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Abstract 
 
  
 
 
Overactive bladder (OAB) is a highly prevalent condition which negatively affects the physical 

and mental health of millions of people worldwide. Sacral neuromodulation (SNM) is a third-line 

therapy that provides improved efficacy and less adherence issues as compared to conventional 

treatments. There have been ~300,000 SNM implants since the therapy was first introduced over 

20 years ago. While SNM is delivered in an open-loop fashion, the therapy could have improved 

clinical efficacy by adopting a closed-loop stimulation paradigm that uses objective 

physiological feedback. One promising approach to obtain such feedback is by tapping into the 

nervous system that innervates the bladder. This dissertation focuses on using sacral level dorsal 

root ganglia (DRG) neural signals to provide sensory feedback for adaptive SNM a feline model.  

This work began with exploring machine learning algorithms and feature selection 

methods for bladder pressure decoding in an offline analysis of DRG signals. A Kalman filter 

delivered the highest performance based on correlation coefficient between the pressure 

measurements and algorithm estimation. Additionally, firing rate normalization significantly 

contributed to lowering the normalized error, and a correlation coefficient-based channel 

selection method provided the lowest error compared to other channel selection methods.  

Following algorithm optimization, this work implemented the optimized algorithm and 

feature selection method in real-time in anesthetized healthy bladder and simulated OAB feline 

models. A 0.88 ± 0.16 decoding correlation coefficient fit was achieved by the algorithm across 
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35 normal and simulated OAB bladder fill sequences in five experiments. Additionally, closed-

loop neuromodulation was demonstrated using the estimated pressure to trigger pudendal nerve 

stimulation, which increased bladder capacity by 40% in two trials.  

Finally, closed-loop SNM with the DRG sensory feedback algorithm was performed in 

anesthetized experiments. Our approach increased bladder capacity by 13.8% over no 

stimulation (p < 0.001). While there was no statistical difference in bladder capacity between 

closed-loop and continuous stimulation (p = 0.80), closed-loop stimulation reduced stimulation 

time by 57.7%. Interestingly, clearly-identified bladder single units had a reduced sensitivity 

during stimulation, suggesting a potential mechanism of SNM. 

This dissertation also developed a method for chronic behavioral monitoring and 

neuromodulation of bladder function in a feline model. We tracked urodynamic parameters 

across multiple week testing intervals. We observed that animals could tolerate pudendal nerve 

stimulation above motor threshold. Interestingly, stimulation at 5 and 33 Hz appeared to have a 

modulatory effect on voiding interval and efficiency in line with prior work under anesthesia.  

Overall, this work demonstrated that sacral level DRG are a viable sensory feedback 

target for adaptive SNM. This dissertation also investigated a behavioral paradigm that will be 

useful for system validation in awake and chronic experiments. Behavioral experiments such as 

these, as well as development of low-power systems for adaptive monitoring and feedback, are a 

crucial step prior to clinical translation of this method. Ultimately, implementation of closed-

loop adaptive SNM will lead to an improved therapy and greater potential benefit for the 

millions of individuals with OAB. 



 1

Chapter 1 Introduction 
 
 
 
 

1.1 Overactive Bladder (OAB) 

1.1.1 Definition and Impact  

Overactive bladder (OAB) is a symptom-based bladder dysfunction, and it is officially 

defined by the International Continence Society as “urinary urgency, usually accompanied by 

frequency and nocturia” [1]. OAB has a high prevalence of 16.5% among the US population [1]. 

OAB is estimated to have affected 548 million adults over 20 years old globally in 2018 [2].  

Risk factors for OAB include age, gender, body mass index, neurological diseases (stroke, 

Parkinson’s disease, depression etc.), pregnancy, heart diseases, and other non-bladder-related 

causes [3]. Regardless of risk factors, OAB causes symptoms primarily by affecting sensory 

pathways, leading to urge sensation at a low bladder volume. An urge sensation can be a result of 

(1) neurogenic dysregulation: a reduction in the inhibitory neural impulses and increase in 

excitatory afferent impulses due to neurological conditions or (2) myogenic dysfunction: an 

increase in detrusor muscle sensitivity to cholinergic stimulation [1].  

OAB can have a profound impact on one’s physical and mental health. While mild 

symptoms include a sudden uncontrollable onset of urgency and discomfort, severe cases can 

cause varied degrees of incontinence, leading to urinary tract infections (UTIs) if not properly 

managed [3]. This directly limits patients’ daily activities including exercising, traveling, and 

sexual functions. Psychological burden ranges from social embarrassment to anxiety, depression, 
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and an overall low quality of life [4]. Each year, OAB management directly and indirectly costs 

~$13 billion of economic burden in the US alone [3].  

 

1.1.2 Diagnosis and Conventional Treatments 

OAB is diagnosed with a combination of a bladder diary, physical exams, and urinalysis 

[1]. Current treatments aim to control the symptoms if the root cause cannot be identified or 

addressed in the short-term. Non-neurogenic OAB and some cases of neurogenic OAB are 

primarily managed with three levels of treatments ranked by invasiveness (the fourth level 

involves cystoplasty which is uncommon as an OAB treatment). The first-line treatment is 

behavioral therapy, including bladder and pelvic floor muscle training to address mild cases by 

strengthening the pelvic muscle tone. The second-line treatment is pharmacological therapy, 

including anticholinergic and beta-3 agonist drugs to target and relax the bladder smooth muscles 

[5]. One option in third-line therapy is intravesical Botox® injections, delivered with a 

cystoscope and an embedded needle through the urethra into the detrusor wall. Botox® is US 

Food and Drug Administration (FDA) approved for refractory OAB patients when medication 

fail to work. It relaxes the bladder by blocking excitatory neurotransmitters released from pelvic 

nerves into the bladder wall [6]. Both medication and Botox® injections are recurrent long-term 

therapies and are associated with a high percentage of chronic adverse effects (dry mouth, 

dizziness from drugs [7]; urinary tract infections, urinary retention from Botox® [6]) and high 

dropout rates due to logistic and tolerability issues [8], [9]. Studies show that roughly two thirds 

of the patients dropped out of Botox repeated treatments after one or two injections, mostly due 

to tolerability issues, and the 6-month OAB medication persistence rate is only 28% [8], [10]. In 

addition, OAB medication is associated with an increased risk of dementia [11].  
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 1.2 Neural Control of LUT and Neuromodulation 

Neuromodulation is a third-line therapy that modulates nerve activities by delivering 

electrical stimulation (or less commonly pharmaceutical agents) to a target location. Like 

Botox®, neuromodulation is used primarily in refractory OAB that cannot be properly managed 

by first- or second- line solutions. For both neurogenic and non-neurogenic OAB, 

neuromodulation works by electrically stimulating peripheral nerves to reduce the urge sensation 

at low bladder volume through mechanisms that are currently not well understood.  

Neuromodulation targets 

depend on the neural control of the 

lower urinary tract, which involves 

the brain, the spinal cord, and the 

peripheral ganglia [12]. While the 

bladder emptying phase involves 

voluntary cortical control, the 

storage phase is entirely 

maintained by the brain stem 

(pontine storage center), the spinal 

cord, and the peripheral ganglia/nerves (Figure 1).  OAB mainly affects the bladder storage 

function, making the spinal cord and peripheral nerves common therapeutic targets. While 

progressive neurological conditions such as Parkinson’s Disease and Alzheimer’s Disease [13] 

cause OAB in part due to the reduced inhibition activity of the pontine micturition center (PMC) 

in the brain stem, the PMC has not become a common target possibly due to its difficulty of 

access.  

 

Figure 1. Neural control of the lower urinary tract involves the pudendal, 
pelvic, and hypogastric nerves. (a) storage phase (b) emptying phase. [12] 
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Among peripheral nerves, the pudendal, pelvic, and hypogastric nerves directly innervate 

the lower urinary tract (Figure 1 [12]). During the storage phase, sympathetic hypogastric nerves 

maintain a relaxed bladder, and the somatic pudendal nerve maintains urethral sphincter closure, 

while the pelvic nerve generally stays quiescent.  Both the pudendal and the pelvic nerve branch 

out from sacral nerves, which are a popular stimulation target for managing OAB [14], [15].  

Stimulating the dorsal genital nerves, a branch of the pudendal nerve that carries sensory 

information from the penis and clitoris, has also shown positive patient outcomes [16]–[18], 

potentially due to activation of sensory pathways in the pudendal nerve that suppress the 

parasympathetic micturition reflex [18]. Stimulating the tibial nerve or saphenous nerve has also 

shown to improve bladder function. The mechanisms of these approaches are less well 

understood, and include possible pathway crosstalk and other interacting mechanisms through 

the sacral plexus [19], since both nerves either share spinal levels with pudendal and pelvic 

nerves. 

According to the AUA guidelines in 2019 [20], sacral neuromodulation (SNM, e.g. 

InterStim®, Medtronic,and Axonics®, Axonics Modulation Technologies) and percutaneous 

tibial nerve stimulation (PTNS, e.g., Urgent® PC) are the two neuromodulation treatments 

recommended for OAB. Other therapies such as targeting the spinal cord [21] epidural space and 

various other nerves (e.g. saphenous nerves, dorsal genital nerves) [18], [22], implantable tibial 

nerve stimulation (e,g., eCoin, BlueWind RENOVA iStimTM) [23], and intravaginal electrical 

stimulation [24], are still in investigative stages [17]. 

Both PTNS and SNM provide improved clinical efficacy and lower complication rates 

compared to Botox® [25]; however, both therapies are currently delivered in an open-loop 

fashion or on an intermittent schedule with very limited control given to the patient and no real-
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time adaptation of stim parameter to the state of the patients.  Below the pros and cons of current 

PTNS and SNM treatments are discussed. 

 

1.2.1 Percutaneous Tibial Nerve Stimulation (PTNS) 

Approved by the FDA in 2000 [26], PTNS is an in-office procedure for OAB that 

requires 12 weekly treatment sessions of 30 minutes and follow-up maintenance treatment 

sessions once per month or as needed. During each treatment, a needle electrode is placed near 

the posterior tibial nerve by the ankle while a surface return electrode is place on the foot on the 

same side distal to the needle electrode. A collection of clinical trials showed the therapeutic 

success, indicated by a ≥50% decrease in urge or urge urinary incontinence and a 25% 

reduction in frequency, was between 33% and 71% [27]. The adverse effects of PTNS are 

minimal, including bruising (0.9%), discomfort (1.8%), and slight bleeding [27]. While Peters et 

al. showed that 28% patients dropped out after 1 year [28], 42% withdrew after 3 years [29], the 

level of adherence is considerably improved compared to OAB medication and Botox® injection 

therapy. Patients who pursued maintenance treatment more often reported improvements in 

nocturia. Interestingly, transportation, distance, and time commitment did not play a significant 

role in the decision to pursue maintenance therapy [30]. Several companies and groups are 

working on implantable tibial nerve stimulators (e.g., eCoin, BlueWind RENOVA iStimTM ) to 

reduce the need for clinic visits [23], [31].  PTNS is suitable for patients who prefer not receiving 

medical implants and who can keep up with regular clinical visits; however, SNM provides 

improved clinical efficacy and more convenience to responding patients [25]. 

 

1.2.2 Sacral Neuromodulation  
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Sacral neuromodulation therapy applies constant electrical stimulation to the S3 (or the less 

commonly S4) nerve root of the patient unilaterally. There have been ~300,000 SNM implants 

since the therapy was first introduced over 20 years ago (Medtronic sales data on file.  Current as 

of May 2020). The stimulation is driven by an implantable pulse generator (IPG), which can 

either be powered by a primary cell or an external rechargeable coil (Figure 2). The device 

implantation is performed through a minimally invasive surgery, during which a tined 

quadripolar lead is inserted through the S3 foramen and placed near the S3 spinal nerve, with the 

guidance of intra-operative fluoroscopy. A pocket is created under the lower back skin on the 

same or opposite side of the lead implant to hold the IPG. Bipolar constant voltage or current 

stimulation is delivered through two of the four stimulation electrodes at 14Hz frequency, 210µs 

pulse width, and a comfortable amplitude. 

The overall therapeutic success rate of SNM ranges from 61% to 90% [32], which is 

comparable to PTNS success rate. The largest and longest clinical trial (InSite) to date shows that 

80% out of 340 patients 

who participated the study 

responded to trial 

stimulation and were 

implanted with the 

InterStim system [14]. The 

therapeutic success rate for 

OAB was 82% and 67% at 

12-month and 5-year follow-up (from a clinical study published as [14]). Adverse effects include 

an undesirable change in stimulation (22%) and implant site pain (15%). Similarly, the most 

 

Figure 2. Sacral neuromodulation implantation diagram. Modified from [139] 
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recent clinical study using the rechargeable Axonics system showed a 71% responding rate to 

SNM, with 98% of the participants still responding after a year [15]. While SNM serves as an 

alternative therapy after medication fails, it has the potential to replace medication, as one study 

shows that 82% of patients discontinued OAB medication after SNM treatment for over 22 

months [33].  Compared with Botox® and PTNS, SNM resulted in the highest reduction in 

voiding frequency and incontinence episodes [25]. While SNM therapy is more costly [34] 

compared to Botox® , it shows a lower rate of complications [35], and because SNM therapy is 

delivered through an implantable device, there are minimal compliance issues. A study showed 

that SNM improved symptoms in patients who did not respond to transcutaneous PTNS [36]. 

SNM is also shown to be effective in treating OAB across different ages [37]. 

 

1.3 Motivation for Closed-loop Neuromodulation 

While SNM is a standard treatment for refractory OAB symptoms compared to 

conventional treatments, the clinical efficacy is shown to attenuate over time [38], [39]. Blok et 

al. showed that SNM efficacy delivered by a rechargeable device stabilized three months into the 

 

Figure 3. Open-loop (top) and closed-loop (bottom) neuromodulation for overactive bladder. Open-loop stimulation is fixed 
regardless of the bladder state, while closed-loop stimulation changes based on the bladder state estimate, which, in this 

dissertation work, can be estimated from neurosensory signals. The controller determines the stimulation parameters based 
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treatment and could last up to at least one year [15] in the number of leaks, large leaks, voids, 

and urgency. However, the InSite study and Peters et al., with a longer study period, both 

reported relapse of symptoms in the course of  5- and 2- year treatment [38], [39]. Besides lead 

migration, nerve desensitization is the leading theory as to why SNM loses therapeutic efficacy 

over time, which has been shown in other somatosensory nerves and reflexes in response to 

electrical stimulation [40]–[42]. Electrical stimulation should be minimized as much as possible 

to preserve the health and sensitivity of the nerve target. It is possible that SNM can be reduced 

or even eliminated when it is not needed, such as during the initial bladder filling phase when the 

spinal reflex for storage is not active, to help deliver better and longer clinical outcomes. 

Therefore, a bladder sensory feedback-based, or closed-loop, stimulation paradigm might offer 

greater clinical benefit.  

Prior animal and human work have suggested the superiority of closed-loop stimulation 

in both improving effectiveness and reducing stimulation time over open-loop stimulation. More 

specifically, stimulating peripheral nerves during non-voiding contractions or the latter parts of a 

bladder fill cycle have been shown to increase bladder capacity significantly higher than or at the 

same level as compared to continuous stimulation [43], [44]. Potts et al. found that in rats, SNM 

only in the second half of the bladder fill cycle increased bladder capacity significantly, while 

stimulating the first half did not [43]. Wenzel et al. found that pudendal nerve stimulation at the 

beginning of bladder contractions increased bladder capacity twice as much as continuous 

stimulation [44]. Among several on-demand dorsal genital nerve clinical studies [16]–[18], one 

suggested that stimulation only after the urge to void, for as short as 30 seconds in duration, can 

lead to mean subjective improvements of 73% in the incontinence score [17]. While these studies 
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have shown promising preliminary results, the use of direct pressure measurement or patient self-

sensing as feedback is not ideal for clinical long-term use. 

The source of sensory feedback is critial for closed-loop neuromodulation. Bladder state 

signals can be recorded from the bladder and nerves that innervate the bladder. Current 

development efforts in implantable bladder sensors focus on wireless implementation using 

varied measuring mechanisms [45], none of which, however, has received FDA clearance yet. 

One major concern with such device is the risk for lower urinary tract infections [46]. Bladder 

state-related signals can also be recorded from electromyogram (EMG) signals from the external 

urethral sphincter (EUS), providing indirect indication of bladder activity. Horvath et al. showed 

that conditional dorsal genital nerve (DGN) stimulation with EUS EMG signals reduced the total 

stimulation time to 21% while maintaining the same bladder capacity compared to continuous 

stimulation in spinal cord injury patients who presented with neurogenic detrusor overactivity 

[47]. Similarly, Opisso et al. also showed that EUS EMG signals can be used to successfully 

identify bladder contractions in neurogenic detrusor overactivity patients [48]. Both studies 

where performed in a controlled environment, in which the patients were immobile. Translating 

this method to a chronic bladder application might be challenging due to suseptability to motion 

artifacts, despite the fact that EMG has been extensively used in closed-loop motor control 

applications [49]. But more importantly, EMG is a motor signal that only reflects the timings of 

contractions and not urgency. Finally, afferent LUT signals can be recorded from sacral, 

pudendal, and pelvic nerves that directly innervate the LUT (Figure 1). The pelvic nerve is 

challenging to identify and access in humans due to its highly convoluted network struture. In 

comparison, the pudendal nerve is much easier to access and has already been used as a 

stimulation target for managing chronic pelvic pain [50]. Whole sacral or pudendal nerve 
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electroneurogram (ENG) recordings are not ideal because both nerves not only encompass both 

sensory and motor components but also include sensory input from other pelvic floor organs 

[51].  

A promising and translatable 

recording target are dorsal root ganglia 

(DRG). Antomically, DRG are nerve 

structures in the peripheral nervous system 

that contain sensory cell bodies whose 

axons originate from peripheral organs or 

limbs.  DRG lay next to the lateral side of the spinal cord, existing as a part of the dorsal roots 

that merge with ventral roots at each spinal level into spinal nerves (Figure 4). At the sacral 

level, DRG contain sensory cell bodies whose axons extend through pudendal and pelvic nerves 

to innervate the lower urinary tract and other pelvic organs. Compared to peripheral nerves, DRG 

are a similar-diameter, if not larger, nerve structure that do not contain any motor neurons. 

Stimulating the DRG has also been shown to modulate bladder pressure with electrical current at 

low current amplitudes [52]. By using multi-channel microelectrode arrays in DRG, selectivity 

can be improved from using whole nerve ENG recording. Prior animal studies have successfully 

reconstructed bladder pressure from S1 and S2 cat DRG single unit activities and limb state from 

lumbar level cat DRG signals for closed-loop limb control with low error [53], [54]. However, 

with multi-channel data collected from DRG, an advanced algorithm is needed to accurately 

extract and process bladder state information for real-time closed-loop control.   

 

 

Figure 4. Connection between sacral level DRG, spinal cord, 
and the peripheral nerves, like at other DRG. 
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1.4 Signal Processing and Machine Learning for Bladder State decoding 

High frequency multi-channel neural signals collected from nerve structures such as the 

DRG do not reflect pressure directly and need to be transformed to feedback signals for closed-

loop bladder control using machine learning algorithms. Machine learning has many popular 

applications in neural engineering such as estimating motor intent, organ states, and inflamatory 

responses [55]–[57] from neural signals when direct measurment from the decoding target is 

inconvenient or unavailable. In machine learning applications, a classification (e.g. Naïve Bayes) 

or a regression (e.g. Linear, polynomial, logistic regression) model is established to estimate the 

target state through feature selection, training, validation, and testing steps. Possible features as 

algorithm input include firing rates from single unit activity (SUA), multi-unit activity (MUA), 

threshold crossings (TC), or frequency power spectrum from continuous recordings [58], [59]. 

Firing rates or frequency power of continuous recordings can be smoothed, normalized, or 

dimensionally reduced to obtain more refined input features.  

For closed-loop bladder control, bladder sensory neuronal single unit activities can be 

recorded from the sacral level DRG, and based on their relationship with pressure they can be 

generally classified into three catergories: slow tonic, phasic, and derivative [60] activities, each 

containing a unique set of features or information that reflects the state of the bladder. 

Anatomically, bladder afferent signals of various types are densely packed in DRG with no 

known functional organization; therefore, to reach sufficint signal specificity, random sampling 

with multiple recording channels is required not only to collect sufficient bladder afferent 

activities, but also to separate other sensory input that may interfere with decoding. As the first 

step of feature extration in machine learning, channel selection is crucial in determining how 

much of the recorded signals effectively contribute to the bladder state estimation. Secondly, the 
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time window for firing rate calculation should be chosen based on the what best reflects the 

bladder pressure. A window too small might not be able to pick up any activity even when the 

pressure is high, while a window too large could smooth over important pressure changes. Other 

steps such as firing rate normalization and firing rate smoothing can potentially improve the 

robustness of the algorihtm and improve an estimate [61]. 

Generally speaking, mechanosensitive bladder neurons within the pelvic nerve are 

quiescent when the bladder is empty and gradually increase in firing as the bladder fills and 

pressure rises [62]. The relationship between bladder pressure and the firing rate of these neurons 

is nonlinear as there is hysteresis [63]. A static linear regression model that does not take into 

account this dynamic relationship between bladder pressure and neural activity can be 

susceptible to artifacts, and has yielded poor results previously [53]. A basic Kalman filter, 

though still a linear based model, can better handle noisy input signals by incorporating noise 

filtering and a dynamic transfer function [64]. A more complex model that takes into account the 

non-linear relationship between bladder pressure and firing rate may yield a better fit than linear 

methods. One approach is to use a non-linear auto-regressive moving average (NARMA) model 

identified through a recursive artificial neural network structure. Accurate closed-loop sensing 

depends on both appropriate algorithm choice and feature selection method to best characterize 

pressure feedback, which this dissertation work has sought to address.  

1.5 Dissertation Organization 

The overarching goal of this dissertation is to explore the feasibility of using DRG 

sensory feedback to improve current neuromodulation treatment for overactive bladder 

symptoms. This work is based on a pre-clinical cat model, with the potential to be translated to 

humans due to the high similarity in neural control of the bladder between cats and humans [65]. 
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This dissertation begins with a careful examination of neural signal features from cat sacral level 

DRG with some of the machine learning algorithms that are common in brain computer interface 

applications. The optimized features and algorithms were then tested in real-time to validate the 

possibility for closed-loop application, followed by closed-loop pudendal nerve and sacral nerve 

stimulation with DRG feedback.  

Chapter II explores feature selection methods (firing rate window, smoothing methods, 

firing rate normalization, etc.) and three machine learning algorithms (linear regression, Kalman 

filter, and a recurrent neural network) for bladder pressure decoding from anesthetized cat DRG 

signals. (My contribution is this work does not include setting up the neural network model.) 

More specifically, a broad spectrum of feature selection parameters was examined, including 

varied firing rate calculation interval, signal smoothing methods, channel selection criteria, and 

firing rate normalization. This study concluded that while the tested recurrent neural network 

was effective in minimizing decoding errors, a Kalman filter yielded the highest correlation 

coefficient, which more effectively reflects trends in bladder pressure changes.  

In Chapter III, the optimized Kalman filter algorithm from Chapter II was implemented 

in real-time in anesthetized experiments, yielding satisfactory decoding performance for both 

normal healthy and simulated OAB conditions. Simulated OAB condition resulted in detrusor 

overactivity and reduced bladder capacity as two of the main OAB symptoms. The simulated 

OAB condition was also associated with an improved decoding performance, indicating a 

potential increase in afferent neuron sensitivity. More significantly, closed-loop stimulation with 

real-time decoding was demonstrated in pilot experimental trials and showed an increased 

bladder capacity compared to no stimulation.  
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In Chapter IV, the bladder state decoding algorithm as described in Chapter II and III was 

implemented as part of closed-loop SNM. In-vivo testing was performed in anesthetized cats. 

The study showed that closed-loop stimulation led to a significant increase in normalized bladder 

capacity compared to the control group (no stimulation), with an over half reduction in 

stimulation time as compared to continuous stimulation. Continuous stimulation led to a similar 

increase in bladder capacity while applying significantly more stimulation than closed-loop 

trials. This study demonstrated the potential for closed-loop stimulation to deliver at least the 

same level of therapy as compared to standard continuous SNM while applying stimulation for 

less than half of the time.  

Chapter V serves as a steppingstone from anesthetized to awake and behaving 

experiments. In a total of four experiments, a protocol was established to record urodynamic 

parameters (e.g. bladder pressure, capacities, void volumes) and animal movements when the 

animals behaved freely in a contained area. In experiments 3 and 4, pudendal stimulation (5 or 

33 Hz; 1.5 or 2 x motor threshold) was applied to explore how stimulation affected urodynamic 

parameters. 33 and 5 Hz were found to be effective in increasing voiding efficiency and bladder 

capacity, respectively. Animals were found to tolerate up to 2 x motor threshold amplitude when 

stimulation was ramped up gradually. In addition, the logistical challenges of implementing 

chronic implants and performing awake sessions were identified and addressed, including 

bladder irritation from suprapubic catheter implantation and low tolerance for some test 

conditions. 

Across the chapters, this work demonstrates from a signal processing perspective that 

sacral DRG are a promising target for closed-loop neuromodulation of bladder function and 

suggests a possible direction to improve the current SNM therapy for OAB. It set a strong 
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foundation for future research that implements more advanced awake, behaving, and 

pathological models prior to clinical translation. Moving forward, the successful implementation 

of closed-loop SNM in these models relies on longitudinal use of more advanced and robust 

signal processing and machine learning techniques in addition to electrodes that will be 

optimized for interfacing with the DRG in a less invasive manner.  
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Chapter 2 Evaluation of Decoding Algorithms for Estimating Bladder Pressure from 
Dorsal Root Ganglia Neural Recordings 

 
 
 
 

2.1 Abstract 

A closed-loop device for bladder control may offer greater clinical benefit compared to 

current open-loop stimulation devices. Previous studies have demonstrated the feasibility of 

using single-unit recordings from sacral-level dorsal root ganglia (DRG) for decoding bladder 

pressure. Automatic online sorting, to differentiate single units, can be computationally heavy 

and unreliable, in contrast to simple multi-unit thresholded activity. In this study, the feasibility 

of using DRG multi-unit recordings to decode bladder pressure was examined. A broad range of 

feature selection methods and three algorithms (multivariate linear regression, basic Kalman 

filter, and a nonlinear autoregressive moving average model) were used to create training models 

and provide validation fits to bladder pressure for data collected in seven anesthetized feline 

experiments. A non-linear autoregressive moving average (NARMA) model with regularization 

provided the most accurate bladder pressure estimate, based on normalized root-mean-squared 

error, NRMSE, (17 ± 7%). A basic Kalman filter yielded the highest similarity to the bladder 

pressure with an average correlation coefficient, CC, of 0.81 ± 0.13. The best algorithm set 

(based on NRMSE) was further evaluated on data obtained from a chronic feline experiment. 

Testing results yielded a NRMSE and CC of 10.7% and 0.61, respectively from a model that was 

trained on data recorded 2 weeks prior. From offline analysis, implementation of NARMA in a 

closed-loop scheme for detecting bladder contractions would provide a robust control signal. 
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Ultimate integration of closed-loop algorithms in bladder neuroprostheses will require 

evaluations of parameter and signal stability over time. 

2.2 Introduction 

Loss of bladder control is a highly prevalent condition that can have severe impact on quality of 

life [66]. Typical nerve stimulation approaches to restore function do not utilize direct feedback 

on the bladder state. Conditional stimulation may provide an advantage over continuous 

stimulation by minimizing habituation of neural pathways [41], [42] and requiring less battery 

power. A system that can continuously monitor bladder state and deliver stimulation only as 

needed may be a tremendous benefit to patients.  

A major challenge for developing a robust closed-loop system for bladder control is in 

determining an effective way to continuously monitor bladder state. Sensors directly implanted 

in the bladder muscle have been used to measure bladder pressure or bladder muscle activity, but 

there can be issues with device migration, tissue damage, and obtaining large reliable signals 

[67], [68]. A few studies have demonstrated feasibility of closed-loop control by detecting key 

pressure events, but their methods currently rely on directly measuring bladder pressure using 

external sensors and catheters [69], [70], which can cause urinary tract infections. Tapping into 

the body’s natural sensors (mechanoreceptors in the bladder wall) via nerves that encode this 

information may provide increased accuracy and reliability over artificial sensors [45]. 

Researchers have used neural activity to estimate bladder pressure, bladder volume, or onset of 

bladder contractions [44], [51], [53], [71]–[73]. These approaches target the pelvic nerve [73], 

pudendal nerve [44], or spinal nerve [51], [71], where access can be challenging or may require a 

separate location to stimulate for bladder control. Our approach interfaces with the sacral dorsal 

root ganglia (DRG) which contain the cell bodies for afferent pelvic and pudendal fibers that 
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innervate the lower urinary tract entering the spinal cord. Here we can monitor information about 

the bladder state via pelvic nerve activity [74], [75] and also control bladder function by 

stimulating pudendal nerve inputs through reflex spinal pathways [52], [75].  

Mechanosensitive bladder neurons within the pelvic nerve are quiescent when the bladder 

is empty and gradually increase in firing as the bladder fills and pressure rises [62]. The 

relationship between bladder pressure and the firing rate of these neurons is nonlinear as there is 

hysteresis [63]. A static linear regression model does not take into account this dynamic 

relationship between bladder pressure and neural activity, can be susceptible to artifacts, and has 

yielded poor results previously [53]. A basic Kalman filter, though still a linear-based model, can 

better handle noisy input signals by incorporating noise filtering and a dynamic transfer function 

[64]. A more complex model that considers the non-linear relationship between bladder pressure 

and firing rate may yield a better fit than linear methods. One approach is to use a non-linear 

auto-regressive moving average (NARMA) model identified through a recursive artificial neural 

network structure.  

In addition to the specific algorithm itself, other input feature selection factors can 

influence the performance of a decoding model. One important factor is how the input neural 

signal channels are selected, whether by using all recorded signals or only those channels with 

specific correlations to bladder activity. Another factor is the approach used to sum the 

occurrence of neural activity. For microelectrode recordings that yield action potentials, the 

timing of these events are incorporated into a firing rate estimation, which smooths the time 

interval occurrence. The sampling period and smoothing duration can affect the firing rate 

calculation. 
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 The goal of this study was to evaluate three different algorithms and their parameters to 

determine the tradeoffs between accuracy of fit and processing load for estimating bladder 

pressure from DRG signals in anesthetized cats. The models evaluated were simple linear 

regression, a Kalman filter, and NARMA. We hypothesized that the NARMA model would yield 

the best bladder pressure estimation and the Kalman filter would provide the second best fit. Our 

findings inform progress in development of an interface for closed-loop bladder control and 

provide insights for parameter selection in decoding applications for other physiological signals. 

 

2.3 Materials and Methods  

2.3.1 Animals  

All procedures were approved by the University of Michigan Institutional Animal Care and Use 

Committee, in accordance with the National Institute of Health’s guidelines for the care and use 

of laboratory animals. Eight spinal-intact adult male, domestic, short-hair cats (age: 0.9–1.4 

years old, 4.2–6.3 kg, Liberty Research, Inc., Waverly, NY) were used in this study. Seven of the 

cats were acute, non-survival experiments and one cat was a chronic experiment. Cats were used 

due to their high relevance to human physiology and their long history of study in bladder 

neurophysiology [65]. Prior to use, animals were free-range housed with 0–3 other cats in a 38.4 

m2 room with controlled temperature (19–21 C), relative humidity (35–60%), food and water 

available ad lib, and a 12 h light/dark cycle. Animals received enrichment via daily staff 

interaction and toys.  
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2.3.2 Surgical Procedure  

As previously described [63],animals were anesthetized with a mixture of ketamine (6.6 mg/kg)–

butorphanol (0.66 mg/kg)-dexmedetomidine (0.033 mg/ kg) administered intramuscularly (IM), 

intubated, and then maintained on isoflurane anesthesia (0.5–4%) during surgical procedures. 

Respiratory rate, heart rate, end-tidal CO2, O2 perfusion, temperature, and intra-arterial blood 

pressure were monitored continuously using a Surgivet vitals monitor (Smiths Medical, Dublin, 

OH). Fluids (1:1 ratio of lactated Ringers solution and 5% dextrose) were infused intravenously 

via the cephalic vein at a rate of 5–10 mL kg-1 h-1 (increased up to 30 mL kg-1 h-1 during surgery 

as needed). One or two catheters were inserted into the bladder at the bladder dome via a 

laparotomy and/or via the urethra for intravesical fluid infusion and pressure monitoring. If the 

urethra catheter was used during data collection, its size (3.5 Fr) did not prevent urine leakage at 

a full bladder.  

A midline dorsal incision was made to expose the L7 to S3 vertebrae and a laminectomy 

was performed to access the S1 and S2 sacral DRG [63], [74]. Penetrating iridium oxide 

microelectrode arrays (Figure 5a) with shank length of 0.5 or 1.0 mm and inter-shank spacing of 

0.4 mm (Blackrock Microsystems, Salt Lake City, UT) were implanted into DRG (Figure 5b) 

using a pneumatic inserter (Blackrock Microsystems). Arrays of various configurations (3 x 8 up 

to 5 x 10) were inserted unilaterally or bilaterally, as detailed in Table 1. Array reference wires 

were placed near the spinal cord and ground wires were attached to a stainless-steel needle 

inserted in the skin (lateral and caudal to the laminectomy incision site). At the conclusion of 

surgical procedures, prior to experimental testing, animals were transitioned to intravenous 

alpha-chloralose (C0128, Sigma Aldrich; 70 mg/kg induction; 20 mg/kg maintenance). 

Analgesia was augmented with 0.01 mg/ kg buprenorphine every 8–12 h intravenously. 
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2.3.3 Experimental Setup and Data Collection  

DRG neural data was sampled at 30 kHz and lowpass filtered (7.5 kHz cutoff frequency) using a 

Grapevine neural interface processer and Trellis recording system (Ripple, Salt Lake City, UT). 

Bladder pressure was monitored with a pressure transducer (DPT-100, Utah Medical Products, 

Midvale, UT) and transducer amplifier (TBM4M, World Precision Instruments, Sarasota, FL). 

The bladder pressure signal was sampled by the Grapevine system at 1 kHz and all data was 

stored on a desktop computer. During testing saline was infused into the bladder with a syringe 

pump (NE-1000, New Era Pump Systems, Inc., Farmingdale, NY or AS50 Infusion Pump, 

Baxter International, Deerfield, IL). Figure 5c shows the experimental set-up.  

Bladder pressure and neural recordings were collected during two bladder infusions at 2 

mL/min. The bladder was verified as empty by withdrawing from a catheter prior to each 

infusion. Fluid infusion was stopped when leakage occurred. After the first infusion, the bladder 

was emptied and a rest period of at least 30 min occurred before a second bladder infusion. In 

analyses described below, the first infusion was used to train a given algorithm and the second 

infusion was used to validate that algorithm. We considered a microelectrode pair on the same 

side (LS1, LS2 or RS1, RS2) to constitute a set. In total, 12 data pairs of training and validation 

sets were collected from 12 unique S1, S2 DRG location pairs from 7 non-survival cat 

experiments. If an experiment had bilateral implant sets then each side was separately analyzed 

as a distinct data set with unique neural signals. In Experiments 2 and 4, the microelectrode array 

pairs were removed and physically re-inserted in the same DRGs before two new bladder 

infusions were performed. We considered this an opportunity to collect a new, unique data set 

from the new electrode implant locations with a different set of neural recordings (Table 1). 
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After completion of all testing, animals were euthanized with a 2–3 mL intravenous or 

intracardiac dose of sodium pentobarbital (390 mg/mL) while under deep isoflurane anesthesia.  

 

2.3.4 Algorithm Development and Analysis  

Figure 6 shows the overall algorithm flowchart with the different feature selection methods used. 

Individual components are described in further detail below. All data processing, model 

development, and analyses (unless otherwise specified) were performed using MATLAB 

(Mathworks, Natick, MA). Acute experiment trials were used to train and validate algorithms 

and system parameters, while the chronic experiment trials were used to train and test the 

algorithm and model parameters.  

 

2.3.5 Multi-Unit Thresholding  

A consistent threshold for identifying neural activity was used across experiments. For each 

neural channel, the signal was filtered using a 250 Hz high-pass digital filter. Automatic dual 

thresholds were set at ± 4.5 x the standard deviation of the estimated noise [76]. Noise was 

considered any signal within ± 2.7 x the full signal standard deviation. The thresholding was 

recalculated periodically to accommodate change of noise level over time. This filtering and 

thresholding was done offline. In this study, we did not isolate single unit activity, but instead 

used the unsorted threshold crossings (i.e., multiunit activity) as inputs to our bladder state 

decode models. As has been demonstrated in brain-computer interface applications [58] and 

DRG recordings for closed-loop control of electrical stimulation to control limb state [54], 

sorting threshold crossings into individual units can provide a marginal improvement in 

accuracy, for low channel counts, but requires additional computational load.  
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2.3.6 Neural Signal Firing Rate  

The bladder pressure and thresholded multi-unit activity from each bladder fill sequence were 

then further processed offline and used to evaluate the performance of different models. Bladder 

pressure was low-pass filtered at 4 Hz and down-sampled to align with the time intervals used to 

calculate the firing rate (see below). Three approaches were used to calculate the firing rate for 

each microelectrode channel, at intervals of 0.1, 0.5, 1, and 2 s, using causal methods. In 

SmoothBin the number of spikes were counted in interval bin widths and the counts were 

smoothed over prior time points [54]. In TriangleC the instantaneous firing rates were convolved 

with a triangle kernel of width twice the firing rate interval [77]. In Boxcar all spikes within an 

interval were counted and divided by the bin width to obtain the firing rate. We also considered 

the use of a firing rate normalization (Eq. 1), to decrease the variance in contributions across 

channels and to potentially increase the robustness of each algorithm [78]. When applied, 

normalization takes the current firing rate (f) and divides by the sum of the firing rate range in 

the first 30 s of the trial (r) and a scalar term (v) of 20 spikes/s. 

𝑧 ൌ  
𝑓

𝑟 ൅ 𝑣
      ሺ1ሻ 
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Table 1.  Microelectrode array configurations for each experiment and data set. 

 Electrode layout  

Experiment Data Set 1st DRG 2nd DRG Shank Length 
1 a1 LS1: 5x10 LS2: 4x10 1.0 mm 
2 a2 LS1: 5x10 LS2: 4x10 1.0 mm 
2 a3 RS1: 5x10 RS2: 4x10 0.5 mm 
2 a4 RS1: 5x10 RS2: 4x10 0.5 mm 
3 a5 LS1: 5x10 LS2: 4x10 1.0 mm 
3 a6 RS1: 5x10 RS2: 4x10 0.5 mm 
4 a7 LS1: 5x10 LS2: 4x10 0.5 mm 
4 a8 LS1: 5x10 LS2: 4x10 0.5 mm 
5 a9 LS1: 5x10 LS2: 3x8 0.5 mm 
5 a10 RS1: 4x10 RS2: 3x8 0.5 mm 
6 a11 RS1: 5x10 RS2: 4x10 0.5 mm 
7 a12 RS1: 4x8 RS2: 4x8 1.0 mm 

8 (chronic) c1 LS1: 4x8 LS2: 4x8 1.0 mm 

 

2.3.7 Input Channel Selection  

DRG channels used in an algorithm were selected based on three general approaches. First, 

channels were selected based on the correlation coefficient between their firing rate and the 

bladder pressure in the training trial. Channel sets were identified for correlations exceeding each 

of 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. The second approach involved using the least absolute 

 

Figure 5. Experimental setup. (a) Blackrock iridium-oxide microelectrode arrays with parylene-C insulation. Shank lengths were 
either 0.5 mm or 1.0 mm with 0.4 mm inter-shank spacing. (b) Arrays implanted in left S1 and S2 sacral DRG in Experiment 8 
(chronic). (c) Illustration of the testing setup (modified from [52]). Neural recordings were acquired with a Ripple Grapevine 

system and Trellis software via arrays implanted in S1 and S2 DRG. Trials consisted of recording neural data and bladder 
pressure (monitored with a pressure transducer and amplifier) during saline infusions at a controlled rate either via a supra-pubic 

or an intraurethral bladder catheter. Pressure data was also recorded with the Grapevine system after amplification. 
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shrinkage and selection operator (or LASSO) method [72], which is a linear regression method 

that minimizes the mean-squared error (MSE) similar to the least-squares method but with an 

upper bound on the sum of the absolute coefficients (Eq. 2). MSE is minimized for a selected 

regularization term, λ. This results in some coefficients set to zero and shrinks others towards 

zero, effectively choosing a model that uses a subset of the input observations. f୩ is the training 

firing rate of length N2 (number of channels) at time bin k, and pk is the training bladder 

pressure. β଴, β; and β୩ଶ are the coefficients. A two-fold cross validation was performed to 

determine k and coefficients that minimized MSE. These values were selected to be used in 

validation (acute) and testing (chronic) sessions. Thus only a subset of DRG channels were used 

in LASSO selection. The third channel selection method used is all channels. 

 

 

 

𝑀𝑆𝐸 ൌ
1

2N
෍ሺ𝑝୩ െ β଴ െ βf୩ሻଶ ൅

୒

୩ୀଵ

λ ෍ |β୩ଶ|ሻ

୒ଶ

୩ଶୀଵ

      ሺ2ሻ 

 

2.3.8 Linear Regression Algorithm  

First, a simple static linear regression (LinReg) was used to determine whether a linear 

relationship was adequate for modeling the relationship between DRG neural signals and the 

 

Figure 6. Flowchart of bladder pressure decoding algorithms and feature selection methods used. 
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bladder pressure. During training, a linear filter 𝐵෠  was obtained (Eq. 3) using the bladder 

pressure 𝑃௧௥௔௜௡ and firing rates Ftrain of the selected channels in the training trial. During 

validation (acute) or testing (chronic), 𝐵෠  was applied to the new firing rates 𝐹௩௔௟,௧௘௦௧ of the same 

channels to estimate the bladder pressure 𝑃෠ (Eq. 4). 

 

  (3) 

     (4) 

 

2.3.9 Kalman Filter Algorithm  

In order to reduce the effect of noise from the neural inputs, a basic Kalman filter (Kalman) was 

evaluated. The Kalman filter is a recursive algorithm that combines a physical trajectory model 

and a neural signal-based observational model using a weighted average method to nominally 

achieve a better estimation. Below we provide the details regarding development of this model. 

To create a Kalman filter model, the data from the training infusion trial was used to calculate 

the linear filter and noise term (A and W) for the trajectory model and observational model (C 

and Q). Linear filter A was obtained by regressing the previous bladder state matrix 𝑃௞ିଵ against 

the current bladder state matrix 𝑃௞ (Eq. 5). Each state matrix includes bladder pressure, bladder 

pressure rate (dP/dk) and a constant term 1 for a series of time points (k = 0, 1, 2,…, N, N = last 

time interval bin number). This matrix was initialized at [0, 0, 1] at the beginning of each trial. 

The corresponding noise term (W) was then calculated (Eq. 6). 

 

𝐴 ൌ  𝑃௧௥௔௜௡|௞ 𝑃௧௥௔௜௡|௞ିଵ
் ሺ⁄ 𝑃௧௥௔௜௡|௞ିଵ𝑃௧௥௔௜௡|௞ିଵ

் ሻ               (5) 

𝐵෠ ൌ 𝑃௧௥௔௜௡𝐹௧௥௔௜௡
் ሺ𝑃௧௥௔௜௡

் 𝐹௧௥௔௜௡ሻିଵ 

𝑃෠ ൌ 𝐵෠𝐹௩௔௟,௧௘௦௧ 
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𝑊 ൌ
൫௉೟ೝೌ೔೙|ೖି஺௉೟ೝೌ೔೙|ೖషభ൯൫௉೟ೝೌ೔೙|ೖି஺௉೟ೝೌ೔೙|ೖషభ൯

೅

ே ௧௜௠௘ ௣௧௦ ିଵ  
                  (6) 

 

Next, the linear filter C for the observational model was determined by regressing the 

pressure state matrix against the firing rate (Eq. 7). The corresponding noise term for the 

observational model was also calculated (Eq. 8). 

 

𝐶 ൌ 𝐹௧௥௔௜௡ 𝑃௧௥௔௜௡
் ሺ⁄ 𝑃௧௥௔௜௡𝑃௧௥௔௜௡

் ሻ        (7) 

𝑄 ൌ
ሺி೟ೝೌ೔೙ି஼௉೟ೝೌ೔೙ሻሺி೟ೝೌ೔೙ି஼௉೟ೝೌ೔೙ሻ೅

ே ௧௜௠௘ ௣௧௦
                      (8) 

 

During testing, after firing rates were calculated, a trajectory model estimation 𝑝̂௞|௞ିଵ 

was made (Eq. 9). The error covariance matrix 𝐸௞|௞ିଵ (Eq. 10) was calculated to determine how 

accurate this estimation was. This matrix was used to calculate the Kalman gain 𝐾௞ (Eq. 11), 

which was used to obtain a new weighted average estimation 𝑝̂௞ that incorporates the firing rate 

input (Eq. 12). Then a new error covariance matrix 𝐸௞ was calculated for the new estimation (Eq. 

13) for the next time interval period. 

 

𝑝̂௞|௞ିଵ ൌ 𝐴𝑝̂௞ିଵ     (9) 

𝐸௞|௞ିଵ ൌ 𝐴𝐸௞ିଵ𝐴் ൅𝑊     (10) 

𝐾௞ ൌ  𝐸௞|௞ିଵ 𝐶் ሺ⁄ 𝐶𝐸௞|௞ିଵ𝐶் ൅ 𝑄൯    (11) 

𝑝̂௞ ൌ 𝑝̂௞|௞ିଵ ൅ 𝐾௞ሺ𝑓௩௔௟,௧௘௦௧|௞ െ 𝐶𝑝̂௞|௞ିଵ൯  (12) 

𝐸௞ ൌ ሺ𝐼 െ 𝐾௞𝐶ሻ𝐸௞|௞ିଵ    (13) 
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2.3.10 NARMA Algorithm  

A more complex NARMA artificial neural network model that took into consideration the 

nonlinear dynamics between bladder pressure and DRG neural activity was also evaluated. 

Inputs to the model were firing rates from selected channels and the previous estimated bladder 

pressure. Two artificial neurons in a hidden layer applied a nonlinear gain (hyperbolic tangent 

sigmoid function) and a bias to each of the inputs, with outputs summed together to yield a single 

intermediate output. This intermediate output was then processed through a linear function to 

give an estimate output (Figure 7). A general form of the model is given in Eq. 14. 

 

𝑝̂௞ ൌ 𝛼ଵ𝑝̂௞ିଵ ൅ 𝛽଴𝑓௞ ൅ 𝛽ଵ𝑓௞ିଵ                              (14) 

 

In Eq. 14, 𝑝̂௞ is the output estimated pressure, f is the input firing rate, and k and k-1 

indicate values at the current and prior time points. The model coefficients (𝛼ଵ, 𝛽଴, 𝛽ଵ) were 

identified through training in the NARMA network. The neural network toolbox in MATLAB 

was used to create, identify, and validate the models. Each model utilized a Bayesian 

regularization method to improve generalization and minimize overfitting. Training was stopped 

when one of two following criteria were met: the algorithm’s performance reached a 

performance goal of NRMSE < 20% of the recorded bladder pressure or the errors on the 

validation subset increased consecutively for several epochs. 

 

2.3.11 Performance Measures 

The normalized root-mean square error (NRMSE, Eq. 15) and Pearson correlation coefficient 

(CC, Eq. 16) were calculated to determine how well each model fit the training, validation 
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(acute) and testing (chronic) data sets. We considered an NRMSE under 20% and a CC above 

0.8 as our target performance metrics. 

 

𝑁𝑅𝑀𝑆𝐸 ൌ  ଵ

௣೘ೌೣି௣೘೔೙
ට∑ ሺ௣ොೖି௣ೖሻమ

ಿ
ೖసభ

ே
     (15) 

 (16) 

 

For (15), pො୩ and p୩ are the estimated and measured bladder pressure, (p୫ୟ୶ െ p୫୧୬), is 

the difference between maximum and minimum measured pressure for a trial, and N is the total 

number of time bins. For (16), P෡ and P are the estimated and measured pressure stored in vectors, 

and E is the expected value. Both performance measures are used here as prior decoding studies 

for bladder and non-bladder applications have relied on either CC [53], [58], [71] or RMSE [54], 

[73] to evaluate their results.  

 

2.3.12 Statistical Analysis  

In total, three algorithms with 192 possible feature selection method combinations for each 

algorithm were evaluated in this study (4 firing rate intervals, 3 firing rate smoothing methods, 8 

channel selection methods, and on or off of the firing rate normalization). This resulted in 576 

total possible combinations. First, we used a mean-value approach to identify the best parameter 

combinations that yielded the lowest NRMSE and highest CC for each of the three algorithms. 

Through this approach, parameter sets were identified that had the best mean performance metric 

across the twelve acute testing data sets, for each of the six total combinations of three 

algorithms and two performance measures. In a separate analysis, we plotted data residuals on a 

𝐶𝐶 ൌ  
𝐸ൣ𝑃,𝑃෠൧ െ 𝐸ሾ𝑃 ሿ𝐸ൣ𝑃෠൧

ඥ𝐸ሾ𝑃ଶ ሿ െ ሾ𝐸ሾ𝑃ሿሿଶට𝐸ൣ𝑃෠ଶ ൧ െ ሾ𝐸ൣ𝑃෠൧ሿଶ
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normal probability plot, which indicated that the data distribution is not normal. Thus, a rank-

based non-parametric Kruskal– Wallis test was used to identify parameters that contribute 

significantly to the estimation accuracy. Any significant parameter was then tested with a post 

hoc multiple comparison Kruskal Dunn Test, with a Bonferroni correction on the p-values. All 

statistical analyses were performed in R with the Pairwise Multiple Comparison of Mean Ranks 

(PMCMR) package. A significance level of 0.05 was used. In the PMCMR package, the 

Bonferroni correction is performed by multiplying p-values by the appropriate number of 

comparisons being performed in a given test. These adjusted p-values are reported in the Results 

below, allowing for a direct comparison to the significance level.  

In this manuscript, we present the impact of single variables on each algorithm-

performance metric combination. Higher level interactions among variable combinations were 

also examined, with the outcomes reported in our data repository on the Open Science 

Framework (https://doi.org/10.17605/OSF.IO/ZFYCH.). 

 

 

Figure 7. Structure of the NARMA model. The firing rates, f(k), at the current time point, k, and the previous time point, k-1, 
from DRG channels are inputs into the model. The previous estimated bladder pressure, 𝑝̂(k-1), is also an input to the model. 

The model outputs the current estimated pressure, 𝑝̂௞|௞ିଵ. 
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2.3.13 Chronic Experiment  

The primary analyses of this study were performed using data collected in acute, non-survival 

experiments as detailed above. The optimal algorithm and parameters were selected through 

training and validation sets from these experiments (NARMA for best NRMSE). To assess the 

potential utility of this approach, we implemented the best algorithm from acute experiments on 

data collected from one animal with long term, chronic DRG implants (two 4 x 8 Blackrock 

arrays in left S1 and S2 DRG). Surgical implantation and data collection were as described 

previously [75]. Neural recordings and bladder pressure from a bladder fill under 

dexmedetomidine sedation (0.03 mg/kg IM) were used to create a pressure estimate algorithm 

that was tested on data collected under similar circumstances 14 days later. Performance 

measures were calculated as described above.  

 

2.4 Results 

2.4.1 Bladder Neural Signals  

Twelve data sets (a1–a12) were collected from seven acute experiments (Table 1). Raw and 

analyzed data and MATLAB scripts used in data analysis can be found online 

(https://doi.org/10.17605/OSF.IO/ZFYCH.). There were 4–12 bladder-correlated channels with a 

correlation coefficient greater than 0.2 in each data set. There was some variability in the number 

of bladder-correlated channels depending on the firing rate calculation parameters used (Table 

2). Most channels identified in the training trials (correlation coefficient > 0.2) were still 

correlated with bladder pressure in the validation trial (53–68%, depending on feature selection 

method). However, in some cases there were changes in the number and location of some 

identified channels (Figure 8).  
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2.4.2 Channel Selection  

Our results showed that as the correlation coefficient threshold for channel selection increased, 

the fit increased (Figure 9). However, the number of trials that have at least one channel with a 

correlation coefficient greater than or equal to the CC threshold decreases (Table 3). This 

suggests that a constant threshold for all trials may be impractical, since not all trials have highly 

correlated channels. Although simply choosing the lowest correlation coefficient threshold 

would consistently provide the most usable number of channels, a higher correlation coefficient 

Table 2. The selected number of bladder channels depends on the firing rate interval and smoothing method. Values 
represent mean (± standard deviation) number of channels per data set (within a1-a12) with CC > 0.20 

Firing Rate Smoothing Firing Rate Interval (s)  
0.1 0.5 1 2 

Boxcar 4 ± 3 7 ± 5 7 ± 5 8 ± 5 
TriangleC 5 ± 3 7 ± 5 8 ± 5 9 ± 6 
SmoothBin 6 ± 4 7 ± 5 6 ± 5 12 ± 10 

 

 

Figure 8. Correlation coefficient maps between the measured bladder pressure and firing rate of thresholded DRG neural 
activity for each electrode channel in S1 and S2 in data set a12 for training (top) and validation (bottom). The firing rates 

were calculated with Boxcar smoothing at the specified intervals.  In this example, the firing rate interval and the time 
between trials (training to validation) can affect the number of channels with correlation coefficients of interest. Channels 

with correlation coefficients above 0.2 are indicated by a black square.  
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threshold yielded better pressure estimates (Figure 9). Thus, we utilized a variable channel-

selection threshold across data sets, selecting the highest threshold (among 0.2–0.7) that yielded 

a non-zero number of bladder channels.  

The LASSO channel selection method always yielded channels for model use (27 ± 13, 

mean ± standard deviation) and on average selected at least 3 times more channels than the 

correlation coefficient channel selection method. This is most likely due to the differences in 

approach. With LASSO, different combinations of coefficients are evaluated with the set of 

coefficients that gives the lowest MSE selected. This in turn determines what channels to include 

in the decoding algorithms. Using the LASSO approach, the selected channels had a wide range 

of correlation coefficients compared to the approach of selecting channels that are above a 

certain correlation coefficient threshold.  

 

 

 

Figure 9. Boxplots of CC and NRMSE testing data sets performance measures for different channel selection 
thresholds used for model training.  Shaded regions in each figure represent our target performance levels. 
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2.4.3 Algorithm Optimization  

A mean-value based approach was used to select the best parameter combinations for each of the 

three algorithms (Table 4). Across the 12 acute data sets with the best parameter combinations, 

NARMA provided the lowest mean NRMSE and a Kalman Filter provided the highest mean CC 

with smallest CC standard deviation (Table 4; Figure 10). For these parameter combinations, the 

computational time to make the next bladder pressure estimation during validation are also given 

in Table 4. Training of each algorithm took no longer than a few seconds (LinReg) to a few 

minutes (NARMA). Bladder pressure estimations for one dataset using the three algorithms with 

their NRMSE-best model parameters (selected from Table 4) are shown in Figure 11.  

 

 

 

Table 3. As the correlation coefficient threshold for channel selection increases, the number of data sets that have at least 
one channel that meets this criteria decreases (“# Sets”). 

Channel CC 
Threshold 

Firing Rate Interval (s) 
0.1 0.5 1 2 

# Chs. # Sets # Chs. # Sets # Chs. # Sets # Chs. # Sets 
0.2 4 ± 3 12 7 ± 5 12 7 ± 5 12 8 ± 5 12 
0.3 2 ± 2 10 5 ± 4 12 6 ± 4 12 7 ± 6 12 
0.4 2 ± 2 9 3 ± 3 10 4 ± 3 12 5 ± 4 12 
0.5 1 ± 1 6 3 ± 2 10 3 ± 3 10 4 ± 4 11 
0.6 0 ± 1 3 2 ± 2 10 3 ± 2 10 3 ± 3 10 
0.7 0 ± 0 1 1 ± 1  4 1 ± 2  7 2 ± 2 10 

For each CC threshold and firing rate interval, the mean (± standard deviation) number of channels that meet the criteria 
across all twelve sets is also given (“# Chs.”). Boxcar smoothing method used. 

Table 4. Optimal feature combinations for each algorithm that provide the best NRMSE (top) or CC (bottom). 

Algorithm Interval (s) FR Method FR Norm NRMSE CC Channel Selection 
NARMA 0.5 Boxcar 1 17 ± 7% 0.69 ± 0.35 Highcc 
LinReg 0.5 Boxcar 1 22 ± 6% 0.51 ± 0.30 Highcc 
Kalman 2 Boxcar 1 25 ± 15% 0.67 ± 0.40 Highcc 

 
Algorithm Interval (s) FR Method FR Norm NRMSE CC Channel Selection 
NARMA 1 SmoothBin 0 21 ± 8% 0.72 ± 0.33 Highcc 
LinReg 2 SmoothBin 1 32 ± 34% 0.70 ± 0.29 Highcc 
Kalman 0.1 rTriangleC 0 27 ± 15% 0.81 ± 0.13 Lasso 

Results are given as mean ± standard deviation. 
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Within NARMA algorithm results, we found that using a correlation coefficient-based 

channel selection method provided a significant decrease in NRMSE compared to using LASSO 

(p<0.0001) or simply including all channels (p<0.0001). It also yielded a significantly higher CC 

compared to using LASSO (p<0.0001) and all channels (p<0.0001). The firing rate interval was 

not significant in reducing NRMSE and was marginally significant in increasing CC (p = 0.033), 

with a 1-s interval slightly superior than a 0.1-s interval (p = 0.049). 

 

Figure 10. Comparison of performance measures across data sets. Plots show the resulting NRMSE for the NRMSE-selected 
features of Table 4-upper (left panel) and the resulting CC for the CC selected features of Table 4-lower (right panel) for 

each acute data set. 

  

Figure 11. Use of best model parameters (for NRMSE, in Table 4-upper) for decoding bladder pressure in dataset a4. 
The top plot shows the measured bladder pressure and the estimated bladder pressure using each algorithim. The 

NRMSE and CC for each fit is also given. 
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Within Kalman filter results, we found that the firing rate interval had a significant role in 

reducing NRMSE (p = 0.005), with a 0.1-s interval better than 2-s (p = 0.01) and 1-s (p = 0.02) 

intervals, though the interval was not a significant factor for CC. A correlation coefficient-based 

channel selection method yielded a significantly lower NRMSE compared to using LASSO 

(p<0.0001) or all channels (p<0.0001). It also provided a significantly greater CC compared to 

using all channels (p<0.0001). 

 Finally, within linear regression results, we have found that firing rate interval did not 

play a significant role in affecting NRMSE, but was significant in improving CC (p = 0.0001), 

with a 2-s interval (p<0.0001) and a 1-s interval (p = 0.019) better than a 0.1-s interval. Similar 

to NARMA, a correlation coefficient based channel selection method provided a decreased 

NRMSE compared to using LASSO (p<0.0001) or all channels (p<0.0001). It also provided an 

increased CC compared to using all channels (p value<0.0001). Overall, we also found that firing 

rate smoothing methods alone did not provide any statistical significance in reducing NRMSE or 

improving CC in any of the three algorithms. The firing rate normalization provided a significant 

decrease in NRMSE for all three algorithms (NARMA p = 0.0004, Kalman p = 0.013, and 

Linear p = 0.045), but there was no statistical improvement in CC. 

 

2.4.4 Chronic Data Set 

In the chronic experiment, bladder pressure and DRG neural signals were recorded at 34 and 48 

days after microelectrode implantation. Use of the best algorithm parameter set for NRMSE 

(NARMA, Table 4) yielded overall excellent fits on the training and subsequent testing data sets, 

with NRMSE and CC for testing being 10.7% and 0.61, respectively (Figure 12). All channels 



 37

that were highly correlated with bladder pressure on the training date were still identified at the 

testing date. 

 

 

2.5 Discussion 

In this study, we demonstrated the feasibility of using thresholded multi-unit DRG activity to 

decode bladder pressure (Figures 11 and 12). We evaluated a broad range of feature selection 

methods and three algorithms (multivariate linear regression, basic Kalman filter, and nonlinear 

autoregressive moving average model or NARMA) to evaluate which combinations yielded the 

best fits for two performance measures—NRMSE and CC (Table 4). Across our twelve acute 

data sets, NARMA provided the best fit in NRMSE, and channel selection methods had a 

significant impact on the resulting estimate of bladder pressure (Figures 8 and 9; Tables 2 and 3).  

 

Figure 12. Evaluation of best acute-experiment algorithm (NARMA for best NRMSE in Table 4-upper) on data obtained in a 
chronic experiment. The NRMSE and CC for the training data set (day 34 after implant) were 6.2% and 0.89, respectively. 
The NRMSE and CC for the training data set (day 34 after implant) were 6.2% and 0.89, respectively. The NRMSE and CC 
for the testing data set (day 48) were 10.7% and 0.61, respectively. In the training data set (at 170 s) a catheter was bumped 

which caused a high frequency artifact. This artifact was not removed during the training model fit and did not affect the 
testing performance significantly. 



 38

Towards our ultimate goal of closed-loop neuroprostheses, NRMSE is the more critical of our 

two performance measures as it minimizes overall error better than CC. Considering this, our 

findings supported our hypothesis that a NARMA model provides the most accurate estimation 

of the bladder pressure, with a low NRMSE (Table 4; Figures 10 and 11). The NARMA model 

captured important nonlinear dynamics between bladder neuron activity, seen here as 

thresholded DRG signals, and bladder pressure [62], [63]. For our secondary performance 

criteria of CC, a Kalman filter yielded the highest similarity to the results (Table 4). A closed-

loop system that does not directly apply absolute pressure value might take advantage of the 

Kalman filter algorithm (e.g., frequency of non-voiding contractions, relative amplitude of non-

voiding contractions, etc.). The multivariate linear regression algorithm was not outstanding in 

terms of either performance measure.  

NARMA models resulted in the best NRMSE fit and a first-order NARMA network with 

one hidden layer and two artificial neurons was sufficient in capturing dynamics of interest. 

Further analyses can be done to determine if increasing the order of the model, the number of 

layers, and/or the number of artificial neurons can improve bladder decoding performance. For 

example, a prior study utilized two hidden layers in a neural network with 15 neurons per layer 

to estimate bladder pressure from pudendal nerve electroneurogram (ENG), obtaining greater 

accuracy than with a linear model [79]. However, increasing the complexity of the model can 

increase overfitting and computational time and may not yield a great improvement compared to 

current models. 

While isolated single units provide more specificity for underlying signals, using 

threshold-crossing events is more reliable and computationally feasible for online use. In our 

firing rate calculation for each microelectrode channel, we did not differentiate between any 
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observed large-amplitude single units and small-amplitude threshold crossings. These small-

amplitude snippets may be recognized as noise in sorting of single-units, but might still provide 

useful information. This conclusion is also consistent with previous cortical interfacing studies 

[58], [80], in which there was a consistent conclusion that threshold-crossing events provided a 

comparable decoding accuracy as single unit activity.  

Only including DRG channels that correlated highly with bladder pressure improved 

decoding performance. However, as Table 3 shows, there is a tradeoff as the number of channels 

included in the model decreases. It may not be advantageous to use a constant correlation 

coefficient threshold for input channel selection. Instead, our data suggests that it is more 

beneficial to go with the highest correlation threshold that yields a non-zero number of input 

channels. This approach of using a subset of neural recording channels is comparable to other 

decoding studies which range from using a single input, such as pudendal nerve ENG [79], to 

using signals from multiple electrode channels in DRG [53], the spinal cord [81], or the motor 

cortex [82], and selecting channels based on a combination of the correlation coefficient and 

subjective judgement.  

Statistically, a correlation coefficient-based channel selection method provided the lowest 

NRMSE in all three algorithms. This result is partially due to this method’s ability to maximize 

the bladder signal-to-noise ratio compared to using all channels or the LASSO method, by 

selecting only a few channels that contain a high concentration of relevant sensory information. 

The LASSO and all channel methods usually selected more channels than the correlation 

coefficient-based method, thus incorporating more variability in the input channels and 

decreasing the estimation accuracy. This statistical result is consistent with Table 4. 
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The firing rate smoothing methods alone did not provide any statistical significance in reducing 

NRMSE or improving CC in any of the three algorithms, which is consistent with a prior study 

[61]. This effect is in part because both NARMA and Kalman filter algorithms have a recursive 

mechanism, which has a similar working mechanism as the firing rate smoothing method. 

Additionally, the thresholded multi-unit activities and relatively large time intervals (> 100 ms) 

together provide a smoother firing rate compared to what would be obtained for firing rates 

calculated from single unit activity with smaller time intervals. This statistical outcome is 

consistent with the varying methods identified across algorithms in Table 4. 

 Firing rate normalization contributed significantly to reducing the NRMSE in all three 

algorithms largely due to its ability to reduce the contribution variance among selected channels. 

As a result, the channels with high firing rates have a more balanced impact on the magnitude of 

the estimation result compared to channels with low firing rates. However, CC was not expected 

to be significantly affected because the firing rate only went through a linear transformation. This 

is consistent with our statistical results, as well as Table 4. 

 The firing rate interval determines how smooth the firing rate trace is, and how many data 

points can be used to train from a trial. Larger intervals yield smoother firing rates and 

potentially improve estimations, especially CC, by providing more channels with correlated 

firing rates (Tables 2 and 3; Figure 8). This explains why larger intervals improved CC in Linear 

Regression. In NARMA and Kalman filter, their recursive mechanisms smoothed out the firing 

rates, which provides an explanation why larger intervals in this case did not improve estimation 

further. On the other hand, smaller intervals provide a larger number of data points that can be 

used for training, which resulted in a reduced NRMSE with the Kalman filter. This tradeoff can 

be reflected as the inconsistent optimal firing rate interval across different algorithms and 
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performance measures. A drawback of small firing rate intervals is that smaller intervals result in 

weaker correlations between the firing rate and the bladder pressure (Tables 2 and 3; Figure 8). 

In one data set, there were no channels with a correlation greater than 0.2 when using the lowest 

firing rate interval (Table 3). 

 Compared to prior studies that used sorted single unit activity to estimate limb states [54], 

[77] or bladder pressure [58], our method has a lower computational load due to the simple 

thresholding method. The accuracy is comparable to prior relevant bladder studies [53], [79] due 

to NARMA’s ability to capture the underlying structure of the data sets. Compared to limb state 

decoding applications, where an artificial neural network might be computationally heavy, 

bladder decoding is a more suitable application for neural networks because the need for frequent 

updates is low (every ~ 0.5 s). The step time for new pressure estimates for all models are well 

below any of the firing rate intervals used here and easily applicable for online decoding (Table 

4). 

 To our knowledge, this work also provides the first proof of concept for decoding bladder 

pressure from neural recordings using an algorithm based on data collected at an earlier date in a 

chronic implant (Figure 12). The feature selection method and algorithm used on the chronic 

data was based on the best acute study analysis, as discussed above. Although this data set only 

had 2 weeks between training and testing trials, our prior chronic DRG studies indicated that 

bladder sensory neurons can be tracked at least 6 weeks after implant using current technology 

[75]. Finally, this preliminary work shows it is possible to translate results from acute studies to 

chronic studies of bladder pressure. 

 Our results were obtained from spinally intact felines. Since our goal is to develop a 

closed-loop neuroprosthesis for bladder control in patients suffering from SCI and other 
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neurogenic bladder dysfunctions, our decoding algorithms need to be assessed in these models. 

After spinal cord injury, voluntary bladder control is lost and the bladder initially becomes 

areflexic, later becoming hyperreflexive with re-emergence and remodeling of spinal reflex 

pathways [83], [84].These changes are thought to be partly due to changes in bladder afferent 

activity. Unmyelinated chemosensitive C-fibers become mechanosensitive and overactive 

leading to non-micturition contractions at low bladder volumes [85], [86]. After SCI, there will 

still be activity from myelinated pelvic afferent fibers that correlate with bladder pressure, but we 

anticipate increased bladder afferent activity occurring at lower bladder volumes due to C-fibers. 

We expect that bladder-decoding models will still be effective after chronic SCI, however a 

model may have low efficacy shortly after injury before neuroplasticity has stabilized. Additional 

studies are needed to evaluate the consistency of our decoding algorithms at different times after 

SCI. 

 Further studies should be performed to test the performance of these algorithms online in 

real-time and in closed-loop bladder control experiments. In addition, for each of the trials 

presented here, we trained on only one infusion trial and tested on a later individual trial. 

Multiple training sets may provide a more robust performance than single-set training, 

particularly for chronic studies where neural signals may shift over time [75]. 
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Chapter 3 Real-time Bladder Pressure Estimation for Closed-loop Control in a Detrusor 
Overactivity Model 

 
 
 
 

3.1 Abstract 

Overactive bladder (OAB) patients suffer from a frequent urge to urinate, which can lead to a poor 

quality of life. Current neurostimulation therapy uses open-loop electrical stimulation to alleviate 

symptoms. Continuous stimulation facilitates habituation of neural pathways and consumes 

battery power. Sensory feedback-based closed-loop stimulation may offer greater clinical benefit 

by driving bladder relaxation only when bladder contractions are detected, leading to increased 

bladder capacity. Effective delivery of such sensory feedback, particularly in real-time, is 

necessary to accomplish this goal. We implemented a Kalman filter-based model to estimate 

bladder pressure in real-time using unsorted neural recordings from sacral-level dorsal root 

ganglia, achieving a 0.88 ± 0.16 correlation coefficient fit across thirty-six normal and simulated 

OAB bladder fills in five experiments. We also demonstrated closed-loop neuromodulation using 

the estimated pressure to trigger pudendal nerve stimulation, which increased bladder capacity by 

40% in two trials. An offline analysis indicated that unsorted neural signals had a similar stability 

over time as compared to sorted single units, which would require a higher computational load. 

We believe this study demonstrates the utility of decoding bladder pressure from neural activity 

for closed-loop control; however, real-time validation during behavioral studies is necessary prior 

to clinical translation. 
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3.2 Introduction 

Overactive bladder (OAB) is defined as urinary urgency, with or without incontinence, typically 

accompanied by frequency and nocturia [87]. The cause of overactive bladder can be neurogenic 

(e.g. spinal cord injury, traumatic brain injury, multiple sclerosis, stroke), non-neurogenic (e.g. 

aging, multiple pregnancies) or nonspecific. OAB affects millions of people worldwide, leading 

to a variety of side effects such as poor sleep, anxiety, and depression [88].  

Sacral neuromodulation (SNM), in which a stimulation lead is placed near the S3 sacral 

root, is a standard clinical treatment after conservative approaches fail [14]. SNM is applied 

constantly to reduce the effects of OAB. However, continuous stimulation can facilitate 

habituation of neural pathways [41] and consume battery power [44]. Sensory feedback-based, or 

closed-loop stimulation may offer greater clinical benefit by driving bladder function only when 

necessary, leading to increased bladder capacity and voiding efficiency [44], [47].  

Several studies have demonstrated the possibility of detecting bladder pressure changes, 

or bladder volume increases by recording at different nerve sites with offline analyses of 

recorded data [53], [79], [89]–[91]. These offline validation studies applied various parameters 

combinations to a detecting or decoding algorithm and selected parameters that generated the 

lowest error. However, final parameters were not tested in new sets of data in real-time to rule 

out overfitting. A few studies have applied optimized parameters to nerve recordings [44], [73] 

to detect bladder volume or contractions in real-time, though pressure was not explored in this 

manner. For OAB, we hypothesize that pressure feedback will be more valuable because it may 

directly reflect the level of urgency [12]. In this study, we specifically examine real-time 

estimation of bladder pressure towards closed-loop neuromodulation. 
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Bladder-related neural signals can be observed at potential neuromodulation sites such as 

the pudendal nerve [44], pelvic nerve [92] and sacral dorsal root ganglia (DRG) [74], [91], 

making closed-loop control possible without an additional surgical procedure to implant a 

bladder pressure sensor. Among these recording sites, sacral-level DRG uniquely contain 

afferent-only signals from the detrusor muscle and urethra, via proximal pelvic and pudendal 

nerve fibers, while also containing pudendal sensory pathways that can drive spinal circuits 

modulating bladder function [52], [93]. Our long-term goal is to take advantage of this sensory 

nerve convergence at sacral DRG and develop a single-site neural interface for both monitoring 

and controlling the bladder state. 

In this study, we used sacral-level DRG as a recording site to estimate bladder pressure 

and the onset of bladder contractions in real-time for both normal and simulated OAB 

conditions, through the infusion of acetic acid irritant. Although acetic acid-induced bladder 

overactivity does not fully imitate the urgency component of clinical OAB, it is commonly used 

in preclinical studies to simulate an increase in spontaneous contractions and a decrease in 

bladder capacity [94]. In two experiments, we used the estimated pressure to initiate pudendal 

nerve stimulation upon detection of bladder contractions, as a demonstration of closed-loop 

relaxation of the bladder. This is the first study to test a bladder pressure decoding algorithm 

from neural signals in real-time, as well as apply it to a demonstration of closed-loop bladder 

control.  

 

3.3 Methods 

3.3.1 Animals  

All procedures were approved by the University of Michigan Institutional Animal Care and Use 
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Committee, in accordance with the National Institute of Health’s guidelines for the care and use 

of laboratory animals. Five spinal-intact adult, domestic, short-hair cats (0.97 ± 0.20 years old, 

4.48 ± 0.83kg, 2 female, 3 male, Liberty Research, Inc., Waverly, NY) were used in this study 

(designated as experiments 1–5). Cats were used due to their high relevance to human physiology 

and their long history of study in bladder neurophysiology [65]. Prior to use, animals were free-

range housed with up to 3 other cats in a 413 ft2 room with controlled temperature (19-21 °C) and 

relative humidity (35-60%), food and water available ad lib, and a 12-hour light/dark cycle. 

Animals received enrichment via staff interaction and toys. 

 

3.3.2 Surgical Procedure 

As in prior studies [63], animals were induced for anesthesia with a mixture of ketamine (6.6 

mg/kg), butorphanol (0.66 mg/kg), and dexmedetomidine (0.02-0.03 mg/kg) administered 

intramuscularly. Animals were intubated and subsequently maintained on isoflurane anesthesia 

(0.5-4%) during surgical procedures. Respiratory rate, heart rate, end-tidal CO2, O2 perfusion, 

temperature, and intra-arterial blood pressure were monitored continuously using a Surgivet vitals 

monitor (Smiths Medical, Dublin, OH). Fluids (1:1 ratio of lactated Ringers solution and 5% 

dextrose) were infused intravenously via the cephalic vein at a rate of 5–10 mL/kg/hr (increased 

up to 30 mL/kg/hr during surgery as needed). Catheters were inserted into the bladder at the 

bladder dome via a laparotomy (experiment 1-2, both female) or via the urethra (experiment 3-5, 

all male, catheter diameter 3.5-5 Fr) for intravesical fluid infusion and pressure monitoring. The 

urethra was not ligated. 

A midline dorsal incision was made to expose the L7 to S3 vertebrae and a partial 

laminectomy was performed to access sacral DRG. Iridium oxide microelectrode arrays with shank 
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length of 1.0 mm and inter-shank spacing of 0.4 mm (4x8 configuration; Blackrock Microsystems, 

Salt Lake City, UT) were implanted bilaterally into S1 DRG using a pneumatic inserter (Blackrock 

Microsystems). Although S2 DRG contain more bladder neurons than S1 DRG in cats [95], the 

larger size of S1 DRG aligned better with the microelectrode array footprint and our prior work 

obtained sufficient bladder signals for decoding from S1 DRG [63]. Array reference wires were 

placed near the spinal cord and ground wires were attached to a stainless steel needle inserted 

below the skin (lateral and caudal to the laminectomy incision site). At the conclusion of surgical 

procedures (8.3±0.7 hr surgery length, plus 0.1-0.5 hr for array insertion), prior to experimental 

testing, animals were transitioned to intravenous alpha-chloralose (C0128, Sigma Aldrich; 70 

mg/kg induction; 20 mg/kg maintenance). As this transition was at least six hours after induction, 

we expect that there were no residual effects on bladder function due to the induction dosing of 

ketamine, butorphanol, or dexmedetomidine. Analgesia was augmented with 0.01 mg/kg 

buprenorphine every 8–12 hours subcutaneously. 

 

3.3.3 Experimental Set-up and Data Collection 

Neural data was sampled at 30 kHz and band-passed filtered (250 Hz to 7.5 kHz) using a 

Grapevine Neural Interface Processer and Trellis recording system (Ripple, Salt Lake City, UT). 

Threshold crossings were detected by setting a dual threshold at 3–5.5 times the root-mean-

squared value of the signal. Bladder pressure was monitored with a pressure transducer (DPT-

100, Utah Medical Products, Midvale, UT) and transducer amplifier (TBM4M, World Precision 

Instruments, Sarasota, FL). The bladder pressure signal was sampled by the Grapevine system at 

1 kHz, and all data was streamed to an online decoder developed in MATLAB Graphic User 

Interface (Mathworks, Natick, MA) through a Trellis MATLAB software interface. During each 
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bladder infusion trial, 0.9% saline or 0.5% acetic acid (R13032, Fisher Scientific, Hampton, NH) 

in saline was infused into the bladder with a syringe pump (AS50 Infusion Pump, Baxter 

International, Deerfield, IL and Model NE-1000, New Era Pump Systems, Inc., Farmingdale, 

NY). Acetic acid is an irritant that increases bladder overactivity and was infused to simulate an 

OAB condition [94], [96]. 

Each experiment had two or more bladder fill sequences, in which bladder pressure and 

neural recordings were collected during infusion at 2 mL/min. Prior to an infusion, the bladder 

was emptied by withdrawing from the catheter. Fluid infusion was stopped after the bladder was 

full (leakage observed or a sustained bladder contraction was observed for over 10 seconds). In 

experiment 3, some trials were stopped early because the heart rate increased at least 40 bpm 

above baseline. Because of this, summary statistics on the bladder capacity was not included 

below for experiment 3. The bladder capacity was estimated as the volume withdrawn from the 

bladder at the end of the trial. The first infusion in each sequence was used to train a decoding 

model, and the second fill was used to test the model in real-time. Depending on experimental 

progress, that second fill may have then been used to train a new model as the first fill of a new 

sequence. At least 3 saline-only fills were conducted prior to acetic acid trials. In general, 

training and testing fills used the same condition (saline-normal or acetic acid-simulated OAB) 

but in a few cases saline fills were used to train a model that was tested for a simulated OAB fill. 

 

3.3.4 Real-time Decoding Algorithm 

The real-time closed-loop control system was developed as a MATLAB graphic user interface 

(GUI). A previously described Kalman filter modeling algorithm [91] was trained offline then 

tested in real-time, using the following parameters. For offline training, after a full bladder fill 
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cycle was completed, the firing rates of threshold crossings on all channels were calculated at a 

2-second interval using a boxcar smoothing method, as a balance between computational load 

and estimation accuracy [91]. The firing rates were then normalized by dividing each by the 

firing rate range of the first 30 seconds of each trial. The bladder pressure was also averaged 

every 2 seconds. The correlation coefficient (CC) between each channel firing rate and the 

bladder pressure was calculated. While 64 total microelectrodes were implanted for each 

experiment, only channels highly correlated with bladder pressure (CC > 0.7) during a training 

fill sequence were used. If no channel met this criterion, the threshold was iteratively lowered by 

0.1 until sufficient channels were available to make a robust estimate. Following channel 

selection, the Kalman algorithm was used to model bladder pressure as a weighted average of the 

previous bladder pressure and firing rates of the input channels. During testing, the threshold 

crossing times were streamed to the GUI in real-time (1.1 ± 1.4 ms calculation time). Firing rates 

were calculated every 2 seconds and fed into the model to obtain an estimate of the bladder 

pressure for comparison to the measured pressure. Figure 13 shows the experimental workflow. 

 

3.3.5 Real-time Closed-loop Control 

In experiments 3 and 4, a bipolar nerve cuff (2.0 mm inner diameter Silastic 508-009 tubing; 0.4 

mm stainless steel Cooner wire contacts) was placed on the left pudendal nerve after a postero-

lateral gluteal incision and access. During one testing trial in experiment 3, electrical stimulation 

 

Figure 13. Flow diagram of real-time decode training and testing and closed-loop control. 
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(Model 2100 Isolated Pulse Stimulator, A-M Systems, Sequim, WA) was manually turned on for 

23.7 ± 3.6 seconds after the onset of each of five contractions, visually identified from the real-

time estimated pressure. In experiment 4, this process was automated in MATLAB to trigger 

stimulation when the estimated pressure monotonically increased at least 4 cm H2O in 6 seconds. 

The six-second interval was selected as three consecutive pressure estimates, based on the 2-

second real-time pressure updates. In each stimulation interval, 10 Hz stimulation (balanced 

biphasic, 200 µs pulse width) was used to drive bladder relaxation, based on a previous study 

that reported its efficacy over other frequencies in a similar experimental set-up [97]. Neither the 

closed-loop timing nor stimulation paradigm were optimized for this study but were selected to 

demonstrate the potential utility in this application. A cross-channel invalidation and blanking 

method was used to reduce stimulation artifacts in DRG recordings. In the artifact blanking 

method, a 2 ms sliding time window was applied in real-time to the input spike times. If a spike 

was present in the same 2 ms window for over 50% of the channels, then that spike and any 

occurring in the next 40 ms were removed. This method was empirically determined from offline 

analysis to remove the effect of stimulation artifacts on decoding performance. 

 

3.3.6 Euthanasia 

After completion of all testing, animals were euthanized with 2-3 mL of intravenous or intracardiac 

sodium pentobarbital (390 mg/mL) while under deep isoflurane anesthesia. 

 

3.3.7 Statistical Analyses 

Two primary metrics were used to evaluate the accuracy of bladder decoding. The correlation 

coefficient (R, equation 1) and normalized root-mean-squared error (NRMSE, equation 2) between 
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the measured (P) and estimated pressure (𝑃෠ሻ were calculated for each real-time testing trial. The 

correlation plays an important role because it reflects the level of similarity in shape between the 

estimated pressure and the measured pressure. A high correlation coefficient indicates that the 

basic features (reflex contraction, sustained contraction, relaxation etc.) in the cystometry curve 

were captured, and that it is possible to extract events with machine learning algorithms. Although 

R and CC use the same underlying correlation coefficient calculation, we use different variables 

to distinguish the different types of data sets being compared (R compares estimated to actual 

bladder pressure, and CC compares neural firing rates to the actual bladder pressure).  

   

𝑅 ൌ  ாሾ௉,௉෠ሿିாሾ௉ሿாሾ௉෠ሿ

ඥாሾ௉మሿିሾாሾ௉ሿሿమඥாሾ௉෠మሿିሾாሾ௉෠ሿሿమ
               (1) 

 

𝑁𝑅𝑀𝑆𝐸 ൌ ଵ

ሺ௉೘ೌೣି௉೘೔೙ሻ
ට∑ ሺ௉෠೟ି௉೟ሻమ

೟సಿ
೟సబ

ே
       (2) 

 

To verify that acetic acid was producing a simulated OAB state, an unpaired t-test was 

used to determine if bladder capacity was reduced significantly from saline-only fills to acetic-

acid fills. An unpaired t-test was also used to determine if acetic acid caused significantly earlier 

onset of non-voiding contractions. To analyze the stability of threshold crossings within each 

experiment, a paired t-test was used to quantify any changes between firing rates and bladder 

pressure from training to testing trials and from saline to acetic acid trials. For all tests, a 

significance level of 0.05 was used. When appropriate, values are given as mean ± standard 

deviation.  
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3.4 Results 

Real-time decoding was performed in all 5 experiments, with 20 saline and 15 acetic acid testing 

trials in total. We demonstrated closed-loop control in experiments 3 and 4.  

 

3.4.1 Normal Bladder and Simulated OAB Models 

The simulated OAB model produced significantly lower bladder capacities (23.4 ± 12.1 mL, n = 

13, p < 0.0001; Figure 14) than normal saline bladder capacities (44.5 ± 10.1 mL, n = 21). In 

experiments 1 and 4, an earlier onset of non-voiding contractions during acetic acid infusion was 

observed, though this finding was not significant. The infused volumes until the first non-voiding 

contraction were 12.1 ± 2.7 mL (saline, n = 7) and 7.8 ± 1.1 mL (acetic acid, n = 2) for 

experiment 1 (example in Figure 14), and 17.2 ± 2.7 mL (saline, n = 5) and 13.7 ± 1.8 mL (acetic 

acid, n = 4) for experiment 4. No other experiments had consistently identifiable non-voiding 

contractions across all trials. Experiments with urethra catheters had significantly larger bladder 

contractions (p < 0.001; 55.6 ± 6.7 cm H2O, n = 9 for Experiment 4; 54.8 ± 8.3 cm H2O, n = 8 

for Experiment 5; not measured in Experiment 3) than those with supra-pubic catheters (20.7 ± 

3.1 cm H2O, n = 9; 20.1 ± 5.0 cm H2O, n = 8 for Experiments 1 and 2), likely due to the catheter 

partially occluding the urethra. These later experiments also used larger males (5.7, 5.1 kg) than 

the females in supra-pubic experiments (3.4, 4.0 kg), which may have been a factor in the larger 

pressures. Bladder volumes for either saline or acetic acid infusion trials were not different 

between supra-pubic and urethra catheter experiments (Figure 14).  
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3.4.2 Real-time Decoding  

Thirty-five real-time decoding testing trials were performed, with a minimum of six testing trials 

per cat (Table 5). The first bladder fill for an experiment and bladder condition was used to train 

a model and a following bladder fill was used for real-time decode testing of that model (for both 

stimulation and non-stimulation trials). That second bladder fill then became a training data set 

for a new model, in an alternating manner up to the total number of testing bladder fills per 

experiment and condition given in Table 5. On average, 5.6 ± 3.7 DRG channels were used in 

each testing trial (range 1-14). Table 5 lists the mean channel counts used in each experiment. 

Twenty-two of 35 trials (62.9%) used the maximum 0.7 CC threshold for channel selection, with 

an average CC threshold of 0.58 ± 0.18 (range: 0.2–0.7) used across all trials. Table 6 

summarizes the NRMSE and R metrics for the real-time algorithm performance. On average, 

simulated OAB trials had a significantly higher correlation (p = 0.026) and non-significantly 

lower NRMSE (p = 0.445) than normal saline trials. Figure 15 shows an example real-time 

decoding trial. Figure 16 shows the individual R values for all training and testing trials. There 

was no trend in R or NRMSE across testing trials within each individual experiment. Four 

 

Figure 14. a) Example bladder fills sequences for saline (in blue) and acetic acid (in black) infusions from experiment 1. b) 
Summary of bladder capacities in experiment 1, 2, 4 and 5 in box plots. Simulated OAB capacities (n = 13) were significantly 
lower than normal bladder capacities (n = 21; p < 0.0001). Icons for fills in (a) indicated with thick outline in blue or black. 



 54

simulated OAB testing trials across the experiments used models created from normal saline 

training fills. The performance metrics for these four trials (R: 0.94 ± 0.04; NRMSE: 0.30 ± 

0.26) were not different from the simulated OAB testing trials trained on acetic acid fills (n = 11; 

R: 0.95 ± 0.04; NRMSE: 0.20 ± 0.14). 

 

 

 

 

 

Table 5. Trial Summary 

Experiment Saline Acetic Acid Closed-Loop Channels per Model 
1 5 1 0 5.8 ± 2.1 
2 4 3 0 2.1 ± 0.4 
3 4 4 1 (manual) 6.8 ± 3.1 
4 4 3 2 4.4 ± 3.9 
5 3 4 0 8.6 ± 4.6 

Total 20 15 3 5.6 ± 3.7 

Table 6. Real-time Decode Summary Statistics 
 

R NRMSE 

Normal (saline) (n =20) 0.84 ± 0.19 0.28 ± 0.13 
OAB (acetic acid) (n = 15) 0.95 ± 0.04 0.23 ± 0.18 
Normal & OAB (n = 35) 0.88 ± 0.16 0.26 ± 0.21 
Automated Closed-loop (n=2) 0.79 ± 0.05 0.19 ± 0.02 

 

 

Figure 15. Example real-time OAB decoding trial from Experiment 5. NRMSE = 0.098, R = 0.9895. Fourteen channels were 
used for decoding. At middle top, the correlation coefficient mapping of threshold crossings and bladder pressure are shown 

for all microelectrode with channels used for decoding indicated by a white dot. At bottom are raster plots for units from three 
example channels. 
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We performed three post-hoc analyses to understand the sources of prediction error and 

to inform improvements to the algorithm. First we tested the stability of unsorted neural activity 

between paired training and testing trials. In two experiments, there was a significant change in 

the correlation coefficients (CC) according to a paired t-test (Table 7). We also modeled the 

relationship between pressure and single-channel threshold crossing firing rates with a linear 

regression model and tested whether the slopes and intercepts changed between training and 

testing trials. In two experiments, there was a statistically significant change in slope, and in four 

experiments, there was a significant change in intercept (Table 7). Each experiment had a 

significant change in at least one parameter but only one experiment had a significant change in 

all three. Table 7 also gives the mean ratio between each parameter in the testing data set to the 

training data set value.  

Next, we investigated if changes in channel firing-rate correlation coefficients resulted 

from changes in single-unit activity. An expert spike sorter manually sorted single units (Offline 

 

Figure 16. Performance summary of correlation coefficients (R) for all trials. Saline trials are denoted by blue icons; acetic 
acid OAB trials by black icons. Transitional trials (training with saline and testing with acetic acid) are denoted by black 

dashed lines  Table 6 contains summary statistics across all trials. 
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Sorter, Plexon, Dallas, TX) that responded to bladder filling in each trial. Thirty-six sortable 

bladder single units were identified across the five experiments (range: 1-15 per experiment), 

fourteen of which occurred in all trials for their respective experiment (no sorted units were 

persistent in experiment 2). Figure 17 shows CC across trials for twelve of these persistent units. 

Figure 18 also shows the variation in CC for unsorted channels that have the highest average CC 

in the same experiment. The averages of the standard deviation in CC for these single units and 

the unsorted threshold crossings were not different (0.16 and 0.17, respectively; p = 0.65), 

suggesting that variations in channel firing rate coefficients were related to changes in underlying 

single unit activity.  

Because acetic acid trials had both lower NRMSE and higher R (Table 6, Figure 16), our 

final post-hoc analysis investigated the effect of the simulated OAB model on single-unit firing 

rate to bladder pressure correlation. We quantified the behavior of single-unit neurons and 

threshold crossings from saline to acetic acid trials. Out of twelve single-unit neurons that we 

analyzed, ten neurons had an increased sensitivity to bladder pressure during acetic acid trials 

(average change in CC: +0.10 ± 0.25; range: -0.51 – +0.58), though the overall mean CC was not 

different between the saline and acetic acid trials (saline: 0.48 ± 0.22; acetic acid: 0.59 ± 0.20; p 

= 0.25). Out of twelve unsorted channel multi-units, eleven had an increased sensitivity to 

bladder pressure during acetic acid trials (average change in CC change per channel: +0.19 ± 

0.14; range: -0.17 – +0.30), and the overall mean CC was significantly higher (saline: 0.48 ± 

0.13; acetic acid: 0.67 ± 0.19; p = 0.009). 
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3.4.3 Closed-loop Control 

One decoding trial in experiment 3 and two trials in experiment 4 were combined with manual or 

automated closed-loop pudendal stimulation (Table 5). In experiment3, manual-driven closed-

loop stimulation successfully suppressed bladder contractions during an acetic acid trial. 

However, stimulation produced artifacts in DRG recordings, which led to large decoding errors 

during stimulation. In experiment 4, the real-time algorithm was updated to reject stimulation 

artifacts. For two closed-loop trials, the NRMSE (0.17, 0.21) and R (0.84, 0.74) were similar to 

non-closed-loop trials. We also successfully demonstrated that bladder contractions can be 

Table 7. Mean Test: Train Ratio and (p-value) Summary for Tests of Unsorted Neural Activity between Training 
and Testing Trials. 

Exp. CC Slope Intercept 
1 0.97 (0.76) 0.63 (0.01) 1.06 (0.73) 

2 0.90 (0.15) 1.03 (0.81) 2.55 (<0.001) 

3 0.92 (0.01) 1.00 (0.96) 2.43 (<0.001) 

4 0.51 (<0.001) 0.33(0.02) 3.13 (0.006) 

5 0.93 (0.18) 0.99 (0.86) 1.23 (<0.001) 

(p < 0.05 highlighted with bold text) 

 

Figure 17. Sorted single units (top) and highly-correlated unsorted channels (bottom) had similar variability across each 
experiment. Mean (± standard deviation) CC is given next to each trace. An underlined trial number indicates acetic acid 

infusion trials. 
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automatically inhibited (Figure 18). The maximum bladder volume increased from 22.3 ± 3.2 

mL (n = 4; range: 17-26 mL) without stimulation to 31.3± 1.3 mL (n=2; range 30-32.5 mL) with 

closed-loop stimulation, a 40.4% increase in bladder capacity. Across the two automated closed-

loop trials, 33 stimulation epochs preceded a drop in actual pressure with an average delay of 

0.64±0.70 s while 11 epochs followed a decrease in actual pressure by an average of 1.17 ± 0.34 

s. After stimulation was terminated, the bladder pressure resumed non-voiding contractions until 

eventually leakage occurred (Figure 18). In these closed-loop trials, stimulation was turned on 

114.1 ± 14.1 ms after the rising-pressure condition was met. Closed-loop trials were not 

performed in experiment 5 due to a lack of an inhibitory response to pudendal nerve stimulation 

at 5 Hz and 10 Hz. 

 

 
 

3.5 Discussion 

To our knowledge, this is the first study to decode bladder pressure from neural signals in real-

time. This development is necessary towards the implementation of an effective closed-loop 

 

Figure 18. Real-time closed-loop control of bladder relaxation with pudendal nerve stimulation (R = 0.74). A zoomed-in view 
of part of the trial is shown at top. Pudendal stimulation was applied for 30 seconds when there was an increase in decoded 

pressure of 4 cm H2O in 6 seconds. The stimulation effect was most obvious for large non-voiding contractions.  
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neuromodulation algorithm. In prior studies decoding bladder pressure from neural signals [53], 

[89]–[91], only offline validation was performed. In this study, we built upon a previously 

developed model [91], and showed that it can be applied during active recording from electrodes. 

Additionally, we demonstrated that the level of accuracy in these new data sets is sufficient to 

provide closed-loop feedback. 

 We demonstrated the feasibility of decoding bladder pressure from DRG recordings in 

both healthy and simulated OAB conditions with high performance (Figure 15, 16; Table 6). As 

we have shown previously, there is a hysteretic relationship between bladder neuron firing rates 

and bladder pressure during contraction and relaxation cycles [63]. The real-time Kalman filter 

successfully modelled this relationship by combining previous estimated bladder states with 

current firing rate inputs using a weighted average method. During post hoc analyses, we 

quantified the stability of sensory neurons during the experiments, observing variability across 

neural signals (Table 7) that was similar between unsorted channels and sorted single units 

(Figure 17). We also demonstrated how this method can be incorporated into real-time closed-

loop control of bladder relaxation (Figure 18). 

 The average correlation coefficients for saline trials and acetic acid trials for real-time 

estimation (Table 6) are higher than two previous offline studies where correlation coefficients 

were reported (0.81 in Ross et al. and ~0.82 in Im et al.) [90], [91]. The higher bladder decoding 

correlations in our study suggest that our Kalman model provides an improved approach over 

prior studies, particularly in tracking relative changes in bladder pressure. Other offline decoding 

studies reported NRMSE (or RMSE, which can be translated to NRMSE) ranging from 0.06 to 

0.17 [53], [79], [89], [91]. Our study had a higher NRMSE, but unlike offline studies there was 

no room for parameter tuning, which can yield more accurate results. Lumbar-level DRG have 
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been used to decode limb state with similar performance offline (NRMSE of 0.04-0.22, R of 

0.12-0.88) [56]. For an ultimate closed-loop application, the high correlation coefficients are a 

more critical parameter than NRMSE as they demonstrate our ability to detect relative changes in 

bladder pressure that can be used to trigger stimulation upon the start of a contraction. Also, our 

results suggest that an irritant like acetic acid is correlated with a general increase in the 

sensitivity of both threshold crossings and single units, leading to an improved decode. This 

increased sensitivity could be due to greater activation of bladder neurons by the irritant or a 

secondary effect of a faster rise in the bladder pressure due to an effectively smaller bladder. 

Simulated OAB trials were able to use a saline-fill training model successfully, suggesting there 

was consistency in neural activity across at least those four bladder fill pairs. 

 For the conditions used in our study, our results support the use of unsorted channel 

activity to create robust bladder decoding models. The offline analyses of our data indicated that 

channel threshold crossings are as stable as single units, in terms of correlation coefficient with 

bladder pressure (Figure 17). Also, systems that use threshold crossings consume less 

computational power than those that use single units, which can be challenging to extract with 

high accuracy [58]. However, this study was performed under anesthesia and only bladder 

sensory neurons were actively driven during bladder filling, thereby limiting non-relevant signals 

within the unsorted channel recordings. In an ultimate clinical use, other sensory pathways will 

also be active and may generate confounding signals. Studies using extraneural cuff or wire 

electrodes to detect bladder activity [44], [79], [89], [92] may have challenges ignoring non-

bladder signals [98]. As we observed in this study, previous work has shown that bladder activity 

can be differentiated from non-bladder activity with intraneural microelectrodes at DRG [74], 

[75], [99], which we expect will increase decoding tolerance to non-bladder signals. It may be 



 61

necessary to sort neural activity to obtain a robust algorithm for differentiating bladder and non-

bladder activity. 

Among the five experiments, the shift in baseline firing rates was the most common 

cause of an error in absolute pressure estimation. This is represented by the significant change in 

the intercept of a linear pressure-firing rate relationship from training to testing trials in four of 

the five experiments (Table 7), some of which had a large increase in the ratio between testing 

and training intercepts. One example of this effect can be seen in the decoded pressure offset at 

the start of Figure 18. In the majority of experiments, the correlation coefficient and slope 

between threshold crossing firing rates and bladder pressure remained stable (note ratios near 1.0 

in Table 7), which made it possible to decode relative pressure increases and decreases. The 

instability could be a result of the trauma from array insertion or a slight settling in of the array 

during the experiment. With durable recording electrodes, these sensory neuron recordings are 

expected to stabilize over time during chronic implant experiments [75]. The estimated bladder 

pressure, even with an initial offset in some cases, still allowed us to reliably detect the onset of 

bladder contractions. In three closed-loop trials, we successfully suppressed bladder contractions 

when they were detected and increased the bladder capacity compared to fills without 

stimulation. Seventy-five percent of the stimulation epochs preceded a decrease in bladder 

pressure, which generally occurred within a second of stimulation onset. The remaining epochs 

were initiated about one second after the pressure had already started to decrease, suggesting that 

shorter time intervals between bladder pressure updates may have led to a quicker initiation of 

stimulation or no triggering of stimulation for a smaller estimated pressure change. As the 

closed-loop algorithm was not optimized for this study, we expect that the total duration of 

applied stimulation can be significantly shortened. 
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The methods developed in this study are translatable to clinical use. Implementation of 

closed-loop control such that continuous neuromodulation like SNM is only applied when 

needed could lead to a larger bladder capacity [44] and longer battery life for implanted pulse 

generators. For clinical use, the closed-loop algorithm will need to be optimized to have high 

specificity for bladder contraction onsets and/or an increase in baseline tone, depending on a 

patient’s symptoms. In order to mimic a potential clinical calibration method, in the last three 

experiments we transitioned from supra-pubic bladder catheters to less-invasive urethral 

catheters. Decoding trials had similar accuracy using either catheter approach (Figure 16), even 

with larger bladder contractions. While DRG were accessed with a laminectomy in this study, 

DRG can also be accessed percutaneously at the lumbosacral level [100]. In that approach, a 

non-penetrating electrode may be more feasible than penetrating arrays, which may need more 

vertical space for insertion. Recent research has demonstrated that DRG cell bodies are more 

likely to be located near the surface of the DRG [101], and that a thin-film surface electrode can 

record bladder pressure single units [99]. New electrodes with a lower profile and minimal 

immune response may be more feasible to implement clinically and may yield a higher count of 

bladder-relevant signals.  

This study had several limitations. We observed a normal low level of overfitting, which 

can be alleviated through adding regularization components to the algorithm. Infusion of acetic 

acid into the bladder can cause damage to the tissue for a prolonged exposure [96]. An increased 

heart rate and the presence of blood in urine were occasionally observed. An elevated heart rate 

may also be a result of the anesthetic depth changing over time. Elevated heart rates resulted in 

some trials being ended prematurely. Although additional resting time between trials was given 

in order to return the stability of vitals, an alternate simulated OAB model such as the use of 
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Prostaglandin E2 (PGE2) might have better clinical relevance [102]. We made an effort to keep 

the number of saline and acetic acid trials consistent across different experiments, however we 

were limited by experimental and anesthetic factors in some cases. This arrangement still 

allowed us to achieve statistically significant results in key parameters. Prediction errors were 

often due to shifts in channel and underlying single-unit correlations to bladder pressure. This 

may have been the effect of electrodes settling during an acute procedure. We anticipate that a 

stable chronic interface will alleviate this variation. Finally, our anesthetized animal model 

limited sensory inputs. Testing with varied bladder and non-bladder signals, such as with 

behavioral studies, are necessary to determine whether unsorted microelectrode recordings 

provide sufficient specificity. 

Further development of real-time estimation and closed-loop control opens the possibility 

of a more practical bladder neuroprosthetic device. In future studies, we plan to compare on-

demand closed-loop stimulation with other paradigms such as a fixed 50% duty cycle. We also 

plan to optimize bladder pressure estimation, including evaluating algorithm robustness during 

activation of non-bladder pathways and across repeated test sessions for chronic-implanted 

animals, and incorporate adaptive stimulation to maximize the efficacy of bladder 

neuromodulation in both normal and simulated OAB models. As microelectrode development 

continues, future studies interfacing with bladder-neuron dominant S2 DRG may also yield 

improvements in algorithm efficiency. Future work will also include pilot clinical trials with 

electrodes and stimulation parameters that are more suitable for human use. 

 

3.6 Data Availability 

All data and MATLAB code are available online (https://osf. io/h6835/). 
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Chapter 4 Closed-loop sacral neuromodulation for bladder function using dorsal root 
ganglia sensory feedback in an acute feline model 

 

 
 

4.1 Abstract 

Overactive bladder patients suffer from a frequent and uncontrollable urge to urinate, which can 

lead to a poor quality of life. Current sacral neuromodulation therapy uses open-loop electrical 

stimulation to alleviate symptoms, which limits battery life and can lead to neural habituation. In 

this study, we aim to improve therapy by developing a conditional stimulation paradigm using 

neural recordings from dorsal root ganglia (DRG) as sensory feedback. Experiments were 

performed in 5 non-survival, anesthetized felines, in which the sacral-level DRG and spinal roots 

were exposed bilaterally. A bipolar cuff electrode was placed on a S1 root distal to the DRG for 

stimulation. Microelectrode arrays were implanted in the same or opposite S1 and/or S2 DRG. 

We implemented a Kalman filter-based algorithm to estimate the bladder pressure in real-time 

using DRG neural recordings. The Medtronic Summit Research Development Kit was used to 

control sacral root stimulation when the algorithm detected an increase in bladder pressure. 

Closed-loop neuromodulation was performed during continuous cystometry and compared to 

bladder fills with continuous and no stimulation. Overall, closed-loop stimulation with DRG 

sensory feedback increased bladder capacity by 13.8% over no stimulation (p < 0.001). While 

there was no statistical difference in bladder capacity between closed-loop and continuous 

stimulation (p = 0.80), closed-loop stimulation reduced stimulation time by 57.7%. High-

confidence bladder single units had a reduced sensitivity during stimulation, with lower linear 
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trendline fits and higher pressure thresholds for firing observed during stimulation trials. This 

study demonstrates the utility of decoding bladder pressure from neural activity for closed-loop 

control of sacral neuromodulation. An underlying mechanism for sacral neuromodulation may be 

a reduction in bladder sensory neuron activity during stimulation. Real-time validation during 

behavioral studies is necessary prior to clinical translation of closed-loop sacral 

neuromodulation. 

 

4.2 Introduction 

Overactive bladder (OAB) is a dysfunction that affects millions of people worldwide. Patients 

suffer from frequent urinary urgency, with or without incontinence [87], leading to a variety of 

side effects such as poor sleep, declined mental health, and a low quality of life [88]. 

Conservative therapies such as anticholinergic drugs and intravesicular Botox injections are both 

associated with undesirable side effects, leading to low patient compliance [11], and 

anticholinergics are also associated with an increased risk of dementia [8]. Currently there is no 

pharmaceutical therapy that permanently reduces or eliminates the symptoms without serious 

side effects [8], [10].   

Sacral neuromodulation (SNM) is a standard clinical treatment for OAB after 

conservative approaches such as behavioral modification and pharmaceuticals fail [39]. One 

study reported that 82% of patients discontinued OAB medication after SNM treatment for at 

least 22 months [33]. In SNM, a stimulation lead is placed near the S3 or S4 sacral nerve in a 

minimally invasive surgery. SNM is applied constantly at 14 Hz to reduce the symptoms of OAB 

[103]. SNM often has higher success rates, defined as the percentage of patients with at least a 

50% improvement in symptoms, at improving urinary incontinence and voiding frequencyand 
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less severe side effects than Botox for refractory OAB [104]  . However, it has been reported that 

SNM patients can experience relapse of symptoms after 24 months [38] or longer [39]. 

Continuous stimulation can facilitate habituation of neural pathways over time [41], which may 

contribute to the relapse of symptoms. Pre-clinical and clinical pilot studies have demonstrated 

that sensory feedback-based, or closed-loop, stimulation of relevant nerves may offer greater 

clinical benefit by driving bladder function only when necessary, leading to increased bladder 

capacity [17], [43]. However, these methods either require patient activation multiple times a day 

or need a separate procedure for implanting a direct pressure monitoring device.  

Bladder sensory signals can be observed at sacral dorsal root ganglia (DRG) [74]. In 

addition to physical proximity to the sacral neuromodulation site, sacral-level DRG contain 

afferent-only signals from the detrusor muscle and urethra, via proximal pelvic and pudendal 

nerve fibers [52], [93]. In this study, we used sacral-level DRG as a recording site to estimate 

bladder pressure and the onset of bladder contractions in real-time [105] to automatically trigger 

closed-loop neuromodulation in acute, healthy cats. This is the first study to examine closed-loop 

SNM on bladder capacity using neural signals as feedback. While from a pre-clinical research 

perspective, bladder capacity is usually considered as the most important performance metric, in 

this study we also evaluate non-voiding bladder contraction behavior. Sensory neurons activated 

during bladder pressure increases and voiding contractions are also usually activated during non-

voiding contractions [105]. These non-voiding contractions may contribute sensations of urgency 

in OAB, and are therefore undesirable. We hypothesize that closed-loop stimulation increases 

bladder capacity over no-stimulation trials and reduces the frequency of non-voiding 

contractions (NVCs) to the same extent as continuous stimulation while applying significantly 

less stimulation.  
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4.3 Methods 

4.3.1 Animals 

All procedures were approved by the University of Michigan Institutional Animal Care and Use 

Committee (IACUC), in accordance with the National Institute of Health’s guidelines for the 

care and use of laboratory animals. Five adult, domestic, short-hair male cats (0.99 ± 0.27 years 

old, 4.70 ± 0.57 kg, Marshall BioResources, North Rose, NY) were used in this study 

(designated as experiments 1–5). Cats were used due to their high relevance to human 

physiology and their long history of study in bladder neurophysiology [65]. Prior to use, animals 

were free-range housed with up to 3 other cats in a 413 ft2 room with controlled temperature (19-

21 °C) and relative humidity (35-60%), food and water available ad lib, and a 12-hour light/dark 

cycle. Animals received enrichment via staff interaction and toys. 

 

4.3.2 Surgical Procedure 

As in prior studies [91], [105], animals were anesthetized with a mixture of ketamine (6.6 

mg/kg), butorphanol (0.66 mg/kg), and dexmedetomidine (0.011 mg/kg) administered 

intramuscularly. Animals were intubated and subsequently maintained on isoflurane anesthesia 

(0.5-4%) during surgical procedures. Respiratory rate, heart rate, end-tidal CO2, O2 perfusion, 

temperature, and intra-arterial blood pressure were monitored continuously using a SurgiVet 

vitals monitor (Smiths Medical, Dublin, OH). Fluids (1:1 ratio of lactated Ringers solution and 

5% dextrose) were infused intravenously via the cephalic vein at a rate of 10 mL/hr during 

surgery as needed. A 3.5 Fr dual-lumen catheter was inserted to the bladder through the urethra 

for fluid infusion and pressure monitoring. The urethra was not ligated. A midline dorsal incision 

was made to expose the L7 to S3 vertebrae and a partial laminectomy was performed to access 
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sacral DRG. A lab-fabricated bipolar stimulation cuff (1.5 or 2 mm inner diameter) was placed 

on the left or right S1 root encompassing both the sensory and motor branches.  

Two iridium oxide microelectrode arrays for neural recordings (4x8 configuration; 1.0 

mm shank length; 0.4 mm shank pitch; Blackrock Microsystems, Salt Lake City, UT) were 

implanted into (1) left and right S1 DRG or (2) S1 and S2 DRG on the same side using a 

pneumatic inserter (Blackrock Microsystems). Array reference wires were placed near the spinal 

cord and ground wires were attached to a stainless steel needle inserted below the skin (lateral 

and caudal to the laminectomy incision site). At the conclusion of surgical procedures, prior to 

experimental testing, animals were transitioned to intravenous alpha-chloralose (C0128, Sigma 

Aldrich; 70 mg/kg induction; 20 mg/kg maintenance). This transition was at least six hours after 

induction, and we expect that there were no residual effects on bladder function due to the 

induction dosing of ketamine, butorphanol, or dexmedetomidine. Analgesia was augmented with 

0.01 mg/kg buprenorphine every 8–12 hours subcutaneously.  

 

4.3.3 Closed-loop SNM System 

Prior to the main cystometry experiments, stimulation parameter optimization was performed.  In 

isovolumetric trials, 5 Hz (200 µs pulse width) stimulation on the S1 root was more effective at 

inhibiting bladder non-voiding and voiding contractions at 2 times the motor threshold (MT) for 

scrotum, anus or tail twitching, compared to 2, 7, 10, 15, and 33 Hz. 5Hz was selected for all 

experiments in this study.  The stimulation amplitude used for cystometry trials was varied 

across experiments, within 1-4 x MT (0.10 mA-0.72 mA), depending both on how effective 

bladder contractions were suppressed and the extent of movement artifacts that were caused by 
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stimulation. Experiments 1 and 5 used 1-1.5 x MT, experiments 2 and 3 used 4 x MT, and 

experiment 4 used 2 x MT. 

 Sacral nerve stimulation and microelectrode array recordings were integrated through the 

Medtronic Summit Research Development Kit (RDK) to deliver closed-loop stimulation. The 

RDK is comprised of an Olympus RC+S (B35300R) Implantable Neural Stimulator (INS) 

connected to a four-electrode stimulation lead (Medtronic Model 3889), the Summit Application 

Programming Interface (API), and other supporting hardware components including a Research 

Lab Programmer (RLP, a tablet mainly for setting stimulation parameters and safety limits),  

Clinician Telemetry Modules (CTMs) that enable wireless connection between the INS and the 

research host computer (for delivering closed-loop stimulation) or the RLP, a Patient Therapy 

Manager (PTM, for charging the INS and parameter setting), and a Recharge Therapy Manager 

(RTM) that enables inductive charging of the INS through the PTM. This full system was not 

specifically necessary to perform closed-loop stimulation during these anesthetized experiments, 

as we have demonstrated in a previous pilot experiment [105]. One of our goals for this study 

was to demonstrate feasibility with a wireless human use system [106] as a steppingstone for 

behaving preclinical experiments with a fully implantable system towards clinical translation.  

 The two stimulation cuff lead wires were attached to two of the four electrodes on the 

INS lead with modelling clay, which served both as an adhesive and an insulator for the 

connection. A setup diagram is shown in Figure 1. The Summit RDK software package allows 

programmatic control of the INS through a MATLAB interface, in which a previously developed 

Kalman filter algorithm [91], [105] was implemented to decode bladder pressure (as a control 

signal) from the neural recordings (collected at 30 kHz per channel through the Ripple Grapevine 

system and Trellis software). The neural recordings were processed into threshold crossings with 
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a positive and negative dual threshold at ±3.5-5.5 × root-mean square of the raw signal. A spike 

only needed to cross one of the thresholds to be captured. The algorithm extracted unsorted 

threshold crossing firing rates using a non-sliding 1-second interval window from recording 

channels and combined them with a state-dependent model to estimate the bladder pressure using 

a weighted average method. DRG microelectrode channels with a firing rate to bladder pressure 

correlation of greater than 0.7 were included in the model. If no more than one channel had a 

correlation greater than 0.7, then this cutoff was reduced in 0.1 increments until there was at least 

two channels used by the model. A cross-channel invalidation method was applied before the 

firing rates were calculated to remove threshold crossings that simultaneously appeared on over 

90% of the channels, to minimize the effect of stimulation artifacts.  

  

Figure 19. Illustration of the testing setup. DRG neural recordings were acquired with a Ripple Grapevine system and 
accompanying Ripple Trellis software via microelectrode arrays implanted in S1 and S2 DRG. Trials consisted of recording neural 
data and bladder pressure (monitored with a pressure transducer and amplifier) during saline infusions at a controlled rate via an 
intraurethral bladder catheter. Pressure data was recorded with the Grapevine system after amplification. Real-time decoding was 
performed in a MATLAB GUI that contains the Summit Application Programming Interface (API) that enables Bluetooth control of 

the Implantable Neural Stimulator (INS) through a Clinician Telemetry Module (CTM).  
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4.3.4 Experimental Trials 

Cystometry trials were performed in which the bladder was infused with 0.9% saline (warmed to 

41 °C) through a 3.5 Fr urethra catheter at 2 ml/min from an empty volume to when the first leak 

around the urethra catheter was observed. In each trial, one of three stimulation paradigms was 

used: continuous (“continuous SNM”), closed-loop stimulation, or no stimulation (except in 

experiment 5, in which only no-stimulation and closed-loop stimulation were performed due to 

unanticipated experimental circumstances that limited the testing time). In closed-loop trials, 

stimulation was initiated based on a bladder contraction detection algorithm, indicating when the 

DRG decoding algorithm showed an increase in bladder pressure within a certain time window. 

The first two experiments were exploratory, in which the contraction detection algorithm was 

varied and closed-loop sacral nerve stimulation was conditionally turned on for a fixed duration 

of 15-60 s when an estimated bladder pressure increase of 3-10 cmH2O was observed from the 

start of a 3-6 s window. Observations from cystometry trials and additional isovolumetric trials 

in these two experiments and a third, separate experiment without cystometry trials were used to 

select the final contraction detection algorithm. In the last three experiments, the contraction 

detection algorithm was fixed, and closed-loop stimulation was turned on for 15s after a 6 

cmH2O increase in estimated pressure was observed from the start of a 4-second moving 

window. The primary goal of this study was to demonstrate closed-loop stimulation, we 

prioritized running as many closed-loop and no-stimulation trials as possible within a limited 

experimental time; therefore, the order of the trials was not completely random. 
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After each trial ended, the bladder capacity was measured as the amount of fluid in the 

bladder when the first leak was observed. This was done by adding the fluid volume manually 

emptied from the bladder (through a urethral catheter) and any leak volume collected by a weigh 

boat. The bladder was allowed to rest for at least 15 minutes before initiating the next cystometry 

trial.  

 

4.3.5 Euthanasia 

After completion of all testing, animals were euthanized with a dose of intravenous sodium 

pentobarbital while under deep isoflurane anesthesia, and death was ensured with a secondary 

method of euthanasia as approved by the IACUC.  

 

4.3.6 Data Analysis 

Bladder capacity was measured in each trial and normalized to the control (no-stimulation) group 

average in each experiment (animal). A rank-based non-parametric Kruskal-Wallis test  was used 

to evaluate statistical significance in bladder capacity among no-stimulation, closed-loop 

stimulation, and continuous stimulation across all trials. A significance level of 0.05 was used. 

Post hoc pair-wise comparisons were performed with a Kruskal-Dunn test, with Bonferroni 

correction on p-values.  

We defined bladder contractions (NVCs or voiding contractions) as bladder pressure 

increases of at least 6 cmH2O in a 4-second interval (independent from the contraction detection 

algorithm). The number of bladder contractions were counted for each trial and normalized to the 

average of the no-stimulation trials for each experiment. The timing of each bladder contraction 

was matched with the stimulation initiation timing, and the true positive rate was calculated by 
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dividing the number of true positives (a bladder contraction successfully identified by the 

algorithm) by the total number of true bladder contractions. The average interval between 

bladder contractions for each trial was normalized to the no-stimulation group average for each 

experiment (animal). Similarly, the peak pressure (maximum pressure during voiding) for each 

trial was also normalized to the no-stimulation group average for each experiment (animal).  

The bladder pressure decoding performance was determined using the normalized root mean 

squared error (NRMSE) and the correlation coefficient (R) between the measured pressure and 

estimated pressure [91], [105]. 

While reviewing data after completion of experiments, we observed that stimulation may 

have had an effect on neural signalling. Thus we performed an additional post hoc analysis in 

which we identified bladder single units that appeared in at least one no stimulation trial and one 

continuous SNM trial. The units were isolated in Offline Sorter (Plexon, Dallas, TX) with 

automated clustering via principal component analysis followed by manual review of snippet 

waveform shapes by an experienced spike sorter. Only high-confidence single units that had a 

clearly identifiable waveform shape were included in this analysis. For SNM trials, 5 Hz 

stimulation artifacts were isolated from neural activity based on clearly differentiable waveforms 

appearing at a fixed frequency. We confirmed that stimulation artifacts did not obscure any of 

the bladder unit snippets. To quantify the relationship between identified bladder units and 

pressure, the correlation coefficient, linear regression slope, and minimum pressure at which a 

unit started firing (pressure threshold) were determined for each unit. We determined that a unit 

had started to fire when a single spike was detected. The average change in these parameters 

from no stimulation trials to SNM trials was calculated. A limited statistical analysis was 

performed due to a small sample size, as described below.  
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4.4. Results  

Overall, we performed 30 no-stimulation, 23 closed-loop stimulation, and 9 continuous SNM 

trials across five experiments. Bladder pressure decoding was performed in all closed-loop trials, 

and some of the no-stimulation and continuous SNM trials. Example testing trials in one 

experiment for all three conditions are shown in Figure 20.  

 

4.4.1 Normalized Bladder Capacity 

To assess the effectiveness of each SNM paradigm, we calculated the ratio between the bladder 

capacity for each trial and the average no-stimulation capacity in an experiment across 

experiments and all trials for each stimulation type. We observed a 12.8 ± 4.6% mean per-

experiment increase in normalized bladder capacity in the closed-loop stimulation group across 

all 5 experiments, and a 12.9 ± 6.5% per-experiment increase in normalized bladder capacity in 

the continuous SNM group in 4 experiments (no continuous SNM in experiment 5). Across all 

individual trials performed, the increase in normalized capacity was 13.8% (p < 0.001, range: -12 

to 34%) for closed-loop stimulation (n = 23 trials) and 9.1% (p = 0.26, range: -27% to 42%) for 

 
Figure 20. Cystometry curves for example no-stimulation, closed-loop stimulation, and continuous SNM in Experiment 
2. Closed-loop stimulation and continuous SNM increased bladder capacity (BC) compared to no-stimulation trials in 

these examples. 
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continuous SNM (n = 9, Figure 3a) compared to the control trials (n = 30). Closed-loop 

stimulation resulted in a similar bladder capacity as compared to continuous SNM (p = 0.80). 

Due to time limitations in each acute experiment, different counts of stimulation trial types were 

performed in each experiment, with an emphasis placed on performing as many closed-loop and 

no-stimulation (for control and buffering between stimulation trials) trials as possible. Across 

experiments, stimulation amplitude and the animal itself did not affect bladder capacity. 

We observed a positive correlation (R2 = 0.13) between normalized bladder capacity and 

stimulation percentage (total time when stimulation was on divided by total trial time, Figure 

3b). While this indicates that more stimulation was associated with a stronger bladder inhibition 

effect, there was no difference between partial (closed-loop) stimulation and continuous SNM in 

terms of bladder capacity (p = 0.80).  

 

4.4.2 Closed-loop Algorithm Performance  

To determine bladder contraction detection accuracy, we evaluated the ratio between correctly 

identified contractions and total number of contractions for each trial and across each 

experiment. On average, 39.5 ± 12.5% (across n = 5 experiments) of the non-voiding 

contractions were correctly identified by the decoding algorithm, triggering stimulation. The true 

 

Figure 21. (a) Bladder capacity for each stimulation type for all trials. (b) Bladder capacity against 
stimulation percentage for each trial. 
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positive rate was 35.9% (11.4% and 48.4% for the first and second halves of the cystometry 

trials, averaged across n = 5 experiments). Of the stimulation bouts triggered in all trials, 51% of 

the stimulation occurred in the first 75% of the cystometry, while 49% of the stimulation 

occurred in the last 25% of the cystometry (n = 5 experiments). Figure 4 shows the distribution 

of stimulation by time-normalized quartiles across all 23 closed-loop trials.  

To examine the effect of stimulation on non-voiding contractions, we calculated two 

ratios across the experiments: between the average inter-contraction intervals in each trial and 

the average intervals in no stimulation trials in an experiment, and between contraction counts in 

each trial and the average contraction counts in no stimulation trials. Overall, closed-loop 

stimulation led to a 112.4% increase in the normalized non-voiding contraction interval (n = 5 

experiments), while resulting in a small 3.2% decrease in the normalized number of contractions 

(n = 5 experiments) per trial. We observed that in some cases the start of stimulation 

corresponded with an NVC occurrence. This effect was not quantified but may have contributed 

to a minimal change in NVC count in the closed-loop stimulation group. While continuous SNM 

increased the non-voiding contraction interval by only 26.8%, it decreased the number of non-

voiding contractions per void by 51.2%.  The peak bladder pressure was slightly increased by 

closed-loop and continuous stimulation (1.5% and 3.9%).  

 

  
Figure 22. Box plots showing the quartile distribution of 

stimulation for closed-loop stimulation trials. 
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4.4.3 Decoding Performance 

To evaluate the decoding performance of the algorithm during stimulation, we calculated the 

NRMSE and R between the estimated bladder pressure and measured bladder pressure for each 

trial. Bladder pressure decoding was performed in real-time in each type of trial (Table 1). On 

average, decoding was performed with 5 DRG microelectrode channels (range: 2-11) in each 

experiment. As predicted, closed-loop stimulation trials had an increase in NRMSE and a 

decrease in R for bladder pressure estimation, as additional channel threshold crossings were 

detected during stimulation. While a cross-channel invalidation method was applied to remove 

threshold crossings that appeared on over 90% of the channels at the same time, we still 

observed an overestimation of the bladder pressure during stimulation. This was mostly due to 

stimulation-driven units and stimulation artifacts that appeared on fewer than 90% of the 

channels. In addition, we observed a positive correlation between normalized bladder capacity 

and the decoded pressure correlation coefficient R but not NRMSE (Figure 5).  

 

Table 8. Decoding performance by NRMSE and R across stimulation trials 

 

 

 

 

 NRMSE R 
 No Stim CLS Continuous SNM No Stim CLS Continuous SNM 
Mean 0.19 0.29 0.18 0.83 0.62 0.78 
St. Dev. 0.07 0.17 0.04 0.18 0.22 0.01 
n 9 23 3 9 23 3 
% Increase  55.27% -4.57%  -25.91% -7.07% 

 

Figure 23. (a) Normalized bladder capacity vs. NRMSE (R2 = 0.02, p = 0.52) (b) 
Normalized bladder capacity vs. R. (R2 = 0.08, p = 0.18). 
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4.4.4 Single Unit Analysis 

To investigate a potential interaction between SNM and bladder sensory neurons, we examined 

the relationship between their neural signals and bladder pressure during stimulation and no-

stimulation conditions. In experiments 1-4, eight bladder units that appeared in at least one no-

stimulation and one continuous SNM trial were identified with manual spike sorting. While 

overall we observed a much larger number of DRG microelectrode channels with bladder 

activity, only single units that were clearly distinguishable from stimulation artifacts were 

included in this analysis. On average, the correlation coefficient between the firing rate of these 

units and the bladder pressure during SNM trials was 9.1 ± 57.2% lower than during no-

stimulation bladder fills. The slope of linear regression trendlines between the single unit firing 

rate and bladder pressure in SNM trials was 35.5 ± 47.1% lower than no-stimulation trials. The 

minimum pressure at which bladder units first fired in SNM trials was 4.7 ± 5.5 times higher 

than in no-stimulation trials. For all bladder unit trials pooled together by stimulation type, 

continuous stimulation trials had a significantly higher pressure threshold (3.9 ± 3.7 cmH2O, 

range 0.8-10.2 cmH2O, median 2.3 cmH2O, p = 0.024) than no-stimulation trials (1.8 ± 2.4 

cmH2O, range 0.1-8.7 cmH2O, median 0.9 cmH2O) according to a Mann Whitney U test. Two of 

these bladder units are shown in Figure 6, with a representative 3-second interval showing 

differentiation of bladder units and SNM artifacts in Figure 6c. The parameters for each bladder 

unit are presented in Table 2. 
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Figure 24. Two examples of sorted bladder single units, from experiments 1 (a) [unit 1] and 4 (b), 
which demonstrate a reduction in sensitivity to bladder pressure changes during continuous SNM. 
Inset figures plot firing rate against pressure at each calculation interval, with linear regression 
trend lines overlaid in red. For (a), the no-stimulation Trial 26 is plotted against time. (c) Left: 

Raster plot of sorted threshold crossings showing a bladder unit, stimulation artifacts, and other 
crossings during an example SNM trial [exp. 1, unit 2], demonstrating differentiation of signals. 

Right: averaged bladder unit waveform (yellow) and stimulation artifact waveform (blue).  
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Table 9. Bladder unit change in correlation coefficient, linear regression slope, and pressure threshold change with stimulation. 

Exp Unit # R 
Change 

Slope 
Change 

Pressure 
Threshold 

Change 

No-Stim 
Trials 

SNM 
Trials 

Stimulation & recording 
electrode relative spinal nerve 

locations 

1 1 -83.8% -97.6% 389.2% 3 1 Opposite 
1 2 3.4% -43.8% 37.7% 3 1 Opposite 
1 3 -1.2% -16.8% 85.0% 3 1 Opposite 
1 4 4.1% -1.3% 65.2% 2 1 Opposite 
1 5 101.8% 46.9% -80.0% 3 1 Opposite 
2 1 -74.5% -92.6% 1337.0% 3 1 Opposite 
3 1 -23.6% -42.0% 1136.4% 4 3 Opposite 
4 1 1.1% -37.1% 764.6% 1 1 Same  

Mean -9.1% -35.5% 466.9% 
   

 
St. 

Dev. 
57.2% 47.1% 546.5% 

   

 

4.5 Discussion 

In this study, we explored the short-term efficacy of closed-loop sacral nerve stimulation for 

increasing bladder capacity in an anesthetized animal model. If translatable, our results suggest 

that closed-loop SNM could have a potential clinical impact by providing automated, 

individualized therapy that is linked to objective, physiological signals, a reduction in battery 

drain due to stimulation, and a reduction in unwanted or unpleasant stimulation sensations, 

which are a common adverse event [39].  While a reduction in battery use is primarily 

advantageous for primary cell devices, in the context of rechargeable devices that remain 

implanted in the patient for longer periods of time [107], closed-loop SNM may increase the 

recharge interval and improve chronic maintenance of therapy. Our study demonstrates that 

closed-loop stimulation may allow for this by providing the same or improved performance 

while applying stimulation at a fraction of the time. A reduction in total stimulation time may 

reduce nerve habituation over time and preserve the responsiveness of the stimulation target. 

However, the control system necessary to record neural signals and implement closed-loop 

control will require battery power. Systems for low-power neural recording and closed-loop 
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control are being developed for other applications [108], [109], and could be implemented for 

bladder control as the technology matures. Decoding can also be turned off for a period of time 

after voiding events are detected to save battery power. Additionally, our results suggest that 

SNM desensitizes bladder sensory neurons to changes in bladder pressure. This potential 

mechanism of SNM may be an important contributor to its therapeutic benefit and warrants 

further exploration.  

We successfully achieved closed-loop SNM by integrating real-time bladder pressure 

decoding from DRG with the Medtronic Summit RC+S stimulation system, which has been used 

in clinical research [106]. We demonstrated this full integration with in-vivo experiments and 

showed that closed-loop stimulation had at least the same level of effectiveness as continuous 

SNM in increasing bladder capacity (Figure 3a), however stimulation was only applied 42.3% of 

the time. The average normalized increase in bladder capacity across all closed-loop trials 

(13.8%, p <0.001 compared to no stimulation) was not significantly different than continuous 

SNM (9.1%) in this study and similar to a previous study (13.4%) that also performed sacral root 

stimulation with a chloralose-anesthetized feline model [97]. Zhang et al found that stimulating 

the dorsal side of the subdural sacral root increased bladder capacity in cats by 64% but used a 

different stimulation frequency (10Hz) [110]. Their experimental model also had a more invasive 

procedure than ours, in which one ureter was cut and tied, while the other was used for draining. 

Jezernik et al. observed that stimulating the dorsal root eliminated reflex bladder contractions 

[51]. Stimulating only the dorsal side is challenging in humans considering its proximity to the 

spinal cord and tight space in the spinal column. It may be possible to target the dorsal root or 

DRG for stimulation, instead of the whole spinal root as for SNM, using the percutaneous lead 

insertion method developed for DRG stimulation for pain [111]. However, the standard SNM 
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surgical procedure, in which the lead is inserted directly through the S3 foramen to target the 

spinal nerve, is a simpler and less invasive procedure.   

Many closed-loop studies have shown that stimulation on peripheral nerves during 

voiding, non-voiding contractions, or later parts of a bladder fill cycle can increase bladder 

capacity significantly, sometimes to the same level as continuous stimulation [17], [43], [44]. 

Potts et al. found in rats that SNM only in the second half of the bladder fill cycle increased 

bladder capacity significantly, while stimulating the first half did not [43]. Wenzel et al. found 

that pudendal nerve stimulation at the beginning of bladder contractions increased bladder 

capacity twice as much as continuous stimulation [44]. Similarly, in our study, closed-loop 

stimulation was dependent upon bladder contractions, and there was more stimulation in the 

second half of the bladder fill as bladder contractions became more frequent (Figure 4) and this 

was fundamentally different than an intermittent stimulation paradigm (i.e. stimulation applied in 

a 10 s on/off schedule) that does not utilize any sensory feedback. Clinical studies of dorsal 

genital nerve stimulation also suggest that stimulation only after the urge to void, for as short as 

30s in duration, can lead to mean subjective improvements of 73% in the incontinence score 

[17]. Compared to these closed-loop strategies, our method does not require patient intervention 

and uses a sensor implanted near the stimulation site.    

An increased NVC frequency or a decreased NVC interval are often associated with 

overactive bladder in pre-clinical models [96]. While it is unclear whether NVCs occur more 

often in human patients with OAB, NVCs activate the same bladder sensory neurons as voiding 

contractions and can therefore elicit an unnecessary urge for voiding that needs to be suppressed 

[105]. In this study, we demonstrated that both closed-loop stimulation and continuous SNM led 

to a lower number of non-voiding contractions per filling cycle, indicating that contractions were 
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inhibited. Also, closed-loop stimulation increased the interval between contractions compared to 

the no-stimulation group while slightly decreasing the number of NVCs per trial, which suggests 

a redistribution of NVC temporal patterns. It is unclear if this has clinical relevance. We did not 

expect the peak pressure to increase as a result of stimulation, and our study results were 

consistent with this expectation. We hypothesize that this outcome is because SNM relaxed the 

detrusor muscle, rather than tightened the sphincter muscle, which will lead to higher peak 

pressure. As a result, the overall bladder volume increased while peak pressure stayed consistent 

across trials.  

Five Hz stimulation was chosen for SNM based on frequency optimization trials that 

were performed in one pilot experiment. The selection of this frequency is consistent with a prior 

study demonstrating that 5 Hz dorsal root stimulation was optimal for increasing bladder 

capacity when compared to other frequencies [110] and similar results from another study that 

concluded 7.5Hz or 10Hz are optimal in minimizing iso-volumetric contractions [97]. This 

frequency seems to consistently inhibit bladder contractions within felines, as we confirmed a 

reduced isovolumetric contraction amplitude in all experiments in this study [97]. This use of a 

stimulation amplitude above motor threshold is common in anesthetized experiments (e.g. [97] 

achieved similar outcome measures as here; many others use twice motor threshold or higher in 

animal studies), as it helps mitigate against the suppressive effects of anesthesia. A previous 

behaving pudendal nerve stimulation study of ours had greater bladder outcomes at a stimulation 

amplitude that was twice motor threshold, which was well tolerated by the animals when the 

amplitude was ramped up [112]. Similarly, ramping up and down of SNM stimulation 

amplitudes has been described as mitigating uncomfortable sensations of stimulation initiation 

and cessation in clinical subjects [113].  Brink et al. [114] reported that supra-motor threshold 
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SNM stimulation that increased bladder capacity was successfully used and tolerated in fully 

conscious large animals. Additionally, this study used normal animals, which may have 

contributed to the need for higher stimulation amplitudes as compared to an OAB or simulated 

OAB model. 

The NRMSE and R decoding performance (Table 1) for no-stimulation trials was an 

improvement upon (NRMSE) or consistent with (R) our previously published bladder pressure 

decoding results (0.28 ± 0.13 and 0.84 ± 0.19, respectively) [105]. As anticipated, closed-loop 

stimulation increased the NRMSE (0.29, similar to [105]) and decreased the R for bladder 

pressure estimation, as additional threshold crossings were detected during stimulation (due to 

possible stimulation artifacts and/or stimulation driven units). Refinement of our cross-channel 

invalidation may be necessary. Additionally, stimulation itself may have led to a reduction in 

bladder sensory neuron sensitivity (Figure 6), which would have decreased decoding efficacy 

during SNM trials. However, it is unclear if sensory feedback is critically necessary during 

stimulation itself and may not have significantly altered the decision-making process of the 

closed-loop algorithm.  

We did not observe a strong correlation between bladder capacity and the NRMSE for 

pressure estimation (Figure 5a). Stimulation was only triggered by the closed-loop algorithm 

based on a relative increase in the bladder pressure, therefore the system could tolerate a small 

prediction error as well as any amount of baseline offset due to a shift in the noise floor. A large 

absolute error (or a large NRMSE) might not lead to a high error rate in our closed-loop system, 

but a low correlation coefficient may indicate a possible loss of channels and lead to inaccurate 

sensory feedback, less efficient stimulation, and ultimately, lower bladder capacity. The weak 

but positive correlation between R and normalized bladder capacity suggests that an increase in 
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bladder capacity may be associated with accurate sensory feedback and the timing of stimulation 

being applied in closed-loop neuromodulation. The accuracy of identifying bladder contractions 

was higher in the second half of trials, when stimulation was triggered more often (Figure 4) as 

the NVC rate increased. 

A potential hypothesis for the mechanism of action of SNM is that SNM stimulates 

sensory pathways, bringing down the level of urgency by inhibiting sensory neural firing [110], 

[115]. A study in cats showed that stimulating sacral-level dorsal roots inhibits isovolumetric 

bladder contractions, while stimulating the ventral root did not [110], which is consistent with 

this hypothesis. In our study, we analyzed the effect of SNM on some bladder sensory neurons 

(Figure 6, Table 2). For these neurons, we found that the pressure threshold increased and the 

firing rate as a function of pressure decreased during SNM. This could be a result of a direct 

effect of the stimulation on the bladder sensory neurons (e.g., collision block) or an indirect 

effect. We think an indirect effect is more likely given that in 6 /7 of the neurons that responded 

the stimulation lead was on the opposite side of the recording array. There are several possible 

mechanisms including inhibition of interneuronal transmission and inhibition of the 

preganglionic efferent neurons of the micturition reflex [115]. This was a small sample size and 

one neuron did not follow the trend of the other 7 units, however we believe this warrants 

additional follow up and may yield important insights into the mechanism of SNM.  

Both pre-clinical and clinical neurostimulation evidence suggests that continuous 

stimulation may not be necessary to deliver optimal  improvement in bladder capacity and 

incontinence [17], [43], [44]. Therefore, it is important to minimize the overall amount of 

stimulation delivered, as long-term chronic stimulation can facilitate neural habituation [42], 

reduce the effectiveness of SNM, and result in unwanted and unpleasant sensations [39]. The 
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methods developed in this study are translatable to clinical use. In this study, DRG were 

accessed with an invasive laminectomy that is unlikely to be performed clinically. DRG can also 

be accessed percutaneously at the lumbosacral level, as is done clinically for dorsal root 

stimulation for pain [100]. A similar approach may allow for less-invasive delivery of a non-

penetrating or minimally-penetrating microelectrode within the limited vertebral space around a 

target DRG. Recent research has demonstrated that DRG cell bodies are more likely to be 

located near the surface of feline and human DRG [101], [116], and that a thin-film DRG-surface 

electrode can record neural activity from the bladder in felines [99]. New electrodes with a lower 

profile and minimal immune response would be more feasible to implement clinically than those 

used in this study. 

An aim of this study was to increase bladder capacity, as low bladder capacity is one of 

the primary symptoms in overactive bladder. The anesthetized non-OAB animal model described 

in this paper has several limitations, including preventing a full evaluation of clinical OAB 

parameters such as urinary frequency, urinary urgency, incontinence episodes, and other 

symptoms. The non-dysfunctional bladder state of these animals may have limited the 

improvements that were possible for the bladder measures. It is also possible that anesthesia had 

a suppressive effect, or the relatively short intervals between bladder fills with different 

stimulation types had a carry-over effect. Awake testing with a dysfunctional bladder model 

across multi-week intervals may eliminate these potential confounds and would enable 

longitudinal comparisons between continuous stimulation and closed-loop stimulation. Our 

previous pudendal nerve stimulation study [112] demonstrated the feasibility of performing 

bladder neuromodulation with stimulation at or above motor threshold while recording 

urodynamic parameters (e.g. cystometry curve, bladder capacity, and voiding efficiency) in a 
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freely behaving feline model, and in a separate study we have observed bladder units in chronic 

feline experiments across multiple weeks [117]. Moving forward, experiments using awake, 

behaving animals may be most useful for evaluating both the acute and chronic effects of closed-

loop SNM without the influence of anesthesia, and would allow for assessment of stimulation 

amplitudes at and below motor threshold.  

4.6 Conclusion 

We have demonstrated that closed-loop SNM using DRG signals as sensory feedback can lead to 

a significant increase in bladder capacity in an anesthetized feline model. Our closed-loop 

approach matched the effectiveness of continuous SNM while using significantly less 

stimulation time. Additionally, our neural recordings from bladder sensory afferents suggested 

that SNM may cause a direct or indirect shift in the relationship between bladder sensory neuron 

firing rates and bladder pressure, which is consistent with a hypothesis that SNM works by 

reducing bladder afferent activity. Long-term studies with behavioral animal models will 

mitigate the effects of anesthesia and repeated bladder fills in a short time frame, and will be 

critical as a bridging translational step prior to clinical studies. 

 

4.7 Data Availability 

Raw data and analysis software code are available at https://osf.io/jq5hn/.  
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Chapter 5 Behavioral Monitoring and Neuromodulation of Feline Voiding Function 
 
 
 
 

5.1 Abstract  

Neuromodulation is a standard treatment for bladder dysfunction. Although preclinical studies 

continue to develop new approaches, these experiments are often performed under anesthesia 

that can affect normal bladder system activity. The goal of this study was to evaluate the use of 

typical neuromodulation parameters in an awake, behaving large-animal model. During an 

aseptic surgery, catheters were inserted into the bladder of two male felines and a cuff electrode 

was placed around the left pudendal nerve. Catheters and electrode leads were housed in an 

enclosure mounted on the lower back. After recovery, test sessions in an open enclosure were 

performed approximately weekly. In each session, body-temperature saline was infused while 

the bladder pressure was monitored until the animal voided one or more times. During some 

bladder fills, electrical stimulation of the pudendal nerve was applied (5 or 33 Hz; 1.5 or 2 x 

motor threshold - MT) to determine whether stimulation parameters affected the interval between 

voiding events or the voiding efficiency. Animals tolerated supra-threshold stimulation as long 

as the current was slowly increased to a target level. Five Hz stimulation increased the voiding 

interval over 33 Hz and no stimulation trials while 33 Hz stimulation at 2 MT led to a greater 

voiding efficiency. These results follow trends observed in non-behavioral studies, and support 

the use of this animal model in further translational bladder neuromodulation research. 
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5.2 Introduction  

Neuromodulation is a standard treatment for bladder dysfunction after conservative approaches 

have failed. Most preclinical bladder neuromodulation studies are performed using anesthetized 

animal models [97], [118]–[120]. Anesthesia not only suppresses voluntary control but also 

alters the autonomic control of the bladder [121]–[123]. Many anesthetized studies use high 

stimulation amplitudes well above thresholds for activating motor fibers [97], [118]–[120]. It is 

not well reported whether these amplitudes are tolerated by awake, behaving animals. For 

clinical implementation of preclinical developments, it is critical that necessary stimulation 

levels are fully tolerable. Only a few studies have used non-anesthetized bladder 

neuromodulation models, such as an immobile spinal cord injury feline model [124], [125], a 

diabetic rat model [126], and a stationary sheep model [114], in part due to the challenges of 

instrumenting and performing experiments with behaving animals. To our knowledge, there are 

no studies reporting the effect of neuromodulation on bladder function in a fully mobile large 

animal. This is a valuable preclinical model that has utility for a variety of bladder dysfunction 

types [127]. In this pilot study with awake, behaving felines, we demonstrated that supra-

threshold stimulation is tolerable and that bladder function can be modulated depending on the 

stimulation parameters. 

 

5.3 Methods 

5.3.1 Surgical Procedures  

All experimental procedures were approved by the University of Michigan Institutional Animal 

Care and Use Committee. Aseptic techniques were used for all surgical procedures, which were 

performed in a total of 4 animals. The first two animals did not have a pudendal nerve cuff 
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implanted, as detailed below, and had behavioral bladder monitoring sessions without nerve 

stimulation for an external collaboration. These animals are not discussed further here. The third 

and fourth animals underwent all procedures described in this chapter.. These primary animals 

(Experiments 1 & 2) were two male, domestic, short-hair felines (age: 1.0 years each; weight 6.4 

and 5.1 kg; Liberty Research, Inc.). Prior to surgery, they were anesthetized with a mixture of 

ketamine (6.6 mg/kg)- butorphanol (0.66 mg/kg)-dexmedetomidine (0.033 mg/kg) administered 

intramuscularly, intubated, and then maintained on isoflurane anesthesia (0.5-4%) during 

surgical procedures. Respiratory rate, heart rate, end-tidal CO2, O2 perfusion, and temperature 

were monitored continuously using a vitals monitor (Surgivet, Smiths Medical). Fluids (1:1 ratio 

of lactated Ringers solution and 5% dextrose) were infused intravenously via the cephalic vein at 

a rate of 5-10 ml/kg/hr. After a laparotomy, two catheters (1 mm inner diameter, Silastic 508-

005, Dow Corning) with injection ports mounted on the end were inserted into the bladder dome 

and secured in place with purse-string sutures. The catheter ends in the bladder were modified to 

have an arrow-like profile, with side wings that provided anchors inside the bladder. The 

catheters were tunneled subcutaneously to a dorsal midline incision just rostral to the tail. A 

custom-made bipolar electrode cuff (2 mm inner diameter) was placed around the left pudendal 

nerve via a postero-lateral incision. Catheter ports and electrode connections were housed within 

a 3-D printed photopolymer resin backpack (Formlabs) mounted rostral to the tail [117]. To 

mount the backpack, a stainless-steel base plate was secured under the skin to the iliac crests, 

with stainless steel wire wrapped around bone screws embedded in the bone. The housing of the 

backpack was screwed into four transcutaneous posts of the baseplate after all incisions were 

closed. Figure 25 shows a radiograph for one animal two weeks after surgery. After surgery 

completion, felines were weaned off anesthesia and ventilation and allowed to wake up on their 
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own. Each feline was monitored for at least 5 days after surgery before testing sessions were 

started. A feline was considered recovered from surgery when it was walking, eating, and 

behaving normally. Analgesics were administered for 3 days during the post-surgery period. 

Animals were free-range housed with 2–4 fellow felines in a 413 ft2 room with controlled 

temperature (19–21 °C) and relative humidity (35– 60%), food and water available ad lib, and a 

12 hr light/dark cycle. Enrichment was provided by toys and daily staff interaction.  

 

5.3.2 Awake Testing Sessions  

Test sessions were conducted approximately weekly in an enclosure consisting of two adjoined 

animal playpens (each with eight linked 0.61-m width by 1.22-m height panels) containing a 

litter box, non-absorbable litter, wet and dry food, and enrichments to encourage movement of 

the animal. Animals were either directly put in the cage or sedated first by an intramuscular 

injection of dexmedetomidine (0.019– 0.039 mg/kg, Dexdomitor, MWI Veterinary Supply). 

Pressure lines were connected to the catheter ports prior to testing and were hung from the 

ceiling to reduce tangling and provide strain 

relief (Figure 26). Bladder pressure was 

recorded by connection of fluid-filled tubing 

to the catheters, with one catheter also used 

as an infusion line. All pressure lines were 

flushed prior to experimentation to verify 

catheter patency. Pressure lines were 

connected to transducers (DPT-100, Utah 

Medical Products) and recorded with a PowerLab 8/35 (ADInstruments) or Grapevine Neural 

 

Figure 25. Radiograph of Experiment 1 feline showing 
implanted materials. 
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Interface Processor (Ripple) at 1 kHz. An isolated Pulse Stimulator (Model 2100, A-M Systems) 

was connected to the wires of the pudendal cuff electrodes with alligator clips for delivering 

electrical stimulation. A push-button input to the recording system was used to track stimulus 

initiation and termination. The motor threshold (MT) was evaluated in each test session by 

identifying the minimum stimulation amplitude that elicited visible external anal sphincter 

contractions. If sedated, animals were injected intramuscularly with Antiseden (0.19–0.38 

mg/kg, MWI Veterinary Supply) to reverse the effects of dexmedetomidine to begin the test 

session. Data recording began upon full awakening of the animal. Each test session consisted of 

one trial, where each trial consisted of multiple voiding events as a result of continuous infusion. 

In all test sessions, 41 °C sterile saline was infused at 0.5 ml/min into the bladder using a syringe 

pump (AS50 Infusion Pump, Baxter International). Bladder pressure was measured continuously. 

Electrical stimulation was only delivered in a subset of bladder fills, applied continuously from 

the end of a previous void to the end of the current void. The stimulation amplitude was constant 

within a test session, set at 1.5 or 2.0 of the MT. The frequency during stimulation was either 5 

Hz or 33 Hz with 200 µs pulse width. Stimulation frequency and amplitude combinations were 

randomized across trials. The stimulation amplitude was increased slowly, to limit pain or 

behavioral effects for the animal. In later sessions, nonabsorbable litter (Kit4Cat) was used to 

allow for manual collection of urine and more accurate measurement of voided volumes. Test 

sessions were recorded with video (C920 webcam, Logitech) for identifying voiding events and 

analyzing behavior. Animals were also continuously monitored with video in their housing room 

for overall health and behavior after implant procedures.  
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5.3.3 Data Analysis  

Voiding intervals were calculated by determining the onset of each void based on reviewing the 

session video and bladder pressure data. Voiding efficiencies were calculated by dividing the 

voided volume by the infused volume plus an estimate of urine generated (1.1 ml/kg/hr [128]). 

Efficiencies were normalized within animals, to account for the assumed constant urine 

generation rate yielding efficiencies over 100% for a few voids. A two-way ANOVA with pair-

wise comparisons was performed to evaluate the effect of frequency and amplitude on voiding 

interval and efficiency. Statistical significance was determined for α = 0.05.  

 

5.4 Results and Discussion 

In total, four animals received implants and underwent test sessions. The first two animals were 

used to develop behavioral bladder monitoring procedures and an external collaboration, and 

 

Figure 26. Experimental test setup. Bladder infusion and pressure 
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data from these experiments are not reported here. For the two primary animals, ten sessions (9.2 

± 4.8 d interval) were recorded for the first animal (Experiment 1) and five (7.0 ± 1.6 d interval) 

for the second animal (Experiment 2), yielding 94 voids. Voiding efficiencies were obtained for 

77 of these trials (82%). All data can be found at https://osf.io/v96kg/. 

 

5.4.1 Awake Behavior and Motor Thresholds  

Across test sessions, no signs of pain were observed as a   result of stimulation. When no 

stimulation was applied, the animals walked around, rested, ate food, or played. At low 

stimulation amplitudes, there was no noticeable change in behavior. As the stimulation amplitude 

was slowly ramped to ~0.25 MT, the animal typically paused their current activity then resumed 

or walked around, suggesting perception. In some cases, the animal groomed their pelvic region. 

As the stimulation was increased to above MT, scrotum twitching became visually noticeable for 

5 Hz stimulation. In a few trials, voluntary or involuntary left leg extension was observed while 

the animal was sitting or eating. However, no signs of pain were observed, such as vocalization, 

withdrawal, or shivering. Animals tolerated being in the enclosure for up to 2.3 hr. The MT had a 

decreasing trend over time in both animals (Figure 27). The average MT were 285.0 ± 56.4 µA 

and 494 ± 107.8 µA, for Experiments 1 and 2 respectively. These levels are comparable to those 

reported for anesthetized studies with a similar setup [118]. The presence of the implant system 

itself modified overall animal behavior. During a multi-day observation period, the Experiment 1 

feline visited a litter box every 2.1 hr on average, with 18.9% of voids occurring within 10 min 

of waking from sleep. The Experiment 2 feline had a shorter mean inter-void interval of 0.6 hr, 

with 18.2% of voids occurring within 10 min after waking. This contrasts with prior to surgery, 

as voiding intervals of 5.2 ± 3.7 hr and 3.3 ± 3.8 hr were observed for the two felines across a 
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24-hour period, with no voids within ten 

minutes of waking. We expect that a 

combination of the catheter within the 

bladders causing some irritation and 

general scarring around the implants led to 

a reduction in functional bladder volume. 

 

5.4.2 Behavioral Bladder Pressure Monitoring  

Awake bladder pressure traces were obtained for each session. Signal artifacts due to movement 

were not significant, particularly compared to pressure changes during a bladder contraction for 

voiding. Figure 28 shows an example test session with multiple voids during periods of no 

stimulation and neuromodulation. The general characteristics of non-voiding contractions and 

voiding contractions were similar to those reported in anesthetized felines [91], [96]. However, 

we observed that the contraction amplitudes were generally higher (40–100 cmH2O) than 

reported levels for anesthetized voids, and the onset of voiding contractions was often more rapid 

(data not reported). These observations support that anesthesia has a general suppressive effect 

on bladder activity. Our setup did not allow the pressure transducer to move with animals. Thus, 

changes in posture could affect the relative pressure reading against the fixed-location 

transducers. During initial testing, we used a modified backpack that allowed for on-animal 

mounting of pressure transducers however, this was cumbersome for the animal and created 

stress.  

 

 

Figure 27. Motor thresholds per testing date for each experiment. 
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5.4.3 Stimulation Effect on 

Voiding  

We observed that the voiding 

interval can be modulated by 

stimulation frequency and 

amplitude. Stimulation at 5 Hz 

increased the median voiding 

interval for both 1.5 MT and 2 

MT compared to no-stimulation and 33 Hz stimulation voids, with 2 MT yielding a stronger 

effect (Figure 29). This observation aligns with previous anesthetized studies showing that 

increasing the stimulation amplitude leads to greater inhibition of bladder activity [120], [124], 

and that 5 Hz is effective at increasing the voiding interval or bladder capacity [97], [120]. We 

also found that the voiding efficiency can be modulated, with the stimulation amplitude having a 

greater effect than the frequency (Figure 30, Table 10). At 1.5 MT, the median voiding 

efficiency showed a slight decrease for both 5 Hz and 33 Hz voids compared to no stimulation. 

At 2 MT, the voiding efficiency was significantly greater than at 1.5 MT (p = 0.017, Table 11). 

Only 33 Hz at 2 MT increased the median voiding efficiency as compared to no stimulation 

periods, though the difference was not significant. The use of 33 Hz for increasing voiding 

efficiency aligns with prior studies with anesthetized animals [118], [119]. Regardless of 

stimulation amplitude, 5 Hz stimulation consistently resulted in longer voiding intervals and 

lower voiding efficiencies compared to 33 Hz. Regardless of stimulation frequency, 2 MT 

consistently resulted in both higher voiding intervals and higher voiding efficiencies. This 

suggests that higher-amplitude stimulation can potentially deliver better overall clinical results if 

 

Figure 28. Example session with multiple voids across no-stimulation 
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given at a tolerable level. In contrast, there may not be a single stimulation frequency that most 

effectively modulates all urodynamic parameters, as different stimulation frequencies may be 

necessary to maximize clinical utility for both continence and micturition 

 

 

Table 10. ANOVA Results(p-values) for Effect of Neuromodulation on Voiding Parameters 

Factor Voiding Interval Voiding Efficiency 

Frequency (no stim, 5 Hz, 33 Hz) 0.366 0.304 

Amplitude (no stim, 1.5 MT, 2 MT) 0.208 0.034 

Frequency x Amplitude 0.605 0.299 

 

 

 
Figure 30. Effect of stimulation amplitude and frequency on 
normalized voiding efficiency. Data within box plots as in 

Figure 29. 

 

Figure 29. Effect of stimulation amplitude and frequency on 
interval between voids. Box plots indicate median values 
(middle line), 25th and 75th percentiles (lower and upper 

edges of boxes = interquartile range IQR), and minimum and 
maximum values (lower and upper error bars), with outliers 
that are 3 x IQR outside the 25th or 75% percentile indicated 

by individual dots. 
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Table 11. Stimulus Amplitude Pair-wise Comparison Results (p-values) for Effect of Amplitude Alone on Voiding 

Factor Level Combination Voiding Efficiency 
No Stimulation – 1.5 MT 0.514 
No Stimulation – 2 MT 0.107 
1.5 MT – 2 MT 0.017 

 

5.5 Conclusion  

This is the first study to investigate the effect of neuromodulation on bladder function in a 

healthy, behaving large-animal model. We found that in an awake animal, stimulating the 

pudendal nerve as high as 2 MT is well tolerated and can result in improved voiding efficiency 

and longer voiding intervals. While 5 Hz was preferential for continence-like effects such as 

increasing the voiding interval, 33 Hz was preferential for enhancing micturition, as has been 

reported previously. Further study, with a larger sample size will allow for increased 

quantification of urodynamic parameters, a wider exploration of the stimulation parameter space, 

and evaluating conditional rather than continuous stimulation. 
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Chapter 6 Discussion and Future Directions  
 
 
 
 

6.1 Summary of Main Findings and Discussion 

This dissertation work closely examined the feasibility of using DRG neural recordings as 

sensory feedback for closed-loop neuromodulation of bladder function. Built upon prior 

knowledge of bladder afferent neurons, this work further explored their potential for use as 

sensory feedback in closed-loop control through algorithm development and evaluation, real-

time decoding implementation, proof-of-concept demonstration, and ended with method 

development for awake and behaving animal experiments as a steppingstone towards more 

advanced animal models and clinical translation.  

The first study (Chapter II) found that both algorithm and feature selection methods were 

significant in affecting bladder pressure decoding accuracy. State dependent, non-linear models 

performed better in both absolute pressure estimation and correlation coefficient (CC) compared 

to a non-state-dependent linear model. This result aligned with the original hypothesis because 

state dependent models addressed the hysteresis relationship between bladder afferent signals 

and pressure and smoothed out firing rate fluctuations of the noise floor by weighing in the 

previous state estimation. More specifically, a recursive Kalman filter yielded a higher average 

correlation coefficient (CC) to the measured pressure compared to both linear regression and a 

one-hidden-layer neural network model, and was successfully implemented in the closed-loop 

system that used relative pressure increase in later experiments (Chapter III).  
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While a Kalman filter has been widely used for brain computer interfacing and peripheral 

nerve motor intent decoding in the past [64], [129], this is the first time such an algorithm was 

optimized and implemented to estimate the state of an autonomic organ and shown to be superior 

to a linear model. It is important to note that other non-linear algorithms have been tuned offline 

for bladder pressure or volume decoding [79], [89], [90], [130] (around the same time this study 

was published), using intraneural dorsal horn or less selective extraneural pudendal and pelvic 

nerve activities, but these sensory targets do not guarantee sensory-only information and have 

low translational value, as they have infrequently been successfully accessed for clinical therapy 

delivery. While it is exciting to see methods being developed to decode bladder pressure from 

various other targets with similar results to this study, intraneural DRG signals remains a highly 

possible sensory feedback site for use in clinical translation of closed-loop neuromodulation.  

Another promising finding was that single unit neural signals, even with their high 

specificity and lack of noise, provided a comparable decoding performance as threshold 

crossings activity [53], a conclusion that is consistent with previous cortical interfacing studies 

[58], [80]. With similar signal qualities, threshold crossings are a more appealing algorithm 

choice because they are computationally cheaper to process and potentially more stable in the 

long-term. Due to the slow rhythm of the bladder, larger firing rate calculating intervals (1-2 

seconds) yielded smoother firing rates and improved estimations, especially CC, by providing 

more channels with correlated firing rates. This work also provides the first proof-of-concept for 

decoding bladder pressure from neural recordings using an algorithm based on data collected at 

an earlier date in a chronic implant. Overall, this study (Chapter II) selected the optimal 

algorithm and corresponding parameters to calculate bladder pressure from DRG signals; the 
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pressure estimate can potentially be implemented for closed-loop application, leading to the next 

study with a focus on real-time algorithm testing.  

The second study (Chapter III) showed a successful implementation of the optimized 

decoding method from the prior study (Chapter II) in real-time under both healthy and simulated 

OAB conditions. The simulated OAB model presented a significant reduction in bladder capacity 

and an earlier onset of non-voiding contractions (NVCs) compared to the healthy model. It is 

beneficial to use such a model in anesthetized experiments, as anesthesia normally increases 

bladder capacity and potentially suppresses bladder afferent activities, but bladder irritants can 

have an opposing effect based on empirical observations from the study. This is the first study to 

use neural signals for bladder state decoding in real-time (or online). As the primary result, 

online decoding yielded a comparable correlation coefficient and absolute pressure estimation 

compared to prior offline bladder pressure decoding literature [53], [79], [89]–[91], [130]. A 

post-hoc analysis was performed to understand the source of errors that contributed to the gap 

between the estimation and measurement, and the results showed the shift in baseline firing rates 

from training to testing trials was the most common cause of an error in absolute pressure 

estimation. As an unexpected finding, this study suggests that an irritant like acetic acid is 

correlated with a general increase in the sensitivity of both threshold crossings and single units, 

leading to an improved decode. This increased sensitivity could be due to greater activation of 

bladder neurons by the irritant or a secondary effect of a faster rise in the bladder pressure due to 

an effectively smaller bladder. This observation is supported by a prior study comparing pelvic 

nerve activity between acetic acid and saline fills in a rat model [94]. However, a study using a 

different irritant (Prostaglandin E2, or PGE2) showed that decoding using a saline fill model in a 

PGE2 trial resulted in underestimation of pressure, which was corrected by incorporating PGE2 



 102

in the training model [89].  At the end, two pilot closed-loop trials showed potential of this 

approach by demonstrating a 40% bladder capacity increase (n=2) compared to the baseline. 

Real-time decoding from lumbar-level DRG has been done in the past for closed-loop limb 

control in a controlled, anesthetized setting [54]. Although also under a very controlled 

environment, this study is the first time that DRG signals have been used to demonstrate 

effectiveness in closed-loop control of bladder capacity. While pudendal nerve stimulation, as 

seen in this study, has been used to manage OAB symptoms, the sacral root is a much more 

prevalent and established clinical target.  

The third study (Chapter IV) demonstrated the short-term efficacy of DRG signal-based 

closed-loop SNM for increasing bladder capacity. The study showed that closed-loop SNM 

significantly increased bladder capacity compared to no stimulation. This increase was 

comparable to continuous stimulation while reducing over half of the stimulation time. In closed-

loop trials, the total stimulation delivered in the last 25% of the bladder fill was almost the same 

amount as the total stimulation delivered in the first 75% of the fill, when the bladder was mostly 

quiescent. While previous closed-loop studies using direct pressure measurements have pointed 

to similar conclusions [131], [132], this is the first time that recordings from DRG have been 

used as sensory feedback for closed-loop bladder control. If translatable, our results suggest that 

closed-loop SNM could have a potential clinical impact by providing automated, individualized 

therapy that is linked to objective, physiological signals, a potential extension in device longevity 

due to less battery drain during stimulation, though the power needed to control the algorithm is 

yet to be studied. Additionally, our results suggest that SNM may desensitize bladder sensory 

neurons to changes in bladder pressure. This potential mechanism of SNM may be an important 

contributor to its therapeutic benefit and warrants further exploration.  
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Moving from algorithm development [91] to real-time bladder pressure decoding [105], 

and eventually closed-loop SNM [133], this dissertation systematically demonstrates that DRG 

signals are a promising source of sensory feedback to improve SNM therapy for OAB 

symptoms. Prior closed-loop work with similar neurosensory feedback goals used whole nerve 

cuff recordings from the pudendal [44] or sacral nerves [51], which contain motor components 

and low sensory signal selectivity. While these studies provided moderate-quality feedback that 

delayed voiding events [44] and suppressed isovolumetric contractions [51] acutely in controlled, 

anesthetized animal models, whole nerve recordings are unlikely to yield high fidelity signals 

during long-term survival experiments. Other closed-loop neuromodulation work used non-

neural feedback, such as external anal sphincter muscle EMG (in SCI patients) [47], bladder 

volume [43], and patient on-demand feedback [17], [134], some of which has advanced to 

clinical evaluations and yielded positive results [17], [47], [134], [135]. These are promising 

sensory feedback options; however, EMG does not directly reflect bladder sensory information; 

bladder volume is difficult to measure accurately especially when the volume is low under OAB 

conditions and does not necessarily reflect urgency; and patient on-demand control ultimately 

leads to more patient burden as compared to a fully automated closed-loop system. In 

comparison, multi-channel recordings from DRG signals offer the potential for direct bladder 

state monitoring while minimizing patient involvement.  

The first three chapters of this dissertation advanced the field as they improved 

neurosensory feedback for bladder control by integrating bladder sensory information from 

multi-channel intraneural signals, obtaining high robustness in bladder state estimation and 

potential usability in behaving models. While advanced bladder state decoding and algorithm 

optimization has been performed in prior studies using various neurosensory targets, such as the 
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lumbosacral dorsal horn [90], [130] and pudendal nerve trunk [79], and yielded similar decoding 

accuracy compared to DRG decoding, these studies did not advance to real-time or even closed-

loop demonstration. 

The final study (Chapter V) developed an awake testing protocol for ambulatory 

monitoring of urodynamic parameters during neuromodulation in felines. Bladder pressure and 

voiding events were successfully measured in four animals while the animals were moving and 

behaving with minimal restriction. Voiding efficiency and bladder capacity were calculated for 

two animals that voided with or without pudendal nerve stimulation, which were focused on in 

this dissertation. The neuromodulation effect of 5 Hz on bladder capacity and 33 Hz on voiding 

efficiency and bladder excitation in awake felines was consistent with conclusions drawn from 

anesthetized studies [97], [118]–[120]. Not only did this pilot study yield comparable results as 

prior anesthetized studies but it also provided a steppingstone towards closed-loop studies in 

awake and behaving animal models. This is the first study to investigate the effect of 

neuromodulation on bladder function in a healthy, behaving large-animal model. This is a step 

forward from previous neuromodulation studies, which were either performed under sedation or 

anesthesia [97], [118]–[120], or an awake setting but the animals were immobilized [114], [125]. 

Achieving this milestone has opened up the possibility of testing advanced closed-loop 

neuromodulation paradigms in more clinically relevant animal models.  

 

6.2 Future Directions 

Moving forward, further tuning of the closed-loop control is crucial in more advanced models. 

Towards that, we are evaluating closed-loop SNM in awake, behaving felines. This new study 

has a secondary goal of improving the understanding of DRG signal composition and the effect 
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of neuromodulation on DRG signals 

over time. Preliminary results from a 

sedated chronic-implant experiment 

have shown the possibility of closed-

loop control (Figure 31a) using 

chronically implanted electrode 

arrays. DRG bladder units have been 

identified in behavioral closed-loop 

trials, however there was a lower 

signal-to-noise ratio (SNR) due to 

motion artifacts (Figure 31 b). A 

lower SNR might be addressed by 

common referencing, a more advanced artifact rejection and signal selection algorithm, and 

hardware improvements to maintain feedback accuracy. Chronic decoding robustness may also 

be improved by applying information theory. Our collaboration with Imperial College London 

showed that bladder afferent neurons can be classified into three primary types that contain 

almost mutually exclusive information in bladder pressure, and that decoding from pooled types 

and activity clusters is robust against neuron loss [60].  

 From a translational aspect, the risk of surgery complication associated with interfacing 

with DRG in addition to the sacral nerve must be minimized. DRG may be accessed 

percutaneously at the lumbosacral level [100], as opposed to through a laminectomy procedure 

as done in this study, to minimize surgery invasiveness. In addition, intraneural recording might 

not be a requirement, as recent research has demonstrated that DRG cell bodies are more likely 

Figure 31. (a) Closed-loop pudendal nerve stimulation under alfaxalone 
anesthesia. The correlation coefficient (R) for the pressure estimation was 0.82. 

(b) Behavioral closed-loop SNM. R for the pressure estimation was 0.71.  In 
both cases, stimulation was turned on for 15 seconds after a 5 cmH2O increase 

was observed in a sliding 4 second window. Spike raster shown for example 
bladder unit at bottom. 
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to be located near the surface of the DRG [101], and that a thin-film surface electrode can record 

bladder pressure single units [99]. It may be possible to interface with the DRG through the same 

or a similar electrode insertion process as SNM lead placement. Further studies are needed to 

examine this approach, in large animal models. Closed-loop stimulation may reduce unpleasant 

stimulation sensations that have been reported for some patients receiving standard SNM by 

reducing the amount of total stimulation time. However, a ramp-up transition between 

stimulation off and on epochs during adaptive SNM is likely necessary, as repeated stimulation 

initiation events may be uncomfortable to patients [134].  

Signal stability in chronic experiments is crucial to the robustness of the closed-loop 

system, but it has not been fully demonstrated yet in our animal model due to neural signal loss 

and electrode migration over time [117]. While penetrating arrays used in this dissertation have 

yielded high signal selectivity, stable chronic DRG recording across months or even years will 

require the recording interface to be uniquely tailored to the mechanical and neuroanatomical 

properties of DRG to minimize tissue scarring and neuronal damage. Initial work in this 

direction such as high-density thin film electrodes [99], [136] and carbon fiber electrodes [137], 

[138]  have been developed and tested acutely in animal models.  

Finally, closed-loop neuromodulation with objective biomarkers is undoubtedly where 

the field is heading to provide improved, more efficient, and individualized therapy for all 

patients with varying levels of OAB symptoms. OAB can ultimately be eliminated by identifying 

the biomarkers that reflect the disease state and dosing electrical stimulation accordingly. The 

success of this method relies on more advanced hardware and algorithms that will likely be 

based on this dissertation work.  
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