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Abstract: A task selection method for multi-faced static phased array radar resource management in dynamically changing environments

using recomposable restricted finite state machines is presented. Restricted finite state machines allow the design of a composed finite state

machine with resource limitations by restricting some of the inputs. Recomposable restricted finite state machines allow the state space of

a finite state machine to change dynamically, which allows the modelling of a dynamically changing environment. Applying dynamic pro-

gramming to restricted finite state machines yields optimal policies for a given cost function and applying breadth-first search or limited

breadth-first search with fixed depth yields suboptimal solutions for the current state. The authors model a task selector for the radar in an

overloaded battlefield situation using recomposable restricted finite state machines and obtain a radar resource allocation policy using

dynamic programming when the environment changes dynamically and the resources are limited. The suboptimal solution for the current

state is obtained using heuristic methods: breadth-first search, or limited breadth-first search in the task selector for large-scale problems.

Furthermore, the authors consider distributed architectures for multi-radar systems with communication channels. The results show that

their approach performs well from the standpoints of both computational time and performance.

1 Introduction

In this paper, we study multi-faced static phased array radar re-

source management in dynamic environments. By management,

we mean task assignment that considers the finite resources. By

dynamic environments, we mean that the environment may

change unpredictably in time. A phased array radar is advantageous

compared with the traditional rotating radar. For instance, the

phased array radar is multifunctional, and does not have rotating

parts; instead, it uses electronically steered radar beams, can

perform track/search tasks simultaneously, and so on [1–3]. We

develop a multi-faced static phased array radar task selector and

test it for single radar and multi-radar scenarios. We focus on

making decisions of how to allocate finite radar resources when

the resources are not sufficient to perform all tasks, in a dynamically

changing environment. Thus, we assume that the radar only can use

a fixed amount of energy at each time step, and we do not consider

detailed radar control and scheduling. Here, we mainly focus on al-

location of radar energy to area search and threat tracking for dis-

crimination subject to given constraints, and on implementation

of our own original methodology for dynamic modelling and effi-

ciency. By discrimination, we mean collecting information to iden-

tify the threat. We use finite state machines (FSMs) to design a task

selector for the radar and apply dynamic programming (DP) to

obtain the policy, or heuristics to obtain the policy/solution. By so-

lution, we mean the sequence of decisions at the current state. By

policy, we mean the solutions for all the states.

1.1 Motivation

Our motivating problem is as follows. Consider a geographic area

in which two enemy forces operate. The red force consists of mul-

tiple threats (used to represent either missiles or aircraft). The blue

force consists of ships that carry multi-function phased array radars.

The ships are deployed throughout the area; they use their radars to

detect threats, and can communicate among themselves. The goal of

the red force is to destroy the blue force. The goal of the blue force

is to detect and destroy the red force. Our goal is to provide algo-

rithms to determine the set of the tasks to perform when the avail-

able energy is not enough to perform all the tasks at each discrete

time step to detect, discriminate, and obtain as much information

as possible on threats, which is then sent to an interceptor unit

that processes (attempts to destroy) the threats. This is realistic in

view of the standard separation of responsibilities on battleships.

We refer to the tasks performed by our algorithms as radar resource

management.

Our designs do not contain all the physics and details necessary

for individual radar control. However, they were suggested by radar

modelling experts at Office of Naval Research and appropriate for

the study of distributed policies/solutions and communication strat-

egies. A distributed system can achieve cooperation of radars using

communications. Distribution of tasks across the fleet (to avoid du-

plication of effort) and communication of information between

radars may be advantageous. For distributed fleet-level radar

systems, each radar uses its own task selector rather than one

global task selector. A distributed architecture is advantageous

compared with a centralised one from the standpoints of computa-

tional time and flexibility of organisation.

In addition, the radar resource management must deal with a

dynamic environment. The blue force does not know a priori how

many threats the red force has at its disposal, or their nature.

Every time a new threat is detected, the situation awareness must

be updated, and the tasks for the radar are initiated based on the

available resources.

1.2 Literature review

There have been many approaches to the problem of modelling and

control of battlespaces. In [4], time-based state-space models are

used to represent a stochastic system. Discrete system based model-

ling for adversarial situations can be found in [5] using FSMs and in

[6] using hybrid automata.

A number of papers have studied allocation of multi-function

radar resources. Butler [7] compares a rotating phased array radar

system with a static phased array radar system and develops the

control and scheduling strategies for the rotating phased array

radar system. Watson and Blair [8] calculate a revisit time to

track manoeuvering targets using the interacting multiple model.

Blair et al. [9] propose a benchmark problem for highly manoeuv-

rable targets. The purpose is to obtain beam pointing control of a

phased array radar against highly manoeuvrable targets in the pres-

ence of false alarms and electronic counter measures. Gosh et al.

[10] propose a phased array radar model that does resource
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allocation and scheduling using a quality of service (QoS)-based re-

source allocation model optimiser and improper nesting of the radar

dwells. They allocate the radar resources to each task and also

schedule the allocated resource to the radar to meet a jitter require-

ment. These works are focused on detailed radar control and the

level of modelling is not appropriate for multi-radar systems.

Many of multi-function radar task scheduling works are based on

prioritisation. Filippi and Pardini [11] propose a multi-function ro-

tating phased array radar control scheduling architecture based on

the priorities. Miranda et al. [12, 13] allocate the radar resources

using task scheduling and compare the scheduling algorithms.

The scheduling depends on the pre-assigned priorities of the tasks

allocated to the radar. In [14], the authors develop an adaptive pri-

oritisation of the tasks based on a fuzzy-reasoning-based algorithm

in dynamically changing tactical environments and compare their

design with other prioritisation methods. Jiménez et al. [15]

model a radar task scheduler using three stages: task priorisation,

a scheduling algorithm, and temporal planning, and compare differ-

ent scheduling algorithms. Duron and Proth [16] maximise the

number of useful tasks performed, taking into account their prior-

ities. Moo [17] develops a method for the scheduling of prioritised

tracking and surveillance tasks based on a two-slope benefit func-

tion where tracking and high priority surveillance tasks are sched-

uled first, then lower priority surveillance tasks are scheduled.

Many radar control schemes do not consider overloaded situa-

tions, which are important in our case. Many other radar control

schemes focus on how to allocate the radar resources to maximise

the radar usage while we focus on how to choose the tasks to

perform when the radar cannot perform all the tasks because of re-

source limitations. Tumová et al. [18] consider instances when all

of the given specifications cannot be reached simultaneously due

to their incompatibility or environmental constraints, which is an

overloaded situation. They find the least violating control in the en-

vironment with respect to the given set of mission specifications

using a Büchi automaton and a nested depth-first search, which is

computationally advantageous compared with exhaustive search.

However, unlike [18], we do not have strict behaviour rules nor

final constraints. In overloaded situations, some references allow

performance degradation [13] or use pre-defined rules to choose

the tasks to perform [17]. However, in our approach, rules are em-

bedded in the cost function, so by minimising or maximising the

objective function online, we obtain a policy/solution to choose

the tasks to perform online in overloaded situations.

Moo and Ding [19] consider a multi-radar configuration, where

the networked phased array radars are connected by a communica-

tion channel and share the tracking and detection data, and verify a

benefit over the independent radars configuration. Severson and

Paley [20] describe a distributed multi-radar system. They calculate

the optimal position and search radius of the radars to maximise the

unified searching area among the radars in a given environment.

Also, they allocate the tracking tasks to each radar to balance

each radar’s utilisation. However, there are limitations for

dynamic situations, because of assumptions such as the number

of targets that the radar can track. These assumptions are not suit-

able for dynamic environments scenarios because in practice the

number of threats is unpredictable.

In our previous work [21, 22], we developed a framework for

phased array radar model control using FSM and we applied DP

to the FSM. Especially, we introduced the dynamic FSM

(DyFSM). In this paper, we reformalise the DyFSM as a recompo-

sable FSM (ReFSM) and define the ReFSM. We introduce a

restricted FSM (RFSM), which is a composed FSM with restricted

transitions and directly takes resource limitations of the system into

account. Then, a recomposable RFSM (ReRFSM) is defined and

handles a dynamic environment in the presence of resource limita-

tions. We also develop a more sophisticated radar task selector

based on our prior work to obtain the policy/solution and test a dis-

tributed architecture with multiple radars.

1.3 Original contributions

The original contributions of this paper are as follows:

(i) Radar task selector design using ReRFSM: We develop a

multi-faced static phased array radar task selector based on

FSM. We define RFSMs that allow the consideration of

limited (radar) resources. RFSMs can take into account

limited resources by restricting some transitions during the

composition. We then define ReRFSMs that allow the state

space of an RFSM to change dynamically; they are suitable

to model dynamically changing environments.

(ii) Policy generation for radar resource management in dynamic

environments using DP: We generate policies for a phased

array radar system to allocate the radar resources in dynamic

environments by applying DP to ReRFSM. The resulting

policy allows us to find the radar resource allocation. DP

yields a policy for every state, so even though a state may

jump to another state unexpectedly, we always have a policy

for the resulting state. In other words, if the current decision

is interrupted, the policy gives an alternative solution within

the state space.

(iii) Solution generation for radar resource management in

dynamic environments using heuristic methods: We generate

solutions for a phased array radar or a multi-radar system to

allocate radar resources in dynamic environments even if the

radar system encounters an overloaded situation; breadth-first

search (BFS) and limited BFS (LBFS) are considered.

(iv) Distributed multi-radar systems and communication: We

develop a distributed architecture for fleet-level radars over

communication networks that improves the overall system’s

performance compared with a decentralised system, without

a significant trade-off such as computational time.

To model dynamically changing environments is important because

many real-world situations are dynamically changing. However,

modelling dynamic environments is not easy because it is not pos-

sible to perfectly predict dynamically changing environments.

Thus, a method is needed to capture dynamically changing environ-

ments easily and precisely. Resource allocation is also important

because in practice, resources are limited, so not all desired tasks

are performed at the same time step.

2 Theoretical approach

2.1 Finite state machines

An FSM constructs an output signal one symbol at a time by ob-

serving an input signal one symbol at a time [23–25]. An FSM is

a six-tuple

FSM = (X , U , Y , f , g, x0), (1)

where X, U, and Y are sets, f and g are functions, and x0 [ X . X is

the state space, U is the input alphabet, Y is the output alphabet, f :

X × U � X is the next state function, g: X × U � Y is the output

function, and x0 [ X is the initial state.

The interpretation of f and g is as follows: if x(k) [ X is the

current state at step k and u(k) [ U is the current input signal,

then the current output symbol y(k) and the next state x(k+ 1) are

given by

x(k + 1) = f (x(k), u(k)), (2)

y(k) = g(x(k), u(k)), (3)

and x(0) is x0.

To represent an FSM, we can use the sets and functions models

as given above, or state transition diagrams.
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2.2 Finite state machine composition and pruning

We consider the following composition operation on FSMs. Given

a number w of FSMs, FSM1 = (X1, U1, Y1, f1, g1, x10),

FSM2 = (X2, U2, Y2, f2, g2, x20), . . . , FSMw = (Xw, Uw, Yw, fw,
gw, xw0), we define the composition of FSM1, FSM2, . . . , FSMw,

denoted FSM1 × FSM2 × · · · × FSMw, as the FSM

FSM1 × FSM2 × · · · × FSMw

= (X1 × X2 × · · · × Xw, U1 × U2 × · · · × Uw,

Y1 × Y2 × · · · × Yw, (f1, f2, . . . , fw),

(g1, g2, . . . , gw), (x10, x20, . . . , xw0)),

(4)

where FSM1, FSM2, . . . , FSMw are called the components of the

composed FSM.

We also consider the following pruning operation on composed

FSMs. If one of the component FSMs is not needed, we remove

that FSM as follows. Assume that in (4), FSMi is not needed.

Then we define the pruning of FSMi from the FSM, denoted

FSM/FSMi, as the FSM

FSM/FSMi

= FSM1 × · · · × FSMi−1 × FSMi+1 × · · · × FSMw.
(5)

2.3 Restricted finite state machines

In the presence of a resource limitation, some of the transitions may

be restricted during the composition in (4) due to the limitation. We

call this composed FSM an RFSM. Thus, the RFSM is a composed

FSM with the component FSMs defined as (4) but the input alpha-

bet, U

U , U1 × U2 × · · · × Uw,

where U = U1 × U2 × · · · × Uw,
(6)

and/or

∃x [ X , u [ U :f (x(k), u(k)) = g(x(k), u(k)) = ∅, (7)

where ∅ means empty, so the transition is not available. In other

words, we disable transitions that correspond to insufficient or ex-

cessive resource or capability use. This is an example of supervis-

ory control [24, 26]. The limitations are different for different

situations/problems, so restriction rules for the transitions are

problem dependent. In general, for the case of composition of w

component FSMs with input restrictions, the RFSM is denoted as

RFSM = FSM1×̄FSM2×̄ · · · ×̄FSMw, (8)

and the case of pruning of FSMi from the RFSM is denoted as

RFSM = RFSM/̄FSMi. (9)

2.4 Recomposable restricted finite state machines

An ReRFSM is an RFSM that has three modes of operation:

normal, composition, and pruning.

(i) In the normal mode of operation, the ReRFSM operates as an

RFSM.

(ii) The composition mode happens when a new component FSM

arises. Assume that this happens at step k; let RFSM(k) be the

RFSM in which the ReRFSM operates at step k, and let

FSMnew be the new component FSM that arises at step k.

Then, we have

RFSM(k + 1) = RFSM(k)×̄FSMnew. (10)

(iii) The pruning mode happens when a component FSM is not

needed. Assume that at step k, component FSMi is not

needed. Then, we have

RFSM(k + 1) = RFSM(k)/̄FSMi. (11)

3 Radar modelling

We consider a two-dimensional geographic area for the phased

array radar model. The radar is physically at the centre of a circular

disk divided into sectors of equal aperture (Fig. 1). Each sector may

contain a number of threats. The radar is capable of searching

sectors and focusing attention on specific threats, and does so

using energy. Accordingly, the radar resource is energy, and the

radar can use a maximum energy of Etotal at each time step. Then,

the resource constraint of the radar at each time step k is

s1(k)+ s2(k)+ · · · + sm(k)+ t1(k)+ t2(k)

+ · · · + tn(k) ≤ Etotal, for all k,
(12)

where si is the assigned energy to sector i, m is the total number of

radar area sectors, tj is the assigned energy to threat number j, and n

is the total number of threats.

For simplicity, assume that the energy is computed by multiply-

ing the power by a single unit time at each time step k, in other

word, energy = power × 1 at each time step k. Then, the quantity

of energy for si and tj is the same as the quantity of power for si
and tj , respectively, at each time step. Then, the integers si and tj
have the following constraints at each time step k:

si(k) = 0 or Bs ≤ Ptransmax
, i = 1, 2, . . . , m,

0 ≤ tj(k) ≤ Ptransmax
, j = 1, 2, . . . , n,

(13)

where Bs is the transmitted power required for searching each radar

area sector and Ptransmax
is the maximum transmitted power that the

radar can use for one task. To ensure zero leakage, the radar should

search each sector at least once every maximum revisit time

(REVmax) to acquire the threat in a certain range. Assume that the

scanning rotation rate is fixed. Note that the phased array radar elec-

tronically steers radar beams, so there are no mechanically rotating

parts. Then, threat acquisition happens when a certain QoS is satis-

fied for si. The QoS for each threat j in sector i at each time step k is

given by

QoSj(si, rj, sj, k) =
Q0si(k)sj(k)

rj(k)
4

, (14)

where rj is the distance between the radar and threat j, sj is the radar

cross-section of threat j, and Q0 is a normalisation constant. Once

Fig. 1 Example of radar area sector: a radar can search within a circular
area with radius rmin and the area is divided into m radar area sectors
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the desired QoS (QoSdesired) is determined, which ensures the acqui-

sition of the target in the radar area sector, Bs can be determined as

follows. Assume that we know Q0. If we have the minimum radar

range (rmin) and the minimum radar cross-section (smin) of the

threat that the radar would acquire at the minimum radar range,

we can calculate Bs for QoSdesired using the following equation:

Bs = ceil
QoSdesiredr

4
min

Q0smin

( )

, (15)

where the function ‘ceil’ rounds up to the next integer and

Bs ≤ Ptransmax
as in (13).

Note that si should be binary, that is either 0 or Bs, to always

satisfy the desired QoS. Then, QoSdesired is always satisfied for

any threat in a disk of radius rmin that has radar cross-section

larger than smin. This allows the radar to ensure the acquisition of

the threat for rmin and smin.

To discriminate the threat, we need to track the threat longer than

the discrimination time (Td) with return power (Preturn) larger than

the minimum required return power Preturnmin

( )

at every time step

during tracking. The return power for threat j at each time step k is

Preturnj
(k) =

tj(k)KGsj(k)

rj(k)
4

, (16)

where KG is the radar constant. Assume that we are given Preturnmin
.

Then, we can compute the required transmitted power to the threat

to satisfy Preturnmin
as function of r

treq(r) =
Preturnmin

r4

KGs
, (17)

where treq(r) ≤ Ptransmax
as in (13).

4 Problem formulation

The problem is formulated as follows. Assume that the phased array

radar (or radars) is (are) located at the centre of a Manhattan grid

along which all threats move. The radar has an amount of resources,

Etotal at each time step k as in (12) and the radar can use a maximum

of Ptransmax
for each threat or sector. The geographic area is divided

into m radar area sectors as in Fig. 1. Each sector has a revisit dead-

line, REVmax (19), and desired QoS QoSdesired. The radar has con-

stant KG, normalisation constant Q0, minimum distance to search

rmin, and minimum cross-section to search smin. There are nt

threats moving towards the radar with different constant speeds

from different locations. The minimum required return power for

tracking is Preturnmin
and the time required to discriminate threats

is Td . Given the above data, we want to find a policy/solution for

the radar to allocate its resources by minimising the cumulative

cost.

5 Task selector design

The assumptions are: (i) events are discrete, i.e. events happen

slowly enough relative to the time constants of the radar that we

can eliminate monitoring of continuous time variables. This is the

basis for employing logic-level models (FSMs). (ii) We consider

a two-dimensional geographic area. (iii) We assume that the radar

is not allowed to have resources left at any time step if there is

any task left. (iv) We assume perfect communications between

the radars of the multi-radar system. By perfect communication,

we mean no information loss, no delay, and no fail.

As previously mentioned, the phased array radar electronically

steers the radar beam, so there are no mechanically rotating parts,

which means the radar can perform track/search tasks simultaneous-

ly. Thus, we assume that the radar can perform the set of tasks

chosen by the task selector simultaneously at each time step.

Note that our focus is on overloaded situations where the radar

cannot perform all the given tasks because of limited resources in

dynamic environments, so the task selector has to choose which

tasks to perform first when the tasks are changed without any

prediction.

5.1 Sector finite state machine

We keep track of the revisit time for each sector i. The revisit time

for each sector i at time step k(REVi(k)) satisfies

REVi(k + 1) = REVi(k)+ 1, if si(k) = 0,

REVi(k + 1) = 0, if si(k) . 0.
(18)

Then, the constraint to ensure zero leakage is

REVi(k) ≤ REVmax, for all k, (19)

where REVmax is the maximum revisit time for all sectors that the

radar should search before the sectors reach REVmax. This con-

straint makes the radar search each sector at least once every

REVmax time steps. We want to discriminate as many threats as pos-

sible with respect to the constraints described above.

We use the formalism of FSMs to model the radar area sectors.

Fig. 2 shows the FSM for a radar area sector when the revisit dead-

line (REVmax) is four.

5.2 Threat finite state machine

As we stated in Section 3, to discriminate the targets, we need to

keep a record of tracking time for each threat. The consecutive

tracking time for each threat j at time step k (TTj(k)) always starts

from zero (TTj(0) = 0), and satisfies

TTj(k + 1) = TTj(k)+ 1, if Preturnj
(k) ≥ Preturnmin

,

TTj(k + 1) = 0, if Preturnj
(k) , Preturnmin

.
(20)

As we describe in Section 3, treq guarantees Preturn ≥ Preturnmin
.

Fig. 3 shows an FSM for tracking time for threats when the discrim-

ination time (Td) is four.

5.3 Mission restricted finite state machine

By composing the sector FSM and the threat FSM, we obtain an

RFSM for the mission. Assume that we have m sectors and n

threats. Then, during the composition, the input alphabet of the

mission RFSM, U, is defined as follows:

U = {u [ U1 × U2 × · · · × Un × Un+1

× Un+2 · · · × Un+m:sumE(u) ≤ Etotal},
(21)

Fig. 2 Sector FSM when REVmax = 4:Bs means the sector is searched and
0 means the sector is not searched. Each sector only allows four time steps
of not being searched. Wherever the state is, if the input is Bs, REV is reset to
zero
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where sumE(u) means sum of the required power to perform the

input u. The input alphabet is restricted by (12).

The representations of sector FSM and threat FSM are conveni-

ent because composition of these FSMs allows the representation of

all states of the system.

5.4 Cooperation

For the distributed system with communication, consider the forma-

tion of three phased array radars shown in Fig. 4. The areas moni-

tored by the individual radars overlap. We set a threshold such that

if one radar sub-area overlaps with at least a certain percentage (say,

90%) of another radar sub-area, we assume that the two sub-areas

are the same. Under this assumption, we can say that sub-areas

4A and 2B are the same, as are sub-areas 4B and 2C. These sub-

areas are defined as redundant sub-areas.

We introduce a distributed architecture over a communication

channel as follows. The radars share the revisit times of redundant

sub-areas. For example, in Fig. 4, the first radar and second radar

share the revisit time for sub-area 4A= 2B, and the second radar

and third radar share the revisit time for sub-area 4B= 2C. Thus,

if the first radar searches the sub-area 4A, the state of both

mission RFSMs of the first and second radars are updated accord-

ingly. In other words, sharing the revisit times of redundant sub-

areas can update the states of the relevant radars. In addition, all

the radars share information about detected and discriminated

threats. Thus, the states of the mission RFSMs of the relevant

radars are updated based on the information. As a consequence,

the system does not track a threat if it has been discriminated by

one of the radars. Furthermore, the tasks are assigned to the idlest

radar first, so the radars that have fewer tasks than the neighbouring

radars are able to help the neighbouring radars by searching the re-

dundant sub-areas. This allows radars to save resources and

improves the overall system performance.

6 Policy and solution approach

Given a ReRFSM, different methods can be applied to obtain the

policy and the solution. Each component of the ReRFSM is

assigned a transition cost. The transition cost is assigned by a heur-

istic using REV, TT, r, and v of the threat at the time when the

FSMs are created. The transition cost of the ReRFSM is the sum

of the transition costs of its components. When composition

occurs, the transition cost of the new component is added to the

transition cost of the ReRFSM. When pruning occurs, the transition

cost of the pruned FSM is subtracted from the transition cost of the

ReRFSM.

6.1 DP for ReRFSM

Note that the optimal policy of a composed FSM is obtained by the

union of the optimal policies of its component FSMs. However, for

RFSM, this does not hold due to the restricted inputs in RFSM.

Thus, the optimal policy of RFSM has to be obtained by applying

DP directly to the whole RFSM.

ReRFSMs allow the state space of an FSM to change dynamic-

ally as defined in Section 2.4. For example, in our scenario, when

the radar detects new enemies, threat FSMs are created and compos-

ition occurs. If a threat is discriminated, the FSM of that threat

reaches an absorbing state and pruning occurs when needed.

In normal mode, the ReRFSM operates as a composed FSM with

associated transition cost. DP is applied to RFSM to provide a

policy. We use that policy until composition occurs. Then the

ReRFSM and cost are updated and we recompute the policy by ap-

plying DP.

6.2 Heuristics for ReRFSM: BFS and LBFS for ReRFSM

The motivation for this section is that DP suffers from the curse of

dimensionality especially if REVmax and Td are large. The first idea

is to only use the inputs that use more than a certain threshold of

power, Plb, because in an overloaded situation, using as many

resources as possible can take many tasks. Furthermore, if the envir-

onment is rapidly changing, for example, the number of detected

threats is rapidly changing, the ReRFSM has to be recomposed fre-

quently, so the previous policy is useless. In such situations, we

may not need DP for ReRFSM for the policy; instead we may

want to find the solution for the current state. We may lose robust-

ness of the policy, but if the solution is obtained fast enough, we can

quickly generate the solution for any state.

Thus, we use the BFS algorithm with fixed depth ( fd) to get the

solution for the current state. ReRFSM is recomposed at every time

step to take account for environment changes.

However, if the state space and input space for the ReRFSM are

very large, BFS with fd may not be feasible. Thus, we set the upper

bound for the computational cardinality, CCub, for each node for

BFS as follows:

number of next states× number of inputs ≤ CCub. (22)

In other words, the computational cardinality at each node for BFS

has to be less than the upper bound, CCub. We call this LBFS. Once

we have the number of inputs, the number of next states is obtained

based on (22), and the next state is decided based on the cost,

highest first for maximising, lowest first for minimising.

Consequently, LBFS with fd ensures a small amount of computa-

tion time.

7 Task selector architecture

In this section, we describe the task selector architecture used to

perform radar resource management. The task selector consists of

subsystems (a) to (g), as shown in Fig. 5. The descriptions of and

relationships between the subsystems are as follows.

(a) Environment evaluator (EE): EE evaluates environment situa-

tions based on the inputs from the radar, such as number of detected

threats, to decide whether the system needs to generate a new

policy/solution or use the previous policy/solution. If a new

policy/solution is needed, go to (b): otherwise, go to (d).

Fig. 4 Multi-radar sectors example: each radar has the same rmin and the
same m=4. Sub-area 4A=2B and sub-area 4B= 2C are defined as redun-
dant sub-areas

Fig. 3 Threat FSM when Td = 4:treq means the threat is tracked, 0 means
the threat is not tracked. Each threat is discriminated after being tracked
for four consecutive time steps. Wherever the state is, if the input is 0, TT
is reset to zero except in the last state because the threat is already
discriminated
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(b) Radar resource distributor (RRD): Assigns energy to all the

sectors and all the threats. If there is not enough available energy

to do this assignment, go to (c): otherwise, go to (e) and (f).

(c) Radar resource allocator (RRA): Use DP for ReRFSM to obtain

a policy, or use BFS for ReRFSM or LBFS for ReRFSM to obtain

solution.

Note that in the above sequence of actions, we generate the policy/

solution only at (c) in the sequence.

(d) Policy reader (PR): PR interprets the policy/solution generated

by RRA in terms of radar resources for each sector and threat,

then gives the result to the radar.

(e) Threat FSMs: Threat FSM takes assigned energy for each threat

as inputs and updates the states.

(f) Sector FSMs: Sector FSM takes assigned energy for each radar

sector for searching as inputs and updates the state.

(g) Performance evaluator (PERF): PERF generates an index to

evaluate radar performance.

8 Simulations and results

For the simulation, we consider a four-faced phased array radar with

four sectors, so m = 4. We simulate two scenarios: a one radar case

and a three-radar case. For each simulation, we use performance

metrics to compare each method as shown in Table 1.

8.1 One radar case: small scale

We first run small-scale simulations that the radar handles easily to

compare the solution approaches (DP, BFS, and LBFS) and their

simulation times. A snapshot of a one radar scenario is shown

in Fig. 6. For the simulations, we set the variables as shown in

Table 2.

We run 30 simulations using the same variables but with differ-

ent initial positions and speeds for each threat. The average per-

formance metrics for the 30 simulations are shown in Table 3.

Fig. 5 Task selector diagram: the inputs of the task selector from the radar are return power, speed of detected threats, distance between detected threats and
the radar, and QoS. The outputs to the radar are the assigned energy for each threat and sector

Table 1 Performance metrics

Metrics Descriptions

timemax maximum computation time: the longest time for DP, BFS, or LBFS to generate the policy/solution

FAIL number of fail cases where the red force wins, that is, a threat reaches the radar before detection or discrimination

REVavg average revisit time of all sectors: a large value means that the radar does not search the sectors often and evenly, so a small value is desired

REVhigh highest revisit time of the sectors: a smaller value than REVmax is desired

TIavg average time to impact when the threat is discriminated: a small value means that the radar discriminates the threats late, so a large value is

desired

TIlow minimum time to impact when the threat is discriminated: a small value means that the radar discriminates the threats late, so a large value is

desired

Fig. 6 Snapshot of one radar scenario. The ship and radar sectors are indi-
cated in blue. Threats are indicated by red stars
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In terms of maximum computation time, the LBFS is the best, by

a factor of 18 times compared with DP. No method encounters a fail

case. The other performance metrics are not significantly different

between each method. BFS and LBFS yield slightly better perform-

ance metrics (smaller REVavg and larger TIavg and TIlow) than DP.

It is because the BFS and LBFS update the ReRFSM at every time

step, which allows them to use the latest information on the threats,

while DP only updates ReRFSM when a new threat FSM is added

because the policy can be used before a new threat FSM arises. As

we mentioned earlier, if the environment changes are frequent, we

may not need the full policy; instead, we need the solution for the

current state, as the simulation results suggest.

Therefore, we can conclude that the LBFS performs as well as

DP on the metrics that were evaluated, and significantly reduces

computation time. In addition, LBFS yields better decisions as

DP, so we can save much computation time by using LBFS.

8.2 One radar case: large scale

We then simulate larger scale problems that the radar does not

easily handle by increasing nt, REVmax, and Td . For the large-scale

simulations, we set the variables as shown in Table 4.

Then, our method is compared to the basic rule-based greedy

method, nearest first (NF), where NF searches the sector only if

the sector reaches the revisit deadline, and tracks the nearest

threats first. We run 30 simulations using the same variables but

where initial positions and speeds for each threat are different.

The comparisons of average performance metrics of the 30 simula-

tion results are shown in Fig. 7 and Table 5. In Fig. 7, the available

number of tracking task indicates the number of threats in

the minimum radar range (rmin), so the radar is able to track the

threats, but the radar may not be aware of the threats because the

radar may not search the sector yet. The perceived number of track-

ing tasks indicates the number of threats that the radar is aware of by

searching the sectors, so the radar can perform the tracking tasks for

the threats. Thus, perceived number of tracking tasks is always

equal or less than the available number of tracking tasks. Finally,

the performed number of tracking tasks indicates the tracking

tasks that the radar is performing. Thus, the performed number of

tracking tasks is always equal or less than the perceived number

of tracking tasks because of the resource limitations.

As the number of threats is large for our configuration (30), there

are some fail cases. Consequently, TIlow is small, which means that

the radar discriminates some threats at very close range to the radar.

However, TIavg for LBFS is 9.61, which means that the radar still

discriminates most threats far enough from the radar if we

compare this to the small-scale problem (where the range was

12.39–12.53). As shown in Fig. 7, the profiles of number of total

perceived tracking tasks and number of total performed tracking

tasks of LBFS are more uniform than those of NF, which indicates

more stable operations. Furthermore, as the number of total avail-

able tracking tasks is increased, the number of total perceived track-

ing tasks is increased for both LBFS and NF, but NF has generally

lower number of total perceived tracking tasks than of LBFS, which

indicates the LBFS has better awareness of threats in the radar

range. Thus, both TIlow and TIavg for LBFS are better than NF,

and LBFS generates fewer fail cases.

For the revisit time, LBFS has better REVavg than NF, and does

not violate revisit deadlines where NF violates the revisit deadline

as indicated by REVhigh. As shown in Fig. 7, the revisit time is

increased as the number of tracking tasks is increased, and NF

has larger and more unstable revisit time profile than LBFS.

Consequently, LBFS has better and more stable threat detection

and tracking.

Thus, LBFS can handle more threats than NF and ensure revisit

deadlines for the sectors, so LBFS generates fewer fail cases, that is,

LBFS outperforms NF. The results indicate that the radar can

handle many threats using LBFS but may fail on some threats

because of limited resources.

8.3 Three radar case: large scale

For a multi-radar system, we compare a decentralised system

(without communication) and a distributed architecture (with com-

munication) as described in Section 5.4. Both systems are built

based on LBFS. A snapshot of a three radar scenario is shown in

Fig. 8. We simulate larger scale problems that the radar does not

easily handle by increasing nt, REVmax and Td . For the three

radar scenario, we set the variables as shown in Table 6.

We run 30 simulations using the same variables, but with differ-

ent initial positions and speeds for each threat. The average per-

formance metrics for the 30 simulation runs are shown in Table 7.

We observe that in the distributed architecture, radars mostly

have better performance metrics than in the decentralised system.

The TIavg and TIlow values of the first and third radars for the dis-

tributed architecture are slightly worse than those of the decentra-

lised system, but TIavg and TIlow values of the second radar for

the distributed architecture are improved over those of the decentra-

lised system. It is because the radars in the distributed architecture

share information about detected and discriminated threats, so the

first and the third radars help the second radar based on the

shared information: the second radar faces the most overloaded situ-

ation as indicated by lowest TIavg and TIlow values, and highest

REVavg and REVhigh values in the decentralised system, so the

second radar needs to be assisted. Also, the radars in the distributed

architecture have smaller REVavg and REVhigh. This means that, in

the distributed architecture, the radars help each other by searching

redundant sub-areas. The distributed system is very useful because

only simple communications (sharing only revisit time and

Table 2 One radar scenario simulation variables

Ptotal 200 Q0 15,000

Ptransmax
64 rmin 30

m 4 smin 2

REVmax 2 nt 5

QoSdesired 2 Td 2

KG 20,000 Plb 140

fd 4 CCub 35,000

Preturnmin
5 — —

Table 3 Average performance metrics for small-scale simulations for one

radar

DP BFS LBFS

timemax 7.74 0.60 0.44

FAIL 0 0 0

REVavg 0.36 0.33 0.33

REVhigh 2 2 2

TIavg 12.39 12.53 12.53

TIlow 5.22 5.32 5.31

Table 4 One radar scenario simulation variables

Ptotal 200 Q0 15,000

Ptransmax
64 rmin 30

m 4 smin 2

REVmax 3 nt 30

QoSdesired 2 Td 4

KG 20,000 Plb 140

fd 4 CCub 35,000

Preturnmin
5 — —
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information on detected/discriminated threats) improve the overall

performance a great deal. A centralised system should have better

results than the distributed architecture. However, it is nearly

impossible to get a solution because of the curse of dimensionality

of the resulting composed FSM, even in small-scale problems.

Thus, in practice, the distributed architecture is a good method to

implement radar resource management with proper choice of

communications.

9 Conclusions and future work

In this paper, we design a task selector for a multi-faced static multi-

function phased array radar using ReRFSMs for radar resource al-

location in dynamically changing environments. We define

ReRFSMs that allow the state space of an FSM to change dynam-

ically. RFSM allows one to design a composed FSM in the presence

Table 5 Average performance metrics for large-scale simulations for one

radar

NF LBFS

FAIL 0.1 0.03

REVavg 1.34 0.92

REVhigh 4 3

TIavg 9.43 9.61

TIlow 0.71 1.17

Table 6 Three radar scenario simulation variables

Ptotal 200 Q0 15,000

Ptransmax
64 rmin 30

m 4 smin 2

REVmax 3 nt 30

QoSdesired 2 Td 3

KG 20,000 Plb 140

fd 4 CCub 35,000

Preturnmin
5 — —

Table 7 Average performance metrics for three radar case

Decentralised LBFS Distributed LBFS

FAIL 0.23/0/0.27 0/0/0

REVavg 0.38/0.69/0.36 0.25/0.15/0.24

REVhigh 2.5/3/2.37 2.23/2.57/2.10

TIavg 13.30/9.17/12.02 13.24/10.98/11.97

TIlow 6.03/2.59/5.46 5.87/3.47/5.63

Fig. 7 Comparison of NF and LBFS

Fig. 8 Snapshot of three radars scenario. Ships and radars are located at
the centre of each circle, and the threats are indicated by red stars
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of resource limitations by restricting some of the inputs. We

develop a phased array radar resource allocation algorithm using

DP for ReRFSM that handles situations where the set of tasks to

be performed changes dynamically and the ability to perform

tasks is resource-constrained. DP yields a policy for every state,

so we always have alternative decisions within the state space al-

though the states may change unexpectedly. However, DP is not

feasible for large-scale problems and we may not need the full

policy when environment changes are frequent. Thus, we design

heuristic methods: BFS for ReRFSM, and LBFS for ReRFSM,

and implement them in the task selector for large numbers of

threats and large numbers for REVmax and Td for highly dynamic

environments. Our results show that LBFS generates better radar

performance compared with the other methods, so our approach

using LBFS is effective. We also develop a distributed architecture

using communication for fleet-level radar systems. The distributed

architecture performs better than the decentralised one, as shown

by the facts that the distributed architecture has better overall per-

formance metrics than the decentralised one, and that the distributed

architecture can handle more threats than the decentralised one in

the same battle situation.
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