
tavg

0.1 s

)2

, (23)

where we have made the traditional identification of τnn̄ ≡ 1/δ. Note, we have also ignored the
e−Γtavg factor in eq. 15 since tavg is much smaller than the neutron lifetime (i.e., tavg � 1/Γ)
which translates to e−Γtavg ' 1. If τnn̄ were about 108 s, the above equation tells us that we
need approximately 1018 neutrons produced for one of them to turn into an antineutron when
it reaches the annihilation target.

Also, notice that the transition probability dependence on En − En̄ completely dropped
out when expanding eq. 15 to eq. 23. However, this was only because En − En̄ was very large
compared to δ (i.e., 1

2
(En − En̄) � δ) and very small compared to the inverse of the time it

takes neutrons to reach their annihilation target (i.e., 1
2
(En − En̄)� 1/tavg). If either of those

two conditions had not held, one would have to retain its non-trivial dependence.
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Let us now do an approximate calculation for the required value of τnn̄ to obtain one n̄ on
target for arbitrary flux F and running time Trun. This requires solving for τnn̄ in the equation
P [n̄(tavg)]FTrun ' 1. The result is

τnn̄ ' (2× 108 s)

(
F

1.25× 1011 neutrons/s

)1/2(
Trun

1 yr

)1/2

. (24)

Thus, for some flux F and run-time Trun the sensitivity to τnn̄ is approximately given by
the above equation. Keep in mind that the ILL values for tavg and magnetic field were used
to obtain the coefficient 2 × 108 s, which approximately the sensitivity that ILL obtained:
τnn̄ > 0.86× 108 s at 90% C.L. [3].

4 Oscillations of freely propagating neutrons

In our derivation above of the sensitivity to neutron-antineutron oscillations, we introduced
the “oscillation time” τnn̄, which was defined to be the inverse of the matrix element τnn̄ ≡
1/δ, where 〈n|Heff |n̄〉 = δ. A confusion might be that upon inspecting eq. 15 one notes
that δ plays no role in the oscillation but rather only in the amplitude of the probability.
The oscillation is completely controlled by En − En̄ which is set by the magnetic field of
the experimental environment. So why does one call τnn̄ the “oscillation time” for neutron-
antineutron oscillations?

The answer lies in the analysis of propagating free neutrons. In that case there are no
environmental contributions to the energy and thus En = En̄ = 0. This requires a new
computation of the eigenvalues and eigenvectors of the Hamiltonian, which is now

〈Hfree
eff 〉 =

(
mn − iΓ

2
δ

δ mn − iΓ
2

)
(25)

The solution to this is maximal mixing, and yields(
|n1〉
|n2〉

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
|n〉
|n̄〉

)
, with eigenvalues E1,2 = mn − i

Γ

2
± δ (26)

Carrying out the steps as we did before, one finds that the quantum state |ψ〉(t) that starts
out as a neutron at t = 0 is

|ψ〉(t) =

(
e−iE1t + e−iE2t

2

)
|n〉+

(
e−iE1t − e−iE2t

2

)
|n̄〉 (27)

Computing the probability of this state being n̄ at time t yields

P [n̄(t)] = |〈n̄|ψ〉(t)|2 = e−Γt sin2

(
(E1 − E2)

2
t

)
= e−Γt sin2(δt). (28)
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It is here that we see that τnn̄ ≡ 1/δ is controlling the oscillation of neutron to antineutron,
and why it gets its name “oscillation lifetime.” In the case of neutrons in a relatively strong
magnet field, the oscillation time was overwhelmed by the magnetic field contributions, and
the role of δ in the time-varying oscillations was lost. In free space propagation, on the other
hand, δ is dominant in determining the energy difference in eigenstates and therefore dictates
the oscillation frequency. Therefore, τnn̄ ≡ 1/δ is rightly designated the oscillation lifetime.
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