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34 Abstract

35 Purpose: To develop a deep learning method for rapidly reconstructing T1 and T2 maps from 

36 undersampled electrocardiogram (ECG) triggered cardiac Magnetic Resonance Fingerprinting 

37 (cMRF) images.

38 Methods: A neural network was developed that outputs T1 and T2 values when given a 

39 measured cMRF signal timecourse and cardiac RR interval times recorded by an ECG. Over 8 

40 million cMRF signals, corresponding to 4000 random cardiac rhythms, were simulated for 

41 training. The training signals were corrupted by simulated k-space undersampling artifacts and 

42 random phase shifts to promote robust learning. The deep learning reconstruction was 

43 evaluated in Monte Carlo simulations for a variety of cardiac rhythms and compared with 

44 dictionary-based pattern matching in 58 healthy subjects at 1.5T.

45 Results: In simulations, the normalized root-mean-square-error (nRMSE) for T1 was below 1% 

46 in myocardium, blood, and liver for all tested heart rates. For T2, the nRMSE was below 4% for 

47 myocardium and liver and below 6% for blood for all heart rates. The difference in the mean 

48 myocardial T1 or T2 observed in vivo between dictionary matching and deep learning was 3.6ms 

49 for T1 and –0.2ms for T2. Whereas dictionary generation and pattern matching required more 

50 than 4 minutes per slice, the deep learning reconstruction only required 336ms. 
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51 Conclusion: A neural network is introduced for reconstructing cMRF T1 and T2 maps directly 

52 from undersampled spiral images in under 400ms and is robust to arbitrary cardiac rhythms, 

53 which paves the way for rapid online display of cMRF maps.

54 Keywords: Magnetic Resonance Fingerprinting; deep learning; tissue characterization; T1 

55 mapping; T2 mapping; neural network

56

57 Introduction

58 Quantitative MRI is a powerful tool for assessing cardiac health. Two clinically measured tissue 

59 properties are T1 and T2, which can be used for early detection and monitoring of fibrosis,1 

60 inflammation,2 and edema,3 among other conditions. Cardiac Magnetic Resonance 

61 Fingerprinting (cMRF) is one technique for simultaneous T1-T2 mapping,4,5 which uses a time-

62 varying sequence, an undersampled spiral k-space trajectory, and pattern matching with a 

63 dictionary of simulated signals to estimate quantitative maps.

64 Although cMRF is efficient, as data are collected during one breathhold, the reconstruction time 

65 is long and prohibits real-time display of the maps. The major hurdle is that the subject’s cardiac 

66 rhythm dictates the sequence timings because the scan is electrocardiogram (ECG) triggered, 

67 and thus a new dictionary must be simulated after every acquisition. The dictionary simulation 

68 time increases if slice profile imperfections or other effects are modeled; both dictionary 

69 simulation and pattern matching take longer if additional properties (e.g., B1
+) beyond T1 and T2 

70 are quantified.6–8 A typical cMRF reconstruction for T1-T2 mapping requires 4 minutes for 

71 dictionary simulation (including corrections for slice profile and preparation pulse efficiency) and 

72 10 seconds for pattern matching. 

73 The combination of deep learning and MRF is gaining interest because of the potential for 

74 orders of magnitude reductions in computation time.9–11 Previously, a neural network was 

75 proposed that reduces cMRF dictionary simulation time to one second and generalizes to 

76 arbitrary cardiac rhythms, which eliminates the need for time-consuming and scan-specific 

77 Bloch equation simulations.12  However, this approach still generates a scan-specific dictionary 

78 that occupies memory (220MB). Measuring additional properties beyond T1 and T2 would 

79 require exponentially more memory and time and quickly become infeasible. In addition, the 

80 maps have quantization errors due to the discrete step sizes in the dictionary. 
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81 Neural networks have been proposed to directly quantify T1 and T2 from MRF images in non-

82 cardiac applications, thereby bypassing dictionary simulation and pattern matching to reduce 

83 computation time and memory requirements. However, existing methods are not directly 

84 applicable to cMRF. Previous approaches have only considered scans with fixed sequence 

85 timings, whereas the cMRF sequence timings are determined by the subject’s cardiac rhythm.11 

86 Some existing neural network approaches cannot reconstruct maps from undersampled non-

87 Cartesian data and require additional reconstruction steps.9 Other approaches require in vivo 

88 MRF datasets for training,10 which may be time-consuming and expensive to collect, and may 

89 not generalize to scenarios that are underrepresented in the training set. 

90 In this work, a deep learning reconstruction is proposed for cMRF that directly outputs T1 and T2 

91 maps from undersampled spiral images in under 400ms per slice without using a dictionary. The 

92 network is robust to arbitrary cardiac rhythms and eliminates the need for scan-specific Bloch 

93 equation simulations and pattern matching. The cMRF deep learning reconstruction is evaluated 

94 in simulations and compared with dictionary-based pattern matching using in vivo data acquired 

95 in 58 healthy subjects at 1.5T.

96 Methods

97 cMRF Sequence Parameters

98 The cMRF sequence has been described in previous work,13 although the breathhold duration 

99 here was reduced from 15 to 10 heartbeats. A FISP readout is used that is relatively insensitive 

100 to off-resonance due to the unbalanced gradient moment on the slice-select axis.14 Multiple 

101 preparation pulses are applied with the following pattern (which repeats twice): inversion 

102 (TI=21ms), no preparation, T2-prep (30ms), T2-prep (50ms), T2-prep (80ms). The acquisition is 

103 ECG-triggered with a 250ms diastolic readout with 50 TRs collected each heartbeat and 500 

104 TRs collected during the entire scan. Data are acquired using an undersampled spiral k-space 

105 trajectory with golden angle rotation15 that requires 48 interleaves to fully sample k-space.16  

106 Other parameters include a 192x192 matrix, 300mm2 field-of-view, 1.6x1.6x8.0mm3 resolution, 

107 and constant TR/TE 5.1/1.4ms.

108 Neural Network Architecture

109 Figure 1 shows a diagram of the proposed network. The network takes two inputs—the 

110 measured signal timecourse from one voxel and the cardiac RR interval times from the ECG. 

111 The timecourse is split into real and imaginary parts and concatenated with the RR interval 
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112 times, resulting in a vector of length , where  is the number of TRs and  is the 2� + � � �
113 number of heartbeats. This study uses  and . The input is normalized by dividing � = 500 � = 10

114 the RR intervals (in milliseconds) by 1000 and dividing the signal by its -norm. The network �2
115 has 18 hidden layers with 300 nodes per layer. Skip connections are used every 4 layers 

116 beginning after the first, which avoids problems with vanishing gradients during training. 

117 Supporting Information Figures S1 and S2 provide justification for the number of hidden layers 

118 and use of skip connections. The final outputs are the T1 and T2 estimates for the given voxel.

119 Neural Network Training

120 The training dataset consists of cMRF signals simulated using the Bloch equations, 

121 corresponding to 4000 randomly generated cardiac rhythms. Each cardiac rhythm has an 

122 average heart rate (HR) between 40-120 beats per minute (bpm), and random Gaussian noise 

123 with a standard deviation (SD) between 0-100% of the mean RR interval is added to the RR 

124 interval times to introduce variability. Adding noise with a large SD (i.e., near 100%) mimics 

125 ECG mis-triggering because it results in large timing variations between heartbeats. For each 

126 cardiac rhythm, 2000 signals were generated with T1 and T2 values selected from a uniform 

127 random distribution between 50-3000ms and 5-700ms, respectively. In total, 8 million 

128 (4000x2000) training signals were simulated including corrections for slice profile (assuming a 

129 0.8ms duration sinc RF pulse with time-bandwidth product 2) and preparation pulse efficiency.6,7 

130 Although adding Gaussian noise to training data is common in machine learning to promote 

131 robust learning, non-Cartesian undersampling artifacts do not fall along a Gaussian distribution. 

132 Therefore, the network is trained using simulated cMRF signals corrupted with noise that mimics 

133 non-Cartesian aliasing, hereafter called “pseudo-noise” (Supporting Information Figure S3 

134 compares neural networks trained with pseudo-noise versus Gaussian noise). A repository of 

135 pseudo-noise is generated before training (Supporting Information Figure S4). The pseudo-

136 noise is meant to be agnostic to cardiac rhythm and image content. To create the repository, 

137 random T1, T2, and M0 maps are synthesized where each voxel has a random value between 

138 50-3000ms for T1, 5-700ms for T2, and 0-1 for M0. A random cardiac rhythm is also generated 

139 with an average HR between 40-120bpm, with Gaussian noise having SD between 0-100% of 

140 the mean RR interval added to the RR interval times. Signals are simulated using the Bloch 

141 equations to yield a time series of reference images. Data acquisition is simulated using the 

142 spiral k-space sampling pattern, and undersampled images are gridded using the non-uniform 

143 fast Fourier Transform (NUFFT).17 The fully-sampled reference images are subtracted from the 

144 undersampled images. Each voxel in the resulting difference images is treated as an 
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145 independent pseudo-noise sample and saved in the repository. For a 192x192 matrix, these 

146 steps result in 36,864 (1922) pseudo-noise samples. The complete repository contains 1.8 

147 million pseudo-noise samples generated by repeating this process 50 times using random 

148 parameter maps and cardiac rhythms. 

149 When training the network (Figure 2B), pseudo-noise samples are randomly selected from the 

150 repository every epoch and added to the simulated cMRF signals, similar to an approach 

151 described for contrast synthesis by Virtue, et al.18 Let  denote an arbitrary cMRF signal and �(�)

152  denote an arbitrary pseudo-noise sample. The pseudo-noise is randomly scaled by a factor �(�)

153  so the SNR is between 0.2 and 1.0, which was empirically determined to be appropriate for �
154 the k-space trajectory employed in this study (Supporting Information Figure S5) and would 

155 need to be tuned for other trajectories. The SNR is defined as follows:

156 ��� =
‖�(�)‖2‖�(�)‖2

    [Eq. 1]

157 Each cMRF signal is also multiplied by a random phase shift , and the pseudo-noise is �1

158 multiplied by a different random phase shift . Phase shifts are performed because in vivo �2

159 datasets have arbitrary phase due to factors such as receiver coil sensitivity profiles and off-

160 resonance. Supporting Information Figure S6 compares the performance of networks trained 

161 with and without random phase shifts. The final cMRF signal used for training is denoted by �(�).

162 �(�) = �(�) ∙ ���1 + � ∙ �(�) ∙ ���2   [Eq. 2]

163 A separate validation dataset was created by generating 400 random cardiac rhythms and 

164 simulating 500 cMRF signals for each rhythm corrupted by pseudo-noise and phase shifts. The 

165 neural network was implemented in PyTorch and trained for 5 epochs using an Adam optimizer 

166 with learning rate 10-4 and batch size 128. The network parameters with the smallest validation 

167 loss were saved. A normalized  loss function (Equation 3) was used that was the sum of the �1
168 relative errors in T1 and T2, where B is the batch size,  and  are the network estimates for ����1,� ����2,�
169 T1 and T2, and  and  are the reference T1 and T2 values.����1,� ����2,�
170 ���� =

1� �∑� = 1
(
|����1,� ― ����1,� |����1,� +

|����2,� ― ����2,� |����1,� )    [Eq. 3]A
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171 Simulation Experiments

172 Monte Carlo simulations were performed using a digital cardiac phantom (MRXCAT)19 to 

173 evaluate the accuracy of the deep learning reconstruction. The phantom used myocardial 

174 T1/T2=1400/50ms, blood T1/T2=1950/280ms, and liver T1/T2=800/40ms. Datasets with different 

175 cardiac rhythms were simulated where the average HR was swept from 40 to 120bpm (step size 

176 10bpm), and Gaussian noise was added to the RR interval times with SD 0%, 10%, 20%, 50%, 

177 75%, and 100% of the mean RR interval to introduce heart rate variability. For each combination 

178 of average HR and noise level, 50 cMRF datasets with different cardiac rhythms were simulated 

179 by performing Bloch equation simulations, spiral k-space sampling, and gridding. The 

180 undersampled images and RR interval times were input to the neural network to reconstruct T1 

181 and T2 maps. The mean T1 and T2 values were computed in the myocardial wall, left ventricular 

182 blood pool, and liver and are reported using normalized root mean square error (nRMSE).

183 In Vivo Experiments

184 cMRF scans from 58 healthy adult subjects were retrospectively collected in a HIPAA-

185 compliant, IRB-approved study. The scans were performed on a 1.5T MRI scanner 

186 (MAGNETOM Aera, Siemens Healthineers, Germany) at a medial short-axis slice position 

187 during an end-expiration breathhold with a 192x192 matrix size, 300mm2 field-of-view, and 

188 1.6x1.6x8.0mm3 resolution. T1 and T2 maps were reconstructed in two ways: 1) using the Bloch 

189 equations to simulate a scan-specific dictionary and performing pattern matching as in previous 

190 cMRF work,13 hereafter called “dictionary matching”, and 2) using the deep learning 

191 reconstruction. The dictionary contained 23,345 entries with T1 [10:10:2000, 2020:20:3000]ms 

192 and T2 [4:2:100, 105:5:300, 320:20:500]ms. The mean T1 and T2 over the entire myocardial wall 

193 were compared between both reconstructions using a two-tailed Student’s t-test for pairwise 

194 comparisons, with p<0.05 considered statistically significant. The mean T1 and T2 were also 

195 compared using linear regression and Bland-Altman analyses.20 Intrasubject variability for 

196 dictionary matching and deep learning were assessed by computing the SD in T1 and T2 over 

197 the myocardium for each subject. Intersubject variability was assessed by computing the 

198 coefficient of variation (CV), obtained by calculating the SD of the mean T1 and T2 measured for 

199 each subject and dividing by the group-averaged T1 and T2. A
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200 Results

201 Computation Time

202 Gridding required 30s and was required for both deep learning and dictionary matching 

203 reconstructions. The average time to quantify T1 and T2 maps from the gridded images using 

204 deep learning was 336ms. For comparison, simulating a scan-specific dictionary required 4 

205 minutes, and pattern matching required an additional 10s. Each dictionary occupied 220MB of 

206 memory. The deep learning reconstruction does not utilize a dictionary, and the network 

207 parameters only occupied 7MB.

208 Simulation Experiments

209 Figure 3 shows results from the Monte Carlo simulations. The deep learning reconstruction was 

210 more accurate at estimating T1 than T2. The nRMSE for T1 was generally below 1% for all tissue 

211 types (myocardium, blood, and liver). Note that a 1% error corresponds to a 14ms difference 

212 from the true T1 of 1400ms in myocardium. The T2 nRMSE was below 4% for myocardium and 

213 liver, and below 6% for blood. A 4% error corresponds to a 2ms difference from the true T2 of 

214 50ms in myocardium. The quantification accuracy for T1 and T2 was similar regardless of 

215 average HR or the variability of the cardiac rhythm.

216 In Vivo Imaging

217 Maps from two representative subjects are shown in Figure 4. Subject A had a steady cardiac 

218 rhythm (mean RR 775 28ms), while Subject B had a variable cardiac rhythm (mean RR 770±

219 215ms) with one missed ECG trigger during heartbeat 10. The maps in the myocardium were ±

220 visually similar between the deep learning and dictionary matching reconstructions. There were 

221 differences in some areas, such as subcutaneous fat. Figure 5A shows the linear regression 

222 analysis between the mean myocardial T1 and T2 values from deep learning and dictionary 

223 matching. The measurements were strongly correlated, with R2=0.93 for T1 and R2=0.95 for T2. 

224 As seen in the Bland-Altman analysis (Figure 5B), the mean T1 bias was 3.6ms with 95% limits 

225 of agreement (-18.9, 26.1)ms, and the mean T2 bias was -0.2ms with 95% limits of agreement (-

226 1.9, 1.5)ms. Using a paired t-test, the differences in the mean myocardial values between deep 

227 learning and dictionary matching were statistically significant for T1 (p=0.019) and T2 (p=0.038). 

228 Figure 5C compares the intrasubject standard deviations. The SD for T1 was 106.9ms for 

229 dictionary matching and 110.2ms for deep learning, and the difference was statistically 

230 significant (p=0.013). The SD for T2 was 6.8ms for dictionary matching and 7.3ms for deep 

231 learning, and the difference was statistically significant (p < 0.0001). The intersubject variability 
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232 was similar for both reconstructions. For T1, the CV was 4.4% for dictionary matching and 4.5% 

233 for deep learning; for T2, the CV was 9.1% for dictionary matching and 8.9% for deep learning.

234 Discussion

235 This study introduces a deep learning method for rapidly performing cMRF T1 and T2 

236 quantification that is robust to arbitrary cardiac rhythms. A neural network was trained to directly 

237 output T1 and T2 maps from undersampled spiral cMRF images and cardiac RR interval timings. 

238 The deep learning reconstruction does not require Bloch equation simulations to create a 

239 dictionary or use pattern matching. The main advantage is the large reduction in computation 

240 time, which could enable real-time display of cMRF maps. The deep learning method takes less 

241 than 400ms per slice to reconstruct T1/T2 maps from cMRF images, which is more than a 700-

242 fold speedup compared to dictionary matching. The deep learning reconstruction also requires 

243 less memory than dictionary matching. Whereas the dictionary occupies 220MB of memory, the 

244 network coefficients only occupy 7 MB. Although this study focuses on T1 and T2 quantification, 

245 the savings in computation time and memory may be more pronounced for applications seeking 

246 to measure additional tissue properties. 

247 The deep learning reconstruction yielded accurate T1 and T2 estimates in simulations, with T1 

248 errors below 1% and T2 errors below 6% regardless of the variability in the cardiac rhythms. In 

249 vivo, the deep learning reconstruction had similar accuracy and precision as dictionary 

250 matching. Although a statistically significant bias was observed in the mean and SD of the 

251 myocardial T1 and T2 values compared to dictionary matching, their magnitude was small 

252 (3.6ms difference in mean T1 and -0.2ms difference in mean T2).

253 There are several interesting features of the cMRF deep learning reconstruction. First, whereas 

254 dictionary matching leads to quantization errors because the T1 and T2 estimates are restricted 

255 to discrete values, the neural network produces continuous outputs. Supporting Information 

256 Figure S7 compares dictionary matching and deep learning in an example where the T1 and T2 

257 values of a ground truth signal do not lie exactly on the T1-T2 grid used to populate the 

258 dictionary. Second, the network is trained for a fixed k-space undersampling pattern. To achieve 

259 the best performance, the network should be retrained if data are acquired with a different 

260 sampling pattern, as the distribution of aliasing artifacts would change (Supporting Information 

261 Figure S8).

262 Recently, other neural network approaches have been described for MRF and for cardiac 

263 parameter mapping. DRONE uses a 2-layer fully-connected network for MRF T1 and T2 
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264 quantification, although the sequence timings are fixed and non-Cartesian k-space 

265 undersampling is not taken into consideration.9 Cao, et al. have proposed a 4-layer fully-

266 connected network and developed a method for simulating training data with non-Cartesian 

267 undersampling artifacts, although limited to MRF sequences with fixed timings.11 Fang, et al. 

268 have developed a U-net for high-resolution spiral MRF in the brain. However, the network uses 

269 in vivo training data, which may be time-consuming and expensive to collect, and may not 

270 generalize to pathological scenarios underrepresented in the training set. In this study, a neural 

271 network is trained using simulated cMRF signals, which has the advantage that an arbitrarily 

272 large training set can be generated to improve performance. Also, whereas a U-net may 

273 introduce blurring, the network used here operates voxelwise and therefore does not induce 

274 spatial smoothing. Another recent technique is DeepBLESS, which is a deep learning 

275 reconstruction for simultaneous cardiac T1-T2 mapping using a non-fingerprinting sequence.21 

276 Similar to this study, it is trained to be robust to arbitrary cardiac rhythms. However, highly 

277 undersampled radial images are first reconstructed using compressed sensing before being 

278 input to the network, which requires three minutes of additional computation time.

279 This study has several limitations. First, it is still necessary to grid the spiral k-space data, which 

280 requires 30s on a standard workstation using a CPU; thus, the computation bottleneck is now 

281 gridding rather than dictionary simulation. Gridding could be accelerated using parallel GPUs22 

282 or by applying GRAPPA operator gridding (GROG) to shift the k-space data points onto a 

283 Cartesian grid,23 although these approaches were not investigated here. Second, although the 

284 cMRF T1 and T2 estimation is robust to field inhomogeneities (Supporting Information Figure 

285 S9), no corrections were made for off-resonance blurring during the spiral readout, which can 

286 degrade spatial resolution and lead to fat signal contamination, especially near epicardial fat or 

287 in regions with intramyocardial fat (Supporting Information Figure S10). Third, both dictionary-

288 based and deep learning cMRF reconstructions can be affected by partial volume artifacts 

289 (Supporting Information Figure S11). Fourth, B1
+ corrections were not considered. Fifth, no 

290 attempt was made to model the complicated spin history of flowing blood, and thus the blood 

291 T1/T2 estimates may not be reliable. Sixth, no post-contrast T1/T2 mapping was performed, 

292 although simulations suggest the network could be used for post-contrast data (Supporting 

293 Information Figure S12). Seventh, no comparison was made between deep learning cMRF and 

294 conventional T1/T2 mapping techniques, although prior work has compared dictionary-based 

295 cMRF with conventional mapping.13 Finally, the in vivo results were limited to healthy subjects, 

296 and additional validation of the deep learning cMRF reconstruction should be performed in 

297 patients with known cardiac pathologies.
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298 In conclusion, this work introduces a deep learning method for reconstructing T1 and T2 maps 

299 from undersampled spiral cMRF images in less than 400ms per slice with similar accuracy and 

300 precision in vivo as dictionary matching. By eliminating the need for scan-specific dictionary 

301 generation and pattern matching, this approach may enable rapid at-the-scanner 

302 reconstructions and facilitate the clinical translation of cMRF.
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363

364 Figure Captions

365 Figure 1. Neural network for cMRF T1 and T2 map reconstruction. A neural network is used with 

366 18 hidden layers with 300 nodes per layer (blue rectangles) and rectified linear unit (ReLU) 

367 activation functions (yellow arrows). Skip connections (black lines) are used every 4 layers. The 

368 inputs to the network are a measured cMRF signal timecourse concatenated with the cardiac 

369 RR interval times, and the outputs are the estimated T1 and T2 values. The network operations 

370 are performed independently for each voxel.

371 Figure 2. Generation of training data. The network is trained using simulated cMRF signal 

372 timecourses. A pseudo-noise sample is randomly drawn from the repository (generation of 

373 pseudo-noise is described in Supporting Information Figure S4). The amplitude of the pseudo-

374 noise is scaled by a factor C so the SNR of the noisy signal is between specific bounds (0.2-1.0 

375 for this study). Random phase shifts  and  are applied to the cMRF signal and pseudo-�1 �2

376 noise, respectively. The pseudo-noise is added to the cMRF signal to yield the noisy signal that 

377 will be used for training.

378 Figure 3. Monte Carlo simulation results for (A) T1 and (B) T2 in myocardium, liver, and blood. 

379 The different color lines refer to the standard deviation (SD) of Gaussian noise that is added to 

380 the RR interval times, with the SD given as a percentage of the mean RR interval. SD 0% refers 

381 to a constant heart rate, while SD 100% refers to a highly variable heart rate.

382 Figure 4. cMRF T1 and T2 maps in two healthy subjects at 1.5T. T1 and T2 maps are shown 

383 corresponding to dictionary-based pattern matching and the deep learning reconstruction, along 
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384 with difference maps. Subject A had a steady cardiac rhythm, while Subject B had a variable 

385 cardiac rhythm with one missed ECG trigger. The mean and standard deviation in T1 and T2 

386 over the entire myocardium are displayed as insets.

387 Figure 5. Analysis of the in vivo data. Linear regression plots are shown comparing the mean 

388 myocardial (A) T1 and (B) T2 values using dictionary matching and deep learning. Bland-Altman 

389 plots are shown comparing the mean myocardial (C) T1 and (D) T2. The solid line indicates the 

390 bias, and the dotted lines indicate the 95% limits of agreement. Boxplots comparing the 

391 intrasubject standard deviation (SD) for (E) T1 and (F) T2 in the myocardium are also presented. 

392 Supporting Information Figure S1. Diagram of a neural network with 18 hidden layers and 

393 skip connections every 2 layers.

394 Supporting Information Figure S2. Validation loss as a function of (A) the number of hidden 

395 layers and (B) the number of layers between skip connections.

396 Supporting Information Figure S3. Maps from a healthy subject using a network trained using 

397 pseudo-noise, a network trained using Gaussian noise, and dictionary matching. The mean and 

398 standard deviation of T1 and T2 in the myocardial wall are reported in the insets.

399 Supporting Information Figure S4. A repository of noise representative of k-space 

400 undersampling artifacts (“pseudo-noise”) is generated before training the network. Simulated 

401 parameter maps are generated where each voxel has a random parameter value. The cMRF 

402 data acquisition and spiral k-space sampling are simulated to yield undersampled images. The 

403 reference images are subtracted from the undersampled images, and each voxel in the resulting 

404 difference images is treated as an independent sample of pseudo-noise.

405 Supporting Information Figure S5. Distribution of SNR values in a simulated cardiac 

406 phantom, used to inform the choice of SNR scaling factor when training the network.

407 Supporting Information Figure S6. Maps from a healthy subject using a network trained with 

408 random phase shifts, a network trained without random phase shifts, and dictionary matching.

409 Supporting Information Figure S7. Monte Carlo simulation results demonstrating quantization 

410 errors using dictionary matching. Histograms are displayed showing the distribution of T1 values 

411 estimated with (A) dictionary matching and (B) the neural network. In both (A) and (B), the width 

412 of the histogram bins is 1ms. The red line depicts the ground truth T1 of 1397ms. Similar 

413 histograms are shown for T2 using (C) dictionary matching and (D) the neural network. Here the 

414 width of the histogram bins is 0.5ms in both (C) and (D), and the ground truth T2 is 41ms.
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415 Supporting Information Figure S8. Monte Carlo simulation results for myocardial T1 and T2 

416 using different spiral k-space interleaf orderings. The different color lines refer to the standard 

417 deviation (SD) of Gaussian noise added to the RR interval times, with SD given as a percentage 

418 of the mean RR interval. (A) Both training and testing datasets employed spiral golden angle 

419 sampling. (B) The training data employed spiral golden angle sampling, while the testing data 

420 used spiral sampling with incremental rotation. (C) Both training and testing datasets employed 

421 spiral sampling with incremental rotation.

422 Supporting Information Figure S9. Monte Carlo simulation results for the neural network (A) 

423 T1 and (B) T2 estimates as a function of off-resonance frequency, plotted in blue. The red line 

424 indicates the ground truth T1 and T2 values.

425 Supporting Information Figure S10. Simulations of partial volume effects between 

426 myocardium and fat on network (A) T1 and (B) T2 estimates. Results are shown for dictionary 

427 matching (blue) and the neural network (red), with the vertical error bars indicating the standard 

428 deviation over 5000 Monte Carlo repetitions. The dotted lines indicate the ground truth values 

429 for pure myocardium and pure fat.

430 Supporting Information Figure S11. Simulations of partial volume effects between 

431 myocardium and blood on network (A) T1 and (B) T2 estimates. Results are shown for dictionary 

432 matching (blue) and the neural network (red), with the vertical error bars indicating the standard 

433 deviation over 5000 Monte Carlo repetitions. The dotted lines indicate the ground truth values 

434 for pure myocardium and pure blood.

435 Supporting Information Figure S12. Monte Carlo simulation using a post-contrast cardiac 

436 phantom. Results are shown for (A) T1 and (B) T2 in myocardium, liver, and blood. The different 

437 color lines refer to the standard deviation (SD) of Gaussian noise that is added to the RR 

438 interval times, with the SD given as a percentage of the mean RR interval. SD 0% refers to a 

439 constant heart rate, while SD 100% refers to a highly variable heart rate.

440 Supporting Information Table S1. Spiral interleaf orderings used during training and testing.
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