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Abstract 

Multi-modal transportation system is a combination of more environmentally friendly shared transport modes 
including public transport, ride-sharing, shuttle sharing or even completely carbon-free modes like cycling to 
better meet customer needs. Multi-modal mobility solutions are expected to contribute in mitigating traffic 
congestion, carbon emission and result in savings in costs. They are also expected to improve access to 
transportation, more specifically for those in rural or low-populated communities (i.e., difficult to serve by 
public transportation only). Motivated by its benefits, in this study, we consider the combination of the ride-
sharing and public transportation services and formulate a mixed integer programming model for the multi-
modal transportation planning problem. We propose a heuristic approach (i.e., Anglea-Based Clustering 
Algorithm) and compare its efficiency with the exact solution for different settings. We find that the Angle-
Based Clustering Algorithm works well in both small and large settings. We further show that the multi-modal 
transportation system with ride-sharing can yield significant benefits on travel distances and travel times. 
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1. Introduction 

Public transportation is a form of travel provided by cities that enables affordable transportation to 
the residents. Public transportation systems have provided communities with a valuable means of 
transportation for several centuries. According to the American Public Transportation Association, 
there were 10.1 billion trips taken via transit in 2017 alone (Dickens, 2018). Public transportation can 
lead to various social, economic, and environmental benefits, e.g., significant financial savings and 
more economic opportunities for passengers, higher fuel efficiency and lower emissions, and 
improved safety (Dickens and Neff, 2011). Despite its benefits, public transportation systems are 
often unavailable or unreliable for serving first and last-mile travel, especially in rural or low-
populated regions (Jennings, 2015). In fact, as much as 45% of Americans have no access to public 
transportation (Dickens and Neff, 2011). In recent years, private companies (e.g., Uber, Lyft) have 
contributed to filling the gaps by providing more flexible ride-sharing services. However, the 
relatively high prices of their services restrict the widespread use of ride-sharing services by most 
residents, especially living in rural areas (Cohen and Shaheen, 2018). To enable affordable and 
flexible transportation services to residents and to improve access to transportation, multi-modal 
transportation has been introduced as a new way to provide effective and consistent transportation 
services. 
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The multi-modal transportation system is the combination of various modes of transportation 
mechanisms such as walking, cycling, buses, trains, ride/shuttle sharing systems. Multi-modal 
transportation has the capability to provide more efficient and fairer transportation compared to any 
single-mode deployed alone (Horn, 2002; Mishra et al., 2012; Litman, 2017). Moreover, it can offer 
additional benefits including mitigating traffic congestions, reducing emissions, and improving 
customer experience (Yao et al., 2012; Daganzo, 2007). Demand for multi-modal transportation is 
also growing. According to the study of Millennials and Mobility (Parker, 2017), nearly 70% of 
millennials, use multi-modal travel options several times or more per week. Similarly, people living in 
rural areas prefer multimodal transportation increasingly (Litman, 2018). As cities aim to improve 
transportation services, many cities have committed to developing multi-modal transportation 
systems to harbor their benefits through public-private partnerships. For example, Detroit-Michigan, 
Summit-New Jersey, and Arlington-Texas are among the cities that partner with private companies 
such as Uber and Lyft in implementing the combination of public transportation systems with ride-
sharing services (Boll, 2018). However, despite the increased usage and need for multi-modal 
transportation and their observed benefits in improving mobility, the integration of different 
transportation modes requires effective planning and limits the largescale adoption. In this paper, 
we address this important challenge by developing a model and solution algorithms for the 
integrated planning of a multi-modal transportation system involving both a public transportation 
system and a ride-sharing service. 

We study a multi-modal transportation system in which the passengers are transported to their 
final destinations via public transportation and shared services (i.e., shuttles). Recently, many cities 
are looking for alternative ways to improve access to transportation, more specifically for those in 
rural or low-populated communities (Boll, 2018). We consider a set of passengers who go to the 
same or nearby locations and who can travel together (i.e., going for grocery shopping, or the daily 
commute to work). For example, consider a setting where employees living in various regions of the 
city use a shuttle service to go to their work or to the public transportation station. Some of the 
employees may work at the same company or at the companies which are close to each other by 
walking distance. Hence, some employees may have common destination locations. All employees 
are picked via a shared vehicle (i.e., shuttle), and they have an option to transfer to a mode of public 
transport to reach their final destination. We consider the mixed load case where the employees 
traveling to a different destination but living close to each other can also share the same shared 
vehicle. We address the benefits of multi-modal transportation with ride-sharing, and we develop 
answers to the following operational questions: 

• Given a set of passengers at different initial locations and having different final destinations, what 
should be the optimal assignment, routing, and transfer decisions of passengers using multi-modal 
transportation with ride-sharing? 

• What is the value of multi-modal transportation with ride-sharing in terms of vehicle travel 
distance and vehicle travel time? 

To address these questions, we develop a mixed integer linear programming model (MILP) by 
considering multiple objectives to find an optimal assignment, routing, and transfer decisions. The 
objective of the problem is to minimize a weighted sum of the following four sub-goals: (i) the sum 
of the distance traveled by the vehicles, (ii) the maximum difference between vehicle driving time 
and self-driving time, (iii) the average vehicle travel time, and (iv) the number of transfers made by 
passengers. Since our problem is NP-hard, finding an optimal policy for large problem instances is 
difficult. Thus, we develop a heuristic (i.e., Angle-Based Clustering Algorithm) to solve the MILP 
model efficiently. Then, we compare the MILP model with the proposed heuristic. We find that the 
Angle-Based Clustering Algorithm works well in both small and large settings. Finally, we analyze the 
benefits of the multi-modal transportation system by using the generated instances and show that 
the combination of ride-sharing and public transportation system can result in a decrease in total 
vehicle travel distance by 7%, and 8% in vehicle travel time. 
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The remainder of the paper is structured as follows: In Section 2, we review the relevant 
literature. In Section 3, we describe the multi-modal transportation model with ride-sharing. In 
Section 4, we propose an Angle-Based Clustering Algorithm. In Section 5, we perform numerical 
analyses to compare the proposed heuristic approaches with the optimal policy and evaluate the 
benefits of multi-modal transportation model with ride-sharing. Finally, our conclusions are outlined 
in Section 6. 

2. Literature Review 

Multi-modal transportation has been extensively studied in the context of freight transportation 
(Ishfaq and Sox, 2011; Gelareh and Nickel, 2011; Alumur et al., 2012; SteadieSeifi et al., 2014). 
Studies in the area of freight transportation focus mostly on the combination of fixed routes, and 
they do not consider routing decisions. Contrary to these studies, we investigate the first- and last-
mile travel of passengers as well by considering the ride-sharing. In the area of urban passenger 
mobility, some studies investigate the multi-modal transportation planning problem. However, these 
studies either did not take the transportation efficiency into consideration and formulated the multi-
modal transportation routing problem as one without time constraints (Zhang et al., 2006; Qingbin 
and Zengxia, 2010) or did not include ridesharing and consider the combination of fixed routes 
(Ambrosino and Sciomachen, 2014; Zhang et al., 2015; Sun and Lang, 2015). In our study, we 
integrate ride-sharing with the public transportation system by considering time constraints. 
Different from these studies, we further evaluate the benefits of the multi-modal transportation 
system in terms of travel time and travel distance. More relevant to our study, Maheo et al. (2017) 
study the combination of shared shuttles and bus routes to improve the transportation system. 
However, their focus is the design of the transit structure (i.e., station locations). Different from 
them, we investigate the planning of the first/last mile travel of passengers using ride-sharing to and 
from transit stations. 

How to best assign vehicles to different customers and decide on their routes is a well-studied 
problem in vehicle routing literature. More specifically, our problem is a special case of the pickup 
and delivery problem, which has been studied extensively in the operations research literature 
(Savelsbergh and Sol, 1995; Ropke and Pisinger, 2006; Agatz et al., 2012). However, current studies 
in this area lack of the consideration of mixed loads and multiple modes. Moreover, the shared 
vehicle problem is a special case of the pickup and delivery problem that focuses on the 
transportation of passengers (Berbeglia et al., 2007). Thus, it is important to consider the 
convenience of the passengers as well. Our study differs from this literature since we measure the 
passenger service quality, for example, in terms of the difference between the actual drive time and 
direct drive time, travel time, and the number of transfers made. 

Another stream of literature that is relevant to our study is on school bus routing. Generally, the 
school bus routing problems consider the collection of the students at their bus stops and returning 
to the school where the students are dropped off (Bektas and Elmastas, 2007; Riera-Ledesma and 
Salazar-Gonzalez, 2012; Schittekat et al., 2013). Similar to our model, some of the studies in this area 
allow mixed loads (i.e., the transportation of students attending different schools with the same bus) 
(Braca et al., 1997; Park et al., 2012; Kim et al., 2012), but these studies do not consider transfers 
and multiple modes. Bus routing models which model transfers of students either consider 
predefined transfer points (Cortes et al., 2010) or the transfers between the same modes (i.e., 
between busses) (Fugenschuh, 2009; Bogl et al., 2015; Bouros et al., 2011). To the best of our 
knowledge, none of these studies in this area explicitly considers the overall problem of shared 
vehicle routing, assignment, and passenger transfer decisions by considering multiple modes. 
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In the literature, clustering-based algorithms are widely used, and the pick-up nodes have been 
clustered according to different features, such as vehicle information, road information, depot 
location, and pick-up locations. The sweep algorithm is one of the first clustering-based algorithms 
which was proposed by Gillett and Miller (1974). The sweep algorithm forms clusters based on the 
angle between the stops and the depot by considering one destination. Liu and Shen (1999) improve 
the angle-based sweep clustering heuristic by considering the problem with time windows, and 
Renaud and Boctor (2002) extend the algorithm by considering mixed size vehicles. Besides the 
sweep algorithm, other clustering methods are also used in vehicle routing problems. As an example, 
some studies group the passengers into the clusters according to the main road grid system (Qu et 
al., 2004), some define discrete zone by using a combination of spatial partitioning techniques 
(Ouyang, 2007), and some forms clusters according to the assigned weights of passengers (Ester et 
al., 1996). Different from the above literature, we extend the angle-based sweep clustering heuristic 
by considering different destination locations, which requires to generate angles for each different 
destination. We also consider a mixed load in each vehicle by combining passengers having different 
destination locations. To ensure the mixed load, we improve the angle-based sweep clustering 
heuristic by adding a second stage, which combines the clusters. This step involves a simple 
optimization model that minimizes the distances between the combined clusters. 

3. A Multi-Modal Transportation Model with Ride-Sharing 

In our study, for a given a set of vehicles, we consider assignment, routing, and transfer decisions of 
passengers using multi-modal transportation with ride-sharing to reach their final destinations. We 
consider the combination of two transportation systems, e.g., shared vehicles and a public 
transportation service with a fixed route. As a public transportation mode, we consider a more direct 
and faster mode than the shared vehicles (i.e., subway, train, etc.). We build on a pick-up and 
delivery problem (Ropke and Pisinger, 2006), which considers only vehicle routing decisions, by 
adding the binary transferring decisions of passengers. We develop a mixed integer linear 
programming model (MILP), and we aim to find the optimal routing, assignment and transfer 
decisions that minimize the weighted sum of the following four sub-goals: (i) sum of the distance 
traveled by the vehicles, (ii) the maximum difference between vehicle driving time and self-driving 
time, (iii) the average vehicle travel time, and (iv) the number of passenger transfers. 

We consider   number of passenger locations using the multi-modal transportation system with 
ridesharing. Let                    represent the set of passenger locations and    
                represent the set of passenger destinations where    refers to the destination of 
passenger  . We further define        to represent the set of all passenger locations and 
destinations. Each passenger has an individual destination, but some passengers may share the same 
destination. There are     number of vehicles with capacity  , where   is the set of all shared 
vehicles. Each vehicle starts its tour from the initial location   (i.e., depot) and ends its tour at the 
end terminal location  . We define                 as the set of transfer locations and 
          as the set of all nodes in the transportation system. Passengers are picked by 
shared vehicles and they can either transfer to the public transportation system or go to their 
destination via shared vehicles. We allow mixed loads where the passengers traveling to different 
destinations can share the same vehicle. If a passenger is transported to her/his destination via 
shared vehicles, we assume that there is no additional walking time. On the other hand, if a 
passenger chooses to transfer at the transfer station, s/he gets out of the shared vehicle and uses 
the public transportation system. Thus, there occurs a time delay when passengers are transferring 
to the public transportation system (i.e., waiting time). We assume that s/he travels to the next 
transfer station which is closest to her/his destination. Different from traveling via shared vehicles, 
the passenger also needs to walk to their destination once s/he reaches to her/his final station. To 
represent both the passenger walking time and the passenger waiting time due to the transfer, we 
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define   
 

 as the delay time of passenger     due to the transfer. The distance and travel time 
between node     and node     are defined as     and      respectively. If passenger at location 

    drives to his destination directly without stopping at any other node, it takes     
unit time to 

reach his destination. A certain time is required during the passenger pick-up and drop-off. We 
define   ,   , and    to denote the pick-up/drop-off times needed at passengers’ initial locations, at 

their destination locations and at the transfer stations, respectively. At each passenger pick-up/drop-
off location more than one passenger can be picked up/dropped off, and we define    to denote the 
number of passengers picked/dropped at passenger location     (i.e.,    can take both positive and 
negative values). Here we have two assumptions: one is that the number of passengers at each 
pickup node,       , is less than the vehicle capacity,  . Another one is that the passengers at each 
pickup node should be picked up at the same time by the same shared vehicle. We further define the 
following decision variables: 

   
 = A binary variable which equals 1 if the shared vehicle v travels from location     to location  

   , and equals   otherwise. 
   

  = A binary variable which equals 1 if passengers at initial location     are transported to 
the transfer station     by vehicle     to use the public transportation service, and 
equals to 0 otherwise. 
  
 

 : The time when vehicle     arrives at location    . 
     : The time when passengers at location   arrive at destination location    by walking from 
transfer station  .  
  

 : Number of passengers on vehicle     after serving location    . 
   An auxiliary variable that defines the difference between the multi-modal system travel 
time and self-driving time. 

We note that we summarize all notations in Appendix A. By using the above setting, we present 

the mathematical model as follows: 

      ∑ ∑                   
        

∑   
 

   

   
   ∑ ∑ ∑    

 
                 

(1) 

subject to: 

∑ ∑    
 

                                                                      

                                                                       

∑ ∑    
                                                                       

                                                                       

∑    
       ∑    

 
    ∑     

 
                             

                                                        

   
    ∑    

 
    ∑    

 
                                               

                                      

∑ ∑     

 
       ∑ ∑    

                                     

                                                                       

∑    
 

                                                                             

                                                                     

∑    
 

                                                                          

                                                                     

∑    
 

    ∑    
 

                                                                  

                                               



 

This article is protected by copyright. All rights reserved. 
6 

   
      

           
                                                          

                               

   
      

           
                                                        

                                       

   
      

           
                                                    

                                    

   
      

      
   

                                                   

                                    

∑    
         

     

                                                        

                                                      

   
      

    
                                                                          

                                    

∑    
         

                                                                

                                                  

∑    
            

                                                          

                                                   

∑ ∑    
 

         ∑    

 
       

                                                                                                  

  (   

  ∑           
 )                                              

                                                     

   
      

       
                                                                    

                                      

   
      

  ∑    
 

      
                                                    

                                   

  
                                                                                               

                                                     

  
    

                                                                               

                                                                    

   
                                                                                                

                                        

   
                                                                                                

                                   

  
                                                                                               

                                                     

                                                                                               

                                                 

  
                                                                                               

                                                    

where    is the weighting factor coefficient for objective            . Our optimization model 

includes four types of objectives that reflect different goals involving minimization of the shared 
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vehicle and passenger related costs. Objective 1 is a shared vehicle-related objective which aims to 

minimize the total distance traveled by all vehicles. Objective 2 is a passenger related objective 

which minimizes the maximum difference between the travel time of the multi-modal transportation 

system with a shared vehicle and self-driving time. The objective is modeled through the variable   

and the constraint (19). This objective also aims equity in travel times of all passengers as it ensures 

that the travel delay of all passengers is close to each other. Objective 3 is another vehicle-related 

objective which minimizes the average travel time of vehicles. Objective 4 is a passenger related 

objective that considers the cost of transferring decisions. It minimizes the total number of transfers 

made by passengers. 

In our model, we ensure that each passenger is picked up by one vehicle through constraint (2). 

Constraint (3) defines that the passengers can transfer to another transportation mode at the 

transfer station. Constraint (4) ensures that if the passenger     is picked up by vehicle     and 

if the passenger does not transfer to another transportation mode, the corresponding destination 

location of the passenger is visited by the shared vehicle. Constraint (5) links    
  and    

 
 variables. If 

the passenger uses both transportation modes, it is ensured that the shared vehicle visits the 

corresponding transfer station and the passenger is dropped off at the transfer station. Constraint 

(6) defines a condition that the passenger reaches her/his destination location by using a shared 

vehicle or two transportation modes (i.e., a shared vehicle and another public transportation mode). 

Constraint (7) and constraint (8) ensure that every shared vehicle leaves the depot and enters the 

end terminal. In constraint (9), we balance the flow for each vehicle at each location. Constraints 

(10), (11), and (12) are used to define   
  the time when vehicle     arrives at the specified 

location. Constraint (13) defines the time when passengers arrive at their destination from transfer 

location    . These constraints (i.e., constraints (10)-(13)) also make sub-tours impossible. 

Constraint (14) and (15) state that the pick-up time of a passenger at location     occurs before 

the passenger reaches to her/his destination. In constraints (16), (17), and (18), we link    
  variable 

with the arrival time of passengers at certain locations. More specifically, constraint (16) ensures 

that if no one in a shared vehicle     transfers at the transfer station    , the shared vehicle 

does not visit the transfer station (i.e.,   
   ). Similarly, constraint (17) states that if passenger 

    does not transfer at the transfer station    , then (s)he will not take the public 

transportation service at station     to the destination (i.e.,       ). On the other hand, 

constraint (18) describes that if the passenger at location     transfers at any of the transfer 

station    , then the shared vehicle does not visit the destination location of passenger     

(i.e.,∑    

      ). 

As described above, we define variable   through constraint (19) which represents the maximum 

difference between the travel time of a passenger using the multi-modal transportation system with 

ride-sharing and passenger’s self-driving time. Constraints (20) and (21) define the current number 

of passengers in each shared vehicle at each location. We assume that the number of passengers at 

each pickup node,        , is less than the vehicle capacity,  . With constraint (20), all passengers 

at location   will be picked up by the same vehicle at the pickup node. Similarly, with constraint (21), 

the number of passengers in vehicle     is updated at the transfer station     if any passenger 

transfers to public transportation. In constraint (22), we state that the current number of passengers 

at each location should be less than or equal to the capacity of the shared vehicle. Constraints (20) 

and (22) together ensure that if the remaining capacity of the vehicle     is greater than the 
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number of passengers at pickup node    , the vehicle will pick up all passengers at that node. If 

not, another vehicle satisfying that condition will pick them up. We also ensure that the vehicle is 

empty at the depot and the end terminal through constraint (23). Constraints (24) and (25) define 

integrality, and constraints (26) - (28) define non-negativity. 

In our model, there are many nonlinear constraints (i.e., constraints (4), (5), (10) - (18), (20), and 

(21)). These constraints can be linearized, and the model (1) - (28) can be easily transformed into a 

MILP model. For example, we use the following two constraints to linearize constraint (4). 

∑    
       ∑    

 
    ∑     

 
                                  

                                                  

  {
∑    

 
    ∑     

 
        ∑    

 
                             

∑    
 

    ∑     

 
        ∑    

 
                             

                                         

(30) 

where   is a large value. We determine the value of   for each nonlinear constraint separately by 

considering the smallest possible value for that constraint. Similarly, we convert all nonlinear 

constraints into linear constraints. 

4. Heuristic Approach 

Our problem is a variant of the vehicle routing problem, and it is an NP-hard problem. NP-hard 

problems are usually difficult to solve for large instances due to the curse of dimensionality. In our 

model, as the number of passengers, transfer locations, and vehicle capacity increase, it becomes 

intractable to compute the optimal objective function and find the optimal assignment, routing, and 

transfer decisions. In this section, to address computational and practical challenges, we propose an 

Angle-Based Clustering Algorithm. 

4.1. Angle-Based Clustering (AC) Algorithm 

In this section, we propose a three-stage, Angle-Based Clustering Algorithm which splits the problem 

into several clusters and reduces the size of the optimization model. We assume that some 

passengers may have the same destination location or may have nearby destinations (i.e., by walking 

distance). Let       
         represent the set of different destination locations where      

and                   represent the set of passengers’ initial locations traveling to destination   
  

where      .     denotes passenger   traveling to destination   
 . In the first stage of the algorithm, 

we aim to create a set of clusters of passengers who have the same destination or having close 

destinations. We assume that cluster   
             is formed for destination location   

  where 

   is the number of clusters formed for that destination location. We use     
   to represent the 

number of passengers assigned to each cluster   
 . We determine clusters by using angles. Let     

represent the largest angle formed by      
          

     and             and     
   

  
 

represent equal angles for all different destination locations   
   We describe the first stage of the 

Angle-Based Clustering Algorithm with details as follows: 
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In stage 1, we form the clusters of passengers sharing the same destination location by 

considering the initial location of each passenger. In the AC algorithm, if the size of the any of the 

formed clusters exceeds the vehicle capacity, we split that clusters into the equal angled subclusters. 

To split the clusters 

 
that exceed capacity, we use the same approach that we use to determine the initial clusters. To 
this end, we define    to represent the number of subclusters that are obtained after the split in 
cluster  . We split the clusters with equal angles and ensure that each subcluster has the same 
angle. Hence, we define    

  to represent the angle of each subcluster. 
To allow the mixed load, in stage 2, we combine the clusters formed in stage 1 by considering the 

distances between each cluster and assign one shared vehicle to each cluster. Let       
  and 

      
  represent the centroids of clusters   

    
           , respectively. We use    

   
  to 

denote the distance between clusters   
  and   

   where               . We use an optimization 

model to combine the clusters as a group. We further define a binary decision variable    
   

   where 

it equals to 1 if clusters   
  and   

   are grouped together, and equals to 0 otherwise. We describe 

the second stage of the algorithm as follows: 
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Equation (31) is the objective function that minimizes the sum of the distances between clusters 

that are grouped together. Constraint (32) states that at least      clusters should be grouped 

together since there are at least    
                                                 

 

                       
      clusters 

for each different destination   
 . In constraint 33, we define that variable    

   
   is symmetric (i.e., 

if cluster 1 is grouped with cluster 2, it means that cluster 2 is grouped with cluster 1). Finally, we 

define integrity conditions through constraint (34). We assign one shared vehicle for each cluster 

formed in stage 2. In stage 3, we fix the vehicle assignment decisions and solve each cluster 

simultaneously using the MILP model to find optimal shared vehicle routing and passenger transfer 

decisions for given shared vehicle assignment decisions. Below, we describe a simple example to 

illustrate the Angle-Based Clustering Algorithm: 

Example 1. Suppose, there are ten passengers and two different destination locations (i.e.,   
  and 

  
 ). Let shared vehicle capacity be 5 passengers. As shown in Figure 1, we assume that passengers 

from 1 to 5 are traveling to   
 , and passengers from 6 to 10 are traveling to   

 . By using stage 1 of 

the proposed heuristic approach, we define two clusters for each destination (i.e.,       
 

 
 

   ). We show obtained clusters in Figure 1(a). More specifically passengers 1, 2, 3 are assigned to 

cluster 1 of   
 , passengers 4 and 5 are assigned to cluster 2 of   

 , passengers 6, 9, 10 are assigned 

to cluster 1 of   
 , and passengers 7 and 8 are assigned to cluster 2 of   

 . No cluster contains more 

than five pickup nodes, so we move on to stage 2. 

In the first stage of the heuristic, four clusters are formed. Assigning one vehicle for each cluster 

with a capacity of five would be costly. Thus, in the second stage of the heuristic, we group clusters 

to make the vehicle assignment decisions by allowing the mixed load. We use the optimization 

model and ensure that passengers who are close to each other are traveling together. Since we have 

two different destinations (i.e.,     ), we assign two clusters for each group. According to the 

optimization model, passengers 1, 2, 3, 7, and 8 are assigned to one group, and passengers 4, 5, 6, 9, 

and 10 are assigned to another group. 
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 (a) Example of the AC Algorithm - Stage 1. (b) Example of the AC Algorithm - Stage 2. 

 
 (c) Example of the AC Algorithm - Stage 3. (d) Example of the AC Algorithm - Stage 3. 

Fig. 1. Illustration of the Angle-Based Clustering Algorithm 

We illustrate our results in Figure 1(b). Finally, in the third stage, we fix the shared vehicle 
assignment decisions, and we use the original MILP model to find optimal routing and transfer 
decisions for two new clusters formed in stage two. We show two feasible routes where the transfer 
station is visited, and the transfer station is not visited in Figures 1(c) and 1(d), respectively. 

5. Numerical Experiments 

This section comprises three main parts. First, we describe the instance generation process that we 

use in our numerical experiments in Section 5.1. Second, we compare the performance of the 

heuristic with that of the MILP solution in Section 5.2. Third, in Section 5.3, we evaluate the benefits 

of the multimodal transportation system in terms of travel distance and travel time by comparing 

the multi-modal transportation system with the single-mode system ( i.e., shared vehicles only). 

5.1. Instance Generation 

In our numerical experiments, we use a realistically generated data set by considering Detroit’s 
transportation system. We consider a shared-shuttle service that can take employees to and from 
the nearest high-frequency public transportation stop or directly to their work. In all instances, we 
assume that the passengers’ locations are distributed within a 10 miles radius around their 
destination, and we generate these pick-up locations randomly. More specifically, we generate the 
distance between locations by sampling from a uniform distribution and by considering a Manhattan 
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distance structure. In our numerical experiments, we consider that there is one public transfer 
station, one depot, one end terminal, and two destination locations and we vary the number of 
pickup locations, the number of vehicles, and the capacity of vehicles. We summarize the settings 
and the number of instances in each setting in Table 1 as follows: 

Table 1 

Summary of parameter settings of generated instances 

Number of Vehicle Number of Total Number of 

Passengers Capacity Vehicles Instances 

10 5 2 vehicles 12 

15 5 3 vehicles 12 

20 5 4 vehicles 12 

10 2 vehicles 12 

30 
5 6 vehicles 12 

10 3 vehicles 12 

50 
5 10 vehicles 12 

10 5 vehicles 12 

As shown, in Table 1, in our numerical experiments, we consider cases where there are 10, 15, 20, 
30, and 50 passengers. When there are 10 and 15 passengers, we use vehicles with a capacity of 5, 
and when there are more than 15 passengers we use vehicles with a capacity of both 5 and 10. We 
consider a varying number of vehicles as well. For example, when there are 20 passengers, and when 
the capacity of the vehicles is 5, we consider that there are 4 vehicles. Similarly, when there are 20 
passengers, and when the capacity of the vehicles is 10, we consider that there are 2 vehicles. In 
each setting, we ensure that total vehicle capacity can meet the total number of passengers. We also 
vary the weights of the subobjectives (i.e.,                . More specifically, we consider two 
different weighted objective settings: (i)                 , and (ii)              
    . For each defined scenario setting, we consider 6 instances. For example, there are a total of 
6 instances for the scenario setting where there are 10 passengers and 2 vehicles with a capacity of 5 
and when the objective function weights are                 . Since we consider two 
different weighted objective settings for this scenario, we analyze          instances in total 
when there are 10 passengers. The number of total instances can be calculated with a similar 
approach for the remaining settings as illustrated in Table 1. 

We further take into account the differences between the speeds of different modes, since we 
consider two modes of transportation. The average driving speed of several U.S. cities without traffic 
is stated as 29 MPH (Trigg, 2015). We use 24 MPH for the speed of the shared vehicle by considering 
the traffic congestion during the rush hours. As stated in our model assumption, we consider a more 
direct and faster mode than the shared vehicles as a second transportation mode (i.e., subway, train, 
etc.). The subway/train speed is stated as around 30 MPH (Johnson, 2010), and we use this value in 
our numerical experiments. The speed of the different modes impacts the time it takes to travel 
between locations. 

In our model, we include the time it takes to get on and get off the vehicle. We consider that it 

takes around 1 minute (i.e.,     min) for a passenger to get on a shared vehicle. Considering that 

there might be more than one passenger getting off the shared vehicle or subway/train, we use 2 

minutes (i.e.,         mins) for getting off at the destination and transfer locations. For 

passenger waiting time at the transfer stations, we review subway schedules (i.e., NYC MTA) and 

train schedules (i.e., Detroit) during the rush hours where a subway/train is scheduled around every 

4-6 minutes. Thus, we use a uniformly distributed waiting time at the transfer stations with an 
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average waiting time of 2.5 minutes. We also take into account a walking time from the transfer 

station to the passenger’s destination for passengers using the second mode (i.e., train, subway). In 

our instances, we use uniformly distributed walking times changing from 1 to 10 minutes. We 

provide an example to illustrate one of the instances in Appendix B. 

5.2. Comparison of Solution Algorithms 

In this section, we compare the MILP solution with the proposed methodology (i.e., the AC 

algorithm) and use it as a benchmark value for the proposed algorithm. We solve the problem for all 

instances, which are defined in Section 5.1, and all instances are solved by using the CPLEX solver. 

We note that we also provide a comparison of algorithms for small-sized settings (i.e., when    ) 

in Appendix B. As described before, we define 6 instances for each scenario setting, and thus, we 

present our results for each scenario setting in each table. Moreover, since four sub-objectives have 

different units and magnitudes, we normalize the value of each sub-objective before calculating the 

weighted sum of four sub-objectives. Hence, we present the normalized objective function values in 

the tables. 

In each table, we present the numerical results of the exact MILP and the AC Algorithm for each 

instance. For the MILP result, we present the objective value of the MILP (i.e., Obj.), the optimality 

gap obtained at the end of the running time by the CPLEX solver (i.e., Gap %), and the computation 

time in seconds (i.e., Run time/s). Similarly, for the proposed algorithm, we present the 

corresponding objective value (i.e., Obj.), percent difference with the MILP solution at the end of the 

running time (i.e., % Gap with MILP), and the computation time in seconds (i.e., Run time/s). We 

calculate the percent difference with the MILP solution by using the following formula: 

                      

                                      

  
                                      

           
                                        

In Table 2, we summarize the comparison results for 6 instances. We present the run results for 

the MILP and AC Algorithm when the vehicle capacity is 5 (i.e.,    ) when the sub-objectives are 

equally weighted (i.e.                 ), and when there are 10 passengers (i.e.,     ). 

As shown in Table 2, the average “% Gap with MILP” for the AC Algorithm is 0.34% which means that 

the AC algorithm yields slightly worse objective function value than that of the MILP solution on 

average for this scenario setting. However, the run time of MILP is one hour, while that of the AC 

Algorithm is 3 minutes (i.e., 180 seconds)1. Hence, the AC algorithm is more time-efficient than the 

MILP for this setting. 

Table 2 

Comparison of algorithms for setting:                               

Ins.  MILP   AC Algorithm 

                                                             
1 We limit the computation time of the MILP as one hour and limit the run time of the Angle-based Clustering Algorithm as 

3 minutes. 
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Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run time/s 

1 0.3235 55.72% 3600 0.3235 0.00% 180 

2 0.4637 60.31% 3600 0.4408 -4.93% 180 

3 0.3070 59.20% 3600 0.3142 2.37% 180 

4 0.3465 58.30% 3600 0.3465 0.00% 180 

5 0.3899 59.18% 3600 0.400 2.74% 180 

6 0.3618 53.93% 3600 0.3686 1.88% 180 

Average  57.77%   0.34%  

Similarly, in Table 3, we present the run results for the MILP and AC Algorithm when the vehicle 
capacity is 5 (i.e.,    ) when the sub-objectives are equally weighted (i.e.,             
    ) and when there are 15 passengers (i.e.,     ). As shown in Table 2, the average “% Gap 
with MILP” for the AC Algorithm is -0.15%. Different from the results of Table 2, the AC algorithm 
outperforms the MILP in terms of both the objective function value and the run time. On average, 
the AC Algorithm reaches a better objective function value within 3 minutes. 

Table 3 

Comparison of algorithms for setting:                                

Ins.  MILP   AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run time/s 

1 0.3652 57.95% 3600 0.3700 1.32% 180 

2 0.3277 58.71% 3600 0.3199 -2.36% 180 

3 0.3487 61.50% 3600 0.3430 -1.63% 180 

4 0.4128 54.45% 3600 0.4068 -1.44% 180 

5 0.3102 52.34% 3600 0.3116 0.45% 180 

6 0.4006 53.23% 3600 0.4115 2.73% 180 

Average  57.77%   -0.15%  

For a setting where the vehicle capacity is 5, we also consider the case with 50 passengers. In this 

case, due to a large number of passengers, MILP cannot obtain any feasible solution within 1 hour, 

whereas the AC algorithm obtains feasible solutions within 5 minutes. Since there is no MILP solution 

to compare, the “% Gap with MILP” column cannot be calculated. Thus, it is clear that the AC 

algorithm outperforms the MILP in this scenario setting as well. We present our comparison results 

in Table 9 in Appendix B. 

We further compare the results of the settings when the vehicle capacity is 10. In Table 4 and in 

Table 10, we present the results where there are 20 and 30 passengers, respectively2. For both 

tables, the vehicle capacity is 10 and the sub-objectives are equally weighted. As shown in tables, the 

MILP cannot obtain solutions for some settings, specifically, for the settings where the number of 

passengers is large (i.e.,     ). For the instances where there is no MILP solution, the percent gap 

with MILP cannot be calculated. When there are 20 passengers, it is shown that the AC algorithm 

obtains a better objective function value in 5 minutes than the MILP can obtain within one hour. We 

                                                             
2 Table 10 is presented in Appendix B. 
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note that the results for the remaining settings are similar to our findings. We present the tables for 

the remaining instances in Appendix B. 

Table 4 

Comparison of algorithms for setting:                                  

Ins.  MILP   AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run time/s 

1 - - 3600 0.4908 - 300 

2 0.4494 65.00% 3600 0.4234 -5.78% 300 

3 0.2297 57.40% 3600 0.2195 -4.43% 300 

4 - - 3600 0.2204 - 300 

5 0.2203 54.91% 3600 0.2170 -1.48% 300 

6 0.2679 65.20% 3600 0.2529 -5.58% 300 

Average  60.62%   -4.31%  

Overall, given the complexity of the problem, the exact MILP model cannot find a feasible solution 

within one hour when the number of passengers is greater than 20. On the other hand, the AC 

Algorithm both reduces the number of decision variables in the MILP model and reduces the size of 

the problem by splitting the model into clusters that can be solved by the MILP simultaneously. Thus, 

the AC Algorithm can find a feasible solution for all instances within 5 minutes. Moreover, the AC 

Algorithm is more efficient (i.e., can solve within 5 minutes) and more straightforward compared to 

the MILP. Given that our analysis focus on ride-sharing and point-to-point pickup and delivery 

service, we can conclude that high-quality solutions can be obtained within 5 minutes using the AC 

Algorithm. 

5.3. Value of the Multi-Modal Transportation System 

In recent years, transportation planning has expanded to include more emphasis on non-automobile 

modes, to maximize traffic speeds, minimize congestion, reduce pollution emissions, and to 

minimize the cost of traveling. A multi-modal transportation system is an alternative option to the 

single-mode (i.e., private vehicles or ride-sharing mode only), and it is expected to minimize the use 

of vehicles. In our study, we calculate the benefits of the multi-modal transportation system on the 

vehicle driven distance and vehicle travel time. Hence, we consider two settings: (i) single-mode, 

where the use of public transportation is not allowed (ii) multi-mode, where the use of public 

transportation is allowed. We run the same instances by considering both single- and multi-mode 

options and calculate the percent difference between the objective function values of these two 

options. The calculated difference gives us the obtained benefits in terms of vehicle driven distance 

and vehicle travel time when the multi-mode system is used instead of the single-mode system. We 

use the exact MILP model for comparison. We analyze the change in the vehicle travel distance (i.e., 

    ) and vehicle travel time (i.e.,     ) when multi-mode and single-mode transportation 

systems are compared. We use the same instances that are introduced in Section 5.2. Since the 

exact MILP solution does not provide a feasible solution in some cases, we illustrate our results for 

the ones where a solution can be obtained within one hour in Table 5. 
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Table 5 

Comparison of multi-mode and single-mode transportation systems in terms of shared vehicle travel distance 

(i.e.,     ) and travel time (i.e.,     ) 

Ins. 
Vehicle 

Capacity 

Number of 

Passengers 

Objective Function 

when      

Objective Function 

when      

Single 

Mode 

Multi 

Mode 

Percent 

Change 

Single 

Mode 

Multi 

Mode 

Percent 

Change 

1 5 10 0.5515 0.4907 -11.03% 0.6405 0.5528 -13.69% 

2 5 10 0.7730 0.7385 -4.46% 0.9533 0.8467 -11.18% 

3 5 10 0.6326 0.6260 -1.03% 0.7605 0.7367 -3.13% 

4 5 15 0.5943 0.5468 -8.00% 0.9740 0.8538 -12.34% 

5 5 15 0.5323 0.4993 -6.19% 0.8053 0.7844 -2.59% 

6 5 15 0.5685 0.5166 -9.13% 0.9242 0.8599 -6.95% 

7 10 20 0.3639 0.3320 -8.77% - - - 

8 10 20 0.3292 0.2870 -12.80% - - - 

 Average    -7.68%   -8.31% 

From left to the right, Table 5 presents the instance number, the capacity of the shared vehicle, 
the number of passengers, objective function value of the single-mode system when      , 
objective function value of the multi-mode system when      , percent difference between 
different modes when α1 = 1, objective function value of the single-mode system when      , 
objective function value of the multi-mode system when α3 = 1 and the percent difference between 
different modes when      . We calculate the percent difference between different modes by 
using the following formula: 

                           

               
  

                                                  

                          
          

 
As shown in Table 5, when      (i.e., when the objective function is to minimize the total travel 

distance solely), the result indicates that the average total travel distance over all instances 
decreases by 7.68% with the existence of multiple modes. When      (i.e., when the objective 
function is to minimize the average travel time solely), the result shows that the average travel time 
decreases by 8.31% with the existence of multiple modes. When multi-mode is preferred, the 
shared vehicle does not need to travel to the passenger’s destination all the time which results in 
savings in both travel distance and travel time. It is also expected that the decreased use of shared 
vehicles will lead to reduced traffic density and traffic delay. Overall, the existence of multiple modes 
can reduce the travel distance and the travel time of the shared vehicle to a large extent, which 
saves cost, energy, and time. 

6. Conclusions 

Multi-modal mobility systems are essential in day-to-day transportation of commuters, such as 

employees who work in big cities or people who live in low-populated neighborhoods. Multi-modal 

transportation systems ensure more flexible, less costly (i.e., regarding traffic density, travel time, 

and travel distance) transportation compared to the single-mode systems. Multi-modal 

transportation system also contributes to improving the accessibility of the residents to the 

resources that they need. Although its implementation with shared vehicles is relatively new, the 

demand is increasing, and cities are investigating solutions to implement an efficient integration of 
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multiple modes. Thus, it is important to analyze efficient ways to implement multiple modes with 

shared vehicles and evaluate its value. 

In this study, we build an MILP model for multi-modal transportation systems with shared 

vehicles. Since the investigated problem is NP-hard, it is computationally intractable to obtain 

optimal (and even feasible) solutions for large problem instances. Thus, we propose an Angle-Based 

Clustering Algorithm and we compare its performance with the MILP solution. We show that the 

Angle-Based Clustering Algorithm is a more practical procedure that outperforms the MILP. 

Moreover, the Angle-Based Clustering Algorithm requires less computational effort and can solve 

relatively large scale multi-modal transportation system problem, since it splits the problem into 

clusters and solves all of them simultaneously. We further show that the Angle-Based Clustering 

Algorithm generates a feasible solution for real-world instances in a reasonable time. 

As part of future research, first, variants of the proposed multi-modal mobility model can be 

considered to allow even more flexibility to the pickup and delivery problems. For example, 

configurations where both delivery and pickup operations are performed within specific time-

windows, a mixed fleet of vehicles with different capacities can be considered. Second, more than 

two different modes can be considered which can provide more flexibility and options to passengers. 

We build a deterministic model to analyze the multi-modal transportation system with ride-sharing. 

As a third extension, a stochastic programming model can be introduced to model the uncertainty in 

waiting and travel times which would be a practically relevant variation to the problem. 
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Appendix 

A. Summary of the Notation 

Notation Definition 

Model set-up  

  Number of passengers using multi-modal transportation system with ride-sharing. 

  The set of passenger locations. 

   The passenger location  . 

  The set of passenger destinations. 

   The destination of passengers from passenger location  . 

      The set of all passenger locations and destinations. 

  The set of all shared vehicles. 

    Number of shared vehicles. 

  The capacity of shared vehicle. 

  The initial location (i.e., depot). 

  The end terminal location. 

  The set of transfer locations. 

  The transfer location  . 

          The set of all nodes the transportation system. 

  
  the delay time of passenger     due to the transfer at transfer location    . 

    The distance between location     and location    . 

    The travel time between location     and location    . 

    
 The time that passenger     drives to his destination directly. 

   The pick-up time needed at passengers’ initial locations. 

   The drop-off time needed at passengers’ destination locations. 

   The drop-off time needed at the transfer stations. 

   The number of passengers picked at location    . 

   The number of passengers can be dropped off at transfer location    . 
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B. Supplemental Numerical Experiments 

An Illustrative Example: 

Example 2. In Figure 2, we present an illustrative example on the map of Detroit to visualize the 

described problem and solutions of two approaches (i.e., MILP and AC algorithm). In this example, 

we consider that there are ten passengers, one terminal, one depot, one transfer station, and two 

shared vehicles with a capacity of five. There is one passenger at each location. Passengers from 1 to 

5 are traveling to destination 1, and passengers from 6 to 10 are traveling to destination 2. We use 

the following setting for the weights of sub-objectives:           ,        , where the 

total vehicle travel distance and vehicle travel time are minimized. Figure 2(a) presents feasible 

routes of vehicles that are obtained by the exact MILP, while Figure 2(b) presents feasible routes of 

vehicles that are obtained by the AC Algorithm. As illustrated, in the MILP solution only one vehicle is 

used to pick up all ten passengers. Shared vehicle 1 starts the route at the depot, picks up the 

passengers 7, 6, 8 and 9 in order, and drops them at their destination (namely at   ). Then, shared 

vehicle 1 picks up passengers 10, 1, 2, 3 in order, and drops passenger 10 at the transfer station. The 

vehicle, then, travels to destination 1 to drop the remaining passengers. Finally, it picks up 

passengers 4 and 5 and completes its route after dropping them at the destination 1. The second 

shared vehicle travels from the depot to the terminal directly indicating that this vehicle is not used 

to pick up any passenger. On the other hand, in the solution of the AC Algorithm, both vehicles are 

used and passengers 4, 5, 6, 8, 9 are picked up by vehicle 1, and passengers 1, 2, 3, 7, 10 are picked 

up by vehicle 2. All passengers are dropped at the transfer station to travel their final destinations. 

We further compare the objective functions and run times of both MILP and the AC algorithm for the 

above setting. MILP finds the described route within 1 hour, while the AC algorithm finds the 

described route in 5 minutes. Further, the objective function value obtained by the AC algorithm is 

better than the objective function value of the MILP where the percent difference is %-1.6 (i.e., 

Notation Definition 

Variables for MILP  

   
  A binary variable which equals to   if the shared vehicle   travels from location     to 

location    , and equals to   otherwise. 

   
  A binary variable which equals to   if a passenger at initial location     is transported 

to the transfer station     by vehicle     to use the public transportation service, 

and equals to 0 otherwise. 

  
  The time when vehicle     arrives at location    . 

     The time when a passenger at location   arrives at destination location    by walking 

from transfer station  . 

  
  Number of passengers on vehicle     after serving location    . 

  An auxiliary variable that defines the difference between shared vehicle driving time 

and self driving time. 

   The weighting factor coefficient for objective          . 

  A large value used for linearizing nonlinear constraints. 
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         We note the above example describes just one of the 

settings and the solution for this setting. In the next section, we compare the MILP with the AC 

algorithm for all generated instances. 

 

Comparison of algorithms for small-sized instances: 

In this section, we generate small cases where we can actually solve the problem optimally. We 

consider that there are 5 passengers to pick-up and one vehicle with a capacity of five. We further 

consider that the sub-objectives are equally weighted (i.e.,                             

    ). We present the comparison of MILP and AC algorithm for the described setting in Table 6. 

Similar to the previous tables, in Table 6, we present the numerical results of the exact MILP and 
the AC Algorithm. For the MILP result, we present the objective value of the MILP (i.e., Obj.), the 
optimality gap obtained at the end of the running time by the CPLEX solver (i.e., Gap %), and the 
computation time in seconds (i.e., Run time/s). Similarly, for the proposed algorithm, we present the 
corresponding objective value (i.e., Obj.), the percent difference with the MILP solution at the end of 
the running time (i.e., % Gap with MILP), and the computation time in seconds (i.e., Run time/s). As 
illustrated in Table 6, the “Gap%” column for the MILP and the “% Gap with MILP” column for the 
heuristics is 0 for all instances. This indicates that the obtained solutions are optimal for all instances. 
Moreover, since the number of passengers is only 5, we do not create any sub-clusters for the AC 
Algorithm. Hence, the MILP and the AC Algorithm solves the same problem and their run times are 
the same. 

 

 (a) Feasible MILP route (b) Feasible AC Algorithm route 

Fig. 2. Feasible MILP route and Clustering route for                          
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Table 6 
Comparison of algorithms for setting:        ,                   

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 0.1617 0.00% 180 0.1617 0.00% 180 

2 0.1763 0.00% 258 0.1763 0.00% 258 
3 0.1273 0.00% 345 0.1273 0.00% 345 
4 0.0961 0.00% 255 0.0961 0.00% 255 
5 0.1292 0.00% 169 0.1292 0.00% 169 
6 0.1170 0.00% 108 0.1170 0.00% 108 

 

Comparison of algorithms for the remaining settings: 

In this section, we present the table results for the remaining instances which are presented in the 

main paper for MILP and the AC Algorithm. 

Table 7 
Comparison of algorithms for setting:         ,                   

Ins. MILP   Clustering   

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.3664 - 300 

2 - - 3600 0.3160 - 300 
3 - - 3600 0.3485 - 300 
4 - - 3600 0.3223 - 300 
5 - - 3600 0.3293 - 300 
6 - - 3600 0.2993 - 300 

Table 8 
Comparison of algorithms for setting:                             

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.3963 - 300 

2 - - 3600 0.3035 - 300 
3 - - 3600 0.2995 - 300 
4 - - 3600 0.3220 - 300 
5 - - 3600 0.3005 - 300 
6 - - 3600 0.2918 - 300 
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Table 9 
Comparison of algorithms for setting:         ,                   

Ins.  MILP  AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.3010 - 300 

2 - - 3600 0.2933 - 300 
3 - - 3600 0.2774 - 300 
4 - - 3600 0.2978 - 300 
5 - - 3600 0.3466 - 300 
6 - - 3600 0.1790 - 300 

Table 10 
Comparison of algorithms for setting:          ,                   

Ins.  MILP  AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.4534 - 300 

2 - - 3600 0.5855 - 300 
3 - - 3600 0.3486 - 300 
4 - - 3600 0.2123 - 300 
5 - - 3600 0.1879 - 300 
6 - - 3600 0.2151 - 300 

Table 11 
Comparison of algorithms for setting:          ,                   

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.1689 - 300 

2 - - 3600 0.1835 - 300 
3 - - 3600 0.1814 - 300 
4 - - 3600 0.1866 - 300 
5 - - 3600 0.2098 - 300 
6 - - 3600 0.1782 - 300 

Table 12 
Comparison of algorithms for setting:                                  

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 0.5396 48.50% 3600 0.5396 0.00% 300 

2 0.7671 51.42% 3600 0.7690 0.26% 300 
3 0.5258 51.51% 3600 0.5306 0.91% 300 
4 0.5244 43.81% 3600 0.5164 -1.52% 300 
5 0.6144 46.47% 3600 0.6258 1.86% 300 
6 0.6805 48.23% 3600 0.6641 -2.41% 300 
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Table 13 
Comparison of algorithms for setting:         ,                         

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 0.5947 49.05% 3600 0.6306 6.04% 300 

2 0.5349 49.39% 3600 0.5585 4.42% 300 
3 0.5832 54.40% 3600 0.5679 -2.63% 300 
4 0.6953 46.23% 3600 0.6723 -3.31% 300 
5 0.5286 48.23% 3600 0.5236 -0.94% 300 
6 0.7496 49.05% 3600 0.6897 -8.00% 300 

Table 14 
Comparison of algorithms for setting:         ,                         

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.6281 - 300 

2 - - 3600 0.5462 - 300 
3 - - 3600 0.5874 - 300 
4 - - 3600 0.5091 - 300 
5 - - 3600 0.5527 - 300 
6 - - 3600 0.5191 - 300 

Table 15 
Comparison of algorithms for setting:         ,                         

Ins. MILP AC Algorithm 

Obj. Gap% Run time/s Obj. 
% Gap with 

MILP 
Run 

time/s 

1 - - 3600 0.5220 - 300 

2 - - 3600 0.4972 - 300 
3 - - 3600 0.5116 - 300 
4 - - 3600 0.5589 - 300 
5 - - 3600 0.4726 - 300 
6 - - 3600 0.4671 - 300 

 

 

 

 


