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Abstract 
 

Predicting protein structure from its sequence (especially in the absence of structure 

templates) and deduction of biological function from structure remains a significant and 

unsolved problem. Much progress in ab initio (i.e. template-free) modeling of protein structure in 

recent years is due to the introduction of deep learning predicted inter-residue contacts and, even 

more recently, inter-residue distances. 

We present D-QUARK, an ab initio protein folding algorithm guided by residue-residue 

distances and orientations predicted by deep learning. The D-QUARK pipeline is distinct from 

existing protein folding programs in the following aspects. Firstly, for a target sequence, it 

generates a high quality multiple sequence alignment (MSA) with deep and diverse sequence 

homolog alignment using the in-house DeepMSA algorithm. Secondly, to generate input features 

for deep learning prediction of distances and orientations from the MSA, raw coevolution 

features are extracted in the form of a covariance matrix and pseudo-likelihood maximization 

parameters, rather than traditional post-process coevolutionary features. Thirdly, the distance and 

orientation potentials are incorporated into a comprehensive replica-exchange Monte Carlo 

(REMC) simulation with a uniquely designed flat well potential for ab initio protein folding. The 

high quality MSA, accurate deep learning prediction, and REMC simulation with carefully 

designed energy terms all contribute to the high performance of D-QUARK. In terms of the first 

model TM-score, D-QUARK outperforms our previous ab initio protein folding algorithm by 

QUARK by 108.8% and two state-of-the-art distance-based structure prediction programs, 

DMPfold and trRosetta, by 22.9% and 11.4 %, respectively. In a post-CASP experiment, D-



 xvii 

QUARK achieves 8.1% higher first model TM-score on CASP13 FM target proteins than 

AlphaFold.  

To annotate protein functions, including Gene Ontology (GO) terms, Enzyme 

Commission (EC) numbers, and ligand binding sites, from a predicted structure model, we 

developed COFACTOR. COFACTOR combines functional templates identified by structure 

alignment against the target structure model as well as sequence homologs and protein-protein 

interaction partners to derive consensus function annotations. COFACTOR was blindly tested in 

the community-wide CAFA3 function annotation challenge and was ranked among the top 

groups. 

The structure and function prediction pipeline developed in this thesis was applied to 

proteome-wide annotation projects for several model organisms, including human and the JCVI-

syn3.0 minimal bacterial genome, where our pipeline reveals previous uncharacterized proteins 

with important functions. Overall, we showed the impact of deep learning on protein structure 

and function prediction, and demonstrated its utility for reliable and scalable modeling. 
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Chapter 1 Introduction to Protein Structure and Function Prediction1 
 
1.1 Introduction to Protein Structure Prediction 

Proteins are the direct carrier of most biological functions necessary to sustain life. These 

diverse functions, ranging from enzymatic catalysis to biological pathway regulation and 

constitution of cellular structural component, are dictated by the unique 3D structures adopted by 

different protein molecules. Ever since the Anfinsen experiment in the 1970s showing that the 

protein tertiary structure is determined by its amino acid sequence1, the protein sequence-

structure-function paradigm has become one of the central theme in protein bioinformatics. Due 

to the extensive genome- and metagenome-wide sequencing efforts fueled by continuous 

development of new sequencing over the past decades, the number of protein sequences, most of 

which are translated from their nucleotide sequences, has exceeded 180 million as of UniProt 

database version 2020_042. However, the rapid accumulation of sequences of proteins does not 

immediately translate into our deepen understanding of their biological functions, which are 

essentially encoded by their 3D structures.  

The three most common approaches for protein structure experimental determination are 

X-ray crystallography3, NMR spectroscopy4, and cryo-electron microscopy5. Each of these 

methods is associated with significant human effort and expenses. Consequently, the growth in 

the number of solved protein structures is nowhere close to the explosion of protein sequences. 

As of September 16, 2020 for example, the Protein Data Bank6 (PDB) database only host only 
 

 

1 The first part of this chapter is adapted from a review article under submission, entitled “Toward the solution of the protein 
structure prediction problem” by R Pearce, C Zhang, and Y Zhang. 
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0.17 million structures, many of which are redundant. This accounts for less than 0.1% of the 

total sequences in the UniProt7. This percentage was 0.7% in 2010 and 2% in 2004. Figure 1 

illustrates the ever increasing gap between the number of known protein sequences and 

experimentally solved protein structures in the past decade. 

 
Figure 1. Number of protein sequences (in log-scale) in UniProt and Swiss-Prot (the subset of UniProt with manual 
function annotation), and the number of structures in PDB. The drop in the number of UniProt sequence in 2015 is 
due to the UniProt proteome redundancy reduction efforts in 2015 
(https://www.uniprot.org/help/proteome_redundancy), where UniProt entries for the same protein from different 
strains of the same species are combined into a single UniProt entry.  

 

Fortunately, thanks to the collective efforts from the bioinformatics community over the 

last few decades8-24, an increasing portion of proteins in organisms are able to have their 3D 

structures reliably modeled by computational approaches25-32. Numerous high-quality structural 

models are being created every day by online structure prediction systems23,33-45, some of which 

are developed by our lab46,47. These computational models are routinely used in various 

biomedical studies, such as structure-based protein function annotation48-59, mutation analysis60-

66, ligand screening67-72, and drug discovery73-83. Thus, the development of high-accuracy protein 
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structure prediction algorithms represents perhaps the most promising, yet challenging, approach 

to enclose the gap between the number of known protein sequences and determined structures. 

Approaches for protein structure prediction, also referred to as protein folding, can be 

roughly classified into template-based modeling (TBM) and template-free modeling (FM). TBM 

methods refine initial models constructed by copying coordinates and spatial restraints from 

structurally determined proteins, called templates, identified from the PDB. The accuracy of 

TBM is therefore contingent on the identification of templates with similar topology to the target 

protein and the correct template-target alignment. The alignment is often dependent on the 

evolutionary distances between the query and templates. For proteins with sequence identities 

(seqID) >50% to the templates, for example, models produced by TBM can have up to 1 Å 

RMSD for the backbone atoms. For proteins with 30-50% seqID, the models often have ~85% of 

the core regions within an RMSD of 2-5 Å to the native structure. However, when seqID drops 

below 30% (the Twilight Zone84), modeling accuracy sharply decreases due to alignment errors 

and the lack of significant template hits85-87. Despite this drop off in accuracy, in theory, the 

protein structure prediction problem could be solved using TBM if algorithms were able to 

identify and correct align the best templates from the PDB library88. Nevertheless, this has yet to 

be achieved in practice89. 

Unlike TBM methods, FM methods, also called ab initio or de novo modeling, have been 

traditionally used to model proteins for which homologous templates cannot be identified from 

the PDB library. Note although the phrase “ab initio” usually refers to quantum chemistry 

calculation in cheminformatics, in protein structure prediction, any approach not dependent on 

full length template can be considered “ab initio”. Since FM methods do not use global template 

information, they traditionally rely on physics- and/or knowledge-based energy functions and 
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extensive sampling procedures to construct protein structure models14,90. Due to the inherent 

inaccuracies associated with these procedures, FM has not yet achieved the same accuracy as 

TBM. However, recently the field has witnessed a remarkable achievement in that, for the first 

time, the performance gap between TBM and FM has been greatly narrowed by incorporation of 

deep learning predicted residue-residue contacts and distances in FM folding simulations. This 

approach resulted in the successful folding of 80% of “hard” proteins that lacked significant 

homologous templates in the PDB in the most recent Critical Assessment of Structure Prediction 

(CASP), a community-wide challenge of protein structure prediction techniques91, compared to 

an average of just 26.7% in the previous CASP rounds92-95. 

The remaining sections of this chapter will review the history of TBM and FM 

approaches, with particular emphasis on the impact of contact/distance prediction on structure 

prediction. We will also introduce several representative state-of-the-art protein structure 

predictors.  

 

1.1.1 A brief history of protein structure prediction before the introduction of contact and 

distance map prediction 

TBM History 

The first published work on protein structure prediction was by Browne et al., who built 

in 1969 a model for bovine α-lactalbumin by manual sequence alignment between the target 

protein and the experimentally determined chicken egg-white lysozyme96. The hypothesis 

underlying the study, which has since become an important idea in the majority of TBM 

methods, was that two proteins sharing high sequence similarity should be structurally similar. 

Although this early attempt implemented a rudimentary approach, it illustrated the four key steps 
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of TBM methods: (1) detection of experimentally solved protein structures (templates) related to 

the target protein to be modeled, (2) alignment of the target to the templates, (3) construction of 

the initial structure by copying the aligned regions, and (4) filling of unaligned regions and 

refinement of the overall structure. 

The case discussed above for bovine α-lactalbumin is a specific case of TBM called 

homology modeling or comparative modeling, which typically can be used when the sequence 

identity between the template and protein of interest is ≥30%. This makes it significantly easier 

to identify high quality templates and produce reliable alignments using simple sequence-

sequence alignment algorithms. Such algorithms include well-established methods developed in 

the 1970s and 1980s that utilize dynamic programming, such as the Needleman-Wunsch global 

alignment97 and the Smith-Waterman local alignment98 algorithms. Given the target-template 

alignment, a structure model can be constructed by copying coordinates from the aligned region 

and refining the overall structure. One of the most often used program for this purpose is 

MODELLER developed by Sali and Blundell13. MODELLER builds structure models by optimal 

satisfaction of template-derived spatial restraints together whether generic structural constraints 

such as ideal bond lengths and bond angles.  

Since the accuracy of TBM sharply declines when the target-template seqID falls below 

30%, a more sophisticated alignment approach called “threading”, which goes beyond simple 

pairwise sequence alignment, is needed. The concept of threading, or “fold recognition”, was 

first proposed by Bowie et al. in 199111. In this work, the 3D structure of a template was 

represented by a 1D profile of local structural features. Since local structure features are more 

conserved than the sequence itself, they could be detected and aligned by distant homology 

target proteins with similar local structure but divergent sequences using dynamic programming. 
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The local structure features used by Bowie et al. were mainly computed from solvent 

accessibility and secondary structures. Later studies also include sequence profiles in addition to 

local structure features to further improve threading99-101. A sequence profile is typically built by 

PSI-BLAST102 or HHblits103, which searches the target protein sequence through a protein 

sequence database such as NR or UniRef to construct a multiple sequence alignment (MSA) of 

target protein and its sequence homologs; the sequence profile therefore records the composition 

of different types of amino acids at each position and is usually in the form of a position specific 

scoring matrix (PSSM) in PSI-BLAST or a hidden Markov Model (HMM) in HHblits103.  

As a side note, although “fold recognition” originally only refers to alignment-based 

threading methods, the concept has since been expanded to also include an unrelated branch of 

alignment-free template detection methods. These non-threading-based fold recognition methods 

typically performs machine learning to identify templates similar to the target without an explicit 

pairwise target-template alignment104-106. Therefore, they cannot be directly used to construct the 

3D coordinates of the target protein, but are instead used for assignment of structure families to 

target proteins. Therefore, they will not be further discussed here. 

The use of less reliable template alignment for threading of distant- and non-homology 

modeling targets necessitate the development of more effective template assembly and 

refinement methods that can tolerate alignment errors and large gaps. An early successful 

program for this purpose is TASSER27. Developed in the early 2000’s by Zhang et al, TASSER 

extracts contiguous fragments from threading aligned regions of multiple threading templates to 

re-assemble them by structure assembly simulations. For computational efficiency, the unaligned 

regions are assembled using a lattice-based FM approach. In addition to template restraints, 

TASSER also includes several statistical energy terms such as hydrogen bonding and side-chain 
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interactions to guide its parallel hyperbolic Monte Carlo simulations. The simulation generates 

thousands of conformations, called “decoys”, which are clustered by structure similarity to select 

the centroid of the largest cluster for additional refinement. A critical factor for the success of 

TASSER is its use of multiple templates rather than a single best scoring template. While 

rigorous theoretical studies to explain the consistent improvement resulting from combination of 

multiple structures was not available until many years later107, its intuition can draw parallel 

from the famous “Anna Karenina principle”: “All happy families are alike; each unhappy family 

is unhappy in its own way.”. Indeed, all correct templates should be structurally similar; while 

each incorrect template is incorrect in its own way. Since there are many more ways for 

threading to go wrong than to get a correct answer, it is much more common to get a consensus 

correct alignment than multiple consistent but incorrect alignments108. More recently developed 

TBM approaches such as RosettaCM109, Phyre2110, and our I-TASSER46,111-114 algorithm, also 

combine constraints from multiple templates. For example, I-TASSER extends TASSER15,16,115 

by performing an additional structure re-assembly simulation on cluster centroids using 

constraints from templates and cluster models combined with the inherent knowledge-based 

potential. 

 

FM History 

Unlike TBM, FM approaches fold protein without the use of global template. The earliest 

attempts at FM focus on refinement of experimental structures to improve their physical 

characteristics. For example, in 1989, Levitt et al. applied steepest descent to energy-minimize 

crystallography structures of myoglobin and lysozyme, using an empirical energy function for 

typical bond length, bond angle, dihedral angle, and van der Waals interactions together with 
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restraints from the initial experimental structures116. A similar energy function was used in 1977 

by Karplus’ group to study the motion of the bovine pancreatic trypsin inhibitor using molecular 

dynamics (MD) simulation10. Since then, various MD force fields and packages have been 

developed including AMBER117-119, CHARMM120-122, OPLS123,124, and GROMOS96125. Despite 

their different parameterizations, most of these potentials share similar functional form to the 

original potential developed by Levitt et al. in 1969. Although empirical force field-based MD is 

useful for full atomic structure refinement, it is not yet able to consistently fold protein structure 

starting from sequence, apart from isolated cases of short and fast folding proteins. One reason 

for the limitation is that, since MD solves Newton’s second law for all atoms in every simulation 

step to determine their motion, it is very computational expensive. This is perhaps best illustrated 

by the first successful MD-based protein structure prediction in 1998 by Duan and Kollman for a 

small peptide of only 36 amino acids, which took 2 months CPU time to achieve a resolution of 

4.5 Å119. Sampling efficiency is not the only limitation of MD. For example, in 2012, DE Shaw’s 

group applied Anton, the most powerful supercomputer for MD, and the latest CHARMM 

empirical force field to refine structure models of 25 CASP targets using ultra-long MD 

simulation (>100 μs for each molecule)126. The majority of their “refinement” runs simply cause 

the initial structure to drift further away from native structure at the absence of additional 

distance restraints. This shows that, despite many years of continuous development127-133, the 

empirical force field alone may not be able to accurately describe the real energy landscape 

during protein folding. It is still not entirely clear whether this is merely a limitation caused by 

insufficient experimental and quantum chemical data for force field parameterization, or it is an 

inherent failure of the simple functional forms of empirical force field to capture high order 

interaction. 
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A more popular alternative to MD is fragment assembly. Proposed by Bowie and 

Eisenberg in 1994134, fragment assembly can be considered a pseudo-ab initio method. Although 

global structure templates were not used, it nevertheless uses local structure fragments with fixed 

(9 residues) and variable lengths (15-25 residues). These fragments were identified from the 

PDB by sequence profile-based threading and assembled into full-length structural models. The 

use of fragments greatly reduced the conformational search space, while ensuring the local 

structures of the assembled fragments were well formed. Following this idea, Baker’s group 

developed the Rosetta ab initio protocol in 1997135, which has remained one of the widely used 

fragment assembly methods to this day. In Rosetta136, 3 and 9 residues fragments are identified 

by gapless threading using the profile-profile and secondary structure matches. To perform 

fragment assembly in a simulated annealing Monte Carlo (SAMC) simulation, the backbone 

torsion angles of the predicted conformation are swapped for those of a selected fragment during 

each SAMC step. The Rosetta energy function includes terms for helix-strand packing, strand 

pairing, solvation, van der Waals interactions, radius of gyration, strand arrangement into sheets, 

and residue pair interactions. Conformations generated from SAMC are clustered to derive the 

final model. Apart from the Rosetta ab initio protocol, additional FM predictors, such as David 

Jones’ FragFold137 and our QUARK90 algorithm, were developed based on a similar idea of 

fragment assembly using variants of Monte Carlo simulations, but with different approaches for 

fragment generation and energy function design. For example, QUARK includes a distance 

profile-based energy term, which constrains the distance between two residues based on the 

inter-residue distances of fragment pairs from the same template. QUARK also includes a more 

diverse set of 11 different conformation moves in addition to the fragment replacement move, 

making the conformational sampling procedure more efficient. 
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1.1.2 Contact and distance map prediction 

The tertiary structures of proteins are stabilized by pairwise inter-residue interaction. 

Prediction of these interactions and the distances between the interacting atoms has become an 

important area of study in the protein structure prediction field. By the convention proposed by 

CASP, a residue pair is considered to form a contact if the distance between their Cβ atoms (Cα 

for glycine) is <8 Å. Therefore, a simple representation of inter-residue interactions for a protein 

with length L is its contact map, which is a symmetric, binary L×L matrix, where each element of 

the matrix is a binary value that indicates if the residues form a contact or not. 

Although deep learning-predicted contact maps transformed the field of protein folding 

only in recent years, the idea of contact prediction is not new. In the early 1990’s, it was already 

proposed that contacts can be inferred from coevolution, i.e. correlated mutations, in 

MSAs138,139. The hypothesis was that the choice of amino acid types for a pair of interacting 

residues is usually under strong evolutionary pressure to maintain physical compatibility, 

resulting in mutations that are correlated. For example, if the first residue in the pair mutates 

from a positively-charge to a negatively-charged amino acid type, the second residue also need a 

negative-to-positive charge mutation to maintain electrostatic interaction. In practice, however, 

the accuracy of such early co-variation-based approaches was limited by the inability to 

distinguish between direct and indirect interactions. An indirect interaction occurs when position 

pairs A directly interacts with position B, and B directly interact with position C. Even if A does 

not directly contact C, co-evolution may still be observed between A and C. Further limitations 

were imposed by the limited size of the sequence databases and immature MSA construction 

methods at the time. 
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Improving contact prediction through global statistical models 

Progress in contact prediction remained stagnant for two decades until a significant leap 

is brought about by global prediction approaches. Global statistical models, referred to as direct 

coupling analysis (DCA), were much more successfully in detangling direct from indirect 

interactions140,141. Unlike earlier “local” approaches such as mutual information142, DCA is 

“global” because it determines the set of direct interactions that accounts for the observed 

sequence co-variation by simultaneously considering the entire set of pairwise interactions. 

Many DCA methods fit a Markov random field (MRF), or more specifically a Potts 

model, to an MSA. MRF is a graphical model that represents each column of an MSA as a node 

that describes the distribution of amino acids at a given position, where the edges between nodes 

indicate the joint distributions of amino acids between each position pair. The couplings or co-

evolutionary parameters can be determined from the edge weights. Since fitting an MRF model 

using its actual likelihood function is computationally intractable due to the need to calculate the 

partition function, various approximations have been developed including those based on 

message passing140, Gaussian approximation143, mean-field approximation141, and pseudo-

likelihood maximization144-146. Another popular method was introduced by PSICOV147, which 

determines the coupling parameters by estimating the inverse covariance matrix or precision 

matrix under L1 regularization instead of directly fitting an MRF model to an MSA. This was 

later extended by our ResPRE148 predictor, where the inverse covariance matrix is estimated 

using L2 regularization instead of L1 regularization, allowing for faster inference without 

apparent compromise in contact prediction accuracy. 
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Deep learning-based contact prediction 

While the use of DCA represents one promising avenue to improve contact prediction, 

another breakthrough is made by deep convolutional neural network (CNN) that significantly 

improves DCA features. While CNN-based contact prediction is a new trend, the use of machine 

learning (ML) in general and neural network (NN) in particular in contact prediction dates back 

as far as simple co-variation-based techniques. Early ML methods utilized shallow (i.e. less than 

three hidden layers), fully connected NNs, whose inputs features are from coevolution, 

secondary structure, and sequence conservation149,150. These early machine learning-based 

predictors achieved comparable or slightly better accuracies than the contemporaneous methods 

based solely on coevolution. Following the first iteration of ML-based predictors, more complex 

NN architectures were developed151-154. Furthermore, contact predictors based on other ML 

techniques such as support vector machines (SVMs), including Jianlin Cheng’s SVMcon155 by 

group and our SVMSEQ156 algorithm, or Random Forest models, including PconsC157, also 

achieved similar performance as NN. Representative meta-methods in this era includes David 

Jones’ MetaPSICOV158 and our NeBcon159, which combined the output of multiple DCA 

methods using shallow neural networks. Despite all of these advancements, the accuracy of 

contact prediction still remained unsatisfactory. 

In the early 2010’s, predictors began to incorporate deep learning into contact prediction. 

Early attempts included CMAPpro160, which used a 2D recursive neural network, and 

DNCON161, which used a deep belief network. Their simple increase of NN depth hardly 

substantiates improvement; in fact, neither of these two methods could outperform 

MetaPSICOV, a traditional shallow NN approach. An important reason for the disappointing 

performance of these early deep learning approaches was that contacts for a residue pair were 
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predicted using features extracted only from a small window of residues around the target 

residue pair. This sliding window approach ignores the global context of the residue pair, 

therefore not realizing the true potential of deep learning. The first deep learning predictor that 

consistently improves contact prediction over traditional NN was proposed in 2017 when Jinbo 

Xu’s group proposed RaptorX-Contact162. RaptorX-Contact reformulated the contact prediction 

problem as an image segmentation (i.e. pixel labeling) problem in computer vision, where the 

whole contact map is consider an image and each residue pair is a pixel. The goal of this image 

segmentation is to label pixels that are in contact (represented as “1”) or non-contact (represented 

as “0”). This pixel labeling problem is naturally suitable for deep convolutional neural network 

(CNN) in general, and residual neural network (ResNets163) in particular. While RaptorX-

Contact uses similar coevolution, secondary structures, and sequence profile features as other 

predictors, the reformulation and introduction of ResNets with approximately 60 hidden layers 

enabled RaptorX-Contact to dramatically outperform other state-of-the-art methods. The 

demonstrated power of ResNets has inspired the vast majority of top ranked methods164-166 

developed since CASP12. Another successful method in CASP13 is our TripletRes167 algorithm, 

which uses a similar ResNet basic block but with a very different design of features Instead of 

using the post-processed L×L evolutionary coupling information used by almost all other 

predictors at the time, TripletRes directly uses the 21×21×L×L raw coupling parameters as an 

input feature to its network, where 21 is the number of amino acid types (plus one type for gap).  

 

Distance prediction 

A natural extension of contact map prediction is distance map prediction. While similar 

in concept to the binary (contact or non-contact) contact map, a distance map provides more 



 14 

detailed information on the distance between interacting residues. In practice, most distance map 

predictors do not predict the exact distance between residues, but the probability that the distance 

falls within one of the many distance bins. In other words, distance map prediction extends the 

binary classification problem of contact prediction into a multi-class classification problem 

(although recent attempts168,169 have been made to directly predict the real-value distances). The 

idea of distance prediction is not new; as mentioned above, QUARK170, for example, includes 

distance predictions derived from fragments detected from templates. Yet, the implementation of 

distance prediction in deep-learning frameworks is a recent advancement and makes the 

prediction much more robust and successful even in the absence of analogous structural 

templates. Three different CASP13 groups (RaptorX-Contact171, DMPfold172, and AlphaFold173), 

have extended the use of deep ResNets for contact prediction to distance prediction. The 

advantage of distance-based folding was most clearly demonstrated by AlphaFold in CASP13. 

Starting from the co-evolutionary features obtained from an MSA, AlphaFold trained an ultra-

deep ResNet with 220 residual blocks to predict the distance map, which was then used to guide 

protein folding by either fragment-assembly SAMC simulation173 or fragment-free gradient 

descent.  

 

Orientation prediction 

A further extension of distance prediction is orientation prediction. It has been known for 

years that knowledge-based energy functions that are dependent only on distances are often less 

accurate than those that use both distances and orientations for protein structure prediction174-176. 

The importance of orientation-dependent energy functions is twofold. Mathematically, it is 

impossible to uniquely determine the geometry of a structure without dihedral angle information, 
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as distance information alone cannot differentiate a pair of mirrored structures. Biologically, 

certain types of residue-residue interactions require not only distance proximity but also specific 

orientations between the residue pairs: for example, a pair of residues involved in beta strand 

pairing is required to be in an approximately parallel orientation. Recently, trRosetta177 has 

implemented this idea by simultaneously predicting both pairwise residue distances and inter-

residue orientations from co-evolutionary features using a unified deep ResNet, thereby 

outperforming AlphaFold in a post-CASP13 experiment.  

 

Incorporating metagenomic sequences into prediction 

As noted previously, another limitation of early contact prediction approaches was the 

small number of homologous sequences that could be used to construct MSAs for a target 

sequence. DCA methods in particular, and deep-learning approaches to a lesser extent, rely on 

collecting a sufficient number of sequence homologous in an MSA, as the more sequence 

homologs there are, the more reliable the co-evolutionary information is. Fortunately, the 

implementation of DCA and deep-learning contact/distance prediction has coincided with the 

expansion of sequence databases, in particular metagenomics sequence databases. Metagenomics 

is the application of next generation sequencing to sequence the DNA collected from 

environmental samples. These DNA sequences can be translated to protein sequences 

automatically, thereby producing large databases with billions of protein sequences. The utility 

of metagenomics sequences in contact-assisted structure prediction was first demonstrated by 

Baker for GREMLIN/Rosetta178 by significantly enhancing the number of effective sequences in 

an MSA, thus producing “deep” MSAs with diverse sequences for DCA. Later MSA 

construction methods developed by our group and other teams179,180 confirmed the usefulness of 
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metagenome-derived MSAs for improving contact prediction167,179,180, threading results for 

distantly homologous targets180,181, and the ability to model proteins that belong to families with 

unknown structures178,182. 

 

1.1.3 State-of-the-art protein structure prediction methods  

This section reviews four representative structure prediction protocols from three 

research groups: C-I-TASSER/C-QUARK183 from the Zhang group, RaptorX-

DeepModeller171,184 from the Xu group, and AlphaFold173 from DeepMind. The particular 

selection of these three studies is based solely on their rankings in CASP13 (Appendix Figures A 

and B), and we by no means suggest their superiority over other methods not reviewed herein. 

Each of these state-of-the-art structure prediction algorithms utilize constraints taken from 

contact maps (C-I-TASSER/C-QUARK) or from distance maps (RaptorX-DeepModeller and 

AlphaFold).  

 

C-I-TASSER/C-QUARK 

C-I-TASSER and C-QUARK183 are the latest iterations of the aforementioned I-TASSER 

and QUARK pipeline we developed. The main difference between C-I-TASSER/C-QUARK and 

I-TASSER/QUARK is the inclusion of constraints derived from contact maps predicted using 

deep-learning into both threading and structure assembly simulations. To predict the contact 

map, a deep MSA180 is constructed for the query sequence by iteratively searching various 

sequence databases, including a large metagenome sequence database185. The deep MSA is used 

to extract co-evolutionary features as well as several other predicted local structural features, 

which are used as input by various deep-learning-based contact prediction algorithms148,167 and 
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the results are combined to form a consensus contact map. In C-I-TASSER, the contact map is 

used by CEthreader186, a contact-based threading program in LOMETS2181 for template 

identification. Subsequently, the contact map is combined with the inherent I-TASSER/QUARK 

knowledge-based potentials and, in the case of C-I-TASSER, distance and contact constraints 

from structural templates, to assembly structural fragments into full-length structures by REMC 

simulations. Decoys from REMC simulations are clustered187 and the cluster centroids are 

refined at the atomic level188 to produce the final models. Despite using less informative contact 

map prediction from their deep-learning models, rather than distance map prediction as the other 

top performing groups, C-I-TASSER and C-QUARK were ranked as the top two automated 

server groups in CASP13, partly because the inherent and highly optimized template- and 

knowledge-based force fields and more sophisticated structure assembly simulations. This 

suggests the importance of using comprehensive conformational sampling simulations to 

optimally satisfy the constraints predicted by deep-learning. C-I-TASSER is also the first 

successful demonstration of consistent improvement of TBM using predicted contact maps, as 

the optimal balance between template and contact map constraints was previously considered to 

be particularly difficult to achieve for targets with homologous structure templates189,190.  

 

RaptorX-DeepModeller 

RaptorX-DeepModeller171,184 is another method that combines TBM (threading) and FM 

(sequence-derived contact/distance prediction) approaches into a single model and was the third 

ranked automated server in CASP13. Developed by the Xu lab, RaptorX-DeepModeller uses a 

similar deep ResNet architecture for distance prediction as the aforementioned RaptorX-

Contact171 predictor. Apart from the MSA-derived features used by RaptorX-Contact, RaptorX-
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DeepModeller additionally includes query-template similarities and template distance maps 

calculated from the threading alignments produced by DeepThreader191. DeepThreader identifies 

templates by query-template similarity of sequence profile, secondary structure, and distance 

map to obtain alignments using ADMM. The predicted distances, together with the secondary 

structure and backbone torsion angles predicted by another one-dimensional ResNet, are fed into 

the Crystallography and NMR System (CNS) 192,193, a distance geometry-based protein folding 

program, to construct tertiary models. In CASP13, even though it was trained on a smaller set of 

proteins, RaptorX-DeepModeller slightly outperformed RaptorX-Contact, which uses non-

template-based distance predictions with CNS. RaptorX-DeepModeller also consistently 

outperformed RaptorX-TBM, which inputs templates detected by DeepTheader into RosettaCM 

for comparative modeling. This shows a new approach to improve TBM by refining threading-

derived constraints with co-evolutionary features and deep-learning. 

 

AlphaFold 

AlphaFold173,194, which was developed by DeepMind during the latest CASP experiment 

(CASP13), is a collection of three FM approaches that combine three neural networks to predict 

the distances between residue pairs, to estimate the accuracy of a predicted protein structure 

(GDT-net), and to directly generate local structural fragments. Distances are predicted using the 

neural network described in the preceding section for this group. Apart from the distance 

predictions, candidate structures may alternatively be scored by directly predicting their accuracy 

in terms of their GDT_TS scores by GDT-net. The input to GDT-net is the MSA features similar 

to those used for distance map prediction, the predicted contact map calculated by collapsing the 

predicted distance map into a binary matrix, and features that describe the predicted structure. 
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The third network is a generative network trained end-to-end to create fragments by predicting 

the backbone torsion angles for each residue. Unlike typical fragment assembly approaches, 

which collect fragments from known structural databases, this approach allows for the de novo 

generation of fragments conditioned on the input features.  

In CASP13, AlphaFold used three different folding strategies: SAMC guided by the 

GDT-net potential, SAMC guided by the distance map potential, and iterative gradient descent 

guided by the distance map potential. The final iteration of AlphaFold uses a potential that 

combines the log probability of the distance map predictions with Rosetta’s score2 and a torsion 

angle potential. This potential is directly optimized with respect to the torsion angles using 

thousands of repeated gradient descent simulations. 

While AlphaFold was developed with extensive engineering efforts and computational 

resources unattainable to most academic labs (e.g. the distance predictor in AlphaFold has 4.6 

times more layers and was trained on 3.8 times more proteins than the contact predictors used by 

C-I-TASSER/C-QUARK), the scientific contribution of AlphaFold is also important. Firstly, it 

demonstrates the power of distance map compared to more conventional contact map in protein 

folding. Secondly, it demonstrates that deep-learning distance predictions can be constructed into 

an accurate and smooth energy landscape, on which conformations can be optimized by 

relatively simple gradient descent simulations. This idea has probably encouraged the 

development of several gradient descent based protein folding programs195,196 after CASP13.  

 

1.2 Introduction to Structure-based Protein Function Annotation 

Even though protein function is usually dependent on the tertiary structure of proteins, 

inference of function from structure is not always straightforward. Firstly, since tertiary structure 
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is often more conserved than function, proteins with different functions can correspond to similar 

topology. For example, the TIM barrel fold is a notably promiscuous topology adopted by at 

least 60 different enzymes as well as several non-enzymes197. Secondly, unlike sequences, 

protein structures can be flexible; there are even proteins that are that performs their function 

through intrinsically disordered regions. Finally, as shown in Figure 1, at least two thirds of 

protein sequences with manually annotated protein functions do not have experimental 

structures. Such incompleteness of structure- function library hinders the training and template-

usage of structure-based function annotations. To address these challenges, many algorithms are 

developed to annotate protein function annotation from structure and to complement structure-

based function annotation with other non-structure-based methods. 

Analogous to protein structure prediction, protocols for structure-based protein function 

annotation can also be roughly divided into template-based methods (TBM) and template-free 

methods (FM). TBM methods198-200, including our COFACTOR201 method reported in Chapter 3, 

draw functional insights from function templates structurally similar to target proteins. Structure 

similarities usually need to be measured by both global structure similarity and local structure 

matching to address the structure-function promiscuity issue mentioned above. On the other 

hand, FM methods202-204 convert a protein structure to a graph or to a 3D density map and train 

graph CNN or 3D CNN models to directly output functions without explicit usage of templates. 

Protein “function” can refer to a wide variety of biological vocabularies, ranging from 

protein-level functions such as Gene Ontology (GO) terms, Enzyme Commission (EC) numbers, 

and Human Phenotype Ontology (HPO), to residue-level functions such as ligand binding sites 

(LBS). Since LBS prediction is relatively well-addressed by previous works198,199, this thesis 

mainly discussed GO terms, one of the most representative protein-level function annotation. 
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1.3 Questions Discussed by This Thesis 

The remaining chapters of this thesis will address issues in structural bioinformatics: how 

to predict protein structure from sequence (Chapter 2 and 3) and how to predict protein function 

from predicted structure model (Chapter 4, 5 and 6). 

Chapter 2 describes DeepMSA, which constructs for a given protein a deep and high 

quality MSA for three basic structure prediction tasks: contact prediction, threading and 

secondary structure prediction. Chapter 3 reports D-QUARK, a distance-based protein folding 

program that uses the MSA generated by DeepMSA and its variants as input to predict the inter-

residue distances and orientations. The distance and orientation maps are then used to guide 

REMC simulation for ab initio protein folding. 

Chapter 4 introduces COFACTOR, a meta-server for structure-based protein function 

prediction based on predicted structure models, sequence- and sequence-profile-based alignment, 

and protein-protein interaction networks. As indicated by its high number of citations, the 

COFACTOR pipeline has been applied to many small-scale function studies and genome-wide 

function annotations projects, including those for E. coli (https://epic.sites.uofmhosting.net/) and 

SARS-CoV-2205.For the consideration of page limits, we will focus on two representative large-

scale applications of COFACTOR to human (Chapter 5) and the JCVI-syn3.0 minimal bacterial 

genome (Chapter 6). Chapter 7 will conclude the thesis with proposals for future developments. 
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Chapter 2 DeepMSA: Deep Multiple Sequence Alignment Construction for Protein 
Structure Modeling1 

 
2.1 Introduction 

Multiple sequence alignment (MSA), also called “sequence profile”, is designed to 

collect and align multiple homologous sequences of a query protein of interest. Since it contains 

rich information about the evolutionarily conserved positions and motifs, which cannot be 

derived from the query sequence alone, it has found fundamental usefulness in various 

bioinformatics studies. In protein structure prediction, for example, the MSA is the primary 

component to derive local secondary structure features 206,207, residue-residue contacts 

162,166,208,209, and homologous structural templates 99,210; these are of critical importance for the 

full-length 3D structure constructions 211,212. In protein function annotations, the use of MSAs 

also has major impacts on the accuracy of Gene Ontology 201,213 and ligand-binding site 214,215 

predictions. 

Due to the critical importance of MSA, much attention has been paid to the development 

of various MSA and sequence profile construction methods. While PSI-BLAST is one of the 

most widely used approaches to query-specific sequence profile generation 102, HHblits 103 from 

the HH-suite 216 recently becomes popular for profile hidden Markov model (HMM) 

construction. Meanwhile, Jackhmmer and HMMsearch tools from the HMMER suite 217 are 

common alternatives for the applications. Both lines of programs have been heavily used, 

 
 

1 This chapter was adapted from a previously-published work: C Zhang, W Zheng, SM Mortuza, Y Li, and Y Zhang (2020) 
“DeepMSA: constructing deep multiple sequence alignment to improve contact prediction and fold-recognition for distant-
homology proteins.” Bioinformatics, 36(7), 2105–2112. 



 23 

especially for the contact predictions that are recently found critical for template-free (or ab 

initio) protein structure prediction 17,218,219. Most recently, a hybrid MSA generation approach 

combining HHblits and Jackhmmer searches is shown to improve contact prediction by 

MetaPSICOV2 220. There was also evidence showing that MSAs collected from metagenome 

protein sequences can increase the coverage of sequence homologies and be useful for contact-

assisted de novo structure prediction 17,221. 

Despite the importance of MSA construction, few standalone pipelines exist which can 

efficiently generate sensitive MSAs from a query input sequence, especially when multiple large 

sequence databases are involved. To address this urgent need, we developed and release 

DeepMSA, a new open-source program that constructs deep (in the sense of more sequences 

with a high diversity) and sensitive MSAs by merging sequences from three whole-genome and 

metagenome databases through a hybrid homology-detection approach. In this approach, HHblits 

from HH-suite 2.0.16 216 and Jackhmmer/HMMsearch, which were modified from HMMER 

3.1b2 217 package to make the output format more compact in order to reduce file input/output 

(I/O), are used to perform sequence search, and the alignments are further refined by a custom 

HHblits database reconstruction step. Large-scale benchmark experiments have showed that, 

compared to the widely-used HHblits, PSI-BLAST and Jackhmmer programs, DeepMSA can 

consistently improve the accuracy of contact and secondary structure predictions, and threading 

programs, which is particularly important for distant-homology proteins. 
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2.2 Methods 

2.2.1 Counting the number of effective sequences in MSAs 

A common approach to quantify the homologous sequence coverage and/or alignment 

depth of an MSA is by counting the normalized number of effective sequence (Nf): 

𝑁𝑓 =
1
√𝐿

8
1
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where L is the length of the query protein, N is the number of sequences in the MSA, 

𝑆<,= is the sequence identity between the mth and nth sequences, and 𝐼[	] is an Iverson bracket, 

i.e. 𝐼;𝑆<,= ≥ 0.8> equals to 1 if 𝑆<,= ≥ 0.8, and to zero otherwise. While current literature lacks 

consensus in terms of the ideal Nf for contact prediction, we optimize the Nf cutoff as 128 to 

attain accurate contact prediction, as discussed later. The mathematical meaning of Nf is 

illustrated at Figure 2. 

 
Figure 2. Graphic illustration for the calculation of sequence weights and the number of effective sequence. The 
MSA used in this example consists of 𝑁 = 6 sequences with length 𝐿 = 33. Using a sequence identity cutoff 𝑆IJK =
0.8, the first three sequences forms three independent sequence clusters while the last three sequences form a single 
cluster. The four clusters are indicated by blocks colored in orange, green, yellow, and cyan in the sequence identity 
matrix. The Iverson bracket operation 𝐼;𝑆<,= ≥ 𝑆IJK>determines whether the sequence pair 𝑚 and 𝑛 has sequence 
identity above sequence identity cutoff. In other words, this operation determines whether sequence m and n are 
neighbors within the same cluster. We can then assign a weight for each sequence, so that the 𝑤= weight for 
sequence n is inverse proportional to its number of sequence neighbor: 

𝑤= =
1

1 + ∑ 𝐼;𝑆<,= ≥ 𝑆IJK>?
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									(2.2) 

Any sequence 𝑛 is always the sequence neighbor of itself, hence the addition of one in denominator of 
Equation (2.2). The number of effective sequence (without length normalization) is: 

𝑁𝑒𝑓𝑓 =8 𝑤=
?

=@A
																																								(2.3) 

which equals to (1+1+1+1/3+1/3+1/3)=4 in this case. Therefore, the normalized number of effective sequence 
expressed in Equation (2.1) can be alternatively written as: 
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𝑁𝑓 =
1
√𝐿
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which is 1/√33 × 4 = 0.70 in this case. While our approach to calculate the number of effective sequences and 
sequence weights are also commonly used in other state-of-the-art contact prediction programs such as CCMpred, 
MetaPSICOV2 and TripletRes, there are also other programs (such as “plmc” module of the EVcoupling package) 
that calculates that the sequence weight and the number of effective sequence by first performing a sequence 
clustering. The weight of sequence n is 𝑤= = 1/𝑘= where 𝑘= is the number of sequences in the sequence cluster to 
which sequence n belongs. This approach is essentially equivalent to our approach because Equation (2.3) quantifies 
the number of sequence clusters, except that our approach can save computation time to perform an explicit 
sequence clustering. 

 

2.2.2 DeepMSA pipeline for MSA construction 

The MSA construction process in DeepMSA can be divided into three stages, which 

correspond to the searching of three sequence databases (Uniclust30 222, UniRef90 223, and 

Metaclust 185) through a combination of the HH-suite and HMMER programs (Figure 3). 

In Stage 1 (Figure 3 first column), HHblits from HH-suite 2.0.16 is used to search 

UniClust30 with the parameters “-diff inf -id 99 -cov 50 -n 3”. After testing HHblits MSA 

generated using the last version of UniProt20 (2016_02), latest Uniboost30 (2016_09), and three 

recent versions of Uniclust30 (2017_04, 2017_07, 2017_10), we found the three versions of 

Uniclust30 generate MSAs with comparable quality, all with a higher contact prediction 

accuracy than MSA generated by either UniProt20 or Uniboost30. Therefore, an arbitrary 

UniClust30 version (2017_10) is used for this study. 

If Stage 1 does not generate enough sequences, i.e. Nf<128, Stage 2 will be performed 

(Figure 3 second column), where Jackhmmer is used to search against UniRef90 with parameters 

“-N 3 -E 10 --incE 1e-3”. We choose “-E 10” because lowering this e-value cutoff occasionally 

results in the inclusion of excessive number of non-homologous multi-domain hits in edge cases, 

although the final number of significant hits in the Jackhmmer alignment is determined by “--

incE”. Instead of directly using the alignment generated by Jackhmmer search, esl-sfetch from 

the HMMER package is used to extract full length sequences according to the list of Jackhmmer 
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hits. These full-length sequences are converted into a custom HHblits format database by 

“hhblitdb.pl” script from HH-suite. After the construction of the custom database, HHblits is 

again applied to search this custom database using the same search parameter as in Stage 1 but 

jump-starting the search from the Stage 1 sequence MSA. If the MSA from Stage 2 has an Nf 

higher than that from Stage 1 MSA, it will replace the Stage 1 MSA for subsequent computation. 

DeepMSA implements two time-saving heuristics to reduce time complexity associated 

with construction of HHblits format database, which, unlike conventional sequence databases, 

comprise of sequence profiles. Each profile can be either one sequence or one MSA within a 

family of protein sequences clustered by sequence identity. The time required to construct a 

profile database is proportional to the number of profiles and the average number of positions of 

the profiles. It may take many hours to construct a custom HHblits database if the sequences are 

very long or if there are too many sequences. To shorten the time for database construction, we 

trim the Jackhmmer hits and perform sequence clustering. In particular, instead of using the full-

length Jackhmmer hit, we trim the Jackhmmer hit to extract the local region aligned to the query 

in the Jackhmmer alignment, as well the L flanking residues at both sides of the aligned regions. 

Moreover, all trimmed hits from the previous step are further clustered by kClust 224 into 

sequence clusters by 30% sequence identity cutoff. Next, Clustal Omega 225 is then used to align 

sequences within each cluster into aligned sequence profiles. These profiles are fed into 

hhblitsdb.pl to construct the custom HHblits database. As kClust and Clustal Omega usually take 

only a few minutes, and the number sequences is approximately ten times larger than the number 

of kClust sequence clusters, it will take less than half an hour to construct the custom database. 

If the MSA from previous stages still has Nf<128, Stage 3 is performed (Figure 3 third 

column), where the MSA from the previous stage is converted into a hidden Markov model 
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(HMM) by HMMbuild from the HMMER package. This HMM is searched against Metaclust 

metagenome sequence database by HMMsearch, using parameters “-E 10 --incE 1e-3”. Similar 

to Stage 2, sequence hits from HMMsearch are built into a custom HHblits database. The MSA 

from previous stages is used to jump-start an HHblits search against this new custom HHblits 

database to derive the final Stage 3 MSA. 

 
Figure 3. (A) Flowchart of DeepMSA. Three stages of MSA generations are performed consecutively using 
sequences from HHblits search through Uniclust30 (first column), Jackhmmer through UniRef (second column), and 
HMMsearch through Metaclust (third column). (B) Details of constructing custom HHblits database from 
Jackhmmer/HMMsearch hits. 

 

2.3 Results 

2.3.1 Dataset 

DeepMSA is tested on a set of 614 non-redundant proteins curated from the SCOPe 

database 226 according to the following criteria: (i) any target coming from a fold with only one 

superfamily is excluded, because such a target is unlikely to have any remote structure analog; 

(ii) redundant sequences with a 30% pair-wise sequence identity are removed; (iii) each query 

should have at least one template structure, detectable by TM-align 227, from the PDB which has 

a TM-score >0.5 with the sequence identity <0.3 to the query. These resulted in 614 proteins, 
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which are classified into 403 “Easy” and 211 “Hard” targets by the meta-threading program, 

LOMETS 228, based on the significance of threading alignments between query and template 

sequences. 

 

2.3.2 Coverage and depth of MSAs by DeepMSA 

Since one of the initial motivations for DeepMSA to combine sequences from different 

sequence databases is to collect more diverse sequences, it is instrumental to examine the 

coverage and depth of the MSA brought by DeepMSA. To this end, Table 1 lists the depth 

results of MSAs generated by six different schemes, including DeepMSA, its three stages, and 

three baseline methods. Here, to obtain data for different stages, we force DeepMSA to perform 

all three stages regardless of Nf cutoff. Nevertheless, the final MSA in DeepMSA is calculated 

as the normal procedure, i.e., having the MSA constructed from Stage 1 if its Nf is ≥128; or 

from Stage 2 if Stage 1 has Nf<128 but Stage 2 has Nf≥128; or from Stage 3, otherwise. Two of 

the baseline methods generate MSAs by Jackhmmer or PSI-BLAST search against the same 

UniRef90 database as used by DeepMSA. For the last baseline method, denoted as “No custom 

db” in Table 1, the custom HHblits database construction and HHblits search in Stage 2 and 3 are 

replaced by direct concatenation of HMMER (Jackhmmer and HMMsearch) MSAs to the MSA 

from the previous stage, similar to the approach reported earlier 17. 

 

Table 1. Nf and the number of aligned homologous sequences (N) in the MSAs collected by different schemes. 

Schemes† “Hard” targets “Easy” targets All targets 
Nf N Nf N Nf N 

DeepMSA 119.67 3046.16 435.52 8869.82 331.20 6868.53 
Stage 1 82.22 1698.12 430.49 8765.65 310.81 6336.91 
Stage 2 131.30 3158.46 612.83 14816.79 447.35 10810.43 
Stage 3 346.02 8098.61 1031.95 24194.26 796.23 18663.02 

Jackhmmer 174.64 3720.27 727.95 17818.32 537.81 12973.55 
PSI-BLAST 145.02 5032.81 739.06 21195.11 534.92 15640.96 

No custom db 516.27 11751.12 1642.74 49326.13 1255.63 36413.55 
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†Stage 1, 2 and 3 are three stages of DeepMSA. “No custom db” modifies DeepMSA pipeline by directly 
concatenating HMMER alignments without custom HHblits database construction in Stage 2 and 3. “PSI-BLAST” 
and “Jackhmmer” search UniRef90 with PSI-BLAST and Jackhmmer, respectively. 

 

As expected, the alignment depth, when measured by Nf and the total number of detected 

sequences, gradually increases from Stage 1 to Stage 3. The increase is particularly large for 

“Hard” targets, where the final MSAs from DeepMSA are on average 1.5 and 1.8 times deeper 

than Stage 1 in terms of Nf and number of sequences, respectively. On the other hand, the 

alignment depth of DeepMSA is significantly smaller than “No custom db” and “Jackhmmer”. 

This is because all HMMER hits are included in the “No custom db” and “Jackhmmer” 

alignments, while many HMMER hits are discarded by DeepMSA during HHblits search 

through custom databases. 

The full-length MSA constructions often cost more memory and slow down the 

computing processes. Moreover, due to the composite profile construction and alignment 

algorithms, MSAs with greater Nf and sequence numbers do not necessarily indicate better MSA 

quality, as shown in later sections. In fact, there is no single index which can directly assess the 

performance of MSA collection programs. To more objectively assess the quality of MSA 

builders, below we apply these MSAs to three protein structure modeling experiments, i.e. 

residue contact prediction, secondary structure prediction, and protein fold-recognition (i.e., 

threading). 

 

2.3.3 DeepMSA increases contact prediction accuracy 

The utility of DeepMSA for contact prediction is assessed using six state-of-the-art 

programs: CCMpred 229, MetaPSICOV2 220, DeepContact 165, DeepCov 230, PConsC4 231, and 

TripletRes 232. Here, CCMpred is a representative coevolution-only contact predictor. 

MetaPSICOV2 is based on traditional (shallow and fully-connected) neural networks. The rest of 
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the programs are based on deep convolutional neural networks. While other predictors with good 

performance also exist, we selected the six programs partly because of the availability of 

standalone packages, which facilitate the large-scale implement and comparison of the results. 

In Table 2, we list the results of contact predictions by the six predictors, each having the 

MSA collected from the six schemes listed in Table 1. Since MetaPSICOV2 and DeepContact 

have their own built-in MSA generation protocols, both of which combine HHblits and 

jackhammer, contact precisions from the built-in MSAs are listed as “default” in Table 2. Here, 

as in community-wide Critical Assessment of protein Structure Prediction (CASP) challenges 218, 

a contact is defined as Cβ atoms (Cα atoms for Glycine) from a pair of residues, i and j, being 

close to each other by less than 8 Å. Contact prediction accuracies of different methods are 

evaluated by precisions of top L, L/2, and L/5 medium-range (12 ≤ |𝑖 − 𝑗| ≤ 23) and long-range 

(24 ≤ |𝑖 − 𝑗|) predicted contacts. In accordance with CASP convention, Table 2 only lists the 

long-range contacts of “Hard” targets, where. For completeness, the results for medium-range 

contacts for all targets (“Hard” and “Easy”) are listed in a spreadsheet file at 

https://zhanglab.ccmb.med.umich.edu/DeepMSA/assessment.xlsx. 
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Table 2. Long-range contact prediction precision for 211 “Hard” protein targets. Bold font indicates the highest 
value in each category. 

Predictor MSA Top L P-value Top L/2 P-value Top L/5 P-value 

CCMpred 

DeepMSA 0.268 * 0.375 * 0.483 * 
Stage 1 0.215 3.73E-24 0.307 4.78E-23 0.410 4.21E-15 
Stage 2 0.237 2.49E-13 0.333 1.19E-14 0.430 3.45E-13 
Stage 3 0.280 1.00 0.381 0.98 0.486 0.79 

Jackhmmer 0.227 3.84E-15 0.317 2.37E-15 0.418 1.54E-11 
PSI-BLAST 0.208 3.35E-24 0.289 2.18E-26 0.394 5.81E-16 

No custom db 0.264 0.187 0.366 4.83E-2 0.468 1.86E-2 

MetaPSICOV2 

DeepMSA 0.410 * 0.532 * 0.654 * 
Stage 1 0.373 6.66E-13 0.483 1.32E-12 0.595 1.19E-10 
Stage 2 0.388 1.43E-6 0.501 2.25E-7 0.618 6.56E-6 
Stage 3 0.412 0.93 0.534 0.74 0.653 0.67 
Default 0.387 4.75E-5 0.500 1.79E-5 0.612 2.11E-5 

Jackhmmer 0.377 2.27E-7 0.490 1.24E-6 0.604 1.07E-5 
PSI-BLAST 0.336 1.46E-19 0.441 6.32E-16 0.546 4.42E-13 

No custom db 0.400 3.29E-2 0.515 1.43E-2 0.629 7/03E-3 

DeepContact 

DeepMSA 0.485 * 0.630 * 0.756 * 
Stage 1 0.445 3.43E-15 0.581 4.00E-13 0.716 3.60E-7 
Stage 2 0.458 5.07E-10 0.598 3.15E-8 0.730 7.63E-5 
Stage 3 0.488 0.99 0.632 0.92 0.754 0.13 
Default 0.434 1.37E-13 0.562 1.75E-13 0.681 5.35E-10 

Jackhmmer 0.441 1.07E-11 0.576 7.55E-10 0.702 2.76E-6 
PSI-BLAST 0.427 1.99E-16 0.553 6.42E-15 0.681 2.77E-9 

No custom db 0.472 1.84E-3 0.614 1.88E-3 0.732 5.17E-3 

DeepCov 

DeepMSA 0.439 * 0.588 * 0.738 * 
Stage 1 0.408 6.01E-9 0.553 6.85E-7 0.701 3.36E-5 
Stage 2 0.420 1.03E-5 0.561 3.51E-6 0.712 5.46E-5 
Stage 3 0.439 0.49 0.586 0.35 0.730 9.68E-3 

Jackhmmer 0.392 1.21E-11 0.521 4.80E-11 0.662 2.28E-9 
PSI-BLAST 0.377 2.96E-18 0.505 7.01E-17 0.649 5.16E-12 

No custom db 0.421 7.09E-4 0.563 1.61E-3 0.708 2.21E-3 

PConsC4 

DeepMSA 0.475 * 0.610 * 0.718 * 
Stage 1 0.420 6.64E-17 0.544 4.10E-13 0.653 1.04E-7 
Stage 2 0.443 1.19E-8 0.572 5.52E-7 0.681 3.24E-4 
Stage 3 0.478 0.97 0.612 0.75 0.719 0.70 

Jackhmmer 0.420 2.08E-11 0.545 1.61E-8 0.652 3.69E-6 
PSI-BLAST 0.364 8.64E-16 0.474 2.89E-14 0.572 4.55E-12 

No custom db 0.462 1.09E-2 0.593 2.38E-2 0.697 3.72E-2 

TripletRes 

DeepMSA 0.610 * 0.759 * 0.860 * 
Stage 1 0.594 6.37E-6 0.742 5.78E-4 0.849 2.59E-2 
Stage 2 0.601 2.65E-4 0.747 6.65E-4 0.856 0.17 
Stage 3 0.610 0.34 0.756 8.34E-2 0.859 0.29 

Jackhmmer 0.565 3.11E-8 0.704 1.00E-7 0.815 9.40E-5 
PSI-BLAST 0.547 1.35E-13 0.684 2.15E-13 0.790 2.50E-9 

No custom db 0.584 1.83E-5 0.728 8.00E-5 0.830 7.85E-4 
* Each p-value is calculated by one-tailed paired t-test to test whether DeepMSA has significant better contact 
prediction accuracy than the respective MSA. 

 

It is shown that the MSA from DeepMSA outperforms the default MSA for contact 

prediction in all six contact predictors. For instance, the precisions for the top L contacts 
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generated by TripletRes and CCMpred increased by 2.7% and 24.4%, respectively, when they 

use the MSA from DeepMSA instead of the default MSA. Furthermore, contact precision 

improves progressively from Stage 1 to Stage 3 for all the programs, indicating the effectiveness 

of depth of MSAs in contact prediction. Contact precisions from DeepMSA are also consistently 

higher than those from HHblits (i.e. Stage 1), Jackhmmer, and PSI-BLAST alone. 

 
Figure 4. Nf cutoff of DeepMSA versus top L (A), top L/2 (B) and top L/5 (C) long range contact prediction 
precision. The Nf cutoff of “0” and “inf” correspond to always using Stage 3 and Stage 1 MSAs, respectively. 
 

The output MSA of DeepMSA is not always created from Stage 3 if previous two stages 

achieve Nf≥128, which helps to save the memory and running time of DeepMSA. Interestingly, 

this setting does not degrade contact precision significantly for most predictors. In fact, for 

TripletRes and DeepCov, the MSA from DeepMSA yields slightly better contact precision 

compared to the MSA from DeepMSA Stage 3. Figure 4 shows the effect of Nf cutoff in 

DeepMSA on the precision of contact prediction, where, for all but one program (CCMpred), 

increasing the Nf cutoff over 128 hardly improves contact precisions. In other words, when the 
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alignment is already deep (Nf≥128), further inclusion of more sequences is indeed not beneficial 

for all five neural network-based contact predictors. This might be because deeper MSAs are 

more prone to contain alignment errors and false positive hits, where the cutoff of Nf=128 might 

be the result of the tradeoff between the sequence coverage and alignment noises. Moreover, this 

result may also suggest that the sequence datasets from the standard Uniclust30 utilized in Stage 

1 is more reliable than the UniRef90 and metagenomic database, and thus the addition of more 

sequences from the latter datasets might have the tendency to introduce more noises. 

The high quality of MSA from DeepMSA is not merely the result of combining multiple 

sequence databases. In particular, apart from the lack of custom HHblits database construction 

and search step, “No custom db” uses identical sequence databases, with the same HHblits and 

HMMER programs as DeepMSA. Despite far greater alignment depth as shown in Table 1, “No 

custom db” is worse than DeepMSA by 1.0% (CCMpred) to 4.2% (TripletRes) in terms of top L 

contact precision. These data suggest again that deeper alignments (with more sequence 

homologs) do not necessarily guarantee better contact prediction. It also indicates that although 

diverse sequence databases are contributive to DeepMSA performance, it is also essential to 

combine multiple sequence search and alignment algorithms, especially the custom HHblits 

database construction subroutines in our case. 

DeepMSA also outperforms the default MSAs in DeepContact and MetaPSICOV. In 

particular, the Stage 2 MSA yields slightly more precise (0.3%) top L contact prediction by 

MetaPSICOV than its default MSA, even though both kinds of MSAs come from HHblits search 

through custom HHblits database constructed from Jackhmmer hits. This show that our time-

saving heuristics (HMMER hit trimming and kClust clustering, which result in an overall 
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average DeepMSA running time of 0.7 hour per protein, Figure 5) introduce little compromise to 

final alignment quality. 

Apart from benchmark data discussed herein, DeepMSA was also blindly tested in 

CASP13 as the MSA generation pipeline for our TripletRes server 232, whose average top L 

contact precisions on all 31 FM targets increased from 0.332 with HHblits MSAs to 0.409 with 

DeepMSA. 

 
Figure 5. Stacked histogram for per protein running time of DeepMSA, with an average running time of 0.70 hour. 
DeepMSA does not always run all three stages to generate the final MSA. Grey, white, and black regions correspond 
to proteins with only Stage 1 MSA, with both Stage 1 and Stage 2 MSAs, and with Stage 1 to 3 MSAs, respectively. 
The running time for each protein is measured using a single thread using Intel Xeon CPU E5-2680 v2 at 2.80GHz. 
 

 

2.3.4 DeepMSA enables more accurate threading 

Threading is an important approach to template-based protein structure prediction, which 

recognizes proteins with similar fold to the query proteins. Since most of the state-of-the-art 

methods use profiles, in the form of either HMM or Position Specific Scoring Matrix (PSSM), to 

deduce query-template alignments, we examine whether and how DeepMSA can impact the 

performance of two typical threading programs, HHsearch 210 and MUSTER 233, which by 

default use HHblits and PSI-BLAST to construct sequence profile, respectively. 
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The HHsearch and MUSTER template database is constructed from the 71,684 non-

redundant (pairwise sequence identity<70%) protein structures from the I-TASSER 112 template 

library at https://zhanglab.ccmb.med.umich.edu/library/. To generate the HHsearch library with 

default profile and with our new profiles, we first build MSAs for all templates by HHblits 

search against Uniclust30 database and DeepMSA, respectively. The hhmake program from HH-

suite is then used to convert the MSAs to HHsearch style HMM library.  

In MUSTER, the default sequence profiles are constructed by searching NR database 

with blastpgp, i.e. the legacy PSI-BLAST program 102. Checkpoint files from PSI-BLAST search 

is then converted to MTX format sequence profiles. Conversion of DeepMSA alignments to 

MTX format is implemented by the “a3m2mtx.pl” script in the DeepMSA package. This script 

jump-starts a PSI-BLAST search using the MSA of DeepMSA against a dummy BLAST format 

database. The MTX file can then be recovered from the checkpoint file of the jump-start search. 

Similarly, for query proteins, we also construct both DeepMSA profiles and default profiles. 

In Table 3, we list a comparison of template alignments obtained by HHsearch and 

MUSTER using different MSAs. The results are presented only for “Hard” targets in terms of the 

average TM-score 234, alignment coverage (number of aligned residues divided by query length), 

and RMSD of aligned regions, where all templates with a sequence identity >30% to the query 

have been excluded. It is shown that, for “Hard” threading targets, the TM-score of first template 

by MUSTER and HHsearch is increased by 10.9% and 7.5%, respectively, if the DeepMSA 

profiles instead of the default PSI-BLAST/HHblits profiles are used. Of note, the number of 

“Hard” targets with correctly identified templates (TM-score>0.5) is increased by 64.0% and 

39.4% for MUSTER and HHsearch, respectively. 
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Table 3. Benchmark results for the first threading template on 211 “Hard” targets. Bold font indicates the highest 
value in each category. 

Method TM-score P-value RMSD (Å) Coverage #(TM-score>0.5) 
HHsearch 0.308 5.70E-03 11.15 0.665 33 

HHsearch(D) 0.331 * 11.17 0.697 46 
MUSTER 0.311 7.40E-04 13.62 0.872 25 

MUSTER(D) 0.345 * 12.87 0.851 41 
(D) indicates threading with DeepMSA profile. 

 

The observation that DeepMSA significantly boosts threading performance for “Hard” 

targets can be partially explained by improved quality of query-template alignments. To examine 

this point, we curate a subset of 143 “enriched” “Hard” targets, each of them having at least 30 

templates of the correct fold (TM-score >0.5) detectable by TM-align with <30% sequence 

identity to the query. For each of these targets, we calculate average TM-score with all the 

templates aligned by HHsearch using DeepMSA sequence profile and compare it to that using 

the default HHblits profile used by HHsearch. Figure 6A lists the average TM-score difference 

on the top 30 templates for each of 143 targets. The data show that DeepMSA generated positive 

impact on the query-template alignments for 68.5% (=98/143) of the cases. Among the 98 cases, 

69 (70.4%) have the TM-score difference with p-value <0.05 in the paired t-test (dark bars in 

Figure 6A), showing that the difference is statistically significant although only about 30 data 

points are involved in the paired t-test calculation for each target. 
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Figure 6. Contribution of DeepMSA to query-template alignment in HHsearch threading. (A) The TM-score of 
HHsearch guided by DeepMSA profile minus that by the default profile (ΔTM-score) is calculated for each template 
of a “Hard” target. The y-axis is the average ΔTM-score for each target, ranked in descending order (x-axis) of 
average ΔTM-score. The statistical significance of ΔTM-score for each target is calculated by a paired t-test between 
TM-score pairs (i.e. TM-score by DeepMSA versus TM-score by default profile) for all templates of the target. 
Targets with significant ΔTM-score are colored in black. (B, C, D) Alignment of query d1hx6a2 (cartoon) to 
template 2bbdA (upper left and lower right ribbons for N- and C- terminal regions, respectively) using TM-align 
(B), HHsearch alignment guided by DeepMSA profile (C) and that guided by the default profile (D). TM-score by 
DeepMSA profile guided HHsearch is lower than that by TM-align due to alignment shift. (E, F) Number of non-
gap residues (y-axis) at each position (x-axis) in the DeepMSA profile (grey) and in the default HHblits profile 
(black) for query (d1hx6a2) (E) and template (2bbdA) (F). 
 

To further illustrate the importance of DeepMSA profile in threading, we show a case 

study on query d1hx6a2 and its template 2bbdA. HHsearch threading based on DeepMSA profile 

correctly aligns query to C-terminal (residue 167 to 319) of template and achieves a TM-score 

=0.61 (Figure 6C); the alignment region is similar to that by the structure alignment from TM-

align, although TM-align has an even higher TM-score (=0.82, Figure 6B). On the other hand, 
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HHsearch threading with the default HHblits profile only gets a TM-score=0.15 due to complete 

mis-alignment of query to the N-terminal (residue 27 to 188) of template (Figure 6D). Such 

differences can be explained by depths of MSAs for both query and template: the default HHblits 

run only detects 133 homologs for the template and no homolog for the query. On the other 

hand, DeepMSA profile is much deeper, with 624 and 118 homologs for the query (Figure 6E) 

and the template (Figure 6F), respectively. The lack of template homologs in the default run is 

particularly severe at the C terminal of the template, driving HHsearch to align the query to the 

template N terminal instead. 

In addition to the creation of correct alignments, another reason for the performance 

improvement by DeepMSA on threading is that better MSA profiles can help improve the 

ranking of the template alignments. In Figure 7, we show an example from the query protein 

(d1yvua1) which is aligned on the template 3f73A2 using HHsearch. Although both default and 

DeepMSA profiles resulted in reasonable query-template alignments with a TM-score >0.5, their 

alignment scores are very different. While the HMM probability on the DeepMSA profile is 

77.5% which puts the template as ranked the first, the probability score is 0.2% using the default 

profile which is ranked at 19,825th position among all templates. Thus, although the default 

profile can generate correct alignment on this query-template pair, the correct template cannot be 

selected by the threading program due to the poor alignment scores. In this case, an unrelated 

protein (3iz6D3, TM-score=0.08) was selected as the first template when using the default HMM 

profile alignments. 
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Figure 7. Contribution of DeepMSA to HHsearch template ranking for query d1yvua1. (A-B) Threading alignment 
between query (cartoon) and template 3f73A2 (ribbon), guided by DeepMSA profile (A) and by default HHblits 
profile (B). (C) Ranking of nine correct templates (TM-score>0.5, black vertical lines) among all 70,977 templates 
(grey horizontal bands) after excluding template proteins with a sequence identity >30% to the query. Template 
rankings guided by DeepMSA profile and that by the default profile are shown in upper and lower bands, 
respectively. The same template in the two cases is connected by a thin arrow. 
 

2.3.5 DeepMSA profiles improve secondary structure prediction over traditional PSI-

BLAST profiles 

We further test the performance of DeepMSA in secondary structure (SS) prediction by 

PSIPRED 4.0 206 and PSSpred 235. By default, PSIPRED and PSSpred construct MTX format 

sequence profiles by searching UniRef90 or NR database with PSI-BLAST program 102. MTX 

format DeepMSA profile for these two programs can also be obtained by a3m2mtx.pl. 

The accuracy of the SS predictions by PSSpred and PSIPRED is evaluated by Q3 

accuracy and SOV segment overlap measure 236 (Table 4). Compared to the default profiles, 

sequence profiles from DeepMSA improve the Q3 accuracy by 1.2% and 1.0% for PSSpred and 

PSIPRED, respectively. Similarly, SOV scores by PSSpred and PSIPRED are improved by 1.8% 

and 1.5%, respectively, when MSAs from DeepMSA are used. The differences are statistically 

significant, since the p-values in Student’s t-test are all below 0.002. 
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Here, it important to note that the original models of PSSpred and PSIPRED were trained 

based on 2011 and 2016 sequence databases, respectively. Although secondary structure 

predictions, as well as the contact and threading programs studied in previous sections, are 

usually sensitive to the sequence databases and MSAs that the models are originally trained on, 

we do not attempt to re-train the models using the new DeepMSA profiles. In this context, the 

performance improvement should be mainly attributed to the sensitive and comprehensive 

information that DeepMSA provides, compared to the MSAs generated by other default 

programs. 

 

Table 4. Summary of SS prediction by PSSpred and PSIPRED for 211 “Hard” targets. Bold font indicates the 
higher value in each category. 

Predictor MSA Q3 P-value SOV P-value 

PSSpred PSI-BLAST + UniRef90 80.518 1.38E-03 77.257 1.05E-03 
DeepMSA 81.472 * 78.660 * 

PSIPRED PSI-BLAST + UniRef90 82.796 1.61E-03 79.401 2.00E-03 
DeepMSA 83.616 * 80.601 * 

* Each p-value is calculated by one-tailed paired t-test to test whether DeepMSA has significant better SS prediction 
accuracy than the respective profile. 
 

2.4 Discussion and Conclusion 

We developed an open-source pipeline, DeepMSA, aiming to collect deep and sensitive 

multiple sequence alignments from whole-genome and metagenome sequence databases. Large-

scale benchmark experiments show that DeepMSA consistently improves protein contact 

prediction, fold-recognition, and secondary structure prediction, compared to the widely-used 

HHblits, Jackhmmer and PSI-BLAST sequence searching programs. For example, the use of 

MSAs from DeepMSA improves top L long-range contact prediction precision of CCMpred by 

24.4% compared to the default use of the HHblits MSAs by the program. Similarly, MUSTER 

threading identifies correct templates for 64.0% more “Hard” targets by switching the default 

PSI-BLAST profiles to the DeepMSA profiles. Notably, all improvements in contact prediction, 
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secondary structure prediction and threading have been achieved without retraining predictor 

model and parameters in neural networks or dynamic programming alignment.  

The high quality of MSA by DeepMSA is partly due to the greater coverage and 

alignment depth resulted from the combination of diverse source of sequence databases. 

However, benchmark study shows that deeper MSA with more sequence homologs does not 

always lead to better contact prediction, since the final effect of MSAs is often a tradeoff of 

sequence coverage and alignment accuracy. Further analysis reveals that appropriate 

incorporation of multiple sequence search and alignment algorithms is the key to generate high 

quality MSAs by DeepMSA. In particular, HMMER alignment reconstruction by custom 

HHblits database generation is found to be especially helpful: a baseline method (“No custom 

db” in Table 1 and Table 2) without the custom HHblits database generation step results in 1.0% 

to 4.2% worse top L long-range contact prediction accuracies than DeepMSA, even when both 

methods use identical sequence databases.  

The on-line server and the standalone program of DeepMSA are freely available at 

https://zhanglab.ccmb.med.umich.edu/DeepMSA/. An updated version of LOMETS 181 meta-

server for threading-based protein structure prediction using sequence profiles generated by 

DeepMSA is available at https://zhanglab.ccmb.med.umich.edu/LOMETS/. The continuous 

developments of robust MSA and profile construction methods should help enhance the 

usefulness and impacts of the whole-genome and metagenomics initiatives on the structure and 

function prediction studies of the community. For example, the current DeepMSA program runs 

only with monomer proteins, while an extension of the program for protein-protein complex 

MSA construction is important and under progress237. 
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Chapter 3 D-QUARK: Ab Initio Protein Folding Assisted by Deep Learning Predicted 
Distance and Orientations 

 
3.1 Introduction 

While reassembly and refinement of threading templates remains the most reliable 

protocol for protein structure prediction, the effectiveness of such template-based modeling 

(TBM) approaches are contingent upon the availability of good templates. The need to avoid 

template dependency for distant- and non-homology targets has led to the development of ab 

initio approach, or template-free modeling (FM) approach for protein structure prediction. Much 

recent progresses in ab initio protein folding are fueled by the usage of deep learning predicted 

contact maps190,238. Although a contact-map constraints which pairs of residues should be close 

to each other, it provides limited insight on the exact distance between interacting residue pairs 

due to its binary (contact versus non-contact) nature. 

To address the limitation of contact map, three groups (AlphaFold173,194, RaptorX-

Contact171, and DMPfold172) have almost simultaneously proposed the extension of contact map 

to distance map to guide ab initio protein folding. Instead of representing inter-residue 

interaction of a protein as the L×L binary contact map, where L is the target sequence length, a 

distance map has the shape of L×L×K. Each pixel in the distance map provides a probability 

distribution of the distance between a residue pair over a series of K distance bins. The use of 

distance bins enables the AlphaFold, a predictor based on relatively simple gradient descent-

based conformation sampling approach to generate ab initio structure models with accuracy 

rivals to that of state-of-the-art TBM and FM methods.  
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Despite the success of distance-based protein folding, two issues remains. Firstly, the 

distant-based protein folding methods previous methods are mainly based on distant-

geometry171,172 and/or gradient descent based on Limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) optimization173,194,196, which can be trapped in local minima. For example, 

AlphaFold needs to run 5000 separate L-BFGS runs for a single target protein to ensure the 

conformation space is sufficiently covered194, making an otherwise light weighted simulation 

computationally intensive. Moreover, distance geometry or L-BFGS usually requires the energy 

function to be expressed as upper-lower bounds or as smooth and differentiable functions. This 

limits the possible functional forms the energy function can take, and prevents the incorporation 

of statistical energy functions which are usually not differentiable. Another inherent limitation of 

distance maps is its inability to differentiate different types of interactions. For example, even 

though close interaction is needed in both alpha helix packing and beta strand pairing, an inter-

helix residue pair usually adopts antiparallel or perpendicular orientation, while beta pairing 

residues are almost always parallel. This is part of the reason orientation-dependent statistically 

energy functions almost always outperform orientation-independent energy174,175,239. The 

importance of orientation necessitates the prediction and incorporation of orientation maps196 

into folding simulations. 

In this work, we present D-QUARK, a protein folding algorithm that combines deep 

learning predicted distance and orientation maps with inherent QUARK statistical energy47 for 

comprehensive replica-change Monte Carlo (REMC) simulation. It differs from mainstream 

contact- and distance-based ab initio protein folding protocol in its unique flat-well distance 

potential, and a careful balance between statistical energy and deep learning derived restraints. 
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3.2 Methods 

The pure ab initio protein folding pipeline of D-QUARK consists of three main steps 

(Figure 8): deep learning-based distance and orientation prediction, distance- and orientation 

guided REMC simulation, and clustering of simulation decoys for final atomic refinement. 

 

Figure 8. The D-QUARK pipeline for distance-based protein folding. D-QUARK consists of the following steps: residue-residue 
distance and orientation prediction by TripletRes deep learning model using hMSA sequence alignment; distance- and 
orientation-guided fragment generation; assembly of fragment by REMC simulation guided by a composite force field combining 
distance and orientation prediction and knowledge-based potential; clustering and refinement for final model generation. The 
lower left inset depicts the geometric definition of dihedral angles Ω and Θ as well as the angle Φ for orientation prediction 
between residue i (black) and residue j (grey), where Ω is symmetric (Ωij=Ωji) while Θ and Φ are asymmetric (Θij≠Θji and 
Φij≠Φji). 

 

3.2.1 Distance and orientation prediction 

The input for our distance- and orientation map predictor is the multiple sequence 

alignments (MSA) constructed for the target sequence. This is performed by two complementary 

approaches: DeepMSA (Figure 9A) and qMSA (Figure 9B), using three metagenome sequence 

databases (Metaclust, BFD and Mgnify) and two whole-genome sequence databases (Uniclust30 
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and UniRef90). Here, DeepMSA240 is our previous MSA construction program developed in 

CASP13. In the three stages of DeepMSA, HHblits2, Jackhmmer and HMMsearch were used to 

search the query against Uniclust30 (version 2017_04), UniRef90 and Metaclust, respectively. In 

Stage 2 and 3, homologs identified by Jackhmmer and HMMsearch, respectively, are constructed 

into a custom HHblits format database, which will be searched through by HHblits2 using the 

MSA input from the previous stage to generate new MSAs. As an extension of DeepMSA, 

qMSA (standing for “quadruple MSA”) has four stages to perform HHblits2, Jackhmmer, 

HHblits3, and HMMsearch searches against Uniclust30 (version 2020_01), UniRef90, BFD, and 

Mgnify, respectively. Similar to DeepMSA Stage 2 and 3, the sequence hits from Jackhmmer, 

HHblits3 and HMMsearch in Stage 2, 3 and 4 of qMSA are converted into HHblits format 

database, against which the HHblits2 search based on MSA input from the previous stage is 

performed. These steps result in 7 MSAs in total (i.e., 3 from DeepMSA and 4 from qMSA). 

These MSAs are scored by a deep learning contact predictor, TripletRes232, where a single MSA 

(referred to as hybrid MSA, or hMSA) with the highest probabilities for top 10L (L is the 

sequence length) all range contacts (Cβ-Cβ distances<8Å) will be selected. 

The selected MSA is used by the full-version TripletRes program (Figure 9C) to calculate 

raw coevolutionary input features from covariance (COV) statistics and pseudo-likelihood 

maximization (PLM), which is shown to result in significantly more accurate neural network 

learning232 than previous predictors162,166,241 that use post-processed coevolution features. The 

output of this full-version TripletRes are a set of spatial restraints, including the Cα-Cα distance, 

Cβ-Cβ distance and inter-residue orientations. The distances are predicted in the form of 38 

distance bins (1 bin for <2Å, 36 bins for 2 to dcut=20Å with bin width 0.5Å, and 1 bin for ≥20Å), 
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while torsional angles are predicted with bin width of 15˚ plus an additional bin for no 

interaction (i.e. Cβ-Cβ distance ≥20Å).  

 
Figure 9. MSA generation and distance prediction in D-QUARK. (A-B) MSA generation by DeepMSA (A) and 
qMSA (B). (C) The neural network architecture of extended TripletRes for prediction of distances (Cα and Cβ) and 
orientations (Ω, Θ and Φ). TripletRes used 50 ResNet blocks, whose architecture is shown in the inset. The two sets 
of input features of TripletRes are calculated from the MSA by covariance (COV) and pseudo-likelihood 
maximization (PLM), with each set of feature in the form of an L×L×484 matrix. Here, L is the length of query 
while 484=22×22 is the number of amino acid type combinations for a pair of residues (22=20 standard amino acid 
types plus 2 types for a gap and a non-standard amino acid). 

 

3.2.2 Implementation of distance and orientation potential in protein folding simulation 

These distance and torsion angle restraints are used to generate continuous fragments 

ranging from 1 to 20 residues by short L-BFGS simulations. The simulation is guided by the 

negative log probability potential for both Cα-Cα and Cβ-Cβ distances (d), and orientations (o): 
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ε=1e-4 is a pseudo-count to avoid division by or logarithm of zero. α=1.57 is a constant 

parameter for the distance-scaled finite ideal-gas reference state242 of a distance potential. L-

BFGS requires every individual energy term to be continuous and differentiable so that gradients 

can be calculated, while the raw probability distribution is binned (i.e. discontinuous). For L-

BFGS purpose, the above energy terms are converted to smooth forms by cubic spline fitting. 

Using different cutoffs ranging from to 0.55 to 0.95 for the probability of no interaction, 30 L-

BFGS runs were performed to generate 30 conformations. From these 30 conformations, 

continuous fragments ranging from 1 to 20 residues are extracted. 

The fragments are assembled by a replica-exchange Monte Carlo (REMC) simulation 

extended from QUARK47. This REMC has 40 temperature replicas and 12 different types of 

movements, and is guided by a composite force field comprising of knowledge-based energy 

terms inherited from QUARK47, the same orientation potential shown in Eq (3.2), and a different 

flat-well distance potential: 
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μ and σ are the mean and standard deviation, respectively, of the distance prediction. 

These two parameters are from Gaussian fitting of the raw probability distribution by minimizing 

the following objective function using simplex optimization243: 

𝑓(𝜇, 𝜎) = −8 𝑃(𝑘) ∙ 𝑙𝑜𝑔 xy
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Here, 𝑙𝑏� and 𝑢𝑏� are the lower and upper bounds of the kth distance bin, while P(k) is 

the TripletRes predicted probability of the kth bin. In addition to the flat-well and negative log 

probability potential proposed above, we also tested REMC with three other forms of distance 

potentials, i.e., negative probability, flat bottom, and Hooke potentials in Eq (3.5), (3.6) and 

(3.7), respectively. 
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Unlike L-BFGS, the negative log probability and negative probability potentials in 

REMC can directly use the raw binned probability without spline fitting, as Monte Carlo 

simulation does not require energy terms to be differentiable. Additionally, α=0 is used in Eq 

(3.1) for REMC as it generates slightly more accurate results than those from	α=1.57 in REMC. 

 

3.2.3 Clustering and refinement 

Approximately 25,000 decoy conformations are collected from the 10 replicas with the 

lowest temperatures in REMC. These decoys are clustered by pairwise RMSD using 
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SPICKER244. The cluster centroids from the five largest clusters are consecutively refined by 

ModRefiner245 and FG-MD188 to get the five final models, which are ranked in descending order 

of the cluster size. In this article, we mainly discuss the result for the first model from the largest 

cluster. 

 

3.3 Results 

3.3.1 Dataset 

D-QUARK was benchmark on 301 non-redundant (pairwise sequence identity <30%) 

PDB chains ranging from 51 to 286 residues. Since D-QUARK was developed specifically for 

FM folding, the benchmark dataset only include target proteins determined as “hard” and “very 

hard” by LOMETS2181 and with first threading template TM-score246,247 less than 0.5. 

 

3.3.2 Cα-Cα distances can be predicted more accurately than Cβ-Cβ distances 

Most state-of-the-art distance-based protein folding algorithms 172,194,196 chose to use Cβ-

Cβ distances, and only resort to use Cα atom when Cβ atom is unavailable (i.e. glycine residues). 

However, Cα-Cα distances should theoretically also be predictable by deep learning as Cα-Cα 

distances. Indeed, as shown in Table 5, TripletRes Cα-Cα distance predictions is actually even 

more accurate than its Cβ-Cβ distance predictions, which are in turn more accurate than those 

from third-party predictors (trRosetta and DMPfold).While we mainly measure the accuracy of 

distance prediction by Root Mean Square Error (RMSE) of distance prediction for the top L long 

range residues pairs (i.e. pairs of residues separated by ≥24 residues in sequence), we also 

indirectly measure the prediction accuracy in terms of precisions for top L long contact, where a 

distance map is converted to a contact map by summing up the predicted probabilities of all bins 
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for <8Å. Interesting, despite Cβ-Cβ has less accurate distance predictions than Cα-Cα in 

TripletRes, the former has more accurate contact predictions in terms of precision for top L long 

range. These data suggests that Cα-Cα and Cβ-Cβ provides complementary information to 

protein folding, and justify our incorporation of TripletRes distances for both atom types to D-

QUARK. 

 

Table 5. Top L long range contact precision and distance RMSE by different distance predictors. 
Predictor Atoms Contact precision (p-value) Distance RMSE (p-value) 

TripletRes Cα-Cα 0.466 (3.75E-21) 1.771 (*) 
Cβ-Cβ 0.516 (*) 1.896 (6.99E-05) 

trRosetta Cβ-Cβ 0.438 (1.43E-44) 2.350 (4.23E-18) 
DMPfold Cβ-Cβ 0.376 (1.20E-67) 3.153 (9.62E-27) 

* All p-value is calculated by one tailed t-test against TripletRes predicted Cβ-Cβ contacts and Cα-Cα distances. The 
most accurate result (highest precision and lowest RMSE) is highlighted in bold. 

 

3.3.3 Contact-based MSA selection improves the quality of MSA 

Since the hybrid MSA in D-QUARK is selected by the highest sum of contact scores 

rather than largest number of effective sequence (Nf) as in previous studies238,240, we tested 

whether this strategy indeed improves quality of selected MSA. The MSA quality is quantified 

by two metrics in the TripletRes prediction for top L long range pairs: Cβ-Cβ contact precision 

and Cα-Cα distance RMSE. As shown in Table 6, contact-selected MSA consistently 

outperforms Nf-selected MSA for both qMSA and DeepMSA in both contact and distance 

prediction. Additionally, although qMSA has a roughly similar performance (slightly better 

contact precision but slight worse distance RMSE) as DeepMSA, their combination by contact-

based MSA selection leads to a consistently better quality for the final hMSA than DeepMSA or 

qMSA alone. 
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Table 6. MSA quality for different MSA generation and selection approaches, measured by TripletRes Cβ-Cβ 
contact precision and Cα-Cα distance RMSE for top L long range residue pairs. 

Method Selection Contact precision (p-value) Distance RMSE (p-value) 

DeepMSA Nf 0.497 (2.25E-7) 1.820 (3.83E-1) 
Contact 0.501 (3.96E-6) 1.820 (7.39E-2) 

qMSA Nf 0.501 (1.38E-3) 1.853 (1.30E-1) 
Contact 0.509 (2.92E-2) 1.823 (1.98E-1) 

hMSA Contact 0.516 (*) 1.771 (*) 
* All p-value is calculated by one tailed t-test against hMSA, which is the final MSA used by D-QUARK. The best 
MSA quality (highest precision and lowest RMSE) is in bold. 

 

3.3.4 Functional form of distance potential has a profound impact on protein folding 

We access the performance of D-QUARK using different distance potentials, in 

comparison with four other state-of-the-art protein folding programs incorporating predicted 

contacts (C-QUARK and C-I-TASSER238) or distances (DMPfold172, and trRosetta196), as well as 

the original QUARK algorithm47 without predicted contacts or distances. The performance is 

evaluated by first model TM-score, first model RMSD, and the success rate (i.e., number of 

targets with TM-score>0.5 divided by total number of targets). For this benchmark, C-QUARK 

and C-I-TASSER use their built-in DeepMSA alignments for contact prediction, while DMPfold 

and trRosetta, which do not depend on specific built-in MSA generator, uses the same MSA as 

D-QUARK for distance prediction. For QUARK, C-QUARK and C-I-TASSER, which use either 

local templates fragments or full length templates, all structure templates sharing ≥30% sequence 

identity to the target protein in order to emulate real-life scenario of ab initio modeling. 

Table 7. Performance of D-QUARK in comparison with other third-party programs. 
Program D-QUARK energy† TM-score (p-value) RMSD (p-value) Success rate 
QUARK  0.296 (6.24E-108) 13.6 (1.79E-68) 3.0% 

C-QUARK  0.431 (6.72E-72) 9.87 (1.43E-32) 35.6% 
C-I-TASSER  0.448 (1.35E-66) 9.48 (6.46E-30) 40.9% 

DMPfold  0.503 (7.06E-41) 9.06 (6.34E-28) 51.5% 
trRosetta  0.555 (5.04E-32) 7.91 (1.14E-15) 61.5% 

D-QUARK 

Elog 0.456 (3.77E-58) 9.29 (1.29E-30) 39.2% 
Ebottom 0.456 (3.59E-56) 9.50 (9.91E-31) 39.9% 
Eprob 0.462 (3.74E-55) 9.54 (1.09E-31) 40.5% 
EHooke 0.463 (8.21E-52) 9.39 (7.42E-30) 41.2% 
Ewell 0.470 (4.00E-54) 9.20 (3.74E-29) 43.2% 

Ewell +Eo 0.618 (*) 6.56 (*) 73.4% 
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† Elog, Ebottom, Eprob, Ehooke, Ewell, and Eo represents negative log probability, flat bottom, negative probability, Hooke, 
flat well distance potentials, and the orientation potential, respectively. 
* All p-values are calculated by one-tailed t-test with regard to the final D-QUARK version (Ewell +Eo). 

 

Several observations can be made from Table 7 and Figure 10 that summarize the 

benchmark. Firstly, even when using the same deep learning derived distance prediction, 

different functional forms of distance potential implemented by D-QUARK can lead to different 

performance, with the best potential (Ewell) resulting in 3% higher TM-score than the worse 

potential (Elog) after weight tuning. Secondly, all three distance-based protein folding programs 

(DMPfold, trRosetta and D-QUARK) outperform protein folding programs that only use contact 

information (C-QUARK and C-I-TASSER), which in turn outperform protein folding algorithm 

without contact or distance (QUARK). These data show the advantage of distance-based protein 

folding over protein folding with contact or without any contact/distance restraints. Thirdly, D-

QUARK with both deep learning predicted distance and orientations (Ewell+Eo) significantly 

outperforms in-house and third-party distance-based protein folding protocols without 

orientations (D-QUARK Elog, Ebottom, Eprob, EHooke, Ewell and DMPfold), suggesting that both 

distance and orientation potentials in protein folding. Fourthly, even though both D-QUARK and 

trRosetta combine deep learning derived distances and orientations, D-QUARK outperforms 

trRosetta due to both more accurate deep learning prediction (Table 6) and better protein folding 

simulation. Finally, while we are unable to compare D-QUARK and AlphaFold on the full 

benchmark dataset in Table 7 due to the lack of feature generation and protein folding programs 

from AlphaFold, we perform a comparison in Figure 10E for a smaller subset of CASP13 FM 

targets submitted by AlphaFold (group A7D in CASP13). D-QUARK outperforms AlphaFold in 

terms of average TM-score (0.626 versus 0.579, p-value=1.78E-2) and success rate (76.7% and 

63.3%). 
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Figure 10. Head-to-head comparison of first model TM-score between (A) QUARK, (B) C-QUARK, (C) C-I-
TASSER, (D) DMPfold, (E) trRosetta, (F) AlphaFold and D-QUARK. Each circle represents one target protein in 
the benchmark dataset. The comparison between D-QUARK and AlphaFold is on a subset of 31 FM targets that 
AlphaFold submitted their prediction in CASP13. 

 

3.3.5 A case study based on preliminary assessment of D-QUARK in CASP14 

D-QUARK participated in the most recent CASP14 challenge as two automated servers: 

“Zhang_Ab_Initio” and “QUARK”. As a case study, we discuss T1040, which corresponds to a 

single domain (residue 1372-1501) from the RNA polymerase in Cellulophaga phage (PDB ID: 

6vr4 Chain A). This is a particularly challenging target with no sequence homologs from 

DeepMSA and only 11 homologs from qMSA. All servers failed to generate a correct first 

model. Nonetheless, “Zhang_Ab_Initio” first model is closest to the native structure among all 

servers with TM-score=0.498, indicating a roughly correct topology, while model 2 (the best 

Zhang_Ab_Initio model) has TM-score=0.521 (Figure 11AB). Part of the reason for the 
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advantage of Zhang_Ab_Initio over other serves on this target is that all its structure templates 

are incorrect (TM-score=0.174 and 0.298 for first and best LOMETS templates, respectively, 

Figure 11CD). This shows the power of D-QUARK for non-homolog FM targets, especially 

when TripletRes has a reasonable prediction accuracy (distance RMSE=1.385Å, and top L 

contact precision 0.392). The main reason for the modest TM-score is the incorrect orientation of 

C-terminal helical segment (residue 97-130, black in Figure 11A-D for model and red for native 

structure), which is incorrectly packed against the residue 51-64 (green helix in Figure 11). This 

is caused by false positive prediction of interaction between residue 62 to 63 and residue 109 to 

113 in the TripletRes prediction (red box in Figure 11E, grey arrow in Figure 11A), which are 

actually quite far apart in the native structure (red arrow in Figure 11A). This suggests that a 

small number of false positive predictions can mislead the protein folding process. 

 
Figure 11. Modeling of T1040. (A-D) Structure models (residue 1 to 96 in grey cartoon; residue 97-130 in black) of 
D-QUARK Model 1 (A), Model 2 (B), LOMETS Template 1 (C; PDB ID: 3d5l Chain A) and Template 129 (D; 
PDB ID: 6iv9 Chain A), superposed to the native structure (PDB ID: 6vr4 Chain A; spectrum cartoon colored from 
N- to C- terminal in blue to red). (B) Distance map for residue pairs with Cα-Cα distance<13Å in native structure 
(upper left black circles), TripletRes prediction (lower right black circles) and D-QUARK Model 1 (light grey 
circles). 
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3.4 Discussion and Conclusion 

We developed D-QUARK, an ab initio protein folding algorithm incorporating deep 

learning-predicted inter-residue distance and orientations. On a benchmark dataset of 301 hard 

targets D-QUARK consistently outperforms state-of-the-art template-based and ab initio protein 

structure predictions programs guided by deep learning predicted contacts, distances, and 

orientations. Detailed analysis showed that the advantage of D-QUARK can be attributed to 

better quality MSA to generate input features for deep learning, a more accurate deep learning 

model for distance/orientation prediction, and the REMC simulation with carefully designed 

energy terms to incorporated predicted distance and orientations restraints. 

All deep learning derived inter-residue restraints as probabilities of different distance and 

orientation bins rather than real values. The binned prediction may inherently imposes a 

resolution limit in the restraint prediction, even though we try to circumstance this issue by 

deriving the real value distance through Gaussian fitting of the probability bins. In the future, a 

real value distance/orientation deep learning model may be able to better model the inter-residue 

restraints. 
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Chapter 4 COFACTOR: Structure and Interaction-based Protein Function Prediction1 
 
4.1 Introduction 

Due to recent advances in high-throughput sequencing technology, the gap between the 

numbers of protein sequences and number of those with experimentally characterized functions 

is quickly growing. As of 2017, for example, there are more than 60 million protein sequences 

deposited in the UniProt database 248, but fewer than 0.8% of these sequences have the functions 

manually annotated in SwissProt 249. Automated and yet accurate in silico protein function 

prediction thus becomes crucial for making use of the recent explosion of genomic sequencing 

data. Most of the current function prediction approaches are based on sequence homologous 

transfer 250, which may not be able to achieve the remarkable task since more than 80% of un-

annotated protein sequences lack close functional homologs (i.e., sharing greater than 60% 

sequence identity), and 25% of un-annotated proteins lack any homologs sharing a sequence 

identity above 30% in the current databases. Given that the function of a protein is ultimately 

defined by its structure, COFACTOR 70,251 has been previously proposed to transfer functional 

insights to the unknown proteins from structural homologies, which provides an alternative 

approach to annotating non-homologous targets that sequence-homology based methods cannot 

model effectively 250. 

 
 

1 This chapter was adapted from two previously-published works. The first work was Zhang C, Freddolino PL, Zhang Y (2017) 
“COFACTOR: improved protein function prediction by combining structure, sequence and protein-protein interaction 
information. ” Nucleic Acids Research, 45(W1), W291-W299. The second work was C Zhang, W Zheng, PL Freddolino, and Y 
Zhang (2019) “MetaGO: Predicting Gene Ontology of non-homologous proteins through low-resolution protein structure 
prediction and protein-protein network mapping.” Journal of Molecular Biology, 430(15), 2256-2265. In our earlier works, the 
full function pipeline was referred to as “COFACTOR” while its subroutine for Gene Ontology prediction is called “MetaGO”. 
To avoid readers’ confusion, this thesis will consistently use the name “COFACTOR”. 
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Function annotation using structural homology alone, however, suffers several 

deficiencies. First, global structural similarity does not always lead to functional similarity. For 

example, the TIM barrel fold 197 is adopted by many proteins covering 60 distinct EC 

classification 252 as well as many non-enzyme proteins. Even for proteins with similar functions, 

global fold based comparisons may fail because the proteins often share only the local binding or 

active sites with complete different folds 253. Second, the current structure-function database is 

far from complete. For around 88% of proteins with known functions from the UniProt-GOA 254, 

for example, there are no experimentally solved structures in the PDB database 255, seriously 

limiting the power of structure-based detection of functional homologies. Finally, although 

structure is essential to protein function, the structure of proteins in cells is far from static and 

many functions are associated with cellular environment of the molecules and the molecular 

motion of disordered regions that do not have a structure on their own 256. Therefore, composite 

approaches combining multiple and complementary information from different resources of 

sequence homologs and interaction networks should help increase the accuracy and coverage of 

the structure-based function annotations. 

In this chapter, we report our recent enhancement of the COFACTOR webserver 251 to 

make use of hybrid models combining information from structure and sequence homologies, as 

well as protein-protein interaction networks, for optimal protein function predictions. In addition, 

considerable effort has been made to improve user’s experience and facility in analysing and 

visualizing the modelling results, which include the introduction of new animation tools to 

display structural templates and ligand-protein interactions, and directed acyclic graphs (DAG) 

to visualize the gene ontology annotation hierarchy. The new COFACTOR server and the 

functional libraries are freely available at http://zhanglab.ccmb.med.umich.edu/COFACTOR/. 



 58 

 

4.2 Methods 

4.2.1 Gene Ontology Prediction 

The approach of GO prediction in COFACTOR consists of structure, sequence, and 

protein-protein interaction based pipelines (Figure 12). 

 
Figure 12. The workflow of COFACTOR for template-based function predictions. The method consists of three 
pipelines of functional template identifications. The GO models are derived from a consensus of the structure-, 
sequence- and PPI-based pipelines, while the EC and ligand-binding predictions are obtained from the structure-
based template transfers. 

 

Structure-based pipeline 

The structure-homology based GO prediction method by COFACTOR was described 

previously 251. Briefly, the query structure is compared to a non-redundant set of known proteins 
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in the BioLiP library 257, through two sets of local and global structural alignments based on the 

TM-align algorithm 258, for functional homology detections. Here, BioLiP is a semi-manually 

curated structure-function database containing known associations of experimentally solved 

structures and biological functions of proteins in terms of GO terms, EC number, and ligand 

binding sites. The local structure similarity between query and template is defined by 
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where 𝑁K is the number of residues in the active/binding sites, 𝑁�Y� is the number of aligned 

residue pairs, 𝑑� is the 𝐶𝛼	 distance between ith aligned residue pair, 𝑑�=3Å is the distance cut-

off, and 𝑀� is the BLOSUM62 substitution matrix score 259 between ith pair of residues that has 

been normalized to the interval [0, 1]. The confidence score of a template hit is defined by 

	𝐹𝐶𝑠𝑐𝑜𝑟𝑒 =
2
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where 𝑇𝑀 is the global structure similarity in terms of TM-score 234 between query and template, 

𝐼𝐷 is the sequence identity between query and template in the aligned region, and 𝑆𝑆}� is the 

sequence identity at the binding site. The overall confidence score for a particular GO term q is 

then calculated by 
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where N(q) is the number of templates associated with the GO term q, and 𝐹𝐶𝑠𝑐𝑜𝑟𝑒�(𝑞) is the 

confidence score of the ith hit associated with λ as defined in Equation (4.2). The predicted GO 

terms are reconciled using the PIPA algorithm 260. 

Sequence-based pipeline 

In the second pipeline, the query sequence is searched against the UniProt database 

through both sequence and sequence profile alignments by BLAST 261 and PSI-BLAST 102, 
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respectively. Only manually reviewed GO terms of sequence templates are considered, with GO 

terms annotated with IEA or ND evidence codes excluded. For BLAST, the query is directly 

searched against sequence template library with an e-value cut-off 0.01. The confidence score for 

a particular GO term q resulting from a BLAST search is defined by  
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where N is the number of templates identified, 𝑠� is the sequence identity between the query and 

the kth template, and N(q) and 𝑠�(𝑞) are those associated with a specific GO term q. For PSI-

BLAST, a sequence profile is obtained by searching with the query sequence through the 

Uniref90 sequence library 223 by three iterations under an e-value cut-off 0.01. The sequence 

profile is used to jump start a PSI-BLAST profile-sequence search against the UniProt-GOA 

sequences. The confidence score for GO term λ is defined in the same way as in BLAST 

(Equation 4.4). The final weighted average confidence score of the sequence-based pipeline is 

calculated as 

𝐶𝑠𝑐𝑜𝑟𝑒�q¡Jq=Iq(𝑞) = 𝑤 × 𝐺𝑂𝑓𝑟𝑒𝑞}Y��K(𝑞) + (1 − 𝑤) × 𝐺𝑂𝑓𝑟𝑒𝑞���}Y��K(𝑞)									(4.5) 

where w equals to the maximum sequence identity of the query to all the template hits. In this 

way, BLAST hits have a stronger weight if close homologs are found, while the weight of the 

PSI-BLAST hits is increased for the non-homologous cases for which PSI-BLAST profile 

alignments are usually more efficient than the sequence based alignments. 

PPI-based pipeline 

In this pipeline, the query is first mapped to the STRING 262 protein-protein interactions 

(PPI) database by BLAST, with a sequence identity cut-off >0.9. GO terms of the interaction 

partners, as annotated in the STRING database, are then collected and assigned to the query 

protein. The underlying assumption is that the interacting partners tend to participate in the same 
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biological pathway at the same sub-cellular location and therefore may have similar GO terms. 

Finally, the confidence score for GO term 𝑞 mapped by PPI is calculated by 
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where N is the number of interacting partners, 𝑠𝑡𝑟�	is the confidence score of interaction between 

query and the kth interaction partner as assigned by the STRING database, and 𝑆� is the sequence 

identity in the first step of BLAST alignment for the kth interaction partner. N(q), 𝑠𝑡𝑟�(𝑞), and 

𝑆�(𝑞) are those associated to the specific GO term q. 

Consensus GO prediction 

The final GO prediction is obtained by combining the GO terms from the structure, 

sequence, and PPI-based pipelines, with the confidence score calculated by 

𝐶𝑠𝑐𝑜𝑟𝑒¦§(𝑞) = 1 −��1 − 𝐶𝑠𝑐𝑜𝑟𝑒<(𝑞) 
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where 𝑚 ∈ {𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, 𝑃𝑃𝐼}. 𝑤< is the relative weight for each of the three 

methods, with 𝑤�q¡Jq=Iq = 𝑤¤¤¥ = 1 and 𝑤�K�JIKJ�q = 1 − 𝑤, where w equals to the maximum 

sequence identity among identified function templates. Hence, the weight of the structure-based 

model becomes stronger for the cases that have no homologous templates. 

 

4.2.2 Enzyme Commission Number Prediction 

The pipeline of EC number prediction is similar to the structure-homology based method 

used in GO prediction. Enzymatic homologs are identified by aligning the target structure, using 

TM-align 258, to a library of 8,392 enzyme structures from the BioLiP library 263, with the active 

site residues mapped from the Catalytic Site Atlas database 264. The confidence score for each 
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predicted EC number is estimated based on the global and local similarity between the target and 

top template hit: 

𝐶𝑠𝑐𝑜𝑟𝑒¬ =
2
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where 𝑇𝑀 is the TM-score between query and template, 𝐼𝐷 is the sequence identity, 𝑆𝑆�� is the 

sequence identity at the active sites, and 𝐿��< is local structure similarity as defined in Equation 

(4.1). 

 

4.2.3 Ligand Binding Site Prediction 

Ligand binding prediction in COFACTOR consists of three steps. First, functional 

homologies are identified by matching the query structure through the BioLiP library 263, which 

contains 58,416 structure templates harbouring in total 76,679 ligand-binding sites for interaction 

between receptor proteins and small molecule compounds, short peptides, and nucleic acids. The 

initial binding sites are then mapped to the query from the individual templates based on the 

structural alignments. 

Next, the ligands from each individual template are superposed to the predicted binding 

sites on the query structure using the superposition matrices from the local alignment of query 

and template binding sites. To resolve atomic clashes, the ligand poses are refined by a short 

Metropolis Monte Carlo simulation under rigid-body rotation and translation, guided by an 

empirical energy function of 
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where 𝑅𝑀𝑆𝐷 is the RMSD of current ligand pose and the origin ligand pose, 𝑁IY��� is the 

number of atomic clashes between ligand and protein, 𝑁Y�[ is the number of ligand atoms, 𝑑�K is 
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the distance between ith ligand atom and the Cα atom of the template residue in contact with the 

ligand atom, and 𝑑�
¡ is the distance between the same ligand atom and the closest query Cα atom. 

Finally, the consensus binding sites are obtained by clustering all the ligands that are 

superposed to the query structure, based on distance of the centroids of mass of the ligands using 

a cut-off of 8 Å. Different ligands within the same binding pocket will be further grouped by the 

average linkage clustering with chemical similarity, using the Tanimoto coefficient 265 with a 

cut-off of 0.7. The model with the highest ligand-binding confidence score (𝐶𝑠𝑐𝑜𝑟𝑒²³´) among 

all the clusters is selected, which is defined by 
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where N is the number of ligands in the ligand cluster, 𝑁KZK is the total number of ligands 

collected from all the homologous template, 𝐿��< is the local similarity at the binding site 

defined in Equation (4.1), 𝑇𝑀 is TM-score between query and template, 𝐼𝐷 is the sequence 

identity between query and template in the structurally aligned region, and 〈𝐷〉 is the average 

distance between ligands within the cluster. 

 

4.3 Results 

4.3.1 Benchmark results on GO predictions 

The COFACTOR GO pipelines have been benchmarked on a non-redundant set of 1,224 

E. coli proteins from UniProt database, with lengths ranging from 38 to 968 residues and 

pairwise sequence identity <40%. The input structures for COFACTOR were predicted by I-

TASSER 16 with all homologous structural templates with a sequence identity >30% to the query 

excluded, thus simulating predictions for a target without any close homologs. Similar to the 



 64 

Critical Assessment of Function Annotation (CAFA) experiments 250,266, the GO performance is 

mainly assessed by the F-measure, which is defined as the harmonic average between precision 

and recall: 

𝐹<�· = max
K
�
2 × 𝑝𝑟(𝑡) × 𝑟𝑐(𝑡)
𝑝𝑟(𝑡) + 𝑟𝑐(𝑡) ¹																																												(4.11) 

where t is the confidence score threshold (ranging between 0 and 1), and pr(t) and rc(t) are the 

precision and recall at a threshold t.  

Figure 13 shows the performance of the COFACTOR server on three aspects of GOs: 

molecular function (MF), biological process (BP) and cellular component (CC); results are 

shown in control with those of the GoFDR program 267, one of the top performing methods in 

CAFA2 250, and three baselines methods: Naïve Baseline, BLAST and PSI-BLAST, as 

implemented in CAFA 250,266. To examine the effect of the combination of complementary 

pipelines, we also show the results from individual COFACTOR components from structure, 

sequence and PPI pipelines. To test the dependence of the pipelines on the homologies, four 

levels of sequence identity cut-offs at 20%, 30%, 50%, and 90% were used separately to filter 

out homologous templates. Several interesting observations arise from this figure. First, whereas 

the performance of sequence-based methods (GoFDR, BLAST/PSIBLAST, and the sequence 

module of COFACTOR) declines rapidly below 50% sequence identity, the structure module of 

COFACTOR shows almost no loss of performance even down to 20% sequence identity, and at 

that point it outperforms all sequence-based methods. For example, 𝐹º»¼	 for MF is 0.538 at the 

20% sequence identity cut-off, very close to 0.541 obtained at 50% cut-off. Second, the new 

sequence component of COFACTOR is a strong performer on its own, with performance 

exceeding all other sequence-based methods including GoFDR (except for the cases at very low 

homology cut-off), and thus provides a useful complement to the structure-based module in the 
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high sequence homology region. Finally, the hybrid COFACTOR model outperforms all other 

methods used in our comparison (including, interestingly enough, the Naïve method for CC term 

predictions, which was not beaten by any prediction set in the CAFA2 competition 250), at all 

levels of sequence identity cut-offs. 

 
Figure 13. Accuracy of GO annotations by COFACTOR and control methods at different sequence identity cut-offs 
on a test set of 1,224 non-redundant proteins. Accuracy is evaluated by maximum F-measure. No sequence identity 
cut-off is imposed on Naïve, as it is not relevant. “structure”, “sequence”, and “PPI” are the individual structure-, 
sequence- and PPI-based pipelines in COFACTOR. “COFACTOR” is the consensus prediction combining the three 
pipelines. Only GO terms annotated by UniProt-GOA with experimental evidence codes (EXP, IDA, IMP, IGI, IEP, 
TAS, or IC) are considered as “gold standards”. All parent GO terms of annotated GO terms are also considered 
annotations of each target. For the predicted GO terms, all their parent terms are also recursively propagated toward 
the root such that each parent term receives the highest confidence score among its children terms. The root term of 
the three GO aspects (MF, BP, and CC) and the extremely common “protein binding” term are excluded. 

 

To examine the specificity of the COFACTOR prediction, we present in Figure 14A a 

histogram of precision of the GO prediction versus the confidence score by COFACTOR, where 

a strong correlation is found for all aspects of GO terms, with the Pearson correlation coefficient 

(PCC) being 0.96, 0.94, and 0.86 for MF, BP, and CC terms, respectively. Consistent with Fig. 
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S1, at the same 𝐶𝑠𝑐𝑜𝑟𝑒¦§ cut-off the precision of MF and BP is generally higher than that of 

CC. For example, the precision for both MF and BP will be >0.3 when 𝑐𝑠𝑐𝑜𝑟𝑒¦§ > 0.6, while 

the precision of CC is only marginally close to 0.3 when 𝑐𝑠𝑐𝑜𝑟𝑒¦§ > 0.8. 

 
Figure 14. Precision of COFACTOR models versus the confidence score in each category of function annotation. 
(A) GO, (B) EC, and (C) Ligand binding sites. 

 

As implemented in the CAFA experiments 268, we have used localID (i.e. the sequence 

identity normalized by number of aligned residues) as the confidence score for the “BLAST” and 

“PSI-BLAST” in the control studies. However, such a score might not be the best choice for 

these baseline methods. In Figure 15, we compare the performance of BLAST and PSI-BLAST 

using different confidence scores, including localID, globalID (sequence identity normalized by 
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the query length), evalue (lowest E-value), and frequency (the number of homologs annotated 

with a GO term of interest among all identified homologs). It shows that frequency consistently 

has the highest Fmax at all cutoffs through all GO aspects, indicating that a consensus of 

multiple template hits is probably a more robust indicator than the score of the best individual 

template. We therefore recommend the use of the frequency of (PSI-)BLAST hits as a more 

reliable and challenging baseline method in future assessment experiments. We also find that 

sequence identity is more indicative of GO annotation similarity than E-value, where both 

globalID and localID have consistently a higher Fmax than evalue. Based on these observations, 

in Equations (4.3) to (4.5), we have combined the homologous templates from both BLAST and 

PSI-BLAST, with the sequence identity as the weight of the combinations. The result shows that 

the combination outperforms the simple counting of the frequency in each individual program. 

Thus, even the poorly performing BLAST and PSI-BLAST methods may be substantially 

improved by careful consideration of the applied scoring schemes. 
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Figure 15. The Fmax score of the GO prediction by PSI-BLAST and BLAST using four different scoring functions 
(localID, globalID, evalue, and frequency) for selecting the functional templates. “sequence” indicates the sequence-
based pipeline in COFACTOR, which combines the prediction results from PSI-BLAST and BLAST hits. This 
figure was generated using a separate dataset of 1000 CAFA3 targets non-redundant to the COFACTOR benchmark 
dataset.  

 

4.3.2 Structure-based approach for EC number prediction 

COFACTOR’s ability to predict EC numbers was tested on a set of 318 non-homologous 

enzymes, with the benchmark EC numbers extracted from the PDB entries. The structural 

models are again predicted by I-TASSER, which are used for the EC template detection as in 

Equation (4.8). As with the GO term predictions above, to simulate a challenging case with no 

close sequence homologues available, both structural and function templates homologous to the 

query (with a sequence identity >30%) were excluded from the I-TASSER and COFACTOR 

template libraries. Figure 16 presents the benchmark results of COFACTOR on EC number 
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prediction compared with the BLAST and PSIBLAST baseline predictors at the same homology 

cut-off. The data shows a significant advantage of COFACTOR’s use of structural homology 

transfers over the sequence-homology approach of BLAST and PSIBLAST. For example, the F-

measure for the first three digits of EC number for the first template of COFACTOR is 0.702, 

while those for the BLAST and PSIBLAST baseline predictors are just 0.243 and 0.450, 

respectively.  

Figure 14B shows a correlation of the precision of the EC models versus the confidence 

score (𝐶𝑠𝑐𝑜𝑟𝑒¬), while a strong correlation with a PCC=0.95 is obtained between 𝐶𝑠𝑐𝑜𝑟𝑒¬  

and the precision for the first enzyme homolog identified for each target. Generally, the precision 

of the prediction goes above 0.5 for any models with a 𝐶𝑠𝑐𝑜𝑟𝑒¬ > 0.4 (Figure 14B). 

 
Figure 16. Accuracy of EC number prediction by COFACTOR and control methods at 30% sequence identity cut-
off. Accuracy is evaluated by maximum F-measure. The BLAST and PSIBLAST baseline method is implemented as 
in Figure 13, but use the same EC library as COFACTOR. 
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4.3.3 Ligand binding site prediction 

The performance of COFACTOR in ligand binding site prediction was benchmarked on 

814 ligand-binding sites from 500 non-homologous proteins from the PDB. As in the tests above, 

both structural and functional templates with a sequence identity >30% have been excluded from 

the I-TASSER structure prediction and COFACTOR binding site template recognitions, to avoid 

homologous contamination. Although no homologous templates were used, COFACTOR 

identifies at least one binding residue correctly in 88% of the test proteins. The overall Matthews 

correlation coefficient (MCC, as defined in Figure 17) between actual and predicted binding sites 

is 0.465. This compares favourably to other state of the art binding site predictors including 

Concavity 269 and Findsite 270 which have overall MCCs of 0.378 and 0.454, respectively, for the 

same set of proteins 

 
Figure 17. An illustrative example of ligand binding site prediction on the C-chain of the GDPRan-NTF2 complex 
(PDB ID: 1a2k). Red: native ligand GDP. Green: residues correctly predicted (TP). Magenta: residues incorrectly 
predicted (FP). Yellow: native binding site residues that are not predicted (FN). The prediction is evaluated by 
Mathews Correlation Coefficient (MCC). 

 

In Figure 17, we show an illustrative example from the C-chain of the GDPRan-NTF2 

complex (PDB ID: 1a2k), where 5 residues were predicted by COFACTOR as ligand-binding 
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sites and 4 of them were correct, resulting in an MCC=0.723 for this case. Figure 14C displays 

the precision values of COFACTOR binding predictions versus the confidence score 

(𝐶𝑠𝑐𝑜𝑟𝑒²³´), which shows a strong correlation with PCC=0.99. According to the data, 62.6% of 

the binding sites are predicted correctly for the models with a 𝐶𝑠𝑐𝑜𝑟𝑒²³´>0.5. 

 

4.3.4 Webserver 

Server input. The mandatory input for the webserver is a single-chain protein structure 

file for the query protein in PDB format. If the input structure contains multiple chains or 

multiple models, only the first chain of the first model will be parsed. In the absence of an 

experimentally solved structure, the user can use models generated by the on-line structure 

prediction tools, such as I-TASSER 15,271, QUARK 272, Rosetta 33, HHpred 273 or Phyre2 274. If 

the user does not additionally specify the amino acid sequence, the sequence of query will be 

extracted from “SEQRES” records of PDB file, or “ATOM” records if “SEQRES” is absent. If 

the input PDB structure is not completely consistent with its corresponding biological sequence, 

the user is always recommended to provide the full sequence as additional input, so that the 

sequence-based components of COFACTOR can generate correct results. 

Server output. Upon job completion, the user will be notified by email with a link to the 

result page in the COFACTOR server website. The result page consists of four major panels: 

structural analogies, GO terms, EC numbers, and ligand binding sites; an example is shown in 

Figure 18. The first panel displays the top ten analogous structures from the PDB library that are 

structurally closest to the query protein. The structural superimpositions are displayed in an 

interactive JSmol applet that allows users to rotate and annotate the pictures 275. The analogous 

template is shown together with the TM-score, RMSD of aligned region, sequence identity, and 
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query coverage, and two links are given to the addresses for downloading the PDB template 

structure and the superposed query/template models from TM-align, respectively. By clicking on 

each of the radio buttons, user can explore the JSmol applet of all different templates (Figure 

18A). The second panel shows the consensus GO prediction results, with models for the MF, BP, 

and CC aspects listed separately. The predicted GO terms are listed alongside the CscoreGO and 

their common name. For each of the three GO aspects, the predicted GO terms are plotted 

together with their parent terms as a directed acyclic graph, in which the predicted GO terms are 

highlighted by a CscoreGO-specific color code, with blue to red representing the terms with 

𝐶𝑠𝑐𝑜𝑟𝑒¦§ from [0.4-0.5] to [0.9-1.0]. Since there are usually multiple terms predicted for each 

target, only the confident predictions with 𝐶𝑠𝑐𝑜𝑟𝑒¦§ ≥0.5 are displayed, although the full set of 

predictions are available for download. If none of the GO terms has a 𝐶𝑠𝑐𝑜𝑟𝑒¦§ ≥0.5, the GO 

terms with the highest 𝐶𝑠𝑐𝑜𝑟𝑒¦§ will be displayed (Figure 18B). The third panel shows the top 

five EC number predictions, each associated with the template structure and marked with 

predicted active sites that can be visualized in the accompanying JSmol applet. In addition, the 

predicted EC number, the confidence score, TM-score between query and template, RMSD of 

aligned region, sequence identity, query coverage, and predicted active sites are also listed for 

each model (Figure 18C). The last panel shows the ligand binding site prediction results. For 

each set of binding sites, the structure templates are presented in order of descending confidence 

score, together with their TM-score, RMSD of aligned region, sequence identity, coverage, and 

binding site residues. The positions of the ligand binding site residues are highlighted in the 

target structure, and can be viewed and interpreted using the JSmol applet (Figure 18D). For 

every target protein, all the prediction results are packed in a tarball file named “result.tar.bz2” 

that can be conveniently downloaded from the output page. 
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Figure 18. An illustration of the COFACTOR webserver output consisting of four annotation panels. The example 
is from the E. coli protein ysgA (UniProt accession: P56262) with a structural model generated by I-TASSER 16. (A) 
Top ten analogous structures that are structurally closest to the query structure, displaying the structural similarity 
between YsgA and known hydrolases. (B) GO prediction results in three aspects of molecular function (MF), 
biological process (BP), and cellular component (CC), which are consistent with UniProt annotation of YsgA as a 
putative carboxymethylene butenolidase and EcoCyc 276 annotation as a predicted hydrolase. (C) EC prediction 
results from top-five enzyme homologous templates, suggesting carboxymethylene butenolide hydrolase activity 
(EC 3.1.1.45) and directly predicting the enzyme’s active site. (D) Ligand-binding site prediction results from the 
top ten homologous templates, including residues surrounding putative active sites that are in proximity to the 
ligand. 

 

4.4 Discussion and Conclusion 

We report recent advancements made to the on-line COFACTOR server for hybrid 

protein function annotations. In general, the biological function of a protein can be intricate and 

often contains multiple levels of categorizations. The COFACTOR server focuses on the three 

most widely-used and computationally amenable categories of function: gene ontology, enzyme 

commission, and ligand-binding sites. Compared with the previous version of COFACTOR, 

which generated function annotations mainly based on structural homology transfer, the updated 
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server introduced several new pipelines built on sequence profile and protein-protein interaction 

network information to enhance the accuracy and coverage of the structure-based function 

predictions. Accordingly, several new sources of function templates, including sequence and PPI 

function terms, have been incorporated into the default function library (BioLiP) of the 

COFACTOR server. Our large-scale benchmark tests have shown that the new composite 

pipelines can generate function predictions with accuracy outperforming many state of the art 

methods in the literature. 

To facilitate the use and interpretation of the prediction results, a confidence scoring 

system has been introduced, which can help user to quantitatively estimate the accuracy of the 

predictions. Meanwhile, new directed acyclic graphs combined with animation software are 

introduced to facilitate the viewing, analysis and manipulation of the prediction models. These 

developments and updates will significantly enhance the accuracy and usability of an already 

widely applied structure function service system, and make it continue to be a powerful tool both 

for rapid annotation of uncharacterized proteins and for providing a starting point to understand 

and further characterize targets that may be identified in high-throughput experimental studies. 
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Chapter 5 Structure-based Annotation of uPE1 Proteins in Human Proteome1 
 
5.1 Introduction 

As the direct carriers of biological functions in the human body, proteins participate in 

nearly all biological events, including catalysis of endogenous metabolites, regulation of most 

biological pathways, and formation of many subcellular structures. Understanding the function 

of human proteins has become an important prerequisite to uncover the secrets of human 

diseases and diverse phenotypes in modern biomedical studies. As a protein usually must be 

folded into specific tertiary structure in order to be functionally active, determining protein 

structure is an important avenue in protein function annotation. 

Despite many years of community efforts in protein characterization, there is still a 

substantial number of proteins whose structure and biological functions are incomplete or 

unknown. Among all the 17470 confidently identified (PE1) human proteins in the neXtProt277 

release 2018-01-17, there are 1260 uPE1 entries which do not have specific functional 

annotation. In the same neXtProt release, there are 6188 out of 17470 PE1 entries with 

experimental 3D structures but only 32 among the 1260 uPE1 proteins. The lack of structure and 

function annotations for many proteins in the human proteome limits our capability to 

understand their functional roles even in tissues with high expression. For example, of the 26 

uPE1 proteins on chromosome 17 with immunohistochemistry data in Human Protein Atlas278 
 

 

1 This chapter was adapted from two previously-published works. The first work was C Zhang, X Wei, GS Omenn, and Y Zhang 
(2018) “Structure and protein interaction-based Gene Ontology annotations reveal likely functions of uncharacterized proteins on 
human chromosome 17” Journal of Proteome Research, 17(12), 4186-4196. The second work was C Zhang, L Lane, GS Omenn, 
and Y Zhang  (2019) “Blinded testing of function annotation for uPE1 proteins by the I-TASSER/COFACTOR pipeline using the 
2018-2019 additions to neXtProt and the CAFA3 challenge.” Journal of Proteome Research, 18(12), 4154-4166. 
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(retrieved on 2018-05-09), 24 have “high” expression in at least one tissue as detected by 

antibody studies. Similarly, 52 of the 66 uPE1 proteins on chromosome 17 (as of neXtProt 2017-

08-01) have median RNA expression levels higher than 10 Transcripts per Million (TPM) in at 

least one tissue, as reported in GTEx279 version 7. 

To alleviate the issue in protein structure and function annotations, we developed a 

hybrid pipeline which creates 3D structure prediction using I-TASSER280, with the functional 

insights deduced by COFACTOR281. Both I-TASSER and COFACTOR pipelines have been 

tested in community-wide blinded experiments, which demonstrate considerable reliability of 

structure modeling and functional annotations. For example, in CASP12, for 53 targets with 

template structures identified in PDB, I-TASSER generated correct folds with a TM-score >0.5 

for 47 cases, where in 41 cases structures were driven closer to the native than the templates. For 

39 free-modeling (FM) targets which do not have any similar fold in the PDB database, 11 were 

correctly folded by I-TASSER.190 In CASP9, the COFACTOR algorithm282 achieved a 

functional residue prediction precision of 72% and Matthews correlation coefficient 0.69 for the 

31 function prediction targets, which were higher than those by all other methods in the 

experiment.282 

The original version of COFACTOR251 was built on the transfer of function from 

structural templates detected by homologous and analogous structure alignments. That version of 

COFACTOR was used to suggest structure and function for dubious proteins in the human 

proteome (PE5).283 Recently, COFACTOR was extended with additional sequence and Protein-

Protein Interaction (PPI) pipelines, which was tested in the most recent CAFA3 function 

annotation experiment.281,284 According to the CAFA3 evaluation 

(https://www.synapse.org/#!Synapse:syn12299467) for GO term prediction in MF, BP, and CC 
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aspects, COFACTOR achieved F1-scores (defined in Equation 1 below) 0.57, 0.60, and 0.61, 

respectively, which are 43%, 81%, and 17% higher in accuracy than the best baseline methods 

used by assessors. Additionally, we have used the I-TASSER/COFACTOR pipeline for 

proteome-wide structure and function modeling of E. coli proteins, and the predicted functions of 

three proteins have been validated by enzymatic assay and mutation experiments.285 

 In light of recent progress, we applied this pipeline to better annotate the human 

proteome as part of the HUPO Chromosome-centric Human Proteome Project (C-HPP).286 As a 

proof-of-principle study, we applied the I-TASSER/COFACTOR pipeline to all 66 uPE1 

proteins from human chromosome 17 in neXtProt 2017-08-01 release to decipher the structure 

and function of these poorly annotated human proteins. Additionally, to rigorously benchmark 

the performance of our pipeline, we performed two rigorous time-elapsed blind tests of protein 

function prediction. In the first blind test, we evaluated the performance of COFACTOR in the 

CAFA3 GO term prediction challenge. On the 267 and 912 CAFA3 human targets used for MF 

and BP evaluations, respectively, we found that a clear advantage of COFACTOR compared to 

simple sequence homology search or background probability modeling, though its performance 

is still dependent on the availability of high scoring templates. In the second blind test, an 

independent assessor (co-author L.L.) identified a set of 44 neXtProt287 proteins undergoing 

function curation based on manually gathered publications during 2018288. Meanwhile, 

predictors (co-authors C.Z., G.S.O., and Y.Z.) performed protein structure and function 

predictions using the same automated pipeline as in our 2018 study. Based on the automatically 

predicted GO terms, these three predictors assign a free-text function interpretation for each 

query protein. Both the automated GO predictions and the manual free-text interpretations were 

performed blind to the pending curation of the proteins and were submitted to the assessor before 
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the neXtProt 2019-01 release. For both predicted GO terms and the respective free-text 

interpretation, consistency of the predicted functions with neXtProt curation was assessed upon 

the publication of neXtProt 2019-01 release. These analyses should serve as an incremental step 

towards completion of structure and function modeling of all remaining uPE1 and even PE2,3,4 

proteins in the human proteome289. The full blinded testing dataset is available at 

https://zhanglab.ccmb.med.umich.edu/COFACTOR2/nx2019addition/GOterm.html, while our 

predicted functions for the chromosome 17 uPE1 proteins are available at 

https://zhanglab.ccmb.med.umich.edu/COFACTOR/chr17/. Additionally, the structure and 

function modeling results for all targets modeled in this study are provided as a link on neXtProt 

(https://www.nextprot.org/entry/NX_P0C870/gh/zhanglabs/COFACTOR, where “NX_P0C870” 

can be replaced by neXtProt ID for each other target of interest). 

 

5.2 Methods 

5.2.1 Protein structure and function prediction pipelines 

Our computational workflow for structure-based function annotation of a given protein 

consists of two main components: structure modeling by I-TASSER and function annotation by 

COFACTOR (Figure 19). The pipeline is fully automated with the query sequence as the sole 

input. 
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Figure 19. Flowchart of the automated I-TASSER/COFACTOR pipeline for protein structure and function 
prediction, applied to uPE1 proteins from human chromosome 17. 

 

I-TASSER protein structure prediction  

In the I-TASSER structure prediction stage, the query protein sequence is first threaded 

through a non-redundant PDB library (https://zhanglab.ccmb.med.umich.edu/library/) by 

LOMETS290, which is a locally-installed meta threading algorithm combining 10 different state-

of-the-art threading programs99,100,291-297, to identify structure templates. Continuous fragments 

are excised from these template structures, which are subsequently assembled into full length 

structure by replica-exchange Monte Carlo (REMC) simulation implemented by I-TASSER. 

Tens of thousands of decoy conformations from the REMC simulation trajectory are then 

clustered by SPICKER187 by structure similarity. The centroid of the largest cluster, which 

corresponds to the conformation with lowest free energy, is selected to undergo structure 

refinement by FG-MD188 to obtain the final structure model. While I-TASSER typically reports 

up to five structure models, ranked in descending order of the size of cluster from which a model 
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came, we use only the first I-TASSER model for subsequent function modeling. That is because 

the first model has the highest confidence score and on average is closer to native structure than 

the lower-ranked models.298 

COFACTOR automatic structure-based function annotation 

To obtain function annotation for the query structure model, the COFACTOR structure-

based function prediction approach uses a modified TM-align227 structure alignment program to 

search the query structure against entries templates from the BioLiP257 structure-function 

database to identify structure templates with function annotations. The functions of structure 

templates are then transferred to query according to global structure similarity, active site local 

similarity and matching of sequence profiles between query and template, as measured by a 

combination of global and local structure alignments284. The combination of global and local 

structure similarity is critical to structure-based function annotation, as shown previously.284 If 

only global similarity is considered, the annotation result can be misled by fold promiscuity, 

where proteins sharing highly similar global topology can have very different functions.197 On 

the other hand, relying only on active site local structure similarity can also lead to false positive 

hits: ligand binding pockets with similar conformation can be associated with unrelated 

biochemical functions due to the very limited number of possible pocket structures.299 To further 

disentangle the structure promiscuity issue, the above structure-based function annotation is 

supplemented by the sequence-based approach, which extracts function annotations from 

BLAST and PSI-BLAST102 hits in the UniProt300 database search. Meanwhile, the protein-

protein interaction (PPI) based approach infers function from UniProt sequences homologous to 

the query’s PPI partners, as defined by the STRING262 database. In the earlier version of 

COFACTOR201, the functions are inferred from GO terms annotated to the PPI partners. When 
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we later developed MetaGO284, an extension for the GO term prediction component of 

COFACTOR, we found that functions inferred from UniProt300 sequences homologous to the 

PPI partners are more accurate than functions directly inferred from PPI partners. Therefore, the 

current COFACTOR program uses this improved PPI based method originally developed for 

MetaGO, where functions are predicted from UniProt sequences homologous to PPI partners of 

query. For a given GO term q, the confidence of final consensus prediction ranges between 0 and 

1, and is a weighted average of the three approaches (structure, PPI, and sequence): 

𝐶𝑠𝑐𝑜𝑟𝑒(𝑞) = 1 −� [1 − 𝐶𝑠𝑐𝑜𝑟𝑒<(𝑞)]p¨
<½{�K�JIKJ�q,¤¤¥,�q¡Jq=Iq}

				(5.1) 

Here, 𝑤< is the weighting score for method m. 𝐶𝑠𝑐𝑜𝑟𝑒<(𝑞) is the confidence score of the mth 

method for GO term q and takes the following form: 

𝐶𝑠𝑐𝑜𝑟𝑒<(𝑞) =
∑ 𝑆�<(𝑞)
?¨(¡)
�@A

∑ 𝑆�<?¨
�@A

				(5.2) 

𝑁< is the total number of templates detected by method m.  𝑆�< is the weighting score of the ith 

template detected by method m. The template weighting score could be (PSI-)BLAST sequence 

identity for sequence based method, and interaction score assigned by STRING database for PPI 

based method. 𝑁<(𝑞) and 𝑆�<(𝑞) are the template number and weighting score of ith template, 

respectively, in method m for the subset of templates associated with GO term q. Instead of using 

the most confident template for each GO term, Equation 5.2 represents a weighted k-nearest-

neighbor approach where all N templates are considered in the consensus voting for each 

predicted GO term. Therefore, if all templates are associated with q, the nominator and 

denominator in Equation 5.2 are the same, and 𝐶𝑠𝑐𝑜𝑟𝑒(𝑞) is one, i.e. 100% confident, even 

when none of the templates share high sequence similarity to the query.  

 



 82 

5.2.2 Manual free-text function interpretation 

We follow three steps to assign free-text annotation for automated GO term prediction: 

(a) Examine MF and BP GO terms from I-TASSER/COFACTOR, excluding general 

terms, either those defined in neXtProt SPARQL NXQ_00022 or terms like "cellular process". 

(b) Select the most specific GO term in MF or BP with C-score>0.5. If there is no GO 

term with C-score>0.5, consider terms with C-score>0.4. 

(c) If the aspect (MF/BP) with the term selected in step (b) also has other high confidence 

unrelated GO terms, proceed to the complementary aspect (BP/MF) and repeat step (b). 

For example, even though the BP prediction for C1QTNF8 (P60827-1) includes multiple 

terms with C-score ≥0.5 (GO:0009987 “cellular process”, C-score=0.93; GO:0048518 “positive 

regulation of biological process”, C-score=0.67; GO:0032502 “developmental process”, C-

score=0.65; GO:0044238 “primary metabolic process”, C-score=0.54; GO:0048584 “positive 

regulation of response to stimulus”, C-score=0.53), these GO terms are not informative for the 

purpose of free-text function interpretation because they only vaguely suggest the protein’s 

involvement in biological regulation of unspecified pathways. Meanwhile, this protein does not 

have any MF GO term predicted with C-score ≥0.5 (after excluding the GO terms considered by 

neXtProt as too general). Therefore, for this protein, we alternatively use MF GO terms predicted 

with C-score ≥0.4 (GO:0005102 “signaling receptor binding”, C-score=0.41) and assign the free-

text interpretation “signal receptor binding”. 

In the event that predicted GO terms are too diverse in one of the three GO aspects to 

conclusively interpret the function, other aspects of GO are used for interpretation. For example, 

BP prediction of RFPL1 (O75677-1) is too diverse (GO:0016567 “protein ubiquitination”, C-

score=0.55; GO:0010468 “regulation of gene expression”, C-score=0.56; and GO:0002376 
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“immune system process”, C-score=0.63); we instead used its high confidence MF GO term 

predictions, which are exclusively related to ubiquitin-protein transferase activity (GO:0004842, 

C-score=0.78). 

All free-text interpretations strictly use phrases in the definitions of predicted GO terms 

selected by the above criteria. 

This exercise of our free-text annotation was performed to emulate how biologists would 

interpret a list of computationally predicted GO terms for a protein. It is only performed for the 

small neXtProt dataset of 44 proteins, because manual inspection of the full CAFA3 dataset with 

20 197 human proteins was impractical. As exemplified by REPL1 (O75677-1) above, to 

simplify our interpretation, the free-text annotation derived from predicted GO terms only 

attempted to cover the most likely function of a protein. Therefore, such a free-text annotation 

may not be as comprehensive as the respective UniProt/neXtProt free-text annotation, which 

aims to cover as many different functions of a protein as possible so long as there is conclusive 

literature evidence. This difference in how our free-text annotations and those of 

UniProt/neXtProt are derived also affects how we evaluate the performance of our free-text 

annotations, as discussed later. 

 

5.2.3 Assessment metrics for function prediction 

Biologically meaningful metrics for assessing protein function prediction should not 

focus only on the precision of predicted GO terms. For example, a protein function predictor that 

only predicts shallow and generic GO terms such as “protein binding” or “cellular process” could 

have a very good precision but is rarely useful in practice. In fact, neXtProt does not consider 11 

MF and 2 BP GO terms for being too general and does not use Cellular Component (CC) at all 



 84 

when retrieving uPE1 proteins (https://www.nextprot.org/proteins/search?mode=advanced&

queryId=NXQ_00022). The 11 general MF terms are GO:0005524 “ATP binding”, GO:0000287 

“magnesium ion binding”, GO:0005515 “protein binding”, GO:0042802 “identical protein 

binding”, GO:0008270 “zinc ion binding”, GO:0051260 “protein homooligomerization”, 

GO:0005509 “calcium ion binding”, GO:0003676 “nucleic acid binding”, GO:0003824 

“catalytic activity”, GO:0046914 “transition metal ion binding”, and GO:0046872 “metal ion 

binding”; the 2 general BP terms are GO:0007165 “signal transduction”, and GO:0035556 

“intracellular signal transduction”. We have accepted those exclusions in this analysis of 

neXtProt data. To simultaneously assess the precision and recall of our prediction, we follow the 

standard practice of CAFA and evaluate the accuracy of automatic GO term prediction by 

maximum F1-score, i.e., the Fmax. 

𝐹𝑚𝑎𝑥 = max
K∈(�,A]

¿
2 ∙ 𝑝𝑟(𝑡) ∙ 𝑟𝑒(𝑡)
𝑝𝑟(𝑡) + 𝑟𝑒(𝑡) À								(5.3) 

𝑝𝑟(𝑡) =
𝑡𝑝(𝑡)

𝑡𝑝(𝑡) + 𝑓𝑝(𝑡) , 𝑟𝑒
(𝑡) =

𝑡𝑝(𝑡)
𝑡𝑝(𝑡) + 𝑓𝑛(𝑡)								(5.4) 

In the above equations, 𝑝𝑟(𝑡), or “precision”, is the number of correctly predicted GO 

terms, true positive 𝑡𝑝(𝑡), over the number of all GO terms predicted with confidence score ≥t, 

i.e., 𝑡𝑝(𝑡) + 𝑓𝑝(𝑡). 𝑟𝑒(𝑡), or “recall”, is 𝑡𝑝(𝑡) divided by all true positive plus false negative GO 

terms annotated to query by UniProt/neXtProt ground truth, i.e., 𝑡𝑝(𝑡) + 𝑓𝑛(𝑡). The concept of 

Fmax is illustrated in Figure 20. 
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Figure 20. (A) Graphic explanation of Fmax, the standard metric for evaluating the overlap between of the set of 
predicted GO terms (the two red and green rectangles on the top) and the set of ground-truth GO terms (usually 
being experimental annotations in UniProt/neXtProt, the two red and cyan rectangles on the left). The big square 
represents all possible GO terms. Precision is the portion of predicted GO terms that are correct (the set of ground-
truth GO terms), and recall is the portion of ground-truth standard terms that are predicted. (B) For the same protein, 
the set of “predicted” GO terms depends on the C-score cutoff t ranging between 0 and 1, and less stringent cutoff 
(smaller t value) results in larger set of predicted terms (bigger area for the two rectangles on the top), which makes 
both precision and recall dependent on the C-score cutoff t as well. The harmonic average of precision and recall is 
called F1 score, whose maximum over the entire range of t is Fmax. 

 

Two further clarifications should be made for the Fmax, as a measure of consistency 

between our prediction and the UniProt/neXtProt GO annotation. First, although Fmax=0.5 

means half of the predicted GO terms exactly match GO terms annotated by UniProt/neXtProt, 

and half of the UniProt/neXtProt GO terms are among the predicted GO terms, a predictor 

achieving Fmax=0.5 should not be interpreted as being no better than guessing the two faces of a 

flipped coin. Unlike a flipped coin whose probability for the landing of the two faces are half-

half, the average probability for a GO term to get annotated (or not annotated) to a protein is far 

from half-half in the database: for 92.1%, 98.5% and 99.8% of the 47 340 GO terms defined by 
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the Gene Ontology Consortium, each of them is annotated to less than 0.1%, 1%, and 10% of 

any UniProt proteins, respectively. Therefore, predicting GO terms with 50% precision is indeed 

a challenging task and a significant success. 

Second, Fmax should not be confused with C-score. The C-score is for each predicted 

GO term of a query protein, while Fmax is an overall statistic for a protein or a set of proteins. C-

score is estimated by COFACTOR without knowing the ground-truth, while Fmax can only be 

calculated if we know both the predicted GO terms and the ground-truth GO terms. 

Compared to GO term evaluation, assessment of free-text annotation is more challenging 

as there is no agreed-upon metric to quantify the similarity between two free-text biological 

function descriptions. Moreover, free-text function annotations for a protein, especially one that 

performs multiple functions or is involved in complicated pathways, are affected by subjective 

judgment by the function curators for both our predictions and by UniProt/neXtProt curators. In 

this blinded analysis, we compared both GO terms and free-text interpretation from I-

TASSER/COFACTOR prediction and from the UniProt/neXtProt literature-based free-text 

curation. Another complication for head-to-head comparison between the two kinds of free-text 

annotation is that, as mentioned above, our free-text interpretation from I-TASSER/COFACTOR 

only attempts to cover the most likely function of the target protein, while UniProt/neXtProt 

free-text annotation attempts to more comprehensively cover different functions of a protein. 

Therefore, if free-text interpretation from I-TASSER/COFACTOR matches at least part of the 

neXtProt free-text annotation for a target protein by manual inspection, we consider the pair of 

free-text annotations is consistent (see Table 1 at 

https://zhanglab.ccmb.med.umich.edu/COFACTOR2/nx2019addition/GOterm.html). 
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While both free-text and MF/BP GO terms are considered “function annotations”, free-

text annotations curated by UniProt/neXtProt may not be fully reflected by the GO terms 

annotated for the same protein, partly due to the complexity of data source and curation process. 

neXtProt function annotations have the following major sources. First, all manual annotations 

performed by Swiss-Prot curators from experimental papers are generally captured as free-text, 

MF/BP GO terms (using the closest possible terms), keywords and, in the case of enzymes, 

Enzyme Commission (EC) numbers. Sometimes there is no existing GO term to describe a 

particular function, resulting in only a free text description without GO terms, which happens to 

17 and 3 for MF and BP, respectively, for the 25 blindly-tested neXtProt targets. In most cases, 

GO terms assigned in this way are more generic than the respective free-text. Secondly, MF and 

BP GO terms are also manually annotated by other members of the Gene Ontology Consortium, 

such as HGNC and MGI. Finally, MF and BP annotations computationally assigned by UniProt 

or the Gene Ontology Consortium are considered. Apart from free-text and GO terms, neXtProt 

includes other function annotations such as pathway annotations from KEGG and Reactome, and 

transporter classification from TCDB. For this paper, we mainly focus on GO terms and free-

text. 

 

5.3 Results 

5.3.1 Datasets 

The 66 uPE1 proteins from chromosome 17 were compiled from neXtProt release 2017-

08-01. The detailed protocol for generating this list is specified in supplementary Text S2. While 

most of these uPE1 proteins do not have any GO term annotations for MF and BP, some of them 

have GO terms that are considered too generic by neXtProt to be qualified as “annotated” 
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proteins, including protein binding, calcium binding, zinc binding, identical protein binding, and 

protein homooligomerization. As neXtProt does not consider GO CC terms when defining uPE1 

proteins in the SPARQL query, some of these uPE1 proteins do have GO CC term annotations. 

For example, SYNGR2 (neXtProt ID: NX_O43760-1) is annotated as being located at 

“neuromuscular junction” (GO:0031594) and at “synaptic vesicle membrane“ (GO:0030672) for 

CC based on its known role in modulating the localization of synaptophysin into synaptic-like 

microvesicles.301,302 Due to this known bias in how neXtProt treats GO CC terms for uPE1 

proteins, we later discuss instances where our CC term prediction is different from existing 

neXtProt annotations. The numbers of uPE1 proteins are “moving targets” due to new 

experimental evidence as well as evolving criteria reflected in excluded MF and BP terms. Thus 

neXtProt release 2017-08-01, which this study was based on, had 1218 uPE1 proteins proteome-

wide and 66 uPE1 chromosome 17 proteins; neXtProt release 2018-01-17 has 1260 and 70, 

respectively. 

This study additionally used three datasets: one benchmark neXtProt dataset for 

recalibrating the C-score of COFACTOR, and two time-elapsed blindly-tested datasets from 

CAFA3 human targets and newly annotated PE1 entries from neXtProt 2019-01. The 

“recalibration” set is used to establish the relation between C-score and function prediction 

precision in COFACTOR, while the performance of I-TASSER/COFACTOR is evaluated on the 

two blindly-tested datasets. 

The recalibration set consists of 1 995 well-annotated human PE1 proteins with up to 750 

residues in neXtProt release 2019-01. Similar to the benchmark set of 100 Chromosome 17 PE1 

proteins in our 2018 report303, each protein in this recalibration set has ≥ 3 Gold MF terms, ≥3 

Gold BP terms, and ≥3 Gold CC terms. 
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The blindly-tested CAFA3 human dataset included 20 197 human protein targets, among 

which 267, 912, and 347 targets acquired new GO terms in UniProt between 2017-02-02 and 

2017-11-15 for MF, BP, and CC, respectively, which is listed as part of the supplementary data 

for the CAFA3 report304 (See supplementary_data/cafa3/benchmark20171175.tar at 

https://figshare.com/articles/Supplementary_data/8135393). These targets are further divided 

into two types: 147, 240, and 214 “No Knowledge” targets do not have any experimental GO 

annotation before CAFA3 for MF, BP, and CC, respectively; 120, 672, and 133 “Limited 

Knowledge” targets have at least one experimental GO annotation before CAFA3 for MF, BP, 

and CC. Statistical analysis of function predictions on this dataset, released by the CAFA 

Consortium in May 2019304, is evaluated based on the GO term predictions our group submitted 

during CAFA3 challenge before 2017-02-02. 

As of the neXtProt release 2019-01, 25 of the 44 proteins submitted for curation in 2018 

acquired new function annotations. While all 25 targets receive free-text function annotation in 

neXtProt, only 8 and 22 acquired GO terms for MF and BP, respectively, excluding GO 

annotations deemed by neXtProt as being too general in the neXtProt SPARQL query 

NXQ_00022 as explained above in Methods. We make available our predictions for all 44 

(https://zhanglab.ccmb.med.umich.edu/COFACTOR/nx2019addition/GOterm.html#3), so that 

comparison with future neXtProt releases will be facilitated. Among these 25 recently curated 

neXtProt targets, the function annotation for one target (P0C870-1, 

https://www.uniprot.org/uniprot/P0C870?version=85&version=87&diff=true) was updated by 

UniProt on 2019-02-13, and was not in time to be included in neXtProt release 2019-01. For this 

particular target, we use the more recent UniProt annotation on 2019-02-13 instead of that from 

neXtProt 2019-01. We do not separately evaluate our result on Gold GO terms and on Gold plus 
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Silver GO terms as in previous study303, because all newly annotated MF and BP GO terms for 

this set of 8 and 22 targets have Gold status. 

 

5.3.2 Recalibration of COFACTOR C-score for human proteins 

While COFACTOR assigns a C-score for each predicted GO term for a target protein, the 

C-score is strongly correlated with, but does not strictly equal, the probability of the GO term 

being associated with the target. When we originally reported the GO term prediction method of 

COFACTOR, we calibrated this C-score to the corresponding probability of GO term 

association, i.e. the precision of GO term prediction, given the C-score, on a prokaryotic set of 

1244 E. coli proteins201. Due to the later improvement of our function prediction method284 and 

the change of species of interest (E. coli to human), it became necessary to recalibrate the current 

COFACTOR algorithm for the recalibration set of 1995 human proteins. To calculate GO term 

prediction precision given C-score, all GO term predictions for each of the three aspects (MF, 

BP, and CC) were grouped into 10 bins by C-score with bin width =0.1. To examine whether the 

calibration depends on the availability of close homology templates, we performed two separate 

calibration runs by excluding function templates sharing ≥0.3 and ≥0.9 sequence identity (ID) to 

the query. The calibration curve and the precision-recall curve are shown in Figure 21. For the 

PPI-based pipeline in COFACTOR, there are two rounds of sequence homolog search: the first 

round maps query sequence to its STRING entry, which is used to identify PPI partners 

interacting with the query; and the second round of sequence search maps PPI partners to 

UniProt proteins to obtain the GO annotations. Because the function annotations in the PPI-based 

pipeline are eventually derived only from the PPI partner homologs in UniProt, the sequence 
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identity cutoffs in Figure 21 are applied only between query and the PPI partner homologs in 

UniProt. 

 
Figure 21. (A) Calibration curve for GO term prediction precision versus C-score for MF (blue up-pointing 
triangles), BP (red circles), and CC (green down-pointing triangles). Curve for template sequence identity (ID) <0.3 
and <0.9 to the query are shown in hollow and solid markers, respectively. The lower legend shows the Pearson’s 
correlation coefficient (PCC) between precision and C-score. (B) Precision-recall curve for GO term prediction. The 
lower legend shows the Fmax for each curve. 

 

As shown in Figure 21B, GO term prediction accuracy of COFACTOR, as measured by 

Fmax, is higher by 24%, 28% and 11% when high sequence identity (ID<0.9) templates are 

available, compared to low sequence identity cutoff (ID<0.3) cases. Nevertheless, the values are 

still quite high for the lower cutoff. On the other hand, the correlation between precision and C-

score does not have as strong dependency on sequence identity cutoff, even though the low 

sequence identity cases still have slightly lower precision given the same C-score. For example, 

for 0.4< C-score ≤0.5, the precision is 0.69, 0.64, and 0.57 for MF, BP, and CC for ID<0.9, 

compared with 0.60, 0.57, and 0.57 for ID<0.3 (Figure 21A). Considering the fact that most 
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poorly characterized or uncharacterized proteins have sequence identity around 0.3 to the closest 

functionally characterized homolog (see our earlier methodology paper284), we recommend the 

use of the recalibration curve obtained at ID<0.3 for interpretation of COFACTOR function 

prediction for human targets. 

To determine reasonable GO term prediction confidence (C-score) cutoffs in the I-

TASSER/COFACTOR pipeline, we show in Figure 22 the relation between C-score and 

prediction accuracy (F-measure). The highest F-measures for MF, BP, and CC are achieved 

when we choose C-score cutoffs > 0.59, > 0.55, and > 0.56, respectively. 

 
Figure 22. F-measures of COFACTOR prediction versus confidence score cutoffs for the three aspects of GO terms. 
From left to right, the three vertical dashed lines indicate C-scores 0.55 (green), 0.56 (blue), and 0.59 (red) which are 
C-score cutoffs corresponding to the highest F-measure for BP, CC, and MF, respectively. 

 

5.3.3 Performance of GO term prediction by COFACTOR in CAFA3 

A preliminary version of COFACTOR201 was used in CAFA3, the latest CAFA 

community-wide challenge for protein function prediction, by team “Zhang-Freddolino lab”. In 

the recently released official CAFA3 result304, our team was ranked as one of the top performing 

groups (ranked second, third, fourth, and fifth for prediction of motility, biofilm formation, CC, 

and BP, respectively, but not within top ten for MF) among 68 teams (See Figure 3 and Figure 4 
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of CAFA3 report304). Such performance was obtained by a partial implementation of 

COFACTOR with just the sequence- and PPI-based pipeline for 82 903 (63.4%) of the 130 827 

prediction targets from 23 species, as the structure-based pipeline of COFACTOR was not ready 

for high-throughput prediction when we participated in CAFA3 in 2017201. To further save time, 

among the reduced CAFA3 set of 47 924 structure-based function prediction targets, the full 

length structure models of query proteins were generated by LOMETS threading followed by 

MODELLER305 homology modeling for 43 953 targets (91.7%) while the full I-TASSER 

pipeline was only used for the remaining 3971 targets (8.3%). The lack or lower quality of 

structure information is part of the reasons for our limited CAFA3 performance in MF, because 

the specificity of molecular function such as biomolecule binding and catalytic activity is 

determined by structure. 

Our performance on the human subset of CAFA3 is shown in Figure 23. Since prediction 

models from other CAFA3 predictor teams are not publicly available, we compare our 

predictions obtained during CAFA3 challenge in 2017-02-02 with two baseline methods 

implemented by CAFA3 assessors: (1) the “BLAST” method searching a query against UniProt, 

where the prediction C-score of GO term q equals the sequence identity at the BLAST-aligned 

region between query and the top BLAST hit annotated with q; and (2) the “Naïve” method, 

equivalent to the background distribution of GO terms: for any target, “Naïve” predicts every 

GO term, where the C-score of GO term q equals the number of UniProt proteins experimentally 

annotated with q divided by the total number of experimentally annotated UniProt proteins. 
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Figure 23.Fmax for MF (A, B), BP (C, D) and CC (E, F) GO term prediction by COFACTOR (Zhang-Freddolino 
lab) and two baseline methods, “Naïve” and “BLAST” for “No Knowledge” (A, C, E) and “Limited Knowledge” 
(B, D, F) targets. Fmax calculations exclude GO terms annotated before 2017-02-02. 

 

As shown in Figure 23, COFACTOR prediction consistently outperformed the baseline 

methods in CAFA3 for all assessment categories. The advantage is particularly evident for BP, 

where our Fmax was 54% and 55% higher than the best performing baseline methods for “No 

Knowledge” and “Limited Knowledge” types. Moreover, COFACTOR outperforms “Naïve” on 

CC by 15% and 10% for “No Knowledge” and “Limited Knowledge” targets. No computational 

method outperformed “Naïve” in CAFA2.306 Even though our predictions ultimately derive 

function annotation from UniProt annotated GO terms similar to the “Naïve” and “BLAST” 

baseline methods, COFACTOR more effectively identifies functional templates and combines 

their GO annotations, instead of relying on simple sequence similarity search (“BLAST”) or 

accepting background distribution of GO terms (“Naïve”). 
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To understand better why the functions of some targets are easier to predict than other 

targets, we computed the Pearson’s correlation coefficient (PCC) between various features of the 

query protein in the target set and the Fmax of GO term prediction accuracy for MF and BP 

(Figure 24) based on the supplementary data accompanying the CAFA3304 report 

(https://figshare.com/articles/Supplementary_data/8135393). For a meta-server (such as 

COFACTOR) that combines multiple features (identities of multiple sequence homologs, 

STRING scores of PPI partners, and similarities of structure templates) to derive a consensus 

prediction, it is often impossible for the consensus prediction to be dependent only on one 

feature. Nevertheless, it is still possible to identify whether the quality of a feature affects the 

accuracy of final prediction in a statistically significant manner. For example, while we did not 

observe significant dependence of Fmax on query sequence length (Figure 24A), Fmax of the 

sequence-, PPI-, and structure-based component methods of COFACTOR is significantly 

dependent upon the availability of templates or interaction partners, as quantified by their 

sequence identity (Figure 24B), STRING score (Figure 24C), and TM-score (Figure 24D), 

especially when the template score is modest (sequence identity<0.5, STRING score<0.7, or 

TM-score<0.6). However, for all three methods, the correlation coefficient between Fmax and 

the score of first template is not high (|PCC|≤0.3), partly because each of the three component 

methods is a consensus approach to simultaneously consider all template hits (Equation 2), so 

that the prediction result for a GO term will not be completely biased by a single high scoring 

template.  
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Figure 24. Fmax of MF (blue triangle) and BP (red circle) GO term prediction versus (A) sequence length, (B) 
global sequence identity of closest PSI-BLAST hit, (C) highest PPI interaction score (STRING score), and (D) TM-
score between query structure and the closest BioLiP template. A pair of error bars marks the standard deviation of 
Fmax at each bin. Inside each figure legend, the two numbers are the PCC and its p-value, respectively307. Among 
the set of 267 and 912 CAFA3 human targets for MF and BP, all were subjected to function prediction based on 
sequence and PPI by COFACTOR; only 88 and 227 targets, respectively, were predicted by the structure-based 
pipeline of COFACTOR (D).  

 

In short, our analysis indicates that, while COFACTOR is a good function predictor that 

goes far beyond simple sequence homology searching, it still has the intrinsic limitation of a 

template-based predictor, where target proteins with less reliable templates are more difficult to 

model. 
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5.3.4 Evaluation of free-text and GO term prediction using newly-annotated uPE1 proteins 

in neXtProt 2019-01-11 

While CAFA3 provides a large blindly-tested set for relatively robust statistical analysis 

of our GO term prediction performance, we could not evaluate the performance of free-text 

function as it was neither required nor feasible given the very large set of targets in the CAFA3 

challenge. To complement the CAFA3 evaluation and contribute to the C-HPP uPE1 CP50 

Challenge308, we assessed the I-TASSER/COFACTOR pipeline on a narrowly focused blindly-

tested set of 25 previously unannotated proteins with new function annotation in the neXtProt 

2019-01-11 release. The detail findings are presented in our online supplementary data at 

https://zhanglab.ccmb.med.umich.edu/COFACTOR2/nx2019addition/GOterm.html#2, while a 

simplified table is presented in Table 8. 

Among the 25 targets in this time-elapsed blindly-tested set, 3 have I-TASSER models 

that are predicted to have correct structure topology (estimated TM-score >0.5: #2, 17, 18 in 

Table 8), while another 10 are predicted to have approximately correct fold (estimated TM-score 

in the range [0.4,0.5]: #1, 4, 5, 8, 9, 10, 12, 14, 20, 24 in Table 8). 

Among the 25 targets, we did not assign free-text function annotation for 3 (O75363-1, 

Q8NDM7-1, and Q9BZH6-1; #8, 16, and 11, respectively, in Table 8), because the GO terms we 

predicted for these targets are too general to infer the function. For the remaining 22 targets, our 

manual free-text function interpretations are consistent with neXtProt annotation for 9 of them, 

as marked by asterisks (*) in Table 8 (#1, 2, 3, 6, 7, 9, 15, 18, 19). Meanwhile, of the 8 and 22 

targets with UniProt/neXtProt curated MF or BP GO terms, 3 (#1, 2, 3) for MF and 4 (#1, 2, 3, 4) 

for BP have Fmax≥0.5 for our GO term prediction. That makes a total of 4 different targets of 

the 25 with good matches for GO terms, only one (#4) of which is in addition to the 9 above with 
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good matches for free-text, making a total of 10 that have good matches by either free-text or GO 

terms or both. 

 

Table 8. Comparison of I-TASSER/COFACTOR function annotation and UniProt/neXtProt curation for 25 uPE1 
with newly provided function annotation in neXtProt release 2019-01-11. Full detail of this table is available at 
https://zhanglab.ccmb.med.umich.edu/COFACTOR2/nx2019addition/GOterm.html#2 

(a) An asterisk (*) marks a target if our free-text annotation matches neXtProt free text annotation. 
(b) A plus (+) marks a target whose Fmax for either MF or BP is >0.5 but the free-text annotation does not 

match. Fmax for MF/BP quantitatively measures the consistency between COFACTOR predicted GO 
terms and neXtProt curated GO terms. "NA", or not applicable, means neXtProt did not assign GO term for 
a target. The table is ranked in descending order of Fmax. 

(c) In the last column, phrases at top are free-text annotations, followed by MF and BP GO terms. Red shades 
indicate free-text phrases consistent between I-TASSER/COFACTOR prediction and neXtProt annotation. 
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Of course, these newly-annotated proteins represent the 7% of PE1 proteins that have 

resisted functional annotation. Thus, the overall low Fmax of agreement between GO term 

predictions and literature curation (0.19 and 0.23 for MF and BP, respectively, for the 8 and 22 

proteins) is partly attributable to incompleteness in GO term annotation. In fact, our BP 

prediction accuracy is >15% higher than three state-of-the-art GO term prediction programs, 

GoFDR267, GOtcha309, and DeepGOplus310 (Table S2). In many scenarios, both our method and 

UniProt/neXtProt curation may only capture some of the many functions a protein performs. For 

example, target RFPL1 (O75677-1, #18 in Table 8) regulates the cell cycle by promoting 

ubiquitin-dependent protein degradation according to UniProt/neXtProt. While our MF 

prediction inferred the ubiquitin-dependent protein degradation function, our BP term prediction 

did not correctly predict the cell cycle regulation function, resulting in a low Fmax of 0.27 for 

BP GO terms despite partially consistent function annotation. 

 

Table 9. Comparison of GO terms prediction accuracy (Fmax) between I-TASSER/COFACTOR our function 
annotation by I-TASSER/COFACTOR and state-of-the-art methods for 8 and 22 neXtProt proteins with newly 
annotated MF and BP GO terms. Bold font indicates the most accurate algorithm in each aspect for this dataset. 
While COFACTOR is on average more accurate than both GoFDR and GOtcha for all three aspects of GO terms as 
shown in large-scale benchmark studies201,303, its MF prediction accuracy (Fmax) is lower than GoFDR and GOtcha 
for this set of targets in MF prediction, probably due to the very small dataset size of only 8 proteins. 

Program Fmax for MF of 8 proteins Fmax for BP of 22 proteins 
I-TASSER/COFACTOR 0.19 0.23 

GoFDR 0.28 0.20 
Gotcha 0.20 0.11 

DeepGOplus 0.17 0.16 
 

Such incompleteness of GO term annotation is not uncommon for UniProt/neXtProt 

literature curation. C1QTNF8 (P60827-1, #9 in Table 8) binds the G protein-coupled receptor 

RXFP1 (MF) to regulate cell motility (BP). Swiss-Prot curators annotated the protein with the 

free text "May play a role as ligand of RXFP1" to convey its molecular function without a GO 

term; the GO consortium annotated GO:2000147 “positive regulation of cell motility” for BP 
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based on the same experimental paper311. This causes the lack of an appropriate MF GO term for 

this protein such as GO:0001664 “G protein-coupled receptor binding” or GO:0005102 

“signaling receptor binding”. Consequently, even though COFACTOR indeed predicts 

GO:0005102, we cannot calculate Fmax for MF and have a modest Fmax=0.40 for BP, despite 

our consistent free-text interpretation “signaling receptor binding”. While the incompleteness of 

function curation partly accounts for the low Fmax on this dataset, our earlier benchmark 

performed last year on 100 PE1 proteins resulted in much higher Fmax of 0.69 and 0.57 for MF 

and BP, respectively,303 as that benchmark dataset only included deeply annotated targets with at 

least 3 Gold GO terms for each of the three GO terms aspects (MF, BP, and CC). Partly due to 

incompleteness of GO term annotation in the small dataset reported in this study, Fmax of 

COFACTOR GO term prediction does not have apparent correlation with features of targets such 

as template availability (Figure 25). 
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Figure 25. Fmax versus features of target protein in time-elapsed set of 8 and 22 proteins with MF and BP GO 
terms by UniProt/neXtProt. Inside each figure legend, the two numbers are the Pearson’s correlation coefficient 
(PCC) between Fmax and target protein feature, followed by the p-value of PCC. 

 

Among the 25 proteins in this time-elapsed neXtProt blindly-tested set, we highlight 

three representative function predictions. As the first example, we discuss P0C870-1 (JMJD7, #2 

in Table 8), a recently characterized endopeptidase and monooxygenase312,313, to illustrate the 

importance of structure template alignment and local sequence homolog hits in function 

prediction. As an endopeptidase, JMJD7 cuts histones at methylated arginine residues 

(GO:0035064 “methylated histone binding”, GO:0004177 “aminopeptidase activity”, 

GO:0004175 “endopeptidase activity” for MF); as a Fe2+ and 2-oxoglutarate-dependent 

monooxygenase, JMJD7 catalyzes hydroxylation of DRG1 and DRG2 translation factors 

(GO:0016706 “2-oxoglutarate-dependent dioxygenase activity”, GO:0004497 “monooxygenase 
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activity” for MF, GO:0018126 “protein hydroxylation” for BP). The I-TASSER structure model 

of JMJD7 displays a typical “Jelly roll” fold and shares a high TM-score247 of 0.98 for both of its 

recently solved structures (PDB IDs 5nfn Chain A and 5nfo Chain A, Figure 26A), even though 

neither of the two experimental structures was used in the I-TASSER modeling or function 

prediction. The structure of JMJD7 is similar to two human oxidoreductases: PDB IDs 3al5 

Chain B (TM-score=0.69, Figure 26B), and PDB ID 4b7e Chain A (TM-score=0.70, Figure 

26C), which are tRNA hydroxylase and hypoxia-inducible factor-asparagine dioxygenase, 

respectively. Despite the matching of these two structure analogs and the correct prediction of 

GO:0016706 “2-oxoglutarate-dependent dioxygenase activity” at C-score=0.32 by COFACTOR 

structure-based method, the I-TASSER model also shares high structure similarity to many other 

proteins that perform other unrelated functions such as GO:0070492 “oligosaccharide binding” 

and GO:0005215 “transporter activity”, both at C-score=0.53 by structure-based method, partly 

because the Jelly roll fold is a common topology in a wide variety of proteins. In the sequence-

based method, the closest oxidoreductase hit is Lysine-specific demethylase 8 (UniProt ID 

B2GUS6), with only 27% sequence identity at the aligned region. Despite the low sequence 

identity with the top hit, 56% of the BLAST and PSI-BLAST hits are annotated with 

oxidoreductase activity (GO:0016706), resulting in highly confident prediction of this term at C-

score=0.62 for sequence-based method and C-score=0.76 for the final consensus COFACTOR 

prediction. Although our predicted GO terms for both MF and BP overlap very well with 

neXtProt annotation (Fmax=0.55 and 0.90, respectively), our blinded manual free-text 

interpretation process chose the term “histone demethylase activity” (GO:0032452, C-

score=0.63) to derive the free-text function annotation “histone demethylation”, which is not 

fully consistent with UniProt/neXtProt annotation, even though it correctly indicates the 
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oxidoreductase activity of JMJD7 on methylated histones. This reflects the difficulty of manual 

interpretation of the function given only partially correct GO term predictions. Nevertheless, in 

Table 8, we designated this protein (#2) as partially matching the free-text annotations from the 

curators. 

 
Figure 26. I-TASSER model of human JMJD7 (yellow cartoon) superposed to (A) its native structure (PDB ID 5nfn 
Chain A), (B) a human tRNA hydrolase (PDB ID 3al5 Chain B), and (C) a human hypoxia-inducible factor-
asparagine dioxygenase (PDB ID 4b7e Chain A) in yellow blue cartoons. The JMJD7 ligand binding site (dashed 
inset) shows the COFACTOR predicted ligands, including Fe2+ ion (red sphere) and 2-oxoglutarate (magenta stick), 
both of which are known to participate in the catalytic activity of JMJD7. 

 

Q5VTQ0-1 (TTC39B, #19 in Table 8) regulates high density lipoprotein (HDL) 

cholesterol metabolism by promoting the ubiquitination and degradation of the oxysterol 

receptors LXR (NR1H2 and NR1H3)314. I-TASSER/COFACTOR correctly predicts its protein 

ubiquitination regulation (but unfortunately not the cholesterol metabolism regulation function, 

resulting in low Fmax of 0.26 for MF). For this target, the prediction of protein ubiquitination 

regulation (GO:0006508 “proteolysis”, C-score=0.52; GO:0016567 “protein ubiquitination”, C-

score=0.50), is mainly due to its structure similarity to anaphase-promoting complex subunits 

(Apc/C , Figure 27). This protein also has an asterisk for free-text annotation matching curators. 
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Figure 27. I-TASSER model of TTC39B (yellow cartoons) superposed to three subunits of Apc/C (5a31 Chain F, J, 
P in red, blue, and magenta cartoons, respectively) with TM-scores ranging from 0.66 to 0.76. Subunits of this 
complex are involved in regulation and catalysis of protein ubiquitination. 

 

Q8IUW5-1 (RELL1, #15 in Table 8) is a receptor of Tumor Necrosis Factor (TNF) and 

induces activation of MAPK14/p38 cascade and apoptosis315,316. Our prediction correctly 

describes regulation of apoptosis through tumor necrosis factor (TNF), but did not include the 

MAPK14/p38 cascade regulation. On the other hand, neXtProt BP GO term annotation only 

includes “positive regulation of p38MAPK cascade” (GO:1900745) but did not include the TNF-

mediated apoptosis, resulting in low Fmax=0.29 for BP prediction. The prediction of TNF-

mediated apoptosis regulation (GO:0097190 “apoptotic signaling pathway”, C-score=0.51, for 

BP and GO:0005031 “tumor necrosis factor-activated receptor activity”, C-score=0.40, for MF) 

is not due to one single highly significant hit but due to multiple consensus (PSI-)BLAST hit 

with consistent GO term annotations. The closest sequence homolog is TNF receptor 
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superfamily member 19L (UniProt ID Q969Z4), which shares 30% sequence identity with the 

query. This protein ends up with a match for free-text but not for GO terms. 

 

5.3.5 Summary of Predicted Structure and Functions of the 66 uPE1 Proteins 

For the 66 chromosome 17 uPE1 proteins, when using the I-TASSER/COFACTOR 

pipeline, homologous templates are not excluded, because we want to obtain the best possible 

structure and function modeling results for these real prediction targets. Among the first ranked 

I-TASSER model of these uPE1 proteins, models of 12 proteins are predicted to have correct 

fold (estimated TM-score >0.5), while 13 are predicted to have roughly correct fold (estimated 

TM-score >0.4 and ≤0.5).  

For prediction of GO terms for these uPE1 proteins, using C-scores >0.59, >0.55, and 

>0.56 established by Figure 22 as thresholds for reliable COFACTOR prediction for MF, BP, 

and CC, respectively, we obtained confident predictions for 13, 33, and 49 proteins for the 

respective GO term aspects (Figure 28). If these stringent C-score cutoffs are slightly relaxed 

such that we also consider predicted GO terms with C-score > 0.5, the number of uPE1 proteins 

with predicted GO terms will be increased to 30, 39, and 58 for MF, BP, and CC, respectively. 
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Figure 28. Number of uPE1 proteins with GO term prediction at different C-score thresholds. The solid black 
vertical line marks the C-score=0.5, while the red, green, and blue dashed vertical lines indicate C-score cutoffs 
0.59, 0.55, and 0.56 for MF, BP, and CC, respectively. Here, GO terms associated with more than 20% of proteins 
in the UniProt database are excluded, because these GO terms, such as “protein binding”, are too general to provide 
meaningful insight into their specific function. 
 

An online supplementary table at 

https://zhanglab.ccmb.med.umich.edu/COFACTOR2/chr17/ann_small_table.html summarizes 

all predicted functions for all 66 uPE1 proteins. As a concise entry to the full table, we list the 

top 13 uPE1 proteins with highest C-scores for MF GO terms in Table 10. 

 

Table 10. A concise table for 13 uPE1 proteins with high confidence predicted functions for MF. For each of the 
three aspects, MF, BP and CC, the GO term with the highest confidence and the GO term with C-score >0.5 that can 
provide specific biological insight are listed, with the C-score enclosed by parentheses. The four entries discussed as 
case studies in the following sections are indicated with asterisks. The entries are in descending order according to 
MF C-score. 

 NeXtProt ID 
(Gene Name) 

Molecular Function 
(MF) 

Biological Process 
(BP) 

Cellular Component 
(CC) 

1* NX_Q8TBR7-2 
(FAM57A) 

GO:0016740 (1.00) transferase 
activity 

GO:0050291 (0.99) sphingosine N-
acyltransferase activity 

GO:0032502 (0.69) developmental 
process 

GO:0007420 (0.54) brain 
development 

GO:0005887 (1.00) integral 
component of plasma 

membrane 
GO:0005886 (1.00) plasma 

membrane 

2 NX_Q12767-1 
(TMEM94) 

GO:0022892 (0.91) substrate-
specific transporter activity 

GO:0046873 (0.57) metal ion 
transmembrane transporter activity 

GO:0065008 (0.80) regulation of 
biological quality 

GO:0030001 (0.56) metal ion 
transport 

GO:0005654 (1.00) 
nucleoplasm 

3 NX_Q5BKU9-1 
(OXLD1) 

GO:0016491 (0.87) oxidoreductase 
activity 

GO:0004128 (0.73) cytochrome-b5 
reductase activity, acting on 

NAD(P)H 

GO:0015701 (0.90) bicarbonate 
transport 

GO:0008652 (0.53) cellular amino 
acid biosynthetic process 

GO:0005739 (0.90) 
mitochondrion 

GO:0005737 (0.66) 
cytoplasm 

4* NX_A6NGC4-1 
(TLCD2) 

GO:0016740 (0.86) transferase 
activity 

GO:0050291 (0.76) sphingosine N-
acyltransferase activity 

GO:0006643 (0.76) membrane lipid 
metabolic process 

GO:0006672 (0.73) ceramide 
metabolic process 

GO:0016021 (1.00) integral 
component of membrane 

GO:0005783 (0.75) 
endoplasmic reticulum 

5* NX_O43934-1 
(MFSD11) 

GO:0005215 (0.85) transporter 
activity 

GO:0005351 (0.66) sugar:proton 
symporter activity 

GO:0006810 (0.82) transport 
GO:0008643 (0.68) carbohydrate 

transport 

GO:0016021 (1.00) integral 
component of membrane 

GO:0005887 (0.77) integral 
component of plasma 

membrane 

6 NX_Q9P298-1 
(HIGD1B) 

GO:0016740 (0.79) transferase 
activity 

GO:0061630 (0.71) ubiquitin 
protein ligase activity 

 
GO:0043234 (0.88) protein 

complex 
GO:0005634 (0.71) nucleus 
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 NeXtProt ID 
(Gene Name) 

Molecular Function 
(MF) 

Biological Process 
(BP) 

Cellular Component 
(CC) 

7 NX_Q2TAL5-1 
(SMTNL2) 

GO:0008092 (0.77) cytoskeletal 
protein binding 

GO:0016043 (0.70) cellular 
component organization 

GO:0048856 (0.59) anatomical 
structure development 

GO:0005737 (0.66) 
cytoplasm 

GO:0044430 (0.50) 
cytoskeletal part 

8 NX_Q9BQS6-1 
(HSPB9) 

GO:0042802 (0.76) identical 
protein binding 

GO:0051082 (0.52) unfolded 
protein binding 

GO:0050896 (0.82) response to 
stimulus 

GO:0042981 (0.51) regulation of 
apoptotic process 

GO:0005634 (0.97) nucleus 
GO:0005737 (0.96) 

cytoplasm 

9 NX_Q96LD4-1 
(TRIM47) 

GO:0004842 (0.76) ubiquitin-
protein transferase activity 

GO:0031323 (0.54) regulation of 
cellular metabolic process 

GO:0019538 (0.54) protein 
metabolic process 

GO:0005737 (0.57) 
cytoplasm 

10 NX_Q8N7B9-1 
(EFCAB3) GO:0043169 (0.74) cation binding GO:0019538 (0.58) protein 

metabolic process 

GO:0016020 (0.82) 
membrane 

GO:0005737 (0.68) 
cytoplasm 

11* NX_Q6AI12-1 
(ANKRD40) 

GO:0008092 (0.62) cytoskeletal 
protein binding 

GO:0030507 (0.57) spectrin 
binding 

GO:0060255 (0.62) regulation of 
macromolecule metabolic process 

GO:0016043 (0.60) cellular 
component organization 

GO:0005737 (0.77) 
cytoplasm 

GO:0043234 (0.51) protein 
complex 

12 NX_Q6UX52-1 
(C17orf99) 

GO:0004872 (0.63) receptor 
activity 

GO:0019199 (0.50) transmembrane 
receptor protein kinase activity 

GO:0032502 (0.68) developmental 
process 

GO:0030030 (0.54) cell projection 
organization 

GO:0031224 (1.00) 
intrinsic component of 

membrane 
GO:0005887 (0.63) integral 

component of plasma 
membrane 

13 NX_Q3MHD2-1 
(LSM12) GO:0003723 (0.59) RNA binding 

GO:0090304 (0.79) nucleic acid 
metabolic process 

GO:0016070 (0.73) RNA metabolic 
process 

GO:0005576 (0.55) 
extracellular region 

 

It can also be observed that the number of confidently annotated proteins is smaller for 

MF compared to BP and CC. This is partially due to the fact that, while most of these 66 uPE1 

proteins lack close sequence homologs, the majority (56 of 66) have known or inferred PPI 

information, which COFACTOR can take advantage of in BP and CC prediction. For example, 

the uPE1 protein C17orf82 (neXtProt ID: NX_Q86X59-1) does not have any strong sequence or 

structure template hit, but interacts with proteins known to be involved in developmental 

processes or cellular component organization (https://string-

db.org/network/9606.ENSP00000335229). Using the homologs of these PPI partners, 

COFACTOR deduces that the target protein is involved in “cellular component organization” 
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(GO:0016043, C-score=0.55) and “developmental process” (GO:0032502, C-score=0.52). While 

PPI is informative of BP and CC, it is not as useful for MF prediction, because proteins that 

physically interact with each other do not necessarily share the same molecular function (MF), 

even though they generally are involved in the same pathway (BP) at the same subcellular 

location (CC). 

Among the uPE1 proteins with relatively confidently predicted functions (Figure 29), 7 

are associated with cytoskeleton (GO:0008092 “cytoskeletal protein binding” for MF and 

GO:0044430 “cytoskeletal part” for CC), while another 7 are putative transmembrane 

transporters (GO:0022857 “transmembrane transporter activity” for MF). Other notable 

predicted biological functions shared by multiple uPE1 proteins include nucleic acid binding 

(GO:0003676 “nucleic acid binding” for MF and GO:0090304 “nucleic acid metabolic process” 

for BP), ubiquitin-dependent protein degradation (GO:0004842“ubiquitin-protein transferase 

activity” for MF and GO:0006511 “ubiquitin-dependent protein catabolic process” for BP), and 

N-acylsphingosine synthesis (GO:0050291 “sphingosine N-acyltransferase activity” for MF). 

Here we include both GO terms predicted with the stringent C-score cutoffs 0.59, 0.55, and 0.56 

for MF, BP, and CC, respectively (Figure 29, gray), and the GO terms predicted with the relaxed 

C-score cutoffs 0.50 for all three aspects (Figure 29, white). There is no major difference in the 

source of prediction (structure, sequence, or PPI), the distribution of prevalent GO terms or the 

Fmax that resulted from the two sets of C-score cutoffs. 
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Figure 29. Notable GO terms predicted with high C-score for multiple uPE1 proteins. White bars show the number 
of proteins predicted with C-score > 0.5 for given GO terms, while the gray bars show the number of proteins 
predicted with C-score > 0.59, 0.55, and 0.56 for MF, BP, and CC, respectively. 

 

Case Studies of Predicted Function of uPE1 Proteins 

For this section, we selected four uPE1 proteins whose specific biological functions are 

predicted with a high MF C-score by COFACTOR plus one uPE1 protein predicted with a high 

CC C-score for manual interpretation of their likely structure and function, as well as the origin 

of the function assertion by our pipeline. 

MFSD11 (neXtProt ID: NX_O43934-1) is a hard function prediction target with neither 

experimentally solved structure nor any functionally characterized sequence homolog sharing 

>30% sequence identity. The I-TASSER structure model of this target shows a multi-pass 

transmembrane helical protein topology with high confidence: the TM-score of the model, as 

estimated by statistical significance of threading template hits and convergence of folding 

simulation,298 is as high as 0.86. The structure model superposes well to a proton:xylose 

symporter (PDB entry 4gby chain A, Figure 30), from which COFACTOR asserted that the MF 

for the target protein of interest is “sugar transmembrane transporter activity” (GO:0051119, C-

score=0.74). This function prediction is consistent with a previous study317, which suggested that 
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MFSD11 may be a membrane protein that transports soluble molecules and is involved in energy 

regulation. 

 
Figure 30. I-TASSER model of MFSD11 (yellow) superposed to the E. coli proton:xylose symporter (PDB entry 
4gby chain A, blue) with TM-score=0.86. The xylose ligand from 4gbyA is shown in red spheres in the inset. 

 

FAM57A and TLCD2 (neXtProt ID: NX_Q8TBR7-2 and NX_A6NGC4-1, respectively) 

are two protein coding genes located at p13.3 region on chromosome 17, separated from each 

other by 0.96 million base pairs. COFACTOR considers both proteins as sphingosine N-

acyltransferases (GO:0050291, C-score=0.99 for FAM57A and C-score=0.76 for TLCD2) in 

terms of MF. These proteins have sequence identity of only 0.24; the lack of confident 

predictions for the binding sites makes it infeasible to assess the active site similarity for these 

proteins. Sphingosine is an important phospholipid constituent of the cell membrane, and is 

consistent with both proteins’ I-TASSER structure models, which adopt a fold typical of 

membrane-associated proteins (Figure 31). Moreover, FAM57A is homologous to FAM57B 

(neXtProt ID: NX_Q71RH2-1) with sequence identity 0.46. FAM57B is already annotated as 

sphingosine N-acyltransferases, which further confirms the function assertion. 



 112 

 
Figure 31. I-TASSER models of FAM57A (left) and TLCD2 (right). Both proteins are colored in spectrum with 
blue to red marking N- to C-termini. 
 

ANKRD40 (neXtProt ID: NX_Q6AI12-1) is another hard function prediction target 

without functionally characterized close sequence homologs. I-TASSER predicts the target as an 

ankyrin repeat (Figure 32) with an estimated TM-score of 0.51. Based on the known role of 

ankyrin repeat-containing proteins in cytoskeleton anchoring, COFACTOR predicts the 

molecular function of ANKRD40 as “cytoskeletal protein binding” (GO:0008092, C-

score=0.62), “spectrin binding” (GO:0030507, C-score=0.57), and “cytoskeletal adaptor 

activity” (GO:0008093, 0.57). 

 
Figure 32. I-TASSER structure of ANKRD40 with nine consecutive ankyrin repeat units, each consisting of two 
helices linked by a loop. One ankyrin repeat unit is indicated in dashed rectangle. 
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Another interesting protein, based on CC prediction, is CCDC57 (neXtProt ID: 

NX_Q2TAC2-1), a large protein with 916 residues. While neither the sequence-based nor the 

PPI-based pipeline gives much hint to the function, the structure-based pipeline found that 17 of 

all 19 structure templates identified by the I-TASSER model belong to “phosphatidylinositol 3-

kinase complex” (GO:0005942, C-score=0.89) for CC (Figure 33). This is consistent with 

COFACTOR’s molecular function annotation “phosphatidylinositol 3-kinase activity” 

(GO:0035004, C-score=0.31) and biological process annotation “inositol lipid-mediated 

signaling” (GO:0048017, C-score=0.41), even though both function predictions have relatively 

low to moderate C-scores. Phosphatidylinositol triphosphate (PI3P) is a phospholipid found in 

membranes that helps to recruit a range of proteins, many of which are involved in protein 

trafficking; we conclude that CCDC57 has a related function. 

 
Figure 33. I-TASSER model of CCDC57 (yellow) superposed to PDB entry 4jsp chain A (blue), one of the many 
structure templates associated with phosphoinositide 3-kinase complex. The ligand bound to the 4jsp structure is 
phosphothiophosphoric acid-adenylate ester (red spheres), which is a small molecule analog of ATP, one of the 
substrates of phosphoinositide 3-kinases. 
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5.3.6 Comparing COFACTOR Prediction with Very Recent Function Annotations 

The list of 66 uPE1 proteins was originally curated based on the lack of function 

annotations in neXtProt release 2017-08-01. Two previously unannotated proteins have new 

characterized functions. When we were drafting this manuscript, neXtProt release 2018-01-17 

became available, with a finding that EVI2B (neXtProt ID: NX_P34910-1) regulates 

hematopoietic stem cell division and granulocyte differentiation.318 COFACTOR failed to 

predict the highly specific BP function of this protein, only suggesting it is an “integral 

component of plasma membrane” (GO:0005887, C-score=1.00) for which UniProt gave the 

same CC term. In contrast, a recently published report characterized TRIM47 (neXtProt ID: 

NX_Q96LD4-1) as an E3 ubiquitin ligase;319 the corresponding function annotation has not yet 

been updated in neXtProt 2018-01-17. I-TASSER/COFACTOR predicted the GO MF for 

TRIM47 as “ubiquitin-protein transferase activity” (GO:0004842, C-score=0.76). 

 

5.3.7 Function Predictions that are Inconsistent with Database Annotations 

For the uPE1 proteins investigated in this study, there are two cases where the I-

TASSER/COFACTOR prediction is conflicting with existing annotations especially for 

subcellular localization (GO CC terms). 

The first protein, TMEM94 (neXtProt ID: NX_Q12767-1), is annotated as “integral 

component of membrane” (GO:0016021) for CC in both neXtProt and UniProt with 10 predicted 

transmembrane helices based on automated annotation with IEA (Inferred from Electronic 

Annotation) evidence code by UniProt (https://www.uniprot.org/keywords/KW-0812) without 

experimental validation. Consistent with that database annotation, COFACTOR assigns 

“substrate-specific transporter activity” (GO:0022892, C-score=0.91) for MF and “metal ion 
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transport” (GO:0030001, C-score=0.56) for BP, both of which are associated with 

transmembrane transport.  

We present TMEM94 as an example for inconsistency of CC prediction and neXtProt 

annotation. The CC result of COFACTOR for this protein is “nucleoplasm” (GO:0005654, C-

score=1.00). This COFACTOR annotation, which has no counterpart in neXtProt, is generated 

by our sequence-based pipeline, whose function library contains the UniProt GO term of 

TMEM94 from year 2017 (line 382 of 

https://www.uniprot.org/uniprot/Q12767.txt?version=119). This UniProt annotation, labeled by 

UniProt with evidence “IDA:HPA” (inferred from direct assay, as reported by Human Protein 

Atlas database), originated from immunofluorescence experiments conducted in three human cell 

lines reported in the Human Protein Atlas (https://www.proteinatlas.org/ENSG00000177728-

TMEM94/cell). Interestingly, while UniProt up to version 2017_02 contained the “nucleoplasm” 

annotation, this annotation is recently dropped by UniProt 

(https://www.uniprot.org/uniprot/Q12767?version=119&version=120&diff=true) even though 

the Human Protein Atlas experiments have not been invalidated. Since we do not exclude 

sequence homologs when predicting uPE1 functions, the COFACTOR sequence-based pipeline 

ends up hitting the TMEM94 protein itself as the “template” for its CC prediction. These 

differences in database annotations require further experimental efforts to determine the true or 

at least primary cellular component/localization of this protein. 

Another example is C17orf99 (neXtProt ID: NX_Q6UX52-1), a putative human 

cytokine. The mouse ortholog of C17orf99 was recently established as a new 27 kDa cytokine 

called Interleukin 40 (IL-40), which is secreted by activated B cells.320 Since the UniProt 

annotation was updated during the peer review process of this manuscript, neither the 
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COFACTOR function library nor the current neXtProt database (version 2018-01-17) includes 

this annotation. In our PSI-BLAST search for C17orf99 against human proteome 

(https://www.uniprot.org/proteomes/UP000005640, protein list last modified May 26, 2018), 

none of the top hits is cytokine, whereas the most significant hits within the human proteome are 

FCRL2 (neXtProt ID: NX_Q96LA5) and FCRL5 (neXtProt ID: NX_Q96RD9); both are 

transmembrane receptors involved in B cell development, which resulted in our pipeline’s 

predicted CC term of C17orf99 is “intrinsic component of membrane” (GO:0031224, C-

score=1.00). Nevertheless, the UniProt CC designation as “extracellular region” (GO:0005576) 

due to the predicted N-terminal signal peptide 

(https://www.nextprot.org/entry/NX_Q6UX52/sequence) and reported cytokine function may be 

preferable. 

These contradictions in function annotations underscore the difficulty in CC prediction, 

which is a common challenge among many function prediction programs. In fact, it was 

observed in the CAFA2 experiment that almost none of the state-of-the-art programs could 

outperform the “Naïve” baseline in terms of CC prediction.321 In the future, we will address the 

challenges in CC prediction by incorporation of amino acid composition and local sequence 

signatures such as predicted transmembrane regions and signal peptides into the COFACTOR 

function annotation algorithm. 

 

5.4 Discussion and Conclusion 

As a pilot study on prediction of functions for uncharacterized human proteins, we have 

carried out a comprehensive survey of PE1 proteins on chromosome 17 using the composite I-

TASSER and COFACTOR structure and function annotation pipeline, which has been 
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extensively tested in the community-wide CASP and CAFA experiments.190,282,284 The prediction 

accuracy of the pipeline was examined on 100 randomly-selected well-characterized proteins 

from this chromosome, and achieved a high F-measures of 0.69, 0.57, and 0.67 for MF, BP, and 

CC aspects of GO term predictions, respectively. The structure-based function prediction 

component of this pipeline is the main contributor of prediction accuracy for the non-

homologous protein targets. Applying the pipeline on all of the 66 poorly- or non-characterized 

uPE1 proteins coded by genes on chromosome 17, we are able to infer the specific biological 

function with high confidence for 13, 33, and 49 uPE1 proteins for MF, BP, and CC aspects, 

respectively. The majority of these function inferences could not be achieved using traditional 

sequence-based function annotation approaches. We give extensive details for the 13 highest-

rated predictions for Molecular Functions, plus structural findings for 5 case studies. 

As a proof-of-concept, we started with the set of 66 uPE1 proteins on human 

chromosome 17 only. The pipeline can be readily extended to all 1260 uPE1 proteins from the 

entire human proteome, as well as 677 additional unannotated human proteins in neXtProt 

categories PE2, PE3, and PE4 

(https://www.nextprot.org/proteins/search?mode=advanced&queryId=NXQ_00022). The work 

along this line is in progress. 

We hope our modeling results will stimulate the interest of molecular and cell biologists 

and assist them to design appropriate experiments that could validate the computational 

predictions and, more importantly, elucidate the structure and biological function of these 

proteins in human tissues and cells. To assist investigators, neXtProt has already introduced links 

to pre-computed and annually updated I-TASSER/COFACTOR predictions for proteins lacking 

function annotation as illustrated for JMJD7 (NX_P0C870) at 
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https://www.nextprot.org/entry/NX_P0C870/gh/zhanglabs/COFACTOR, where “NX_P0C870” 

can be replaced by neXtProt ID for the target of interest. 
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Chapter 6 Functions of Essential Genes and a Scale-free Protein Interaction Network 
Revealed by Structure-based Function and Interaction Prediction for a Minimal Genome1 

 
6.1 Introduction 

The question of what set of functionalities constitutes the minimal set necessary to enable 

life is one of the most important unanswered questions of contemporary biology 322-324. While 

even the question of what constitutes “life” carries a vast range of philosophical difficulties 

325,326, for the present purposes we define a living thing as an entity consisting of one or more 

membrane-bound cells, capable of separating itself from its surroundings, drawing energy from 

its environment, and using that energy to maintain (and possibly reproduce) itself. As the 

simplest organisms meeting this definition will be unicellular, and in all known cases such 

organisms make use of a DNA genome, investigations into the minimal basis for life have almost 

invariably focused on determining the minimal set of genetic components required to yield a 

living cell. Studies based on transposon knockout libraries or high-throughput targeted deletions 

substantially enhanced our ability to rationally design reduced genomes, by providing a high-

throughput approach for identifying all genes that could not be individually knocked out 327-333. 

Such knockout libraries cannot, however, provide all needed information for construction of a 

minimal genome, due to the presence of both positive and negative epistatic interactions that 

cannot be captured in a single pass using such approaches 324,328. More targeted work 334 

provided a window into the overall reducibility of microbial genomes by deleting all prophages 

 
 

1 This chapter was adapted from a manuscript under review by Journal of Proteome Research, entitled “Functions of Essential 
Genes and a Scale-free Protein Interaction Network Revealed by Structure-based Function and Interaction Prediction for a 
Minimal Genome” by C Zhang, W Zheng, M Cheng, GS Omenn, PL Freddolino,  and Yang Zhang. 
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and mobile genetic elements from E. coli MG1655, yielding a genome that was reduced in size 

by ~15%; the reduced genome strain, MDS42, also showed several useful properties such as 

increased stability of cloned genes 335,336. A new level of capability in the study of minimal 

genomes was achieved with the development of JCVI-syn1.0, a completely synthetic 

Mycoplasma mycoides derivative 337. The subsequent inclusion of repeated cycles of transposon 

mutagenesis and a “design-build-test” cycle permitted comprehensive mapping of the genes that 

could not be complemented by any other gene in the original Mycoplasma mycoides genome, 

which we refer to as “essential”.  The cyclical genome reduction efforts described above yielded 

a well-defined list of 465 effectively essential genes for a minimal Mycoplasma, 438 of which 

encode proteins. The resulting organism, syn3.0, has a genome reduced in size by nearly 50%, 

and shows substantial differences in growth and cellular morphology from the M. mycoides 

parental strain 338, including a reduced growth rate, reduced colony sizes, and a filamentous and 

highly heterogeneous cellular morphology.  

Simply knowing the identities of all genes needed in a minimal genome, however, does 

not permit resolution of the fundamental question of what functionalities are needed in a minimal 

cell. Upon the initial construction of syn3.0, researchers noted that ~⅓ of the protein coding 

genes in its genome could not be annotated by sequence homologs from characterized protein 

domain families338; more recent efforts to enable a complete metabolic reconstruction of syn3.0 

still cannot assign a protein to all functions necessary in a minimal metabolic model 339. Initial 

efforts to determine the functions and biological roles of the remainder of the syn3.0 proteome 

were based on sequence-based annotations and sequence-profile based protein family assignment 

338,340, which have limited sensitivity when there are no close homology templates for annotation 

transfer. Later, Yang and Tsui attempted to annotate syn3.0 proteins by secondary structure 
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matching 341, which is developed to recognize templates with similar structure fold but not 

necessarily of related function. More recently, Antczak and colleagues applied a multi-pipeline 

approach to provide consensus predictions that added functional information for 66 of the 

proteins of unknown function in syn3.0, demonstrating a particular abundance of putative 

transporters and other transmembrane proteins 342. 

We have recently shown that the inclusion of protein structural information, even from 

computationally predicted structures, can substantially enhance the accuracy of function 

predictions for difficult annotation targets 201,343. To this end, we developed an I-

TASSER/COFACTOR-based protocol that performs I-TASSER structure prediction followed by 

COFACTOR structure-based function annotation 303. This pipeline has been shown to accurately 

assign functions for many proteins in microbes 201 and in humans 344, and is among the top 

predictors in the most recent Critical Assessment of Function Annotation round 3 (CAFA3) and 

CAFA PI competitions 304. Moreover, the recent development of sequence-derived residue-

residue contact prediction algorithms based on deep neural networks 232,345 has greatly enhanced 

the accuracy of protein structure assembly, which should in principle enhance the effectiveness 

of structure-based protein function prediction. 

To have a complete understanding of the essential syn3.0 proteome, we developed and 

applied an enhanced C-I-TASSER/COFACTOR pipeline by the combination of contact map-

based protein structure simulations with structure-based protein function annotation and protein-

protein interaction (PPI) predictions. We found that high-confidence Molecular Function (MF) 

and Biological Process (BP) annotations from Gene Ontology (GO) can be provided for 86% and 

88% of the syn3.0 proteome, respectively, while the utilization of deep neural-network contact-

map information shows significant enhancements of both coverage and accuracy of protein 
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structure and functional models. Functions related to nutrient acquisition, microbe-host 

interactions, and nucleotide metabolism are enriched among the set of previously unannotated 

genes, likely indicating important and as-yet unresolved portions of syn3.0 physiology. Viewed 

at the level of the whole-cell protein-protein interaction network, we further note that the PPI 

network of syn3.0 follows the scale-free network architecture often noted in natural PPIs, but 

rare in randomly formed networks, suggesting that scale-free layouts persist even when an 

original, natural PPI network is artificially reduced to a minimal, essential form of itself. 

 

6.2 Methods 

6.2.1 Protein structure prediction 

Structure models of all 438 proteins in the syn3.0 genome were predicted by C-I-

TASSER 238, our most recent template-based protein structure prediction pipeline based on the I-

TASSER structural assembly protocol 46 combined with deep learning-based residue-residue 

contact map predictions 232,345. Briefly, C-I-TASSER first uses DeepMSA 240 to search the query 

protein sequence against three whole-genome and metagenome protein sequence databases, 

including Uniclust30 222, UniRef90 223, and Metaclust 185, to obtain a multiple sequence 

alignment (MSA). Next, residue-residue contacts are predicted from the MSA by the deep 

learning-based algorithms TripletRes/ResTriplet 232 and ResPRE 345. Meanwhile, LOMETS 

threading 181 is performed to search the query protein sequence against the PDB database to align 

the query to template structures to extract continuous fragments. These fragments are finally 

assembled into the full length structures by a replica-exchange Monte Carlo (REMC) simulation, 

under the guidance of a composite force field consisting of the deep learning-predicted contacts, 

template-derived distance restraints, and knowledge-based energy terms calculated based on 
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statistics of PDB structures. The REMC simulation produces tens of thousands of “decoy” 

conformations, which are clustered by pairwise structure similarity 244. The centroid of the 

largest cluster is refined at the atomic level 188 to obtain the final C-I-TASSER model. 

As a control experiment to study the impact of deep learning predicted contacts on 

structure and function prediction, we also performed structure prediction for the same set of 438 

proteins using the classical I-TASSER pipeline without contact prediction. Structure-based 

function annotations were separately performed for the top-ranked models produced by C-I-

TASSER and I-TASSER for the same target protein, as detailed below. 

 

6.2.2 Estimation of structure model quality 

The global quality of structural models can be assessed by TM-score 247 between 

modeled and native structures of the target protein: 
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where L is the number of residues in the target, di is the distance between the ith aligned residue 

pair, and 𝑑� = 1.24√𝐿 − 15Á − 1.8 is a length-dependent scaling factor. TM-score ranges 

between 0 and 1, with TM-score>0.5 meaning structure models of correct global topology 246.  

Since the native structures of syn3.0 proteins are not available, we estimate the TM-score 

(eTM) of the C-I-TASSER models using a combination of threading alignment quality, contact 

satisfaction rate, and convergence of the structure assembly simulations: 
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𝑐�=0.79, 𝑐A=0.1077, 𝑐u=0.00098, 𝑤A=0.77, 𝑤u=1.36, and 𝑤�=0.67 are free parameters obtained 

by maximizing the correlation between the estimated and actual TM-score on a separate set of 

797 training protein domain structures from SCOPe database 40 version 2.06. Mtotal is the total 

number of decoy conformations used for clustering, while M is the number of decoys in the top 

cluster. <RMSD> is the average RMSD among decoys in the same cluster. Z(m) is the score of 

the top template by the mth threading method in LOMETS. Z0(m) is a cutoff above which 

templates are considered reliable. N(CMpred) is the number of contacts predicted by deep learning 

and used for guiding the REMC simulation, while O(CMnative,CMpred) is the number of common 

contacts between the final model and the deep learning predicted contacts. For the (non-contact 

based) I-TASSER predicted structures, the estimated TM-score is calculated similarly, but with 

𝑐�=0.71, 𝑐A=0.1300, 𝑐u=0.00060, 𝑤A=𝑤u=1, and 𝑤�=0. The estimated TM-score was shown to 

highly correlate with actual TM-score, with a Pearson Correlation Coefficient (PCC) 0.91 on 300 

test proteins that are non-homologous to the training proteins of I-TASSER 114. 

 

6.2.3 Function annotation and enrichment analysis 

Protein functions are predicted from the structure models by COFACTOR 201, which 

combines models from three complementary submodules based on structure, sequence, and PPI. 

In the structure-based submodule, the (C-)I-TASSER model is structurally aligned to function 

templates in the BioLiP database 346, where function annotations are obtained from the function 

templates identified by global and local structure similarity. In the sequence-based submodule, 

BLAST and PSI-BLAST 102 are used to search the query sequence against the UniProt Gene 

Ontology Annotation (UniProt-GOA) database 347 to obtain annotations from sequence 

homologs. Finally, the PPI-based submodule is ported from MetaGO 343, where the query 



 125 

sequence is mapped to the PPI network of STRING 348, with the immediate neighbor (i.e. direct 

PPI partner) of the query searched against UniProt-GOA for function transfer. Function 

predictions from these three submodules are combined by weighted averaging to obtain the final 

prediction. Each predicted function has a confidence score (C-scoreFunc) ranging from 0 to 1, 

with C-scoreFunc>0.5 corresponding to a confident function prediction 201,344. While COFACTOR 

predicts three categories of protein functions, namely Enzyme Commission (EC) numbers, Gene 

Ontology (GO) terms, and ligand binding sites (LBS), we do not separately discuss prediction of 

EC numbers because they can be mapped to MF GO terms 349. 

Enrichment of GO terms in previously unannotated syn3.0 proteins (versus proteins with 

previous UniProt free-text annotation or UniProt-GOA GO term annotations) are quantified by a 

rate ratio test approach 350. Briefly, for each GO term q, we compute the annotation rate (i.e. the 

number of proteins annotated with q divided by the total number of proteins) among UniProt-

unannotated proteins, and that among UniProt-annotated proteins. We then test whether the ratio 

of the two rates is significantly different from 1. Some GO terms, such as GO:0005515 “protein 

binding”, are too generic to suggest any specific function. Therefore, similar to our prior study 

303, we discard any GO terms associated with >10% of annotated proteins in all steps of our 

analysis, including the definition of previously unannotated/annotated proteins and the rate ratio 

test of GO term enrichment. 

 

6.2.4 PPI prediction 

The PPI network of syn3.0 was predicted using the SPRING 351 dimer threading program. 

For a pair of query proteins, SPRING first searches the sequence of each protein chain to a 

monomeric template structure database by HHsearch 210. The HHsearch aligned monomeric 
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templates are then structurally aligned to complexes in the PDB dimer template database by TM-

align 227  to obtain the dimeric complex model. The final score of the dimeric complexes, 

SPRING-score, is a linear combination of three terms: the Z-score for HHsearch monomeric 

threading, TM-score of monomer-to-dimer structure alignment by TM-align, and a statistical 

energy potential for the dimer interface. The two query proteins are considered to interact with 

each other if there is a good complex hit with SPRING-score >2 and both of the monomer 

threading Z-scores >-2. The Z-score and SPRING-score cutoffs were trained to optimize the 

Matthews correlation coefficient (MCC) of classifying interacting versus non-interacting protein 

pairs, on a dataset consisting of 1,732 structurally characterized PPI pairs from the SPRING 

dimer template database and 4,117 pairs of non-interacting proteins from the Database of 

Interacting Proteins (DIP) 352. Only hetero-dimeric interactions are considered in this study. 

 

6.2.5 Data Availability 

Protein sequences of syn3.0 were collected from NCBI accession CP014940.1. While the 

genome consists of 473 genes, this study only considered the 438 protein coding genes, as the 

other 35 genes encode non-coding RNAs with well-known functions such as tRNAs and rRNAs. 

The syn3.0 proteins are mapped to the closest UniProt 2019_09 entries from Mycoplasma 

mycoides reference proteomes UP000001016 and UP000011126. The GO annotations of these 

UniProt entries are collected from UniProt-GOA release 2019-09-17.  All predicted structure 

models, functions and interactions are available at our public webserver at 

https://zhanglab.ccmb.med.umich.edu/C-I-TASSER/JCVI-syn3.0/, including a one sentence 

description of protein function generated using the most specific high confidence predicted GO 

term.  
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When we performed this study, a new version of the minimal genome, JCVI-syn3A 

(NCBI accession CP016816.2), was published 339, which includes 16 additional protein coding 

genes not included in the JCVI-syn3.0 genome. Although these new genes are not essential for 

the survival of the cell, they make the cell less fragile and have a more stable cellular 

morphology. For completeness, we have included these 16 new genes in our structure and 

function prediction as part of our online webserver, even though our main analysis focuses on the 

original JCVI-syn3.0 genome where all the genes are essential. To facilitate comparative study 

between JCVI-syn3.0 and JCVI-syn3A, the webserver displays the protein names and accessions 

for both genomes.  

 

6.3 Results  

6.3.1 Contact-assisted protein structure prediction and structure-based function prediction 

increase the coverage of function annotation 

We began by investigating how many syn3.0 proteins can be assigned specific gene 

ontology (GO) term annotations, which were categorized by the original syn3.0 study 17 into 5 

classes (Unknown, Generic, Putative, Probable, and Equivalog) in ascending order of function 

annotation confidence, based on a protein’s match to TIGRfam protein family database 353. 

Specifically, Unknown or Generic proteins lack functional homologs or do not have homologs 

with consistent function annotations, while Putative, Probably or Equivalog proteins can match 

homologous proteins with related functions in the same family. As shown in Figure 34A-E, for 

all five classes, the numbers of proteins for which GO terms can be assigned by the structure-

based function annotation pipeline C-I-TASSER/COFACTOR are consistently greater than those 

in UniProt. Here, the UniProt terms in Figure 34A-E refer to the GO annotations from the 
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UniProt-GOA project 347; all UniProt terms for the syn3.0 proteins in our study are from 

computational approaches such as UniRule and InterProScan 354 with evidence codes “Inferred 

from Electronic Annotation” (IEA) and “Inferred from Sequence or structural Similarity” (ISS). 

It is therefore fair to compare the coverage (i.e. the percentage of proteins that can be annotated) 

between UniProt annotations and C-I-TASSER/COFACTOR annotations, as both are 

computationally predicted GO terms. The broader coverage of C-I-TASSER/COFACTOR is 

particularly evident for the Unknown and Generic categories, which are considered 

uncharacterized in the original syn3.0 study 17. For example, C-I-TASSER/COFACTOR can 

annotate 49% and 45% of all Unknown proteins with specific MF and BP terms, respectively, 

which are 9 times more than UniProt for the same set of proteins (5% for both MF and BP) 

(Figure 34A). In both C-I-TASSER/COFACTOR and UniProt GO annotations, the number of 

proteins with specific Cellular Component (CC) terms is smaller than those with MF or BP 

terms. This is partly due to the simple cellular structure of syn3.0 (which has a single cell 

membrane and no cell wall or membrane-bound organelles), where most proteins localize to the 

cytoplasm or plasma membrane, instead of more specific subcellular locations. 

The high sensitivity of our C-I-TASSER/COFACTOR pipeline can be attributed partly to 

the use of deep learning predicted contact maps in the structure predictions. Indeed, the 

confidence score of COFACTOR GO term prediction is consistently improved by using structure 

models from contact-assisted C-I-TASSER over the traditional I-TASSER approach for all three 

aspects of GO terms (Figure 34F-H). Accordingly, the quality of C-I-TASSER structure models 

in terms of average estimated TM-score (0.76) 38 is 8.6% higher than that of I-TASSER (0.70); 

328 of the 434 proteins (76%) are estimated to have better structure model quality in C-I-

TASSER than in I-TASSER (Figure 34I). 
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Figure 34. C-I-TASSER/COFACTOR improves coverage of protein function prediction (i.e. percentage of proteins 
with predicted function) for syn3.0. (A-E) Percentage of proteins that can be annotated with GO terms by C-I-
TASSER/COFACTOR and by UniProt for the five categories of syn3.0 proteins classified in the original syn3.0 
report, where “unknown” (A) and “generic” (B) proteins were considered unannotated. (F-H) Distribution of 
difference in confidence scores (C-scores) for COFACTOR GO term prediction using C-I-TASSER models 
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compared to those using I-TASSER models. For each protein, only GO terms predicted with C-score>0.5 in at least 
one of C-I-TASSER/COFACTOR and I-TASSER/COFACTOR are considered, and the average C-score difference 
for using C-I-TASSER compared to using I-TASSER for each protein is shown on the x-axis. The average C-score 
differences in structure-based GO term prediction using C-I-TASSER versus that using I-TASSER are +0.07, +0.11, 
and +0.06 for MF (F), BP (G), and CC (H), respectively. (I) Per-target comparison of estimated TM-score between 
I-TASSER (x-axis) and C-I-TASSER (y-axis). Points on the upper left triangle correspond to targets with better 
estimated quality in C-I-TASSER than in I-TASSER. J. Number of proteins with (white) and without (grey) 
function annotation (GO terms or free-text) in the five categories of syn3.0 proteins. 

 

Despite the high sensitivity of the C-I-TASSER/COFACTOR pipeline, there are still 14% 

and 12% of the syn3.0 proteins that cannot be annotated with specific MF and BP terms, 

respectively, partly due to the high transmembrane contents for the targets (Figure 35), making 

them more difficult for experimental characterization and computational annotation. 

 
Figure 35. Violin plots for portions of residues predicted by TMHMM2.0 to be within transmembrane helices (y-
axis) for JCVI-syn3.0 proteins that are annotated (left) versus unannotated (right) by C-I-TASSER/COFACTOR 
with C-score>0.5 for specific GO terms in the MF (A), BP (B) and CC (C) aspects. The p-value is calculated by 
single-tailed unpaired t-test to test if the average portion of transmembrane residues (dashed lines) for C-I-
TASSER/COFACTOR annotated proteins is significantly smaller than that for unannotated proteins. 

 

The original method for partitioning syn3.0 protein annotation status into 5 categories 

may not be sufficiently specific, as a protein not belonging to a characterized TIGRfam protein 

family can still be individually annotated. Thus, we re-classified annotated versus unannotated 

proteins based on whether their respective UniProt Gene Ontology Annotation (UniProt-GOA) 

347 entries in the Mycoplasma mycoides proteome have specific GO term annotations, excluding 

overly general GO terms such as “protein binding” (see Methods). As shown in Figure 34J, 112 
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(26%) of the 438 proteins in syn3.0 are unannotated based on their UniProt entries. This is 

smaller than the number of proteins with unknown function (149 of 438 proteins) reported in 

previous studies 338,342, as some proteins previously reported to have unknown functions are now 

annotated as of UniProt release 2019_09. These inconsistencies could have resulted from either 

the difference in classifying annotated versus unannotated proteins, the recent improvement of 

the annotation pipeline used in UniProt, or both. For the sake of consistency with contemporary 

work 308, in later sections we use the term “unannotated proteins” to refer to proteins without 

UniProt annotation, regardless of their TIGRfam match. 

 

6.3.2 Functions enriched in uncharacterized proteins highlight the dependency of syn3.0 on 

the environment 

To obtain a more nearly complete understanding of the metabolism of syn3.0 and the 

nature of the required genes that it encodes, we applied a rate-ratio test approach (see Methods 

for details) to search for the GO terms that were enriched among previously unannotated 

proteins. Compared to previously annotated proteins, UniProt unannotated proteins are enriched 

for transporter activity and phosphatase activity for MF, and multi-cellular response for BP 

(Figure 36). This is consistent with a previous study that proposed some of the poorly 

characterized syn3.0 proteins are transporters 342. Among the newly annotated proteins with 

“phosphatase activity” annotations, furthermore, at least half appear likely to act on nucleotide 

substrates, suggesting a particularly important role for these poorly annotated nucleotide 

phosphatases in syn3.0 for either signal transduction or metabolism. As case studies 

demonstrating the new information provided by the C-I-TASSER/COFACTOR pipeline, we 

select MMSYN1_0877 and MMSYN1_0440 (Figure 37) to discuss the derivation and 
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implication of their predicted functions “vitamin transporter” activity and “response to other 

organism”, respectively, which are the most significantly enriched terms for MF and BP, 

respectively. 

 
Figure 36. Enrichment of MF (upper half) and BP (lower half) GO terms predicted by C-I-TASSER/COFACTOR 
in proteins of unknown function (empty bars), compared to proteins of known function (solid bars). One asterisk is 
shown for significant enrichment of a GO term in the unknown function set (p<0.05 by rate ratio test) and two 
asterisks for significant enrichment after adjusting for multiple testing (p<0.05 with FDR correction). GO terms are 
ranked in descending order of ratio of annotations rate of a GO term in unannotated proteins versus that in annotated 
proteins. 

 

Riboflavin transporter MMSYN1_0877 

MMSYN1_0877 (Figure 37A) is an unannotated protein predicted to have “riboflavin 

transporter activity” and “vitamin transporter activity” with C-score=0.82 for MF by the C-I-

TASSER/COFACTOR pipeline. The C-I-TASSER structure model exhibits a multi-pass 

transmembrane helix bundle with an estimated TM-score of 0.59 (indicating correct topological 
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fold 246), with a riboflavin (i.e., vitamin B2) ligand recognized by COFACTOR. The protein is 

structurally similar to RibU, a Riboflavin uptake protein from Staphylococcus aureus, with TM-

score=0.72 by TM-align 50. The presence of this putative transporter suggests that syn3.0 relies 

upon riboflavin uptake from the media for survival. Indeed, we find that M. mycoides have two 

Riboflavin kinase/FAD synthetase enzymes, ribC (UniProt ID: Q6MUC6) and ribF (UniProt ID: 

Q6MTQ9), which can make use of riboflavin to synthetize flavin mononucleotide or flavin 

adenine dinucleotide. However, M. mycoides lacks an identifiable pathway for de novo 

riboflavin biosynthesis, and thus presumably relies on uptake from the host or media 

(presumably via UniProt ID Q6MS70, the homolog of MMSYN1_0877). In the case of syn3.0, 

the ribC gene is also absent, apparently leaving riboflavin import via MMSYN1_0877 followed 

by RibF processing as the likely sole path for synthesis of riboflavin-containing compounds. The 

current lack of annotation of the M. mycoides homolog Q6MS70 is likely because our annotation 

prediction builds strongly on structural similarity to ECF-type riboflavin uptake proteins from T. 

maratima 355 and S. aureus 356, which have sub-2 Å RMSDs  to the predicted MMSYN1_0877 

structure, but amino acid sequence identities less than 22%.  



 134 

 
Figure 37. Exemplar proteins corresponding to GO terms that are highly abundant among the newly annotated set. 
(A) MMSYN1_0877, a protein with predicted “vitamin transporter” activity, and (B) MMSYN1_0440, a protein 
with predicted annotation of the “response to other organisms” GO term. (A) C-I-TASSER structure model (deep 
blue, estimated TM-score=0.59) of MMSYN1_0877 (NCBI accession: AMW76711.1) superposed to S. aureus 
riboflavin transporter RibU (light yellow, PDB ID: 3p5n chain A, TM-score=0.72) in complex with riboflavin (red 
stick). Top MF GO term predictions are shown on the right hand side directed acyclic graph, with different colors 
representing different ranges of COFACTOR C-scores for the predicted terms (center color map). (B) C-I-TASSER 
model (deep blue, estimated TM-score=0.33) of MMSYN1_0440 (NCBI accession: AMW76515.1) superposed to 
yeast exocyst complex component SEC8 (light yellow, PDB ID: 5yfp chain D with TM-score=0.84 but sequence 
identity 0.1). Top predicted MF and BP terms are shown in graphs on the left and right, respectively. 
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Hyaluronic acid binding protein MMSYN1_0440 

Considering that syn3.0 can be cultured in vitro without the need to interact with other 

organisms, it is initially counter-intuitive that we observe several new annotations of the GO 

term “response to other organism”. However, it must be noted that the ancestral M. mycoides is 

an obligate parasite of animal hosts, and the culture media used for syn3.0 contains a broad range 

of animal derivatives (beef heart infusion, peptones, and fetal bovine serum 338); it is thus 

plausible that syn3.0 interacts with animal-derived media components for regulatory or 

mechanical purposes as well as nutritional purposes.  As an example, the protein 

MMSYN1_0440 (Figure 37B) is predicted to be involved in “response to other organism” with 

C-score=0.57 for BP. This is substantiated by the predicted MF term “hyaluronic acid binding” 

with C-score=0.91, indicating likely interaction with animal-derived hyaluronic acid present in 

the culture media. The reason for the importance of this particular interaction for the viability of 

syn3.0 is not immediately clear. One possibility arises from the MMSYN1_0440 structural 

model, which shows good structural similarity to the yeast membrane tethering protein SEC8; 

MMSYN1_0440 may play an architectural role in maintaining membrane integrity or cell-cell 

contacts in syn3.0, likely interacting with hyaluronic acid polymers present in the media. 

 

6.3.3 Whole-proteome dimeric threading reveals a scale-free PPI network 

Given that many proteins perform their function by interacting with other proteins, we 

used SPRING, a dimeric threading approach 48, to investigate the organization of pairwise PPIs 

in the syn3.0 proteome. The interactome predicted by whole-proteome SPRING threading search 

is relatively sparse, with only 2.6% (2483) of all 95,703 protein pairs being predicted PPI 
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partners (Figure 38A). We initially speculated that, due to its simplicity, syn3.0 network 

structure might revert to a less ordered state instead of a scale-free layout typical of bacterial 

networks 57. However, we found that the PPI network is actually scale-free: P(k), the fraction of 

proteins in the network having k partners, follows a power law distribution: 

𝑃(𝑘) ∼ 𝑘ÓÔ								(6.4) 

A high goodness-of-fit is achieved with the parameter 𝜏=1.40, resulting in the reduced 

chi-squared statistics and the coefficient of determination and approaching 0 and 1, respectively 

(Figure 38BC). This is significantly different from a randomly generated PPI network with the 

same number of positive (2483) and total (95703) protein pairs (Figure 39), where the number of 

PPI partners per protein fits poorly to the power law with the reduced chi-squared statistics and 

the coefficient of determination consistently greater than 1.5 and less than 0, respectively. This 

suggests that the scale-freeness of the SPRING-predicted PPI network is not coincidental. Scale-

free networks were reported previously for naturally evolved biological networks: E. coli, for 

example, also has a scale-free PPI network 357 with 𝜏=1.3 as estimated by our recent work (Gong 

W, Guerler A, Zhang C, et al. Submitted). On the other hand, the present study is the first time 

that a scale-free PPI network is observed for an artificial proteome, although genes are retained 

in the syn3.0 genome based solely on their essentiality without explicit consideration for the 

number of potential PPI. The unintentional retention of a scale-free PPI network in the deeply 

truncated syn3.0 proteome suggests the universal robustness of PPI network architecture, and the 

importance of the “hub” proteins (which regulate a large number of proteins with few PPI) for 

the overall viability of cells. 
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Figure 38. PPI predicted by SPRING. (A) Scatter plot of protein-protein interactions for all syn3.0 proteins ranked 
in ascending number of PPI partners, where a point means the protein pair is predicted to have a PPI. (B-C) 
Observed distribution (circles) for the number of PPI partners per protein in linear (B) and log (C) scale, and the 
power law fit (lines). In the inset, 𝝌𝝂𝟐 is the reduced chi-squared statistic (lower values are better, with 0 being a 
perfect fit) and R2 is the coefficient of determination (the higher the better, with 1 being a perfect fit), respectively, 
to quantify the goodness of fit. 

 
Figure 39. A random PPI network for syn3.0, where 2483 of all 95703 protein pairs are randomly selected as the 
positive PPI pairs. The number of positive pairs in this random network is therefore identical to the SPRING-
predicted PPI network shown in Figure 38. (A) Scatter plot of PPIs for all syn3.0 proteins ranked in ascending 
number of PPI partners, where a point means the protein pair is predicted to have a PPI. (B-C) Observed distribution 
(circles) for the number of PPI partners per protein in linear (B) and log (C) scale, and the power law fit (lines). In 
the inset, 𝝌𝝂𝟐 is the reduced chi-squared statistic (lower values are better, with 0 being a perfect fit) and R2 is the 
coefficient of determination (the higher the better, with 1 being a perfect fit), respectively, to quantify the goodness 
of fit. Both metrics indicate that power law fits poorly to the distribution of the number of PPI partners per protein. 
(D-E) Histogram of 𝝌𝝂𝟐 (D) and R2 (E) values of 1000 randomly generated PPI networks for syn3.0 with the same 
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number of positive pairs as the SPRING-predicted network. The vertical dash lines to the left (D) or right (E) of the 
histograms indicates 𝝌𝝂𝟐=0.01 and R2=0.99, respectively, in the SPRING-predicted network (Figure 38B), which is 
consistently better fitted to a power law distribution to all 1000 randomly generated PPI networks. 

 

6.4 Discussion and Conclusion 

In this study, we extended a unified structure and function prediction pipeline for whole-

genome function and PPI modeling of the syn3.0 minimal genome. This pipeline is able to assign 

function for 9 times more unknown proteins than existing UniProt annotations (Figure 34A), and 

substantially extends the reach of structure-based function prediction of poorly annotated 

proteins. These results further demonstrated the usefulness and impact of high-resolution protein 

structure simulations on large-scale proteome function annotations. In particular, the integration 

of deep neural network-based contact maps with the structural assembly simulations plays an 

essential role for not only improving the quality of structure models, but also increasing the 

coverage and reliability of functional predictions. We expect that the approach employed here 

will be of substantial utility for providing optimal computational structure/function predictions 

for other organisms, which are currently under progress in our laboratories. 

The annotation efforts detailed here also provide a substantial boost to our ability to 

understand the biology of the reduced-genome syn3.0 strain, providing confident MF and BP 

models for 373 and 382 syn3.0 proteins, which represent, respectively, 86% and 88% of the 

proteome that were previously unannotated. Consistent with the findings of Antczak et al. 342, the 

spectrum of function annotations for these newly annotated proteins (Figure 36) places a strong 

emphasis on the importance of nutrient acquisition, demonstrating a broad range of uptake and 

metabolic pathways that had previously not been appreciated. Regulatory proteins comprise a 

substantial additional category of previously unannotated syn3.0 genes, with roles ranging from 

signaling receptors to nucleotide phosphatases (the latter of which likely play a role in second 
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messenger signaling, but may also be involved in nutrient assimilation). The importance of 

interactions with host tissue and host-derived molecules (including those present in the heavily 

animal-sourced syn3.0 growth media) is a common thread running throughout the newly 

identified annotations, ranging from uptake of host-derived nutrients (e.g., the riboflavin 

transporter shown in (Figure 37A) to architectural proteins binding host-derived glycans (Figure 

37B). In the ongoing quest to develop a truly minimal genome, it will be intriguing to determine 

which of the syn3.0 genes represent simple metabolite uptake requirements (e.g., 

MMSYN1_0877) and which involve detection of host-derived substances that act as growth 

stimulators (as may be the case for some of the newly-annotated proteins bearing the “signaling 

receptor” and “response to other organism” GO terms); it is likely that the latter class of proteins 

may be dispensable if the downstream signaling paths can be elucidated, whereas the former 

likely cannot. 

A somewhat unexpected discovery of this study is that the artificially reduced minimal 

syn3.0 genome retains a scale-free PPI network, similar to other naturally occurring PPI 

networks such as that of E. coli. Since the population of proteins with a high number of PPI 

partners is significantly enhanced in the scale-free networks in comparison with a random 

network (Figure 39) that follows a Gaussian distribution, the robustness of scale-free PPI 

network of the syn3.0 genome likely arises due to the biological importance of network hub 

proteins, which are unlikely to be removed over the course of genomic pruning and critically 

contribute to the successful generation of the genome. The scale-free behavior of biological 

networks should be an important consideration in future synthetic biology experiments. 
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Chapter 7 Conclusion 
 
7.1 Overall Conclusion 

This thesis presents an integrated protein structure and function modeling pipeline. The 

first pipeline component is the DeepMSA algorithm for generating a high quality MSA with 

deep and diverse alignment (Chapter 2). The MSA is used by deep learning to predict distance 

and orientations by deep learning to guide the D-QUARK protein folding simulation (Chapter 3). 

The predicted structure models are used for function template detection in the COFACTOR 

protocol, which combines structure, sequence and PPI for consensus protein function annotation 

(Chapter 4). The structure and function prediction pipeline is applied to several large-scale 

genome-wide annotation efforts, including the modeling of human uPE1 proteins (Chapter 5) 

and JCVI-syn3.0 minimal genome (Chapter 6). 

 

7.2 Future Directions 

Deep learning-based protein folding is an important direction in bioinformatics. Despite 

rapid progress in this field, there are still at least five open challenges in this field that are under-

studied: real-value distance/orientation prediction, single sequence-based prediction, deep 

learning-based threading, end-to-end protein folding, and structure-based function annotation. 

 

7.2.1 Real-value distance and orientation prediction 

Most distance-based protein folding program, including RaptorX-Contact171, DMPfold172, 

AlphaFold173, and trRosetta196, and even D-QUARK, incorporates deep learning distance 



 141 

prediction in the form of binned probability distribution. While predictors for distance bins are 

easier to develop as they can be extended from existing contact predictor, it is not without its 

inherent limit. Distance bins that are too wide can limit the resolution of predicted distance, 

while distance bins that are too narrow will result in a small number of training labels and 

therefore difficulty in training. Orientation bin prediction has a similar resolution limit. 

A potential workaround is to predict real-value distance rather than probability of 

distance within bins. For example, GANProDist168 trains a Generative Adversary Network 

(GAN) using an adversary loss to make the predicted distance map indistinguishable from native 

distance map. Unfortunately, GANProDist seems to perform poorly in CASP14 (as group 

ProdGAN_Gonglab) in both contact and distance prediction. It is still unclear whether this is 

caused by a flaw in the real-value distance label design169 for GAN training, or the inherent 

unsuitability of GAN in distance/contact prediction. Meanwhile, PDNET169 uses a more 

conventional ResNet architecture and a loss function that minimize the error for the prediction of 

the reciprocal of distance. 

While these approaches can potentially address the real-value distance prediction 

problem, they also introduce another open question for how to incorporate them into protein 

folding simulation. To implement the distance restraint as an energy term in protein folding, 

either the upper/lower bounds or the probability distribution for the distance is required. This is 

straightforward for distance bin predictions, from which both the standard deviation and the 

probability distribution over the full range of distance can be easily derived, but not for predicted 

distance predicted with a single real-value. 
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7.2.2 Single sequence-based predictor 

Currently, most contact and distance predictors critically depend on coevolution features 

derived from MSAs. Therefore, their accuracy relies on the availability of high quality MSAs 

with deep alignment depth and diverse sequence homologs. This reliance not only limits their 

application to targets with little to no sequence homologs such as designed proteins, but also 

dramatically increase the running time of an otherwise lightweight predictors. For example, on 

average, the TripletRes CASP server takes a few hours to construct the MSA for a target using 

DeepMSA, while the coevolution feature exactions and deep learning model evaluation only 

takes a few minutes. 

A direct workaround to address this issue is to develop single sequence-based 

distance/contact predictors, where all features are derived from the target sequence alone. So far, 

single sequence-based contact predictors358-360 are not yet able to achieve a similar accuracy as 

MSA-based predictors, although the single sequence-based predictors using sequence embedding 

features have shown promise. 

 

7.2.3 Deep learning-based threading 

Several threading programs have indirectly used deep learning by incorporating predicted 

secondary structures, contacts and distance as part of the scoring function186,191,361 . However, 

very few threading programs directly apply deep learning to generate alignment. Actually, 

similar to contact/distance-map prediction, threading alignment can also be formulated as an 

image segmentation problem. The target-template alignment can be considered an asymmetric 

image, where a row and a column represent a query position and a template position, 

respectively. The pixel in the image represents the alignment score for aligning the 
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corresponding target residue to template residue. Currently, ThreaderAI 362 and SAdLSA363 are 

probably the only deep learning threading programs based on this formulation, and have already 

reported to show improvements over more conventional threading programs. 

 

7.2.4 End-to-end structure prediction 

Most deep learning-based protein folding programs are not end-to-end. In other words, 

they must first generate contact or distance map prediction, and then the predicted 

contact/distance map to construct 3D structure by protein folding simulation, rather than directly 

generate tertiary structure from target sequence (or sequence profile) using a neural network. 

RGN364 and NEMO365 are two representative early attempts for end-to-end training of neural 

network for direct full length tertiary structure generation. In particular, RGN has received much 

academic and media attention due to its reported fast speed and high accuracy. Unfortunately, its 

performance in CASP13 is unimpressive; and follow up studies to reproduce the published 

performance have been largely unsuccessful366,367. One factor that may have limited the 

performance of these algorithms is their lack of coevolutionary features, which provide the 

critical long-range pairwise interaction information. Despite these setbacks, end-to-end protein 

folding represents a new avenue that deserves further research, and have shown to be useful for 

specific modeling tasks such as fragment generations173. 

 

7.2.5 Structure-based ab initio function annotation 

Ab initio annotation of protein function directly from structure is only recently proposed 

202,203, as earlier structure-based function annotation algorithms are based on structure templates 

identified by global and local structure alignment 198-201. In ab initio structure-based annotation 
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of protein-level functions such as Gene Ontology (GO) terms (as opposed to residue-level 

functions such as ligand binding sites), the protein structure is converted into a 3D density 

map204 or a graph202, where each graph edge represents an interaction between residues (nodes in 

the graph). Deep CNNs can then be trained on the converted structure to predict GO labels. Both 

conversions ignore the sequential connectivity of the protein, and do not use any sequence 

profile, which is known to be quite useful for function annotation tasks201,267. These approaches 

do not use contact or distance maps, which are more readily available than the tertiary structure 

model for uncharacterized proteins and inherently includes information of sequential relation 

between residues. Finally, a constant challenge of structure-based function annotation compared 

to other non-structure-based function predictor is the incompleteness of structure-function 

library, where at least two thirds of proteins with known function do not have experimental 

structure. This limitation could potentially be addressed by extensive data argumentation368 and 

by training on predicted structure models. 
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Appendix A Assessment of CASP12-CASP13 prediction performance

 
Appendix Figure A. Average first model TM-score for CASP12 TBM (A) and FM (B) targets by in-house (solid 
bars) and third-party (empty bars) CASP12 groups. Black and grey bars are server groups and human groups, 
respectively. It is not completely fair to compare human group performance against server performance, as human 
groups have much longer time than server groups and can use server results. Nonetheless, our in-house server 
groups (“Zhang-Server”, i.e. I-TASSER, and “QUARK”, i.e. C-QUARK) still outperform many human groups. 
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Appendix Figure B. Average first model TM-score for CASP13 TBM (A) and FM (B) targets by in-house (solid 
bars) and third-party (empty bars) CASP13 groups. Black and grey bars are server groups and human groups, 
respectively. It is not completely fair to compare human group performance against server performance, as human 
groups have much longer time than server groups and can use server results. Nonetheless, our in-house server 
groups (“Zhang-Server”, i.e. C-I-TASSER, and “QUARK”, i.e. C-QUARK) still outperform many human groups. 
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Appendix Figure C. Average top L long range contact by in-house (solid bars) and third-party (empty bars) CASP13 
groups on the subset of 31 FM targets used in official CASP13 contact assessment. Black and grey bars are server 
groups and human groups, respectively. 
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