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Abstract: This paper investigates the false data injection attacks (FDIA) in an AC smart island and the detection solution of the
attack on distributed energy resources in a smart island. In this study, a new scheme of FDIA detection is proposed based on
wavelet singular values as input index of deep learning algorithm. In the proposed method, switching surface based on sliding
mode control breaks down for adjusting accurate factors of wavelet transform and then features of wavelet coefficients are
extracted by singular value decomposition. Indexes are determined according to the wavelet singular values in switching
surface of voltage and current which defines the input indexes of deep machine learning and detecting FDIA. This cyber-
protection plan has been put forward for cyber diagnostic and examined in different types of attacks happening in voltage and
current signals derivation of measuring sensors as well as sending and receiving data from communication and control systems.
The main priority of the suggested detection plan is the high capability to detect FDIA with a high accuracy. To show the
effectiveness of the proposed method, simulation studies are performed on AC smart island in MATLAB/Simulink environment.

1 Introduction
In situations where the main grid and electricity utilisation are far
apart, like distant islands and segregated communication stop, it is
not economically efficient or is practically tough to supply
electricity by transmission lines. In such situations, the advisable
way is to provide power in the islanding mode of a microgrid (MG)
incorporating renewable energy resources such as wind turbines,
photovoltaic, and fuel cells. In such a smart island (SI), the MG
distributed generation units are in the charge of voltage, frequency,
and current control, fault protection and cyber-attack detection [1].

SI is an efficient way of merging renewable energy resources,
storage devices, and new electronic loads that can work apart from
the utility grid in an islanding. In addition, the nature of operating
units at AC paradigm resulted in a brilliant way to boost the
performance [2]. To enhance the robustness and scalability,
distributed controllers are recommended in micro-grids for
avoiding the only failure point compared with the centralised
communication, due to their extremely dependable process when
link crashes [2]. Furthermore, distributed control philosophy is an
economical option as it is easily able to accommodate through
lower volume of data transformation with not involving
considerable traffic countering the intensive communication [3]. In
MGs, helpful secondary controllers are used for different purposes
like average voltage adjustment and proportionate load sharing [1].

SI security involves two main aspects: physical security and
cyber security. Physical security represents the ability of a SI to
maintain a normal working state in the presence of severe
disturbances. Cyber security refers to the security of the
communication networks and computer systems which support the
SI operation. In recent years, cyber security has become a
significant threat to smart city and SI system due to the pervasive
application of information technologies. Moreover, weaknesses in
cyber security can also threaten the physical security of the SI due
to the deep integration of the physical and cyber systems [4].

Cyber-attacks are capable of undermining or even totally
disrupting the control systems underlying electric power grids. It
was traditionally believed that cyber-attacks were incapable of
threatening the security of industrial systems. However, cyber-
attacks have resulted in many security challenges in recent years

and have become a critical concern for both industrial control
system users and vendors [4].

Conventional MG operation is running via a central supervisory
controller and data acquisition that is appropriate for high-level
operations containing worldwide optimisation and agent obligation
[5]. This controller suggests operative coalition of important sub-
systems which is necessary to have secure performance [6]. Focus
of control functions, presuming complete accessibility to
information of system, is considered as advanced objectives at
islanding MGs (IMGs) and isolated power systems that do not have
accessibility to outside grids. Nevertheless, this concentrated plan
is in danger of alone-spot devastations in physical and cyber-
attacks that intrude by the IMG's process [4]. Data transferring
using the applied communication networks are in peril to attack
due to the lack of firewalls and absence of good encryption keys in
communication protocols which have not been updated to the latest
version to countermeasure the exposure of cyber-attacks [7]. New
MGs are applied as commercial off-the-shelf calculating platforms
which reportedly permeated through attackers lately [8]. Cyber
menaces on MGs demand immediate attention as a result of the
maritime systems nature, lots of them are far from the land and
includes long-range communication [9]. Cyber-attacks are able to
damage the system through growing the operating costs,
interference with acute loads, and creating total system collapse.

Generally, individual sensors at wide extend networks are the
essential aim of security compromises. The compromised agent is
able to simply reach to the data in a compromised node. Although
authentication approaches stand upon cryptography or security
gateway design, like that was explained in [10], they are
impenetrable owing to the calculation and storage restrictions of
the system. Current studies in the smart grid background mostly
emphasis on the network security of the cyber elements [11],
advanced misfit diagnostic mechanism [12], and secure control
theories stand upon techniques of different state estimation [13].

Several research studies have been conducted on suggesting
different false data injection attacks (FDIAs) approaches and
expanding similar detection mechanism. Abdollah et al. [14]
investigated the attack strategy on the basis of Gaussian process
and this strategy was applied based on machine learning for
detecting the attack. Liu et al. [15] developed an FDI detection
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mechanism based on using attributes of the low measurement
dimensions and lack of attack. In [16], authors integrated the
biggest weighted remaining procedure and tantamount
measurement conversion with the aim of finding the FDIAs.

Only a few studies have been published on AC-based FDIA,
because of recognising complication of non-linear systems [17]. A
graph-based algorithm is introduced in study [18] with the aim of
identifying a series of endangered sensors that is enough to create
an uncontrollable attack. However, this method was presented only
for a single attack and different types of attacks were not
considered. Rahman and Mohsenian-Rad [17] studied AC-based
FDIA on the basis of linearisation around the target state default
that SE is attained through a special algorithm, which can be very
sensitive in operation. Soltan et al. [19] studied physical attacks
and joint cyber on power grids, which has been developed to a
simplified model of AC power flow and to the fault data injection
ways.

In our suggested real-time detection method, deep learning
algorithm is employed to detect the manner schema of the FDIAs
by applying the historical measurement data and we use detector
features to recognise the attacks of the FDI in real time.

Deep learning methods are recently suggested to catch the
higher order statistical structure of the intricate data through
ordering the detector features in layers. One of the essential deep
learning techniques which is widely used is deep belief network
which is created with a group of restricted Boltzmann machines
(RBMs) [20].

Choosing appropriate variables with the aim of implementing
the neural networks in an efficient way is vital. The control of the
MGs is usually carried out using voltage and current measurements
and potential attackers consider them as direct targets. Through
injecting fault data to the voltage and current measurements, the
attacked variable will be launched with the aim of controlling
application and also it can disarrange MG application control.

Moreover, if both voltage and current measurements are
controlled in a separate way, in case of system attack, the suggested
deep learning anomaly detection strategy is able to diagnose
different attacks on current measurements and voltage
measurements these attacked variables can to be recognised
directly with no expansion of detection strategy. The proposed
method is able to inhibit more complication of the FDIAs detection
where suggested method is considered for each agent. It is assumed
that when both load alternation and cyber-attack do not occur at the
system, SI acts as normal. In this case study, strategy of detection is
able to diagnose among a cyber-attack and load variation. Also, the
attack can be exactly identified with this method as part of a cyber-
attack. At the end, the suggested FDIA detection in a SI is an
offline digital time-domain manner and simulated in MATLAB
with the purpose of proving the efficiency, productivity, precision,
and validity of the proposed method.

This paper is organised as follows. Section 2 introduces SI
model. Section 3 illustrates the state estimation and false data
injection method, respectively. Section 4 defines wavelet transform

(WT), singular value decomposition (SVD), deep learning, and
suggested FDIA detection scheme. Section 5 presents case study
and investigates proposed FDI detection mechanism under various
case studies. Finally, the paper is concluded in Section 6.

2 Smart island model
2.1 Smart island

SI is an island where information and communication technology
(ICT) is used to increase operational efficiency, share information
with everyone as well as improving service delivery.

The exact definition of a SI raises depending on the target
community. The main goal of SI is to increase the efficiency of its
smart operations, economic growth as well as attracting more and
more tourists. On a SI, it is trying to increase the level of well-
being on these islands by using data analytics as well as new
technologies. The success of SI depends on a strong relationship
between DGs on the island. SI uses a combination of internet of
thing (IOT) technologies, software solutions, user interface and
communication networks. A SI is more depended on IOT
equipment than anything else. IOT is a network of interconnected
devices that communicate with each other and exchange data. The
data collected is stored on a server or cloud in an IOT network. A
SI must have a smart energy to attract more tourists and increase
the level of well-being and spend times in the best way. So, smart
energy is one of the major challenges of the SI.

Saving energy and increasing productivity are the main goals of
SI. To achieve these goals, various technologies such as smart
sensors, smart lights, smart grids are used. Smart grids are used to
monitor energy consumption in different locations, balance and
supply and save the energy.

What is being studied in this paper is investigating FDI attacks
and detecting the attacks on the current and voltage sensors and
controller in a SI where data is sent and received to the generation
units and central control unit [21].

Fig. 1 illustrates block diagram of SI with central control unit
that consists of DGs, various loads, relays, sensors, and central
control units. Whole part of the SI, which is connected to the
central control unit and measurement data, sends and/or receives
information via fibre cable or wireless which can be an attack
surface.

3 State estimation and FDIA
3.1 State estimation

State estimation is considered as one of the essential parts of
central control unit in the SI that is able to calculate the operational
state in each bus from different meter measurements. The outcome
of state estimation is applied in higher layer applications including:
contingency selection, security assessment and security restriction
economic dispatch, and so on. The AC on the basis of state
estimation model is shown as below:

Fig. 1  Single line diagram of smart islanding
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x = h x + e (1)

Where the vector x = x1, x2, …, xn
T defines the real time

measurement data that consists of power injection and power flow
measurements at buses and transmission lines, respectively; the
vector z = z1, z2, …, zn

T defines the system state that consists of
the phase angle and voltages at buses; the vector e = e1, e2, …, en

T

defines the measurements noise, which is supposed to be Gaussian
distribution [22]; n > m; h x  defines the functional dependency
among state variables and measurements. The topology structure
which is derived from the switch/breaker equipment, determines
the accurate type of h z .

The weighted least squares strategy solves the model (1). In this
way, solving the below optimisation problem can help to obtain
estimated state variables z^ vector:

min J z = 1
2 x − h z TW x − h z (2)

where W defines a diagonal matrix expressed as = diag δi
−2, 0 ,

where δi
−2 defines the measurement errors variance related with the

ith meter 1 ≤ i ≤ m .
By solving (2) (applied an iterative algorithm), the estimated

state variable is computed. The validation of ẑ is defined through
bad data detection that applies largest normalised residual test and
J ẑ  defines the performance index [22]

J ẑ < C (3)

In which J ẑ  is considered to track a chi-square distribution, with
threshold C set to several predesignated importance level. The
estimated state variable x^ can be applied in other application, just
when model (3) is assumed. Since the primary sources, which are
provided by switch/breaker and meters equipment and processed
by the state, are from both digital and analogue measurements, any
destructive behaviour in contrast breakers/switch and meters
equipment may result in security problem in the power grids. The
cyber topology attacks and FDIA which are mentioned below can
be considered as a special attack that are able to impress the state
estimation outcomes through manipulating measurements of the
switch/breaker and meters equipment.

3.2 False data injection attacks

The FDIA, which is first suggested by Liu et al. [22], can be
considered as a cyber-attack in which state estimation outcomes are
destroyed through injecting false data into meter measurements in a
precise and harmonious way. A successful FDIA warrants that the
state estimation residual drops under the hypothesis test threshold,
despite the existence of malicious injection data.

In summary, the secret attack manipulated the state estimation
input as xbad = x + a , where a is considered as the vector of
malicious injection datum. So, model (1) can be formulated as
below:

xbad = h z + a (4)

The estimated state variable z^ has a deviation according to the
iterative algorithm, stated as ẑbad = z^ + c. While the false estimated
state variable ẑbad crosses the bad data detection, the attack has
been successfully launched, assuring

J ẑbad < C (5)

Model (4) should be solved by attacker which assures test (5) to
initiate this attack. An accurate vector of a is a key to this problem
and several ways are able to gain this.

An attack is assured test (5) in this condition, if the attacker is
able to assure ẑbad = J ẑ , this attack is named FDIA; otherwise, it
is named a generalised FDIA. The first one is on the basis of DC
layout, whereas the second one is mostly on the basis of AC layout.

In this study, an AC layout for the state estimation is considered
with greater relation to applied grid function.

4 Detection mechanism of FDIA
In this part, the FDIA detection mechanism applied the advantages
of WT and SVD to extract the detailed components to use as an
input index of deep learning. At first, the structure of the suggested
method is defined. Finally, the performance of the method is stated
with short statements to the technique engaged.

4.1 Wavelet singular values

4.1.1 Wavelet transform: Usual 1D decomposition consists of
time-domain or frequency-domain resolution which is generally
not able to obtain the attack pattern and it is hard to get the
composed cyber-attack detection of the AC SI merely based on the
data provided through frequency or time domain. Time frequency
is depicting as an effective method in decomposing sensor signals
to detect the attack by providing a vision into the main data in the
time context. Different methods, such as S-transform (ST), short-
time Fourier transform (STFT), and WT, are able to figure out
time-frequency imaging. Nevertheless, due to the fixed frequency
resolution of STFT and the frequency dimness for wide frequency
band of ST, WT is adopted to transform 1D fluctuation signals
processing in this study. WT is a useful way to extract time-
frequency in detail, due to lower time decomposition and higher
frequency decomposition in low frequency section [23]. WT is
named a microscope of signal decompositions. It is able to
demonstrate the information of low frequency in extensive scale
and locally ascertain the feature of high frequency in small scale.
WT is perceived through computing the internal yield of the
condition resolution signal z t  and the wavelet foundation
function θa, τ t . Therefore, WT is specified as follows [24, 25]:

WTz α, τ = ∫
−∞

+∞
z t θα, τ t dt = ∫

−∞

+∞
z t θ t − τ

α dt (6)

where α and τ are the dilation factors (it is implemented
fundamental wavelet stretching) and the translation factor (it is
reflected wavelet function displacement) in transformation,
respectively.

4.1.2 Singular value decomposition: It can be assumed that the
original discrete signals X = [x 1 , x 2 , …, x M  are gathered. The
Hankel matrix is able to construct on the basis of the phase space
reconstruction opinion as follows [25]:

Y =

x 1 x 2 …
x 2 x 3 …
…

x M − m + 1
…

x M − M + 2
…
…

x m
x m + 1

…
x M

(7)

where 1 < m < M, let n = M − m + 1, then YϵRn*m. The attacker
orbit matrix is reconstructed by this matrix. The matrix M exposes
the dynamic features of the attacker in the reconstruction space by
reconstructing the specifications of the attractor. So, Y is able to
express as Y = D + W, that D indicates the M − m + 1 *m matrix
of the smooth signal in the reconstruction space and W indicates
the M − m + 1 *m matrix of the noise interposition signal.

The SVD is applied to the mentioned matrix Y, the following
relational equation is obtained:

Y = USVT (8)

In (8), U and VT are M − m + 1 * M − m + 1  and m*m matrices,
respectively, S is a diagonal matrix of M − m + 1 *m, the main
diagonal elements are δi i = 1, 2, …, j  and
j = min (M − m + 1 , m), namely:

S = diag δ1, δ2, …, δk (9)
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In (9), δ1, δ2, …, δk are the singular values of matrix Y, and
δ1 ≥ δ2 ≥ ⋯ ≥ δk ≥ 0 is satisfied, VT and U define the right and
left singular matrix.

4.1.3 Deep learning algorithm: Deep learning algorithm is based
on a neural network which consists of several hidden layers among
the input and output layers. It is able to model intricate non-linear
relevance between various kinds of variables. These network
parameters are achieved through unsupervised learning for input
data layer by layer, and then supervised learning is applied for fine-
tuning. Deep learning patterns conduct to have more intricate
details at higher output layers, and the learned intricate details will
be invariable by alternating of input [26]. In this study, the deep
auto-encoder (DAE) learning type is applied to exploit the
relevance and details from the SI's voltage and current that are
measured by sensors, send/receive to each other and controllers.
For a DAE network, its training process includes two phases, pre-
training and fine-training, that are used to gain the DAE network
layout parameters.

4.2 Pre-training of the DAE

The DAE is a deep learning network that consists of diverse RBM
stacks. In the DAE, each RBM output is assumed as a new input of
a higher level RBM to gain the transmission of learning outcomes
layer by layer. Each hidden layer is repeated several times to
initialise the parameters.

The workmanship of the DAE network consists of two
operations, encoding and decoding. In the encoding function, at
first, the input X is converted to construct a series of details for
subsequent layer-wise conversions, and the intricate details are
gained in upper layers. Eventually, the code Y is obtained by the
encoding function.

Similarly, the code Y is converted back to the main input
iteratively through RBMs and the renovation of X, X^  is produced
in the decoding function. The encoding and decoding mechanisms
are shown in Fig. 2. 

As it can be seen in Fig. 3, the RBM contains two-layer
network of a random Markov kind that has N visible modules
vi = 0, 1 N and M hidden modules hj = 0, 1 M. The energy
pattern is presented to the related energy of the common structure
modules in the RBM, though

E v, h = θ − ∑
i = 1

N
aivi − ∑

j = 1

M
hjbj − ∑

i = 1

N

∑
j = 1

M
wi jvihj (10)

That θ = wi jvihj  displays the weight among visible module i and
wi j displays the hidden module j. bi displays the bias of visible
module and aj displays the hidden module.

The common distribution among modules on the basis of the
energy pattern in the RBM is defined as follows:

P v, h ; θ = 1
z θ exp −E v, h ; θ

; z θ = ∑
v

∑
h

E v, h ; θ
(11)

z θ  defines the normalising constant. The network presents each
input vector probability values through the energy function. The
probability can be raised through alternating parameter θ in (10) to
set the energy value.

The hidden modules contingent distributions h and input vector
v in the RBM are defined as

P hj = 1 v = f ∑
i = 1

N
Wi jvi + bj

P vi = 1 h = f ∑
j = 1

M
Wi jhj + ai

f x = 1 − e−2x

1 + e−2x

(12)

where (x) defines an activation function which is derived as tanh
function. The activation function essence is to keep the
specifications of the activated neuron and its mapping. In this
study, tanh function is replaced as the activation function for
sigmoid. If the input is among [−1, 1], the sigmoid value is
alternated sensitively. While the input is out of or close to the
interval, the sensitivity of sigmoid value will be reduced. When the
network precision diminishes, the sigmoid value will be in the
saturated status. Further, the output convergence of tanh is faster
than function sigmoid. Tanh's input and output is able to keep a
non-linear steady ascent and drop relevance to face the BP network
gradient solution [27].

Fig. 2  DAE network framework
 

Fig. 3  RBM framework
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In every RBM network, the hidden layer modules activation
data is indicated as the input data extracted details. In other words,
the RBM learning purpose is to gain the parameter θ  to regain the
main input information perfectly. Hence, the visible layer
likelihood function v is made to gain the parameter θ in the
following equation:

L θ; v = ∏
v

Pθ v =
∑h e−Eθ v, h

∑v, h e−Eθ v, h (13)

As can be seen in (13), the algorithm is derived from both sides,
and the derivative of logarithm function is offered by respect
θ = {w, b, a) as follows:

∂l n L(θ; v)∂

∂θ = ∑ln Pθ(v)
∂θ

= ∑ EPθ(h v − ∂Eθ v, h
∂θ − EPθ v, h − ∂Eθ v, h

∂θ
(14)

Next, the gradient is estimated by the contrastive divergence
(CD) method. The one-step CD learning is used to update the
parameter θ [28]. The loss function is able to define as (15) to
diminish the input X information lost and gain precise parameters
in the DAE

JAE θ = 1
N ∑

xϵX
Re X, f X^

(15)

The parameter θ is gained through applying the gradient descent
manner to reduce the loss function. Therefore, the update
procedure can be explained as follows:

wk + 1 = wk + ε
∂JAE θ

∂w (16)

ak + 1 = ak + ε
∂JAE θ

∂a (17)

bk + 1 = bk + ε
∂JAE θ

∂b (18)

That ε defines the learning rate. Then, an appropriate parameter θ
is able to obtain through the RBM's hierarchical training procedure.

After training every RBM, the learnt data from the central
control unit data of SI components stands in the hidden layer to be
able to apply as the higher layer input to construct required data.
These hidden layer parameters are obtained in order to finish the

whole DAE network training θ. During the training phase, the
central control unit's unlabelled data for long-term common
operating states in the SI are chosen as the training data after the
details are extracted by WT and SVD. The variable vector of every
detail i is specified as Xi

Xi = xi1 xi2… xim (19)

i defines the SI parts name, xi j defines the jth parameter in the
central control unit variable vector of the detail i. For example, the
SI variable vector consists of voltage, current, and so on to be able
to reflect the status of SI.

To reduce computation error caused by the numerical
differences in parameters of various kinds of SI parts and to keep
the main information structure invariant, the central control unit
information is preprocessed into the interval [0, 1] through
normalisation.

4.3 Fine-tuning of DAE parameters

Each hidden layer's biases and weight of multi-layer RBMs are
updated after the DAE hidden layers are trained with the RBMs,
and the DAE layout framework will be constructed. The DAE
network pre-training is an unsupervised learning of the central
control unit information. Therefore, the learning outcomes are able
to apply as a priori values for DAE network supervised learning.

The fine-tuning training merely requires local search on
parameters gained through pre-training since the optimisation
convergence time is significantly simplified in this procedures.
Eventually, the parameters gained through these training
procedures are better than being trained alone through the BP
method [29]. After fine-tuning, the DAE network optimised
parameters are retrieved.

For DAE networks of SI parts, the input to output mapping
defines one-to-one, and any segment has the similar physical sense.
Fig. 2 is exposed X^  and it defines the input reconstruction X, that is
corresponded to the central control unit variables in X.

Hence, the status of SI components is able to evaluate through
analysing the relevance among X and X^  (Fig. 4). 

4.4 Proposed detection mechanism

Firstly, the current and voltage ingredients are regained and is
decomposed with WT to extract precise factors and then detailed
factors are analysed with SVD to extract singular values. Finally,
these singular values are applied as the input indexed to deep
learning to detect the FDI attacks.

In this work, the input to wavelet singular values (WSVs)
approach contains 200 patterns. WSVs are extremely sensitive to
the signal magnitude alternating and these WSVs, as input indexes
of deep learning, are able to detect several FDI attack and diagnose
load alternating from FDI attacks. Fig. 1 indicates the procedure of
suggested method of attack detection.

5 Case studies
5.1 Cyber-physical model

An AC SI which consists of mth distributed generation units is
displayed in Fig. 5. These units are linked to each other in parallel.
Therefore, the voltage-frequency mode to stabilise the SI voltage
and current control mode to share and divide load among DG units
is defined by central control unit and send/receive data via fibre
cable and wireless network [1]. Fig. 6 shows a typical layout of a
SI unit and cyber-attack surfaces.

According to the sliding mode controller, the index of FDIA
detection mechanism in voltage and current parameters is
described as [1]

SV = ẋ − λx~, x~ = x − xbase (20)

where SV is the voltage index which is used to extract the detailed
signal by WT and SVD, then the extracted signal is applied as the

Fig. 4  Suggested FDIA detection method
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input of deep learning to detect FDIA. λ is a positive number, x and
xbase are the SI voltage and base voltage. The base voltage has a
constant domain and frequency

SI = z − zbase (21)

where SI is the current index which is used to extract the detailed
signal by WT and SVD, then the extracted signal is applied as the
input of deep learning to detect FDIA. z and zbase are the smart
islanding current (product by any distributed generation) and the
base current of loads which is defined via central control unit.

Fig. 3 illustrates an AC SI which is simulated in this study
under several case studies. DC sources or uninterruptable power
supply is coupled to the DC/AC inverters and inter-connected via
timelines to create the SI physical layer. Every DC/AC inverters
have a local primary and secondary controller. A communication
network undirected cyber plan is investigated in this study that
sends and receives data through its neighbours. Also, loads and the
converter output of any agent are coupled to each other.

The diagram of communication is illustrated as a graph by links
and edges by an adjacency matrix B = bi j ϵ RM*N, the proposed
communication weights is shown as follows:

bi j = > 0, if zi, zj ϵ A
0, else

(22)

Wherever two nodes are linked together via an edge (A), zi and zj
are the local node and neighbouring node, respectively. The

communication weights illustrate data exchange only between two
related nodes and can be demonstrated through a matrix with
incoming data, Xin = ∑ i ϵ Mai j.

So, if both matrices were equal together, the Laplacian matrix L
is balanced, that L = Xin − B and its parts are set by

Ii j =
° mi , i = j
−1, i ≠ j
0, otherwise

(23)

where the degree of ith node is deg mi  and L = Ii j ϵ RM × N.
 

Remark I: All agents are gained consensus through
z k + 1 − z k = − μLz k  for a well-spanned matrix L. Therefore,
limk → ∞ zi k = c, ∀ i ϵ M, where c and μ are constant and positive
values, respectively. M is considered as the agents’ number.

5.2 Simulation results

Fig. 7 exposed two system models as agent layout (see Fig. 6a) and
cyber physical layout of a SI which consist of three DG units that
are linked together via resistive lines (see Fig. 6b) with
Vref = 110sin 2*pi*60 . 

The system characteristics and control parameters are listed in
[1]. To understand the study better, each attack occurs in the case
study are divided by a determined time-gap. 

Fig. 5  Cyber-physical layout of AC SI: blue arrows display the cyber layer
and black lines display the physical circuit

 

Fig. 6  Typical layout of a unit of SI and cyber-attack points
 

Fig. 7  Two system models are illustrated
(a) Agent layout, (b) Cyber-physical SI consists of three AC DG units

 

Fig. 8  FDIA based on altering the amplitude of voltage reference signal
(a) SI voltage, (b) Wavelet decomposition, (c) Input indexes of deep learning on basis
of WSVs
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Case study I: In this state, the FDIA is on altering the amplitude of
voltage reference signal. The system behaviour is investigated in a
sample of this FDI attack type and deep learning indexes are
extracted on basis of WSVs.
FDIA is started and removed at time t = 0.5 s and t = 1 s,
respectively. The amplitude of voltage reference signal is changed
(reduced by 10%). The simulation results of this case study are
shown in Fig. 8. The SI voltage is demonstrated in Fig. 8a. The
WTs of signal and wavelet decomposition at several levels are
indicated in Fig. 8b. To obtain the efficient singular values in order
to calculate the WSVs as input indexes of deep learning to detect
cyber-attack, the wavelet coefficients d1, …, d4  are engaged.
The sample input indexes of deep learning based on WSVs are
shown in Fig. 8c.
Case study II: In this state, the FDIA is on altering the frequency of
voltage reference signal. The system behaviour is investigated in a
sample of this FDI attack type and deep learning indexes extracted
on basis of WSVs.
FDIA is started and removed at time t = 0.5 s and t = 1 s,
respectively. The voltage frequency is altered from 60 to 50 Hz.
The simulation results of this case study are illustrated in Fig. 9,
where the SI voltage is demonstrated in Fig. 9a.
The WTs of signal and wavelet decomposition at several levels are
shown in Fig. 9b. To obtain the efficient singular values in order to
calculate the WSVs as input indexes of deep learning to detect
cyber-attack, the wavelet coefficients d1, …, d4  are engaged.
The sample input indexes of deep learning based on WSVs are
shown in Fig. 9c.
Case study III: In this state, the FDIA is on adding a white noise to
voltage reference signal. The system behaviour is investigated in a

sample of this FDI attack type and deep learning indexes extracted
on basis of WSVs. FDIA is started and removed at time t = 0.5 s
and t = 1 s, respectively. The voltage of SI is altered by mixing a
noise with the reference signal of voltage via attack in the
controller. The simulation results of this case study are illustrated
in Fig. 10. The SI voltage is demonstrated in Fig. 10a.
The WTs of signal and wavelet decomposition at several levels are
indicated in Fig. 10b. To obtain the efficient singular values in
order to calculate the WSVs as input indexes of deep learning to
detect cyber-attack, the wavelet coefficients d1, …, d4  are
engaged. The sample input indexes of deep learning based on
WSVs are shown in Fig. 10c.
Case study IV: In this state, the FDIA is on sensor voltage signal or
sending voltage via fibre cable or wireless network. The system
behaviour is investigated in a sample of this FDI attack type and
deep learning indexes extracted on basis of WSVs.
FDIA is started and removed at time t = 0.5 s and t = 1 s,
respectively. The voltage of SI is altered by an attack in sensor
voltage signal or sending voltage via fibre cable or wireless
network. The simulation results of this case study are illustrated in
Fig. 11. The SI voltage is demonstrated in Fig. 11a.
The WTs of signal and wavelet decomposition at several levels are
extracted. To obtain the efficient singular values in order to
calculate the WSVs as input indexes of deep learning to detect
cyber-attack, the wavelet coefficients d1, …, d4  are engaged.
The sample input indexes of deep learning based on WSVs are
shown in Fig. 11b.
Case study V: In this state, the FDIA is on altering the load
reference current signal on agents II and III. The system behaviour

Fig. 9  FDIA based on altering the frequency of voltage reference signal
(a) SI voltage, (b) Wavelet decomposition, (c) Input indexes of deep learning on basis of WSVs
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is investigated in a sample of this FDI attack type and deep
learning indexes extracted on basis of WSVs.
FDIA is started and removed at time t = 0.5 s and t = 1 s,
respectively. The voltage of SI is altered by an attack in the load
reference current signal on agents II and III. The simulation

outcomes of this case study are illustrated in Fig. 12. Loads current
is shown in Fig. 12a. The DGs current is depicted in Fig. 12b.
The WTs of signal and wavelet decomposition at several levels are
indicated in Fig. 12c. To obtain the efficient singular values in
order to calculate the WSVs as input indexes of deep learning to
detect cyber-attack, the wavelet coefficients d1, …, d4  are
engaged. The sample input indexes of deep learning based on
WSVs are shown in Fig. 12d.
Case study VI: In this state, the FDIA is on sensor current signal or
sending current via fibre cable or wireless network in a way to
deteriorate the current sharing profile among agents II and III. The
system behaviour is investigated in a sample of this FDI attack type
and deep learning indexes extracted on basis of WSVs.
FDIA is started and removed at time t = 0.5 s and t = 1 s,
respectively. The voltage of SI is altered by an attack in the sensor
current signal or sending current via fibre cable or wireless
network in a way to deteriorate the current sharing profile among
agents II and III. The simulation results of this case study are
shown in Fig. 13. The loads current is demonstrated in Fig. 13a.
The DGs current is depicted in Fig. 13b.
The WTs of signal and wavelet decomposition at several levels are
extracted. To obtain the efficient singular values in order to
calculate the WSVs as input indexes of deep learning to detect
cyber-attack, the wavelet coefficients d1, …, d4  are engaged.
The sample input indexes of deep learning based on WSVs are
defined in Fig. 13c.
Case study VII: Loads alternation.

In this state, the system behaviour is investigated under various
loads alternation and deep learning indexes extracted on basis of
WSVs.

Fig. 10  FDIA based on adding a white noise to voltage reference signal
(a) SI voltage, (b) Wavelet decomposition, (c) Input indexes of deep learning on basis of WSVs

 

Fig. 11  FDIA on sensor voltage signal (SI voltage diminished)
(a) SI voltage, (b) Input indexes of deep learning on basis of WSVs
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Resistive, inductive, and non-linear loads are connected to the
SI at time t = 0.4 s, t = 0.8 s, and t = 1.2 s, respectively. Linear
loads are disconnected at time t = 0.8 s (as can be seen in
Fig. 14a). The simulation results of this case study are illustrated in
Fig. 14.

The sample input indexes of deep learning in normal condition
without attack based on WSVs are shown in Figs. 14b and c.

Simulation results and discussion: A confusion matrix is used
for performance evaluation, which represents the four possible
outcomes when we compare the actual data point labels given by
an expert to the corresponding data point results generated by a
given classification algorithm. In this case, the four possible
outcomes include: hit rate HR , false alarm rate FR , miss rate
MR , and correct reject CR . To have a better realisation of these

four criteria, the confusion matrix is provided in Table 1. 
The suggested anomaly detection procedure can construct each

of these four intentions in Table 1 as true negative (TN), false
negative (FN), true positive (TP), and false positive (FP). These
intentions are constructed on the basis of the actual system
information and the suggested anomaly detection layout reaction.

To verify the validation of proposed deep learning in FDIA
detection, several sample tests are used. The efficiency of
suggested detection mechanism is evaluated by using the FDI
attack model and the evaluation outcomes are offered. The
performance of proposed detection mechanism is evaluated by
using the FDI attack model and the evaluation outcomes are
summarised in Tables 2 and 3. From Tables 2 and 3, it can be
observed that the proposed mechanism is able to detect the FDI
attacks with detection accuracy over 97%, that illustrates the
efficiency of the suggested detection method on detecting the FDI
attacks.

6 Conclusion
In this paper, a DAE deep learning network is presented to detect
FDIA in an AC SI. Although several researches have been
conducted for attacks and detections in DC systems, only a few
works have focused on the AC peer that is widely adopted by SI.
Proposed FDIA layout is focused on deep learning. The WSVs of
compound WT and SVD to extract indexes are applied as input of
deep learning to diagnose cyber-attack from normal conditions.
Outcomes discover that WSVs are sensitive to sudden signals
alternations and are capable of defining deep learning input indexes
to detect FDIA. Therefore, this paper suggested a highly accurate
and intelligent detection layout for securing the SIs in front of FDI
attacks with detection accuracy over 97%. To evaluate the
efficiency of our FDIA diagnostic mechanism, we performed a
comprehensive series of simulations on an AC SI. The DAE
network scheme is trained via normal and compromised condition
of SI data. The planned detector is able to achieve outstanding
attack diagnostic function. Also, it was explained how suggested
model achieved superior performance in the face of malicious

Fig. 12  FDIA on altering the load reference current signal: current
division on units 2 and 3 are deteriorated
(a) Loads current, (b) Current of DGs, (c) Wavelet decomposition, (d) Input indexes of
deep learning on basis of WSVs

 

Fig. 13  FDIA on sensor current signal: current division on units 2 and 3
are deteriorated
(a) Loads current, (b) Current of DGs, (c) Input indexes of deep learning on basis of
WSVs
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attacks with various severities ranging from 10 to 100% data
injection.
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Fig. 14  Loads alternation
(a) Loads current, (b) Input indexes of deep learning on basis of WSVs of voltage, (c)
Input indexes of deep learning on basis of WSVs of current

 
Table 1 Confusion matrix of the suggested detection layout

Actual value
Detection model
response

Positives Negatives
Positives hit rate TP false alarm rate FP
Negatives miss rate FN correct rejection rate

TN
 

Table 2 Suggested detection layout
Label Number

of testing
data

Identified to be
compromised

Identified
to be

normal

Detection
accuracy,

%
compromised 1348 1312 36 97.36
normal 1174 14 1160 98.84

 

Table 3 Confusion matrix of the suggested detection layout
Actual value

Detection model response Positives Negatives
Positives 97.36% 1.16%
Negatives 2.64% 98.84%
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