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Clinical trials studying treatments for rare diseases are challenging to design
and conduct due to the limited number of patients eligible for the trial. One
design used to address this challenge is the small n, sequential, multiple assign-
ment, randomized trial (snSMART). We propose a new snSMART design that
investigates the response rates of a drug tested at a low and high dose compared
with placebo. Patients are randomized to an initial treatment (stage 1). In stage
2, patients are rerandomized, depending on their initial treatment and their
response to that treatment in stage 1, to either the same or a different dose of
treatment. Data from both stages are used to determine the efficacy of the active
treatment. We present a Bayesian approach where information is borrowed
between stage 1 and stage 2. We compare our approach to standard methods
using only stage 1 data and a log-linear Poisson model that uses data from both
stages where parameters are estimated using generalized estimating equations.
We observe that the Bayesian method has smaller root-mean-square-error and
95% credible interval widths than standard methods in the tested scenarios. We
conclude that it is advantageous to utilize data from both stages for a primary
efficacy analysis and that the specific snSMART design shown here can be used
in the registration of a drug for the treatment of rare diseases.
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1 INTRODUCTION

A rare disease is defined as a disease that affects fewer than 200 000 people in the United States.1 Taken together, there
are more than 8000 rare diseases that affect over 30 million people in the United States.2 Unfortunately, only 289 (4%) of
these rare diseases have an approved drug, leaving 96% of rare diseases without an approved treatment and considerable
unmet need for many patients.3 Because of the limited number of individuals affected by rare diseases, it is difficult to
find effective treatments for these conditions.4 Approval of any drug is based on the same requirements for evidence of
effectiveness, regardless of the size of the diseased population. While randomized clinical trials (RCTs) are utilized to
demonstrate the strongest scientific evidence of an effective treatment, these trials are often difficult or impossible in rare
disease settings because they require a large number of subjects. As a result, many RCTs involving rare diseases often
have reduced power when compared with studies of diseases that are not rare.5 To combat these issues, Tamura et al6
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previously proposed a small n, sequential, multiple assignment, randomized trial (snSMART) design to investigate three
active treatments for a rare disease. Here, we propose a variation of the snSMART design that focuses on a single drug
and placebo.

In many situations, there is only a single, novel drug of interest and the objective of a clinical trial is to determine
efficacy of that drug. As an example, the Vasculitis Clinical Research Consortium was recently interested in testing a
novel drug for patients suffering from granulomatosis with polyangitis (GPA) or microscopic polyangitis (MPA), forms
of vasculitis characterized by inflammation of the blood vessels. The binary endpoint of the study was remission after
3 weeks of therapy. It was assumed, however, that an effective drug would have to be taken for longer than 3 weeks
in practice. The trial needed to be placebo controlled and the investigators were interested in novel designs that could
potentially increase the power of detecting a drug effect. Given that vasculitis is a rare disease, it was also necessary that
the trial design was appropriate for small sample sizes.

An snSMART is a variation of a SMART design7,8 that is specifically intended for small samples. In a SMART, patients
are randomized to at least two sequential interventions in such a way that the second intervention assignment depends on
the patient’s response to the first intervention. The goal of a SMART is often to develop effective dynamic treatment regi-
mens (DTRs) that specify an initial treatment for a patient followed by subsequent treatment, that is tailored by response
to the initial treatment.9,10 In contrast, the stages in an snSMART are used to garner more information from a smaller set
of subjects rather than to identify sequences of treatments tailored to an individual. In other words, snSMARTs are not
designed with the goal of developing or estimating the effects of DTRs. Instead, the goal of an snSMART is to efficiently
use data across the two stages of the trial to find a single superior treatment or dose of treatment in a small sample of
individuals.

Indeed, there have been previous examples of repurposing well-developed trial designs to address novel goals. For
example, randomized discontinuation trials have been studied as an alternative phase II design in oncology.11 In addi-
tion, randomized discontinuation trials have been modified using SMART designs in order to answer a wider variety of
clinical questions.12 Researchers have also considered some enhanced crossover designs in the rare diseases spectrum to
address the concerns about the unnecessary exposure to placebo or treatment of high toxicity. For example, Makubate
and Senn13 and Nason and Follmann14 both discussed designs that allow for discontinuation from the study according
to the absorbed binary endpoints after a subject receives the first treatment. Honkanen et al15 introduced an alternative
design that consists of an initial randomized placebo-controlled stage, a randomized withdrawal stage for subjects who
responded, and a third randomized stage for placebo nonresponders who subsequently respond to treatment.

In the snSMART design of Tamura et al (2016), three unique, active experimental treatments were compared. We pro-
pose extending this design to a three-arm trial comparing placebo with low and high doses of one experimental treatment
(Figure 1). In such a trial, patients are initially randomized at stage 1 to either receive placebo, low dose, or high dose with
equal likelihood. Patients receive this treatment for a prespecified amount of time, at which time their binary response
status is ascertained. In stage 2, patients are rerandomized to either the same or a different dose of treatment depending
on their initial treatment and their response to that treatment. Specifically, patients who received placebo at stage 1 are
rerandomized to receive either low dose or high dose at stage 2, regardless of their stage 1 response. This is advantageous
for patients because it means that everyone enrolled in the trial will receive an active treatment by stage 2, even if they
were initially randomized to placebo. All patients who initially received low dose, regardless of their response status, are
rerandomized to either low dose or high dose. In the case of patients who responded to low dose, this rerandomization
is appropriate because it allows patients to either receive a higher dose of the drug that is already effective for them or
to continue receiving low dose. Receiving low dose again is advantageous for patients because they continue receiving a
drug they respond to and advantageous for the trial because we gain more information about the response rate to low dose
in stage 2 of the study. All patients who did not respond to high dose receive high dose again in stage 2, whereas patients
who initially responded to high dose are rerandomized to receive either high dose again or low dose. In this design, the
primary objective is to estimate the difference in the probability of response to treatment between low dose and placebo
and between high dose and placebo.

Compared with other rare diseases and clinical trial designs, this snSMART design is advantageous for three reasons.
First, this design allows for the comparison of treatment against placebo, which is necessary to demonstrate efficacy of
an experimental treatment. Second, this design allows for the comparison of more than one dosage level of a drug, so that
a lower, less toxic dose may be shown to be efficacious as opposed to investigating only a high dose. Third, individuals
who respond to treatment in stage 1 may continue their original dose or may increase or decrease dose. All participants
receive an active treatment at some point in the trial. In addition, those who receive a low dose or high dose of the drug
will continue to receive the drug at some level in both stages because there are no participants randomized to placebo in
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stage 2. These factors may improve patient engagement and recruitment, which is a challenge in the study of rare diseases.
Wei et al16 demonstrated efficiency gains of the previous snSMART design compared with a one stage design, but such
advantages have not yet been confirmed for this setting.

In Section 2, we propose Bayesian and frequentist methods to analyze data for the primary efficacy analysis of the
proposed snSMART design by borrowing information across patients and between trial stages. In the Bayesian model,
we incorporate expert opinion and experience by using mildly informative prior distributions that are more flexible than
those considered in Wei et al (2018). In Section 3, we assess the influence of the prior distributions through simulation.
We compare the Bayesian model to a frequentist model that also jointly models the response rates across the two stages
of the snSMART. Both models are compared with models using only stage 1 data to illustrate the potential efficiency gain
of the two-stage design. In Section 4, we complete our article with a discussion.

2 METHODS

2.1 Bayesian joint stage model

For each subject i= 1, … , N, stage of the snSMART j = 1, 2 and treatment k = P, L, H, where N denotes the sample size,
P denotes placebo, L denotes low dose, and H denotes high dose, let Y ijk be the observed binary response outcome where 1
corresponds to “response" and 0 corresponds to “no response" to treatment. The stage 1 outcome and the stage 2 outcome
given the stage 1 outcome are each modeled as Bernoulli random variables. The stage 1 response rate for treatment k is
denoted as 𝜋k. The stage 2 response rate for stage 1 responders to treatment k who receive treatment k′ in stage 2 is equal
to 𝛽1k𝜋k′ . For nonresponders to treatment k in stage 1 who receive treatment k* in stage 2, the stage 2 response rate is
equal to 𝛽0k𝜋k∗ . Thus we have six unique linkage parameters that link stage 1 response to stage 2 response. Our proposed
Bayesian joint stage model (BJSM) is as follows:

Yi1k|𝜋k ∼ Bernoulli(𝜋k), (1)

Yi2k′ |𝜋k, 𝛽1k,Yi1k = 1 ∼ Bernoulli(𝛽1k𝜋k′ ), (2)

Yi2k∗ |𝜋k, 𝛽0k,Yi1k = 0 ∼ Bernoulli(𝛽0k𝜋k∗ ). (3)

Assumptions and prior distributions for the parameters are based on clinician input. Here, we incorporate prior knowl-
edge about disease and current treatments and assume that an ineffective treatment has a response rate of 15% and thus
use an informative prior Beta(3, 17) for 𝜋P. It is a setting similar to the GPA/MPA example mentioned in the Introduction.
For the effect of low and high dose, we allow for a weak tendency for the drug response rates to be greater than the effect
of placebo and assume that the logarithm of treatment effect ratio follows a Gaussian prior distribution N(𝜇, 𝜎2), that is,
log(𝜋L∕𝜋P) ∼ N(0.2,100) and log(𝜋H∕𝜋P) ∼ N(0.2,100). Note that E(𝜋L∕𝜋P) = e0.2 ≈ 1.2 under the proposed prior setting.

Wei et al (2018) assumed that the linkage parameters (i) did not depend on the initial treatment and that, (ii) 𝛽0 ≤ 1
and (iii) 𝛽1 > 1. Here, since both responders and nonresponders are rerandomized and we are testing for a potential
dose-response relationship between treatment arms, these previous assumptions are not appropriate. In our simulations,
instead of assuming the Beta and Pareto priors used by Wei et al (2018), we consider Gamma priors so that the linkage
parameters can span the positive real line.

2.2 Log-linear Poisson joint stage model

The log-linear Poisson joint stage model (LPJSM) presented in Wei et al (2018) is slightly adjusted for our design. The
LPJSM jointly models the stage 1 and stage 2 outcomes with a log link for interpretability. The LPJSM is shown below
where there is a one-to-one correspondence to the parameters in the Bayesian model in Equations (1)-(3). Let Y ij be the
response of subject i in stage j (j= 1, 2), where I(kij = k) is the indicator function for treatment k = P, L, H for subject i in
stage j, then the LPJSM is as follows:

log(P(Yi1)) = 𝛼1I(ki1 = P) + 𝛼2I(ki1 = L) + 𝛼3I(ki1 = H),
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F I G U R E 1 Study design of the
proposed snSMART. Participants are
randomized (R) to one of the first
stage treatment arms, placebo, low
dose or high dose equally (1:1:1). At
the end of stage 1, patients are
rerandomized to their second stage
treatment based on their response
status. Outcomes are collected at the
end of stage 1 and stage 2

log(P(Yi2)) = 𝛼1I(ki2 = P) + 𝛼2I(ki2 = L) + 𝛼3I(ki2 = H) + 𝛼4I(ki1 = P,Yi1 = 0)
+ 𝛼5I(ki1 = P,Yi1 = 1) + 𝛼6I(ki1 = L,Yi1 = 0) + 𝛼7I(ki1 = L,Yi1 = 1)
+ 𝛼8I(ki1 = H,Yi1 = 0) + 𝛼9I(ki1 = H,Yi1 = 1).

Here we have nine estimated coefficients where 𝛼1, 𝛼2, and 𝛼3 represent the log response rates of placebo, low, and
high dose. Coefficients 𝛼4-𝛼9 correspond to the six linkage parameters in the Bayesian model. The Poisson family is used
to model the variance of the outcome to overcome convergence problems with log-binomial models in small samples.17

The parameters are estimated via generalized estimating equations assuming an independent correlation structure. The
variance of the LPJSM is corrected through robust sandwich estimators.

T A B L E 1 Scenarios and priors for the simulation settings

Scenarios
BJSM prior
for all scenarios

Response
rates/linkage
parameters P = L = H P < L < H P < L = H P = H < L

Beta(3,17) 𝜋P 0.15 0.15 0.15 0.15

log(𝜋L∕𝜋P) ∼ N(0.2,100) 𝜋L 0.15 0.25 0.4 0.4

log(𝜋H∕𝜋P) ∼ N(0.2,100) 𝜋H 0.15 0.35 0.4 0.15

Gamma(2,2) 𝛽0P 0.9 0.9 0.9 0.9

Gamma(2,2) 𝛽1P 1.3 1.3 1.3 1.3

Gamma(2,2) 𝛽0L 0.8 0.8 0.8 0.8

Gamma(2,2) 𝛽1L 1.2 1.2 1.2 1.2

Gamma(2,2) 𝛽0H 0.7 0.7 0.7 0.7

Gamma(2,2) 𝛽1H 1.1 1.1 1.1 1.1

Note: 𝜋k is the first stage response rate for treatment k, k=P, L, H, where P = placebo, L = low dose, H = high dose. 𝛽1k is the linkage
parameter for first stage responders who receive treatment k in stage 1. 𝛽0k is the linkage parameter for first stage nonresponders who
receive treatment k in stage 1. Simulations are done under four scenarios: (i) P = L = H (low and high dose are both as effective as
placebo), (ii) P < L < H (placebo is less effective than low dose, and low dose is less effective than high dose), (iii) P < L = H (low dose and
high dose are equally effective, and they are more effective than placebo), and (iv) P = H < L (low dose is effective but high dose is not).
BJSM prior setting (column 1) is where we use Gamma(2, 2) for all linkage parameters to relax the restriction of priors.
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T A B L E 2 Simulated bias and root-mean-square error (rMSE) for the estimators of 𝜋k

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H 𝜋P −0.001 0.039 0.018 0.063 −0.001 0.039 −0.001 0.065

𝜋L −0.003 0.048 0.022 0.062 −0.005 0.062 0.000 0.064

𝜋H −0.007 0.043 0.020 0.062 −0.005 0.062 0.000 0.064

𝜋L-𝜋P −0.003 0.062 0.004 0.081 −0.005 0.073 0.001 0.091

𝜋H-𝜋P −0.006 0.058 0.002 0.087 −0.005 0.073 0.000 0.091

(2) P < L < H 𝜋P 0.000 0.039 0.009 0.063 0.000 0.039 0.000 0.065

𝜋L −0.005 0.057 0.014 0.068 −0.011 0.078 −0.003 0.080

𝜋H −0.013 0.064 −0.001 0.075 −0.013 0.084 −0.001 0.860

𝜋L-𝜋P −0.005 0.070 0.004 0.092 −0.011 0.087 −0.003 0.102

𝜋H-𝜋P −0.013 0.074 0.011 0.101 −0.012 0.093 −0.001 0.108

(3) P < L = H 𝜋P 0.000 0.040 0.007 0.064 0.000 0.040 −0.001 0.067

𝜋L −0.009 0.066 0.000 0.076 −0.013 0.087 0.000 0.089

𝜋H −0.012 0.065 0.000 0.074 −0.015 0.087 −0.003 0.089

𝜋L-𝜋P −0.009 0.077 −0.006 0.097 −0.013 0.096 0.001 0.112

𝜋H-𝜋P −0.012 0.076 −0.006 0.099 −0.015 0.096 −0.002 0.111

(4) P = H < L 𝜋P −0.001 0.039 0.014 0.063 −0.001 0.039 −0.001 0.065

𝜋L −0.011 0.068 −0.023 0.081 −0.011 0.086 0.002 0.088

𝜋H −0.003 0.044 0.030 0.060 −0.004 0.063 0.001 0.065

𝜋L-𝜋P −0.010 0.078 −0.037 0.104 −0.010 0.094 0.002 0.109

𝜋H-𝜋P −0.003 0.059 0.016 0.083 −0.003 0.075 0.002 0.093

Note: 𝜋k is the stage 1 response rate for treatment k, k=P, L, H , where P = placebo, L = low dose, and H = high dose. Scenarios are given in Table 1.
Four modeling approaches: Bayesian joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample size per treatment arm is 30.

3 SIMULATIONS

In our simulations, we first assume that our drug of interest is ineffective and consider trials in the null scenario, that is,
the response rate of placebo, low dose, and high dose are all equal (scenario 1, P = L = H). Under the assumption that
the drug of interest is effective, we consider three additional scenarios. In scenario 2, a dose-response relationship occurs,
that is, higher dose relates to higher treatment effect (response rates such that P < L < H). In scenario 3, no dose response
occurs between low and high dose, so that the response rate of P < L = H. Lastly, we consider an unlikely, but possible
setting in scenario 4 where no dose response occurs and low dose is effective but high dose is not, so that the response
rate of P = H < L. We selected the Gamma(2, 2) prior for all linkage parameters, understanding this allows for positive
probability for 𝛽1k𝜋k′ and 𝛽0k𝜋k∗ to be greater than 1. We chose Gamma(2,2) as the prior for all 𝛽1k𝜋k′ and 𝛽0k𝜋k∗ for three
reasons: (i) simplicity, (ii) the distribution ranges from 0 to 3 for most of the random draws, which serves as a restriction
to the prior distributions of the linkage parameters, and (iii) the distribution is centered at 1 with variance equal to 0.5,
which allows for flexibility of the prior distribution of the linkage parameters to be below or above 1. This third property
allows stage 1 responders the possibility to worsen in the second stage if they decrease dose and stage 1 nonresponders
the possibility to respond if they increase dose. See Table 1 for the scenarios and priors we used in simulations.

In the data generating process, we simulated 2000 realizations per scenario under the four settings in Table 1. For
each realization, N/3 subjects were assigned to each treatment arm in stage 1, with a total sample size N. Responses to
stage 1 were computed as random Bernoulli variables with the proposed response rates under different scenarios (Table 1,
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columns 3-6). Subjects were then rerandomized equally to their stage 2 treatment based on their stage 1 treatment and
stage 1 response. Stage 2 responses were computed using formulas (2) and (3) under the different scenarios. We compared
bias, root mean-square error (rMSE), coverage rates, and widths of the 95% credible/confidence intervals (CIs) between
the proposed BJSM, LPJSM, a Bayesian method using only the first stage data (BFSM), and a maximum likelihood method
(FSMLE) using only the first stage data.

The 95% CI for BJSM and BFSM are the narrowest intervals that include 95% of the posterior distribution of 𝜋k, while
the 95% CI for LPJSM and FSMLE are the asymptotic, normal-approximation 95% confidence intervals. The R package
rjags was used to generate the posterior distributions of 𝜋k, 𝛽1k, and 𝛽0k, and the R package gee was used to estimate the
parameters defined in LPJSM.

3.1 Results

In this section, we present simulation results for the snSMART design in Figure 1 with sample sizes of N = 90. Results
for N = 300 and N = 45 can be found in Table A1 through A3 in the Appendix.

For all scenarios, Table 2 gives the bias and rMSE for estimators of the stage 1 response rates for placebo, low dose,
and high dose. In the null scenario (scenario 1, P = L = H), we note that BJSM, BFSM, and FSMLE provide estimators of
the difference in response rates and of individual response rates with small bias. While the estimators for the difference
in response rates in LPJSM is comparable with the other methods, we see that the bias in the point estimates of 𝜋P, 𝜋L,
and 𝜋H is much larger than the other methods. This is likely because there are few patients that respond to treatment in
the trial. We also note that BJSM estimators have the smallest rMSEs out of all methods.

For scenario 2 (P < L < H), there is, on average, low to no bias for the response rate estimators for each dose level.
Looking specifically at the estimation of the placebo response rate, we see that there is no bias, on average, for BJSM,
BFSM, and FSMLE. In the LPJSM method, the smallest bias is in the estimator of 𝜋H . This is likely due to the large number
of participants in the trial that receive high dose. The estimators of 𝜋P and 𝜋L likely have higher bias in the LPJSM because
there are fewer patients that receive placebo and low dose in the trial. The estimator of 𝜋H , however, has the largest bias
in the Bayesian methods (BJSM and BFSM). The bias of the high dose response rate estimate is likely large because the
true value of 𝜋H in scenario 2 is 0.35, which is relatively far from the prior mean (0.183) for stage 1 response rates. In
comparison, in BJSM and BFSM the estimator of 𝜋L has less bias than that of 𝜋H , presumably because the true value of 𝜋L
is 0.25, which is closer to 0.183. Looking at rMSE, we observe that the BJSM method estimators of 𝜋P, 𝜋L, and 𝜋H have the
lowest rMSE out of the estimators we compared. While the FSMLE approach has very low bias, it tends to have the largest
rMSE out of the compared methods because it only models first-stage outcomes. When we consider the estimators for the
difference between placebo and low and high dose response rates, we see that all methods provide estimators with small
bias. The estimators for the difference in response rates for placebo vs low and high dose of the BJSM have the smallest
rMSEs out of all methods.

In scenario 3 (P < L = H), we see small bias for the response rate estimators, specifically for the LPJSM and FSMLE
methods. Looking at the BJSM and BFSM results, we see that the bias is negligible for the estimators of 𝜋P, but slightly
larger for estimators of 𝜋L and 𝜋H . In contrast, the LPJSM estimators of 𝜋L and 𝜋H have negligible bias, but the estimator
of 𝜋P is slightly higher. As in scenario 2, the bias in the Bayesian methods is due to the difference between the true value
of the parameters (0.40) and the prior mean (0.183). We expect to see larger bias in the estimation of 𝜋P from the LPJSM
because few patients are randomized to placebo. The BJSM provides response rate estimators for placebo, low dose, and
high dose with the smallest rMSEs out of all methods. Again, we see that BFSM and FSMLE have larger rMSE than
the joint stage modeling procedures. The results of scenario 3 for the bias and rMSE of the estimators of response rate
differences are similar to that of scenario 2.

In scenario 4 (P=H<L), we once again see similar patterns in bias and rMSE of response rate estimators to scenarios 2
and 3. Again, estimators for the difference in response rate estimators generally have small bias, and the BJSM estimators
have the smallest rMSE out of all methods.

It should be noted that across all four scenarios, the efficiency gain observed using joint stage modeling approaches,
compared with BFSM and FSMLE, is not large for the estimators of 𝜋P. We see little efficiency gain using joint stage
approaches because no one is randomized to placebo treatment in stage 2 of the design. As such, first stage methods
are comparable with joint stage methods in estimating 𝜋P. We do, however, see modest efficiency gains using joint stage
modeling approaches for the estimators of 𝜋L-𝜋P and 𝜋H-𝜋P. Since the estimation of 𝜋L-𝜋P and 𝜋H-𝜋P is typically of greater
interest than the estimation of 𝜋P, the efficiency gains we observe represent an advantage of using BJSM procedures.
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T A B L E 3 Simulated width and 95% coverage rate (CR) for the estimators of 𝜋k

BJSM LPJSM BFSM FSMLE

Scenario CR Width CR Width CR Width CR Width

(1) P = L = H 𝜋P 0.98 0.187 0.97 0.261 0.99 0.187 0.94 0.245

𝜋L 0.93 0.183 0.95 0.229 0.87 0.221 0.95 0.246

𝜋H 0.93 0.171 0.95 0.228 0.87 0.221 0.95 0.246

(2) P < L < H 𝜋P 0.98 0.187 0.96 0.254 0.99 0.187 0.94 0.246

𝜋L 0.94 0.225 0.94 0.263 0.88 0.280 0.94 0.304

𝜋H 0.94 0.256 0.94 0.298 0.92 0.317 0.91 0.335

(3) P < L = H 𝜋P 0.98 0.186 0.96 0.252 0.98 0.187 0.94 0.245

𝜋L 0.95 0.267 0.94 0.296 0.94 0.327 0.93 0.346

𝜋H 0.94 0.261 0.95 0.296 0.94 0.327 0.94 0.344

(4) P = H < L 𝜋P 0.99 0.187 0.98 0.258 0.99 0.187 0.94 0.245

𝜋L 0.96 0.282 0.92 0.301 0.94 0.328 0.94 0.336

𝜋H 0.93 0.169 0.96 0.213 0.88 0.222 0.94 0.247

Note: 𝜋k is the true stage 1 response rate for the treatment k, k=P, L, H , where P = placebo, L = low dose, and H = high dose.
Scenarios are given in Table 1. Four modeling approaches: Bayesian joint stage modeling (BJSM), log-linear Poisson joint stage
modeling (LPJSM), Bayesian first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are compared.
The sample size per treatment arm is 30.

Across all scenarios, we see that the bias of LPJSM estimators of 𝜋P is large compared with the other LPJSM response
rate estimators, and compared with the estimators of 𝜋P for other methods. This increased bias likely stems from the low
number of patients receiving placebo. Since there are few people in the placebo treatment arm, and none in stage 2 of the
study, there is less information to estimate 𝜋P, leading to more bias. In larger samples (see Appendix), we see negligible
bias for the LPJSM estimator of 𝜋P, which supports our explanation that the bias observed in Table 2 is due to a low sample
size.

Table 3 presents the 95% CI width and coverage rates (CR). Here, we see that the BJSM methods has smaller average
95% CI width than the LPJSM, BFSM, and FSMLE methods. In addition, the CR is around the target 95% for the BJSM in
all tested scenarios.

When a sample size of N = 300 is used, we see similar results (Appendix). Overall, we observe smaller bias across
all settings when N = 100 in each arm. Interestingly, there is still an efficiency gain when using BJSM methods in larger
sample sizes, as the BJSM response rate estimators have smaller rMSEs than the response rate estimators from the LPJSM
approach. In addition, for small samples, N = 45, under the null setting where we assume a spontaneous response rate of
30% or 40% for placebo, low, and high doses of the experimental therapy, we again observe efficiency gains when using
BJSM methods (Appendix). The BJSM response rate estimators also have smaller bias than the LPJSM and BFSM methods.

3.2 Sensitivity to priors

In addition to the prior setting presented in Section 3.1, we also explored other prior settings to evaluate the robustness of
the BJSM method. First, we adjusted the mean of the prior distribution for log(𝜋L∕𝜋P) and log(𝜋H∕𝜋P). While we settled
on a mean of 0.2 to be conservative, we also tested mean values of 0.3, 0.4, and 0.5, and found that our results were largely
unchanged in the null and dose-response scenarios (see Table A4 and Table A6 in the Appendix). Second, we adjusted the
center of the prior distribution for 𝜋P. In our presented results, the mean of the prior distribution for 𝜋P was equal to the
true value of 𝜋P in all scenarios. We present simulations for the null and dose-response scenarios with prior distributions
of Beta(2, 18) and Beta(4, 16), and means of 0.10 and 0.20, respectively, for 𝜋P. While in these simulations, we did find that
our estimates of the placebo response rate were more biased than in the results in Section 3.1, our estimation of response
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rates for low and high doses were unchanged. Coverage rate and credible interval width estimates were also unchanged
in our sensitivity analyses (data not shown). Additionally, even when the mean of our prior distribution for the placebo
response rate did not match the true value of 𝜋P, BJSM was still more efficient than the LPJSM and first-stage methods
(see Table A5 and A7 in the Appendix). Based on these additional analyses, we conclude that our method is generally
robust to the choice of mean for all prior distributions of 𝜋P, log(𝜋L∕𝜋P), and log(𝜋H∕𝜋P). We drew the same conclusions
after adjusting the priors for scenarios 3 and 4 (data not shown).

4 DISCUSSION

In this article, we adapted the Bayesian method (BJSM) for use in a different snSMART design where low and high doses of
a single experimental therapy are compared with placebo. Due to dose comparison and the stage 2 rerandomization strat-
egy, our design required novel methods that use six linkage parameters to share information on the response rates from
both stages of the trial. In this setting, the BJSM yields accurate estimators that are easy to interpret in a clinical setting.
Our proposed method was compared with three other methods via simulation. Through simulation, we demonstrated
that BJSM estimators are the most efficient of the methods presented.

An advantage of the BJSM method is that it provides estimates of 𝜋P, 𝜋L, and 𝜋H , even when the true response rates
were low. In our simulation scenarios, we noted convergence issues for the LPJSM method, specifically under scenario 1,
where all treatments have true response rates of 0.15. In this scenario, there were instances where no response outcomes
were observed for a given stage 1 treatment. Thus, there would be no responders to rerandomize in stage 2; all stage 2
rerandomization would occur through the nonresponder arm of that treatment. This low probability of response caused
failures in convergence for the LPJSM method, but good estimation with low bias was still possible using the BJSM.

Interestingly, in simulations with large true response rates or large sample size, LPJSM performs better than BFSM
(smaller rMSE) in terms of the estimation of each individual response rate. However, LPJSM performs worse than BFSM
in many scenarios in terms of the difference between the response rates of different dosage levels. This is likely due to
our assumption of a prior distribution on the ratio of response rates in the Bayesian methods, which implicitly places
correlation among response rates. No such correlation structure is assumed with LPJSM.

Another strength of the BJSM method is its robustness under different prior settings. As discussed in Section 3.2, the
BJSM method remained efficient regardless of the center of the response rate estimator prior distributions. Additionally,
the bias of the response rate estimators for low and high dose remained low in all tested scenarios for the BJSM, even when
the mean of the prior distribution for 𝜋P no longer matched the true mean in the simulation scenarios. This robustness
is particularly important for trials investigating drugs in rare diseases, as there may be little previous data to guide prior
distribution selection.

Our first formulation of the BJSM model had 11, rather than six, linkage parameters. These parameters corresponded
to the 11 unique paths through which a participant could follow in the trial. We found that, while this model still produced
response rate estimators with small bias and with increased efficiency compared with other tested methods, these advan-
tages were not substantial. By limiting the model to only six linkage parameters, we were able to retain small bias and
gains in efficiency, while using a simpler model. These efficiency gains were present for estimators of 𝜋L-𝜋P and 𝜋H-𝜋P.
These difference estimators are generally of greater interest than individual response rates in clinical trials. As such, the
efficiency gains we observe represent an advantage of using Bayesian joint stage modeling procedures. This model could
be expanded if investigators wanted a different bias-variance trade-off than shown here.

The efficiency gains of the BJSM are still relevant for clinical trials with larger sample sizes (Appendix). A trial design
that reduces rMSE would also reduce the total number of patients that need to enroll in the trial, and therefore results
in a shorter duration of the trial. As such, this snSMART design may be appropriate not just in rare disease research,
but also in time-sensitive research like emerging infectious diseases. Similarly, efficiency gains of the BJSM remain for
clinical trials with even smaller sample size. Simulations with only N = 45 patients (N = 15 per arm) showed that the
BJSM remains efficient and estimates response rates with low bias, even as sample size decreases (Appendix).

A limitation that results from the proposed prior distribution settings and model assumptions is that the posterior
distributions for the linkage parameters and 𝜋k allow for 𝛽1k𝜋k′ > 1. However, we did not draw any samples where 𝛽1k𝜋k′ >

1 in our simulations. Thus, it is unlikely that this limitation would be a problem in clinical settings, unless the treatment
under consideration has a high response rate. Another limitation of our design is we assume there are no carryover effects
of the stage 1 treatment in stage 2 of the study. We note, however, that our trial design allows for investigators to implement
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a washout period between stage 1 and stage 2 of the study if there was concern with carryover effects. Our future work
will include modifications to our method to account for carryover effects.

Future directions for this work include adapting the BJSM to continuous outcomes. We are also examining models
with fewer unique linkage parameters to see if we can improve efficiency of the BJSM method without much increased
bias. In addition, future work can construct sample size calculations based on the BJSM for snSMART designs. These
sample size calculations will aid in the extension of snSMART designs for primary efficacy analysis when more than two
dose levels of a drug are compared. We note that our study design allows for a customizable randomization scheme in
stage 2. While balanced rerandomization was applied in our simulations, future work could consider unbalanced or/and
stratified randomization in stage 2 within responders and nonresponders.

ACKNOWLEDGEMENT
This work was supported through a Patient-Centered Outcomes Research Institute (PCORI) Award (ME-1507-31108) and
a MICHR Promoting Progress in Statistics Award, through the University of Michigan Clinical and Translational Science
Award (UL1TR002240).

DATA AVAILABILITY STATEMENT
The author will provide any code used to generate the simulation results presented in this manuscript upon request.

ORCID
Fang Fang https://orcid.org/0000-0002-7089-3591

REFERENCES
1. 107th Congress rare diseases act of 2002. Pub Law; 2002:107-280.
2. Griggs RC, Batshaw M, Dunkle M, et al. Clinical research for rare disease: opportunities, challenges and solutions. Mol Genet Metab.

2009;96(1):20-26.
3. FDA guidance for industry (Draft). Rare diseases: common issues in drug development; 2015.
4. Levin KA. Study design VII. Randomised controlled trials. Evidence-Based Dentistry. 2007;8(1):22.
5. Gupta S, Faughnan ME, Tomlinson GA, Bayoumi AM. A framework for applying unfamiliar trial designs in studies of rare diseases. J Clin

Epidemiol. 2011;64(10):1085-1094.
6. Tamura RN, Krischer JP, Pagnoux C, et al. A small n sequential multiple assignment randomized trial design for use in rare disease

research. Contemp Clin Trials. 2016;46:48-51.
7. Lavori PW, Dawson R. A design for testing clinical strategies: biased adaptive within-subject randomization. J Royal Stat Soc Ser A (Stat

Soc). 2000;163(1):29-38.
8. Murphy SA. An experimental design for the development of adaptive treatment strategies. Stat Medic. 2005;24(10):1455-1481.
9. Robins J. A new approach to causal inference in mortality studies with a sustained exposure period–application to control of the healthy

worker survivor effect. Math Modell. 1986;7(9-12):1393-1512.
10. Murphy SA. Optimal dynamic treatment regimes. J Royal Stat Soc Ser B (Stat Methodol). 2003;65(2):331-355.
11. Rosner GL, Stadler W, Ratain MJ. Randomized discontinuation design: application to cytostatic antineoplastic agents. J Clin Oncol.

2002;20(22):4478-4484.
12. Almirall D, Compton SN, Rynn MA, Walkup JT, Murphy SA. SMARTer discontinuation trial designs for developing an adaptive treatment

strategy. J Child Adolescent Psychopharmacol. 2012;22(5):364-374.
13. Makubate B, Senn S. Planning and analysis of cross-over trials in infertility. Stat Medic. 2010;29(30):3203-3210.
14. Nason M, Follmann D. Design and analysis of crossover trials for absorbing binary endpoints. Biometrics. 2010;66(3):958-965.
15. Honkanen VEA, Siegel AF, Szalai JP, Berger V, Feldman BM, Siegel JN. A three-stage clinical trial design for rare disorders. Stat Medic.

2001;20(20):3009-3021.
16. Wei B, Braun TM, Tamura RN, Kidwell KM. A Bayesian analysis of small n sequential multiple assignment randomized trials (snSMARTs).

Stat Medic. 2018;37(26):3723-3732.
17. Williamson T, Eliasziw M, Fick GH. Log-binomial models: exploring failed convergence. Emerg Themes Epidemiol. 2013;10(1):14.

How to cite this article: Fang F, Hochstedler KA, Tamura RN, Braun TM, Kidwell KM. Bayesian methods to
compare dose levels with placebo in a small n, sequential, multiple assignment, randomized trial. Statistics in
Medicine. 2021;40:963–977. https://doi.org/10.1002/sim.8813

https://orcid.org/0000-0002-7089-3591
https://orcid.org/0000-0002-7089-3591


972 FANG et al.

APPENDIX

Simulation results with N = 300

T A B L E A1 Simulated bias and root-mean-square error (rMSE) for the estimators of 𝜋k

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H 𝜋P 0.000 0.030 0.001 0.035 0.000 0.030 0.000 0.035

𝜋L 0.000 0.028 0.002 0.030 0.000 0.035 0.001 0.036

𝜋H −0.002 0.026 0.001 0.031 −0.002 0.034 0.000 0.035

𝜋L-𝜋P 0.000 0.041 0.001 0.045 0.000 0.046 0.002 0.051

𝜋H-𝜋P −0.002 0.040 0.000 0.046 −0.002 0.045 0.000 0.049

(2) P < L < H 𝜋P 0.000 0.031 0.000 0.360 0.001 0.030 0.001 0.037

𝜋L −0.001 0.033 0.007 0.038 −0.002 0.042 0.000 0.042

𝜋H −0.004 0.039 −0.007 0.043 −0.005 0.048 −0.001 0.048

𝜋L-𝜋P −0.002 0.046 0.008 0.051 −0.003 0.053 0.000 0.057

𝜋H-𝜋P −0.005 0.049 −0.007 0.056 −0.005 0.056 −0.002 0.059

(3) P < L = H 𝜋P 0.000 0.030 0.000 0.036 0.000 0.300 0.000 0.036

𝜋L −0.002 0.040 0.000 0.042 −0.003 0.049 0.001 0.050

𝜋H −0.004 0.040 0.000 0.042 −0.005 0.050 −0.001 0.050

𝜋L-𝜋P −0.002 0.050 0.000 0.054 −0.003 0.058 0.001 0.062

𝜋H-𝜋P −0.004 0.051 0.001 0.055 −0.005 0.059 −0.001 0.062

(4) P = H < L 𝜋P 0.001 0.030 0.000 0.035 0.001 0.030 0.001 0.036

𝜋L −0.002 0.043 −0.026 0.049 −0.003 0.050 0.001 0.050

𝜋H −0.002 0.026 0.026 0.039 −0.002 0.036 0.000 0.036

𝜋L-𝜋P −0.003 0.053 −0.026 0.060 −0.004 0.058 0.000 0.062

𝜋H-𝜋P −0.003 0.040 0.026 0.052 −0.003 0.047 −0.001 0.051

Note: 𝜋k is the stage 1 response rate for treatment k, k=P, L, H , where P = placebo, L = low dose, and H = high dose. Scenarios are
given in Table 1. Four modeling approaches: Bayesian joint stage modeling (BJSM), log-linear Poisson joint stage modeling
(LPJSM), Bayesian first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample
size per treatment arm is 100.
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T A B L E A2 Simulated width and 95% coverage rate (CR) for the estimators of 𝜋k

BJSM LPJSM BFSM FSMLE

Scenario CR Width CR Width CR Width CR Width

(1) P = L = H 𝜋P 0.96 0.124 0.94 0.139 0.96 0.124 0.93 0.138

𝜋L 0.94 0.112 0.95 0.121 0.93 0.135 0.93 0.139

𝜋H 0.95 0.108 0.95 0.121 0.94 0.134 0.94 0.138

(2) P < L < H 𝜋P 0.95 0.125 0.94 0.138 0.95 0.125 0.93 0.139

𝜋L 0.95 0.133 0.95 0.144 0.95 0.165 0.95 0.170

𝜋H 0.95 0.156 0.93 0.164 0.95 0.182 0.94 0.186

(3) P < L = H 𝜋P 0.96 0.124 0.94 0.138 0.96 0.124 0.94 0.139

𝜋L 0.95 0.157 0.94 0.163 0.94 0.188 0.94 0.191

𝜋H 0.95 0.156 0.94 0.163 0.93 0.188 0.94 0.191

(4) P = H < L 𝜋P 0.96 0.125 0.94 0.139 0.96 0.125 0.93 0.139

𝜋L 0.95 0.170 0.90 0.166 0.94 0.188 0.93 0.186

𝜋H 0.94 0.101 0.90 0.117 0.93 0.134 0.93 0.138

Note: 𝜋k is the true stage 1 response rate for the treatment k, k=P, L, H, where P = placebo, L = low dose, and H = high dose. Scenarios are
given in Table 1. Four modeling approaches: Bayesian joint stage modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian
first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample size per treatment arm is 100.

Simulation results with N = 45

T A B L E A3 Simulated bias and root-mean-square error (rMSE) for the estimators of 𝜋k under null scenarios with
different spontaneous response rate

BJSM LPJSM BFSM FSMLE

Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H 𝜋P −0.002 0.047 0.012 0.116 −0.084 0.098 0.001 0.120

𝜋 = 0.3 𝜋L −0.010 0.086 0.031 0.108 −0.021 0.110 0.003 0.121

𝜋H −0.015 0.075 0.018 0.100 −0.018 0.111 0.002 0.120

𝜋L-𝜋P −0.008 0.098 0.019 0.157 0.062 0.135 0.002 0.175

𝜋H-𝜋P −0.012 0.085 0.006 0.152 0.066 0.138 0.002 0.168

(2) P = L = H 𝜋P 0.000 0.053 0.007 0.123 −0.141 0.151 0.004 0.128

𝜋 = 0.4 𝜋L −0.015 0.087 0.012 0.107 −0.027 0.119 −0.003 0.130

𝜋H −0.018 0.084 0.006 0.105 −0.023 0.120 −0.001 0.124

𝜋L-𝜋P −0.015 0.100 0.005 0.162 0.114 0.172 −0.007 0.182

𝜋H-𝜋P −0.018 0.100 −0.001 0.158 0.118 0.176 −0.005 0.175

Note: 𝜋k is the true stage 1 response rate for the treatment k, k=P, L, H, where P = placebo, L = low dose, and H = high dose. Under
null scenario, we assume 𝜋P = 𝜋L = 𝜋H = 𝜋. Four modeling approaches: Bayesian joint stage modeling (BJSM), log-linear Poisson joint
stage modeling (LPJSM), Bayesian first stage modeling (BFSM), and first stage maximum likelihood estimation (FSMLE) are
compared. The sample size per treatment arm is 15.
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Simulation results with different prior settings

BJSM BFSM

Scenario Bias rMSE Bias rMSE

(1) P = L = H 𝜋P −0.001 0.039 −0.001 0.039

𝜇 = 0.2 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P −0.003 0.062 −0.005 0.073

𝜋H-𝜋P −0.006 0.058 −0.005 0.073

(2) P = L = H 𝜋P −0.001 0.039 −0.001 0.039

𝜇 = 0.3 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P −0.003 0.062 −0.005 0.073

𝜋H-𝜋P −0.006 0.058 −0.005 0.073

(3) P = L = H 𝜋P −0.001 0.039 −0.001 0.039

𝜇 = 0.4 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P −0.003 0.062 −0.005 0.073

𝜋H-𝜋P −0.006 0.058 −0.005 0.073

(4) P = L = H 𝜋P −0.001 0.039 −0.001 0.039

𝜇 = 0.5 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P −0.003 0.062 −0.005 0.073

𝜋H-𝜋P −0.006 0.058 −0.005 0.073

Note: Results are presented for two modeling approaches: Bayesian joint stage model (BJSM)
and Bayesian first stage modeling (BFSM). 𝜋k is the true stage 1 response rate for the treatment
k, k=P, L, H, where P = placebo, L = low dose, and H = high dose. The sample size per
treatment arm is 30.

T A B L E A4 Simulated bias and
root-mean-square error (rMSE) under the null
scenario for the estimators when assuming different
prior mean for log(𝜋L∕𝜋P) and log(𝜋H∕𝜋P), that is,
E(log(𝜋L∕𝜋P)) = 𝜇, given 𝜇 = 0.2, 0.3, 0.4, 0.5
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T A B L E A5 Simulated bias and
root-mean-square error (rMSE) under the null
scenario for the estimators when assuming different
shape and scale parameter values for the placebo
prior distributions

BJSM BFSM

Scenario Bias rMSE Bias rMSE

(1) P = L = H 𝜋P −0.001 0.039 −0.001 0.039

E(𝜋P) = 0.15 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P −0.003 0.062 −0.005 0.073

𝜋H-𝜋P −0.006 0.058 −0.005 0.073

(2) P = L = H 𝜋P −0.021 0.044 −0.021 0.044

E(𝜋P) = 0.1 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P 0.017 0.064 0.015 0.075

𝜋H-𝜋P 0.014 0.059 0.015 0.075

(3) P = L = H 𝜋P 0.019 0.043 0.019 0.043

E(𝜋P) = 0.2 𝜋L −0.003 0.048 −0.005 0.062

𝜋H −0.007 0.043 −0.005 0.062

𝜋L-𝜋P −0.023 0.066 −0.025 0.077

𝜋H-𝜋P −0.026 0.063 −0.025 0.077

Note: Three different prior settings are presented: 𝜋P ∼ Beta(3, 17), 𝜋P ∼ Beta(2, 18) and
𝜋P ∼ Beta(4, 16), corresponding to the placebo prior mean E(𝜋P) = (0.15, 0.1, 0.2), respectively.
Results are presented for two modeling approaches: Bayesian joint stage model (BJSM) and
Bayesian first stage modeling (BFSM). 𝜋k is the true stage 1 response rate for the treatment k,
k=P, L, H, where P = placebo, L = low dose, and H = high dose. The sample size per treatment
arm is 30.
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BJSM BFSM

Scenario Bias rMSE Bias rMSE

(1) P < L < H 𝜋P 0.000 0.039 0.000 0.039

𝜇 = 0.2 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P −0.005 0.069 −0.011 0.087

𝜋H-𝜋P −0.013 0.074 −0.012 0.093

(2) P < L < H 𝜋P 0.000 0.039 0.000 0.039

𝜇 = 0.3 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P −0.005 0.069 −0.011 0.087

𝜋H-𝜋P −0.013 0.074 −0.012 0.093

(3) P < L < H 𝜋P 0.000 0.039 0.000 0.039

𝜇 = 0.4 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P −0.005 0.070 −0.011 0.087

𝜋H-𝜋P −0.013 0.074 −0.012 0.093

(4) P < L < H 𝜋P 0.000 0.039 0.000 0.039

𝜇 = 0.5 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P −0.005 0.070 −0.011 0.087

𝜋H-𝜋P −0.013 0.074 −0.012 0.093

Note: Results are presented for two modeling approaches: Bayesian joint stage model (BJSM)
and Bayesian first stage modeling (BFSM). 𝜋k is the true stage 1 response rate for the treatment
k, k=P, L, H, where P = placebo, L = low dose, and H = high dose. The sample size per
treatment arm is 30.

T A B L E A6 Simulated bias and
root-mean-square error (rMSE) under the
dose-response scenario for the estimators when
assuming different prior mean for log(𝜋L∕𝜋P) and
log(𝜋H∕𝜋P), that is, E(log(𝜋L∕𝜋P)) = 𝜇, given
𝜇 = 0.2, 0.3, 0.4, 0.5
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T A B L E A7 Simulated bias and
root-mean-square error (rMSE) under the
dose-response scenario for the estimators when
assuming different shape and scale parameter
values for the placebo prior distributions

BJSM BFSM

Scenario Bias rMSE Bias rMSE

(1) P < L < H 𝜋P 0.000 0.039 0.000 0.039

E(𝜋P) = 0.15 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P −0.005 0.069 −0.011 0.087

𝜋H-𝜋P −0.013 0.074 −0.012 0.093

(2) P < L < H 𝜋P −0.020 0.044 −0.020 0.044

E(𝜋P) = 0.1 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P 0.015 0.071 0.009 0.087

𝜋H-𝜋P 0.007 0.073 0.008 0.092

(3) P < L < H 𝜋P 0.020 0.044 0.020 0.044

E(𝜋P) = 0.2 𝜋L −0.005 0.057 −0.011 0.078

𝜋H −0.013 0.064 −0.013 0.084

𝜋L-𝜋P −0.025 0.074 −0.031 0.091

𝜋H-𝜋P −0.033 0.080 −0.032 0.098

Note: Three different prior settings are presented: 𝜋P ∼ Beta(3, 17), 𝜋P ∼ Beta(2, 18) and
𝜋P ∼ Beta(4, 16), corresponding to the placebo prior mean E(𝜋P) = (0.15, 0.1, 0.2), respectively.
Results are presented for two modeling approaches: Bayesian joint stage model (BJSM) and
Bayesian first stage modeling (BFSM). 𝜋k is the true stage 1 response rate for the treatment k,
k=P, L, H, where P = placebo, L = low dose, and H = high dose. The sample size per treatment
arm is 30.


