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Abstract: A composite antenna structure consisting of a conducting cone loaded with a spherical cap is designed and analysed,
considering all eigenmodes in the antenna structure. The configuration is used to enhance the impedance match to a loop
antenna located above the cone tip. Matching characteristics to the loop are examined over a wide range of loop radius and
loop location. It is found that the matching to the loop can be significantly enhanced over a wide range of parameter values,
yielding a greater flexibility in design than the loop-around-the-cone structure presented earlier with the conducting cone body
inside the loop. The structure also enables placement of the loop at a greater height than the loop-around-the-cone
configuration, potentially improving the efficiency of signal transmission/reception or reducing scattering from the vehicular body.
The mutual coupling effect of a parasitic loop placed adjacent to the primary loop is also analysed. The radiation characteristics
are also evaluated.

1 Introduction
Circular loop antennas have been an area of active research in the
past. However, in the analysis of such antenna structures, the loop
current has been assumed constant in many investigations without
considering higher-order modes that can significantly affect the
antenna characteristics, particularly for antennas whose dimensions
are comparable with a wavelength. A number of previous works
taking into account a non-uniform loop current deal with the
performance of the loop antenna in free space [1–7].

Circular loop antennas in the vicinity of discontinuities have
been reported for circular loops near a planar interface [8, 9], a
resistive sheet [10] or above a lossless ground plane [11]. Loop
antennas near the conducting and dielectric spherical structures
were investigated in [12, 13]. Although the radiation characteristics
of the loop antenna were examined in [12, 13], the reflection
coefficient and coupling characteristics of the antenna structures
were not investigated. A conformal slot [14] and a microstrip patch
antenna [15] located on a conical structure were analysed using the
reciprocity theorem. A biconical microstrip antenna was
investigated in [16].

Analysis of an antenna configuration consisting of multiple
loops around a conducting cone was reported in [17], which could
be used in a number of practical applications. Particularly, the
matching characteristics of the loop antenna relative to an isolated
loop were significantly improved by the presence of the cone. An
improvement in directivity and cross-pol characteristics in the loop
radiation was also achieved.

However, it is found in [17] that though the characteristics of an
isolated loop antenna are significantly enhanced while radiating
around a conducting cone, the same could only be achieved for a
loop antenna located above the cone tip by using a parasitic loop.
The placement of the loop antenna above the cone tip might be
significant for many practical antenna structures with the height of
the antenna above the ground being an important factor that
strongly affects its performance with respect to the efficiency of
signal transmission/reception and reduced electromagnetic
interference and radio-frequency (RF) exposure to neighbouring
areas. An alternate strategy to solve this is proposed in the current
work by loading the cone tip with a spherical cap. As a result, the
matching and interaction of the loop with the cone tip is
significantly enhanced for the loop antenna located above the cone

tip. In addition, the design parameters can be suitably altered to
achieve an impedance match for a wide range of loop radius and
loop location, thus enhancing the practical utility and versatility of
the design. A higher degree of freedom is also obtained for the
antenna radius and vertical location for the loop antenna above the
cone tip in the current configuration than for the loop antenna
around the cone body in [17] due to the presence of the conducting
cone body inside the loop for the latter case. It might also be noted
that even with the use of a second parasitic loop for matching the
loop antenna over the cone tip in [17], matching can be achieved
for specific loop radius and locations of the primary loop only. In
addition, the parasitic loop radius and location has to be changed to
obtain match whenever the radius and location of the primary loop
antenna changes. In comparison, the spherical cap over the cone tip
can be designed for obtaining match over a wide range of
dimensions and locations of the primary loop antenna. The
dimension of the spherical cap is also fixed over a range of radius
and locations of the loop antenna and needs to be changed only
beyond this range. The effect of an adjacent loop placed in the
vicinity of the primary loop for the current configuration is also
investigated.

The antenna structure can be practically useful for antennas that
need to be mounted high above the ground over conical roof tops
or over the nose cone of airborne vehicles including aircrafts,
rockets or missiles or high-speed land vehicles including
automobiles and rail systems. For such vehicular applications, the
placement of the loop above the cone tip helps in reduction of
interference and scattering from the vehicle body. The structure can
also be deployed in collision–avoidance systems in land and
airborne vehicles. The frequency range of 1–6 GHz used in the
investigation covers the L, S and part of the C band. This
frequency band is typically used for sensor network
communication. The investigation also covers the 8–12 GHz (X-
band) that is typically used for defence and military applications. It
is observed that the vicinity of the conical structure with the
spherical cap can significantly alter the electrical characteristics of
the loop antenna.

A full-wave analysis is also conducted for the proposed
composite antenna configuration consisting of the spherical and
conical shapes considering all eigenmodes of the structure. It might
also be noted that though the dyadic Green's function for the
structure is given in [18], the formulation based on the dyadic
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Green's function works with all field components simultaneously
leading to an increased computational burden. The current
formulation using the scalar Green's function approach for the
treatment of the composite structure is distinctly different from
[18], in which only the relevant field components needed in the
formulation can be efficiently computed, without computation of
the other field components.

The reflection coefficient and radiation pattern of the loop
antenna in the proximity of the composite structure are evaluated.
The mutual coupling between adjacent loops is characterised to
evaluate the effect of a parasitic loop on the matching
characteristics of the primary excited loop in the presence of the
composite structure. An excellent agreement is observed between
the computed, simulated and measured results.

2 Analysis of the antenna structure
The antenna configuration is shown in Fig. 1. The cone vertex is
located at the origin of the spherical coordinate system with a
conducting spherical cap of radius b over the cone with the centre
of the cap coinciding with the cone vertex. The loop antenna
configuration is placed around the cone of exterior angle θc. The
total number of loops is denoted by q. The pth loop is located at
r = ap and at an elevation angle θ = θp, with the ϕ-directed loop
current on the pth loop denoted by Jϕ

p. The electric and magnetic
fields for the composite antenna structure consisting of the
spherical cap loaded conducting cone can be derived from the
magnetic and electric vector potentials Ar and Fr, respectively,
given as follows:

Ar = ∑
m

∑
ν

Pν
m(cos θ) sin(mϕ)

cos(mϕ)

×

Amν
0

Bmν
0 H^

ν
(1)(kr) +

Cmν
0

Dmν
0 H^

ν
(2)(kr) for b < r < a1

Amν
p

Bmν
p

H^
ν
(1)(kr) +

Cmν
p

Dmν
p

H^
ν
(2)(kr) for ap < r < ap + 1

Cmν
q

Dmν
q

H^
ν
(2)(kr) for r > aq

(1a)

Fr = ∑
m

∑
μ

Pμ
m(cos θ) sin(mϕ)

cos(mϕ)

×

Emμ
0

Fmμ
0 H^

μ
(1)(kr) +

Gmμ
0

Hmμ
0 H^

μ
(2)(kr) for b < r < a1

Emμ
p

Fmμ
p

H^
μ
(1)(kr) +

Gmμ
p

Hmμ
p

H^
μ
(2)(kr) for ap < r < ap + 1

Gmμ
q

Hmμ
q

H^
μ
(2)(kr) for r > aq

(1b)

In the above, Amν
p , Bmν

p , Cmν
p , Dmν

p , Emμ
p , Fmμ

p , Gmμ
p  and Hmμ

p  refer to
the unknown potential coefficients. Pl

m x  (l = ν, μ) are associated
Legendre functions of the first kind with order m and degree l.
H^

l
(1)

x  and H^
l
(2)

x  (l = ν, μ) are, respectively, the spherical Hankel
functions of the first and second kinds (Schelkunoff type) of order
l. All other symbols have the usual meanings. The electric and
magnetic fields can be obtained from (1a) and (1b) [19].

In addition to the boundary condition on the surface of the cone
[17], the boundary condition corresponding to the tangential
electric field should be enforced on the surface of the spherical cap.
The tangential electric field Eϕ at r = b is given by

Eϕ r = b = 1
jωεb sin θ ∑

m
∑

ν
k

Amν
0

Bmν
0 H^

ν
(1)′(kb)

+
Cmν

0

Dmν
0 H^

ν
(2)′(kb) Pν

m(cos θ) m cos(mϕ)
−m sin(mϕ)

+ 1
r ∑

m
∑

μ

Emμ
0

Fmμ
0 H^

μ
(1)(kb)

+
Gmμ

0

Hmμ
0 H^

μ
(2)(kb) d

dθ Pμ
m(cos θ) sin(mϕ)

cos(mϕ) = 0

(2)

From (2), the following two conditions are additionally enforced
corresponding to the transverse magnetic (TM) and transverse
electric (TE) modes:

Amν
0

Bmν
0 H^

ν
(1)′(kb) +

Cmν
0

Dmν
0 H^

ν
(2)′(kb) = 0 (3)

for the TM to r mode

Emμ
0

Fmμ
0 H^

μ
(1)(kb) +

Gmμ
0

Hmμ
0 H^

μ
(2)(kb) = 0 (4)

for the TE to r mode.
The magnetic and the electric vector potentials for b < r < a1

can, therefore, be written as

Ar = ∑
m

∑
ν

Amν
0

Bmν
0 Pν

m(cos θ) sin(mϕ)
cos(mϕ)

H^
ν
(1)(kr) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)(kr)

(5a)

and

Fr = ∑
m

∑
μ

Emμ
0

Fmμ
0 Pμ

m(cos θ) sin(mϕ)
cos(mϕ)

H^
μ
(1)(kr) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(kr)

(5b)

Fig. 1  Antenna configuration with loop antennas above and around a
conducting cone with a spherical cap
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To find the unknown coefficients in (1a) and (1b), the boundary
conditions for the tangential field components Eθ, Eϕ, Hθ and Hϕ
are applied on the loop. Equating Eθ at r = a1

− and r = a1
+,

multiplying both sides first by cos lϕ  and then by sin lϕ  and
integrating from 0 to 2π to eliminate the summation over m, we
obtain the following two equations:

k
jωε ∑

ν
Bmν

0 H^
ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1) d

dθ Pν
m cos θ

− m
sin θ ∑

μ
Emμ

0 H^
μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1) Pμ

m cos θ

= k
jωε ∑

ν
Bmν

1 H^
ν
(1)′ ka1 + Dmν

1 H^
ν
(2)′ ka1

d
dθ Pν

m cos θ

− m
sin θ ∑

μ
Emμ

1 H^
μ
(1)

ka1 + Gmμ
1 H^

μ
(2)

ka1 Pμ
m cos θ

(6a)

k
jωε ∑

ν
Amν

0 H^
ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1) d

dθ Pν
m cos θ

+ m
sin θ ∑

μ
Fmμ

0 H^
μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1) Pμ

m cos θ

= k
jωε ∑

ν
Amν

1 H^
ν
(1)′ ka1 + Cmν

1 H^
ν
(2)′ ka1

d
dθ Pν

m cos θ

+ m
sin θ ∑

μ
Fmμ

1 H^
μ
(1)

ka1 + Hmμ
1 H^

μ
(2)

ka1 Pμ
m cos θ

(m ≠ 0)

(6b)

Using the continuity of Eϕ at r = a1 and performing a similar
operation yields:

mk
jωε sin θ ∑

ν
Amν

0 H^
ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1) Pν

m cos θ

+∑
μ

Fmμ
0 H^

μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1) d

dθ Pμ
m cos θ

= mk
jωε sin θ ∑

ν
Amν

1 H^
ν
(1)′ ka1 + Cmν

1 H^
ν
(2)′ ka1 Pν

m cos θ

+∑
μ

Fmμ
1 H^

μ
(1)

ka1 + Hmμ
1 H^

μ
(2)

ka1
d
dθ Pμ

m cos θ

(7a)

and

− mk
jωε sin θ ∑

ν
Bmν

0 H^
ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1) Pν

m cos θ

+∑
μ

Emμ
0 H^

μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1) d

dθ Pμ
m cos θ

= − mk
jωε sin θ ∑

ν
Bmν

0 H^
ν
(1)′ ka1 + Dmν

p H^
ν
(2)′ ka1 Pν

m cos θ

+∑
μ

Emμ
0 H^

μ
(1)

ka1 + Gmμ
p H^

μ
(2)

ka1
d
dθ Pμ

m cos θ

m ≠ 0

(7b)

To eliminate the summation over ν, we multiply (6a) by sin θ,
differentiate with respect to θ and add the result with m × (7b) to
yield

∑
ν

Bmν
0 H^

ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1)

d
dθ sin θ d

dθ Pν
m cos θ − m2

sin θ Pν
m cos θ

= ∑
ν

Bmν
1 H^

ν
(1)′ ka1 + Dmν

1 H^
ν
(2)′ ka1

d
dθ sin θ d

dθ Pν
m cos θ − m2

sin θ Pν
m cos θ

m ≠ 0

(8)

Using the associated Legendre equation

d
dθ sin θ d

dθ Pν
m cos θ − m2

sin θ Pν
m cos θ

= − ν(ν + 1)sin θPν
m cos θ

(9)

multiplying both sides of (8) by Pλ
m cos θ , where Pλ

m cos θc = 0
and integrating from 0 to θc produces

Bmν
0 H^

ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1)

−Bmν
1 H^

ν
(1)′ ka1 − Dmν

1 H^
ν
(2)′ ka1 = 0 (m ≠ 0)

(10)

Similarly, (7a) is multiplied by m. The resultant equation is
subtracted from the equation obtained by multiplying (6b) by sin θ
and differentiating with respect to θ. Next, following similar steps
used as before for (10), we obtain:

Amν
0 H^

ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1)

−Amν
1 H^

ν
(1)′ ka1 − Cmν

1 H^
ν
(2)′ ka1 = 0 (m ≠ 0)

(11)

The two corresponding equations for TE modes generated using
the above procedure are given as follows:

Emμ
0 H^

μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1)

−Emμ
1 H^

μ
(1)

ka1 − Gmμ
1 H^

μ
(2)

ka1 = 0 (m ≠ 0)

(12)

Fmμ
0 H^

μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1)

−Fmμ
1 H^

μ
(1)

ka1 − Hmμ
1 H^

μ
(2)

ka1 = 0 (m ≠ 0)

(13)

Performing similar operations on the continuity equations for the
magnetic field over the first loop

Hθ(r = a1
−) − Hθ(r = a1

+) = − Jϕ
1 (14a)

Hϕ(r = a1
−) = Hϕ(r = a1

+) (14b)

we obtain the following four equations:

Amν
0 H^

ν
(1)(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)(ka1)

−Amν
1 H^

ν
(1)

ka1 − Cmν
1 H^

ν
(2)

ka1

= − ma1

πν ν + 1 Imν
∫
0

θc

Pν
m cos θ ∫

0

2π

Jϕ
1 cos mϕ dϕdθ

m ≠ 0

(15)
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where Imν = 1
(2ν + 1) sin θ

dPν
m cos θ

dθ
dPν

m cos θ
dν θ = θc

Bmν
0 H^

ν
(1)(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)(ka1)

−Bmν
1 H^

ν
(1)

ka1 − Dmν
1 H^

ν
(2)

ka1

= ma1

πν ν + 1 Imν
∫
0

θc

Pν
m cos θ ∫

0

2π

Jϕ
1 sin mϕ dϕ dθ

m ≠ 0

(16)

Fmμ
0 H^

μ
(1)′(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)′(ka1)

−Fmμ
1 H^

μ
(1)′ ka1 − Hmμ

1 H^
μ
(2)′ ka1

= jηa1

πμ μ + 1 Imμ
∫
0

θc

Pμ
m cos θ d

dθ sin θ∫
0

2π

Jϕ
1 cos mϕ dϕ dθ

m ≠ 0

(17)

where Imμ = − 1
(2μ + 1) sin θPμ

m cos θ
d2Pμ

m cos θ
dθ dμ θ = θc

Emμ
0 H^

μ
(1)′(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)′(ka1)

−Emμ
1 H^

μ
(1)′ ka1 − Gmμ

1 H^
μ
(2)′ ka1

= jηa1

πμ μ + 1 Imμ
∫
0

θc

Pμ
m cos θ d

dθ sin θ∫
0

2π

Jϕ
1 sin mϕ dϕ dθ

m ≠ 0

(18)

Eight equations similar to the above can be obtained by matching
the boundary conditions over the pth loop. They are not repeated
for the sake of brevity.

To evaluate the potential constants for m = 0, (6a) is multiplied
by sin θ and differentiated with respect to θ to produce

∑
ν

B0ν
0 H^

ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1)

d
dθ sin θ d

dθ Pν cos θ

= ∑
ν

B0ν
1 H^

ν
(1)′ ka1 + D0ν

1 H^
ν
(2)′ ka1

d
dθ sin θ d

dθ Pν cos θ

(19)

Next, using the same procedure as in (10) we get

B0ν
0 H^

ν
(1)′(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)′(ka1)

−B0ν
1 H^

ν
(1)′ ka1 − D0ν

1 H^
ν
(2)′ ka1 = 0

(20)

A similar operation is performed in (7a), which yields the
following:

F0μ
0 H^

μ
(1)(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)(ka1)

−F0μ
1 H^

μ
(1)

ka1 − H0μ
1 H^

μ
(2)

ka1 = 0

(21)

Two corresponding equations are also produced from the magnetic
field continuity equations (14a) and (14b) for m = 0 as follows:

B0ν
0 H^

ν
(1)(ka1) −

H^
ν
(1)′(kb)

H^
ν
(2)′(kb)

H^
ν
(2)(ka1)

−B0ν
1 H^

ν
(1)

ka1 − D0ν
1 H^

ν
(2)

ka1 = 0

(22)

F0μ
0 H^

μ
(1)′(ka1) − H^

μ
(1)(kb)

H^
μ
(2)(kb)

H^
μ
(2)′(ka1)

−F0μ
1 H^

μ
(1)′ ka1 − H0μ

1 H^
μ
(2)′ ka1

= jηa1

2πμ μ + 1 I0μ
∫
0

θc

Pμ cos θ d
dθ sin θ∫

0

2π

Jϕ
1 dϕ dθ

(23)

The current Jϕ
p on the pth loop in the above can be expressed as

follows, using the thin-loop approximation:

Jϕ
p = 1

ap
∑

m′ = 0

∞
Im′

p cos m′ϕ δ θ − θp (24)

where Im′
p  are the unknown current harmonics and δ θ  is the Dirac-

delta function.
Using (24), the right-hand side (RHS) of (16) and (18) can be

evaluated to be zero while that of (15) is given by

Umν
1 = − mIm

1

ν ν + 1 Imν
Pν

m cos θ1 (m ≠ 0) (25)

For (17), (23), using (24) the RHS can be evaluated to be

Vmμ
1 = − jηIm

1

μ μ + 1 Imμ
sin θ1

d
dθ Pμ

m cos θ
θ = θ1

(∀m) (26)

Using (10), (12), (16), (20), (22) and (18), it is observed that
Bmν

0 = Bmν
1 = Dmν

1 = 0 (∀m) and Emμ
0 = Emμ

1 = Gmμ
1 = 0 (m ≠ 0). To

compute the constants Amν
0 , Amν

1  and Cmν
1  (m ≠ 0), (11) is multiplied

by Hν
(2)

ka1 . The result is subtracted from (15) × Hν
(2)′ ka1 . Next,

using the Wronskian relationship

H^
ν
(1)

ka1 H^
ν
(2)′ ka1 − H^

ν
(1)′ ka1 H^

ν
(2)

ka1 = − 2j (27)

yields

2Amν
0 − 2Amν

1 = jUmν
1 H^

ν
(2)′ ka1 (28)

The following equation can also be derived in a similar manner
from (11) and (15), using (27):

ζ′Amν
0 − 2Cmν

1 = − jUmν
1 H^

ν
(1)′ ka1 (29)

where ζ′ = − 2
H^

ν
(1)′(kb)

H^
ν
(2)′(kb)

. Following the above procedure, the four

sets of equations below (30)–(33) can also be derived for the
intermediate (pth) and last loops, using (27):

2Amν
p − 1 − 2Amν

p = jUmν
p H^

ν
(2)′ kap (for the pth loop) (30)

2Amν
p − 1 − 2Cmν

p = − jUmν
p H^

ν
(1)′ kap (for the pth loop) (31)

2Amν
q − 1 = jUmν

q H^
ν
(2)′ kaq (for the qth loop) (32)

2562 IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 14, pp. 2559-2568
© The Institution of Engineering and Technology 2019



2Cmν
q − 1 − 2Cmν

q = − jUmν
q H^

ν
(1)′ kaq (for the qth loop) (33)

From (28)–(33), the constants Amν
l  and Cmν

k  are evaluated as

[Amν
0 , …, Amν

q − 1, Cmν
1 , …, Cmν

q ]T = Pmν Im (34)

where

Pmν = X −1 U′mν (35)

(see (36)) 

U′mν = diag

H^
ν
(2)′ ka1 Umν

′1

−H^
ν
(1)′ ka1 Umν

′1

⋮
H^

ν
(2)′ kap Umν

′p

−H^
ν
(1)′ kap Umν

′p

⋮
H^

ν
(2)′ kaq Umν

′q

−H^
ν
(1)′ kaq Umν

′q

, Umν
′p = jUmν

p /Im
p (37)

and

Im = [Im
1 Im

1 . . . Im
q Im

q ]T (38)

Similarly, the constants Fmμ
l  and Hmμ

k  are evaluated as

Fmμ
0 , …, Fmμ

q − 1, Hmμ
1 , …, Hmμ

q T = Qmμ Im (39)

where

Qmμ = Y −1 V′mμ (40)

with
(see (41)) 

with ζ = − 2H^
μ
(1)(kb)

H^
μ
(2)(kb)

V′mμ = diag

−H^
μ
(2)

ka1 Vmμ
′1

H^
μ
(1)

ka1 Vmμ
′1

⋮
−H^

μ
(2)

kap Vmμ
′p

H^
μ
(1)

kap Vmμ
′p

⋮
−H^

μ
(2)

kaq Vmμ
′q

H^
μ
(2)

kaq Vmμ
′q

, Vmμ
′p = jVmμ

p /Im
p (42)

Now, using the expression for the scattered field Eϕ ai, θ′i, ϕ  and
enforcing that the tangential electric field vanishes on the surface
of the ith loop, we obtain

k
jωε ∑

m
∑

ν
Amν

i H^
ν
(1)′ kai + Cmν

i H^
ν
(2)′ kai

m cos mϕ Pν
m cos θ′i

+sin θ′i∑
m

∑
μ

Fmμ
i H^

μ
(1)

kai + Hmμ
i H^

μ
(2)

kai

cos mϕ d
dθ Pμ

m cos θ θ = θi′ = − Viδ ϕ

(43)

where

θi′ = θi − tan−1 wi
ai

(44)

with ai being the radius of the ith loop; wi the wire radius; and Vi
the impressed voltage on the ith loop.

Multiplying (43) by cos lϕ  and integrating from 0 to 2π and
using (34) and (39), we obtain

∑
p = 1

q
Zm

ipIm
p = − Vi

1 + δm0 π (45)

where

X =

2 −2 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0
ζ′ 0 ⋯ 0 0 ⋯ 0 −2 ⋯ 0 0 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 2 −2 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0
0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 2 −2 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 2 0 ⋯ 0 0 ⋯ 0 0
0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 2 −2

(36)

Y =

2 −2 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0
ζ 0 ⋯ 0 0 ⋯ 0 −2 ⋯ 0 0 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 2 −2 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0
0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 2 −2 ⋯ 0 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ 2 0 ⋯ 0 0 ⋯ 0 0
0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 2 −2

(41)

IET Microw. Antennas Propag., 2019, Vol. 13 Iss. 14, pp. 2559-2568
© The Institution of Engineering and Technology 2019

2563



Zm
ip = − jη∑

ν
H^

ν
(1)′ kai Pmνi + 1, 2p + Pmνi + 1, 2p − 1

+H^
ν
(2)′ kai Pmνi + q, 2p + Pmνi + q, 2p − 1 mPν

m cos θ′i

+sin θ′i∑
μ

H^
μ
(1)

kai Qmμi + 1, 2p + Qmμi + 1, 2p − 1

+H^
μ
(2)

kai Qmμi + q, 2p + Qmμi + q, 2p − 1
d
dθ Pμ

m cos θ θ = θ′i

(46)

In (46), Pmνx, y and Qmμx, y refer to the entries in the matrices Pmν

and Qmμ , respectively.
The unknown loop currents in the other loops can be obtained

from

Zm
11 Zm

12 ⋯ Zm
1q

Zm
21 Zm

22 ⋯ Zm
2q

⋮ ⋮ ⋱ ⋮
Zm

q1 Zm
q2 ⋯ Zm

qq

Im
1

Im
2

⋮
Im

q

= −1
1 + δm0 π

V1

V2

⋮
Vq

(47)

The radiated far-field components Eθ and Eϕ are given by

Eθ r, θ, ϕ = η
jr ∑

m
∑

ν
Cmν

q H^
ν
(2)′(kr) d

dθ Pν
m(cos θ) sin(mϕ)

+ 1
r sin θ ∑

m
∑

μ
mHmμ

q H^
μ
(2)(kr)Pμ

m(cos θ)sin(mϕ)
(48)

Eϕ r, θ, ϕ = η
jr sin θ ∑

m
∑

ν
mCmν

q H^
ν
(2)′(kr)Pν

m(cos θ)cos(mϕ)

+ 1
r ∑

m
∑

μ
Hmμ

q H^
μ
(2)(kr) d

dθ Pμ
m(cos θ) cos(mϕ)

(49)

The above full-wave technique considers all scattered higher-order
modes in the formulation. In addition, compared to the finite
element technique used for the analysis of conformal antennas on
conical and spherical structures in [20], the above methodology
avoids discretisation of the computational domain using volumetric
elements that is a computationally intensive procedure. The method
is also more efficient than the method of moment-based approach
used in [21] for the analysis of scattering from a conducting conical
shell that approximates the entire conical surface with triangular
patch elements. This necessitates the determination of unknown
induced currents on each patch that greatly increases the number of
unknowns to be determined. The proposed technique is also
advantageous over the finite difference time-domain-based (FDTD)
approach used for the analysis of a biconical antenna in [22], with
the conical surface approximated by a Yee FDTD mesh, together
with an appropriate absorbing boundary condition for grid
truncation with the fields evolving in a leap-frog time marching
scheme. This needs considerable CPU time and memory
overheads. The near-to-far-field transformation has to be also
applied for computation of the far-field pattern and requires post-
processing of the time-domain fields.

3 Results
The above formulation was used to evaluate the reflection
coefficient of a loop antenna above the cone tip. It was also used to
investigate the mutual coupling effect of a parasitic loop placed
adjacent to the primary loop.

The reflection coefficient of a single-loop antenna above the
cone tip with varying radius of the loop is shown in Fig. 2 and
compared with an isolated loop antenna in free space. In this
figure, the loop is located at a height of z1 = 2.1 cm above the cone
tip with an exterior angle of θc = 165° and a fixed spherical cap
radius of b = 1.5 cm. The loop wire diameter is dw = 1 mm, with
an excitation voltage of 1 V at ϕ = 0°. It is seen that the loop can
be matched over a wide range of frequencies from 2.25 GHz,
corresponding to the loop resonant frequency for a loop radius of

r1 = 2.3 cm to 5.65 GHz corresponding to a loop radius of
r1 = 0.9 cm. The optimum reflection coefficient is obtained for a
loop radius of r1 = 1.5 cm at 3.37 GHz with the reflection
coefficient improving steadily for r1 = 0.9 cm to the optimum loop
radius and degrading steadily beyond r1 = 1.5 cm. It is also
observed that the matching characteristics of the isolated loop
antenna in free space are quite poor.

The computed results are compared with the simulated and
measured results for r1 = 1.5 cm. The simulations were done using
the high-frequency structure simulator (HFSS) [23]. A finite
conductivity of copper of 5.8 × 107 Siemens/m was used in the
simulations. A length of 7λ for the cone was also considered in the
simulation and measurements. For the measurement, the loop was
fed through a coaxial cable through a narrow cut in the loop. An
excellent agreement is observed between the computed, simulated
and measured results. The magnitude of the excited current
harmonics in the loop is shown in Fig. 3 for r1 = 0.9, 1.5, 1.5 cm. 
A strong excitation of the first harmonic is observed with the
strongest excitation for the optimum loop radius of r1 = 1.5 cm.

The effect of the loop wire diameter on the reflection coefficient
is shown in Fig. 4 for r1 = 1.5 cm. Simulated results are shown in
Fig. 4 since the formulation uses the thin-loop approximation. It is
observed that the level of matching gradually degrades with the
matching characteristics below  − 15 dB and the resonant frequency
of the loop almost unchanged till dw = 3 mm. Thereafter, a slight

Fig. 2  Reflection coefficient characteristics of a single-loop antenna
above the cone with spherical cap with change in loop radius and
comparison with an isolated loop antenna in free space: θc = 165°,
b = 1.5 cm, z1 = 2.1 cm

 

Fig. 3  Current harmonic excitation for the loop current for the case of
Fig. 2 for r1 = 0.9, 1.5, 2.3 cm and an isolated loop antenna at resonance
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right shift in the resonant frequency is observed with the reflection
coefficient at 11.6 dB for dw = 5 mm. The results are also
compared with an isolated loop antenna in free space.

The convergence characteristics for the computation of
reflection coefficient are shown in Fig. 5 with respect to the
number of current harmonics and the eigenmodes of the composite
structure. It is observed from Fig. 5a that 8 current harmonics are
required for convergence, considering 35 eigenmodes. Fig. 5b
shows the convergence characteristics with the number of
eigenmodes using eight current harmonics. Convergence in the
results is observed for the number of eigenmodes: Nν = 35,
Nμ = 35. The convergence characteristics of the current
formulation depend on the loop wire radius that determines the
distance between the source and the field points. The ϕ-directed
loop current source is assumed to be located along the central axis
of the loop according to (24), while the scattered field in (43) is
computed on the loop surface when the tangential electric field

over the loop surface is enforced to be zero. As such, with smaller
loop wire diameter, the source and the field points approach closer.
It is observed that for the loop wire diameter dw = 1 mm,
convergence is achieved with eight current harmonics and the
number of eigenmodes: Nν = 35, Nμ = 35. On reducing the loop
wire diameter to dw = 0.5 mm, it is found that Nν = 65, Nμ = 65
eigenmodes are needed for convergence. For a wire diameter
dw ≤ 0.4 mm, no convergence is achieved. For the computation,
the code was written in MATLAB R2018b and run on an Intel(R)
Core(TM) i7-7700 CPU with 16 GB of RAM and 3.60 GHz clock
speed. The average time taken by the code to compute the
reflection coefficient at a single frequency point was 0.19 s.
Correspondingly, the average time taken by HFSS to compute the
results for the same structure was 25.70 s at a single frequency
point, using a lambda refinement of 0.3 and Δs = 0.02. The peak
RAM utilisation by HFSS was 4.2 GB.

The radiation characteristics of the antenna configuration for
the loop radius of r1 = 1.5 cm at ϕ = 90° at 3.37 GHz are shown in
Fig. 6 and compared with the simulated results of an isolated loop. 
A higher directivity is obtained for the current configuration

Fig. 4  Variation in reflection coefficient characteristics of the single-loop
antenna above the cone with spherical cap with change in loop wire
diameter for r1 = 1.5 cm and comparison with an isolated loop antenna in
free space. Other parameters same as in Fig. 2

 

Fig. 5  Convergence in the reflection coefficient with
(a) Number of current harmonics, (b) Eigenmodes for the composite structure for the
case of r1 = 1.5 cm in Fig. 2

 

Fig. 6  Computed, simulated and measured radiation patterns for the case
of Fig. 2 for the loop antenna radius of r1 = 1.5 cm at resonance
(a) Eθ and Eϕ patterns at ϕ = 90°, (b) 3D − Eθ pattern, (c) 3D − Eϕ pattern
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compared with the isolated loop, with the 3 dB pattern beamwidths
for the current configuration and the isolated loop being 62° and
76°, respectively. The pattern is also typical of the first harmonic
excitation in the loop current with Eθ as the radiation co-pol. It can
also be observed that the cross-polar component Eϕ is not affected
by the presence of the cone with cap. The measured gain for the
antenna configuration was at 7.69 dBi. The measured efficiency of
the antenna was 97.40% that compare well with the simulated
efficiency of 98.83%. The efficiency characteristics for the
subsequent cases discussed are essentially similar to the above
values and as such not repeated for brevity.

A photograph of the fabricated antenna prototype and the
measurement setup is shown in Fig. 7. For the measurement, the
loop was placed over foam to minimise scattering effects.

Next, in order to address the relatively poor matching
characteristics at higher frequencies for the loop radius of
r1 = 0.9 cm, the position of the loop is varied to improve the
impedance match. The matching characteristics in Fig. 8 show that
for the optimum loop height of z1 = 1.9 or 1.7 cm above the
spherical cap, the reflection coefficient can be improved to below
−18 dB. The computed, simulated and measured results are
compared for the case z1 = 1.9 cm. An excellent agreement is
observed. The fundamental loop harmonic is strongly excited, as
previously, with the pattern characteristics essentially similar to the
previous case, and, as such, not repeated for brevity. The measured
gain in this case is at 7.81 dBi at the resonant frequency of 5.54 
GHz.

Next, it is investigated that if the reflection coefficient
characteristics for lower frequencies could be improved. The loop
radius of r1 = 2.3 cm is considered corresponding to the poorest
reflection coefficient characteristics. The reflection coefficient
characteristics for the above case are shown in Fig. 9. It can be
observed that an optimum match is obtained for the loop antenna
height of z1 = 1.0 cm, with an improvement in match from

z1 = 2.5 to 1.0 cm. The gain is measured at 5.40 dBi for z1 = 1.0 cm
at 2.22 GHz.

To extend the range of matching characteristics for the loop and
the validity of the proposed method, values of loop radius outside
the range shown in Fig. 2 are next chosen. Fig. 10 shows the
impedance matching characteristics for a loop radius of r1 = 0.5 cm
that is beyond the higher-frequency range in Fig. 2. An
improvement in the matching characteristics is steadily observed
with an increase in loop height, with an optimum match obtained
for a loop height of z1 = 1.7 cm, beyond which the matching
characteristics degrade. A very good agreement is observed
between the computed, simulated and measured results for the
optimum loop location of z1 = 1.7 cm. The measured gain at the
resonance frequency of 10.06 GHz is at 8.12 dBi. It is thus seen
that the matching range could be very significantly extended for
the loop above the cone using the spherical cap on the higher-
frequency side, by varying the loop height above the cap.

To demonstrate the technique for larger loop sizes than
considered in Fig. 2, a loop radius of r1 = 3.3 cm is considered,
corresponding to about 43% increase over the loop radius of
r1 = 2.3 cm in Fig. 2. The reflection coefficient characteristics are
shown in Fig. 11. The best matching characteristics are observed at
a loop location of z1 = 1.5 cm corresponding to a resonant dip of
about  − 10 dB at 1.3 GHz, corresponding to the excitation of the
first current harmonic. However, the matching characteristics could
not be improved further with the vertical placement of the loop. To
facilitate the matching, the radius of the spherical cap is varied for
the optimum loop location of z1 = 1.5 cm. Fig. 12 shows that the
matching is significantly enhanced to about 22.64 dB at a cap
radius b = 2.3 cm corresponding to the first current harmonic. In
addition, for a cap radius of b = 2.7 cm, the matching
characteristics at both 1.24 and 3.01 GHz are improved
corresponding to the excitation of the first and second current
harmonics. The mode excitation for the loop antenna at the first

Fig. 7  Fabricated antenna prototype with measurement setup
 

Fig. 8  Reflection coefficient characteristics of a single-loop antenna
above the cone with spherical cap with change in loop height for
r1 = 0.9 cm in Fig. 2. Other parameters same as in Fig. 2

 

Fig. 9  Reflection coefficient characteristics of a single-loop antenna
above the cone with spherical cap with change in loop height for
r1 = 2.3 cm in Fig. 2. Other parameters same as in Fig. 2

 

Fig. 10  Reflection coefficient characteristics of a single-loop antenna
above the cone with spherical cap with change in loop height for
r1 = 0.5 cm. Other parameters same as in Fig. 2
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and second current harmonics for the dual-band operation for
b = 2.7 cm is shown in Fig. 13. 

The radiation characteristics corresponding to a spherical cap
radius of b = 2.7 cm at 1.24 and 3.01 GHz are shown in Fig. 14. 
The pattern at the lower resonant band corresponding to the first
harmonic loop current is similar to Fig. 6. The pattern
characteristics at the higher resonant band are characteristic of the
second harmonic with Eϕ and Eθ as the co- and cross-polar
components, respectively, at ϕ = 90°. In addition, a monopole-like
pattern with a null at θ = 0° is observed that is due to the
contributions of both TE to r and TM to r terms vanishing at
boresight for the second harmonic. The measured gains at 1.24 and
3.01 GHz are at 2.46 and 6.98 dBi, respectively.

The effect of a neighbouring parasitic loop on the performance
of an excited loop antenna in the vicinity of the conducting cone
with cap is next characterised. The situation can be practically
useful in an attempt to obtain minimum interference for the excited
loop when the parasitic loop is placed in proximity due to a change
in operating frequency/dimensions of the excited loop. Fig. 15a
shows the effect of coupling with a neighbouring loop on the
matching characteristics of the primary loop, for a primary loop of
radius r1 = 1.5 cm. Other parameters are the same as in Fig. 2. The
parasitic loop is located at the same height z2 = 2.1 cm as the
excited loop as its radius is varied. It is observed that matching
characteristics better than  − 10 dB for the primary loop are
obtained for the parasitic loop radius of r2 ≤ 1.3 and ≥ 1.6 cm.

The variation in the reflection coefficient characteristics of the
primary loop with the variation in the height of the parasitic loop is
shown in Fig. 15b, for similar dimensions r1 = r2 = 1.5 cm of the
excited and parasitic loops. The excited loop is placed at
z1 = 2.1 cm as in Fig. 2. The mutual coupling due to the parasitic
loop is observed to be more dominant for 1.1 cm ≤ z2 ≤ 3.6 cm
beyond which the matching characteristics of the primary loop
improves over  − 10 dB.

4 Conclusion
A full-wave analysis of a composite structure comprising of a
conducting cone with a spherical cap placed in the vicinity of a
loop antenna is performed taking into account all excited current
harmonics and eigenmodes in the composite structure. It is
observed that the effect of the cap is to enhance the coupling of the
loop antenna located above the cone tip with the cone body
together with the impedance match to the loop antenna, which can
be used to realise a number of efficient antenna configurations.
Besides, enhancing the matching characteristics of an isolated loop,
the current configuration presents a greater degree of freedom and
flexibility compared with the loop around a conducting cone in
[17], with enhanced matching over a wide range of loop radius and
location. The antenna configuration also facilitates placement of
the loop antenna above the cone tip compared with [17], potentially

Fig. 11  Reflection coefficient characteristics of a single-loop antenna
above the cone with spherical cap with change in loop height for
r1 = 3.3 cm. Other parameters same as in Fig. 2

 

Fig. 12  Reflection coefficient characteristics of a single-loop antenna
above the cone with spherical cap with change in cap radius for
r1 = 3.3 cm, z1 = 1.5 cm, θc = 165°

 

Fig. 13  Current harmonic excitation for the loop current for r1 = 3.3 cm,
z1 = 1.5 cm, b = 2.7 cm at first and second resonances in Fig. 12

 

Fig. 14  Computed, simulated and measured radiation patterns at ϕ = 90°
in Fig. 12 for b = 2.7 cm at the first and second resonances
(a) Pattern at first resonance at 1.24 GHz, (b) Pattern at second resonance at 3.01 GHz
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enhancing signal transmission/reception and reducing interference
and RF exposure on neighbouring areas together with reduced
interference and scattering with the vehicle body for vehicular
applications. The effect of mutual coupling of a parasitic loop on
the matching characteristics of the primary excited loop is also
thoroughly characterised. An excellent agreement is observed
between the computed, simulated and measured results.
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