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Purpose: To develop a deep learning method for rapidly reconstructing T1 and T2 
maps from undersampled electrocardiogram (ECG) triggered cardiac magnetic reso-
nance fingerprinting (cMRF) images.
Methods: A neural network was developed that outputs T1 and T2 values when given 
a measured cMRF signal time course and cardiac RR interval times recorded by an 
ECG. Over 8 million cMRF signals, corresponding to 4000 random cardiac rhythms, 
were simulated for training. The training signals were corrupted by simulated  
k-space undersampling artifacts and random phase shifts to promote robust learning. 
The deep learning reconstruction was evaluated in Monte Carlo simulations for a 
variety of cardiac rhythms and compared with dictionary-based pattern matching in 
58 healthy subjects at 1.5T.
Results: In simulations, the normalized root-mean-square error (nRMSE) for T1 
was below 1% in myocardium, blood, and liver for all tested heart rates. For T2, 
the nRMSE was below 4% for myocardium and liver and below 6% for blood for 
all heart rates. The difference in the mean myocardial T1 or T2 observed in vivo be-
tween dictionary matching and deep learning was 3.6 ms for T1 and −0.2 ms for T2. 
Whereas dictionary generation and pattern matching required more than 4 min per 
slice, the deep learning reconstruction only required 336 ms.
Conclusion: A neural network is introduced for reconstructing cMRF T1 and T2 
maps directly from undersampled spiral images in under 400 ms and is robust to ar-
bitrary cardiac rhythms, which paves the way for rapid online display of cMRF maps.
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1 |  INTRODUCTION

Quantitative MRI is a powerful tool for assessing cardiac 
health. Two clinically measured tissue properties are T1 and 
T2, which can be used for early detection and monitoring of 
fibrosis,1 inflammation,2 and edema,3 among other condi-
tions. Cardiac magnetic resonance fingerprinting (cMRF) is 
1 technique for simultaneous T1–T2 mapping,4,5 which uses 
a time-varying sequence, an undersampled spiral k-space tra-
jectory, and pattern matching with a dictionary of simulated 
signals to estimate quantitative maps.

Although cMRF is efficient, because data are collected 
during 1 breath-hold, the reconstruction time is long and pro-
hibits real-time display of the maps. The major hurdle is that the 
subject’s cardiac rhythm dictates the sequence timings because 
the scan is electrocardiogram (ECG) triggered, and therefore a 
new dictionary must be simulated after every acquisition. The 
dictionary simulation time increases if slice profile imperfec-
tions or other effects are modeled. Both dictionary simulation 
and pattern matching take longer if additional properties (eg, 
B
+
1
) beyond T1 and T2 are quantified.6-8 A typical cMRF recon-

struction for T1–T2 mapping requires 4 min for dictionary sim-
ulation (including corrections for slice profile and preparation 
pulse efficiency) and 10 s for pattern matching.

The combination of deep learning and magnetic reso-
nance fingerprinting (MRF) is gaining interest because of the 
potential for orders of magnitude reductions in computation 
time.9-11 Previously, a neural network was proposed that re-
duces cMRF dictionary simulation time to 1 s and generalizes 
to arbitrary cardiac rhythms, which eliminates the need for 
time-consuming and scan-specific Bloch equation simula-
tions.12 However, this approach still generates a scan-specific 
dictionary that occupies memory (220 MB). Measuring ad-
ditional properties beyond T1 and T2 would require exponen-
tially more memory and time and quickly become infeasible. 
In addition, the maps have quantization errors because of the 
discrete step sizes in the dictionary.

Neural networks have been proposed to directly quantify 
T1 and T2 from MRF images in non-cardiac applications, 
thereby bypassing dictionary simulation and pattern match-
ing to reduce computation time and memory requirements. 
However, existing methods are not directly applicable to 
cMRF. Previous approaches have only considered scans with 
fixed sequence timings, whereas the cMRF sequence timings 
are determined by the subject’s cardiac rhythm.11 Some exist-
ing neural network approaches cannot reconstruct maps from 
undersampled non-Cartesian data and require additional re-
construction steps.9 Other approaches require in vivo MRF 
data sets for training,10 which may be time-consuming and 
expensive to collect, and may not generalize to scenarios that 
are underrepresented in the training set.

In this work, a deep learning reconstruction is pro-
posed for cMRF that directly outputs T1 and T2 maps from 

undersampled spiral images in under 400 ms per slice with-
out using a dictionary. The network is robust to arbitrary car-
diac rhythms and eliminates the need for scan-specific Bloch 
equation simulations and pattern matching. The cMRF deep 
learning reconstruction is evaluated in simulations and com-
pared with dictionary-based pattern matching using in vivo 
data acquired in 58 healthy subjects at 1.5T.

2 |  METHODS

2.1 | cMRF sequence parameters

The cMRF sequence has been described in previous work,13 
although the breath-hold duration here was reduced from 15 
to 10 heartbeats. A fast imaging with steady state precession 
(FISP) readout is used that is relatively insensitive to off-reso-
nance because of the unbalanced gradient moment on the slice-
select axis.14 Multiple preparation pulses are applied with the 
following pattern (that repeats twice): inversion (TI = 21 ms), 
no preparation, T2-prep (30 ms), T2-prep (50 ms), and T2-prep  
(80 ms). The acquisition is ECG-triggered with a 250 ms di-
astolic readout with 50 TRs collected each heartbeat and 500 
TRs collected during the entire scan. Data are acquired using 
an undersampled spiral k-space trajectory with golden angle ro-
tation15 that requires 48 interleaves to fully sample k-space.16 
Other parameters include a 192 × 192 matrix, 300 mm2 FOV, 
1.6 × 1.6 × 8.0 mm3 resolution, and constant TR/TE 5.1/1.4 ms.

2.2 | Neural network architecture

Figure 1 shows a diagram of the proposed network. The net-
work takes 2 inputs—the measured signal time course from 1 
voxel and the cardiac RR interval times from the ECG. The 
time course is split into real and imaginary parts and concat-
enated with the RR interval times, resulting in a vector of length 
2N+M, where N is the number of TRs and M is the number of 
heartbeats. This study uses N=500 and M=10. The input is 
normalized by dividing the RR intervals (in milliseconds) by 
1000 and dividing the signal by its l2-norm. The network has 
18 hidden layers with 300 nodes per layer. Skip connections 
are used every 4 layers beginning after the first, which avoids 
problems with vanishing gradients during training. Supporting 
Information Figures S1 and S2 provide justification for the 
number of hidden layers and use of skip connections. The final 
outputs are the T1 and T2 estimates for the given voxel.

2.3 | Neural network training

The training data set consists of cMRF signals simulated 
using the Bloch equations, corresponding to 4000 randomly 
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generated cardiac rhythms. Each cardiac rhythm has an aver-
age heart rate (HR) between 40-120 beats per minute (bpm), 
and random Gaussian noise with a SD between 0-100% of the 
mean RR interval is added to the RR interval times to intro-
duce variability. Adding noise with a large SD (ie, near 100%) 
mimics ECG mis-triggering because it results in large timing 
variations between heartbeats. For each cardiac rhythm, 2000 
signals were generated with T1 and T2 values selected from a 
uniform random distribution between 50-3000 ms and 5-700 
ms, respectively. In total, 8 million (4000 × 2000) training 
signals were simulated including corrections for slice profile 
(assuming a 0.8 ms duration sinc RF pulse with time-band-
width product 2) and preparation pulse efficiency.6,7

Although adding Gaussian noise to training data are 
common in machine learning to promote robust learning, 
non-Cartesian undersampling artifacts do not fall along a 
Gaussian distribution. Therefore, the network is trained using 
simulated cMRF signals corrupted with noise that mim-
ics non-Cartesian aliasing, hereafter called “pseudo-noise” 
(Supporting Information Figure S3 compares neural networks 
trained with pseudo-noise versus Gaussian noise). A reposi-
tory of pseudo-noise is generated before training (Supporting 
Information Figure S4). The pseudo-noise is meant to be ag-
nostic to cardiac rhythm and image content. To create the re-
pository, random T1, T2, and M0 maps are synthesized where 
each voxel has a random value between 50-3000 ms for T1, 
5-700 ms for T2, and 0-1 for M0. A random cardiac rhythm is 
also generated with an average HR between 40-120 bpm, with 
Gaussian noise having SD between 0-100% of the mean RR 
interval added to the RR interval times. Signals are simulated 

using the Bloch equations to yield a time series of reference 
images. Data acquisition is simulated using the spiral k-space 
sampling pattern, and undersampled images are gridded 
using the non-uniform fast Fourier Transform (NUFFT).17 
The fully sampled reference images are subtracted from the 
undersampled images. Each voxel in the resulting difference 
images is treated as an independent pseudo-noise sample and 
saved in the repository. For a 192 × 192 matrix, these steps 
result in 36,864 (1922) pseudo-noise samples. The complete 
repository contains 1.8 million pseudo-noise samples gener-
ated by repeating this process 50 times using random param-
eter maps and cardiac rhythms.

When training the network (Figure 2B), pseudo-noise 
samples are randomly selected from the repository every 
epoch and added to the simulated cMRF signals, similar to 
an approach described for contrast synthesis by Virtue et al.18 
Let s (t) denote an arbitrary cMRF signal and n (t) denote 
an arbitrary pseudo-noise sample. The pseudo-noise is ran-
domly scaled by a factor C so the SNR is between 0.2 and 1.0, 
which was empirically determined to be appropriate for the 
k-space trajectory used in this study (Supporting Information 
Figure S5) and would need to be tuned for other trajectories. 
The SNR is defined as follows:

Each cMRF signal is also multiplied by a random phase 
shift ϕ1, and the pseudo-noise is multiplied by a different 
random phase shift ϕ2. Phase shifts are performed because 

(1)SNR=
‖s (t)‖2

‖n (t)‖2

.

F I G U R E  1  Neural network for cMRF T1 and T2 map reconstruction. A neural network is used with 18 hidden layers with 300 nodes per layer 
(blue rectangles) and rectified linear unit (ReLU) activation functions (yellow arrows). Skip connections (black lines) are used every 4 layers. The 
inputs to the network are a measured cMRF signal time course concatenated with the cardiac RR interval times, and the outputs are the estimated 
T1 and T2 values. The network operations are performed independently for each voxel



2130 |   HAMILTON eT AL.

in vivo data sets have arbitrary phase because of factors 
such as receiver coil sensitivity profiles and off-resonance. 
Supporting Information Figure S6 compares the performance 
of networks trained with and without random phase shifts. 
The final cMRF signal used for training is denoted by s̃ (t) .

A separate validation data set was created by generating 
400 random cardiac rhythms and simulating 500 cMRF sig-
nals for each rhythm corrupted by pseudo-noise and phase 
shifts. The neural network was implemented in PyTorch and 
trained for 5 epochs using an Adam optimizer with learning 
rate 10−4 and batch size 128. The network parameters with 
the smallest validation loss were saved. A normalized l1 loss 
function (Equation 3) was used that was the sum of the rela-
tive errors in T1 and T2, where B is the batch size, Tnet

1,i
 and Tnet

2,i
 

are the network estimates for T1 and T2, and Tref

1,i
 and Tref

2,i
 are 

the reference T1 and T2 values.

2.4 | Simulation experiments

Monte Carlo simulations were performed using a digital car-
diac phantom (MRXCAT)19 to evaluate the accuracy of the 
deep learning reconstruction. The phantom used myocardial 
T1/T2 = 1400/50 ms, blood T1/T2 = 1950/280 ms, and liver 
T1/T2 = 800/40 ms. Data sets with different cardiac rhythms 
were simulated where the average HR was swept from 40 to 

120 bpm (step size, 10 bpm), and Gaussian noise was added 
to the RR interval times with SD 0%, 10%, 20%, 50%, 75%, 
and 100% of the mean RR interval to introduce heart rate 
variability. For each combination of average HR and noise 
level, 50 cMRF data sets with different cardiac rhythms were 
simulated by performing Bloch equation simulations, spi-
ral k-space sampling, and gridding. The undersampled im-
ages and RR interval times were input to the neural network 
to reconstruct T1 and T2 maps. The mean T1 and T2 values 
were computed in the myocardial wall, left ventricular blood 
pool, and liver and are reported using normalized root-mean-
square error (nRMSE).

2.5 | In vivo experiments

cMRF scans from 58 healthy adult subjects were retrospec-
tively collected in a HIPAA-compliant, institutional review 
board-approved study. The scans were performed on a 1.5T 
MRI scanner (MAGNETOM Aera, Siemens Healthineers, 
Germany) at a medial short-axis slice position during an end-
expiration breath-hold with a 192 × 192 matrix size, 300 mm2 
FOV, and 1.6 × 1.6 × 8.0 mm3 resolution. T1 and T2 maps 
were reconstructed in 2 ways: (1) using the Bloch equations 
to simulate a scan-specific dictionary and performing pat-
tern matching as in previous cMRF work,13 hereafter called 
“dictionary matching,” and (2) using the deep learning re-
construction. The dictionary contained 23,345 entries with T1 
[10:10:2000, 2020:20:3000] ms and T2 [4:2:100, 105:5:300, 
320:20:500] ms. The mean T1 and T2 over the entire myocar-
dial wall were compared between both reconstructions using 
a two-tailed Student’s t-test for pairwise comparisons, with  

(2)∼
s (t)= s (t) ∙ei�1 +C ∙n (t) ∙ei�2

(3)loss=
1

B

B�
i= 1

⎛
⎜⎜⎝

���T
net
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ref

1,i

���
T

ref
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+
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ref
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F I G U R E  2  Generation of training data. The network is trained using simulated cMRF signal time courses. A pseudo-noise sample is 
randomly drawn from the repository (generation of pseudo-noise is described in Supporting Information Figure S4). The amplitude of the pseudo-
noise is scaled by a factor C so the SNR of the noisy signal is between specific bounds (0.2-1.0 for this study). Random phase shifts �1 and �2 are 
applied to the cMRF signal and pseudo-noise, respectively. The pseudo-noise is added to the cMRF signal to yield the noisy signal that will be used 
for training
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P < 0.05 considered statistically significant. The mean T1 and 
T2 were also compared using linear regression and Bland–
Altman analyses.20 Intrasubject variability for dictionary 
matching and deep learning were assessed by computing 
the SD in T1 and T2 over the myocardium for each subject. 
Intersubject variability was assessed by computing the coef-
ficient of variation (CV), obtained by calculating the SD of 
the mean T1 and T2 measured for each subject and dividing 
by the group-averaged T1 and T2.

3 |  RESULTS

3.1 | Computation time

Gridding required 30 s and was required for both deep learn-
ing and dictionary matching reconstructions. The average 
time to quantify T1 and T2 maps from the gridded images 
using deep learning was 336 ms. For comparison, simulating 
a scan-specific dictionary required 4 min, and pattern match-
ing required an additional 10 s. Each dictionary occupied 220 
MB of memory. The deep learning reconstruction does not 
use a dictionary, and the network parameters only occupied 
7 MB.

3.2 | Simulation experiments

Figure 3 shows results from the Monte Carlo simulations. 
The deep learning reconstruction was more accurate at esti-
mating T1 than T2. The nRMSE for T1 was generally below 
1% for all tissue types (myocardium, blood, and liver). Note 
that a 1% error corresponds to a 14 ms difference from the 

true T1 of 1400 ms in myocardium. The T2 nRMSE was 
below 4% for myocardium and liver and below 6% for blood. 
A 4% error corresponds to a 2-ms difference from the true T2 
of 50 ms in myocardium. The quantification accuracy for T1 
and T2 was similar regardless of average HR or the variability 
of the cardiac rhythm.

3.3 | In vivo imaging

Maps from 2 representative subjects are shown in Figure 4. 
Subject A had a steady cardiac rhythm (mean RR = 775 ±  
28 ms), whereas subject B had a variable cardiac rhythm (mean 
RR = 770 ± 215 ms) with 1 missed ECG trigger during heart-
beat 10. The maps in the myocardium were visually similar 
between the deep learning and dictionary matching reconstruc-
tions. There were differences in some areas, such as subcutane-
ous fat. Figure 5A shows the linear regression analysis between 
the mean myocardial T1 and T2 values from deep learning and 
dictionary matching. The measurements were strongly corre-
lated, with R2 = 0.93 for T1 and R2 = 0.95 for T2. As seen 
in the Bland–Altman analysis (Figure 5B), the mean T1 bias 
was 3.6 ms with 95% limits of agreement (−18.9, 26.1) ms, 
and the mean T2 bias was −0.2 ms with 95% limits of agree-
ment (−1.9, 1.5) ms. Using a paired t-test, the differences in the 
mean myocardial values between deep learning and dictionary 
matching were statistically significant for T1 (P = 0.019) and 
T2 (P = 0.038). Figure 5C compares the intrasubject SDs. The 
SD for T1 was 106.9 ms for dictionary matching and 110.2 ms 
for deep learning, and the difference was statistically significant 
(P = 0.013). The SD for T2 was 6.8 ms for dictionary matching 
and 7.3 ms for deep learning, and the difference was statisti-
cally significant (P < 0.0001). The intersubject variability was 

F I G U R E  3  Monte Carlo simulation results for (A) T1 and (B) T2 in myocardium, liver, and blood. The different color lines refer to the SD of 
Gaussian noise that is added to the RR interval times, with the SD given as a percentage of the mean RR interval. SD 0% refers to a constant heart 
rate, whereas SD 100% refers to a highly variable heart rate
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similar for both reconstructions. For T1, the CV was 4.4% for 
dictionary matching and 4.5% for deep learning; for T2, the CV 
was 9.1% for dictionary matching and 8.9% for deep learning.

4 |  DISCUSSION

This study introduces a deep learning method for rapidly 
performing cMRF T1 and T2 quantification that is robust 
to arbitrary cardiac rhythms. A neural network was trained 
to directly output T1 and T2 maps from undersampled spi-
ral cMRF images and cardiac RR interval timings. The deep 
learning reconstruction does not require Bloch equation 
simulations to create a dictionary or use pattern matching. 
The main advantage is the large reduction in computation 
time, which could enable real-time display of cMRF maps. 
The deep learning method takes <400 ms per slice to recon-
struct T1/T2 maps from cMRF images, which is more than 
a 700-fold speedup compared to dictionary matching. The 
deep learning reconstruction also requires less memory than 
dictionary matching. Whereas the dictionary occupies 220 
MB of memory, the network coefficients only occupy 7 MB. 
Although this study focuses on T1 and T2 quantification, the 
savings in computation time and memory may be more pro-
nounced for applications seeking to measure additional tissue 
properties.

The deep learning reconstruction yielded accurate T1 and 
T2 estimates in simulations, with T1 errors below 1% and T2 
errors below 6% regardless of the variability in the cardiac 
rhythms. In vivo, the deep learning reconstruction had simi-
lar accuracy and precision as dictionary matching. Although 
a statistically significant bias was observed in the mean and 
SD of the myocardial T1 and T2 values compared to dictio-
nary matching, their magnitude was small (3.6 ms difference 
in mean T1 and −0.2 ms difference in mean T2).

There are several interesting features of the cMRF deep 
learning reconstruction. First, whereas dictionary matching 
leads to quantization errors because the T1 and T2 estimates 
are restricted to discrete values, the neural network produces 
continuous outputs. Supporting Information Figure S7 com-
pares dictionary matching and deep learning in an example 
where the T1 and T2 values of a ground truth signal do not 
lie exactly on the T1–T2 grid used to populate the dictionary. 
Second, the network is trained for a fixed k-space undersam-
pling pattern. To achieve the best performance, the network 
should be retrained if data are acquired with a different sam-
pling pattern, because the distribution of aliasing artifacts 
would change (Supporting Information Figure S8).

Recently, other neural network approaches have been de-
scribed for MRF and for cardiac parameter mapping. DRONE 
uses a 2-layer fully connected network for MRF T1 and T2 
quantification, although the sequence timings are fixed and 
non-Cartesian k-space undersampling is not taken into con-
sideration.9 Cao et al have proposed a 4-layer fully connected 
network and developed a method for simulating training data 
with non-Cartesian undersampling artifacts, although limited 
to MRF sequences with fixed timings.11 Fang et al have de-
veloped a U-net for high-resolution spiral MRF in the brain. 
However, the network uses in vivo training data, which may 
be time-consuming and expensive to collect, and may not 
generalize to pathological scenarios underrepresented in the 
training set. In this study, a neural network is trained using 
simulated cMRF signals, which has the advantage that an ar-
bitrarily large training set can be generated to improve perfor-
mance. Whereas a U-net may introduce blurring, the network 
used here operates voxelwise and, therefore, does not induce 
spatial smoothing. Another recent technique is DeepBLESS, 
which is a deep learning reconstruction for simultaneous car-
diac T1–T2 mapping using a non-fingerprinting sequence.21 
Similar to this study, it is trained to be robust to arbitrary 

F I G U R E  4  cMRF T1 and T2 maps in 2 healthy subjects at 1.5T. T1 and T2 maps are shown corresponding to dictionary-based pattern 
matching and the deep learning reconstruction, along with difference maps. Subject A had a steady cardiac rhythm, whereas subject B had a 
variable cardiac rhythm with 1 missed ECG trigger. The mean and SD in T1 and T2 over the entire myocardium are displayed as insets
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cardiac rhythms. However, highly undersampled radial im-
ages are first reconstructed using compressed sensing before 
being input to the network, which requires 3 min of additional 
computation time.

This study has several limitations. First, it is still neces-
sary to grid the spiral k-space data, which requires 30 s on 

a standard workstation using a CPU; therefore, the computa-
tion bottleneck is now gridding rather than dictionary simu-
lation. Gridding could be accelerated using parallel GPUs22 
or by applying GRAPPA operator gridding (GROG) to shift 
the k-space data points onto a Cartesian grid,23 although these 
approaches were not investigated here. Second, although the 

F I G U R E  5  Analysis of the in vivo data. Linear regression plots are shown comparing the mean myocardial (A) T1 and (B) T2 values using 
dictionary matching and deep learning. Bland-Altman plots are shown comparing the mean myocardial (C) T1 and (D) T2. The solid line indicates 
the bias, and the dotted lines indicate the 95% limits of agreement. Boxplots comparing the intrasubject SD for (E) T1 and (F) T2 in the myocardium 
are also presented
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cMRF T1 and T2 estimation is robust to field inhomogeneities 
(Supporting Information Figure S9), no corrections were made 
for off-resonance blurring during the spiral readout, which can 
degrade spatial resolution and lead to fat signal contamination, 
especially near epicardial fat or in regions with intramyocar-
dial fat (Supporting Information Figure S10). Third, both dic-
tionary-based and deep learning cMRF reconstructions can be 
affected by partial volume artifacts (Supporting Information 
Figure S11). Fourth, B+

1
 corrections were not considered. Fifth, 

no attempt was made to model the complicated spin history 
of flowing blood, and therefore the blood T1/T2 estimates 
may not be reliable. Sixth, no post-contrast T1/T2 mapping 
was performed, although simulations suggest the network 
could be used for post-contrast data (Supporting Information  
Figure S12). Seventh, no comparison was made between deep 
learning cMRF and conventional T1/T2 mapping techniques, 
although prior work has compared dictionary-based cMRF 
with conventional mapping.13 Finally, the in vivo results were 
limited to healthy subjects, and additional validation of the 
deep learning cMRF reconstruction should be performed in 
patients with known cardiac pathologies.

In conclusion, this work introduces a deep learning 
method for reconstructing T1 and T2 maps from undersam-
pled spiral cMRF images in <400 ms per slice with similar 
accuracy and precision in vivo as dictionary matching. By 
eliminating the need for scan-specific dictionary generation 
and pattern matching, this approach may enable rapid at-the-
scanner reconstructions and facilitate the clinical translation 
of cMRF.
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FIGURE S1 Diagram of a neural network with 18 hidden 
layers and skip connections every 2 layers
FIGURE S2 Validation loss as a function of (A) the number 
of hidden layers and (B) the number of layers between skip 
connections
FIGURE S3 Maps from a healthy subject using a network 
trained using pseudo-noise, a network trained using Gaussian 
noise, and dictionary matching. The mean and standard de-
viation of T1 and T2 in the myocardial wall are reported in 
the insets
FIGURE S4 A repository of noise representative of k-space 
undersampling artifacts (“pseudo-noise”) is generated before 
training the network. Simulated parameter maps are gener-
ated where each voxel has a random parameter value. The 
cMRF data acquisition and spiral k-space sampling are simu-
lated to yield undersampled images. The reference images are 
subtracted from the undersampled images, and each voxel in 
the resulting difference images is treated as an independent 
sample of pseudo-noise
FIGURE S5 Distribution of SNR values in a simulated car-
diac phantom, used to inform the choice of SNR scaling fac-
tor when training the network
FIGURE S6 Maps from a healthy subject using a network 
trained with random phase shifts, a network trained without 
random phase shifts, and dictionary matching
FIGURE S7 Monte Carlo simulation results demonstrating 
quantization errors using dictionary matching. Histograms 
are displayed showing the distribution of T1 values estimated 
with (A) dictionary matching and (B) the neural network. In 
both (A) and (B), the width of the histogram bins is 1ms. The 
red line depicts the ground truth T1 of 1397 ms. Similar his-
tograms are shown for T2 using (C) dictionary matching and 
(D) the neural network. Here the width of the histogram bins 
is 0.5 ms in both (C) and (D), and the ground truth T2 is 41 ms

FIGURE S8 Monte Carlo simulation results for myo-
cardial T1 and T2 using different spiral k-space interleaf 
orderings. The different color lines refer to the standard 
deviation (SD) of Gaussian noise added to the RR inter-
val times, with SD given as a percentage of the mean RR 
interval. (A) Both training and testing datasets employed 
spiral golden angle sampling. (B) The training data em-
ployed spiral golden angle sampling, while the testing 
data used spiral sampling with incremental rotation. (C) 
Both training and testing datasets employed spiral sam-
pling with incremental rotation
FIGURE S9 Monte Carlo simulation results for the neural 
network (A) T1 and (B) T2 estimates as a function of off- 
resonance frequency, plotted in blue. The red line indicates 
the ground truth T1 and T2 values
FIGURE S10 Simulations of partial volume effects between 
myocardium and fat on network (A) T1 and (B) T2 estimates. 
Results are shown for dictionary matching (blue) and the neu-
ral network (red), with the vertical error bars indicating the 
standard deviation over 5000 Monte Carlo repetitions. The 
dotted lines indicate the ground truth values for pure myocar-
dium and pure fat
FIGURE S11 Simulations of partial volume effects between 
myocardium and blood on network (A) T1 and (B) T2 esti-
mates. Results are shown for dictionary matching (blue) and 
the neural network (red), with the vertical error bars indicat-
ing the standard deviation over 5000 Monte Carlo repetitions. 
The dotted lines indicate the ground truth values for pure 
myocardium and pure blood
FIGURE S12 Monte Carlo simulation using a post-contrast 
cardiac phantom. Results are shown for (A) T1 and (B) T2 in 
myocardium, liver, and blood. The different color lines refer 
to the standard deviation (SD) of Gaussian noise that is added 
to the RR interval times, with the SD given as a percentage of 
the mean RR interval. SD 0% refers to a constant heart rate, 
while SD 100% refers to a highly variable heart rate
TABLE S1 Spiral interleaf orderings used during training 
and testing

How to cite this article: Hamilton JI, Currey D, 
Rajagopalan S, Seiberlich N. Deep learning 
reconstruction for cardiac magnetic resonance 
fingerprinting T1 and T2 mapping. Magn Reson Med. 
2021;85:2127–2135. https://doi.org/10.1002/mrm.28568

https://doi.org/10.1002/mrm.28568

