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A Sardinian founder mutation in GP1BB that impacts thrombocytopenia. 
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Inherited platelets disorders can be severe, especially after trauma or surgical procedures in some 
monogenic disorders, as in Bernard-Soulier syndrome (BSS; MIM #231200). BSS is a rare autosomal 
recessive macro-thrombocytopenia (incidence of about 1 per million). Its hallmark is a defective 
adhesion of platelets to the sub-endothelium, resulting from quantitative or qualitative defects in the 
GPIb-IX-V complex, a platelet receptor for von Willebrand Factor (vWF), which is composed of four 
subunits: GPIbα, GPIbβ, GPIX, and GPV1. Laboratory diagnosis is based on prolonged bleeding time, 
moderate-to-severe thrombocytopenia (platelet count typically ranges from 20 to 100×109/L), giant 
platelets and deficient ristocetin-dependent platelet agglutination (RIPA)2. Very little is known about 
the biochemical and clinical features of heterozygous carriers of mutations causing BSS, and about 
the impact in general population individuals of variation in genes encoding the GPIb-IX-V complex 
when present in heterozygosity. In fact, family members with only one mutated allele are generally 
asymptomatic, with sub-normal platelet count, slightly enlarged platelets, and marginally reduced 
levels of glycoproteins expression.  
Here, to dissect the impact of genetic variability on platelet count, a sequencing-based whole-genome 
association study was performed in 6,528 volunteers included in the SardiNIA general population 
cohort3. Six signals were identified (Supplementary Table 1, supplementary data for description), 
including a novel non-synonymous variant (22:19711445:C/T; MAF=0.0045; P=1.172×10-16), 
mapping in the second exon (c.C79T, p.P27S) of the GP1BB gene (Suppl. Fig. 1). Completely 
independent of previously reported associations in the same genomic region (Suppl. data), p.P27S is 
Sardinian-specific, being completely missing in large sequencing datasets such as 1,000 Genomes 
Project4, GoNL5, GnomeAD6, the Exome Sequencing Project in NHLBI’s TOPMed program7. No 
homozygous and 57 carriers for the rare 22:19711445-T allele were found. Platelet count in wild-
type homozygous were 242.87±117.05×109/L (mean±1.96*SD), whereas in p.P27S carriers were 
174.17±91.51×109/L, corresponding to a reduction of 70.13×109/L for each copy of the minor allele 
(Fig. 1A). With this large effect, the novel founder mutation explains about 1.05% of phenotypic 
variance for platelet count, representing the largest phenotypic effect among all the independent 
variants reported so far in the GWAS Catalog (Suppl. Table 2 and 3)8. Moreover, in a subset of 2,000 
individuals, whose mean platelet volume (MPV) was measured, this variant was associated with 
notably larger platelets (P=2.13×10-10), consistently with evidence of morphologically enlarged 
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platelets in BSS patients (Fig. 1B). To assess platelet functionality, a 7-color flow cytometry panel 
(Suppl. Table 4) was set up in 24 of 57 p.P27S carriers (42.1%) and in an equal number of matched 
unrelated controls. Monoclonal antibodies directed against the GPIIb-IIIa complex (CD41a and 
CD61), and the vWF receptor complex (CD42a and CD42b) were used to investigate the basal 
receptor expression in resting platelets. p.P27S carriers showed increased levels of GPIIb (CD41a, 
+22.36%, P=1.61×10-4, N=48) and GPIIIa (CD61, +16.20%, P=6.61×10-4, N=48) a typical finding 
in the presence of enlarged platelets (Suppl. Fig. 2). The expression of GPIX and GPIbα glycoproteins 
and their correct assembly into the GPIb-IX-V complex are known to be impaired by a defective 
GPIbβ peptide9. Indeed, despite carrying only one mutated allele, p.P27S heterozygous showed 
appreciably lower basal expression levels of both GPIX (-24.69%, P=2.66×10-6, N=46; Fig. 1C) and 
GPIbα (-26.51%, P=3.66×10-8, N=48; Fig. 1D), and consequently less of the entire complex, 
compared to controls. This is far more than the normal expression levels of GPIX and GPIbα in 
carriers of other missense mutations in GP1BB, as recently reported10. Pre-activation and reactivity 
changes in p.P27S platelets were investigated after exposure to the agonist adenosine diphosphate 
(ADP). Indeed, activated αIIbβ3 was prominently induced in p.P27S carriers, as shown by the extent 
of PAC-1 binding to resting and activated platelets (+41.94%, P=4.84×10-3, N=48, Fig. 1E). Notably, 
no variation in the response of platelets after ADP stimulation, were recently reported in BSS patients 
and carriers9. Remarkably, platelet reactivity turned out to be differentially regulated: no changes 
were observed in surface exposure of neo P-selectin (CD62P, +35.22%, P=0.138, N=48, Fig. 1F) and 
neo granulophysin (CD63, +1.86%, P=0.658, N=46, Fig. 1G), markers of granule content release. 
The unique functional effects of the p.P27S lead us to examine its possible consequences on 
molecular structure and conformational changes of GPIbβ by molecular modeling analysis based on 
the X-ray crystal structure11. Proline to Serine substitution falls in the Leucine-rich repeat N-terminal 
(LRRNT) domain of the 206 amino acid long protein encoded by GP1BB (Figg. 2A-B). Proline 
residues are expected to be disruptive of structure; and indeed, in that highly conserved region and 
close to cysteine residues involved in the Cys26-Cys32 disulphide bridge, p.P27S could thus modify 
the stability, and consequently the conformation, of GPIbβ. To test this hypothesis, we first performed 
in-silico Molecular Dynamic simulations, observing an increased conformational mobility of the 
amino acid backbone close to p.P27S (Suppl. Fig. 3), suggesting the instability of the GPIbβ 
glycoprotein in accord with the observed reduction of the expression of GPIX and GPIbα. Strikingly, 
a greater fluctuation of the amino acids in loop 2 of the p.P27S protein was also recorded, as indicated 
by Root-Mean-Square-Fluctuation (Fig. 2C). 
In summary, all typical findings of macrothrombocytopenias (i.e. BSS) were observed in p.P27S 
obligate carriers characterized in this study: low levels of large platelets and low expression of GPIX 
and GPIbα glycoproteins, as shown by flow-cytometry. As one might anticipate, the most severe 
cases are caused by deletions and nonsense mutations, but some missense mutations are disabling 
enough to be clinically significant. In one of the reported cases12, a charge difference is introduced 
(p.Asn89Asp); in the other13, as in this case, the Proline residue is replaced (p.Pro27Leu), which is 
expected to disrupt secondary structure in the protein. That p.P27S influences conformational changes 
and stability of GPIbβ, in turn affecting GPIb-IX-V complex function, is further clearly supported by 
the in-silico molecular dynamic analyses. Noteworthy, a critical interaction of GPIbβ with GPIX 
involves N-terminal residues 15 through 32 of GPIbβ, precisely including Proline 2714. According to 
Hardy-Weinberg expectation, at least 4 p.P27S homozygous individuals, most likely with BSS, are 
expected in Sardinia, but none has been reported so far: this may suggest that BSS is likely 
underdiagnosed in Sardinia, consistent with other reports15. Thus, clinicians should be aware of the 
novel p.P27S mutation in the molecular characterization of Sardinian origin patients with a clinical 
picture of platelet macrocytosis and platelet count <100×109/L. 
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Figures titles and legends 
Figure 1 Effects of chr22:19711445 genotype on platelet-related phenotypes. 
(A) Platelet count distribution stratified on 57 heterozygous carriers and 6,471 homozygous wild 
types. (B) Mean platelet volume distribution stratified on 28 heterozygous carriers and 1,972 
homozygous wild types. Basal expression levels of the main GPIb-IX-V receptor glycoproteins on 
resting platelets: (C) GPIX on 23 carriers and 23 controls and (D) GPIbα on 24 carriers and 24 
controls (E, F and G). Expression levels of the most relevant platelet activation-dependent markers 
(activated αIIbβ3, P-selectin and granulophysin), in basal condition and after stimulation with ADP. 
Violin plots represent the distribution of the data; the boxplots inside report the median value as a 
dot, the interquartile range (IQR) as a box, the 1st quartile - 1.5 IQR and the 3rd quartile + 1.5 IQR as 
whiskers. *P<0.05, **P<0.01, ***P<0.001. 
 
Figure 2 GPIbβ amino acid sequence with BSS-causing mutations and molecular modeling analyses. 
(A) Positions of the mutations within the coding regions of platelet glycoprotein (GP)Ibβ according 
to NCBI Reference Sequence, NP_000398.1. The different domains are indicated with different 
patterns. Different types of mutation are colour-coded; highlighted in yellow is the Proline27 to 
Serine27 substitution (P27S) here firstly described. Known mutations were obtained from Savoia A. 
et al., 2014, Sivapalaratnam S. et al., 2017, Bragadottir G. et al., 2015, Qiao J. et al., 2015, Kunishima 
S. et al., 2001, Ferrari S. et al., 2018 and Bastida J.M. et al., 2018. (B) 3D structure of GPIbβ 
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sequence, colour-coded according to the schematic representation in (A). (C) X-ray structure of 
protein (26-143 aa code 3RFE) showing the impact of p.P27S on GPIbβ glycoprotein conformation; 
in particular, the superposition between the first (teal) and last (yellow) frame of the molecular 
dynamics for the p.P27S protein (left), and the superposition between the first (pink) and last (green) 
frame for the WT protein (right) are reported. 
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