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Figure S1. Comparison of survival data on BP-MPN

patients treated with venetoclax + HMA versus HMA alone

versus intensive chemotherapy
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A Sardinian founder mutation in glycoprotein Ib platelet
subunit beta (GP1BB) that impacts thrombocytopenia

Inherited platelets disorders can be severe, especially after

trauma or surgical procedures in some monogenic disorders,

as in Bernard–Soulier syndrome [BSS; Mendelian Inheritance

in Man (MIM) #231200]. BSS is a rare autosomal recessive

macrothrombocytopenia (incidence of about one per mil-

lion). Its hallmark is a defective adhesion of platelets to the

sub-endothelium, resulting from quantitative or qualitative

defects in the glycoprotein Ib (GPIb)-IX-V complex, a plate-

let receptor for von Willebrand Factor (VWF), which is com-

posed of four subunits: GPIbα, GPIbβ, GPIX and GPV.1

Laboratory diagnosis is based on prolonged bleeding time,

moderate-to-severe thrombocytopenia (platelet count typi-

cally ranges from 20 to 100 9 109/l), giant platelets and defi-

cient ristocetin-dependent platelet agglutination.2 Very little

is known about the biochemical and clinical features of

heterozygous carriers of the mutations causing BSS, and

about the impact in general population individuals of varia-

tion in genes encoding the GPIb-IX-V complex when present

in heterozygosity. In fact, family members with only one

mutated allele are generally asymptomatic, with sub-normal

platelet count, slightly enlarged platelets and marginally

reduced levels of glycoproteins expression.

Here, to dissect the impact of genetic variability on plate-

let count, a sequencing-based whole-genome association

study was performed in 6528 volunteers included in the Sar-

diNIA general population cohort.3 Six signals were identified

(Table SI, Data S1 for description), including a novel non-

synonymous variant [22:19711445:C/T; minor allele fre-

quency (MAF) = 0�0045; P = 1�172 9 10−16], mapping in

the second exon (c.C79T, p.P27S) of the GP1BB gene (Fig-

ure S1). Completely independent of previously reported asso-

ciations in the same genomic region (Data S1), p.P27S is

Sardinian-specific, being completely missing in large sequenc-

ing datasets such as 1000 Genomes Project,4 Genome of the

Netherlands (GoNL) project,5 Genome Aggregation Database

(gnomAD),6 the Exome Sequencing Project in the National

Heart, Lung, and Blood Institute’s (NHLBI’s) Trans-Omics

for Precision Medicine (TOPMed) programme.7 No homozy-

gous and 57 carriers for the rare 22:19711445-T allele were

found. The platelet count in wild-type homozygous was

242�87 � 117�05 9 109/l (mean � 1�96 9 SD), whereas in

p.P27S carriers was 174�17 � 91�51 9 109/l, corresponding

to a reduction of 70�13 9 109/l for each copy of the minor

allele (Fig 1A). With this large effect, the novel founder

mutation explains ~1�05% of phenotypic variance for platelet

count, representing the largest phenotypic effect among all

the independent variants reported to date in the genome-

wide association studies (GWAS) Catalogue (Tables SII and

SIII).8 Moreover, in a subset of 2000 individuals, whose

mean platelet volume was measured, this variant was associ-

ated with notably larger platelets (P = 2�13 9 10−10), consis-

tently with evidence of morphologically enlarged platelets in

patients with BSS (Fig 1B). To assess platelet functionality, a

seven-colour flow cytometry panel (Table SIV) was set up in

24 of 57 p.P27S carriers (42�1%) and in an equal number of

matched unrelated controls. Monoclonal antibodies directed

against the GPIIb-IIIa complex (CD41a and CD61), and the

VWF receptor complex (CD42a and CD42b) were used to
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investigate the basal receptor expression in resting platelets.

The p.P27S carriers showed increased levels of GPIIb

(CD41a, +22�36%; P = 1�61 9 10−4; N = 48) and GPIIIa

(CD61, +16�20%; P = 6�61 9 104; N = 48) a typical finding

in the presence of enlarged platelets (Figure S2). The expres-

sion of GPIX and GPIbα glycoproteins and their correct

assembly into the GPIb-IX-V complex are known to be

impaired by a defective GPIbβ peptide9. Indeed, despite car-

rying only one mutated allele, the p.P27S heterozygous

showed appreciably lower basal expression levels of both

GPIX (−24�69%, P = 2�66 9 10−6, N = 46; Fig 1C) and

GPIbα (−26�51%, P = 3�66 9 10−8, N = 48; Fig 1D), and

consequently less of the entire complex, compared to con-

trols. This is far more than the normal expression levels of

GPIX and GPIbα in carriers of other missense mutations in

GP1BB, as recently reported.10 Pre-activation and reactivity

changes in p.P27S platelets were investigated after exposure

to the agonist adenosine diphosphate (ADP). Indeed,

Fig 1. Effects of chr22:19711445 genotype on platelet-related phenotypes. (A) Platelet (PLT) count distribution stratified on 57 heterozygous car-

riers and 6471 homozygous wild types. (B) Mean platelet volume (MPV) distribution stratified on 28 heterozygous carriers and 1972 homozygous

wild types. Basal expression levels of the main GPIb-IX-V receptor glycoproteins on resting platelets: (C) GPIX on 23 carriers and 23 controls,

and (D) GPIbα on 24 carriers and 24 controls. (E–G) Expression levels of the most relevant platelet activation-dependent markers (activated

αIIbβ3, P-selectin and granulophysin), in basal conditions and after stimulation with ADP. Violin plots represent the distribution of the data; the

boxplots inside report the median value as a dot, the interquartile range (IQR) as a box, the 1st quartile −1�5 IQR and the 3rd quartile +1�5 IQR

as whiskers. **P < 0�01, ***P < 0�001. MFI, median fluorescence intensity.

Correspondence

ª 2020 British Society for Haematology and John Wiley & Sons Ltd e125
British Journal of Haematology, 2020, 191, e101–e131



activated αIIbβ3 was prominently induced in the p.P27S car-

riers, as shown by the extent of procaspase-activating com-

pound 1 (PAC-1) binding to resting and activated platelets

(+41�94%, P = 4�84 9 10−3, N = 48, Fig 1E). Notably, no

variation in the response of platelets after ADP stimulation

was recently reported in patients with BSS and carriers.9

Remarkably, platelet reactivity turned out to be differentially

regulated: no changes were observed in surface exposure of

neo P-selectin (CD62P, +35�22%, P = 0�138, N = 48; Fig 1F)

and neo granulophysin (CD63, +1�86%, P = 0�658, N = 46;

Fig 1G), markers of granule content release. The unique

functional effects of the p.P27S led us to examine its possible

consequences on the molecular structure and conformational

changes of GPIbβ by molecular modelling analysis based on

the X-ray crystal structure.11 Proline–Serine substitution falls

in the leucine-rich repeat N-terminal (LRRNT) domain of

the 206 amino acid long protein encoded by GP1BB (Fig 2A,

B). Proline residues are expected to be disruptive of struc-

ture; and indeed, in that highly conserved region and close

to cysteine residues involved in the Cys26-Cys32 disulphide

bridge, p.P27S could thus modify the stability and conse-

quently the conformation of GPIbβ. To test this hypothesis,

we first performed in silico molecular dynamic simulations,

observing an increased conformational mobility of the amino

acid backbone close to p.P27S (Figure S3), suggesting the

instability of the GPIbβ glycoprotein in accordance with the
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Fig 2. GPIbβ amino acid sequence with BSS-causing mutations and molecular modelling analyses. (A) Positions of the mutations within the cod-

ing regions of platelet glycoprotein (GP)Ibβ according to National Center for Biotechnology Information (NCBI) Reference Sequence,

NP_000398.1. The different domains are indicated with different patterns. Different types of mutation are colour-coded; highlighted in yellow is

the Proline27 to Serine27 substitution (P27S) described here first. Known mutations were obtained from: Savoia et al., 201416; Sivapalaratnam

et al., 201717; Bragadottir et al., 201510; Qiao et al., 201518; Kunishima et al., 200119; Ferrari et al., 201820; and Bastida et al., 201813. (B) Three-di-

mensional structure of GPIbβ sequence, colour-coded according to the schematic representation in (A). (C) X-ray structure of protein (26-143 aa

code 3RFE) showing the impact of p.P27S on GPIbβ glycoprotein conformation; in particular, the superposition between the first (teal) and last

(yellow) frame of the molecular dynamics for the p.P27S protein (left), and the superposition between the first (pink) and last (green) frame for

the wild-type (WT) protein (right) are reported.
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observed reduction in the expression of GPIX and GPIbα.
Strikingly, a greater fluctuation of the amino acids in loop 2

of the p.P27S protein was also recorded, as indicated by

root-mean-square-fluctuation (Fig 2C).

In summary, all typical findings of macrothrombocytope-

nias (i.e. BSS) were observed in the p.P27S obligate carriers

characterised in the present study: low levels of large platelets

and low expression of GPIX and GPIbα glycoproteins, as

shown by flow cytometry. As one might anticipate, the most

severe cases are caused by deletions and nonsense mutations,

but some missense mutations are disabling enough to be

clinically significant. In one of the reported cases,12 a charge

difference is introduced (p.Asn89Asp); in the other,13 as in

this case, the Proline residue is replaced (p.Pro27Leu), which

is expected to disrupt secondary structure in the protein.

That p.P27S influences conformational changes and stability

of GPIbβ, in turn affecting GPIb-IX-V complex function, is

further clearly supported by the in silico molecular dynamic

analyses. Noteworthy, a critical interaction of GPIbβ with

GPIX involves N-terminal residues 15 through 32 of GPIbβ,
precisely including Proline 27.14 According to Hardy–Wein-

berg expectation, at least four p.P27S homozygous individu-

als, most likely with BSS, are expected in Sardinia, but none

have been reported to date: this may suggest that BSS is

likely underdiagnosed in Sardinia, consistent with other

reports.15 Thus, clinicians should be aware of the novel

p.P27S mutation in the molecular characterisation of Sar-

dinian-origin patients with a clinical picture of platelet

macrocytosis and platelet count of <100 9 109/l.
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